peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/pipe
/engine.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from types import MethodType | |
from collections import OrderedDict | |
import torch | |
from deepspeed import comm as dist | |
from deepspeed.utils import logger | |
from deepspeed.utils.timer import ThroughputTimer | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer | |
from ..engine import DeepSpeedEngine, MEMORY_OPT_ALLREDUCE_SIZE | |
from deepspeed.utils.timer import FORWARD_MICRO_TIMER, FORWARD_GLOBAL_TIMER, BACKWARD_MICRO_TIMER, \ | |
BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_INNER_GLOBAL_TIMER, \ | |
BACKWARD_REDUCE_MICRO_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \ | |
STEP_MICRO_TIMER, STEP_GLOBAL_TIMER | |
from ..utils import PartitionedTensor | |
from ..dataloader import RepeatingLoader | |
from ..zero.config import ZeroStageEnum | |
from ..activation_checkpointing import checkpointing as ds_checkpointing | |
from .module import PipelineModule, PipelineError | |
from . import p2p | |
from . import schedule | |
TARGET_ID = -2 | |
LOG_STAGE = -2 | |
DATA_PARALLEL_ID = -2 | |
BATCH_INPUT_TIMER = 'batch_input' | |
TRAIN_BATCH_TIMER = 'train_batch' | |
PIPE_SEND_OUTPUT_TIMER = 'pipe_send_output' | |
PIPE_SEND_GRAD_TIMER = 'pipe_send_grad' | |
PIPE_RECV_INPUT_TIMER = 'pipe_recv_input' | |
PIPE_RECV_GRAD_TIMER = 'pipe_recv_grad' | |
def is_even(number): | |
return number % 2 == 0 | |
mem_alloced = 0 | |
mem_cached = 0 | |
def _tensor_bytes(tensor): | |
return tensor.numel() * tensor.element_size() | |
class PipelineEngine(DeepSpeedEngine): | |
""" A training engine hybrid pipeline, data, and model parallel training. | |
This engine is created by ``deepspeed.initialize()`` when a :class:`PipelineModule` | |
is provided. | |
""" | |
ID_TO_DTYPE = [ | |
torch.float32, torch.float64, torch.complex64, torch.complex128, torch.float16, torch.bfloat16, torch.uint8, | |
torch.int8, torch.int16, torch.int32, torch.int64, torch.bool | |
] | |
DTYPE_TO_ID = {dtype: id_ for id_, dtype in enumerate(ID_TO_DTYPE)} | |
def __init__(self, has_bool_tensors=False, *super_args, **super_kwargs): | |
super().__init__(*super_args, **super_kwargs) | |
assert isinstance(self.module, PipelineModule) \ | |
or (hasattr(self.module, 'wrapped') and isinstance(self.module.wrapped, PipelineModule)), \ | |
"model must base PipelineModule" | |
assert self.zero_optimization_stage( | |
) < ZeroStageEnum.gradients, "ZeRO-2 and ZeRO-3 are incompatible with pipeline parallelism" | |
# We schedule the all-reduces, so disable it in super().backward() | |
self.enable_backward_allreduce = False | |
self.has_bool_tensors = has_bool_tensors | |
self.eval_return_logits = False | |
self.outputs = None | |
# BF16 Optimizer is hardcoded for fp32 gradient accumulation | |
self.using_bf16_optimizer = type(self.optimizer) == BF16_Optimizer | |
# used to disable the pipeline all-reduce when used with 1-bit Adam/1-bit LAMB | |
self.pipeline_enable_backward_allreduce = True | |
if self.elasticity_enabled(): | |
if not self.is_elastic_model_parallel_supported(): | |
assert not self.elasticity_enabled(), "Elasticity is not currently supported" \ | |
" with pipeline parallelism." | |
# pipeline step for logging | |
self.log_batch_step_id = -1 | |
self.micro_batch_size = self.train_micro_batch_size_per_gpu() | |
self.micro_batches = self.gradient_accumulation_steps() | |
# Set Grid and Communication Groups | |
self.grid = self.module._grid | |
if self.grid.get_global_rank() == 0: | |
logger.info(f'CONFIG: micro_batches={self.micro_batches} ' | |
f'micro_batch_size={self.micro_batch_size}') | |
self.global_rank = self.grid.get_global_rank() | |
assert self.dp_world_size == self.grid.data_parallel_size | |
assert self.train_batch_size() == \ | |
self.micro_batch_size * self.micro_batches * self.grid.data_parallel_size | |
# Set Stage Inf | |
self.num_stages = self.grid.pipe_parallel_size | |
self.stage_id = self.grid.get_stage_id() | |
self.prev_stage = self.stage_id - 1 | |
self.next_stage = self.stage_id + 1 | |
self.data_iterator = None | |
self.batch_fn = None | |
self._force_grad_boundary = False | |
self.batch_timer = ThroughputTimer(batch_size=self.train_batch_size(), | |
logging_fn=self.tput_log, | |
monitor_memory=False, | |
steps_per_output=self.steps_per_print()) | |
# PipelineEngine needs to handle data loading specially due to only the first | |
# and last stages loading inputs/labels. We construct a sampler that uses | |
if self.training_data: | |
self._build_data_iter(self.training_data) | |
self.is_pipe_parallel = self.grid.pipe_parallel_size > 1 | |
self.is_data_parallel = self.grid.data_parallel_size > 1 | |
self.is_model_parallel = self.grid.model_parallel_size > 1 | |
# Partition input/output buffers | |
# XXX temporarily disable while I revert some partition hacks. | |
assert isinstance(self._config.pipeline['pipe_partitioned'], bool) | |
assert isinstance(self._config.pipeline['grad_partitioned'], bool) | |
self.is_pipe_partitioned = self.is_model_parallel and self._config.pipeline['pipe_partitioned'] | |
self.is_grad_partitioned = self.is_model_parallel and self._config.pipeline['grad_partitioned'] | |
logger.info(f'is_pipe_partitioned= {self.is_pipe_partitioned} ' | |
f'is_grad_partitioned= {self.is_grad_partitioned}') | |
model_parameters = filter(lambda p: p.requires_grad, self.module.parameters()) | |
num_params = sum([p.numel() for p in model_parameters]) | |
unique_params = num_params | |
# Subtract tied parameters if we don't own them | |
if self.module.tied_comms: | |
tied_params = 0 | |
for key, d in self.module.tied_comms.items(): | |
if self.global_rank != min(d['ranks']): | |
tied_params += sum(p.numel() for p in d['module'].parameters()) | |
unique_params -= tied_params | |
params_tensor = torch.LongTensor(data=[num_params, unique_params]).to(self.device) | |
dist.all_reduce(params_tensor, group=self.grid.get_model_parallel_group()) | |
params_tensor = params_tensor.tolist() | |
total_params = params_tensor[0] | |
unique_params = params_tensor[1] | |
if self.grid.data_parallel_id == 0: | |
logger.info(f'RANK={self.global_rank} ' | |
f'STAGE={self.stage_id} ' | |
f'LAYERS={self.module._local_stop - self.module._local_start} ' | |
f'[{self.module._local_start}, {self.module._local_stop}) ' | |
f'STAGE_PARAMS={num_params} ({num_params/1e6:0.3f}M) ' | |
f'TOTAL_PARAMS={total_params} ({total_params/1e6:0.3f}M) ' | |
f'UNIQUE_PARAMS={unique_params} ({unique_params/1e6:0.3f}M)') | |
#initialize peer-2-peer communication and allreduce groups | |
if self.is_pipe_parallel: | |
p2p.init_process_groups(self.grid) | |
# Pipeline buffers | |
self.num_pipe_buffers = 0 | |
self.pipe_buffers = { | |
'inputs': [], # batch input and received activations | |
'labels': [], # labels from batch input | |
'outputs': [], # activations | |
'output_tensors': [], # tensor object to preserve backward graph | |
} | |
self.pipe_recv_buf = None | |
self.grad_layer = None | |
self.meta_buffer = None | |
self.first_output_send = True | |
self.first_gradient_send = True | |
self.pipe_partition_input_meta_cache = None | |
self.pipe_partition_output_meta_cache = None | |
self.pipe_partition_grad_meta_cache = None | |
self.grad_partition_grad_layer_meta_cache = None | |
#stores the loss for the current micro batch being processed | |
self.loss = torch.tensor(0.0).to(self.device) | |
#stores the loss for the entire batch | |
self.total_loss = None | |
self.total_additional_losses = None | |
self.agg_loss = torch.tensor(0.0, requires_grad=False).to(self.device) | |
self.dp_group_loss = torch.tensor(0.0, requires_grad=False).to(self.device) | |
# stores aggregated-DP train final loss and aggregated-DP additional losses, if any | |
# additional losses are stored as dict: {loss-name: agg-loss} | |
self.agg_train_loss = None | |
self.agg_additional_losses = None | |
if self._config.pipeline['activation_checkpoint_interval'] > 0: | |
self.module.activation_checkpoint_interval = self._config.pipeline['activation_checkpoint_interval'] | |
# set use_reentrant default to True. | |
if self._config.pipeline.get('use_reentrant') is None: | |
self._config.pipeline['use_reentrant'] = True | |
if self._config.pipeline['use_reentrant'] is False: | |
# set activation_checkpoint_func to non_reentrant_checkpoint func. | |
self.module.activation_checkpoint_func = ds_checkpointing.non_reentrant_checkpoint | |
if self.grid.get_global_rank() == 0: | |
logger.info(f'CONFIG: activation_checkpoint_func=non_reentrant_checkpoint') | |
self.module.checkpoint_parallel_write_pipeline = self._config.checkpoint_parallel_write_pipeline | |
if self.is_last_stage(): | |
self.loss_model = self.module.loss_fn | |
self.has_attention_mask = self.module.__class__.__name__ == 'GPT2ModelPipe' | |
# Initialize pipeline communicators. Just send a 0. | |
if is_even(self.stage_id): | |
if not self.is_last_stage(): | |
p2p.send(self.loss, self.next_stage) | |
if not self.is_first_stage(): | |
p2p.recv(self.loss, self.prev_stage) | |
else: | |
if not self.is_first_stage(): | |
p2p.recv(self.loss, self.prev_stage) | |
if not self.is_last_stage(): | |
p2p.send(self.loss, self.next_stage) | |
# XXX look into timer reporting timing | |
# Initialize some timers because of early weirdness. | |
if self.wall_clock_breakdown(): | |
self.timers(FORWARD_MICRO_TIMER).start() | |
self.timers(FORWARD_MICRO_TIMER).stop() | |
self.timers(BACKWARD_MICRO_TIMER).start() | |
self.timers(BACKWARD_MICRO_TIMER).stop() | |
self.timers(BACKWARD_INNER_MICRO_TIMER).start() | |
self.timers(BACKWARD_INNER_MICRO_TIMER).stop() | |
self.timers(BACKWARD_REDUCE_MICRO_TIMER).start() | |
self.timers(BACKWARD_REDUCE_MICRO_TIMER).stop() | |
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).start() | |
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).stop() | |
self.timers(STEP_MICRO_TIMER).start() | |
self.timers(STEP_MICRO_TIMER).stop() | |
def set_has_attention_mask(self, value): | |
assert isinstance(value, bool) | |
self.has_attention_mask = value | |
def _build_data_iter(self, dataset): | |
sampler = torch.utils.data.distributed.DistributedSampler(dataset, | |
num_replicas=self.dp_world_size, | |
rank=self.mpu.get_data_parallel_rank(), | |
shuffle=False) | |
# Build a loader and make it repeating. | |
pipe_dataloader = self.deepspeed_io(dataset, data_sampler=sampler) | |
pipe_dataloader = RepeatingLoader(pipe_dataloader) | |
self.set_dataloader(pipe_dataloader) | |
def _exec_reduce_tied_grads(self): | |
# We need to run this first to write to self.averaged_gradients; | |
# since this class turns `enable_backward_allreduce` off, | |
# `self.overlapping_partition_gradients_reduce_epilogue()` defined in the DeepSpeedEngine | |
# never actually runs. I suspect this is because of efficiency problems; get_flat_partition in | |
# stage2.py might do something expensive; someone will have to look into that later. But | |
# in the meantime, this fixes ZeRO2 + Pipelining enough to run a demo. Further profiling | |
# needed to decide if it actually breaks everything. | |
# (see https://github.com/EleutherAI/gpt-neox/issues/62#issuecomment-761471944) | |
if self.zero_optimization_partition_gradients(): | |
self.optimizer.overlapping_partition_gradients_reduce_epilogue() | |
weight_group_list = self.module.get_tied_weights_and_groups() | |
for weight, group in weight_group_list: | |
grad = weight._hp_grad if self.using_bf16_optimizer else weight.grad | |
dist.all_reduce(grad, group=group) | |
def _exec_reduce_grads(self): | |
self._force_grad_boundary = True | |
if self.pipeline_enable_backward_allreduce: | |
if self.using_bf16_optimizer: | |
# PP+BF16 work for ZeRO Stage 1 | |
self._bf16_reduce_grads() | |
else: | |
self.allreduce_gradients(bucket_size=MEMORY_OPT_ALLREDUCE_SIZE) | |
self._force_grad_boundary = False | |
def _bf16_reduce_grads(self): | |
self.buffered_allreduce_fallback(grads=None, elements_per_buffer=MEMORY_OPT_ALLREDUCE_SIZE) | |
def _reserve_pipe_buffers(self, num_buffers): | |
"""Ensure that each pipeline buffer has at least ``num_buffers`` slots. | |
This method only reserves slots and does not allocate tensors. | |
Args: | |
num_buffers (int): The number of buffers to reserve. | |
""" | |
if self.num_pipe_buffers >= num_buffers: | |
return | |
num_added = num_buffers - self.num_pipe_buffers | |
for key in self.pipe_buffers: | |
self.pipe_buffers[key].extend([None] * num_added) | |
self.num_pipe_buffers = num_buffers | |
def reset_activation_shape(self): | |
"""Reset the buffers when the shape of activation and gradient change. | |
For example, for curriculum learning that changes the seqlen of each | |
sample, we need to call this whenever the seqlen is going to change. | |
""" | |
self.first_output_send = True | |
self.pipe_recv_buf = None | |
self.grad_layer = None | |
self.meta_buffer = None | |
self.pipe_partition_input_meta_cache = None | |
self.pipe_partition_output_meta_cache = None | |
self.pipe_partition_grad_meta_cache = None | |
self.grad_partition_grad_layer_meta_cache = None | |
def train_batch(self, data_iter=None): | |
"""Progress the pipeline to train the next batch of data. The engine will ingest | |
``self.train_batch_size()`` total samples collectively across all workers. | |
An iterator that over training data should be provided as an argument | |
unless ``deepspeed.initialize()`` was provided a training set. In that event, | |
the training data will automatically be read. | |
.. warning:: | |
A total of ``self.gradient_accumulation_steps()`` entries will be pulled | |
from ``data_iter`` by each pipeline. There must be sufficient | |
data left in ``data_iter`` or else a ``StopIteration`` will halt training. | |
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader` | |
that wraps data loaders to automatically restart upon a ``StopIteration``. | |
Args: | |
data_iter (Iterator, optional): Iterator of training data. | |
Returns: | |
The arithmetic mean of the losses computed this batch. | |
""" | |
if not torch._C.is_grad_enabled(): | |
raise RuntimeError(f'train_batch() requires gradients enabled. Use eval_batch() instead.') | |
# Curriculum learning could change activation shape | |
if self.curriculum_enabled_legacy(): | |
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \ | |
self.global_steps + 1) | |
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step: | |
self.reset_activation_shape() | |
self.curriculum_scheduler_legacy.first_step = False | |
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \ | |
self.global_steps): | |
self.reset_activation_shape() | |
if data_iter is not None: | |
self.set_dataiterator(data_iter) | |
self.module.train() | |
self.total_loss = None | |
self.total_additional_losses = None | |
self._compute_loss = True | |
# Do the work | |
self.timers(TRAIN_BATCH_TIMER).start() | |
sched = schedule.TrainSchedule(micro_batches=self.micro_batches, | |
stages=self.num_stages, | |
stage_id=self.stage_id) | |
self._exec_schedule(sched) | |
with torch.no_grad(): | |
self.agg_train_loss = self._aggregate_total_loss() | |
self.timers(TRAIN_BATCH_TIMER).stop() | |
if self.global_steps % self.steps_per_print() == 0: | |
if self.global_rank == 0: | |
elapsed = self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) / 1000.0 | |
iter_time = elapsed / self.steps_per_print() | |
tput = self.train_batch_size() / iter_time | |
log_str = f'steps: {self.global_steps} loss: {self.agg_train_loss:0.4f} ' | |
if self.agg_additional_losses is not None: | |
for loss_name, loss_value in self.agg_additional_losses.items(): | |
log_str += f'{loss_name}: {loss_value.item():0.4f} ' | |
log_str += f'iter time (s): {iter_time:0.3f} samples/sec: {tput:0.3f}' | |
print(log_str) | |
else: | |
self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) | |
# Monitoring | |
if self.global_rank == 0 and self.monitor.enabled: | |
self.summary_events = [(f'Train/Samples/train_loss', self.agg_train_loss.mean().item(), | |
self.global_samples)] | |
self.monitor.write_events(self.summary_events) | |
if self.wall_clock_breakdown() and self.global_steps % self.steps_per_print() == 0: | |
self.timers.log([ | |
PIPE_SEND_OUTPUT_TIMER, | |
PIPE_SEND_GRAD_TIMER, | |
PIPE_RECV_INPUT_TIMER, | |
PIPE_RECV_GRAD_TIMER, | |
]) | |
# TODO: should return precisely what loss returned and allow others to be queried? | |
return self.agg_train_loss | |
def eval_batch(self, | |
data_iter, | |
return_logits=False, | |
compute_loss=True, | |
reduce_output='avg', | |
bcast_loss=True, | |
num_micro_batches=None): | |
"""Evaluate the pipeline on a batch of data from ``data_iter``. The | |
engine will evaluate ``self.train_batch_size()`` total samples | |
collectively across all workers. | |
This method is equivalent to: | |
.. code-block:: python | |
module.eval() | |
with torch.no_grad(): | |
output = module(batch) | |
.. warning:: | |
A total of ``self.gradient_accumulation_steps()`` entries will be pulled | |
from ``data_iter`` by each pipeline. There must be sufficient | |
data left in ``data_iter`` or else a ``StopIteration`` will halt training. | |
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader` | |
that wraps data loaders to automatically restart upon a ``StopIteration``. | |
Args: | |
data_iter (Iterator): Iterator of data to evaluate. | |
Returns: | |
The arithmetic mean of the losses computed this batch. | |
""" | |
self.eval_return_logits = return_logits | |
self.module.eval() | |
# Curriculum learning could change activation shape | |
if self.curriculum_enabled_legacy(): | |
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \ | |
self.global_steps + 1) | |
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step: | |
self.reset_activation_shape() | |
self.curriculum_scheduler_legacy.first_step = False | |
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \ | |
self.global_steps): | |
self.reset_activation_shape() | |
eval_output = None | |
self._compute_loss = compute_loss | |
# Use the provided data iterator | |
train_iterator = self.data_iterator | |
self.set_dataiterator(data_iter) | |
# set the number micro batches in case the user chose value than training | |
micro_batches = self.micro_batches if num_micro_batches is None else num_micro_batches | |
# Do the work | |
sched = schedule.InferenceSchedule(micro_batches=self.micro_batches, | |
stages=self.num_stages, | |
stage_id=self.stage_id) | |
# prevent dead-lock with multiple evals sequence | |
dist.barrier() | |
with torch.no_grad(): | |
self._exec_schedule(sched) | |
if self.is_last_stage(): | |
eval_output = self._reduce_outputs(self.fwd_outputs, reduce=reduce_output, micro_batches=micro_batches) | |
if compute_loss and (bcast_loss or self.monitor.enabled): | |
eval_output = self._bcast_pipe_scalar(eval_output) | |
if self.global_rank == 0 and self.monitor.enabled: | |
self.summary_events = [(f'Train/Samples/eval_loss', eval_output.mean().item(), self.global_samples)] | |
self.monitor.write_events(self.summary_events) | |
# Restore the training iterator | |
self.set_dataiterator(train_iterator) | |
# Reset any buffers that may have been populated during the forward passes. | |
#ds_checkpointing.reset() | |
self.eval_return_logits = False | |
if return_logits: | |
outputs = self.outputs | |
self.outputs = None | |
return eval_output, outputs | |
return eval_output | |
def set_train_batch_size(self, train_batch_size): | |
"""Adjust the global batch size by increasing or decreasing the number of | |
micro-batches (i.e., gradient accumulation steps). The size of each micro-batch | |
(i.e., ``train_micro_batch_size_per_gpu``) is not changed. | |
Args: | |
train_batch_size (int): The new global batch size for training. | |
Raises: | |
ValueError: if ``train_batch_size`` is not divisible by the | |
configured micro-batch size and data parallelism. | |
""" | |
super().set_train_batch_size(train_batch_size) | |
self.micro_batches = self.gradient_accumulation_steps() | |
def is_first_stage(self): | |
"""True if this process is in the first stage in the pipeline.""" | |
return self.stage_id == 0 | |
def is_last_stage(self): | |
"""True if this process is in the last stage in the pipeline.""" | |
return self.stage_id == self.num_stages - 1 | |
def _reduce_outputs(self, outputs, reduce='avg', reduce_dp=True, micro_batches=None): | |
if reduce is None: | |
return outputs | |
if reduce.lower() == 'avg': | |
# first sum over all microbatches | |
if torch.is_tensor(outputs[0]): | |
reduced = sum(outputs) | |
else: | |
assert isinstance(outputs, (list, tuple)) | |
reduced = [torch.zeros_like(o) for o in outputs[0]] | |
for idx, out in outputs: | |
reduced[idx] += out | |
# Average over the microbatches | |
reduced = self._scale_loss_by_gas(reduced, eval_micro_batches=micro_batches) | |
# Average over DP groups | |
if reduce_dp and self.is_data_parallel: | |
if torch.is_tensor(reduced): | |
dist.all_reduce(reduced, group=self.mpu.get_data_parallel_group()) | |
reduced /= self.dp_world_size | |
else: | |
for idx in range(len(reduced)): | |
dist.all_reduce(reduced[idx], group=self.mpu.get_data_parallel_group()) | |
reduced[idx] /= self.dp_world_size | |
return reduced | |
else: | |
raise NotImplementedError(f'reduction type {reduce} not supported.') | |
def _bcast_pipe_scalar(self, data, src_rank=None, dtype=torch.float32): | |
# Default to last stage (e.g., for broadcasting loss) | |
if src_rank is None: | |
src_rank = self.grid.stage_to_global(self.num_stages - 1) | |
assert src_rank in self.grid.pp_group | |
if self.global_rank == src_rank: | |
result = data.clone().detach().type(dtype).to(self.device) | |
else: | |
result = torch.Tensor([0.]).type(dtype).to(self.device) | |
dist.broadcast(tensor=result, src=src_rank, group=self.mpu.get_pipe_parallel_group()) | |
return result | |
def _aggregate_total_loss(self): | |
# Scale loss, average among DP ranks, and bcast loss to the rest of my DP group | |
if self.is_last_stage(): | |
# Scale loss and additional losses, if any | |
loss = self._scale_loss_by_gas(self.total_loss) | |
self.agg_additional_losses = self.total_additional_losses | |
if self.agg_additional_losses is not None: | |
self.agg_additional_losses = OrderedDict({ | |
loss_name: self._scale_loss_by_gas(_loss.clone().detach()) | |
for loss_name, _loss in self.agg_additional_losses.items() | |
}) | |
self.dp_group_loss = loss.clone().detach() | |
agg_loss = self.dp_group_loss.clone().detach() | |
#print(f'RANK={self.global_rank} bcast SENDER src={self.global_rank} group={self.grid.pp_group}', flush=True) | |
# Average loss across all data-parallel groups | |
if self.is_data_parallel: | |
if self.agg_additional_losses is None: | |
dist.all_reduce(agg_loss, group=self.mpu.get_data_parallel_group()) | |
agg_loss /= self.dp_world_size | |
else: | |
# use a single reduce op for agg_loss and additional losses, if any | |
assert '__train_loss__' not in self.agg_additional_losses.keys() | |
tensors = OrderedDict({'__train_loss__': agg_loss}) | |
tensors.update(self.agg_additional_losses.items()) | |
flat_tensor = torch.cat([t.clone().reshape(-1).detach() for t in tensors.values()]) | |
dist.all_reduce(flat_tensor, group=self.mpu.get_data_parallel_group()) | |
flat_tensor /= self.dp_world_size | |
offset = 0 | |
reduced_tensor = {} | |
for name, t in tensors.items(): | |
n_elem = t.numel() | |
reduced_tensor[name] = flat_tensor[offset:offset + n_elem].clone().detach().reshape(t.shape) | |
offset += n_elem | |
agg_loss = reduced_tensor['__train_loss__'] | |
self.agg_additional_losses = OrderedDict( | |
{name: reduced_tensor[name] | |
for name in self.agg_additional_losses.keys()}) | |
assert self.global_rank in self.grid.pp_group | |
losses = [self.dp_group_loss, agg_loss] | |
if self.agg_additional_losses is not None: | |
losses += list(self.agg_additional_losses.values()) | |
losses = torch.stack(losses).float() | |
if self.is_pipe_parallel: | |
dist.broadcast(tensor=losses, src=self.global_rank, group=self.mpu.get_pipe_parallel_group()) | |
else: | |
# Get loss from last stage | |
src_rank = self.grid.stage_to_global(self.num_stages - 1) | |
assert src_rank in self.grid.pp_group | |
# losses to reduce are: dp_group_loss, agg_loss, model additional losses | |
# therefore: 2 + n_additional_losses | |
additional_losses = self.module.get_additional_losses() | |
n_additional_losses = 0 if additional_losses is None else len(additional_losses) | |
losses = torch.Tensor([0.] * (2 + n_additional_losses)).to(self.device) | |
dist.broadcast(tensor=losses, src=src_rank, group=self.grid.get_pipe_parallel_group()) | |
self.dp_group_loss = losses[0].clone().detach() | |
agg_loss = losses[1].clone().detach() | |
if additional_losses is not None: | |
self.agg_additional_losses = OrderedDict( | |
{name: losses[2 + i].clone().detach() | |
for i, name in enumerate(additional_losses.keys())}) | |
return agg_loss | |
def set_dataloader(self, loader): | |
"""""" | |
if self.is_first_stage() or self.is_last_stage(): | |
self.training_dataloader = loader | |
self.data_iterator = iter(self.training_dataloader) | |
def set_dataiterator(self, iterator): | |
""" Store an iterator to sample for training data. """ | |
if self.is_first_stage() or self.is_last_stage(): | |
self.training_dataloader = None | |
self.data_iterator = iterator | |
def set_batch_fn(self, fn): | |
"""Execute a post-processing function on input data. | |
Args: | |
fn (function): The function to run. | |
""" | |
self.batch_fn = fn | |
def is_gradient_accumulation_boundary(self): | |
"""True if the engine is executing a gradient reduction or optimizer step instruction. | |
This is overridden from :class:`DeepSpeedEngine` to force reductions | |
and steps when the pipeline engine is instructed to do so. | |
Returns: | |
bool: whether reductions and optimizer steps should occur. | |
""" | |
return self._force_grad_boundary | |
def log_for_device(self, *msg): | |
if LOG_STAGE == self.stage_id or LOG_STAGE == -1: | |
if DATA_PARALLEL_ID == self.grid.data_parallel_id or DATA_PARALLEL_ID == -1: | |
print( | |
f'RANK={dist.get_rank()} ' | |
f'PIPE-ID={self.stage_id} ' | |
f'DATA-ID={self.grid.data_parallel_id} ' | |
f'MBATCH-ID={self.microbatch_id} ' | |
f'STEP-ID={self.log_batch_step_id} ' | |
'::', | |
*msg, | |
flush=True) | |
def tput_log(self, *msg): | |
if self.global_rank == 0 and self.global_steps % self.steps_per_print() == 0: | |
print(*msg) | |
def _next_batch(self): | |
# If using 3D parallelism, only some first-stage ranks may do IO | |
batch = None | |
if self.data_iterator is not None: | |
batch = next(self.data_iterator) | |
# Any post-processing, like broadcasting across a slice-parallel group. | |
if self.batch_fn: | |
batch = self.batch_fn(batch) | |
return batch | |
def _exec_forward_pass(self, buffer_id): | |
self.tput_timer.start() | |
self.mem_status('BEFORE FWD', reset_max=True) | |
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple): | |
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id]) | |
else: | |
inputs = self.pipe_buffers['inputs'][buffer_id].clone() | |
# collect the partitioned input from the previous stage | |
if self.is_pipe_partitioned and not self.is_first_stage(): | |
if self.pipe_partition_input_meta_cache is None: | |
self.pipe_partition_input_meta_cache = inputs[0].to('cpu') | |
part_input = PartitionedTensor.from_meta(meta=self.pipe_partition_input_meta_cache, | |
local_part=inputs[1], | |
group=self.grid.get_slice_parallel_group()) | |
inputs = (part_input.full(), *inputs[2:]) | |
inputs[0].requires_grad = True | |
# skip mask | |
#inputs[1].requires_grad = True | |
part_input = None | |
inputs = inputs[0] if len(inputs) == 1 else inputs | |
self.pipe_buffers['inputs'][buffer_id] = inputs | |
# inputs has no gradient because it is from a cloned tensor | |
outputs = super().forward(inputs) | |
# Reset activation checkpointing buffers. | |
# Need to call this between evaluation iterations | |
if not self.module.training: | |
ds_checkpointing.reset() | |
# Partition the outputs if we are not the last stage | |
if self.is_pipe_partitioned and not self.is_last_stage(): | |
if isinstance(outputs, tuple): | |
first_output = outputs[0] | |
# TODO: Improve pipe partitioning to pass multiple tensors that require grads | |
assert all([torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:]]) | |
outputs_tail = outputs[1:] | |
elif torch.is_tensor(outputs): | |
first_output = outputs | |
outputs_tail = [] | |
else: | |
raise ValueError("expecting a tensor or a tuple of tensors") | |
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group()) | |
# Clear the large output data, but save the computation graph | |
first_output.data = torch.zeros(1) | |
self.pipe_buffers['output_tensors'][buffer_id] = first_output | |
# Inject the partitioned tensor into the output before sending | |
outputs = (part.to_meta(), part.data(), *outputs_tail) | |
part = None | |
self.pipe_buffers['outputs'][buffer_id] = outputs | |
# Optionally compute loss on the last device | |
if self.is_last_stage(): | |
if self._compute_loss and self.module.loss_fn is not None: | |
labels = self.pipe_buffers['labels'][buffer_id] | |
self.loss = self.module.loss_fn(outputs, labels) | |
else: | |
# Some models just return loss from forward() | |
self.loss = outputs | |
if self.eval_return_logits: | |
self.outputs = outputs | |
if isinstance(self.loss, torch.Tensor): | |
self.fwd_outputs.append(self.loss.detach()) | |
else: | |
self.fwd_outputs.append([l.detach() for l in self.loss]) | |
def add_to_total_loss(_total_loss, _loss): | |
if isinstance(_loss, torch.Tensor): | |
if _total_loss is None: | |
_total_loss = torch.zeros_like(_loss) | |
_total_loss += _loss.detach() | |
else: | |
if _total_loss is None: | |
_total_loss = [torch.zeros_like(_l) for _l in _loss] | |
for _idx, _l in enumerate(_loss): | |
_total_loss[_idx] += _l.detach() | |
return _total_loss | |
self.total_loss = add_to_total_loss(self.total_loss, self.loss) | |
# aggregate additional losses across gradient accumulation steps | |
additional_losses = self.module.get_additional_losses() | |
if additional_losses is not None: | |
if self.total_additional_losses is None: | |
self.total_additional_losses = OrderedDict() | |
for name, loss in additional_losses.items(): | |
total = self.total_additional_losses[name] if name in self.total_additional_losses else None | |
self.total_additional_losses[name] = add_to_total_loss(total, loss) | |
def _exec_backward_pass(self, buffer_id): | |
assert self.optimizer is not None, "must provide optimizer during " \ | |
"init in order to use backward" | |
self.mem_status('BEFORE BWD', reset_max=True) | |
# The last stage just runs backward on the loss using DeepSpeed's typical | |
# mechanisms. | |
if self.is_last_stage(): | |
super().backward(self.loss) | |
self.mem_status('AFTER BWD') | |
return | |
outputs = self.pipe_buffers['outputs'][buffer_id] | |
if self.wall_clock_breakdown(): | |
self.timers(BACKWARD_MICRO_TIMER).start() | |
self.timers(BACKWARD_GLOBAL_TIMER).start() | |
self.timers(BACKWARD_INNER_MICRO_TIMER).start() | |
self.timers(BACKWARD_INNER_GLOBAL_TIMER).start() | |
# Reconstruct if we previously partitioned the output. We must be | |
# careful to also restore the computational graph of the tensors we partitioned. | |
if self.is_pipe_partitioned: | |
if self.is_grad_partitioned: | |
if self.pipe_partition_output_meta_cache is None: | |
self.pipe_partition_output_meta_cache = outputs[0].to('cpu') | |
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_output_meta_cache, | |
local_part=outputs[1], | |
group=self.grid.get_slice_parallel_group()) | |
self.pipe_buffers['output_tensors'][buffer_id].data = part_output.full() | |
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[2:]) | |
else: | |
# Already restored from partition | |
self.pipe_buffers['output_tensors'][buffer_id].data = outputs[0] | |
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[1:]) | |
grad_tensors = self.grad_layer | |
if self.is_grad_partitioned: | |
#print(f'RANK={self.global_rank} BEFORE-BWD restoring grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}') | |
if self.grad_partition_grad_layer_meta_cache is None: | |
self.grad_partition_grad_layer_meta_cache = self.grad_layer[0].to('cpu') | |
part_grad = PartitionedTensor.from_meta(meta=self.grad_partition_grad_layer_meta_cache, | |
local_part=self.grad_layer[1], | |
group=self.grid.get_slice_parallel_group()) | |
grad_tensors = (part_grad.full(), *grad_tensors[2:]) | |
part_grad = None | |
#print(f'RANK={self.global_rank} BEFORE-BWD restored grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}') | |
if self.using_bf16_optimizer and not self.is_last_stage(): | |
# manually call because we don't call optimizer.backward() | |
self.optimizer.clear_lp_grads() | |
# This handles either a single tensor or tuple of tensors. | |
if isinstance(outputs, tuple): | |
out_tensors = [t for t in outputs if t.is_floating_point()] | |
assert len(out_tensors) == len(grad_tensors) | |
torch.autograd.backward(tensors=out_tensors, grad_tensors=grad_tensors) | |
else: | |
torch.autograd.backward(tensors=(outputs, ), grad_tensors=(grad_tensors, )) | |
if self.using_bf16_optimizer and not self.is_last_stage(): | |
# manually call because we don't call optimizer.backward() | |
self.optimizer.update_hp_grads(clear_lp_grads=False) | |
# Free up the memory from the output of forward() | |
self.pipe_buffers['output_tensors'][buffer_id] = None | |
self.pipe_buffers['outputs'][buffer_id] = None | |
grad_tensors = None | |
if self.wall_clock_breakdown(): | |
self.timers(BACKWARD_INNER_MICRO_TIMER).stop() | |
self.timers(BACKWARD_INNER_GLOBAL_TIMER).stop() | |
self.timers(BACKWARD_MICRO_TIMER).stop() | |
self.timers(BACKWARD_GLOBAL_TIMER).stop() | |
self.mem_status('AFTER BWD') | |
def _exec_load_micro_batch(self, buffer_id): | |
if self.wall_clock_breakdown(): | |
self.timers(BATCH_INPUT_TIMER).start() | |
batch = self._next_batch() | |
if self.is_first_stage(): | |
loaded = None | |
if torch.is_tensor(batch[0]): | |
loaded = batch[0].clone().to(self.device).detach() | |
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[ | |
'use_reentrant']: | |
loaded.requires_grad = loaded.is_floating_point() | |
else: | |
assert isinstance(batch[0], (tuple, list)) | |
# Assume list or tuple | |
loaded = [] | |
for x in batch[0]: | |
assert torch.is_tensor(x) | |
mine = x.clone().detach().to(self.device) | |
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[ | |
'use_reentrant']: | |
mine.requires_grad = mine.is_floating_point() | |
loaded.append(mine) | |
loaded = tuple(loaded) | |
self.pipe_buffers['inputs'][buffer_id] = loaded | |
if self.is_last_stage(): | |
loaded = batch[1] | |
if torch.is_tensor(batch[1]): | |
loaded = batch[1].to(self.device) | |
# XXX: torch 1.6.0 DataLoader will auto convert tuple to list | |
elif isinstance(batch[1], (tuple, list)): | |
loaded = [] | |
for x in batch[1]: | |
assert torch.is_tensor(x) | |
x = x.to(self.device).detach() | |
loaded.append(x) | |
loaded = tuple(loaded) | |
self.pipe_buffers['labels'][buffer_id] = loaded | |
if self.wall_clock_breakdown(): | |
self.timers(BATCH_INPUT_TIMER).stop() | |
def _send_tensor_meta(self, buffer, recv_stage): | |
""" Communicate metadata about upcoming p2p transfers. | |
Metadata is communicated in this order: | |
* type (0: tensor, 1: list) | |
* num_tensors if type=list | |
foreach tensor in buffer: | |
* ndims | |
* shape | |
""" | |
send_bytes = 0 | |
if isinstance(buffer, torch.Tensor): | |
type_tensor = torch.LongTensor(data=[0]).to(self.device) | |
p2p.send(type_tensor, recv_stage) | |
send_shape = torch.LongTensor(data=buffer.size()).to(self.device) | |
send_ndims = torch.LongTensor(data=[len(buffer.size())]).to(self.device) | |
p2p.send(send_ndims, recv_stage) | |
p2p.send(send_shape, recv_stage) | |
send_bytes += _tensor_bytes(buffer) | |
elif isinstance(buffer, list): | |
assert (False) | |
type_tensor = torch.LongTensor(data=[1]).to(self.device) | |
p2p.send(type_tensor, recv_stage) | |
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device) | |
p2p.send(count_tensor, recv_stage) | |
for tensor in buffer: | |
assert isinstance(tensor, torch.Tensor) | |
send_shape = torch.LongTensor(data=tensor.size()).to(self.device) | |
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device) | |
p2p.send(send_ndims, recv_stage) | |
p2p.send(send_shape, recv_stage) | |
send_bytes += _tensor_bytes(tensor) | |
elif isinstance(buffer, tuple): | |
type_tensor = torch.LongTensor(data=[2]).to(self.device) | |
p2p.send(type_tensor, recv_stage) | |
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device) | |
p2p.send(count_tensor, recv_stage) | |
for idx, tensor in enumerate(buffer): | |
assert isinstance(tensor, torch.Tensor) | |
send_shape = torch.LongTensor(data=tensor.size()).to(self.device) | |
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device) | |
send_dtype = torch.LongTensor(data=[self.DTYPE_TO_ID[tensor.dtype]]).to(self.device) | |
p2p.send(send_dtype, recv_stage) | |
p2p.send(send_ndims, recv_stage) | |
p2p.send(send_shape, recv_stage) | |
# Useful for performance debugging. | |
''' | |
new_bytes = _tensor_bytes(tensor) | |
send_bytes += _tensor_bytes(tensor) | |
# Useful for performance debugging. | |
if self.grid.data_parallel_id == 0: | |
print( | |
f'STAGE={self.stage_id} pipe-send-volume[{idx}]: shape={send_shape} {new_bytes/1024**2:0.2f}MB' | |
) | |
''' | |
else: | |
raise NotImplementedError(f'Could not send meta type {type(buffer)}') | |
# Useful for performance debugging. | |
''' | |
if self.grid.data_parallel_id == 0: | |
print(f'STAGE={self.stage_id} pipe-send-volume: {send_bytes/1024**2:0.2f}MB') | |
''' | |
def _recv_tensor_meta(self, send_stage): | |
"""Receive metadata about upcoming p2p transfers and return allocated buffers. | |
Metadata is communicated in this order: | |
* type (0: tensor, 1: list) | |
* num_tensors if type=list | |
foreach tensor in buffer: | |
* ndims | |
* shape | |
Returns: | |
Allocated buffer for receiving from send_stage. | |
""" | |
type_tensor = torch.LongTensor(data=[0]).to(self.device) | |
p2p.recv(type_tensor, send_stage) | |
recv_type = type_tensor.item() | |
# A single tensor will be sent. | |
if recv_type == 0: | |
recv_ndims = torch.LongTensor(data=[0]).to(self.device) | |
p2p.recv(recv_ndims, send_stage) | |
recv_ndims = recv_ndims.item() | |
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device) | |
p2p.recv(recv_shape, send_stage) | |
recv_shape = recv_shape.tolist() | |
return self._allocate_buffer(recv_shape, num_buffers=1)[0] | |
# List or tuple of tensors | |
elif recv_type == 1 or recv_type == 2: | |
count_tensor = torch.LongTensor(data=[0]).to(self.device) | |
p2p.recv(count_tensor, send_stage) | |
num_tensors = count_tensor.item() | |
recv_shapes_and_dtypes = [] | |
for idx in range(num_tensors): | |
recv_dtype = torch.LongTensor(data=[0]).to(self.device) | |
p2p.recv(recv_dtype, send_stage) | |
recv_dtype = self.ID_TO_DTYPE[recv_dtype.item()] | |
recv_ndims = torch.LongTensor(data=[0]).to(self.device) | |
p2p.recv(recv_ndims, send_stage) | |
recv_ndims = recv_ndims.item() | |
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device) | |
p2p.recv(recv_shape, send_stage) | |
recv_shapes_and_dtypes.append((recv_shape.tolist(), recv_dtype)) | |
buffers = self._allocate_buffers(recv_shapes_and_dtypes, num_buffers=1)[0] | |
# Convert to tuples if requested. | |
if recv_type == 2: | |
buffers = tuple(buffers) | |
return buffers | |
else: | |
raise NotImplementedError(f'Could not receive type {type(recv_type)}') | |
def _exec_send_activations(self, buffer_id): | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_SEND_OUTPUT_TIMER).start() | |
outputs = self.pipe_buffers['outputs'][buffer_id] | |
# NCCL does not like to send torch.BoolTensor types, so cast the mask to half(). | |
# We could do char, but with half() we can eventually flatten with other fp16 | |
# messages (TODO) | |
if self.has_attention_mask or self.has_bool_tensors: | |
outputs = list(outputs) | |
outputs[-1] = outputs[-1].half() | |
outputs = tuple(outputs) | |
if self.first_output_send: | |
self.first_output_send = False | |
self._send_tensor_meta(outputs, self.next_stage) | |
if isinstance(outputs, torch.Tensor): | |
p2p.send(outputs, self.next_stage) | |
elif isinstance(outputs, tuple): | |
for idx, buffer in enumerate(outputs): | |
p2p.send(buffer, self.next_stage) | |
else: | |
raise NotImplementedError('Could not send output of type ' | |
f'{type(outputs)}') | |
# Restore the boolean tensor | |
if self.has_attention_mask or self.has_bool_tensors: | |
outputs = list(outputs) | |
outputs[-1] = outputs[-1].bool() | |
outputs = tuple(outputs) | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_SEND_OUTPUT_TIMER).stop() | |
def _exec_send_grads(self, buffer_id): | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_SEND_GRAD_TIMER).start() | |
inputs = self.pipe_buffers['inputs'][buffer_id] | |
# Partition the gradient | |
if self.is_grad_partitioned: | |
if isinstance(inputs, tuple): | |
first_input = inputs[0] | |
assert all([torch.is_tensor(elt) for elt in inputs[1:]]) | |
inputs_grad_tail = [elt.grad for elt in inputs[1:]] | |
elif torch.is_tensor(inputs): | |
first_input = inputs | |
inputs_grad_tail = [] | |
else: | |
raise ValueError("expecting a tensor or a tuple of tensors") | |
assert torch.is_tensor(first_input) | |
part = PartitionedTensor(tensor=first_input.grad, group=self.grid.get_slice_parallel_group()) | |
inputs = (part.to_meta(), part.data(), *inputs_grad_tail) | |
# XXX Terrible hack | |
# Drop the attention mask from the input buffer here. It does not have | |
# a grad that needs to be communicated. We free the buffer immediately | |
# after, so no need to restore it. The receiver also has a hack that skips | |
# the recv. This is because NCCL does not let us send torch.BoolTensor :-(. | |
if self.has_attention_mask or self.has_bool_tensors: | |
inputs = list(inputs) | |
inputs.pop() | |
inputs = tuple(inputs) | |
if isinstance(inputs, torch.Tensor): | |
assert inputs.grad is not None | |
p2p.send(inputs.grad, self.prev_stage) | |
else: | |
# XXX terrible hacky branch | |
if self.is_grad_partitioned: | |
# First two sends are partitioned gradient | |
p2p.send(inputs[0], self.prev_stage) | |
p2p.send(inputs[1], self.prev_stage) | |
else: | |
for idx, buffer in enumerate(inputs): | |
# Skip tensors that will not produce a grad | |
if not buffer.is_floating_point(): | |
assert buffer.grad is None | |
continue | |
assert buffer.grad is not None | |
p2p.send(buffer.grad, self.prev_stage) | |
# We can free up the input buffer now | |
self.pipe_buffers['inputs'][buffer_id] = None | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_SEND_GRAD_TIMER).stop() | |
def _exec_recv_activations(self, buffer_id): | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_RECV_INPUT_TIMER).start() | |
recvd = None | |
# Allocate the buffer if necessary | |
if self.pipe_recv_buf is None: | |
self.pipe_recv_buf = self._recv_tensor_meta(self.prev_stage) | |
if isinstance(self.pipe_recv_buf, torch.Tensor): | |
p2p.recv(self.pipe_recv_buf, self.prev_stage) | |
recvd = self.pipe_recv_buf.clone().detach() | |
recvd.requires_grad = recvd.is_floating_point() | |
else: | |
assert isinstance(self.pipe_recv_buf, tuple) | |
recvd = [None] * len(self.pipe_recv_buf) | |
for idx, buffer in enumerate(self.pipe_recv_buf): | |
assert torch.is_tensor(buffer) | |
# XXX hardcode meta type | |
if self.is_pipe_partitioned and idx == 0 and buffer.dtype != torch.long: | |
if self.meta_buffer is None: | |
self.meta_buffer = torch.zeros(buffer.size(), dtype=torch.long, device=self.device) | |
buffer = self.meta_buffer | |
p2p.recv(buffer, self.prev_stage) | |
recvd[idx] = buffer.clone().detach() | |
# NCCL does not like to send torch.BoolTensor types, so un-cast the | |
# attention mask | |
if self.has_attention_mask or self.has_bool_tensors: | |
recvd[-1] = recvd[-1].bool() | |
recvd = tuple(recvd) | |
for buffer in recvd: | |
buffer.requires_grad = buffer.is_floating_point() | |
self.pipe_buffers['inputs'][buffer_id] = recvd | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_RECV_INPUT_TIMER).stop() | |
def _exec_recv_grads(self, buffer_id): | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_RECV_GRAD_TIMER).start() | |
outputs = self.pipe_buffers['outputs'][buffer_id] | |
# XXX these shapes are hardcoded for Megatron | |
# Restore partitioned output if it was partitioned and we are sending full gradients | |
if self.is_pipe_partitioned and not self.is_grad_partitioned: | |
if self.pipe_partition_grad_meta_cache is None: | |
self.pipe_partition_grad_meta_cache = outputs[0].to('cpu') | |
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_grad_meta_cache, | |
local_part=outputs[1], | |
group=self.grid.get_slice_parallel_group()) | |
outputs[0].data = part_output.full() | |
outputs = (outputs[0], *outputs[2:]) | |
# save for backward | |
self.pipe_buffers['outputs'][buffer_id] = outputs | |
# Allocate gradient if necessary | |
if self.grad_layer is None: | |
if isinstance(outputs, torch.Tensor): | |
s = list(outputs.size()) | |
self.grad_layer = self._allocate_buffer(s, dtype=outputs.dtype, num_buffers=1)[0] | |
else: | |
# XXX This is a HACK | |
# When we exchange activations/gradients, the two pipe stages | |
# need to issue the send/recv with the same buffer sizes or | |
# else there is a deadlock. The is_floating_point() filter is | |
# used to avoid sending gradients for tensors that do not | |
# produce gradients. When TP>1, we partition the first | |
# activations/gradients across TP ranks to save communication | |
# volume and memory. That partitioned tensor is represented as | |
# two tensors: a 1/TPth chunk of the original data and also a | |
# small LongTensor storing the metadata used to reconstruct on | |
# the other side. When combined, the floating point filter also | |
# filtered out the metadata tensor. This quick (hacky) fix just | |
# branches on is_grad_partitioned so we don't filter out the | |
# metadata tensor. | |
if self.is_grad_partitioned: | |
sizes_and_dtypes = [(list(t.size()), t.dtype) | |
for t in outputs[:2]] + [(list(t.size()), t.dtype) | |
for t in outputs[2:] if t.is_floating_point()] | |
else: | |
sizes_and_dtypes = [(list(t.size()), t.dtype) for t in outputs if t.is_floating_point()] | |
self.grad_layer = self._allocate_buffers(sizes_and_dtypes, num_buffers=1)[0] | |
if isinstance(self.grad_layer, torch.Tensor): | |
p2p.recv(self.grad_layer, self.next_stage) | |
else: | |
assert isinstance(outputs, tuple) | |
for idx, buffer in enumerate(self.grad_layer): | |
# XXX GPT-2 hack | |
if self.is_grad_partitioned and idx == 0 and buffer.dtype != torch.long: | |
buffer.data = torch.zeros(buffer.size(), dtype=torch.long, device=self.device) | |
p2p.recv(buffer, self.next_stage) | |
if self.wall_clock_breakdown(): | |
self.timers(PIPE_RECV_GRAD_TIMER).stop() | |
def _exec_optimizer_step(self, lr_kwargs=None): | |
if self.wall_clock_breakdown(): | |
self.timers(STEP_MICRO_TIMER).start() | |
self.timers(STEP_GLOBAL_TIMER).start() | |
self.mem_status('BEFORE STEP', reset_max=True) | |
self._force_grad_boundary = True | |
self._take_model_step(lr_kwargs) | |
self._force_grad_boundary = False | |
self.mem_status('AFTER STEP') | |
if self.global_rank == 0 and self.monitor.enabled: | |
self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.global_samples)] | |
if self.fp16_enabled() and hasattr(self.optimizer, 'cur_scale'): | |
self.summary_events.append( | |
(f'Train/Samples/loss_scale', self.optimizer.cur_scale, self.global_samples)) | |
self.monitor.write_events(self.summary_events) | |
if self.wall_clock_breakdown(): | |
self.timers(STEP_MICRO_TIMER).stop() | |
self.timers(STEP_GLOBAL_TIMER).stop() | |
if self.global_steps % self.steps_per_print() == 0: | |
self.timers.log([ | |
BATCH_INPUT_TIMER, | |
FORWARD_MICRO_TIMER, | |
BACKWARD_MICRO_TIMER, | |
BACKWARD_INNER_MICRO_TIMER, | |
BACKWARD_REDUCE_MICRO_TIMER, | |
STEP_MICRO_TIMER, | |
]) | |
if self.global_steps % self.steps_per_print() == 0: | |
self.timers.log([ | |
FORWARD_GLOBAL_TIMER, | |
BACKWARD_GLOBAL_TIMER, | |
BACKWARD_INNER_GLOBAL_TIMER, | |
BACKWARD_REDUCE_GLOBAL_TIMER, | |
STEP_GLOBAL_TIMER, | |
]) | |
def _allocate_zeros(self, shape, **kwargs): | |
""" Allocate a tensor of zeros on the engine's device. | |
Arguments: | |
shape: the shape of the tensor to allocate | |
kwargs: passed to torch.zeros() | |
Returns: | |
A tensor from torch.zeros() allocated on self.device. | |
""" | |
if "dtype" not in kwargs: | |
if self.fp16_enabled(): | |
kwargs["dtype"] = torch.half | |
if self.bfloat16_enabled(): | |
kwargs["dtype"] = torch.bfloat16 | |
return torch.zeros(shape, device=self.device, **kwargs) | |
def _allocate_buffer(self, shape, num_buffers=-1, **kwargs): | |
buffers = [] | |
if num_buffers == -1: | |
num_buffers = self.num_pipe_buffers | |
for count in range(num_buffers): | |
buffers.append(self._allocate_zeros(shape, **kwargs)) | |
return buffers | |
def _allocate_buffers(self, shapes_and_dtypes, requires_grad=False, num_buffers=-1): | |
buffers = [] | |
if num_buffers == -1: | |
num_buffers = self.num_pipe_buffers | |
for count in range(num_buffers): | |
buffer = [] | |
for shape, dtype in shapes_and_dtypes: | |
buffer.append(self._allocate_zeros(shape, dtype=dtype, requires_grad=requires_grad)) | |
buffers.append(buffer) | |
return buffers | |
def forward(self, *args, **kwargs): | |
"""Disabled for pipeline parallel training. See ``train_batch()``. """ | |
raise PipelineError("Only train_batch() is accessible in pipeline mode.") | |
def backward(self, *args, **kwargs): | |
"""Disabled for pipeline parallel training. See ``train_batch()``. """ | |
raise PipelineError("Only train_batch() is accessible in pipeline mode.") | |
def step(self, *args, **kwargs): | |
"""Disabled for pipeline parallel training. See ``train_batch()``. """ | |
raise PipelineError("Only train_batch() is accessible in pipeline mode.") | |
def mem_status(self, msg, print_rank=-1, reset_max=False): | |
return | |
global mem_alloced, mem_cached | |
if not self.global_steps == 0 or not self.global_steps == 9: | |
#return | |
pass | |
if self.mpu.get_data_parallel_rank() != 0: | |
return | |
if self.global_rank != 0: | |
return | |
rank = self.global_rank | |
if print_rank != -1 and rank != print_rank: | |
return | |
get_accelerator().synchronize() | |
if reset_max: | |
get_accelerator().reset_max_memory_cached() | |
get_accelerator().reset_max_memory_allocated() | |
new_alloced = get_accelerator().memory_allocated() | |
new_cached = get_accelerator().memory_cached() | |
delta_alloced = new_alloced - mem_alloced | |
delta_cached = new_cached - mem_cached | |
mem_cached = new_cached | |
mem_alloced = new_alloced | |
max_alloced = get_accelerator().max_memory_allocated() | |
max_cached = get_accelerator().max_memory_cached() | |
# convert to GB for printing | |
new_alloced /= 1024**3 | |
new_cached /= 1024**3 | |
delta_alloced /= 1024**3 | |
delta_cached /= 1024**3 | |
max_alloced /= 1024**3 | |
max_cached /= 1024**3 | |
print( | |
f'RANK={rank} STAGE={self.stage_id} STEP={self.global_steps} MEMSTATS', msg, | |
f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) ' | |
f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)') | |
def module_state_dict(self, exclude_frozen_parameters=False): | |
"""Override hack to save a pipe model and return the directory path of the save. | |
This method should only be called by DeepSpeed's ``save_checkpoint()``. The | |
recommended way of saving a ``PipelineModule`` outside of ``save_checkpoint()`` | |
is ``save_state_dict()``. | |
Returns: | |
None | |
""" | |
assert isinstance(self.module, PipelineModule) | |
assert self._curr_ckpt_path is not None, \ | |
"PipelineEngine expects module_state_dict() to be called from save_checkpoint()" | |
self.module.save_state_dict(self._curr_ckpt_path, | |
checkpoint_engine=self.checkpoint_engine, | |
exclude_frozen_params=exclude_frozen_parameters) | |
return None | |
def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False): | |
"""Override hack to instead use a directory path. | |
This is important because pipeline models checkpoint by layer instead of rank. | |
If ``state_dict`` is not ``None`` or a ``str``, we revert to ``super()`` expecting a ``dict``. | |
Args: | |
state_dict (str, None): unused | |
strict (bool, optional): Strict state loading. Defaults to True. | |
""" | |
assert custom_load_fn is None, "custom_load_fn not supported w. pipeline parallelism" | |
state_dict = checkpoint if self.has_moe_layers else checkpoint['module'] | |
if (state_dict is not None) and (not isinstance(state_dict, str)): | |
super().load_module_state_dict(state_dict, strict) | |
return | |
self.module.load_state_dir(load_dir=self._curr_ckpt_path, | |
strict=strict, | |
checkpoint_engine=self.checkpoint_engine) | |
# A map of PipeInstruction types to methods. Each method will be executed with the | |
# kwargs provided to the PipeInstruction from the scheduler. | |
_INSTRUCTION_MAP = { | |
schedule.OptimizerStep: _exec_optimizer_step, | |
schedule.ReduceGrads: _exec_reduce_grads, | |
schedule.ReduceTiedGrads: _exec_reduce_tied_grads, | |
schedule.LoadMicroBatch: _exec_load_micro_batch, | |
schedule.ForwardPass: _exec_forward_pass, | |
schedule.BackwardPass: _exec_backward_pass, | |
schedule.SendActivation: _exec_send_activations, | |
schedule.RecvActivation: _exec_recv_activations, | |
schedule.SendGrad: _exec_send_grads, | |
schedule.RecvGrad: _exec_recv_grads, | |
} | |
def _exec_schedule(self, pipe_schedule): | |
# Reserve and reset buffers. | |
self._reserve_pipe_buffers(pipe_schedule.num_pipe_buffers()) | |
self.fwd_outputs = [] | |
# For each step in the schedule | |
for step_cmds in pipe_schedule: | |
# For each instruction in the step | |
for cmd in step_cmds: | |
if type(cmd) not in self._INSTRUCTION_MAP: | |
raise RuntimeError(f'{self.__class__.__name__} does not understand instruction {repr(cmd)}') | |
# Equivalent to: self._exec_forward_pass(buffer_id=0) | |
self._exec_instr = MethodType(self._INSTRUCTION_MAP[type(cmd)], self) | |
self._exec_instr(**cmd.kwargs) | |
def get_additional_losses(self): | |
return self.agg_additional_losses | |