peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/config.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import sys | |
from typing import Optional | |
from enum import Enum | |
from deepspeed.pydantic_v1 import Field, validator, root_validator | |
from deepspeed.runtime.config_utils import get_scalar_param, pp_int, DeepSpeedConfigModel | |
from deepspeed.utils import logger | |
from .offload_config import DeepSpeedZeroOffloadParamConfig, DeepSpeedZeroOffloadOptimizerConfig, OffloadDeviceEnum | |
# ZeRO optimization. By default, this optimization is not enabled. | |
# Users have to configure the desired optimization (0 means disabled) in params.json as below example: | |
ZERO_FORMAT = """ | |
ZeRO optimization should be enabled as: | |
"session_params": { | |
"zero_optimization": { | |
"stage": [0|1|2], | |
"stage3_max_live_parameters" : 1000000000, | |
"stage3_max_reuse_distance" : 1000000000, | |
"allgather_partitions": [true|false], | |
"use_multi_rank_bucket_allreduce": [true|false], | |
"allgather_bucket_size": 500000000, | |
"reduce_scatter": [true|false], | |
"contiguous_gradients" : [true|false] | |
"overlap_comm": [true|false], | |
"reduce_bucket_size": 500000000, | |
"load_from_fp32_weights": [true|false], | |
"cpu_offload": [true|false] (deprecated), | |
"cpu_offload_params" : [true|false] (deprecated), | |
"cpu_offload_use_pin_memory": [true|false] (deprecated), | |
"sub_group_size" : 1000000000000, | |
"offload_param": {...}, | |
"offload_optimizer": {...}, | |
"ignore_unused_parameters": [true|false], | |
"round_robin_gradients": [true|false], | |
"zero_hpz_partition_size": 1, | |
"zero_quantized_weights": [true|false], | |
"zero_quantized_nontrainable_weights": [true|false], | |
"zero_quantized_gradients": [true|false], | |
"memory_efficient_linear": [true|false], | |
"override_module_apply": [true|false], | |
} | |
} | |
""" | |
ZERO_OPTIMIZATION = "zero_optimization" | |
def read_zero_config_deprecated(param_dict): | |
zero_config_dict = {} | |
zero_config_dict["stage"] = 1 if param_dict[ZERO_OPTIMIZATION] else 0 | |
if zero_config_dict["stage"] > 0: | |
zero_config_dict["allgather_bucket_size"] = get_scalar_param(param_dict, "allgather_size", 5e8) | |
logger.warning( | |
"DeepSpeedConfig: this format of ZeRO optimization setup is deprecated. Please use the following format: {}". | |
format(ZERO_FORMAT)) | |
return zero_config_dict | |
def get_zero_config(param_dict): | |
if ZERO_OPTIMIZATION in param_dict: | |
zero_config_dict = param_dict[ZERO_OPTIMIZATION] | |
if isinstance(zero_config_dict, bool): | |
zero_config_dict = read_zero_config_deprecated(param_dict) | |
else: | |
zero_config_dict = {} | |
return DeepSpeedZeroConfig(**zero_config_dict) | |
class ZeroStageEnum(int, Enum): | |
""" Enum class for possible zero stages """ | |
disabled = 0 | |
optimizer_states = 1 | |
gradients = 2 | |
weights = 3 | |
max_stage = 3 | |
class DeepSpeedZeroConfig(DeepSpeedConfigModel): | |
""" | |
Sets parameters for ZeRO optimizations. | |
""" | |
stage: ZeroStageEnum = 0 | |
""" | |
Chooses different stages of ZeRO Optimizer. Stage 0, 1, 2, and 3 refer | |
to disabled, optimizer state partitioning, and optimizer+gradient state | |
partitioning, and optimizer+gradient+parameter partitioning, respectively. | |
""" | |
contiguous_gradients: bool = True | |
""" | |
Copies the gradients to a contiguous buffer as they are produced. Avoids | |
memory fragmentation during backward pass. | |
""" | |
reduce_scatter: bool = True | |
""" | |
Uses reduce or reduce scatter instead of allreduce to average gradients | |
""" | |
reduce_bucket_size: int = Field(pp_int(5e8), ge=0) | |
""" | |
Number of elements reduced/allreduced at a time. Limits the memory required | |
for the allgather for large model sizes | |
""" | |
use_multi_rank_bucket_allreduce: bool = True | |
""" | |
Combine the reduce buckets of the different ranks and do an All-Reduce instead of multiple Reduce ops. | |
This feature is useful when the model is small and we want to scale it on too many GPUs which therefore | |
reduces the message sizes of each packet. | |
""" | |
allgather_partitions: bool = True | |
""" | |
Chooses between allgather collective or a series of broadcast collectives | |
to gather updated parameters from all the GPUs at the end of each step | |
""" | |
allgather_bucket_size: int = Field(pp_int(5e8), ge=0) | |
""" | |
Number of elements allgathered at a time. Limits the memory required for | |
the allgather for large model sizes | |
""" | |
overlap_comm: bool = None # None for dynamic default value (see validator `overlap_comm_valid` below) | |
""" | |
Attempts to overlap the reduction of the gradients with backward computation | |
""" | |
load_from_fp32_weights: bool = True | |
""" | |
Boolean indicating whether to initialize fp32 master weights from fp32 | |
copies in checkpoint (no precision loss) or from model's fp16 copies (with | |
precision loss). This can be used to initialize optimizer state even when | |
checkpoint is missing optimizer state. | |
""" | |
elastic_checkpoint: bool = False | |
""" | |
Enable loading checkpoint that was saved by job with different GPU count. | |
No longer supported. | |
""" | |
offload_param: Optional[DeepSpeedZeroOffloadParamConfig] = None | |
""" | |
Enable offloading of model parameters to CPU or NVMe. This frees up GPU | |
memory for larger models or batch sizes. Valid only with stage 3. Expects a | |
dictionary containing values for :any:`DeepSpeedZeroOffloadParamConfig`. | |
""" | |
offload_optimizer: Optional[DeepSpeedZeroOffloadOptimizerConfig] = None | |
""" | |
Enable offloading of optimizer state to CPU or NVMe, and optimizer | |
computation to CPU. This frees up GPU memory for larger models or batch | |
sizes. Valid for ZeRO stage 1, 2, 3. Expects a dictionary containing values | |
for :any:`DeepSpeedZeroOffloadOptimizerConfig`. | |
""" | |
sub_group_size: int = Field(pp_int(1e9), ge=0) | |
""" | |
Tile size for parameter processing to fit massive models (with trillions of | |
parameters). Used by ZeRO3-Offload and ZeRO-Infinity | |
""" | |
cpu_offload_param: bool = Field( | |
None, | |
deprecated=True, | |
new_param="offload_param", | |
new_param_fn=(lambda val: DeepSpeedZeroOffloadParamConfig(device=OffloadDeviceEnum.cpu) if val else None), | |
) | |
""" Deprecated, please use ``offload_param`` """ | |
cpu_offload_use_pin_memory: bool = Field( | |
None, | |
deprecated=True, | |
new_param="offload_param or offload_optimizer", | |
set_new_param=False, | |
) | |
""" Deprecated, please use ``offload_param`` or ``offload_optimizer`` """ | |
cpu_offload: bool = Field( | |
None, | |
deprecated=True, | |
new_param="offload_optimizer", | |
new_param_fn=(lambda val: DeepSpeedZeroOffloadOptimizerConfig(device=OffloadDeviceEnum.cpu) if val else None), | |
) | |
""" Deprecated, please use ``offload_optimizer`` """ | |
prefetch_bucket_size: int = Field(pp_int(5e7), ge=0, alias="stage3_prefetch_bucket_size") | |
""" | |
Maximum number of parameter elements to fetch ahead of use. Used by ZeRO3, | |
ZeRO3-Offload, ZeRO-Infinity, and ZeRO-Inference. | |
""" | |
param_persistence_threshold: int = Field(pp_int(1e5), ge=0, alias="stage3_param_persistence_threshold") | |
""" | |
Do not partition parameters smaller than this threshold. Smaller values use | |
less memory, but can greatly increase communication (especially | |
latency-bound messages). | |
""" | |
model_persistence_threshold: int = Field(pp_int(sys.maxsize, "sys.maxsize"), | |
ge=0, | |
alias="stage3_model_persistence_threshold") | |
""" | |
Maximum number of parameter elements that can be persisted in GPU and not | |
partitioned. This imposes an upper bound on the number of unpartitioned | |
parameters resulting from param_persistence_threshold setting. Used by | |
ZeRO3-Offload, ZeRO-Infinity and ZeRO-Inference. | |
""" | |
max_live_parameters: int = Field(pp_int(1e9), ge=0, alias="stage3_max_live_parameters") | |
""" | |
The maximum number of parameters resident per GPU before releasing. Smaller | |
values use less memory, but perform more communication. | |
""" | |
max_reuse_distance: int = Field(pp_int(1e9), ge=0, alias="stage3_max_reuse_distance") | |
""" | |
Do not release a parameter if it will be reused within this threshold of | |
parameters. Smaller values use less memory, but perform more communication. | |
""" | |
gather_16bit_weights_on_model_save: bool = Field(False, alias="stage3_gather_16bit_weights_on_model_save") | |
""" | |
Consolidate the weights before saving the model by ``save_16bit_model()``. | |
Since the weights are partitioned across GPUs, they aren’t part of | |
``state_dict``, so this function automatically gathers the weights when | |
this option is enabled and then saves the fp16 model weights. | |
""" | |
stage3_gather_fp16_weights_on_model_save: bool = Field(False, | |
deprecated=True, | |
new_param="gather_16bit_weights_on_model_save") | |
""" Deprecated, please use ``gather_16bit_weights_on_model_save`` """ | |
ignore_unused_parameters: bool = True | |
""" | |
Unused parameters in modules may be unexpected in static networks, but | |
could be normal in dynamic networks. This controls whether or not training | |
should terminate with an error message when unused parameters are detected. | |
This is set to ``True`` by default, which means unused parameters are | |
ignored and training continues. Now is just used in stage 2. | |
""" | |
legacy_stage1: bool = False | |
""" | |
For backward-compatibility enable old ZeRO stage 1 implementation. Use at | |
your own risk, will be deprecated soon. | |
""" | |
round_robin_gradients: bool = False | |
""" | |
Stage 1 and 2 optimization for CPU offloading that parallelizes gradient | |
copying to CPU memory among ranks by fine-grained gradient partitioning. | |
Performance benefit grows with gradient accumulation steps (more copying | |
between optimizer steps) or GPU count (increased parallelism). | |
""" | |
zero_hpz_partition_size: int = Field(1, ge=0) | |
""" | |
Number of ranks in zero parameters partitioning secondary group | |
""" | |
zero_quantized_weights: bool = False | |
""" | |
Boolean indicating whether to quantize zero parameters (weights) | |
for efficient all_gather comm | |
""" | |
zero_quantized_nontrainable_weights: bool = False | |
""" | |
Boolean indicating whether to quantize non-trainable zero parameters (weights) | |
for efficient memory usage and communication. Different from zero_quantized_weights | |
that stores the weights in original precision and only perform quantization during communication, | |
this flag will store the weights in quantized precision. This is useful for LoRA training. | |
""" | |
zero_quantized_gradients: bool = False | |
""" | |
Boolean indicating whether to use quantized zero gradients | |
for efficient all_2_all_reduce comm | |
""" | |
mics_shard_size: int = Field(-1, new_param="mics_shard_size") | |
mics_hierarchical_params_gather: bool = False | |
memory_efficient_linear: bool = True | |
""" | |
Use memory efficient linear implementation, for Stage 3. | |
""" | |
""" | |
Whether force load checkpoint in pipeline mode, current only for Stage 3. | |
""" | |
pipeline_loading_checkpoint: bool = False | |
override_module_apply: bool = True | |
""" | |
Override nn.Module apply function, for Stage 3. | |
""" | |
# Validators | |
def overlap_comm_valid(cls, field_value, values): | |
if field_value is None: | |
assert ("stage" in values), "DeepSpeedZeroConfig: 'stage' must be defined before 'overlap_comm'" | |
field_value = values["stage"] == ZeroStageEnum.weights | |
return field_value | |
def offload_ratio_check(cls, values): | |
offload_config = getattr(values, "offload_optimizer", {}) | |
if offload_config and offload_config.ratio < 1.0: | |
assert values.get("stage") == ZeroStageEnum.weights, "Partial offloading only supported for ZeRO Stage 3." | |
return values | |