peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/partition_parameters.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import math | |
import os | |
import types | |
from typing import Callable, Iterable | |
from enum import Enum | |
import functools | |
import itertools | |
from typing import List | |
from collections import defaultdict | |
import logging | |
import torch | |
from torch import Tensor | |
from deepspeed import comm as dist | |
from torch.nn import Module | |
from torch.nn import Parameter | |
from .linear import zero3_linear_wrap | |
from deepspeed.utils import groups | |
import deepspeed | |
from ..utils import see_memory_usage | |
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig | |
from deepspeed.runtime.zero.utils import assert_ints_same_as_other_ranks, is_zero_param | |
from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum | |
from deepspeed.runtime.config_utils import get_config_default | |
from deepspeed.utils import instrument_w_nvtx, logger | |
from deepspeed.comm.comm import init_distributed | |
from deepspeed.utils.debug import (debug_param2name_id_shape, debug_param2name_id_shape_device, debug_module2name, | |
debug_param2name_id, debug_param2name_id_shape_status) | |
from deepspeed.accelerator import get_accelerator | |
from ..swap_tensor.partitioned_param_swapper import AsyncPartitionedParameterSwapper, PartitionedParamStatus | |
from deepspeed.inference.quantization.utils import _quantize_param, WEIGHT_QUANTIZATION_LAYERS, wrap_quantized_functional, wrap_load_from_state_dict | |
partitioned_param_data_shape = [0] | |
zero_init_context = 0 | |
top_level_context = None | |
class NoGatherHandle: | |
def __init__(self, param: Parameter) -> None: | |
if param.ds_status != ZeroParamStatus.INFLIGHT: | |
raise RuntimeError(f"expected param {param.ds_summary()} to be available") | |
if hasattr(param.ds_tensor, "ds_quant_scale"): | |
param.data = Init.quantizer_module.dequantize(param.ds_tensor.data, param.ds_tensor.ds_quant_scale).to( | |
device=get_accelerator().current_device_name(), non_blocking=True).view(param.ds_shape) | |
else: | |
param.data = param.ds_tensor.data.to(device=get_accelerator().current_device_name(), | |
non_blocking=True).view(param.ds_shape) | |
self.__param = param | |
def wait(self) -> None: | |
if not get_accelerator().is_synchronized_device(): | |
get_accelerator().current_stream().synchronize() | |
self.__param.ds_status = ZeroParamStatus.AVAILABLE | |
class NoGatherCoalescedHandle: | |
def __init__(self, params: List[Parameter]) -> None: | |
self.__params = params | |
self.__complete = False | |
for param in self.__params: | |
if param.ds_status != ZeroParamStatus.INFLIGHT: | |
raise RuntimeError(f"expected param {param.ds_summary()} to not be available") | |
if hasattr(param.ds_tensor, "ds_quant_scale"): | |
param.data = Init.quantizer_module.dequantize(param.ds_tensor.data, param.ds_tensor.ds_quant_scale).to( | |
device=get_accelerator().current_device_name(), non_blocking=True).view(param.ds_shape) | |
else: | |
param.data = param.ds_tensor.data.to(device=get_accelerator().current_device_name(), | |
non_blocking=True).view(param.ds_shape) | |
def wait(self) -> None: | |
if self.__complete: | |
return | |
if not get_accelerator().is_synchronized_device(): | |
get_accelerator().current_stream().synchronize() | |
for param in self.__params: | |
assert param.ds_status == ZeroParamStatus.INFLIGHT, f"expected param {param.ds_summary()} to be inflight" | |
param.ds_status = ZeroParamStatus.AVAILABLE | |
self.__complete = True | |
def _dist_allgather_fn(input_tensor: Tensor, output_tensor: Tensor, group=None): | |
return instrument_w_nvtx(dist.allgather_fn)(output_tensor, input_tensor, group=group, async_op=True) | |
def print_rank_0(message, debug=False, force=False): | |
rank = dist.get_rank() | |
if rank == 0 and (debug or force): | |
print(message) | |
# other variations | |
# - print for all ranks w/o interleaving | |
# printflock(f"[{rank}] {message}") | |
# - print to log file per rank | |
# log_rank_file(rank, message) | |
def debug_rank0(msg: str) -> None: | |
if dist.get_rank() == 0: | |
logger.debug(msg) | |
def _init_external_params(module): | |
if not hasattr(module, '_external_params'): | |
module._external_params = {} | |
def external_parameters(self): | |
return self._external_params.items() | |
def all_parameters(self): | |
return itertools.chain(self.named_parameters(self, recurse=False), external_parameters(self)) | |
module.ds_external_parameters = types.MethodType(external_parameters, module) | |
module.all_parameters = types.MethodType(all_parameters, module) | |
def register_external_parameter(module, parameter): | |
"""Instruct DeepSpeed to coordinate ``parameter``'s collection and partitioning in | |
the forward and backward passes of ``module``. | |
This is used when a parameter is accessed outside of its owning module's | |
``forward()``. DeepSpeed must know to collect it from its partitioned | |
state and when to release the memory. | |
.. note:: | |
This is only applicable to training with ZeRO stage 3. | |
Args: | |
module (``torch.nn.Module``): The module that requires ``parameter`` in its forward pass. | |
parameter (``torch.nn.Parameter``): The parameter to register. | |
Raises: | |
RuntimeError: If ``parameter`` is not of type ``torch.nn.Parameter``. | |
Examples | |
======== | |
#. Register a weight that is used in another module's forward pass (line 6). | |
Parameter ``layer1.weight`` is used by ``layer2`` (line 11). | |
.. code-block:: python | |
:linenos: | |
:emphasize-lines: 6,11 | |
class ModuleZ3(torch.nn.Module): | |
def __init__(self, *args): | |
super().__init__(self, *args) | |
self.layer1 = SomeLayer() | |
self.layer2 = OtherLayer() | |
deepspeed.zero.register_external_parameter(self, self.layer1.weight) | |
def forward(self, input): | |
x = self.layer1(input) | |
# self.layer1.weight is required by self.layer2.forward | |
y = self.layer2(x, self.layer1.weight) | |
return y | |
""" | |
if not isinstance(parameter, torch.nn.Parameter): | |
raise RuntimeError('Parameter is not a torch.nn.Parameter') | |
if not hasattr(module, '_external_params'): | |
_init_external_params(module) | |
key = id(parameter) | |
module._external_params[key] = parameter | |
def unregister_external_parameter(module, parameter): | |
"""Reverses the effects of :meth:`register_external_parameter`. | |
Args: | |
module (``torch.nn.Module``): The module to affect. | |
parameter (``torch.nn.Parameter``): The parameter to unregister. | |
Raises: | |
RuntimeError: If ``parameter`` is not of type ``torch.nn.Parameter``. | |
RuntimeError: If ``parameter`` is not a registered external parameter of ``module``. | |
""" | |
if not isinstance(parameter, torch.nn.Parameter): | |
raise RuntimeError('Parameter is not a torch.nn.Parameter') | |
if not hasattr(module, '_external_params') or id(parameter) not in module._external_params: | |
raise RuntimeError('Parameter is not a registered external parameter of module.') | |
key = id(parameter) | |
del module._external_params[key] | |
class ZeroParamType(Enum): | |
# same as regular pytorch parameters | |
NORMAL = 1 | |
# parameters are partitioned across data parallel process | |
PARTITIONED = 2 | |
# the parameter is held with a unique process rank | |
# and is not available on all other process | |
REMOTE = 3 | |
class ZeroParamStatus(Enum): | |
# parameters are fully present and ready for use on all processes | |
AVAILABLE = 1 | |
# parameters are either partitioned or remote in some or all process | |
NOT_AVAILABLE = 2 | |
# parameters are being gathered. | |
INFLIGHT = 3 | |
_orig_torch_tensor = torch.tensor | |
_orig_torch_empty = torch.empty | |
_orig_torch_zeros = torch.zeros | |
_orig_torch_ones = torch.ones | |
_orig_torch_full = torch.full | |
_orig_torch_arange = torch.arange | |
_orig_torch_eye = torch.eye | |
_orig_torch_randn = torch.randn | |
def zero_wrapper_for_fp_tensor_constructor(fn: Callable, target_fp_dtype: torch.dtype) -> Callable: | |
def wrapped_fn(*args, **kwargs) -> Tensor: | |
if kwargs.get("device", None) is None: | |
kwargs['device'] = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"])) | |
tensor: Tensor = fn(*args, **kwargs) | |
if tensor.is_floating_point(): | |
tensor.data = tensor.data.to(target_fp_dtype) | |
return tensor | |
return wrapped_fn | |
def get_new_tensor_fn_for_dtype(dtype: torch.dtype) -> Callable: | |
def new_tensor(cls, *args, **kwargs) -> Tensor: | |
device = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"])) | |
if not args: | |
args = (0, ) | |
tensor = _orig_torch_empty(0, device=device).new_empty(*args, **kwargs) | |
if tensor.is_floating_point(): | |
tensor = tensor.to(dtype) | |
return tensor | |
return new_tensor | |
# https://stackoverflow.com/a/63851681/9201239 | |
def get_all_subclasses(cls): | |
subclass_list = [] | |
def recurse(cl): | |
for subclass in cl.__subclasses__(): | |
subclass_list.append(subclass) | |
recurse(subclass) | |
recurse(cls) | |
return set(subclass_list) | |
def free_param(param: Parameter) -> None: | |
"""Free underlying storage of a parameter.""" | |
assert not param.ds_active_sub_modules, param.ds_summary() | |
if get_accelerator().on_accelerator(param.data): | |
# need to make sure that we don't free the parameter while it is still | |
# being used for computation | |
if not get_accelerator().is_synchronized_device(): | |
param.data.record_stream(get_accelerator().current_stream()) | |
# param.data doesn't store anything meaningful in partitioned state | |
param.data = torch.empty(0, dtype=param.dtype, device=param.device) | |
param.ds_status = ZeroParamStatus.NOT_AVAILABLE | |
reuse_buffers = False | |
temp_contiguous_tensor = None | |
empty_buffers = {} | |
# Inserts _post_init_method at the end of init method | |
# for all sub classes of torch.nn.Module | |
class InsertPostInitMethodToModuleSubClasses(object): | |
num_module_parameters = 0 | |
num_module_elements = 0 | |
def __init__(self, enabled=True, mem_efficient_linear=True, ds_config=None, dtype=None): | |
self.mem_efficient_linear = mem_efficient_linear | |
self.enabled = enabled | |
self._set_dtype(ds_config, dtype) | |
assert self.dtype in [ | |
torch.half, torch.bfloat16, torch.float | |
], f"Invalid data type {self.dtype}, allowed values are [torch.half, torch.bfloat16, torch.float]" | |
self.wrapped_cls = set() | |
self.skip_init_depth = 0 | |
self.quantized_initialization = None | |
if ds_config is not None and ds_config.weight_quantization_config and ds_config.weight_quantization_config.quantized_initialization: | |
self.quantized_initialization = ds_config.weight_quantization_config.quantized_initialization | |
def __enter__(self): | |
if not self.enabled: | |
return | |
global zero_init_context | |
if zero_init_context == 0: | |
self.patch_init_and_builtins() | |
global top_level_context | |
top_level_context = self | |
zero_init_context += 1 | |
def __exit__(self, exc_type, exc_value, traceback): | |
if not self.enabled: | |
return | |
global zero_init_context | |
zero_init_context -= 1 | |
# Exiting the top level context | |
if zero_init_context == 0: | |
self.unpatch_init_and_builtins() | |
global top_level_context | |
top_level_context = None | |
if dist.get_rank() == 0: | |
billion_elems = InsertPostInitMethodToModuleSubClasses.num_module_elements / 1e9 | |
num_params = InsertPostInitMethodToModuleSubClasses.num_module_parameters | |
logger.info( | |
f"finished initializing model - num_params = {num_params}, num_elems = {billion_elems:.2f}B") | |
# Now that we cleaned up the metaclass injection, raise the exception. | |
if exc_type is not None: | |
return False | |
# To be implemented by inheriting classes | |
def _post_init_method(self, module): | |
pass | |
def _set_dtype(self, ds_config, dtype): | |
if ds_config is not None and dtype is None: | |
if ds_config.bfloat16_enabled and ds_config.fp16_enabled: | |
raise RuntimeError("bfloat16 and fp16 cannot be enabled at once") | |
if ds_config.bfloat16_enabled: | |
self.dtype = torch.bfloat16 | |
elif ds_config.fp16_enabled: | |
self.dtype = torch.half | |
else: | |
self.dtype = torch.float | |
else: | |
self.dtype = dtype or torch.float16 if get_accelerator().is_fp16_supported( | |
) else torch.bfloat16 if get_accelerator().is_bf16_supported else torch.float32 | |
def patch_init_and_builtins(self): | |
def apply_with_gather(orig_module_apply_fn: Callable) -> Callable: | |
"""many models make use of child modules like Linear or Embedding which | |
perform their own weight initialization in their __init__ methods, | |
but will then have more weight initialization in a parent module's __init__ | |
method that modifies weights of child modules, which is typically done | |
using the Module.apply method. | |
since the Init context manager partitions child modules immediately after | |
they are initialized, without modifying apply we would entirely skip | |
any initialization done by parent modules. | |
to get around this issue, we wrap the function passed to Module.apply | |
so that the applied function is applied to child modules correctly. | |
""" | |
def get_wrapped_fn_to_apply(fn_to_apply: Callable) -> Callable: | |
if hasattr(fn_to_apply, "wrapped"): | |
return fn_to_apply | |
def wrapped_fn_to_apply(module_to_apply_fn_to: Module) -> None: | |
"""gathers parameters before calling apply function. afterwards | |
parameters are broadcasted to ensure consistency across all ranks | |
then re-partitioned. | |
takes the following steps: | |
1. allgathers parameters for the current module being worked on | |
2. calls the original function | |
3. broadcasts root rank's parameters to the other ranks | |
4. re-partitions the parameters | |
""" | |
# TODO Delay error checking for dangling partitioned parameters to post module init | |
# raise RuntimeError(f"not all parameters for {module_to_apply_fn_to.__class__.__name__}, " | |
# f"were zero params, is it possible that the parameters were " | |
# f"overwritten after they were initialized? " | |
# f"params: {[p for p in module_to_apply_fn_to.parameters(recurse=False)]} ") | |
params_to_apply_fn_to: Iterable[Parameter] = list( | |
sorted([p for p in module_to_apply_fn_to.parameters(recurse=False) if is_zero_param(p)], | |
key=lambda p: p.ds_id)) | |
for param in params_to_apply_fn_to: | |
param.all_gather() | |
fn_to_apply(module_to_apply_fn_to) | |
for param in params_to_apply_fn_to: | |
dist.broadcast(param.data, 0, group=param.ds_process_group) | |
for param in params_to_apply_fn_to: | |
param.partition(has_been_updated=True) | |
wrapped_fn_to_apply.wrapped = True | |
return wrapped_fn_to_apply | |
def wrapped_apply(module: Module, fn_to_apply: Callable) -> None: | |
orig_module_apply_fn(module, get_wrapped_fn_to_apply(fn_to_apply)) | |
return wrapped_apply | |
def hook_for_skip_init(module): | |
# this function is intended for handling the logic of torch.nn.utils.skip_init | |
# skip_init:module_cls(*args, **kwargs).to_empty(device=final_device), where kwargs['device']='meta' | |
# the function call occurs between module_cls(*args, **kwargs) and to_empty(device=final_device). | |
def partition_after_empty_init(f): | |
def wrapper(module, *args, **kwargs): | |
_module = f(module, *args, **kwargs) | |
# here is the post-hook for module.apply(empty_like...) | |
# after module.apply(empty_like...), the module has completed its empty init on real device | |
# since skip_init won't involve any computations or weight adjustments, we can directly utilize post_init | |
self._post_init_method(_module) | |
return _module | |
return wrapper | |
def post_wrapper_to_empty(f): | |
# append some wrapper restoration after to_empty() call | |
def wrapper(*args, **kwargs): | |
res = f(*args, **kwargs) | |
# restore _apply hook | |
for subclass in get_all_subclasses(torch.nn.modules.module.Module): | |
_disable_class_apply(subclass) | |
# self restore | |
module.to_empty = f | |
return res | |
return wrapper | |
def _enable_class_apply(cls): | |
cls._old_apply_of_skip_init_hook = cls._apply | |
cls._apply = partition_after_empty_init(cls._apply) | |
def _disable_class_apply(cls): | |
cls._apply = cls._old_apply_of_skip_init_hook | |
# add hooks for to_empty: apply_(empty_like) | |
for subclass in get_all_subclasses(torch.nn.modules.module.Module): | |
_enable_class_apply(subclass) | |
# add a restore hook when exiting skip_init | |
module.to_empty = post_wrapper_to_empty(module.to_empty) | |
def partition_after(f): | |
def wrapper(module, *args, **kwargs): | |
# important logic: We want to run post_init only after child's __init__ is | |
# completed, and do nothing after __init__ of any of its parents and grandparents in | |
# the inheritance ancestry. This way the partitioning will need to happen only once | |
# when the whole object is ready to be partitioned and not before. This is because | |
# often the child module will need to tweak the weights - for example running a | |
# custom weights init function. So if a parent created the weights param, the child | |
# won't need to gather it in order to tweak it | |
print_rank_0(f'Before initializing {module.__class__.__name__}', force=False) | |
is_child_module = False | |
if not hasattr(module, "_ds_child_entered"): | |
# child's __init__ was called, since parents all see the same object they can now skip post_init | |
is_child_module = True | |
setattr(module, "_ds_child_entered", True) | |
init_on_meta = 'device' in kwargs and kwargs['device'] == 'meta' | |
if init_on_meta: | |
self.skip_init_depth += 1 | |
f(module, *args, **kwargs) | |
if init_on_meta and self.skip_init_depth == 1: | |
# check and handle the logic of empty_init | |
hook_for_skip_init(module) | |
if is_child_module: | |
# child's __init__ is done, now we can run a single post_init on the child object | |
delattr(module, "_ds_child_entered") | |
print_rank_0(f'Running post_init for {module.__class__.__name__}', force=False) | |
if self.skip_init_depth == 0: | |
self._post_init_method(module) | |
print_rank_0(f'After initializing followed by post init for {module.__class__.__name__}', force=False) | |
if init_on_meta: | |
self.skip_init_depth -= 1 | |
return wrapper | |
def _enable_class(cls): | |
cls._old_init = cls.__init__ | |
cls.__init__ = partition_after(cls.__init__) | |
def _init_subclass(cls, **kwargs): | |
cls._old_init = cls.__init__ | |
cls.__init__ = partition_after(cls.__init__) | |
# Replace .__init__() for all existing subclasses of torch.nn.Module recursively | |
for subclass in get_all_subclasses(torch.nn.modules.module.Module): | |
_enable_class(subclass) | |
# holding onto some methods so we can put them back the way they were in __exit__ | |
torch.nn.modules.module.Module._old_init_subclass = torch.nn.modules.module.Module.__init_subclass__ | |
torch.nn.modules.module.Module._old_apply = torch.nn.modules.module.Module.apply | |
torch.Tensor.__old_new__ = torch.Tensor.__new__ | |
# Replace .__init__() for future subclasses of torch.nn.Module | |
torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass) | |
if Init.override_module_apply: | |
torch.nn.modules.module.Module.apply = apply_with_gather(torch.nn.modules.module.Module._old_apply) | |
self._add_tensor_creation_wrappers() | |
if self.mem_efficient_linear: | |
print_rank_0( | |
"nn.functional.linear has been overridden with a more memory efficient version. This will persist unless manually reset.", | |
force=False) | |
self.linear_bk = torch.nn.functional.linear | |
torch.nn.functional.linear = zero3_linear_wrap | |
if self.quantized_initialization: | |
print_rank_0("nn.functional.linear has been overridden with quantized linear version.", force=False) | |
torch.nn.functional.linear = wrap_quantized_functional(torch.nn.functional.linear) | |
torch.nn.functional.embedding = wrap_quantized_functional(torch.nn.functional.embedding) | |
for cls in WEIGHT_QUANTIZATION_LAYERS: | |
cls._load_from_state_dict = wrap_load_from_state_dict(cls._load_from_state_dict) | |
logger.info("Enable Zero3 engine with INT4 quantization.") | |
self.patched = True | |
def unpatch_init_and_builtins(self): | |
if self.patched: | |
def _disable_class(cls): | |
cls.__init__ = cls._old_init | |
for subclass in get_all_subclasses(torch.nn.modules.module.Module): | |
_disable_class(subclass) | |
# putting methods back the way we found them | |
torch.nn.modules.module.Module.__init_subclass__ = torch.nn.modules.module.Module._old_init_subclass | |
if Init.override_module_apply: | |
torch.nn.modules.module.Module.apply = torch.nn.modules.module.Module._old_apply | |
self._remove_tensor_creation_wrappers() | |
self.patched = False | |
def _add_tensor_creation_wrappers(self): | |
torch.Tensor.__new__ = get_new_tensor_fn_for_dtype(self.dtype) | |
torch.tensor = zero_wrapper_for_fp_tensor_constructor(_orig_torch_tensor, self.dtype) | |
torch.empty = zero_wrapper_for_fp_tensor_constructor(_orig_torch_empty, self.dtype) | |
torch.zeros = zero_wrapper_for_fp_tensor_constructor(_orig_torch_zeros, self.dtype) | |
torch.ones = zero_wrapper_for_fp_tensor_constructor(_orig_torch_ones, self.dtype) | |
torch.full = zero_wrapper_for_fp_tensor_constructor(_orig_torch_full, self.dtype) | |
torch.arange = zero_wrapper_for_fp_tensor_constructor(_orig_torch_arange, self.dtype) | |
torch.eye = zero_wrapper_for_fp_tensor_constructor(_orig_torch_eye, self.dtype) | |
torch.randn = zero_wrapper_for_fp_tensor_constructor(_orig_torch_randn, self.dtype) | |
def _remove_tensor_creation_wrappers(self): | |
torch.Tensor.__new__ = torch.Tensor.__old_new__ | |
torch.tensor = _orig_torch_tensor | |
torch.empty = _orig_torch_empty | |
torch.zeros = _orig_torch_zeros | |
torch.ones = _orig_torch_ones | |
torch.full = _orig_torch_full | |
torch.arange = _orig_torch_arange | |
torch.eye = _orig_torch_eye | |
torch.randn = _orig_torch_randn | |
def shutdown_init_context(): | |
""" | |
This function is used to initialize deepspeed engine inside the context of Init. | |
We need to remove the wrappers but keep the context. | |
""" | |
if top_level_context: | |
top_level_context.unpatch_init_and_builtins() | |
def restore_init_context(): | |
""" | |
This function is used to restore the wrappers after deepspeed engine is initialized. | |
""" | |
if top_level_context: | |
top_level_context.patch_init_and_builtins() | |
class AllGatherHandle: | |
def __init__(self, handle, param: Parameter, quantization=None) -> None: | |
if param.ds_status != ZeroParamStatus.INFLIGHT: | |
raise RuntimeError(f"expected param {param.ds_summary()} to be available") | |
self.__handle = handle | |
self.__param = param | |
self.__quantization = quantization | |
def wait(self) -> None: | |
instrument_w_nvtx(self.__handle.wait)() | |
if self.__quantization: | |
instrument_w_nvtx(self.__quantization.quant_handle.wait)() | |
self.__param.data = self.__quantization.backend.dequantize( | |
self.__quantization.quantized_param, self.__quantization.scale_buffer).to(self.__param.device) | |
self.__param.ds_status = ZeroParamStatus.AVAILABLE | |
class AllGatherCoalescedHandle: | |
def __init__( | |
self, | |
allgather_handle, | |
params: List[Parameter], | |
partitions: List[Tensor], | |
world_size: int, | |
use_secondary_tensor=False, | |
quantization=None, | |
) -> None: | |
self.allgather_handle = allgather_handle | |
self.params = params | |
self.partitions = partitions | |
self.world_size = world_size | |
self.use_secondary_tensor = use_secondary_tensor | |
self.complete = False | |
self.quantization = quantization | |
for param in self.params: | |
if param.ds_status != ZeroParamStatus.INFLIGHT: | |
raise RuntimeError(f"expected param {param.ds_summary()} to not be available") | |
def wait(self) -> None: | |
if self.complete: | |
return | |
instrument_w_nvtx(self.allgather_handle.wait)() | |
if self.quantization: | |
instrument_w_nvtx(self.quantization.quant_handle.wait)() | |
flat_tensor = self.quantization.backend.dequantize( | |
self.quantization.quantized_param, self.quantization.scale_buffer).to(self.params[0].device) | |
self.partitions: List[Parameter] = [] | |
for i in range(self.world_size): | |
self.partitions.append( | |
flat_tensor.narrow(0, self.quantization.partition_sz * i, self.quantization.partition_sz)) | |
# split the single tensor out into individual tensors | |
param_offset = 0 | |
for param in self.params: | |
assert param.ds_status == ZeroParamStatus.INFLIGHT, f"expected param {param.ds_summary()} to be inflight" | |
partitions: List[Tensor] = [] | |
ds_tensor_numel = param.ds_tensor.ds_numel | |
if self.use_secondary_tensor: | |
ds_tensor_numel *= param.ds_secondary_tensor_num_of_groups | |
for rank in range(self.world_size): | |
param_start = rank * ds_tensor_numel | |
if param_start < param.ds_numel: | |
part_to_copy = self.partitions[rank].narrow(0, param_offset, | |
min(param.ds_numel - param_start, ds_tensor_numel)) | |
partitions.append(part_to_copy) | |
param.data = instrument_w_nvtx(torch.cat)(partitions).view(param.ds_shape) | |
param.ds_status = ZeroParamStatus.AVAILABLE | |
for part_to_copy in partitions: | |
if not get_accelerator().is_synchronized_device(): | |
part_to_copy.record_stream(get_accelerator().current_stream()) | |
param_offset += ds_tensor_numel | |
self.complete = True | |
class MultipleAllGatherHandles: | |
def __init__(self, handles: List[AllGatherCoalescedHandle]): | |
self.handles = handles | |
def wait(self) -> None: | |
for handle in self.handles: | |
handle.wait() | |
class QuantizationInfo: | |
# a placeholder object to store all quant related vars used in handles | |
def __init__(self) -> None: | |
self.quantized_param = None | |
self.backend = None | |
self.quant_handle = None | |
self.scale_buffer = None | |
class CUDAQuantizer: | |
async_flag = True | |
target_group_size = 8000 # the optimal size is 4k, so we set the target to be below 8k | |
group_size_cache = dict() | |
quantizer_cuda_module = None | |
def __init__(self) -> None: | |
if CUDAQuantizer.quantizer_cuda_module is None: | |
CUDAQuantizer.quantizer_cuda_module = deepspeed.ops.op_builder.QuantizerBuilder().load() | |
def quantize(self, param, groups=None): | |
if groups is None: | |
try: | |
groups = self.group_size_cache[param.numel()] | |
except KeyError: | |
groups = math.ceil(param.numel() / self.target_group_size) | |
while groups < param.numel(): | |
if param.numel() % (8 * groups) == 0: | |
break | |
groups += 1 | |
while True: | |
if param.numel() % (8 * groups * 2) == 0 and param.numel( | |
) / groups > self.target_group_size: #hard limit of 16k group_size | |
groups *= 2 | |
else: | |
break | |
assert ( | |
param.numel() % (8 * groups) == 0 | |
), f"Qantized weight requires the number of weights be a multiple of 8. Yet {param.numel()} cannot be divided by 8*{groups}" | |
assert (param.numel() / groups < 16000), f"{param.numel()} / {groups} is larger than 16k" | |
assert param.numel( | |
) > groups, f"Adaptive grouping algorithm cannot find a group size for input tensor of size {param.numel()}" | |
self.group_size_cache[param.numel()] = groups | |
return self.quantizer_cuda_module.quantize(param.to(get_accelerator().device_name()), groups, 8, | |
self.quantizer_cuda_module.Symmetric) | |
def dequantize(self, quantized_param, scale): | |
return self.quantizer_cuda_module.dequantize(quantized_param, scale, scale.numel(), 8, | |
self.quantizer_cuda_module.Symmetric) | |
def _no_gather_coalesced(params: Iterable[Parameter]) -> AllGatherCoalescedHandle: | |
for param in params: | |
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE: | |
raise RuntimeError(f"expect param.ds_status == ZeroParamStatus.NOT_AVAILABLE, got{param.ds_summary()}") | |
param.ds_status = ZeroParamStatus.INFLIGHT | |
params = sorted(params, key=lambda p: p.ds_id) | |
if len(params) == 1: | |
param, = params | |
return NoGatherHandle(param) | |
return NoGatherCoalescedHandle(params) | |
# Replaces all parameters in module with Scattered Parameters | |
class Init(InsertPostInitMethodToModuleSubClasses): | |
param_id = 0 | |
param_persistence_threshold = get_config_default(DeepSpeedZeroConfig, "param_persistence_threshold") | |
model_persistence_threshold = get_config_default(DeepSpeedZeroConfig, "model_persistence_threshold") | |
num_persisted_parameters = 0 | |
num_persisted_elements = 0 | |
apply_param_persistence = False | |
override_module_apply = get_config_default(DeepSpeedZeroConfig, "override_module_apply") | |
def __init__( | |
self, | |
module=None, | |
data_parallel_group=None, | |
mem_efficient_linear=True, | |
remote_device=None, | |
pin_memory=False, | |
config_dict_or_path=None, | |
config=None, | |
enabled=True, | |
dtype=None, | |
mpu=None, | |
zero_param_parallel_group=None, | |
zero_quantized_weights=False, | |
zero_quantized_nontrainable_weights=False, | |
sequence_data_parallel_group=None, | |
param_swapper=None, | |
): | |
"""A context to enable massive model construction for training with | |
ZeRO-3. Models are automatically partitioned (or, sharded) across the | |
system and converted to half precision. | |
Args: | |
module (``torch.nn.Module``, optional): If provided, partition the model as | |
if it was constructed in the context. | |
data_parallel_group (``deepspeed.comm`` process group, optional): | |
The group of processes to partition among. Defaults to all processes. | |
mem_efficient_linear (bool, optional): Replace | |
torch.nn.functional.linear with an implementation that allows | |
DeepSpeed to partition parameters. Defaults to ``True``. | |
remote_device (string, optional): The initial device to store model | |
weights e.g., ``cpu``, ``nvme``. Passing ``"cpu"`` will create the model in CPU | |
memory. The model may still be moved to GPU based on the | |
offload settings for training. Defaults to param offload device if a config is | |
defined, otherwise GPU. | |
pin_memory (bool, optional): Potentially increase performance by | |
using pinned memory for model weights. ``remote_device`` must be | |
``"cpu"``. Defaults to pin_memory value in config, otherwise ``False``. | |
config_dict_or_path (dict or ``json file``, optional): If provided, provides configuration | |
for swapping fp16 params to NVMe. | |
config (dict or ``json file``, optional): Deprecated, use config_dict_or_path instead. | |
enabled (bool, optional): If ``False``, this context has no | |
effect. Defaults to ``True``. | |
dtype (``dtype``, optional): Can be used to change the data type of the parameters. | |
Supported options are ``torch.half`` and ``torch.float``. Defaults to ``None`` | |
mpu (``object``, optional): A model parallelism unit object that implements get_{model,data}_parallel_{rank,group,world_size}. | |
zero_param_parallel_group(``object``, optional): Parallel (comm) group for dual partitioning of ZeRO params. | |
zero_quantized_weights (bool, optional): If ``True``, turn on quantized weights in all gather weights. Default is ``False`` | |
zero_quantized_nontrainable_weights (bool, optional): If ``True``, nontrainable weights will be stored in quantized format. Default is ``False`` | |
param_swapper (``deepspeed.runtime.swap_tensor.partitioned_param_swapper.AsyncPartitionedParameterSwapper``, optional): [Experimental] Use existing parameter swapper. Defaults to ``None``. | |
This argument will be removed in the near future. | |
This context accelerates model initialization and enables models that | |
are too large to allocate in their entirety in CPU memory. It has the | |
following effects: | |
#. allocates tensors to either GPU or CPU memory or NVMe | |
#. converts floating point tensors to half precision | |
#. immediately partitions tensors among the group of data-parallel devices | |
#. (*optional*) replaces ``torch.nn.functional.linear`` with a more | |
memory-efficient implementation | |
These modifications allow for models that exceed the size of local CPU/GPU | |
memory/NVMe, but fit within the total NVMe capacity (*i.e.*, aggregate CPU | |
or GPU memory or NVMe) across all nodes. Consider initializing a model with one | |
trillion parameters, whose weights occupy two terabytes (TB) in half | |
precision. The initial CPU allocation in full precision requires 4TB of | |
memory *per process*, and so a system with 8 GPUs per node would need 32TB of | |
CPU memory due to data-parallel redundancies. Instead, by immediately | |
partitioning tensors we remove the redundancies. The result is that | |
regardless of the number of GPUs, we still only require the original 4TB. This | |
allows for a linear increase in model size with the aggregate system memory. | |
For example, if a node has 1TB of memory and 8 GPUs, we could fit a trillion | |
parameter model with 4 nodes and 32 GPUs. | |
Important: If the fp16 weights of the model can't fit onto a single GPU memory | |
this feature must be used. | |
.. note:: | |
Initializes ``deepspeed.comm`` if it has not already been done so. | |
See :meth:`deepspeed.init_distributed` for more information. | |
.. note:: | |
Only applicable to training with ZeRO-3. | |
Examples | |
-------- | |
#. Allocate a model and partition it among all processes: | |
.. code-block:: python | |
with deepspeed.zero.Init(): | |
model = MyLargeModel() | |
#. Allocate a model in pinned CPU memory and partition it among a subgroup of processes: | |
.. code-block:: python | |
with deepspeed.zero.Init(data_parallel_group=mpu.get_data_parallel_group(), | |
remote_device="cpu", | |
pin_memory=True): | |
model = MyLargeModel() | |
#. Partition an already-allocated model in CPU memory: | |
.. code-block:: python | |
model = deepspeed.zero.Init(module=model) | |
""" | |
if config is not None: | |
config_dict_or_path = config | |
logger.warning( | |
f'zero.Init: the `config` argument is deprecated. Please use `config_dict_or_path` instead.') | |
_ds_config = deepspeed.runtime.config.DeepSpeedConfig(config_dict_or_path, | |
mpu) if config_dict_or_path is not None else None | |
if _ds_config is not None: | |
if _ds_config.zero_config.memory_efficient_linear and _ds_config.compile_config.enabled: | |
# memory_efficient_linear displays numerous errors when torch.compile is enabled. | |
# Refer to https://github.com/pytorch/pytorch/issues/119059 for details. | |
# Further investigation into performance is necessary, even after resolving this issue because | |
# the `memory_efficient_linear` module may lead to more graph breaks compared to the original implementation. | |
logger.warning(f'memory_efficient_linear is disabled when torch.compile is enabled.') | |
mem_efficient_linear = False | |
else: | |
mem_efficient_linear = _ds_config.zero_config.memory_efficient_linear | |
super().__init__(enabled=enabled, mem_efficient_linear=mem_efficient_linear, ds_config=_ds_config, dtype=dtype) | |
if not dist.is_initialized(): | |
init_distributed() | |
assert dist.is_initialized(), "Parameters cannot be scattered without initializing deepspeed.comm" | |
if data_parallel_group is None and sequence_data_parallel_group is None: | |
self.ds_process_group = dist.get_world_group() | |
elif sequence_data_parallel_group is not None: | |
self.ds_process_group = sequence_data_parallel_group | |
elif data_parallel_group is not None: | |
self.ds_process_group = data_parallel_group | |
else: # both given | |
raise ValueError( | |
"Both 'data_parallel_group' and 'sequence_data_parallel_group' were specified. Please provide only one of these arguments." | |
) | |
self.rank = dist.get_rank(group=self.ds_process_group) | |
self.dp_world_size = dist.get_world_size(group=self.ds_process_group) | |
self.zero_param_process_group = zero_param_parallel_group | |
if _ds_config is not None and _ds_config.zero_config.zero_hpz_partition_size > 1 and self.zero_param_process_group is None: | |
groups._create_zero_param_parallel_group(_ds_config.zero_config.zero_hpz_partition_size) | |
self.zero_param_process_group = groups._get_zero_param_intra_parallel_group() | |
self.num_ranks_in_param_group = self.dp_world_size | |
self.rank_in_group = self.rank | |
self.num_param_groups = 1 | |
if self.zero_param_process_group is not None: | |
self.num_ranks_in_param_group = groups._get_zero_param_intra_parallel_group_world_size() | |
self.num_param_groups = int(self.dp_world_size / self.num_ranks_in_param_group) | |
self.rank_in_group = groups._get_zero_param_intra_parallel_rank_in_mygroup() | |
print_rank_0(f"hpZeRO group size: {self.num_ranks_in_param_group}", force=True) | |
logger.debug( | |
"hpZeRO partition parameter my rank in world {} my rank in group {} ranks in my param partition group: {} " | |
.format(self.rank, self.rank_in_group, groups._get_zero_param_intra_parallel_group_ranks())) | |
# Local device is the device where the parameters are consumed, must be default device. | |
# It is the device where parameters are fully instantiated using allgather | |
self.local_device = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"])) | |
get_accelerator().set_device(self.local_device) | |
self.quantized_weights = zero_quantized_weights | |
if _ds_config is not None and _ds_config.zero_config.zero_quantized_weights and not self.quantized_weights: | |
self.quantized_weights = _ds_config.zero_config.zero_quantized_weights | |
self.quantized_nontrainable_weights = zero_quantized_nontrainable_weights | |
if _ds_config is not None and _ds_config.zero_config.zero_quantized_nontrainable_weights and not self.quantized_nontrainable_weights: | |
self.quantized_nontrainable_weights = _ds_config.zero_config.zero_quantized_nontrainable_weights | |
self.module = module | |
if (self.quantized_weights or self.quantized_nontrainable_weights): | |
self.quantizer_module = CUDAQuantizer() | |
print_rank_0(f'Using quantizer for weights: {self.quantizer_module.__class__.__name__}', force=True) | |
if _ds_config is not None: | |
Init.override_module_apply = _ds_config.zero_config.override_module_apply | |
if _ds_config.zero_config.offload_param is not None: | |
remote_device = _ds_config.zero_config.offload_param.device | |
pin_memory = _ds_config.zero_config.offload_param.pin_memory | |
self._validate_remote_device(remote_device, _ds_config) | |
# Remote device is the device where parameter partitions are stored | |
# It can be same as local_device or it could be CPU or NVMe. | |
self.remote_device = self.local_device if remote_device in [None, OffloadDeviceEnum.none] else remote_device | |
self.pin_memory = pin_memory if (self.remote_device in [OffloadDeviceEnum.cpu, OffloadDeviceEnum.nvme | |
]) else False | |
# Enable fp16 param swapping to NVMe | |
if self.remote_device == OffloadDeviceEnum.nvme: | |
self.param_swapper = param_swapper or AsyncPartitionedParameterSwapper(_ds_config, self.dtype) | |
else: | |
self.param_swapper = None | |
# If we are provided an already-allocated module to prepare. | |
if module is not None: | |
assert isinstance(module, torch.nn.Module) | |
self._convert_to_zero_parameters(module.parameters(recurse=True)) | |
self.use_all_gather_into_tensor = dist.has_all_gather_into_tensor() | |
if not self.use_all_gather_into_tensor: | |
logger.info(f"all_gather_into_tensor API is not available in torch {torch.__version__}") | |
def _update_persist_config(self, ds_config): | |
Init.apply_param_persistence = True | |
Init.param_persistence_threshold = ds_config.zero_config.param_persistence_threshold | |
Init.model_persistence_threshold = ds_config.zero_config.model_persistence_threshold // self.num_partitions | |
def _zero_init_param(self, param): | |
self._convert_to_deepspeed_param(param) | |
if dist.get_world_group() == self.get_dp_process_group(): | |
dist.broadcast(param.data, 0, self.get_dp_process_group()) | |
else: | |
dist.broadcast(param.data, dist.get_global_rank(self.get_dp_process_group(), 0), | |
self.get_dp_process_group()) | |
param.partition() | |
def _convert_to_zero_parameters(self, param_list): | |
for param in param_list: | |
if is_zero_param(param): | |
continue | |
param.data = param.data.to(self.local_device) | |
self._zero_init_param(param) | |
def _validate_remote_device(self, remote_device, ds_config): | |
if ds_config is not None: | |
if remote_device in [None, OffloadDeviceEnum.cpu]: | |
if ds_config.zero_config.offload_param is not None: | |
offload_param_device = ds_config.zero_config.offload_param.device | |
assert offload_param_device != OffloadDeviceEnum.nvme, \ | |
f"'device' in DeepSpeed Config cannot be {offload_param_device} if remote device is {remote_device}." | |
if remote_device == OffloadDeviceEnum.nvme: | |
assert ds_config.zero_config.offload_param is not None, \ | |
f'"offload_param" must be defined in DeepSpeed Config if remote device is {OffloadDeviceEnum.nvme}.' | |
assert ds_config.zero_config.offload_param.nvme_path is not None, \ | |
f'"nvme_path" in DeepSpeed Config cannot be None if remote device is {OffloadDeviceEnum.nvme}' | |
def _post_init_method(self, module): | |
#see_memory_usage(f"Before converting params in {module.__class__.__name__}", force=False) | |
print_rank_0(f'Converting Params in {module.__class__.__name__}', force=False) | |
see_memory_usage(f"Before converting and partitioning params in {module.__class__.__name__}", force=False) | |
for name, param in module.named_parameters(recurse=False): | |
print_rank_0(f'Analyzing param {name} in {module.__class__.__name__}', force=False) | |
InsertPostInitMethodToModuleSubClasses.num_module_parameters += 1 | |
InsertPostInitMethodToModuleSubClasses.num_module_elements += param.numel() | |
if not is_zero_param(param): | |
if not get_accelerator().on_accelerator(param): | |
param.data = param.data.to(self.local_device) | |
if name == 'weight' and self.quantized_initialization and type(module) in WEIGHT_QUANTIZATION_LAYERS: | |
_quantize_param(param, self.quantized_initialization) | |
self._zero_init_param(param) | |
print_rank_0( | |
f"Partitioning param {debug_param2name_id_shape(param)} module={debug_module2name(module)}") | |
see_memory_usage( | |
f"Param count {InsertPostInitMethodToModuleSubClasses.num_module_elements}. After converting and partitioning params in {module.__class__.__name__}", | |
force=False) | |
def _convert_to_deepspeed_param(self, param): | |
# Partitioned, Normal, Remote | |
param.ds_param_type = ZeroParamType.PARTITIONED | |
# Replicated vs Partitioned vs Inflight | |
param.ds_status = ZeroParamStatus.AVAILABLE | |
# Stores the shape of the original tensor | |
param.ds_shape = param.shape | |
# Stores the number of elements in the original parameter without padding | |
param.ds_numel = param.numel() | |
# Stores the partitioned copy of the tensor | |
param.ds_tensor = None | |
# Keeps track of how many active sub-modules need this param at any given point in time | |
param.ds_active_sub_modules = set() | |
# If this flag is true, then the parameters are replicated throughput training | |
# And only partitioned before the step | |
if Init.apply_param_persistence and param.ds_numel <= Init.param_persistence_threshold and Init.num_persisted_elements + param.ds_numel <= Init.model_persistence_threshold: | |
param.ds_persist = True | |
Init.num_persisted_parameters += 1 | |
Init.num_persisted_elements += param.ds_numel | |
else: | |
param.ds_persist = False | |
param.is_external_param = False | |
# The group that the parameter is scattered across. | |
param.ds_process_group = self.ds_process_group | |
# Stores the secondary partitioned copy of the tensor | |
param.ds_secondary_tensor = None | |
#Process group for secondary partition all (group) gather | |
param.ds_zero_param_process_group = self.zero_param_process_group | |
param.ds_secondary_tensor_group_size = self.num_ranks_in_param_group | |
param.ds_secondary_tensor_num_of_groups = self.num_param_groups | |
# This is set to the Async Param swapper if remote device is nvme | |
# else this is set to None | |
param.nvme_swapper = self.param_swapper | |
# DeepSpeed Param ID | |
param.ds_id = Init.param_id | |
Init.param_id += 1 | |
def all_gather(param_list=None, async_op=False, hierarchy=0): | |
cls = param | |
if param_list is None: | |
param_list = [cls] | |
return self._all_gather(param_list, async_op=async_op, hierarchy=hierarchy) | |
def _all_gather_dtype(dtype, params, world_size, rank_in_group, ds_process_group): | |
partition_sz = sum(p.ds_tensor.ds_numel for p in params) | |
use_secondary_tensor = params[0].ds_secondary_tensor is not None | |
if use_secondary_tensor: | |
partition_sz = sum(p.ds_tensor.ds_numel * p.ds_secondary_tensor_num_of_groups for p in params) | |
flat_tensor = torch.empty(partition_sz * world_size, | |
dtype=dtype, | |
device=get_accelerator().current_device_name(), | |
requires_grad=False) | |
partitions: List[Parameter] = [] | |
for i in range(world_size): | |
partitions.append(flat_tensor.narrow(0, partition_sz * i, partition_sz)) | |
if use_secondary_tensor: | |
instrument_w_nvtx( | |
torch.cat)([p.ds_secondary_tensor.to(get_accelerator().current_device_name()) for p in params], | |
out=partitions[rank_in_group]) | |
else: | |
instrument_w_nvtx(torch.cat)([p.ds_tensor.to(get_accelerator().current_device_name()) for p in params], | |
out=partitions[rank_in_group]) | |
handle = _dist_allgather_fn(partitions[rank_in_group], flat_tensor, ds_process_group) | |
#Fix get_partition_dp_group(params[0])) | |
return AllGatherCoalescedHandle( | |
allgather_handle=handle, | |
params=params, | |
partitions=partitions, | |
world_size=world_size, | |
use_secondary_tensor=use_secondary_tensor, | |
) | |
def all_gather_coalesced(params: Iterable[Parameter], | |
safe_mode: bool = False, | |
quantize: bool = False) -> AllGatherCoalescedHandle: | |
# fetches from nvme if the partition is not available and in nvme | |
self._ensure_availability_of_partitioned_params(params) | |
if self.num_partitions == 1: | |
return _no_gather_coalesced(params) | |
for param in params: | |
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE: | |
raise RuntimeError(param.ds_summary()) | |
param.ds_status = ZeroParamStatus.INFLIGHT | |
#use appropriate all gather process group | |
ds_process_group = self.ds_process_group | |
rank_in_group = self.rank | |
world_size = self.dp_world_size | |
use_secondary_tensor = params[0].ds_secondary_tensor is not None | |
if self.zero_param_process_group and use_secondary_tensor: | |
ds_process_group = self.zero_param_process_group #intragroup | |
rank_in_group = self.rank_in_group | |
world_size = self.num_ranks_in_param_group | |
#pprint(dir(ds_process_group)) | |
# ensure that each rank has params in same order. the allgather | |
# is done by flattening the parameter list into a single tensor that | |
# can be allgathered in a single call - this means that if each rank | |
# gives a list of the same parameters in a different order we will | |
# silently get incorrect parameter values, and have very difficult | |
# to debug correctness issues. | |
params = sorted(params, key=lambda p: p.ds_id) | |
if logger.isEnabledFor(logging.DEBUG): | |
debug_rank0(f"-allgather_coalesced: {[p.ds_id for p in params]}") | |
if safe_mode: | |
# ensure that same list (with same ordering) of parameters are | |
# being allgathered across all ranks, otherwise could mix | |
# data between tensors. | |
assert_ints_same_as_other_ranks([p.ds_id for p in params]) | |
# ensure that tensors from each rank agree on the same ds_numel | |
# otherwise could mix data between tensors. | |
assert_ints_same_as_other_ranks([p.ds_tensor.ds_numel for p in params]) | |
if len(params) == 1: | |
# have an opportunity to avoid some intermediate memory allocations | |
param = params[0] | |
buffer_size = math.ceil(param.ds_numel / world_size) * world_size | |
if use_secondary_tensor: | |
buffer_size = param.ds_secondary_tensor.shape[0] * world_size #make sure out is appropriately sized | |
param_ds_tensor = param.ds_secondary_tensor if use_secondary_tensor else param.ds_tensor | |
param_buffer = torch.empty( | |
buffer_size, | |
dtype=param_ds_tensor.dtype if not quantize else torch.int8, | |
device=get_accelerator().current_device_name(), | |
requires_grad=False, | |
) | |
if not quantize: | |
handles = _dist_allgather_fn( | |
param_ds_tensor.to(get_accelerator().current_device_name()), | |
param_buffer, | |
ds_process_group, | |
) | |
param.data = param_buffer.narrow(0, 0, param.ds_numel).view(param.ds_shape).to(param.device) | |
return AllGatherHandle(handles, param) | |
else: | |
if hasattr(param_ds_tensor, "ds_quant_scale"): | |
scales = param_ds_tensor.ds_quant_scale | |
quantized_param = param_ds_tensor.data | |
else: | |
quantized_param, scales = self.quantizer_module.quantize(param_ds_tensor) | |
handle = _dist_allgather_fn(quantized_param.to(get_accelerator().current_device_name()), | |
param_buffer, ds_process_group) | |
quant_scale_buffer = torch.empty( | |
scales.numel() * world_size, | |
dtype=scales.dtype, | |
device=get_accelerator().current_device_name(), | |
requires_grad=False, | |
) | |
quant_handle = _dist_allgather_fn(scales.to(get_accelerator().current_device_name()), | |
quant_scale_buffer, ds_process_group) | |
quant_info = QuantizationInfo() | |
quant_info.quantized_param = param_buffer.narrow(0, 0, param.ds_numel).view(param.ds_shape).to( | |
param.device) | |
quant_info.backend = self.quantizer_module | |
quant_info.quant_handle = quant_handle | |
quant_info.scale_buffer = quant_scale_buffer | |
return AllGatherHandle(handle, param, quantization=quant_info) | |
else: | |
if not quantize: | |
dtype_params = defaultdict(list) | |
for p in params: | |
dtype_params[p.ds_tensor.dtype].append(p) | |
handles = [] | |
for dtype, params in dtype_params.items(): | |
handles.append(_all_gather_dtype(dtype, params, world_size, rank_in_group, ds_process_group)) | |
return MultipleAllGatherHandles(handles) | |
else: | |
partition_sz = sum(p.ds_tensor.ds_numel for p in params) | |
if use_secondary_tensor: | |
partition_sz = sum(p.ds_tensor.ds_numel * p.ds_secondary_tensor_num_of_groups for p in params) | |
flat_tensor = torch.empty(partition_sz * world_size, | |
dtype=torch.int8, | |
device=get_accelerator().current_device_name(), | |
requires_grad=False) | |
if use_secondary_tensor: | |
if hasattr(params[0].ds_secondary_tensor, "ds_quant_scale"): | |
quantized_param = instrument_w_nvtx(torch.cat)([ | |
p.ds_secondary_tensor.data.to(get_accelerator().current_device_name()) for p in params | |
]) | |
scales = instrument_w_nvtx(torch.cat)([ | |
p.ds_secondary_tensor.ds_quant_scale.to(get_accelerator().current_device_name()) | |
for p in params | |
]) | |
else: | |
quantized_param, scales = self.quantizer_module.quantize( | |
instrument_w_nvtx(torch.cat)([ | |
p.ds_secondary_tensor.to(get_accelerator().current_device_name()) for p in params | |
])) | |
else: | |
if hasattr(params[0].ds_tensor, "ds_quant_scale"): | |
quantized_param = instrument_w_nvtx(torch.cat)( | |
[p.ds_tensor.data.to(get_accelerator().current_device_name()) for p in params]) | |
scales = instrument_w_nvtx(torch.cat)([ | |
p.ds_tensor.ds_quant_scale.to(get_accelerator().current_device_name()) for p in params | |
]) | |
else: | |
quantized_param, scales = self.quantizer_module.quantize( | |
instrument_w_nvtx(torch.cat)( | |
[p.ds_tensor.to(get_accelerator().current_device_name()) for p in params])) | |
quant_scale_buffer = torch.empty( | |
scales.numel() * world_size, | |
dtype=torch.float32, | |
device=get_accelerator().current_device_name(), | |
requires_grad=False, | |
) | |
handle = _dist_allgather_fn(quantized_param, flat_tensor, ds_process_group) | |
quant_handle = _dist_allgather_fn(scales, quant_scale_buffer, ds_process_group) | |
quant_info = QuantizationInfo() | |
quant_info.quantized_param = flat_tensor | |
quant_info.backend = self.quantizer_module | |
quant_info.quant_handle = quant_handle | |
quant_info.scale_buffer = quant_scale_buffer | |
quant_info.partition_sz = partition_sz | |
quant_info.world_size = world_size | |
return AllGatherCoalescedHandle( | |
allgather_handle=handle, | |
params=params, | |
partitions=None, | |
world_size=world_size, | |
use_secondary_tensor=use_secondary_tensor, | |
quantization=quant_info, | |
) | |
def partition(param_list=None, hierarchy=0, has_been_updated=False): | |
cls = param | |
print_rank_0(f"{'--'*hierarchy}----Partitioning param {debug_param2name_id_shape_device(cls)}", | |
force=False) | |
if param_list is None: | |
param_list = [cls] | |
self._partition(param_list, has_been_updated=has_been_updated) | |
def reduce_gradients_at_owner(param_list=None, hierarchy=0): | |
cls = param | |
if param_list is None: | |
param_list = [cls] | |
print_rank_0( | |
f"{'--'*hierarchy}----Reducing Gradients for param with ids {[param.ds_id for param in param_list]} to owner" | |
) | |
self._reduce_scatter_gradients(param_list) | |
def partition_gradients(param_list=None, partition_buffers=None, hierarchy=0, accumulate=False): | |
cls = param | |
print_rank_0( | |
f"{'--'*hierarchy}----Partitioning param gradient with id {debug_param2name_id_shape_device(cls)}") | |
if param_list is None: | |
param_list = [cls] | |
if isinstance(partition_buffers, torch.Tensor): | |
partition_buffers = [partition_buffers] | |
self._partition_gradients(param_list, partition_buffers=partition_buffers, accumulate=accumulate) | |
def aligned_size(): | |
return self._aligned_size(param) | |
def padding_size(): | |
return self._padding_size(param) | |
def partition_numel(): | |
return self._partition_numel(param) | |
def item_override(): | |
param.all_gather() | |
return param._orig_item() | |
def ds_summary(slf: torch.Tensor, use_debug_name: bool = False) -> dict: | |
return { | |
"id": debug_param2name_id(slf) if use_debug_name else slf.ds_id, | |
"status": slf.ds_status.name, | |
"numel": slf.numel(), | |
"ds_numel": slf.ds_numel, | |
"shape": tuple(slf.shape), | |
"ds_shape": tuple(slf.ds_shape), | |
"requires_grad": slf.requires_grad, | |
"grad_shape": tuple(slf.grad.shape) if slf.grad is not None else None, | |
"persist": slf.ds_persist, | |
"active_sub_modules": slf.ds_active_sub_modules, | |
"ds_tensor.shape": slf.ds_tensor.shape if slf.ds_tensor is not None else None | |
} | |
def convert_to_zero_parameters(param_list): | |
self._convert_to_zero_parameters(param_list) | |
def allgather_before(func: Callable) -> Callable: | |
def wrapped(*args, **kwargs): | |
param.all_gather() | |
return func(*args, **kwargs) | |
return wrapped | |
# Collectives for gathering and partitioning parameters | |
param.all_gather = all_gather | |
param.all_gather_coalesced = all_gather_coalesced | |
param.partition = partition | |
# Collective for averaging gradients | |
param.reduce_gradients_at_owner = reduce_gradients_at_owner | |
param.partition_gradients = partition_gradients | |
# Partitioning size utilities | |
param.aligned_size = aligned_size | |
param.padding_size = padding_size | |
param.partition_numel = partition_numel | |
param.ds_summary = types.MethodType(ds_summary, param) | |
param.item = allgather_before(param.item) | |
param.convert_to_zero_parameters = convert_to_zero_parameters | |
def _aligned_size(self, param): | |
return param.ds_numel + self._padding_size(param) | |
def _padding_size(self, param): | |
remainder = param.ds_numel % self.num_partitions | |
return (self.num_partitions - remainder) if remainder else 0 | |
def _partition_numel(self, param): | |
return param.ds_tensor.ds_numel | |
def _ensure_availability_of_partitioned_params(self, params): | |
swap_in_list = [] | |
swap_in_flight = [] | |
for param in params: | |
if param.ds_tensor.status == PartitionedParamStatus.NOT_AVAILABLE: | |
assert param.ds_tensor.final_location == OffloadDeviceEnum.nvme and param.ds_status == ZeroParamStatus.NOT_AVAILABLE | |
swap_in_list.append(param) | |
if param.ds_tensor.status == PartitionedParamStatus.INFLIGHT: | |
assert param.ds_tensor.final_location == OffloadDeviceEnum.nvme and param.ds_status == ZeroParamStatus.NOT_AVAILABLE | |
swap_in_flight.append(param) | |
if len(swap_in_list) > 0: | |
swap_in_list[0].nvme_swapper.swap_in(swap_in_list, async_op=False) | |
elif len(swap_in_flight) > 0: | |
swap_in_flight[0].nvme_swapper.synchronize_reads() | |
def _all_gather(self, param_list, async_op=False, hierarchy=None): | |
# fetches from nvme if the partition is not available and in nvme | |
self._ensure_availability_of_partitioned_params(param_list) | |
handles = [] | |
all_gather_list = [] | |
for param in param_list: | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if async_op: | |
handle = self._allgather_param(param, async_op=async_op, hierarchy=hierarchy) | |
param.ds_status = ZeroParamStatus.INFLIGHT # if async_op else ZeroParamStatus.AVAILABLE | |
handles.append(handle) | |
else: | |
all_gather_list.append(param) | |
# note: param_list may contain params that are already in flight / aviailable. So we need to use all_gather_list | |
if not async_op: | |
if len(all_gather_list) == 1: | |
ret_value = self._allgather_params(all_gather_list, hierarchy=hierarchy) | |
else: | |
all_gather_quantize_list = [] | |
all_gather_nonquantize_list = [] | |
for param in all_gather_list: | |
if hasattr(param.ds_tensor, | |
"ds_quant_scale") or (hasattr(param, "ds_secondary_tensor") | |
and hasattr(param.ds_secondary_tensor, "ds_quant_scale")): | |
all_gather_quantize_list.append(param) | |
else: | |
all_gather_nonquantize_list.append(param) | |
# _allgather_params_coalesced always return None | |
self._allgather_params_coalesced(all_gather_nonquantize_list, hierarchy, quantize=False) | |
self._allgather_params_coalesced(all_gather_quantize_list, hierarchy, quantize=True) | |
for param in all_gather_list: | |
param.ds_status = ZeroParamStatus.AVAILABLE | |
return None | |
return handles | |
def _partition(self, param_list, force=False, has_been_updated=False): | |
for param in param_list: | |
print_rank_0(f"Before Partitioning Param {param.ds_id}", force=False) | |
if self.zero_param_process_group is not None: | |
self._partition_param_sec(param) | |
self._partition_param(param, has_been_updated=has_been_updated) | |
param.ds_status = ZeroParamStatus.NOT_AVAILABLE | |
# if param.ds_tensor is not None: | |
# assert id(param.data) == id(param.ds_tensor.data), \ | |
# "After the parameters are initially partitioned, make sure we are not recreating the partition." | |
#print_rank_0(f"After Partitioning Param {param.ds_id} {param.ds_tensor.size()} {param.ds_tensor}",force=False) | |
def _partition_param(self, param, buffer=None, has_been_updated=False): | |
assert param.ds_status is not ZeroParamStatus.INFLIGHT, f" {param} Cannot partition a param in flight" | |
global reuse_buffers | |
print_rank_0(f"Param id {param.ds_id} status is {param.ds_status}", force=False) | |
if param.ds_status is ZeroParamStatus.AVAILABLE: | |
print_rank_0(f"Partitioning param id {param.ds_id} reuse buffers {reuse_buffers}", force=False) | |
# if reuse_buffers and False: | |
# numel = buffer.numel() | |
# buffer = param.data.view(-1) | |
# print_rank_0( | |
# "Returning buffer for param {param.ds_id} with numel {param.ds_numel} to empty buffers", | |
# force=False) | |
# if numel in empty_buffers: | |
# empty_buffers[numel].append(buffer) | |
# if deepspeed.comm.get_rank(): | |
# print(f"Releasing {param.data.numel()}") | |
if param.ds_tensor is not None and not has_been_updated: ##param already partitioned | |
#print_rank_0(f"Param {param.ds_id} pri {param.ds_tensor.size()} loc? {param.ds_tensor.final_location}", force=True) | |
#param.data = param.ds_tensor.data | |
see_memory_usage(f'Before partitioning param {param.ds_id} {param.shape}', force=False) | |
# param.data does not store anything meaningful in partitioned state | |
free_param(param) | |
see_memory_usage(f'After partitioning param {param.ds_id} {param.shape}', force=False) | |
if param.ds_tensor.final_location == OffloadDeviceEnum.nvme: | |
print_rank_0(f"Param {param.ds_id} partition released since it exists in nvme", force=False) | |
param.nvme_swapper.remove_partition_and_release_buffers([param]) | |
print_rank_0( | |
f"after swap Param {param.ds_id} {param.ds_tensor.shape} partition released since it exists in nvme", | |
force=False) | |
return | |
tensor_size = self._aligned_size(param) | |
partition_size = tensor_size // self.num_partitions | |
if param.ds_tensor is None: | |
final_location = None | |
if self.remote_device == OffloadDeviceEnum.nvme and self.param_swapper.swappable_tensor( | |
numel=partition_size): | |
final_location = OffloadDeviceEnum.nvme | |
buffer = self.param_swapper.get_buffer(param, partition_size) | |
partitioned_tensor = torch.empty(0, dtype=param.dtype, device=buffer.device) | |
partitioned_tensor.data = buffer.data | |
print_rank_0(f"ID {param.ds_id} Initializing partition for the first time for nvme offload.") | |
else: | |
if param.ds_persist: | |
device = self.local_device | |
elif self.remote_device == OffloadDeviceEnum.nvme: | |
device = OffloadDeviceEnum.cpu | |
else: | |
device = self.remote_device | |
partitioned_tensor = torch.empty(partition_size, dtype=param.dtype, device=device) | |
# quantize the tensor if it's not trainable | |
if not param.requires_grad and self.quantized_nontrainable_weights: | |
partitioned_tensor, partitioned_tensor.ds_quant_scale = self.quantizer_module.quantize( | |
partitioned_tensor) | |
if device == OffloadDeviceEnum.cpu and self.pin_memory: | |
partitioned_tensor = get_accelerator().pin_memory(partitioned_tensor) | |
partitioned_tensor.requires_grad = False | |
param.ds_tensor = partitioned_tensor | |
param.ds_tensor.ds_numel = partition_size | |
param.ds_tensor.status = PartitionedParamStatus.AVAILABLE | |
param.ds_tensor.final_location = final_location | |
start = partition_size * self.get_partition_rank() | |
end = start + partition_size | |
one_dim_param = param.contiguous().view(-1) | |
if start < param.ds_numel and end <= param.ds_numel: | |
src_tensor = one_dim_param.narrow(0, start, partition_size) | |
with torch.no_grad(): | |
# make sure param.ds_tensor requires_grad always be false, | |
# otherwise, torch tracer will complain. | |
param.ds_tensor.copy_(src_tensor) | |
#partitioned_tensor = src_tensor.clone().detach().to(self.remote_device) | |
else: | |
# partitioned_tensor = torch.zeros(partition_size, | |
# dtype=param.dtype, | |
# device=self.remote_device ) | |
if start < param.ds_numel: | |
elems_to_copy = param.ds_numel - start | |
with torch.no_grad(): | |
# make sure param.ds_tensor requires_grad always be false, | |
# otherwise, torch tracer will complain. | |
param.ds_tensor.narrow(0, 0, | |
elems_to_copy).copy_(one_dim_param.narrow(0, start, elems_to_copy)) | |
#print(f"Remote device {self.remote_device}") | |
#param.ds_tensor = partitioned_tensor | |
#param.data = param.ds_tensor.data | |
# param.data does not store anything meaningful in partitioned state | |
see_memory_usage(f'Before partitioning param {param.ds_id} {param.shape}', force=False) | |
free_param(param) | |
see_memory_usage(f'After partitioning param {param.ds_id} {param.shape}', force=False) | |
if param.ds_tensor.final_location == OffloadDeviceEnum.nvme: | |
self.param_swapper.swap_out_and_release([param]) | |
print_rank_0(f"ID {param.ds_id} Offloaded to nvme offload and buffers released.") | |
see_memory_usage(f"ID {param.ds_id} Offloaded to nvme offload and buffers released.", force=False) | |
print_rank_0(f"ID {param.ds_id} partitioned type {param.dtype} dev {param.device} shape {param.shape}") | |
def _partition_param_sec(self, param, buffer=None, has_been_updated=False): | |
assert param.ds_status is not ZeroParamStatus.INFLIGHT, f" {param} Cannot partition a param in flight" | |
global reuse_buffers | |
##support for NVME secondary param offload | |
#print_rank_0(f"SEC Param id {param.ds_id} status is {param.ds_status}", force=True) | |
if param.ds_status is ZeroParamStatus.AVAILABLE: | |
#check padding | |
tensor_size = self._aligned_size(param) | |
partition_size = tensor_size // self.dp_world_size | |
secondary_partition_size = int(tensor_size // self.num_ranks_in_param_group) | |
if param.ds_secondary_tensor is None: | |
final_location = None | |
secondary_partitioned_tensor = torch.empty(secondary_partition_size, | |
dtype=param.dtype, | |
device=self.remote_device) | |
if self.pin_memory: | |
secondary_partitioned_tensor = secondary_partitioned_tensor.pin_memory() | |
# quantize the tensor if it's not trainable | |
if not param.requires_grad and self.quantized_nontrainable_weights: | |
secondary_partitioned_tensor, secondary_partitioned_tensor.ds_quant_scale = self.quantizer_module.quantize( | |
secondary_partitioned_tensor) | |
secondary_partitioned_tensor.requires_grad = False | |
param.ds_secondary_tensor = secondary_partitioned_tensor | |
param.ds_secondary_tensor.ds_numel = secondary_partition_size | |
param.ds_secondary_tensor.status = PartitionedParamStatus.AVAILABLE | |
param.ds_secondary_tensor.final_location = final_location | |
#use rank in group for secondary tensor | |
secondary_start = secondary_partition_size * self.rank_in_group | |
secondary_end = secondary_start + secondary_partition_size | |
one_dim_param = param.contiguous().view(-1) | |
# ds_numel is unpadded, so the last chunk of the secondary tensor might not be secondary_partition_size | |
sec_numel = param.ds_numel - secondary_start if secondary_end > param.ds_numel else secondary_partition_size | |
# copy from full tensor to secondary tensor | |
param.ds_secondary_tensor.narrow(0, 0, | |
sec_numel).copy_(one_dim_param.narrow(0, secondary_start, sec_numel)) | |
# TODO: This is a temporary fix to avoid the issue that 2nd tensor all-gather happens before 2nd tensor partition is done | |
get_accelerator().current_stream().synchronize() | |
print_rank_0(f"{param.ds_id} partitioned type {param.dtype} dev {param.device} shape {param.shape}", | |
force=False) | |
def _param_status(self, param): | |
if param.ds_tensor is not None: | |
print_rank_0( | |
f"Param id {param.ds_id}, param status: {param.ds_status}, param numel {param.ds_numel}, partitioned numel {param.ds_tensor.numel()}, data numel {param.data.numel()}" | |
) | |
else: | |
print_rank_0( | |
f"Param id {param.ds_id}, param status: {param.ds_status}, param numel {param.ds_numel}, partitioned ds_tensor {param.ds_tensor}, data numel {param.data.numel()}" | |
) | |
def _allgather_param(self, param, async_op=False, hierarchy=0): | |
partition_size = param.ds_tensor.ds_numel | |
tensor_size = partition_size * self.num_partitions | |
aligned_param_size = self._aligned_size(param) | |
assert tensor_size == aligned_param_size, f'param id {param.ds_id} aligned size {aligned_param_size} does not match tensor size {tensor_size}' | |
print_rank_0( | |
f"{'--'* hierarchy}---- Before allocating allgather param {debug_param2name_id_shape_status(param)} partition size={partition_size}" | |
) | |
see_memory_usage( | |
f'Before allocate allgather param {debug_param2name_id_shape_status(param)} partition_size={partition_size} ', | |
force=False) | |
flat_tensor = torch.zeros(aligned_param_size, dtype=param.dtype, device=param.device).view(-1) | |
see_memory_usage( | |
f'After allocate allgather param {debug_param2name_id_shape_status(param)} {aligned_param_size} {partition_size} ', | |
force=False) | |
get_accelerator().synchronize() | |
print_rank_0( | |
f"{'--'* hierarchy}----allgather param with {debug_param2name_id_shape_status(param)} partition size={partition_size}" | |
) | |
# if not flat_tensor.numel() > 100000: | |
# replicated_tensor = flat_tensor.narrow(0, | |
# 0, | |
# param.ds_numel).view(param.ds_shape) | |
# param.data = replicated_tensor.data | |
# return None | |
if self.use_all_gather_into_tensor: | |
handle = dist.all_gather_into_tensor(flat_tensor, | |
param.ds_tensor.to(get_accelerator().device_name()), | |
group=self.get_partition_dp_group(param), | |
async_op=async_op) | |
else: | |
partitions = [] | |
for i in range(self.num_partitions): | |
partitions.append(flat_tensor.narrow(0, partition_size * i, partition_size)) | |
if i == dist.get_rank(group=self.get_partition_dp_group(param)): | |
partitions[i].data.copy_(param.ds_tensor.data, non_blocking=True) | |
handle = dist.all_gather(partitions, | |
partitions[self.get_partition_rank()], | |
group=self.get_partition_dp_group(param), | |
async_op=async_op) | |
replicated_tensor = flat_tensor.narrow(0, 0, param.ds_numel).view(param.ds_shape) | |
param.data = replicated_tensor.data | |
return handle | |
def _allgather_params_coalesced(self, param_list, hierarchy=0, quantize=False): | |
""" blocking call | |
avoid explicit memory copy in _allgather_params | |
""" | |
if len(param_list) == 0: | |
return | |
if self.num_partitions == 1: | |
handle = _no_gather_coalesced(param_list) | |
handle.wait() | |
return None | |
# collect local tensors and partition sizes | |
partition_sizes = [] | |
local_tensors = [] | |
if quantize: | |
quantize_scale_sizes = [] | |
quantize_scale_tensors = [] | |
for param in param_list: | |
partition_sizes.append(param.ds_tensor.ds_numel) | |
local_tensors.append(param.ds_tensor.to(get_accelerator().device_name())) | |
if quantize: | |
quantize_scale_sizes.append(param.ds_tensor.ds_quant_scale.numel()) | |
quantize_scale_tensors.append(param.ds_tensor.ds_quant_scale.to(get_accelerator().device_name())) | |
# allocate memory for allgather params | |
allgather_params = [] | |
if quantize: | |
allgather_quantize_scale = [] | |
for psize in partition_sizes: | |
tensor_size = psize * self.num_partitions | |
flat_tensor = torch.empty(tensor_size, dtype=param_list[0].ds_tensor.dtype, | |
device=self.local_device).view(-1) | |
flat_tensor.requires_grad = False | |
allgather_params.append(flat_tensor) | |
if quantize: | |
for psize in quantize_scale_sizes: | |
tensor_size = psize * self.num_partitions | |
flat_tensor = torch.empty(tensor_size, | |
dtype=param_list[0].ds_tensor.ds_quant_scale.dtype, | |
device=self.local_device).view(-1) | |
flat_tensor.requires_grad = False | |
allgather_quantize_scale.append(flat_tensor) | |
# launch | |
launch_handles = [] | |
launch_quantize_handles = [] | |
for param_idx, param in enumerate(param_list): | |
input_tensor = local_tensors[param_idx].view(-1) | |
if self.use_all_gather_into_tensor: | |
# try the _all_gather_base from Pytorch master | |
h = dist.all_gather_into_tensor(allgather_params[param_idx], | |
input_tensor, | |
group=self.get_partition_dp_group(param), | |
async_op=True) | |
if quantize: | |
quantize_handle = dist.all_gather_into_tensor(allgather_quantize_scale[param_idx], | |
quantize_scale_tensors[param_idx], | |
group=self.get_partition_dp_group(param), | |
async_op=True) | |
launch_quantize_handles.append(quantize_handle) | |
else: | |
output_list = [] | |
for i in range(self.num_partitions): | |
psize = partition_sizes[param_idx] | |
partition = allgather_params[param_idx].narrow(0, i * psize, psize) | |
output_list.append(partition) | |
if not get_accelerator().on_accelerator(partition): | |
logger.warning( | |
f'param {param_idx}, partition {i} is not on CUDA, partition shape {partition.size()}') | |
# back to old all_gather function | |
h = dist.all_gather(output_list, input_tensor, group=self.get_partition_dp_group(param), async_op=True) | |
if quantize: | |
output_scale_list = [] | |
for i in range(self.num_partitions): | |
psize = quantize_scale_sizes[param_idx] | |
partition = allgather_quantize_scale[param_idx].narrow(0, i * psize, psize) | |
output_scale_list.append(partition) | |
quant_handle = dist.all_gather(output_scale_list, | |
quantize_scale_tensors[param_idx], | |
group=self.get_partition_dp_group(param), | |
async_op=True) | |
launch_quantize_handles.append(quant_handle) | |
launch_handles.append(h) | |
# Wait ensures the operation is enqueued, but not necessarily complete. | |
launch_handles[-1].wait() | |
if quantize: | |
for quant_handle in launch_quantize_handles: | |
quant_handle.wait() | |
# assign to param.data (not copy) | |
for i, param in enumerate(param_list): | |
gathered_tensor = allgather_params[i] | |
if quantize: | |
gathered_tensor = self.quantizer_module.dequantize(gathered_tensor, allgather_quantize_scale[i]) | |
param.data = gathered_tensor.narrow(0, 0, param.ds_numel).view(param.ds_shape).data | |
# guarantee the communication to be completed | |
get_accelerator().synchronize() | |
return None | |
def _allgather_params(self, param_list, hierarchy=0): | |
if len(param_list) == 0: | |
return | |
partition_size = sum([param.ds_tensor.ds_numel for param in param_list]) | |
tensor_size = partition_size * self.num_partitions | |
flat_tensor = torch.empty(tensor_size, dtype=param_list[0].ds_tensor.dtype, device=self.local_device) | |
flat_tensor.requires_grad = False | |
partitions = [] | |
for i in range(self.num_partitions): | |
start = partition_size * i | |
partitions.append(flat_tensor.narrow(0, start, partition_size)) | |
if i == self.get_partition_rank(): | |
offset = 0 | |
for param in param_list: | |
param_numel = param.ds_tensor.ds_numel | |
partitions[i].narrow(0, offset, param_numel).copy_(param.ds_tensor.data) | |
offset += param_numel | |
if hasattr(param_list[0], 'ds_quant_scale'): | |
scale_size = sum([param.ds_tensor.ds_quant_scale.numel() for param in param_list]) | |
scale_tensor_size = scale_size * self.world_size | |
flat_scale_tensor = torch.empty(scale_tensor_size, | |
dtype=param_list[0].ds_tensor.ds_quant_scale.dtype, | |
device=self.local_device) | |
flat_scale_tensor.requires_grad = False | |
scale_partitions = [] | |
for i in range(self.world_size): | |
start = scale_tensor_size * i | |
scale_partitions.append(flat_scale_tensor.narrow(0, start, scale_tensor_size)) | |
if i == self.rank: | |
offset = 0 | |
for param in param_list: | |
param_scale_numel = param.ds_tensor.ds_quant_scale.ds_numel | |
scale_partitions[i].narrow(0, offset, | |
param_scale_numel).copy_(param.ds_tensor.ds_quant_scale.data) | |
offset += param_scale_numel | |
dist.all_gather_into_tensor(flat_tensor, | |
partitions[self.get_partition_rank()], | |
group=self.get_partition_dp_group(param), | |
async_op=False) | |
if hasattr(param_list[0], 'ds_quant_scale'): | |
dist.all_gather(flat_scale_tensor, | |
param_list[0].ds_quant_scale, | |
group=self.get_partition_dp_group(param), | |
async_op=False) | |
param_offset = 0 | |
for param in param_list: | |
param_partition_size = param.ds_tensor.ds_numel | |
param_size = param.ds_numel | |
replicated_tensor = torch.empty(param.ds_shape, dtype=param.ds_tensor.dtype, device=self.local_device) | |
for i in range(self.num_partitions): | |
start = i * partition_size | |
param_start = i * param_partition_size | |
if param_start < param_size: | |
numel_to_copy = min(param_size - param_start, param_partition_size) | |
part_to_copy = partitions[i].narrow(0, param_offset, numel_to_copy) | |
replicated_tensor.view(-1).narrow(0, param_start, numel_to_copy).copy_(part_to_copy) | |
#param_offset += param.data.numel() | |
param_offset += param.ds_tensor.ds_numel | |
if hasattr(param_list[0], 'ds_quant_scale'): | |
replicated_tensor = self.quantizer_module.dequantize(replicated_tensor, flat_scale_tensor) | |
param.data = replicated_tensor.data | |
return None | |
def _reduce_scatter_gradients(self, param_list): | |
#print_rank_0([param.grad for param in param_list]) | |
#assert any([param.grad is None for param in param_list]), "None gradients cannot be reduce scattered" | |
handles_and_reduced_partitions = [] | |
for param in param_list: | |
assert param.grad.numel( | |
) == param.ds_numel, f"{param.grad.numel()} != {param.ds_numel} Cannot reduce scatter gradients whose size is not same as the params" | |
handles_and_reduced_partitions.append(self._reduce_scatter_gradient(param)) | |
for param, (handle, reduced_partition) in zip(param_list, handles_and_reduced_partitions): | |
if handle is not None: | |
handle.wait() | |
# some ranks may have partitions that are padded to go beyond the grad size. | |
# For these ranks the output of reduce scatter is a separate buffer and needs | |
# to be copied in | |
partition_size = param.ds_tensor.ds_numel | |
start = self.get_partition_rank() * partition_size | |
end = start + partition_size | |
#print_rank_0("REduce scatter was executed for param {param.ds_id}") | |
if start < param.ds_numel < end: | |
elements = param.ds_numel - start | |
param.grad.view(-1).narrow(0, start, elements).copy_(reduced_partition.narrow(0, 0, elements)) | |
def _reduce_scatter_gradient(self, param): | |
partition_size = param.ds_tensor.ds_numel | |
#output = torch.empty(partition_size, dtype=param.dtype, device=param.device) | |
total_size = partition_size * self.num_partitions | |
input_list = [] | |
for i in range(self.num_partitions): | |
start = i * partition_size | |
end = start + partition_size | |
#print("before reduce scatter gradients") | |
if start < param.ds_numel and end <= param.ds_numel: | |
input = param.grad.view(-1).narrow(0, start, partition_size) | |
else: | |
input = torch.zeros(partition_size, dtype=param.dtype, device=param.device) | |
if start < param.ds_numel: | |
elements = param.ds_numel - start | |
input.narrow(0, 0, elements).copy_(param.grad.view(-1).narrow(0, start, elements)) | |
#print("after reduce scatter gradients") | |
input_list.append(input) | |
rank = dist.get_rank(group=self.get_partition_dp_group(param)) | |
handle = dist.reduce_scatter(input_list[rank], | |
input_list, | |
group=self.get_partition_dp_group(param), | |
async_op=True) | |
return handle, input_list[rank] | |
def _partition_gradients(self, param_list, partition_buffers=None, accumulate=False): | |
if partition_buffers is None: | |
partition_buffers = [None] * len(param_list) | |
for param, partition_buffer in zip(param_list, partition_buffers): | |
self._partition_gradient(param, partition_buffer=partition_buffer, accumulate=accumulate) | |
def _partition_gradient(self, param, partition_buffer=None, accumulate=False): | |
#import pdb;pdb.set_trace() | |
# param.grad=None | |
# param.grad.test() | |
print_rank_0( | |
f"Partitioning param {param.ds_id} gradient of size {param.grad.numel()} type {param.grad.dtype} part_size {param.ds_tensor.ds_numel}" | |
) | |
see_memory_usage("Before partitioning gradients", force=False) | |
partition_size = param.ds_tensor.ds_numel | |
if partition_buffer is None: | |
assert not accumulate, "No buffer to accumulate to" | |
partition_buffer = torch.zeros(partition_size, dtype=param.dtype, device=param.device) | |
else: | |
assert partition_buffer.numel( | |
) >= partition_size, f"The partition buffer size {partition_buffer.numel()} should match the size of param.ds_tensor {partition_size}" | |
rank = dist.get_rank(group=self.get_partition_dp_group(param)) | |
start = partition_size * rank | |
end = start + partition_size | |
dest_tensor_full_buffer = partition_buffer.view(-1).narrow(0, 0, partition_size) | |
#print("before partition gradients") | |
if start < param.ds_numel: | |
elements = min(param.ds_numel - start, partition_size) | |
dest_tensor = dest_tensor_full_buffer.narrow(0, 0, elements) | |
src_tensor = param.grad.view(-1).narrow(0, start, elements) | |
# just copy the grad partition to the buffer | |
if not accumulate: | |
dest_tensor.copy_(src_tensor) | |
# if source and destination are on same device, | |
# add to the provided buffer | |
elif src_tensor.device == dest_tensor.device: | |
dest_tensor.add_(src_tensor) | |
# if source and destination are on different device, copy first to src | |
# then add and move back to the destination. This seems to run faster | |
# when src is gpu and dest is cpu | |
# adding directly to cpu is very slow | |
else: | |
acc_tensor = torch.empty(src_tensor.numel(), dtype=param.dtype, device=param.device) | |
acc_tensor.copy_(dest_tensor) | |
acc_tensor.add_(src_tensor) | |
dest_tensor.copy_(acc_tensor) | |
# partition_buffer.view(-1).narrow( | |
# 0, | |
# 0, | |
# elements).copy_(param.grad.view(-1).narrow(0, | |
# start, | |
# elements)) | |
#print("after partition gradients") | |
param.grad.data = dest_tensor_full_buffer.data | |
see_memory_usage("After partitioning gradients", force=False) | |
def get_partition_dp_group(self, param): | |
return param.ds_process_group | |
def get_partition_rank(self): | |
"""subclass can overload to specify different relative rank in | |
parameter partition group""" | |
return self.rank | |
def num_partitions(self): | |
return self.dp_world_size | |
def get_dp_process_group(self): | |
""" Return the communication group with all data-parallel ranks """ | |
return self.ds_process_group | |
class GatheredParameters: | |
def __init__(self, params, modifier_rank=None, fwd_module=None, enabled=True): | |
"""A context that collects parameters that were partitioned via a | |
:class:`deepspeed.zero.Init` context. The parameters are partitioned | |
again upon exit. | |
Args: | |
params (``torch.nn.Parameter``): A single parameter, or an iterable of parameters (list, tuple, generator) of parameters to collect. | |
It's assumed that all parameters are zero params. | |
modifier_rank (int, optional): If specified, this rank's parameter will be | |
broadcasted on exit from the context. This argument is required if ``params`` are | |
modified, so that all processes have a consistent view of the data. Defaults | |
to ``None``. | |
fwd_module (``torch.nn.Module``, optional): If specified, ``params`` will be | |
registered as external parameters of ``fwd_module``. See :meth:`deepspeed.zero.register_external_parameter`. | |
enabled (bool, optional): If ``False``, this context is a no-op. Defaults to ``True``. | |
Important: Make sure to use ``modifier_rank`` that is not ``None`` (e.g., ``modifier_rank=0``) | |
if you need the GPU memory allocated by gather to be released upon exit from the context manager. | |
Important: if ``params`` isn't an iterable of parameters or a single parameter it'll be silently ignored! | |
Examples | |
======== | |
#. Allocate a partitioned module, initialize its weight on rank 0, and update all | |
processes. | |
.. code-block:: python | |
with deepspeed.zero.Init(): | |
linear = torch.nn.Linear(1000,1000) | |
with deepspeed.zero.GatheredParameters(linear.weight, | |
modifier_rank=0): | |
if deepspeed.comm.get_rank() == 0: | |
linear.weight.zero_() | |
with deepspeed.zero.GatheredParameters(linear.weight, | |
modifier_rank=0): | |
if deepspeed.comm.get_rank() == 0: | |
linear.weight.zero_() | |
#. Collect a partitioned weight to pass to another module during | |
training. The parameter will be registered as an external parameter | |
and made available during the backward pass. | |
.. code-block:: python | |
:emphasize-lines: 6 | |
def forward(self, input): | |
x = self.layer1(input) | |
# self.layer1.weight is required by self.layer2.forward | |
with deepspeed.zero.GatheredParameters(self.layer1.weight, | |
fwd_module=self): | |
y = self.layer2(x, self.layer1.weight) | |
return y | |
#. Pretrained model loading | |
.. code-block:: python | |
with deepspeed.zero.Init(): | |
model = MyModel() | |
state_dict = torch.load(model_path, map_location="cpu") | |
def load(module: nn.Module, prefix=""): | |
# because zero3 puts placeholders in model params, this context | |
# manager gathers (unpartitions) the params of the current layer, then loads from | |
# the state dict and then re-partitions them again | |
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0): | |
if deepspeed.comm.get_rank() == 0: | |
module._load_from_state_dict(state_dict, prefix) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + ".") | |
load(model, prefix="") | |
If this approach is not used, then the full model will first be copied to each GPU. For models | |
bigger than the memory of a single GPU, this method is required. | |
""" | |
self.enabled = enabled | |
if not enabled: | |
return | |
if isinstance(params, Iterable) and not isinstance(params, torch.Tensor): | |
# deal with generators like model.parameters() | |
# must convert to list to be able to iterate more than once if we get a generator | |
params = list(params) | |
else: | |
# single param | |
params = [params] | |
# enable if at least one is zero-param, otherwise a noop | |
if not any(is_zero_param(p) for p in params): | |
self.enabled = False | |
return | |
self.params = [p for p in params if hasattr(p, "ds_id")] | |
self.params = sorted( | |
set(self.params), key=lambda x: x.ds_id | |
) # remove the duplicates to prevent racing condition, we must also make sure the order is the same on all ranks otherwise we'll get deadlocks | |
self.src_rank = None | |
if modifier_rank is not None: | |
if self.params[0].ds_process_group == dist.get_world_group(): | |
self.src_rank = modifier_rank | |
else: | |
# A group was specified; convert DP rank to global rank | |
self.src_rank = dist.get_global_rank(self.params[0].ds_process_group, modifier_rank) | |
self.fwd_module = fwd_module | |
if self.fwd_module is not None: | |
# is a no-op if already registered | |
for p in self.params: | |
register_external_parameter(self.fwd_module, p) | |
def __enter__(self): | |
if not self.enabled: | |
return | |
self.params[0].all_gather(param_list=self.params) | |
def __exit__(self, *exc): | |
if not self.enabled: | |
return | |
if self.src_rank is None: | |
self.params[0].partition(param_list=self.params, has_been_updated=False) | |
return | |
handles = [dist.broadcast(p.data, self.src_rank, group=p.ds_process_group, async_op=True) for p in self.params] | |
for h in handles: | |
h.wait() | |
self.params[0].partition(param_list=self.params, has_been_updated=True) | |