peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/src
/arrow
/python
/deserialize.cc
// Licensed to the Apache Software Foundation (ASF) under one | |
// or more contributor license agreements. See the NOTICE file | |
// distributed with this work for additional information | |
// regarding copyright ownership. The ASF licenses this file | |
// to you under the Apache License, Version 2.0 (the | |
// "License"); you may not use this file except in compliance | |
// with the License. You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, | |
// software distributed under the License is distributed on an | |
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
// KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations | |
// under the License. | |
namespace arrow { | |
using internal::checked_cast; | |
using internal::ParseValue; | |
namespace py { | |
Status CallDeserializeCallback(PyObject* context, PyObject* value, | |
PyObject** deserialized_object); | |
Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out); | |
Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out); | |
Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out); | |
Status DeserializeDict(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out) { | |
const auto& data = checked_cast<const StructArray&>(array); | |
OwnedRef keys, vals; | |
OwnedRef result(PyDict_New()); | |
RETURN_IF_PYERROR(); | |
DCHECK_EQ(2, data.num_fields()); | |
RETURN_NOT_OK(DeserializeList(context, *data.field(0), start_idx, stop_idx, base, blobs, | |
keys.ref())); | |
RETURN_NOT_OK(DeserializeList(context, *data.field(1), start_idx, stop_idx, base, blobs, | |
vals.ref())); | |
for (int64_t i = start_idx; i < stop_idx; ++i) { | |
// PyDict_SetItem behaves differently from PyList_SetItem and PyTuple_SetItem. | |
// The latter two steal references whereas PyDict_SetItem does not. So we need | |
// to make sure the reference count is decremented by letting the OwnedRef | |
// go out of scope at the end. | |
int ret = PyDict_SetItem(result.obj(), PyList_GET_ITEM(keys.obj(), i - start_idx), | |
PyList_GET_ITEM(vals.obj(), i - start_idx)); | |
if (ret != 0) { | |
return ConvertPyError(); | |
} | |
} | |
static PyObject* py_type = PyUnicode_FromString("_pytype_"); | |
if (PyDict_Contains(result.obj(), py_type)) { | |
RETURN_NOT_OK(CallDeserializeCallback(context, result.obj(), out)); | |
} else { | |
*out = result.detach(); | |
} | |
return Status::OK(); | |
} | |
Status DeserializeArray(int32_t index, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out) { | |
RETURN_NOT_OK(py::TensorToNdarray(blobs.ndarrays[index], base, out)); | |
// Mark the array as immutable | |
OwnedRef flags(PyObject_GetAttrString(*out, "flags")); | |
if (flags.obj() == NULL) { | |
return ConvertPyError(); | |
} | |
if (PyObject_SetAttrString(flags.obj(), "writeable", Py_False) < 0) { | |
return ConvertPyError(); | |
} | |
return Status::OK(); | |
} | |
Status GetValue(PyObject* context, const Array& arr, int64_t index, int8_t type, | |
PyObject* base, const SerializedPyObject& blobs, PyObject** result) { | |
switch (type) { | |
case PythonType::NONE: | |
Py_INCREF(Py_None); | |
*result = Py_None; | |
return Status::OK(); | |
case PythonType::BOOL: | |
*result = PyBool_FromLong(checked_cast<const BooleanArray&>(arr).Value(index)); | |
return Status::OK(); | |
case PythonType::PY2INT: | |
case PythonType::INT: { | |
*result = PyLong_FromSsize_t(checked_cast<const Int64Array&>(arr).Value(index)); | |
return Status::OK(); | |
} | |
case PythonType::BYTES: { | |
auto view = checked_cast<const BinaryArray&>(arr).GetView(index); | |
*result = PyBytes_FromStringAndSize(view.data(), view.length()); | |
return CheckPyError(); | |
} | |
case PythonType::STRING: { | |
auto view = checked_cast<const StringArray&>(arr).GetView(index); | |
*result = PyUnicode_FromStringAndSize(view.data(), view.length()); | |
return CheckPyError(); | |
} | |
case PythonType::HALF_FLOAT: { | |
*result = PyHalf_FromHalf(checked_cast<const HalfFloatArray&>(arr).Value(index)); | |
RETURN_IF_PYERROR(); | |
return Status::OK(); | |
} | |
case PythonType::FLOAT: | |
*result = PyFloat_FromDouble(checked_cast<const FloatArray&>(arr).Value(index)); | |
return Status::OK(); | |
case PythonType::DOUBLE: | |
*result = PyFloat_FromDouble(checked_cast<const DoubleArray&>(arr).Value(index)); | |
return Status::OK(); | |
case PythonType::DATE64: { | |
RETURN_NOT_OK(internal::PyDateTime_from_int( | |
checked_cast<const Date64Array&>(arr).Value(index), TimeUnit::MICRO, result)); | |
RETURN_IF_PYERROR(); | |
return Status::OK(); | |
} | |
case PythonType::LIST: { | |
const auto& l = checked_cast<const ListArray&>(arr); | |
return DeserializeList(context, *l.values(), l.value_offset(index), | |
l.value_offset(index + 1), base, blobs, result); | |
} | |
case PythonType::DICT: { | |
const auto& l = checked_cast<const ListArray&>(arr); | |
return DeserializeDict(context, *l.values(), l.value_offset(index), | |
l.value_offset(index + 1), base, blobs, result); | |
} | |
case PythonType::TUPLE: { | |
const auto& l = checked_cast<const ListArray&>(arr); | |
return DeserializeTuple(context, *l.values(), l.value_offset(index), | |
l.value_offset(index + 1), base, blobs, result); | |
} | |
case PythonType::SET: { | |
const auto& l = checked_cast<const ListArray&>(arr); | |
return DeserializeSet(context, *l.values(), l.value_offset(index), | |
l.value_offset(index + 1), base, blobs, result); | |
} | |
case PythonType::TENSOR: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
*result = wrap_tensor(blobs.tensors[ref]); | |
return Status::OK(); | |
} | |
case PythonType::SPARSECOOTENSOR: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
const std::shared_ptr<SparseCOOTensor>& sparse_coo_tensor = | |
arrow::internal::checked_pointer_cast<SparseCOOTensor>( | |
blobs.sparse_tensors[ref]); | |
*result = wrap_sparse_coo_tensor(sparse_coo_tensor); | |
return Status::OK(); | |
} | |
case PythonType::SPARSECSRMATRIX: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
const std::shared_ptr<SparseCSRMatrix>& sparse_csr_matrix = | |
arrow::internal::checked_pointer_cast<SparseCSRMatrix>( | |
blobs.sparse_tensors[ref]); | |
*result = wrap_sparse_csr_matrix(sparse_csr_matrix); | |
return Status::OK(); | |
} | |
case PythonType::SPARSECSCMATRIX: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
const std::shared_ptr<SparseCSCMatrix>& sparse_csc_matrix = | |
arrow::internal::checked_pointer_cast<SparseCSCMatrix>( | |
blobs.sparse_tensors[ref]); | |
*result = wrap_sparse_csc_matrix(sparse_csc_matrix); | |
return Status::OK(); | |
} | |
case PythonType::SPARSECSFTENSOR: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
const std::shared_ptr<SparseCSFTensor>& sparse_csf_tensor = | |
arrow::internal::checked_pointer_cast<SparseCSFTensor>( | |
blobs.sparse_tensors[ref]); | |
*result = wrap_sparse_csf_tensor(sparse_csf_tensor); | |
return Status::OK(); | |
} | |
case PythonType::NDARRAY: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
return DeserializeArray(ref, base, blobs, result); | |
} | |
case PythonType::BUFFER: { | |
int32_t ref = checked_cast<const Int32Array&>(arr).Value(index); | |
*result = wrap_buffer(blobs.buffers[ref]); | |
return Status::OK(); | |
} | |
default: { | |
ARROW_CHECK(false) << "union tag " << type << "' not recognized"; | |
} | |
} | |
return Status::OK(); | |
} | |
Status GetPythonTypes(const UnionArray& data, std::vector<int8_t>* result) { | |
ARROW_CHECK(result != nullptr); | |
auto type = data.type(); | |
for (int i = 0; i < type->num_fields(); ++i) { | |
int8_t tag = 0; | |
const std::string& data = type->field(i)->name(); | |
if (!ParseValue<Int8Type>(data.c_str(), data.size(), &tag)) { | |
return Status::SerializationError("Cannot convert string: \"", | |
type->field(i)->name(), "\" to int8_t"); | |
} | |
result->push_back(tag); | |
} | |
return Status::OK(); | |
} | |
template <typename CreateSequenceFn, typename SetItemFn> | |
Status DeserializeSequence(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, | |
const SerializedPyObject& blobs, | |
CreateSequenceFn&& create_sequence, SetItemFn&& set_item, | |
PyObject** out) { | |
const auto& data = checked_cast<const DenseUnionArray&>(array); | |
OwnedRef result(create_sequence(stop_idx - start_idx)); | |
RETURN_IF_PYERROR(); | |
const int8_t* type_codes = data.raw_type_codes(); | |
const int32_t* value_offsets = data.raw_value_offsets(); | |
std::vector<int8_t> python_types; | |
RETURN_NOT_OK(GetPythonTypes(data, &python_types)); | |
for (int64_t i = start_idx; i < stop_idx; ++i) { | |
const int64_t offset = value_offsets[i]; | |
const uint8_t type = type_codes[i]; | |
PyObject* value; | |
RETURN_NOT_OK(GetValue(context, *data.field(type), offset, python_types[type], base, | |
blobs, &value)); | |
RETURN_NOT_OK(set_item(result.obj(), i - start_idx, value)); | |
} | |
*out = result.detach(); | |
return Status::OK(); | |
} | |
Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out) { | |
return DeserializeSequence( | |
context, array, start_idx, stop_idx, base, blobs, | |
[](int64_t size) { return PyList_New(size); }, | |
[](PyObject* seq, int64_t index, PyObject* item) { | |
PyList_SET_ITEM(seq, index, item); | |
return Status::OK(); | |
}, | |
out); | |
} | |
Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out) { | |
return DeserializeSequence( | |
context, array, start_idx, stop_idx, base, blobs, | |
[](int64_t size) { return PyTuple_New(size); }, | |
[](PyObject* seq, int64_t index, PyObject* item) { | |
PyTuple_SET_ITEM(seq, index, item); | |
return Status::OK(); | |
}, | |
out); | |
} | |
Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx, | |
int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, | |
PyObject** out) { | |
return DeserializeSequence( | |
context, array, start_idx, stop_idx, base, blobs, | |
[](int64_t size) { return PySet_New(nullptr); }, | |
[](PyObject* seq, int64_t index, PyObject* item) { | |
int err = PySet_Add(seq, item); | |
Py_DECREF(item); | |
if (err < 0) { | |
RETURN_IF_PYERROR(); | |
} | |
return Status::OK(); | |
}, | |
out); | |
} | |
Status ReadSerializedObject(io::RandomAccessFile* src, SerializedPyObject* out) { | |
int32_t num_tensors; | |
int32_t num_sparse_tensors; | |
int32_t num_ndarrays; | |
int32_t num_buffers; | |
// Read number of tensors | |
RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_tensors))); | |
RETURN_NOT_OK( | |
src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_sparse_tensors))); | |
RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_ndarrays))); | |
RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_buffers))); | |
// Align stream to 8-byte offset | |
RETURN_NOT_OK(ipc::AlignStream(src, ipc::kArrowIpcAlignment)); | |
std::shared_ptr<RecordBatchReader> reader; | |
ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(src)); | |
RETURN_NOT_OK(reader->ReadNext(&out->batch)); | |
/// Skip EOS marker | |
RETURN_NOT_OK(src->Advance(4)); | |
/// Align stream so tensor bodies are 64-byte aligned | |
RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); | |
for (int i = 0; i < num_tensors; ++i) { | |
std::shared_ptr<Tensor> tensor; | |
ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(src)); | |
RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); | |
out->tensors.push_back(tensor); | |
} | |
for (int i = 0; i < num_sparse_tensors; ++i) { | |
std::shared_ptr<SparseTensor> sparse_tensor; | |
ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::ReadSparseTensor(src)); | |
RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); | |
out->sparse_tensors.push_back(sparse_tensor); | |
} | |
for (int i = 0; i < num_ndarrays; ++i) { | |
std::shared_ptr<Tensor> ndarray; | |
ARROW_ASSIGN_OR_RAISE(ndarray, ipc::ReadTensor(src)); | |
RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); | |
out->ndarrays.push_back(ndarray); | |
} | |
ARROW_ASSIGN_OR_RAISE(int64_t offset, src->Tell()); | |
for (int i = 0; i < num_buffers; ++i) { | |
int64_t size; | |
RETURN_NOT_OK(src->ReadAt(offset, sizeof(int64_t), &size)); | |
offset += sizeof(int64_t); | |
ARROW_ASSIGN_OR_RAISE(auto buffer, src->ReadAt(offset, size)); | |
out->buffers.push_back(buffer); | |
offset += size; | |
} | |
return Status::OK(); | |
} | |
Status DeserializeObject(PyObject* context, const SerializedPyObject& obj, PyObject* base, | |
PyObject** out) { | |
PyAcquireGIL lock; | |
return DeserializeList(context, *obj.batch->column(0), 0, obj.batch->num_rows(), base, | |
obj, out); | |
} | |
Status GetSerializedFromComponents(int num_tensors, | |
const SparseTensorCounts& num_sparse_tensors, | |
int num_ndarrays, int num_buffers, PyObject* data, | |
SerializedPyObject* out) { | |
PyAcquireGIL gil; | |
const Py_ssize_t data_length = PyList_Size(data); | |
RETURN_IF_PYERROR(); | |
const Py_ssize_t expected_data_length = 1 + num_tensors * 2 + | |
num_sparse_tensors.num_total_buffers() + | |
num_ndarrays * 2 + num_buffers; | |
if (data_length != expected_data_length) { | |
return Status::Invalid("Invalid number of buffers in data"); | |
} | |
auto GetBuffer = [&data](Py_ssize_t index, std::shared_ptr<Buffer>* out) { | |
ARROW_CHECK_LE(index, PyList_Size(data)); | |
PyObject* py_buf = PyList_GET_ITEM(data, index); | |
return unwrap_buffer(py_buf).Value(out); | |
}; | |
Py_ssize_t buffer_index = 0; | |
// Read the union batch describing object structure | |
{ | |
std::shared_ptr<Buffer> data_buffer; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &data_buffer)); | |
gil.release(); | |
io::BufferReader buf_reader(data_buffer); | |
std::shared_ptr<RecordBatchReader> reader; | |
ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(&buf_reader)); | |
RETURN_NOT_OK(reader->ReadNext(&out->batch)); | |
gil.acquire(); | |
} | |
// Zero-copy reconstruct tensors | |
for (int i = 0; i < num_tensors; ++i) { | |
std::shared_ptr<Buffer> metadata; | |
std::shared_ptr<Buffer> body; | |
std::shared_ptr<Tensor> tensor; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata)); | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); | |
ipc::Message message(metadata, body); | |
ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message)); | |
out->tensors.emplace_back(std::move(tensor)); | |
} | |
// Zero-copy reconstruct sparse tensors | |
for (int i = 0, n = num_sparse_tensors.num_total_tensors(); i < n; ++i) { | |
ipc::IpcPayload payload; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &payload.metadata)); | |
ARROW_ASSIGN_OR_RAISE( | |
size_t num_bodies, | |
ipc::internal::ReadSparseTensorBodyBufferCount(*payload.metadata)); | |
payload.body_buffers.reserve(num_bodies); | |
for (size_t i = 0; i < num_bodies; ++i) { | |
std::shared_ptr<Buffer> body; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); | |
payload.body_buffers.emplace_back(body); | |
} | |
std::shared_ptr<SparseTensor> sparse_tensor; | |
ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::internal::ReadSparseTensorPayload(payload)); | |
out->sparse_tensors.emplace_back(std::move(sparse_tensor)); | |
} | |
// Zero-copy reconstruct tensors for numpy ndarrays | |
for (int i = 0; i < num_ndarrays; ++i) { | |
std::shared_ptr<Buffer> metadata; | |
std::shared_ptr<Buffer> body; | |
std::shared_ptr<Tensor> tensor; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata)); | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); | |
ipc::Message message(metadata, body); | |
ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message)); | |
out->ndarrays.emplace_back(std::move(tensor)); | |
} | |
// Unwrap and append buffers | |
for (int i = 0; i < num_buffers; ++i) { | |
std::shared_ptr<Buffer> buffer; | |
RETURN_NOT_OK(GetBuffer(buffer_index++, &buffer)); | |
out->buffers.emplace_back(std::move(buffer)); | |
} | |
return Status::OK(); | |
} | |
Status DeserializeNdarray(const SerializedPyObject& object, | |
std::shared_ptr<Tensor>* out) { | |
if (object.ndarrays.size() != 1) { | |
return Status::Invalid("Object is not an Ndarray"); | |
} | |
*out = object.ndarrays[0]; | |
return Status::OK(); | |
} | |
Status NdarrayFromBuffer(std::shared_ptr<Buffer> src, std::shared_ptr<Tensor>* out) { | |
io::BufferReader reader(src); | |
SerializedPyObject object; | |
RETURN_NOT_OK(ReadSerializedObject(&reader, &object)); | |
return DeserializeNdarray(object, out); | |
} | |
} // namespace py | |
} // namespace arrow | |