peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/pandas_examples.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
from collections import OrderedDict | |
from datetime import date, time | |
import numpy as np | |
import pandas as pd | |
import pyarrow as pa | |
def dataframe_with_arrays(include_index=False): | |
""" | |
Dataframe with numpy arrays columns of every possible primitive type. | |
Returns | |
------- | |
df: pandas.DataFrame | |
schema: pyarrow.Schema | |
Arrow schema definition that is in line with the constructed df. | |
""" | |
dtypes = [('i1', pa.int8()), ('i2', pa.int16()), | |
('i4', pa.int32()), ('i8', pa.int64()), | |
('u1', pa.uint8()), ('u2', pa.uint16()), | |
('u4', pa.uint32()), ('u8', pa.uint64()), | |
('f4', pa.float32()), ('f8', pa.float64())] | |
arrays = OrderedDict() | |
fields = [] | |
for dtype, arrow_dtype in dtypes: | |
fields.append(pa.field(dtype, pa.list_(arrow_dtype))) | |
arrays[dtype] = [ | |
np.arange(10, dtype=dtype), | |
np.arange(5, dtype=dtype), | |
None, | |
np.arange(1, dtype=dtype) | |
] | |
fields.append(pa.field('str', pa.list_(pa.string()))) | |
arrays['str'] = [ | |
np.array(["1", "ä"], dtype="object"), | |
None, | |
np.array(["1"], dtype="object"), | |
np.array(["1", "2", "3"], dtype="object") | |
] | |
fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms')))) | |
arrays['datetime64'] = [ | |
np.array(['2007-07-13T01:23:34.123456789', | |
None, | |
'2010-08-13T05:46:57.437699912'], | |
dtype='datetime64[ms]'), | |
None, | |
None, | |
np.array(['2007-07-13T02', | |
None, | |
'2010-08-13T05:46:57.437699912'], | |
dtype='datetime64[ms]'), | |
] | |
if include_index: | |
fields.append(pa.field('__index_level_0__', pa.int64())) | |
df = pd.DataFrame(arrays) | |
schema = pa.schema(fields) | |
return df, schema | |
def dataframe_with_lists(include_index=False, parquet_compatible=False): | |
""" | |
Dataframe with list columns of every possible primitive type. | |
Returns | |
------- | |
df: pandas.DataFrame | |
schema: pyarrow.Schema | |
Arrow schema definition that is in line with the constructed df. | |
parquet_compatible: bool | |
Exclude types not supported by parquet | |
""" | |
arrays = OrderedDict() | |
fields = [] | |
fields.append(pa.field('int64', pa.list_(pa.int64()))) | |
arrays['int64'] = [ | |
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], | |
[0, 1, 2, 3, 4], | |
None, | |
[], | |
np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] * 2, | |
dtype=np.int64)[::2] | |
] | |
fields.append(pa.field('double', pa.list_(pa.float64()))) | |
arrays['double'] = [ | |
[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], | |
[0., 1., 2., 3., 4.], | |
None, | |
[], | |
np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.] * 2)[::2], | |
] | |
fields.append(pa.field('bytes_list', pa.list_(pa.binary()))) | |
arrays['bytes_list'] = [ | |
[b"1", b"f"], | |
None, | |
[b"1"], | |
[b"1", b"2", b"3"], | |
[], | |
] | |
fields.append(pa.field('str_list', pa.list_(pa.string()))) | |
arrays['str_list'] = [ | |
["1", "ä"], | |
None, | |
["1"], | |
["1", "2", "3"], | |
[], | |
] | |
date_data = [ | |
[], | |
[date(2018, 1, 1), date(2032, 12, 30)], | |
[date(2000, 6, 7)], | |
None, | |
[date(1969, 6, 9), date(1972, 7, 3)] | |
] | |
time_data = [ | |
[time(23, 11, 11), time(1, 2, 3), time(23, 59, 59)], | |
[], | |
[time(22, 5, 59)], | |
None, | |
[time(0, 0, 0), time(18, 0, 2), time(12, 7, 3)] | |
] | |
temporal_pairs = [ | |
(pa.date32(), date_data), | |
(pa.date64(), date_data), | |
(pa.time32('s'), time_data), | |
(pa.time32('ms'), time_data), | |
(pa.time64('us'), time_data) | |
] | |
if not parquet_compatible: | |
temporal_pairs += [ | |
(pa.time64('ns'), time_data), | |
] | |
for value_type, data in temporal_pairs: | |
field_name = '{}_list'.format(value_type) | |
field_type = pa.list_(value_type) | |
field = pa.field(field_name, field_type) | |
fields.append(field) | |
arrays[field_name] = data | |
if include_index: | |
fields.append(pa.field('__index_level_0__', pa.int64())) | |
df = pd.DataFrame(arrays) | |
schema = pa.schema(fields) | |
return df, schema | |