applied-ai-018's picture
Add files using upload-large-folder tool
19a3898 verified
raw
history blame
8.26 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from abc import ABC, abstractmethod
from deepspeed.utils.types import ActivationFuncType, NormType
import torch
from deepspeed.accelerator import get_accelerator
transformer_param_names = (
'attn_qkvw', \
'attn_qkvb', \
'attn_ow' , \
'attn_ob', \
'inter_w', \
'inter_b', \
'output_w', \
'output_b', \
'attn_nw', \
'attn_nb', \
'norm_w', \
'norm_b')
class DSPolicy(ABC):
_orig_layer_class = None
def __init__(self):
self.cuda_graph_supported = False
@abstractmethod
def attention(self):
"""
Returns attention qkv and dense parameters
weight: (3*hidden, hidden) and (hidden, hidden)
bias: (3*hidden) and (hidden)
"""
raise NotImplementedError
class TransformerPolicy(DSPolicy):
# a static class variable containing the HuggingFace model configuration.
# see e.g., transformers.models.opt.configuration_opt.OPTConfig
hf_model_config = None
def __init__(
self,
inference=True,
linear_layer=True,
scale_attention=True,
megatron_v2=False,
use_mup=False,
# the type of activation function used in MLP
mlp_act_func_type=ActivationFuncType.GELU,
# applies layer norm before attention if `pre_attn_norm` is set to True
pre_attn_norm=True,
# this flag shows whether or not using prefix in loading the checkpoint
use_load_prefix=False,
# whether or not the qkv is stored in the split-format
split_qkv=True,
# Type of normalization to perform
norm_type=NormType.LayerNorm):
super().__init__()
self.cuda_graph_supported = False
self.inference = inference
self.linear_layer = linear_layer
self.scale_attention = scale_attention
self.is_megatron_v2 = megatron_v2
self.use_mup = use_mup
self.mlp_act_func_type = mlp_act_func_type
self.pre_attn_norm = pre_attn_norm
self.use_load_prefix = use_load_prefix
self.split_qkv = split_qkv
self.norm_type = norm_type
@abstractmethod
def attention(self):
"""
Returns attention qkv and dense parameters
weight: (3*hidden, hidden) and (hidden, hidden)
bias: (3*hidden) and (hidden)
"""
raise NotImplementedError
@abstractmethod
def get_hidden_heads(self):
"""
return hidden_size and number of heads
"""
raise NotImplementedError
@abstractmethod
def mlp(self):
"""
Returns mlp intermediate and output
weight: (intermediate, hidden) and (hidden, intermediate)
bias: (intermediate) and (hidden)
"""
raise NotImplementedError
@abstractmethod
def layernorm(self):
"""
Returns LayerNorms used in transformer layer
Post-Attention and pre/post layer norm
gamma and beta with shape: (hidden)
"""
raise NotImplementedError
# TODO (lekurile): This function exists in base container as well, consolidate as some point
def transpose(data):
with torch.no_grad():
data = data.contiguous()
data1 = data.transpose(-1, -2).reshape(-1)
data.reshape(-1).copy_(data1)
data1 = None
return data.reshape(data.shape[-1], data.shape[-2])
# TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point
def _transpose(x, heads=1, mp_replace=None):
heads = heads // mp_replace.mp_size # type: ignore
outer_dim = -1
attention_head_size = x.shape[outer_dim] // heads
new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size)
x_1 = x.view(*new_x_shape)
(q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1)
if len(q.shape) > 2:
new_shape = (q.shape[0], ) + (-1, )
return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)),
dim=outer_dim).reshape(x.shape)
else:
return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape)
# This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor.
# Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist!
def maybe_copy(module,
sd,
weight_quantizer,
mp_replace,
dst_name,
src_name,
qkv=False,
megatron_v2=False,
split_qkv=False,
heads=1):
if src_name in sd:
dst = getattr(module, dst_name)
tmp = sd[src_name]
if len(dst.shape) == 1:
if split_qkv:
dst = mp_replace.strided_copy(dst, tmp, num_splits=3)
else:
dst = mp_replace.copy(dst, tmp)
if qkv and megatron_v2:
dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous())
else:
if split_qkv:
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
(transpose(tmp).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
else:
if qkv and megatron_v2:
tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous()
if weight_quantizer.q_int8:
tmp = transpose(tmp)
dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
transpose(tmp)), int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
# Extending the maybe_copy function for when the q, k, and v are in separate parameters!
def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False):
if src_names[0] in sd:
q = sd[src_names[0]]
k = sd[src_names[1]]
v = sd[src_names[2]]
qkv_data = torch.cat((q, k, v), dim=0)
dst = getattr(module, dst_name)
if len(dst.shape) == 1:
if split_qkv:
dst = mp_replace.strided_copy(dst, qkv_data.contiguous(), num_splits=3)
else:
dst = mp_replace.copy(dst, qkv_data)
else:
if split_qkv:
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
((transpose(qkv_data)).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
else:
dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
transpose(qkv_data)), int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
# Extending the `maybe_copy` function for when mlp1 is in separate parameters for GeGLU
def maybe_copy_geglu(module, sd, weight_quantizer, mp_replace, dst_name, src_names):
if src_names[0] in sd:
reg_proj = sd[src_names[0]]
gate_proj = sd[src_names[1]]
mlp1_data = torch.cat((reg_proj, gate_proj), dim=0)
dst = getattr(module, dst_name)
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(mlp1_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
transpose(mlp1_data)), num_splits=2, int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
def pack_lora_weights(p):
return [
p.lora_right_weight, \
p.lora_left_weight, \
p.lora_scaling
]
def maybe_get_lora(p):
if hasattr(p, 'lora_right_weight'):
lora_param = pack_lora_weights(p)
else:
lora_param = []
return lora_param