peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_entropy.py
import numpy as np | |
from numpy.testing import assert_equal, assert_allclose | |
# avoid new uses of the following; prefer assert/np.testing.assert_allclose | |
from numpy.testing import (assert_, assert_almost_equal, | |
assert_array_almost_equal) | |
import pytest | |
from pytest import raises as assert_raises | |
import scipy.stats as stats | |
class TestEntropy: | |
def test_entropy_positive(self): | |
# See ticket #497 | |
pk = [0.5, 0.2, 0.3] | |
qk = [0.1, 0.25, 0.65] | |
eself = stats.entropy(pk, pk) | |
edouble = stats.entropy(pk, qk) | |
assert_(0.0 == eself) | |
assert_(edouble >= 0.0) | |
def test_entropy_base(self): | |
pk = np.ones(16, float) | |
S = stats.entropy(pk, base=2.) | |
assert_(abs(S - 4.) < 1.e-5) | |
qk = np.ones(16, float) | |
qk[:8] = 2. | |
S = stats.entropy(pk, qk) | |
S2 = stats.entropy(pk, qk, base=2.) | |
assert_(abs(S/S2 - np.log(2.)) < 1.e-5) | |
def test_entropy_zero(self): | |
# Test for PR-479 | |
assert_almost_equal(stats.entropy([0, 1, 2]), 0.63651416829481278, | |
decimal=12) | |
def test_entropy_2d(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]] | |
assert_array_almost_equal(stats.entropy(pk, qk), | |
[0.1933259, 0.18609809]) | |
def test_entropy_2d_zero(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]] | |
assert_array_almost_equal(stats.entropy(pk, qk), | |
[np.inf, 0.18609809]) | |
pk[0][0] = 0.0 | |
assert_array_almost_equal(stats.entropy(pk, qk), | |
[0.17403988, 0.18609809]) | |
def test_entropy_base_2d_nondefault_axis(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
assert_array_almost_equal(stats.entropy(pk, axis=1), | |
[0.63651417, 0.63651417, 0.66156324]) | |
def test_entropy_2d_nondefault_axis(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]] | |
assert_array_almost_equal(stats.entropy(pk, qk, axis=1), | |
[0.231049, 0.231049, 0.127706]) | |
def test_entropy_raises_value_error(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
qk = [[0.1, 0.2], [0.6, 0.3]] | |
assert_raises(ValueError, stats.entropy, pk, qk) | |
def test_base_entropy_with_axis_0_is_equal_to_default(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
assert_array_almost_equal(stats.entropy(pk, axis=0), | |
stats.entropy(pk)) | |
def test_entropy_with_axis_0_is_equal_to_default(self): | |
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]] | |
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]] | |
assert_array_almost_equal(stats.entropy(pk, qk, axis=0), | |
stats.entropy(pk, qk)) | |
def test_base_entropy_transposed(self): | |
pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) | |
assert_array_almost_equal(stats.entropy(pk.T).T, | |
stats.entropy(pk, axis=1)) | |
def test_entropy_transposed(self): | |
pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) | |
qk = np.array([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]) | |
assert_array_almost_equal(stats.entropy(pk.T, qk.T).T, | |
stats.entropy(pk, qk, axis=1)) | |
def test_entropy_broadcasting(self): | |
np.random.rand(0) | |
x = np.random.rand(3) | |
y = np.random.rand(2, 1) | |
res = stats.entropy(x, y, axis=-1) | |
assert_equal(res[0], stats.entropy(x, y[0])) | |
assert_equal(res[1], stats.entropy(x, y[1])) | |
def test_entropy_shape_mismatch(self): | |
x = np.random.rand(10, 1, 12) | |
y = np.random.rand(11, 2) | |
message = "Array shapes are incompatible for broadcasting." | |
with pytest.raises(ValueError, match=message): | |
stats.entropy(x, y) | |
def test_input_validation(self): | |
x = np.random.rand(10) | |
message = "`base` must be a positive number." | |
with pytest.raises(ValueError, match=message): | |
stats.entropy(x, base=-2) | |
class TestDifferentialEntropy: | |
""" | |
Vasicek results are compared with the R package vsgoftest. | |
# library(vsgoftest) | |
# | |
# samp <- c(<values>) | |
# entropy.estimate(x = samp, window = <window_length>) | |
""" | |
def test_differential_entropy_vasicek(self): | |
random_state = np.random.RandomState(0) | |
values = random_state.standard_normal(100) | |
entropy = stats.differential_entropy(values, method='vasicek') | |
assert_allclose(entropy, 1.342551, rtol=1e-6) | |
entropy = stats.differential_entropy(values, window_length=1, | |
method='vasicek') | |
assert_allclose(entropy, 1.122044, rtol=1e-6) | |
entropy = stats.differential_entropy(values, window_length=8, | |
method='vasicek') | |
assert_allclose(entropy, 1.349401, rtol=1e-6) | |
def test_differential_entropy_vasicek_2d_nondefault_axis(self): | |
random_state = np.random.RandomState(0) | |
values = random_state.standard_normal((3, 100)) | |
entropy = stats.differential_entropy(values, axis=1, method='vasicek') | |
assert_allclose( | |
entropy, | |
[1.342551, 1.341826, 1.293775], | |
rtol=1e-6, | |
) | |
entropy = stats.differential_entropy(values, axis=1, window_length=1, | |
method='vasicek') | |
assert_allclose( | |
entropy, | |
[1.122044, 1.102944, 1.129616], | |
rtol=1e-6, | |
) | |
entropy = stats.differential_entropy(values, axis=1, window_length=8, | |
method='vasicek') | |
assert_allclose( | |
entropy, | |
[1.349401, 1.338514, 1.292332], | |
rtol=1e-6, | |
) | |
def test_differential_entropy_raises_value_error(self): | |
random_state = np.random.RandomState(0) | |
values = random_state.standard_normal((3, 100)) | |
error_str = ( | |
r"Window length \({window_length}\) must be positive and less " | |
r"than half the sample size \({sample_size}\)." | |
) | |
sample_size = values.shape[1] | |
for window_length in {-1, 0, sample_size//2, sample_size}: | |
formatted_error_str = error_str.format( | |
window_length=window_length, | |
sample_size=sample_size, | |
) | |
with assert_raises(ValueError, match=formatted_error_str): | |
stats.differential_entropy( | |
values, | |
window_length=window_length, | |
axis=1, | |
) | |
def test_base_differential_entropy_with_axis_0_is_equal_to_default(self): | |
random_state = np.random.RandomState(0) | |
values = random_state.standard_normal((100, 3)) | |
entropy = stats.differential_entropy(values, axis=0) | |
default_entropy = stats.differential_entropy(values) | |
assert_allclose(entropy, default_entropy) | |
def test_base_differential_entropy_transposed(self): | |
random_state = np.random.RandomState(0) | |
values = random_state.standard_normal((3, 100)) | |
assert_allclose( | |
stats.differential_entropy(values.T).T, | |
stats.differential_entropy(values, axis=1), | |
) | |
def test_input_validation(self): | |
x = np.random.rand(10) | |
message = "`base` must be a positive number or `None`." | |
with pytest.raises(ValueError, match=message): | |
stats.differential_entropy(x, base=-2) | |
message = "`method` must be one of..." | |
with pytest.raises(ValueError, match=message): | |
stats.differential_entropy(x, method='ekki-ekki') | |
def test_consistency(self, method): | |
# test that method is a consistent estimator | |
n = 10000 if method == 'correa' else 1000000 | |
rvs = stats.norm.rvs(size=n, random_state=0) | |
expected = stats.norm.entropy() | |
res = stats.differential_entropy(rvs, method=method) | |
assert_allclose(res, expected, rtol=0.005) | |
# values from differential_entropy reference [6], table 1, n=50, m=7 | |
norm_rmse_std_cases = { # method: (RMSE, STD) | |
'vasicek': (0.198, 0.109), | |
'van es': (0.212, 0.110), | |
'correa': (0.135, 0.112), | |
'ebrahimi': (0.128, 0.109) | |
} | |
def test_norm_rmse_std(self, method, expected): | |
# test that RMSE and standard deviation of estimators matches values | |
# given in differential_entropy reference [6]. Incidentally, also | |
# tests vectorization. | |
reps, n, m = 10000, 50, 7 | |
rmse_expected, std_expected = expected | |
rvs = stats.norm.rvs(size=(reps, n), random_state=0) | |
true_entropy = stats.norm.entropy() | |
res = stats.differential_entropy(rvs, window_length=m, | |
method=method, axis=-1) | |
assert_allclose(np.sqrt(np.mean((res - true_entropy)**2)), | |
rmse_expected, atol=0.005) | |
assert_allclose(np.std(res), std_expected, atol=0.002) | |
# values from differential_entropy reference [6], table 2, n=50, m=7 | |
expon_rmse_std_cases = { # method: (RMSE, STD) | |
'vasicek': (0.194, 0.148), | |
'van es': (0.179, 0.149), | |
'correa': (0.155, 0.152), | |
'ebrahimi': (0.151, 0.148) | |
} | |
def test_expon_rmse_std(self, method, expected): | |
# test that RMSE and standard deviation of estimators matches values | |
# given in differential_entropy reference [6]. Incidentally, also | |
# tests vectorization. | |
reps, n, m = 10000, 50, 7 | |
rmse_expected, std_expected = expected | |
rvs = stats.expon.rvs(size=(reps, n), random_state=0) | |
true_entropy = stats.expon.entropy() | |
res = stats.differential_entropy(rvs, window_length=m, | |
method=method, axis=-1) | |
assert_allclose(np.sqrt(np.mean((res - true_entropy)**2)), | |
rmse_expected, atol=0.005) | |
assert_allclose(np.std(res), std_expected, atol=0.002) | |
def test_method_auto(self, n, method): | |
rvs = stats.norm.rvs(size=(n,), random_state=0) | |
res1 = stats.differential_entropy(rvs) | |
res2 = stats.differential_entropy(rvs, method=method) | |
assert res1 == res2 | |