peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_variation.py
import numpy as np | |
from numpy.testing import assert_equal, assert_allclose | |
import pytest | |
from scipy.stats import variation | |
from scipy._lib._util import AxisError | |
class TestVariation: | |
""" | |
Test class for scipy.stats.variation | |
""" | |
def test_ddof(self): | |
x = np.arange(9.0) | |
assert_allclose(variation(x, ddof=1), np.sqrt(60/8)/4) | |
def test_sign(self, sgn): | |
x = np.array([1, 2, 3, 4, 5]) | |
v = variation(sgn*x) | |
expected = sgn*np.sqrt(2)/3 | |
assert_allclose(v, expected, rtol=1e-10) | |
def test_scalar(self): | |
# A scalar is treated like a 1-d sequence with length 1. | |
assert_equal(variation(4.0), 0.0) | |
def test_variation_nan(self, nan_policy, expected): | |
x = np.arange(10.) | |
x[9] = np.nan | |
assert_allclose(variation(x, nan_policy=nan_policy), expected) | |
def test_nan_policy_raise(self): | |
x = np.array([1.0, 2.0, np.nan, 3.0]) | |
with pytest.raises(ValueError, match='input contains nan'): | |
variation(x, nan_policy='raise') | |
def test_bad_nan_policy(self): | |
with pytest.raises(ValueError, match='must be one of'): | |
variation([1, 2, 3], nan_policy='foobar') | |
def test_keepdims(self): | |
x = np.arange(10).reshape(2, 5) | |
y = variation(x, axis=1, keepdims=True) | |
expected = np.array([[np.sqrt(2)/2], | |
[np.sqrt(2)/7]]) | |
assert_allclose(y, expected) | |
def test_keepdims_size0(self, axis, expected): | |
x = np.zeros((5, 0)) | |
y = variation(x, axis=axis, keepdims=True) | |
assert_equal(y, expected) | |
def test_keepdims_and_ddof_eq_len_plus_incr(self, incr, expected_fill): | |
x = np.array([[1, 1, 2, 2], [1, 2, 3, 3]]) | |
y = variation(x, axis=1, ddof=x.shape[1] + incr, keepdims=True) | |
assert_equal(y, np.full((2, 1), fill_value=expected_fill)) | |
def test_propagate_nan(self): | |
# Check that the shape of the result is the same for inputs | |
# with and without nans, cf gh-5817 | |
a = np.arange(8).reshape(2, -1).astype(float) | |
a[1, 0] = np.nan | |
v = variation(a, axis=1, nan_policy="propagate") | |
assert_allclose(v, [np.sqrt(5/4)/1.5, np.nan], atol=1e-15) | |
def test_axis_none(self): | |
# Check that `variation` computes the result on the flattened | |
# input when axis is None. | |
y = variation([[0, 1], [2, 3]], axis=None) | |
assert_allclose(y, np.sqrt(5/4)/1.5) | |
def test_bad_axis(self): | |
# Check that an invalid axis raises np.exceptions.AxisError. | |
x = np.array([[1, 2, 3], [4, 5, 6]]) | |
with pytest.raises(AxisError): | |
variation(x, axis=10) | |
def test_mean_zero(self): | |
# Check that `variation` returns inf for a sequence that is not | |
# identically zero but whose mean is zero. | |
x = np.array([10, -3, 1, -4, -4]) | |
y = variation(x) | |
assert_equal(y, np.inf) | |
x2 = np.array([x, -10*x]) | |
y2 = variation(x2, axis=1) | |
assert_equal(y2, [np.inf, np.inf]) | |
def test_return_nan(self, x): | |
# Test some cases where `variation` returns nan. | |
y = variation(x) | |
assert_equal(y, np.nan) | |
def test_2d_size_zero_with_axis(self, axis, expected): | |
x = np.empty((3, 0)) | |
y = variation(x, axis=axis) | |
assert_equal(y, expected) | |
def test_neg_inf(self): | |
# Edge case that produces -inf: ddof equals the number of non-nan | |
# values, the values are not constant, and the mean is negative. | |
x1 = np.array([-3, -5]) | |
assert_equal(variation(x1, ddof=2), -np.inf) | |
x2 = np.array([[np.nan, 1, -10, np.nan], | |
[-20, -3, np.nan, np.nan]]) | |
assert_equal(variation(x2, axis=1, ddof=2, nan_policy='omit'), | |
[-np.inf, -np.inf]) | |
def test_combined_edge_cases(self, nan_policy): | |
x = np.array([[0, 10, np.nan, 1], | |
[0, -5, np.nan, 2], | |
[0, -5, np.nan, 3]]) | |
y = variation(x, axis=0, nan_policy=nan_policy) | |
assert_allclose(y, [np.nan, np.inf, np.nan, np.sqrt(2/3)/2]) | |
def test_more_nan_policy_omit_tests(self, ddof, expected): | |
# The slightly strange formatting in the follow array is my attempt to | |
# maintain a clean tabular arrangement of the data while satisfying | |
# the demands of pycodestyle. Currently, E201 and E241 are not | |
# disabled by the `# noqa` annotation. | |
nan = np.nan | |
x = np.array([[1.0, 2.0, nan, 3.0], | |
[0.0, 4.0, 3.0, 1.0], | |
[nan, -.5, 0.5, nan], | |
[nan, 9.0, 9.0, nan], | |
[nan, nan, nan, nan], | |
[3.0, 3.0, 3.0, 3.0], | |
[0.0, 0.0, 0.0, 0.0]]) | |
v = variation(x, axis=1, ddof=ddof, nan_policy='omit') | |
assert_allclose(v, expected) | |
def test_variation_ddof(self): | |
# test variation with delta degrees of freedom | |
# regression test for gh-13341 | |
a = np.array([1, 2, 3, 4, 5]) | |
nan_a = np.array([1, 2, 3, np.nan, 4, 5, np.nan]) | |
y = variation(a, ddof=1) | |
nan_y = variation(nan_a, nan_policy="omit", ddof=1) | |
assert_allclose(y, np.sqrt(5/2)/3) | |
assert y == nan_y | |