applied-ai-018's picture
Add files using upload-large-folder tool
9ad9e91 verified
raw
history blame
7.5 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import os
from dataclasses import dataclass
from typing import List
import numpy as np
import torch
from torch import Tensor
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.utils import logger
def _log_rank0(msg):
if dist.get_rank() == 0:
logger.info(msg)
@torch.jit.script
def scale_tensors(tensors: List[Tensor], scale: int):
for t in tensors:
t.div_(scale)
@dataclass
class MiCS_CommGroups:
""""""
param_shard_group = None
param_shard_size = -1
param_shard_rank = -1
param_repli_group = None
param_repli_size = -1
param_repli_rank = -1
param_intra_node_group = None
param_inter_node_shard_group = None
def create_mics_comm_groups(
shard_size,
dp_group,
hierarchical_allgather=False,
mpu=None,
):
"""
create shard-group, replicate-group from config_file
TODO: consider broadcast the config from rank0
Returns:
MiCS_CommGroups
"""
# env var for debugging purpose
ndevices_per_node = int(os.environ.get("NDEV_PER_NODE", get_accelerator().device_count()))
_log_rank0(f'creating MiCS communication groups with per node device size {ndevices_per_node}')
groups = MiCS_CommGroups()
if mpu is not None:
assert dp_group == mpu.get_data_parallel_group()
# full size of the world
world_size = dist.get_world_size()
# global rank
global_rank = dist.get_rank()
config = _generate_mics_config(world_size, ndevices_per_node, shard_size, 1)
ranks_of_shard_group = config['shard_groups']
ranks_of_repli_group = config['replicate_groups']
if len(ranks_of_repli_group) == 0:
assert len(ranks_of_shard_group) == 1, "replicate groups are empty only for single shard group"
for r in ranks_of_shard_group[0]:
ranks_of_repli_group.append([r])
# for simplicity
assert _sizes_all_same(ranks_of_repli_group), "replicate groups must have the same size"
assert _sizes_all_same(ranks_of_shard_group), "shard groups must have the same size"
assert sum([len(g) for g in ranks_of_shard_group]) == dist.get_world_size(), "all sharded ranks "
if len(ranks_of_shard_group) > 1: # if only shard on one group then no need for replicate groups
assert len(ranks_of_shard_group) == len(
ranks_of_repli_group[0]), "number of shard groups must equal to the size of each replicate group"
global_rank = dist.get_rank()
# create shard groups
for shard_ranks in ranks_of_shard_group:
_group = dist.new_group(shard_ranks)
if global_rank in shard_ranks:
groups.param_shard_group = _group
groups.param_shard_size = len(shard_ranks)
groups.param_shard_rank = dist.get_rank(_group)
logger.info(f'rank {global_rank}, shard group'
f' {groups.param_shard_rank}/{dist.get_world_size(group=_group)}')
# create replicate groups
for repli_ranks in ranks_of_repli_group:
if len(repli_ranks) > 1:
_group = dist.new_group(repli_ranks)
if global_rank in repli_ranks:
groups.param_repli_group = _group
groups.param_repli_size = len(repli_ranks)
groups.param_repli_rank = dist.get_rank(group=_group)
logger.info(f'rank {global_rank} '
f'replicate group {groups.param_repli_rank}/{dist.get_world_size(group=_group)}')
else:
groups.param_repli_group = None
groups.param_repli_size = 1
groups.param_repli_rank = 0
logger.info(f'rank {global_rank} replicate group 0/1')
# assign shard group size as world size
assert groups.param_shard_size == len(ranks_of_shard_group[0])
if hierarchical_allgather:
# create hierarchy inter-node, intra-node groups
# n_span_nodes = config['shard_span']
n_span_nodes = config['span_nodes']
assert n_span_nodes > 1, "sharding spans on single node, no need for hierarchy allgather"
assert len(ranks_of_shard_group[0]) % n_span_nodes == 0
n_gpu_per_node = len(ranks_of_shard_group[0]) // n_span_nodes
intra_node_ranks_group = []
inter_node_ranks_group = []
for shard_group in ranks_of_shard_group:
_intra_node_ranks = []
for i in range(0, len(shard_group), n_gpu_per_node):
_intra_node_ranks.append(shard_group[i:i + n_gpu_per_node])
_inter_node_ranks = []
for i in range(n_gpu_per_node):
_ranks = [_g[i] for _g in _intra_node_ranks]
_inter_node_ranks.append(_ranks)
intra_node_ranks_group.append(_intra_node_ranks)
inter_node_ranks_group.append(_inter_node_ranks)
_log_rank0(f"create for hierarchy all-gather groups: intra nodes {intra_node_ranks_group}")
_log_rank0(f"create for hierarchy all-gather groups: inter nodes {inter_node_ranks_group}")
# create communicators
for shard_group in intra_node_ranks_group:
for intra_node_ranks in shard_group:
_group = dist.new_group(intra_node_ranks)
if global_rank in intra_node_ranks:
groups.param_intra_node_group = _group
_log_rank0(f'create group for intra node ranks {intra_node_ranks}')
for shard_group in inter_node_ranks_group:
for inter_node_ranks in shard_group:
_group = dist.new_group(inter_node_ranks)
if global_rank in inter_node_ranks:
groups.param_inter_node_shard_group = _group
_log_rank0(f'create group for inter node ranks {inter_node_ranks}')
return groups
def _generate_mics_config(world_size, ndev_per_node, shard_size, pp_size=1):
"""Generating the configuration for sharding This shard config generation assume
that the pipeline stages are partitioned in order, i.e., first ranks
hold the stage0, etc.
Args:
shard_size (int): zero3 data-parallel shard size, FIXME:
change the name later
pp_size (int): pipeline parallel size, currently, only work with
pipeline parallelism + zero
"""
assert world_size % pp_size == 0
assert (world_size // pp_size) % shard_size == 0, \
f"dp group size is not dividable by dp_shard_size, "\
f" (world_size {world_size}, pp_size {pp_size}, dp_shard_size {shard_size})"
config = {}
shard_groups = np.arange(world_size).reshape(-1, shard_size)
replicate_groups = []
for i in range(shard_size):
same_shard_ranks = shard_groups[:, i].tolist()
n_ranks = len(same_shard_ranks)
replicate_size = n_ranks // pp_size
replicate_groups.extend([same_shard_ranks[j:j + replicate_size] for j in range(0, n_ranks, replicate_size)])
config['replicate_groups'] = replicate_groups
config['shard_groups'] = shard_groups.tolist()
config["span_nodes"] = len(shard_groups[0]) // ndev_per_node
return config
def _sizes_all_same(groups):
"""all groups have same length"""
all_same = True
for g in groups:
if len(g) != len(groups[0]):
return False
return all_same