peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/tests
/models
/test_neuralmagic.py
import pytest | |
import lm_eval.evaluator as evaluator | |
from lm_eval.api.registry import get_model | |
SPARSEML_MODELS_TASKS = [ | |
# loglikelihood | |
("facebook/opt-125m", "lambada_openai"), | |
# loglikelihood_rolling | |
("hf-internal-testing/tiny-random-gpt2", "wikitext"), | |
# generate_until | |
("mgoin/tiny-random-llama-2-quant", "gsm8k"), | |
] | |
DEEPSPARSE_MODELS_TASKS = [ | |
# loglikelihood | |
("hf:mgoin/llama2.c-stories15M-quant-ds", "lambada_openai"), | |
# loglikelihood_rolling (not supported yet) | |
# ("hf:mgoin/llama2.c-stories15M-quant-ds", "wikitext"), | |
# generate_until | |
("hf:mgoin/llama2.c-stories15M-quant-ds", "gsm8k"), | |
] | |
def test_sparseml_eval(model_id, task): | |
lm = get_model("sparseml").create_from_arg_string( | |
f"pretrained={model_id}", | |
{ | |
"batch_size": 1, | |
"device": "cpu", | |
"dtype": "float32", | |
}, | |
) | |
limit = 5 | |
evaluator.simple_evaluate( | |
model=lm, | |
tasks=[task], | |
num_fewshot=0, | |
limit=limit, | |
) | |
def test_deepsparse_eval(model_id, task): | |
lm = get_model("deepsparse").create_from_arg_string( | |
f"pretrained={model_id}", | |
{ | |
"batch_size": 1, | |
}, | |
) | |
limit = 5 | |
evaluator.simple_evaluate( | |
model=lm, | |
tasks=[task], | |
num_fewshot=0, | |
limit=limit, | |
) | |