peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/auto_tp.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
# Automatic Tensor Parallelism | |
import re | |
from torch import nn | |
from .replace_policy import replace_policies | |
from typing import Optional | |
import torch | |
from deepspeed import comm as dist | |
from .layers import LinearAllreduce, LinearLayer, LmHeadLinearAllreduce | |
from deepspeed.accelerator import get_accelerator | |
from .fusedqkv_utils import require_tp_fused_qkvw, prepare_tp_fused_qkvw | |
from deepspeed.module_inject.tp_shard import get_shard_size, get_shard_size_list | |
def move(tensor, device): | |
if tensor.is_meta: | |
return torch.empty_like(tensor, device=device) | |
else: | |
# Using new tensors help in freeing memory (after split for example) was done before by calling clone(). | |
# Using copy=True instead of clone() will help in case of cpu --> cpu. | |
# Otherwise to() will not create a new copy for the view of the full tensor, and it will not be de-referenced. | |
return tensor.to(device, copy=True) | |
class ReplaceWithTensorSlicing: | |
def __init__(self, mp_group=None, mp_size=1, out_dim=1, in_dim=0): | |
if mp_group is not None: | |
self.gpu_index = dist.get_rank(group=mp_group) | |
else: | |
self.gpu_index = 0 | |
self.out_dim = out_dim | |
self.in_dim = in_dim | |
self.mp_size = mp_size | |
def merge_assert(self, dim1, dim2): | |
assert dim1 > dim2, \ | |
'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\ | |
for merging your checkpoints before replacing the transformer layer with\ | |
inference-kernels' | |
def strided_copy(self, | |
dst: Optional[torch.Tensor], | |
src: Optional[torch.Tensor], | |
num_splits: int, | |
int8: bool = False, | |
allocate_tensor: bool = False): | |
if src is None: | |
return src | |
src_shape = src.shape | |
dst_shape = dst.shape | |
outer_dim = 0 if int8 else -1 | |
if allocate_tensor: | |
dst = torch.empty_like(dst) | |
src_split = torch.split(src.data, src.shape[outer_dim] // num_splits, dim=outer_dim) | |
if (len(src_shape) == 2 and len(dst_shape) == 2): | |
if src_shape[outer_dim] == dst_shape[self.out_dim]: | |
try: | |
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape) | |
except: | |
print(dst.shape, src.shape) | |
exit() | |
dst = torch.nn.parameter.Parameter(dst, requires_grad=False) | |
if hasattr(src, 'scale'): | |
dst.scale = src.scale | |
return dst | |
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim]) | |
qkv_size = dst_shape[self.out_dim] // num_splits | |
qkv_split = [torch.split(src_s, qkv_size, dim=outer_dim) for src_s in src_split] | |
weight_split = [ | |
torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=outer_dim) for i in range(len(qkv_split[0])) | |
] | |
dst = dst.reshape(-1).data.copy_(weight_split[self.gpu_index].contiguous().reshape(-1)).reshape( | |
weight_split[self.gpu_index].shape) | |
else: | |
if src_shape[0] == dst_shape[0]: | |
return torch.nn.parameter.Parameter(src) | |
qkv_size = dst_shape[0] // num_splits | |
qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split] | |
bias_split = [torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0]))] | |
dst.data.copy_(bias_split[self.gpu_index].contiguous()) | |
dst = torch.nn.parameter.Parameter(dst, requires_grad=False) | |
if hasattr(src, 'scale'): | |
dst.scale = src.scale | |
return dst | |
def copy(self, dst, src, int8=False, allocate_tensor=False): | |
if src is None: | |
return src | |
assert not dst.data.is_meta # the torch.Tensor.copy_ method used below will silently fail on meta tensors | |
if allocate_tensor: | |
dst = torch.empty_like(dst) | |
outer_dim = 0 if int8 else 1 | |
inner_dim = 1 if int8 else 0 | |
src_shape = src.shape | |
dst_shape = dst.shape | |
if (len(src_shape) == 2 and len(dst_shape) == 2): | |
if src_shape[inner_dim] == dst_shape[self.in_dim] and src_shape[outer_dim] == dst_shape[self.out_dim]: | |
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape) | |
else: | |
if src_shape[inner_dim] != dst_shape[self.in_dim]: | |
self.merge_assert(src_shape[inner_dim], dst_shape[self.in_dim]) | |
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim]] if inner_dim == 1 else \ | |
src[self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim], :]) | |
else: | |
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim]) | |
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim]] if outer_dim == 1 else \ | |
src[self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim], :]) | |
else: | |
if src_shape[0] == dst_shape[0]: | |
dst = src if src.dtype == dst.dtype else dst.data.copy_(src) | |
else: | |
dst.data.copy_(src[self.gpu_index * dst_shape[-1]:(self.gpu_index + 1) * dst_shape[-1]]) | |
dst = torch.nn.parameter.Parameter(dst, requires_grad=False) | |
if hasattr(src, 'scale'): | |
dst.scale = src.scale | |
return dst | |
class Loading(): | |
def is_load_module(module): | |
load_layers = [nn.Linear, nn.Embedding, nn.LayerNorm] | |
load_layer_names = [ | |
"LPLayerNorm", "SharedEmbedding", "OPTLearnedPositionalEmbedding", "LlamaRMSNorm", "FalconLinear", | |
"MistralRMSNorm", "T5LayerNorm", "MixtralRMSNorm" | |
] | |
return module.__class__ in load_layers or module._get_name() in load_layer_names | |
def load_buffer(module, state_dict, prefix): | |
for name in module._buffers.keys(): | |
if module._buffers[name].data.is_meta: | |
module._buffers[name] = torch.nn.parameter.Parameter( | |
data=torch.empty_like(module._buffers[name].data, device="cpu"), | |
requires_grad=module._buffers[name].data.requires_grad) | |
if prefix + name in state_dict.keys(): | |
module._buffers[name].data.copy_(state_dict[prefix + name]) | |
def load(module, state_dict, prefix, mp_group=None): | |
mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) | |
if hasattr(module, 'weight'): | |
if module.weight.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data, device="cpu"), | |
requires_grad=module.weight.data.requires_grad) | |
if 'query_key_value' in prefix: | |
module.weight = mp_replace.strided_copy(module.weight.data, | |
state_dict[prefix + 'weight'], | |
num_splits=3) | |
else: | |
module.weight = mp_replace.copy(module.weight.data, state_dict[prefix + 'weight']) | |
else: | |
if hasattr(module, 'norm') and hasattr(module.norm, 'weight'): | |
if module.norm.weight.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.norm.weight = torch.nn.parameter.Parameter( | |
data=torch.empty_like(module.norm.weight.data, device="cpu"), | |
requires_grad=module.norm.weight.data.requires_grad) | |
module.norm.weight = mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight']) | |
if prefix + 'bias' in state_dict.keys(): | |
if hasattr(module, 'bias'): | |
if module.bias.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"), | |
requires_grad=module.bias.data.requires_grad) | |
module.bias = mp_replace.copy(module.bias, state_dict[prefix + 'bias']) | |
else: | |
if hasattr(module, 'norm') and hasattr(module.norm, 'bias'): | |
if module.norm.bias.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.norm.bias = torch.nn.parameter.Parameter( | |
data=torch.empty_like(module.norm.bias.data, device="cpu"), | |
requires_grad=module.norm.bias.data.requires_grad) | |
module.norm.bias = mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias']) | |
class AutoTP(): | |
def __init__(self, module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl): | |
self.module = module | |
self.all_reduce_linears = all_reduce_linears | |
self.prefix = prefix | |
self.state_dict = state_dict | |
self.mp_size = None | |
self.mp_group = None | |
self.linear_layer_setting = linear_layer_setting | |
self.orig_layer_impl = orig_layer_impl | |
self.linear_policies = None | |
self.conv_linear_layer = False | |
def in_module_list(module, module_list): | |
for item in module_list: | |
if type(item).__name__ == type(module).__name__: | |
return True | |
return False | |
def get_module_list(model): | |
mlist = [] | |
for child in model.children(): | |
if isinstance(child, nn.ModuleList): | |
for module in child.children(): | |
if not mlist: | |
mlist = [module] | |
elif not AutoTP.in_module_list(module, mlist): | |
mlist = mlist + [module] | |
else: | |
mlist = mlist + AutoTP.get_module_list(child) | |
return mlist | |
def supported(model): | |
unsupported = ['deberta', 'flaubert', 'fsmt', 'gpt2', 'led', 'longformer', 'xlm', 'xlnet'] | |
model = str(model) | |
key = re.search(r": (.*?)Model", model) | |
if key is None: | |
key = re.search(r": (.*?)Stack", model) | |
if key is None: | |
key = re.match(r"(.*?)Model", model) | |
assert key is not None, "Not able to determine model policy automatically. Please provide policy." | |
if key.group(1).lower() in unsupported: | |
return False | |
return True | |
def get_layers(parent, module): | |
layer_list = [] | |
for key, submodule in module._modules.items(): | |
if isinstance(submodule, nn.Linear): | |
layer_list = layer_list + [parent + "." + key] | |
elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm': | |
layer_list = layer_list + ["ln"] | |
else: | |
layer_list = layer_list + AutoTP.get_layers(key, submodule) | |
return layer_list | |
def update_policy_list(policy_list, new_module, new_gems): | |
if len(policy_list): | |
for i, policy in enumerate(policy_list): | |
# if module already exists in policy, combine gems and remove duplicates | |
if policy[0] == type(new_module): | |
new_gems = set(new_gems + policy[1]) | |
policy_list[i] = tuple([type(new_module), new_gems]) | |
return policy_list | |
policy_list.append(tuple([type(new_module), new_gems])) | |
return policy_list | |
def kernel_supported(module_list): | |
policy = [] | |
for plcy in replace_policies: | |
# instantiate a throw-away policy in order to populate the _orig_layer_class | |
_ = plcy(None) | |
if isinstance(plcy._orig_layer_class, list): | |
for orig_layer_class in plcy._orig_layer_class: | |
policy.append(orig_layer_class) | |
elif plcy._orig_layer_class is not None: | |
policy.append(plcy._orig_layer_class) | |
for child in module_list: | |
if child.__class__ in policy: | |
return True | |
return False | |
def tp_parser(model): | |
policy_list = [] | |
module_list = [] | |
layer_list = [] | |
gem_list = [] | |
module_list = AutoTP.get_module_list(model) | |
assert AutoTP.supported(model), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \ | |
if AutoTP.kernel_supported(module_list) else "AutoTP not supported for model. Please provide policy." | |
norm_layer_name_list = ['LayerNorm', 'layer_norm', 'ln_1', 'ln_2'] | |
#ln_1 , ln_2 for Qwen | |
for module in module_list: | |
for key, submodule in module._modules.items(): | |
if isinstance(submodule, nn.Linear): | |
layer_list = layer_list + ["." + key] | |
elif isinstance(submodule, nn.LayerNorm) or key in norm_layer_name_list: | |
layer_list = layer_list + ["ln"] | |
else: | |
layer_list = layer_list + AutoTP.get_layers(key, submodule) | |
for i, layer in enumerate(layer_list): | |
if layer == 'ln': | |
if layer_list[i - 1] != 'ln': | |
gem_list = gem_list + [layer_list[i - 1]] | |
elif 'out_proj' in layer: | |
gem_list = gem_list + [layer] | |
elif 'o_proj' in layer: | |
gem_list = gem_list + [layer] | |
elif 'down_proj' in layer: | |
gem_list = gem_list + [layer] | |
elif 'attention.dense' in layer and 'GPTNeoX' in str(model): | |
gem_list = gem_list + [layer] | |
elif 'self_attention.dense' in layer and 'falcon' in str( | |
type(module)): # this is a hack to get the right linear layer for this model! | |
gem_list = gem_list + [layer] | |
# Mixtral-7x8b used w2*act(w1*w3) linear. need to replace w2 to linearallreduce. | |
elif 'w2' in layer and 'Mixtral' in str(type(module)): | |
gem_list = gem_list + [layer] | |
layer_list = [] | |
if gem_list != []: | |
gem_list = list(set(gem_list)) | |
policy_list = AutoTP.update_policy_list(policy_list, module, gem_list) | |
gem_list = [] | |
assert len(policy_list), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \ | |
if AutoTP.kernel_supported(module_list) else "Not able to determine model policy automatically. Please provide policy." | |
return policy_list | |
def set_tensor_parallel_config(self, mp_size, mp_group): | |
self.mp_size = mp_size | |
self.mp_group = mp_group | |
def _replace(self, child, name, conv_linear_layer): | |
if getattr(child, "replaced", False) == True: | |
return | |
weight_shape = child.weight.shape | |
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group) | |
# For mixtral-7x8b, need to skip MoE gate linear replace. | |
if name == "block_sparse_moe.gate": | |
return child | |
if name in self.all_reduce_linears: | |
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size] | |
# else [weight_shape[0], weight_shape[1] // mp_size] | |
if self.conv_linear_layer: | |
child.weight.data = child.weight.data.transpose(-1, -2).contiguous() | |
data = child.weight.data.split(get_shard_size_list( | |
weight_shape[0] if self.conv_linear_layer else weight_shape[1], self.mp_size, name), | |
dim=1) | |
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach() | |
del data | |
setattr(child, "replaced", True) | |
if name == "lm_head" or name == 'embed_out': | |
return LmHeadLinearAllreduce( | |
torch.nn.parameter.Parameter(data_dc, requires_grad=False), dist.get_rank(), dist.get_world_size(), | |
child.bias if child.bias is None else torch.nn.parameter.Parameter( | |
move(child.bias, | |
get_accelerator().current_device_name())), self.mp_group) | |
return LinearAllreduce(torch.nn.parameter.Parameter(data_dc, requires_grad=False), child.bias if child.bias is None else \ | |
torch.nn.parameter.Parameter(move(child.bias, get_accelerator().current_device_name())), self.mp_group) | |
else: | |
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size] | |
# else [weight_shape[0] // mp_size, weight_shape[1]] | |
if self.conv_linear_layer: | |
child.weight.data = child.weight.data.transpose(-1, -2).contiguous() | |
if require_tp_fused_qkvw(name, self.mp_size): | |
#Check and handle fused qkv for TP | |
#The copy is a regular copy, The shape of dst and src is the same | |
data_dc = move( | |
prepare_tp_fused_qkvw(self.module, child.weight.data, self.mp_size, mp_replace.gpu_index), | |
get_accelerator().current_device_name()) | |
bias_data_dc = None if child.bias is None else move( | |
prepare_tp_fused_qkvw(self.module, child.bias.data, self.mp_size, mp_replace.gpu_index), | |
get_accelerator().current_device_name()) | |
else: | |
data = child.weight.data.split(get_shard_size_list(weight_shape[0], self.mp_size, name), | |
dim=1 if self.conv_linear_layer else 0) | |
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach() | |
del data | |
if child.bias is not None: | |
bias_data = child.bias.data.split(get_shard_size_list( | |
weight_shape[1] if self.conv_linear_layer else weight_shape[0], self.mp_size, name), | |
dim=0) | |
bias_data = move(bias_data[mp_replace.gpu_index], get_accelerator().current_device_name()) | |
bias_data_dc = torch.nn.parameter.Parameter(bias_data, requires_grad=False) | |
del bias_data | |
else: | |
bias_data_dc = None | |
setattr(child, "replaced", True) | |
return LinearLayer(weight=torch.nn.parameter.Parameter(data_dc, requires_grad=False), bias=bias_data_dc) | |
def _slice_embedding(self, child, name, conv_linear_layer): | |
if getattr(child, "replaced", False) == True: | |
return | |
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group) | |
if hasattr(child.weight, 'ds_tensor'): | |
data = child.weight.ds_tensor.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size), dim=1) | |
else: | |
data = child.weight.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size, name), dim=1) | |
data = data[mp_replace.gpu_index].to(get_accelerator().current_device_name()) | |
data = torch.nn.parameter.Parameter(data, requires_grad=False) | |
new_embedding = nn.Embedding(child.weight.shape[0], get_shard_size(child.weight.shape[1], self.mp_size, name)) | |
new_embedding.weight.data.copy_(data) | |
setattr(child, "replaced", True) | |
return new_embedding | |
def update_mp_params(self, child): | |
if getattr(child, "replaced", False) == True: | |
return | |
for param in [ | |
"n_heads", "inner_dim", "num_heads", "num_kv", "num_attention_heads", "num_attn_heads", | |
"all_head_size", "embed_dim", "hidden_size", "num_key_value_heads", "num_kv_heads", "kv_n_heads", | |
"d_model" | |
]: | |
if hasattr(child, param): | |
param_val = getattr(child, param) | |
setattr(child, param, get_shard_size(param_val, self.mp_size)) | |
setattr(child, "replaced", True) | |
def update_linear_policies(self): | |
self.conv_linear_layer = False | |
if self.linear_layer_setting is not None: | |
self.linear_policies = {self.linear_layer_setting[0]: self._replace} | |
if len(self.linear_layer_setting) == 2: | |
self.linear_policies.update({self.linear_layer_setting[1]: self._slice_embedding}) | |
else: | |
import transformers | |
if self.orig_layer_impl is transformers.models.gpt2.modeling_gpt2.GPT2Block: | |
try: | |
self.conv_linear_layer = True | |
self.linear_policies = {transformers.pytorch_utils.Conv1D: self._replace} | |
except ImportError: | |
self.linear_policies = {nn.Linear: self._replace} | |
else: | |
self.linear_policies = {nn.Linear: self._replace, nn.Embedding: self._slice_embedding} | |
def _replace_module(self, r_module, prev_name='', prev_class_name=''): | |
for name, child in r_module.named_children(): | |
if prev_class_name == "": | |
class_name = prev_name | |
elif prev_name == "": | |
class_name = prev_class_name | |
else: | |
class_name = prev_class_name + '.' + prev_name | |
checking_key = self.prefix + '.' + class_name + '.' + name + '.' if class_name != "" else self.prefix + '.' + name + '.' | |
if Loading.is_load_module(child) and self.state_dict is not None: | |
if any(checking_key in item for item in self.state_dict): | |
Loading.load(child, self.state_dict, checking_key, self.mp_group) | |
else: | |
continue | |
if len(child._buffers) != 0 and self.state_dict is not None: | |
Loading.load_buffer(child, self.state_dict, checking_key) | |
if child.__class__ in self.linear_policies: | |
setattr(r_module, name, self.linear_policies[child.__class__](child, prev_name + '.' + name, | |
self.conv_linear_layer)) | |
elif any(isinstance(child, lp) for lp in self.linear_policies): | |
# Added for falcon model support | |
# Note: isinstance will account for class inheritance, child.__class__ does not | |
key = None | |
for lp in self.linear_policies: | |
if isinstance(child, lp): | |
key = lp | |
break | |
assert key is not None | |
setattr(r_module, name, self.linear_policies[key](child, prev_name + '.' + name, | |
self.conv_linear_layer)) | |
else: | |
self.update_mp_params(child) | |
self._replace_module(child, name, class_name) | |
return r_module | |
def get_model_num_kv_heads(self, config): | |
num_kv_heads = None | |
kv_head_names = ['num_kv_heads', 'num_key_value_heads', 'num_attention_heads', 'n_heads'] | |
for name in kv_head_names: | |
if hasattr(config, name): | |
num_kv_heads = getattr(config, name) | |
if num_kv_heads is not None: | |
break | |
return num_kv_heads | |
def _replace_last_linear_module(self, r_module): | |
if hasattr(r_module, "lm_head"): | |
name = "lm_head" | |
child = r_module.lm_head | |
elif hasattr(r_module, "embed_out"): | |
name = "embed_out" | |
child = r_module.embed_out | |
else: | |
return r_module | |
if child.__class__ in self.linear_policies: | |
setattr(r_module, name, self.linear_policies[child.__class__](child, name, self.conv_linear_layer)) | |
return r_module | |