peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/evaluator
/token_classification.py
# Copyright 2022 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union | |
from datasets import ClassLabel, Dataset, Sequence | |
from typing_extensions import Literal | |
from ..module import EvaluationModule | |
from ..utils.file_utils import add_end_docstrings, add_start_docstrings | |
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator | |
from .utils import DatasetColumn | |
if TYPE_CHECKING: | |
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel | |
TASK_DOCUMENTATION = r""" | |
The dataset input and label columns are expected to be formatted as a list of words and a list of labels respectively, following [conll2003 dataset](https://huggingface.co/datasets/conll2003). Datasets whose inputs are single strings, and labels are a list of offset are not supported. | |
Examples: | |
```python | |
>>> from evaluate import evaluator | |
>>> from datasets import load_dataset | |
>>> task_evaluator = evaluator("token-classification") | |
>>> data = load_dataset("conll2003", split="validation[:2]") | |
>>> results = task_evaluator.compute( | |
>>> model_or_pipeline="elastic/distilbert-base-uncased-finetuned-conll03-english", | |
>>> data=data, | |
>>> metric="seqeval", | |
>>> ) | |
``` | |
<Tip> | |
For example, the following dataset format is accepted by the evaluator: | |
```python | |
dataset = Dataset.from_dict( | |
mapping={ | |
"tokens": [["New", "York", "is", "a", "city", "and", "Felix", "a", "person", "."]], | |
"ner_tags": [[1, 2, 0, 0, 0, 0, 3, 0, 0, 0]], | |
}, | |
features=Features({ | |
"tokens": Sequence(feature=Value(dtype="string")), | |
"ner_tags": Sequence(feature=ClassLabel(names=["O", "B-LOC", "I-LOC", "B-PER", "I-PER"])), | |
}), | |
) | |
``` | |
</Tip> | |
<Tip warning={true}> | |
For example, the following dataset format is **not** accepted by the evaluator: | |
```python | |
dataset = Dataset.from_dict( | |
mapping={ | |
"tokens": [["New York is a city and Felix a person."]], | |
"starts": [[0, 23]], | |
"ends": [[7, 27]], | |
"ner_tags": [["LOC", "PER"]], | |
}, | |
features=Features({ | |
"tokens": Value(dtype="string"), | |
"starts": Sequence(feature=Value(dtype="int32")), | |
"ends": Sequence(feature=Value(dtype="int32")), | |
"ner_tags": Sequence(feature=Value(dtype="string")), | |
}), | |
) | |
``` | |
</Tip> | |
""" | |
class TokenClassificationEvaluator(Evaluator): | |
""" | |
Token classification evaluator. | |
This token classification evaluator can currently be loaded from [`evaluator`] using the default task name | |
`token-classification`. | |
Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`]. | |
""" | |
PIPELINE_KWARGS = {"ignore_labels": []} | |
def __init__(self, task="token-classification", default_metric_name=None): | |
super().__init__(task, default_metric_name=default_metric_name) | |
def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str): | |
""" | |
Transform the pipeline predictions into a list of predicted labels of the same length as the true labels. | |
Args: | |
predictions (`List[List[Dict]]`): | |
List of pipeline predictions, where each token has been labeled. | |
words (`List[List[str]]`): | |
Original input data to the pipeline, used to build predicted labels of the same length. | |
join_by (`str`): | |
String to use to join two words. In English, it will typically be " ". | |
Returns: | |
`dict`: a dictionary holding the predictions | |
""" | |
preds = [] | |
# iterate over the data rows | |
for i, prediction in enumerate(predictions): | |
pred_processed = [] | |
# get a list of tuples giving the indexes of the start and end character of each word | |
words_offsets = self.words_to_offsets(words[i], join_by) | |
token_index = 0 | |
for word_offset in words_offsets: | |
# for each word, we may keep only the predicted label for the first token, discard the others | |
while prediction[token_index]["start"] < word_offset[0]: | |
token_index += 1 | |
if prediction[token_index]["start"] > word_offset[0]: # bad indexing | |
pred_processed.append("O") | |
elif prediction[token_index]["start"] == word_offset[0]: | |
pred_processed.append(prediction[token_index]["entity"]) | |
preds.append(pred_processed) | |
return {"predictions": preds} | |
def words_to_offsets(self, words: List[str], join_by: str): | |
""" | |
Convert a list of words to a list of offsets, where word are joined by `join_by`. | |
Args: | |
words (`List[str]`): | |
List of words to get offsets from. | |
join_by (`str`): | |
String to insert between words. | |
Returns: | |
`List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words. | |
""" | |
offsets = [] | |
start = 0 | |
for word in words: | |
end = start + len(word) - 1 | |
offsets.append((start, end)) | |
start = end + len(join_by) + 1 | |
return offsets | |
def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str): | |
super().prepare_data(data, input_column, label_column) | |
if not isinstance(data.features[input_column], Sequence) or not isinstance( | |
data.features[label_column], Sequence | |
): | |
raise ValueError( | |
"TokenClassificationEvaluator expects the input and label columns to be provided as lists." | |
) | |
# If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. | |
# Otherwise, we have to get the list of labels manually. | |
labels_are_int = isinstance(data.features[label_column].feature, ClassLabel) | |
if labels_are_int: | |
label_list = data.features[label_column].feature.names # list of string labels | |
id_to_label = {i: label for i, label in enumerate(label_list)} | |
references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]] | |
elif data.features[label_column].feature.dtype.startswith("int"): | |
raise NotImplementedError( | |
"References provided as integers, but the reference column is not a Sequence of ClassLabels." | |
) | |
else: | |
# In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings | |
# An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset | |
references = data[label_column] | |
metric_inputs = {"references": references} | |
data = data.map(lambda x: {input_column: join_by.join(x[input_column])}) | |
pipeline_inputs = DatasetColumn(data, input_column) | |
return metric_inputs, pipeline_inputs | |
def prepare_pipeline( | |
self, | |
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 | |
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 | |
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 | |
device: int = None, | |
): | |
pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device) | |
# check the pipeline outputs start characters in its predictions | |
dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS) | |
if dummy_output[0][0]["start"] is None: | |
raise ValueError( | |
"TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). " | |
"Transformers pipelines with a slow tokenizer will raise this error." | |
) | |
return pipe | |
def compute( | |
self, | |
model_or_pipeline: Union[ | |
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 | |
] = None, | |
data: Union[str, Dataset] = None, | |
subset: Optional[str] = None, | |
split: str = None, | |
metric: Union[str, EvaluationModule] = None, | |
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 | |
strategy: Literal["simple", "bootstrap"] = "simple", | |
confidence_level: float = 0.95, | |
n_resamples: int = 9999, | |
device: Optional[int] = None, | |
random_state: Optional[int] = None, | |
input_column: str = "tokens", | |
label_column: str = "ner_tags", | |
join_by: Optional[str] = " ", | |
) -> Tuple[Dict[str, float], Any]: | |
""" | |
input_column (`str`, defaults to `"tokens"`): | |
The name of the column containing the tokens feature in the dataset specified by `data`. | |
label_column (`str`, defaults to `"label"`): | |
The name of the column containing the labels in the dataset specified by `data`. | |
join_by (`str`, *optional*, defaults to `" "`): | |
This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join | |
words to generate a string input. This is especially useful for languages that do not separate words by a space. | |
""" | |
result = {} | |
self.check_for_mismatch_in_device_setup(device, model_or_pipeline) | |
# Prepare inputs | |
data = self.load_data(data=data, subset=subset, split=split) | |
metric_inputs, pipe_inputs = self.prepare_data( | |
data=data, input_column=input_column, label_column=label_column, join_by=join_by | |
) | |
pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) | |
metric = self.prepare_metric(metric) | |
# Compute predictions | |
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) | |
predictions = self.predictions_processor(predictions, data[input_column], join_by) | |
metric_inputs.update(predictions) | |
# Compute metrics from references and predictions | |
metric_results = self.compute_metric( | |
metric=metric, | |
metric_inputs=metric_inputs, | |
strategy=strategy, | |
confidence_level=confidence_level, | |
n_resamples=n_resamples, | |
random_state=random_state, | |
) | |
result.update(metric_results) | |
result.update(perf_results) | |
return result | |