peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/module.py
# Copyright 2020 The HuggingFace Datasets Authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
""" EvaluationModule base class.""" | |
import collections | |
import itertools | |
import os | |
import types | |
import uuid | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import pyarrow as pa | |
from datasets import DatasetInfo, DownloadConfig, DownloadManager | |
from datasets.arrow_dataset import Dataset | |
from datasets.arrow_reader import ArrowReader | |
from datasets.arrow_writer import ArrowWriter | |
from datasets.features import Features, Sequence, Value | |
from datasets.features.features import _check_non_null_non_empty_recursive | |
from datasets.utils.filelock import BaseFileLock, FileLock, Timeout | |
from datasets.utils.py_utils import copyfunc, temp_seed, zip_dict | |
from . import config | |
from .info import EvaluationModuleInfo | |
from .naming import camelcase_to_snakecase | |
from .utils.logging import get_logger | |
logger = get_logger(__name__) | |
class FileFreeLock(BaseFileLock): | |
"""Thread lock until a file **cannot** be locked""" | |
def __init__(self, lock_file, *args, **kwargs): | |
self.filelock = FileLock(lock_file) | |
super().__init__(lock_file, *args, **kwargs) | |
def _acquire(self): | |
try: | |
self.filelock.acquire(timeout=0.01, poll_intervall=0.02) # Try to lock once | |
except Timeout: | |
# We couldn't acquire the lock, the file is locked! | |
self._lock_file_fd = self.filelock.lock_file | |
else: | |
# We were able to acquire the lock, the file is not yet locked! | |
self.filelock.release() | |
self._lock_file_fd = None | |
def _release(self): | |
self._lock_file_fd = None | |
# lists - summarize long lists similarly to NumPy | |
# arrays/tensors - let the frameworks control formatting | |
def summarize_if_long_list(obj): | |
if not type(obj) == list or len(obj) <= 6: | |
return f"{obj}" | |
def format_chunk(chunk): | |
return ", ".join(repr(x) for x in chunk) | |
return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]" | |
class EvaluationModuleInfoMixin: | |
"""This base class exposes some attributes of EvaluationModuleInfo | |
at the base level of the EvaluationModule for easy access. | |
""" | |
def __init__(self, info: EvaluationModuleInfo): | |
self._module_info = info | |
def info(self): | |
""":class:`evaluate.EvaluationModuleInfo` object containing all the metadata in the evaluation module.""" | |
return self._module_info | |
def name(self) -> str: | |
return self._module_info.module_name | |
def experiment_id(self) -> Optional[str]: | |
return self._module_info.experiment_id | |
def description(self) -> str: | |
return self._module_info.description | |
def citation(self) -> str: | |
return self._module_info.citation | |
def features(self) -> Features: | |
return self._module_info.features | |
def inputs_description(self) -> str: | |
return self._module_info.inputs_description | |
def homepage(self) -> Optional[str]: | |
return self._module_info.homepage | |
def license(self) -> str: | |
return self._module_info.license | |
def codebase_urls(self) -> Optional[List[str]]: | |
return self._module_info.codebase_urls | |
def reference_urls(self) -> Optional[List[str]]: | |
return self._module_info.reference_urls | |
def streamable(self) -> bool: | |
return self._module_info.streamable | |
def format(self) -> Optional[str]: | |
return self._module_info.format | |
def module_type(self) -> str: | |
return self._module_info.module_type | |
class EvaluationModule(EvaluationModuleInfoMixin): | |
"""A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements. | |
Args: | |
config_name (`str`): | |
This is used to define a hash specific to a module computation script and prevents the module's data | |
to be overridden when the module loading script is modified. | |
keep_in_memory (`bool`): | |
Keep all predictions and references in memory. Not possible in distributed settings. | |
cache_dir (`str`): | |
Path to a directory in which temporary prediction/references data will be stored. | |
The data directory should be located on a shared file-system in distributed setups. | |
num_process (`int`): | |
Specify the total number of nodes in a distributed settings. | |
This is useful to compute module in distributed setups (in particular non-additive modules like F1). | |
process_id (`int`): | |
Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
This is useful to compute module in distributed setups (in particular non-additive metrics like F1). | |
seed (`int`, optional): | |
If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run. | |
experiment_id (`str`): | |
A specific experiment id. This is used if several distributed evaluations share the same file system. | |
This is useful to compute module in distributed setups (in particular non-additive metrics like F1). | |
hash (`str`): | |
Used to identify the evaluation module according to the hashed file contents. | |
max_concurrent_cache_files (`int`): | |
Max number of concurrent module cache files (default `10000`). | |
timeout (`Union[int, float]`): | |
Timeout in second for distributed setting synchronization. | |
""" | |
def __init__( | |
self, | |
config_name: Optional[str] = None, | |
keep_in_memory: bool = False, | |
cache_dir: Optional[str] = None, | |
num_process: int = 1, | |
process_id: int = 0, | |
seed: Optional[int] = None, | |
experiment_id: Optional[str] = None, | |
hash: str = None, | |
max_concurrent_cache_files: int = 10000, | |
timeout: Union[int, float] = 100, | |
**kwargs, | |
): | |
# prepare info | |
self.config_name = config_name or "default" | |
info = self._info() | |
info.module_name = camelcase_to_snakecase(self.__class__.__name__) | |
info.config_name = self.config_name | |
info.experiment_id = experiment_id or "default_experiment" | |
EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level | |
# Safety checks on num_process and process_id | |
if not isinstance(process_id, int) or process_id < 0: | |
raise ValueError("'process_id' should be a number greater than 0") | |
if not isinstance(num_process, int) or num_process <= process_id: | |
raise ValueError("'num_process' should be a number greater than process_id") | |
if keep_in_memory and num_process != 1: | |
raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).") | |
self.num_process = num_process | |
self.process_id = process_id | |
self.max_concurrent_cache_files = max_concurrent_cache_files | |
self.keep_in_memory = keep_in_memory | |
self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE) | |
self.data_dir = self._build_data_dir() | |
if seed is None: | |
_, seed, pos, *_ = np.random.get_state() | |
self.seed: int = seed[pos] if pos < 624 else seed[0] | |
else: | |
self.seed: int = seed | |
self.timeout: Union[int, float] = timeout | |
# Update 'compute' and 'add' docstring | |
# methods need to be copied otherwise it changes the docstrings of every instance | |
self.compute = types.MethodType(copyfunc(self.compute), self) | |
self.add_batch = types.MethodType(copyfunc(self.add_batch), self) | |
self.add = types.MethodType(copyfunc(self.add), self) | |
self.compute.__func__.__doc__ += self.info.inputs_description | |
self.add_batch.__func__.__doc__ += self.info.inputs_description | |
self.add.__func__.__doc__ += self.info.inputs_description | |
# self.arrow_schema = pa.schema(field for field in self.info.features.type) | |
self.selected_feature_format = None | |
self.buf_writer = None | |
self.writer = None | |
self.writer_batch_size = None | |
self.data = None | |
# This is the cache file we store our predictions/references in | |
# Keep it None for now so we can (cloud)pickle the object | |
self.cache_file_name = None | |
self.filelock = None | |
self.rendez_vous_lock = None | |
# This is all the cache files on which we have a lock when we are in a distributed setting | |
self.file_paths = None | |
self.filelocks = None | |
# This fingerprints the evaluation module according to the hashed contents of the module code | |
self._hash = hash | |
def __len__(self): | |
"""Return the number of examples (predictions or predictions/references pair) | |
currently stored in the evaluation module's cache. | |
""" | |
return 0 if self.writer is None else len(self.writer) | |
def __repr__(self): | |
return ( | |
f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", ' | |
f'features: {self.features}, usage: """{self.inputs_description}""", ' | |
f"stored examples: {len(self)})" | |
) | |
def _build_data_dir(self): | |
"""Path of this evaluation module in cache_dir: | |
Will be: | |
self._data_dir_root/self.name/self.config_name/self.hash (if not none)/ | |
If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. | |
""" | |
builder_data_dir = self._data_dir_root | |
builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name) | |
os.makedirs(builder_data_dir, exist_ok=True) | |
return builder_data_dir | |
def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]: | |
"""Create a new cache file. If the default cache file is used, we generated a new hash.""" | |
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow") | |
filelock = None | |
for i in range(self.max_concurrent_cache_files): | |
filelock = FileLock(file_path + ".lock") | |
try: | |
filelock.acquire(timeout=timeout) | |
except Timeout: | |
# If we have reached the max number of attempts or we are not allow to find a free name (distributed setup) | |
# We raise an error | |
if self.num_process != 1: | |
raise ValueError( | |
f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. " | |
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " | |
f"between distributed evaluation module instances." | |
) from None | |
if i == self.max_concurrent_cache_files - 1: | |
raise ValueError( | |
f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system." | |
f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module " | |
f"(current value is {self.max_concurrent_cache_files})." | |
) from None | |
# In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name. | |
file_uuid = str(uuid.uuid4()) | |
file_path = os.path.join( | |
self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow" | |
) | |
else: | |
break | |
return file_path, filelock | |
def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]: | |
"""Get a lock on all the cache files in a distributed setup. | |
We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds). | |
""" | |
if self.num_process == 1: | |
if self.cache_file_name is None: | |
raise ValueError( | |
"Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` " | |
"at least once before calling `compute`." | |
) | |
file_paths = [self.cache_file_name] | |
else: | |
file_paths = [ | |
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow") | |
for process_id in range(self.num_process) | |
] | |
# Let's acquire a lock on each process files to be sure they are finished writing | |
filelocks = [] | |
for process_id, file_path in enumerate(file_paths): | |
if process_id == 0: # process 0 already has its lock file | |
filelocks.append(self.filelock) | |
else: | |
filelock = FileLock(file_path + ".lock") | |
try: | |
filelock.acquire(timeout=self.timeout) | |
except Timeout: | |
raise ValueError( | |
f"Cannot acquire lock on cached file {file_path} for process {process_id}." | |
) from None | |
else: | |
filelocks.append(filelock) | |
return file_paths, filelocks | |
def _check_all_processes_locks(self): | |
expected_lock_file_names = [ | |
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock") | |
for process_id in range(self.num_process) | |
] | |
for expected_lock_file_name in expected_lock_file_names: | |
nofilelock = FileFreeLock(expected_lock_file_name) | |
try: | |
nofilelock.acquire(timeout=self.timeout) | |
except Timeout: | |
raise ValueError( | |
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." | |
) from None | |
else: | |
nofilelock.release() | |
def _check_rendez_vous(self): | |
expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock") | |
nofilelock = FileFreeLock(expected_lock_file_name) | |
try: | |
nofilelock.acquire(timeout=self.timeout) | |
except Timeout: | |
raise ValueError( | |
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." | |
) from None | |
else: | |
nofilelock.release() | |
lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") | |
rendez_vous_lock = FileLock(lock_file_name) | |
try: | |
rendez_vous_lock.acquire(timeout=self.timeout) | |
except Timeout: | |
raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None | |
else: | |
rendez_vous_lock.release() | |
def _finalize(self): | |
"""Close all the writing process and load/gather the data | |
from all the nodes if main node or all_process is True. | |
""" | |
if self.writer is not None: | |
self.writer.finalize() | |
self.writer = None | |
# release the locks of the processes > 0 so that process 0 can lock them to read + delete the data | |
if self.filelock is not None and self.process_id > 0: | |
self.filelock.release() | |
if self.keep_in_memory: | |
# Read the predictions and references | |
reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format)) | |
self.data = Dataset.from_buffer(self.buf_writer.getvalue()) | |
elif self.process_id == 0: | |
# Let's acquire a lock on each node files to be sure they are finished writing | |
file_paths, filelocks = self._get_all_cache_files() | |
# Read the predictions and references | |
try: | |
reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format)) | |
self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths])) | |
except FileNotFoundError: | |
raise ValueError( | |
"Error in finalize: another evaluation module instance is already using the local cache file. " | |
"Please specify an experiment_id to avoid collision between distributed evaluation module instances." | |
) from None | |
# Store file paths and locks and we will release/delete them after the computation. | |
self.file_paths = file_paths | |
self.filelocks = filelocks | |
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: | |
"""Compute the evaluation module. | |
Usage of positional arguments is not allowed to prevent mistakes. | |
Args: | |
predictions (`list/array/tensor`, *optional*): | |
Predictions. | |
references (`list/array/tensor`, *optional*): | |
References. | |
**kwargs (optional): | |
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] | |
method (see details in the docstring). | |
Return: | |
`dict` or `None` | |
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). | |
- `None` if the evaluation module is not run on the main process (`process_id != 0`). | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) | |
``` | |
""" | |
all_kwargs = {"predictions": predictions, "references": references, **kwargs} | |
if predictions is None and references is None: | |
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} | |
all_kwargs.update(missing_kwargs) | |
else: | |
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] | |
if missing_inputs: | |
raise ValueError( | |
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" | |
) | |
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} | |
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} | |
if any(v is not None for v in inputs.values()): | |
self.add_batch(**inputs) | |
self._finalize() | |
self.cache_file_name = None | |
self.filelock = None | |
self.selected_feature_format = None | |
if self.process_id == 0: | |
self.data.set_format(type=self.info.format) | |
inputs = {input_name: self.data[input_name] for input_name in self._feature_names()} | |
with temp_seed(self.seed): | |
output = self._compute(**inputs, **compute_kwargs) | |
if self.buf_writer is not None: | |
self.buf_writer = None | |
del self.data | |
self.data = None | |
else: | |
# Release locks and delete all the cache files. Process 0 is released last. | |
for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))): | |
logger.info(f"Removing {file_path}") | |
del self.data | |
self.data = None | |
del self.writer | |
self.writer = None | |
os.remove(file_path) | |
filelock.release() | |
return output | |
else: | |
return None | |
def add_batch(self, *, predictions=None, references=None, **kwargs): | |
"""Add a batch of predictions and references for the evaluation module's stack. | |
Args: | |
predictions (`list/array/tensor`, *optional*): | |
Predictions. | |
references (`list/array/tensor`, *optional*): | |
References. | |
Example: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): | |
... accuracy.add_batch(references=refs, predictions=preds) | |
``` | |
""" | |
bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] | |
if bad_inputs: | |
raise ValueError( | |
f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" | |
) | |
batch = {"predictions": predictions, "references": references, **kwargs} | |
batch = {input_name: batch[input_name] for input_name in self._feature_names()} | |
if self.writer is None: | |
self.selected_feature_format = self._infer_feature_from_batch(batch) | |
self._init_writer() | |
try: | |
for key, column in batch.items(): | |
if len(column) > 0: | |
self._enforce_nested_string_type(self.selected_feature_format[key], column[0]) | |
batch = self.selected_feature_format.encode_batch(batch) | |
self.writer.write_batch(batch) | |
except (pa.ArrowInvalid, TypeError): | |
if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch): | |
col0 = next(iter(batch)) | |
bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0] | |
error_msg = ( | |
f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})" | |
) | |
elif set(self.selected_feature_format) != {"references", "predictions"}: | |
error_msg = ( | |
f"Module inputs don't match the expected format.\n" | |
f"Expected format: {self.selected_feature_format },\n" | |
) | |
error_msg_inputs = ",\n".join( | |
f"Input {input_name}: {summarize_if_long_list(batch[input_name])}" | |
for input_name in self.selected_feature_format | |
) | |
error_msg += error_msg_inputs | |
else: | |
error_msg = ( | |
f"Predictions and/or references don't match the expected format.\n" | |
f"Expected format: {self.selected_feature_format },\n" | |
f"Input predictions: {summarize_if_long_list(predictions)},\n" | |
f"Input references: {summarize_if_long_list(references)}" | |
) | |
raise ValueError(error_msg) from None | |
def add(self, *, prediction=None, reference=None, **kwargs): | |
"""Add one prediction and reference for the evaluation module's stack. | |
Args: | |
prediction (`list/array/tensor`, *optional*): | |
Predictions. | |
reference (`list/array/tensor`, *optional*): | |
References. | |
Example: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> accuracy.add(references=[0,1], predictions=[1,0]) | |
``` | |
""" | |
bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] | |
if bad_inputs: | |
raise ValueError( | |
f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" | |
) | |
example = {"predictions": prediction, "references": reference, **kwargs} | |
example = {input_name: example[input_name] for input_name in self._feature_names()} | |
if self.writer is None: | |
self.selected_feature_format = self._infer_feature_from_example(example) | |
self._init_writer() | |
try: | |
self._enforce_nested_string_type(self.selected_feature_format, example) | |
example = self.selected_feature_format.encode_example(example) | |
self.writer.write(example) | |
except (pa.ArrowInvalid, TypeError): | |
error_msg = ( | |
f"Evaluation module inputs don't match the expected format.\n" | |
f"Expected format: {self.selected_feature_format},\n" | |
) | |
error_msg_inputs = ",\n".join( | |
f"Input {input_name}: {summarize_if_long_list(example[input_name])}" | |
for input_name in self.selected_feature_format | |
) | |
error_msg += error_msg_inputs | |
raise ValueError(error_msg) from None | |
def _infer_feature_from_batch(self, batch): | |
if isinstance(self.features, Features): | |
return self.features | |
else: | |
example = dict([(k, v[0]) for k, v in batch.items()]) | |
return self._infer_feature_from_example(example) | |
def _infer_feature_from_example(self, example): | |
if isinstance(self.features, Features): | |
return self.features | |
else: | |
for features in self.features: | |
try: | |
self._enforce_nested_string_type(features, example) | |
features.encode_example(example) | |
return features | |
except (ValueError, TypeError): | |
continue | |
feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)]) | |
error_msg = ( | |
f"Predictions and/or references don't match the expected format.\n" | |
f"Expected format:\n{feature_strings},\n" | |
f"Input predictions: {summarize_if_long_list(example['predictions'])},\n" | |
f"Input references: {summarize_if_long_list(example['references'])}" | |
) | |
raise ValueError(error_msg) from None | |
def _feature_names(self): | |
if isinstance(self.features, list): | |
feature_names = list(self.features[0].keys()) | |
else: | |
feature_names = list(self.features.keys()) | |
return feature_names | |
def _init_writer(self, timeout=1): | |
if self.num_process > 1: | |
if self.process_id == 0: | |
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") | |
self.rendez_vous_lock = FileLock(file_path) | |
try: | |
self.rendez_vous_lock.acquire(timeout=timeout) | |
except TimeoutError: | |
raise ValueError( | |
f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. " | |
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " | |
f"between distributed evaluation module instances." | |
) from None | |
if self.keep_in_memory: | |
self.buf_writer = pa.BufferOutputStream() | |
self.writer = ArrowWriter( | |
features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size | |
) | |
else: | |
self.buf_writer = None | |
# Get cache file name and lock it | |
if self.cache_file_name is None or self.filelock is None: | |
cache_file_name, filelock = self._create_cache_file() # get ready | |
self.cache_file_name = cache_file_name | |
self.filelock = filelock | |
self.writer = ArrowWriter( | |
features=self.selected_feature_format, | |
path=self.cache_file_name, | |
writer_batch_size=self.writer_batch_size, | |
) | |
# Setup rendez-vous here if | |
if self.num_process > 1: | |
if self.process_id == 0: | |
self._check_all_processes_locks() # wait for everyone to be ready | |
self.rendez_vous_lock.release() # let everyone go | |
else: | |
self._check_rendez_vous() # wait for master to be ready and to let everyone go | |
def _info(self) -> EvaluationModuleInfo: | |
"""Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details. | |
Warning: This function is only called once and the result is cached for all | |
following .info() calls. | |
Returns: | |
info: (EvaluationModuleInfo) The EvaluationModule information | |
""" | |
raise NotImplementedError | |
def download_and_prepare( | |
self, | |
download_config: Optional[DownloadConfig] = None, | |
dl_manager: Optional[DownloadManager] = None, | |
): | |
"""Downloads and prepares evaluation module for reading. | |
Args: | |
download_config ([`DownloadConfig`], *optional*): | |
Specific download configuration parameters. | |
dl_manager ([`DownloadManager`], *optional*): | |
Specific download manager to use. | |
Example: | |
```py | |
>>> import evaluate | |
``` | |
""" | |
if dl_manager is None: | |
if download_config is None: | |
download_config = DownloadConfig() | |
download_config.cache_dir = os.path.join(self.data_dir, "downloads") | |
download_config.force_download = False | |
dl_manager = DownloadManager( | |
dataset_name=self.name, download_config=download_config, data_dir=self.data_dir | |
) | |
self._download_and_prepare(dl_manager) | |
def _download_and_prepare(self, dl_manager): | |
"""Downloads and prepares resources for the evaluation module. | |
This is the internal implementation to overwrite called when user calls | |
`download_and_prepare`. It should download all required resources for the evaluation module. | |
Args: | |
dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data. | |
""" | |
return None | |
def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]: | |
"""This method defines the common API for all the evaluation module in the library""" | |
raise NotImplementedError | |
def __del__(self): | |
if hasattr(self, "filelock") and self.filelock is not None: | |
self.filelock.release() | |
if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None: | |
self.rendez_vous_lock.release() | |
if hasattr(self, "writer"): # in case it was already deleted | |
del self.writer | |
if hasattr(self, "data"): # in case it was already deleted | |
del self.data | |
def _enforce_nested_string_type(self, schema, obj): | |
""" | |
Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string. | |
Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error. | |
""" | |
# Nested structures: we allow dict, list, tuples, sequences | |
if isinstance(schema, dict): | |
return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)] | |
elif isinstance(schema, (list, tuple)): | |
sub_schema = schema[0] | |
return [self._enforce_nested_string_type(sub_schema, o) for o in obj] | |
elif isinstance(schema, Sequence): | |
# We allow to reverse list of dict => dict of list for compatiblity with tfds | |
if isinstance(schema.feature, dict): | |
if isinstance(obj, (list, tuple)): | |
# obj is a list of dict | |
for k, dict_tuples in zip_dict(schema.feature, *obj): | |
for sub_obj in dict_tuples[1:]: | |
if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]): | |
self._enforce_nested_string_type(dict_tuples[0], sub_obj) | |
break | |
return None | |
else: | |
# obj is a single dict | |
for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj): | |
for sub_obj in sub_objs: | |
if _check_non_null_non_empty_recursive(sub_obj, sub_schema): | |
self._enforce_nested_string_type(sub_schema, sub_obj) | |
break | |
return None | |
# schema.feature is not a dict | |
if isinstance(obj, str): # don't interpret a string as a list | |
raise ValueError(f"Got a string but expected a list instead: '{obj}'") | |
if obj is None: | |
return None | |
else: | |
if len(obj) > 0: | |
for first_elmt in obj: | |
if _check_non_null_non_empty_recursive(first_elmt, schema.feature): | |
break | |
if not isinstance(first_elmt, list): | |
return self._enforce_nested_string_type(schema.feature, first_elmt) | |
elif isinstance(schema, Value): | |
if pa.types.is_string(schema.pa_type) and not isinstance(obj, str): | |
raise TypeError(f"Expected type str but got {type(obj)}.") | |
class Metric(EvaluationModule): | |
"""A Metric is the base class and common API for all metrics. | |
Args: | |
config_name (`str`): | |
This is used to define a hash specific to a metric computation script and prevents the metric's data | |
to be overridden when the metric loading script is modified. | |
keep_in_memory (`bool`): | |
Keep all predictions and references in memory. Not possible in distributed settings. | |
cache_dir (`str`): | |
Path to a directory in which temporary prediction/references data will be stored. | |
The data directory should be located on a shared file-system in distributed setups. | |
num_process (`int`): | |
Specify the total number of nodes in a distributed settings. | |
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
process_id (`int`): | |
Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
seed (`int`, *optional*): | |
If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run. | |
experiment_id (`str`): | |
A specific experiment id. This is used if several distributed evaluations share the same file system. | |
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
max_concurrent_cache_files (`int`): | |
Max number of concurrent metric cache files (default `10000`). | |
timeout (`Union[int, float]`): | |
Timeout in second for distributed setting synchronization. | |
""" | |
class Comparison(EvaluationModule): | |
"""A Comparison is the base class and common API for all comparisons. | |
Args: | |
config_name (`str`): | |
This is used to define a hash specific to a comparison computation script and prevents the comparison's data | |
to be overridden when the comparison loading script is modified. | |
keep_in_memory (`bool`): | |
Keep all predictions and references in memory. Not possible in distributed settings. | |
cache_dir (`str`): | |
Path to a directory in which temporary prediction/references data will be stored. | |
The data directory should be located on a shared file-system in distributed setups. | |
num_process (`int`): | |
Specify the total number of nodes in a distributed settings. | |
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
process_id (`int`): | |
Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
seed (`int`, *optional*): | |
If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run. | |
experiment_id (`str`): | |
A specific experiment id. This is used if several distributed evaluations share the same file system. | |
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
max_concurrent_cache_files (`int`): | |
Max number of concurrent comparison cache files (default `10000`). | |
timeout (`Union[int, float]`): | |
Timeout in second for distributed setting synchronization. | |
""" | |
class Measurement(EvaluationModule): | |
"""A Measurement is the base class and common API for all measurements. | |
Args: | |
config_name (`str`): | |
This is used to define a hash specific to a measurement computation script and prevents the measurement's data | |
to be overridden when the measurement loading script is modified. | |
keep_in_memory (`bool`): | |
Keep all predictions and references in memory. Not possible in distributed settings. | |
cache_dir (`str`): | |
Path to a directory in which temporary prediction/references data will be stored. | |
The data directory should be located on a shared file-system in distributed setups. | |
num_process (`int`): | |
Specify the total number of nodes in a distributed settings. | |
This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
process_id (`int`): | |
Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
seed (`int`, *optional*): | |
If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run. | |
experiment_id (`str`): | |
A specific experiment id. This is used if several distributed evaluations share the same file system. | |
This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
max_concurrent_cache_files (`int`): | |
Max number of concurrent measurement cache files (default `10000`). | |
timeout (`Union[int, float]`): | |
Timeout in second for distributed setting synchronization. | |
""" | |
class CombinedEvaluations: | |
def __init__(self, evaluation_modules, force_prefix=False): | |
from .loading import load # avoid circular imports | |
self.evaluation_module_names = None | |
if isinstance(evaluation_modules, list): | |
self.evaluation_modules = evaluation_modules | |
elif isinstance(evaluation_modules, dict): | |
self.evaluation_modules = list(evaluation_modules.values()) | |
self.evaluation_module_names = list(evaluation_modules.keys()) | |
loaded_modules = [] | |
for module in self.evaluation_modules: | |
if isinstance(module, str): | |
module = load(module) | |
loaded_modules.append(module) | |
self.evaluation_modules = loaded_modules | |
if self.evaluation_module_names is None: | |
self.evaluation_module_names = [module.name for module in self.evaluation_modules] | |
self.force_prefix = force_prefix | |
def add(self, prediction=None, reference=None, **kwargs): | |
"""Add one prediction and reference for each evaluation module's stack. | |
Args: | |
predictions (`list/array/tensor`, *optional*): | |
Predictions. | |
references (`list/array/tensor`, *optional*): | |
References. | |
Example: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> f1 = evaluate.load("f1") | |
>>> clf_metrics = combine(["accuracy", "f1"]) | |
>>> for ref, pred in zip([0,1,0,1], [1,0,0,1]): | |
... clf_metrics.add(references=ref, predictions=pred) | |
``` | |
""" | |
for evaluation_module in self.evaluation_modules: | |
batch = {"predictions": prediction, "references": reference, **kwargs} | |
batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} | |
evaluation_module.add(**batch) | |
def add_batch(self, predictions=None, references=None, **kwargs): | |
"""Add a batch of predictions and references for each evaluation module's stack. | |
Args: | |
predictions (`list/array/tensor`, *optional*): | |
Predictions. | |
references (`list/array/tensor`, *optional*): | |
References. | |
Example: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> f1 = evaluate.load("f1") | |
>>> clf_metrics = combine(["accuracy", "f1"]) | |
>>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): | |
... clf_metrics.add(references=refs, predictions=preds) | |
``` | |
""" | |
for evaluation_module in self.evaluation_modules: | |
batch = {"predictions": predictions, "references": references, **kwargs} | |
batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} | |
evaluation_module.add_batch(**batch) | |
def compute(self, predictions=None, references=None, **kwargs): | |
"""Compute each evaluation module. | |
Usage of positional arguments is not allowed to prevent mistakes. | |
Args: | |
predictions (`list/array/tensor`, *optional*): | |
Predictions. | |
references (`list/array/tensor`, *optional*): | |
References. | |
**kwargs (*optional*): | |
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] | |
method (see details in the docstring). | |
Return: | |
`dict` or `None` | |
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). | |
- `None` if the evaluation module is not run on the main process (`process_id != 0`). | |
Example: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> f1 = evaluate.load("f1") | |
>>> clf_metrics = combine(["accuracy", "f1"]) | |
>>> clf_metrics.compute(predictions=[0,1], references=[1,1]) | |
{'accuracy': 0.5, 'f1': 0.6666666666666666} | |
``` | |
""" | |
results = [] | |
for evaluation_module in self.evaluation_modules: | |
batch = {"predictions": predictions, "references": references, **kwargs} | |
results.append(evaluation_module.compute(**batch)) | |
return self._merge_results(results) | |
def _merge_results(self, results): | |
merged_results = {} | |
results_keys = list(itertools.chain.from_iterable([r.keys() for r in results])) | |
duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1} | |
duplicate_names = [ | |
item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1 | |
] | |
duplicate_counter = {name: 0 for name in duplicate_names} | |
for module_name, result in zip(self.evaluation_module_names, results): | |
for k, v in result.items(): | |
if k not in duplicate_keys and not self.force_prefix: | |
merged_results[f"{k}"] = v | |
elif module_name in duplicate_counter: | |
merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v | |
else: | |
merged_results[f"{module_name}_{k}"] = v | |
if module_name in duplicate_counter: | |
duplicate_counter[module_name] += 1 | |
return merged_results | |
def combine(evaluations, force_prefix=False): | |
"""Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that | |
can be used like a single evaluation module. | |
If two scores have the same name, then they are prefixed with their module names. | |
And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix. | |
Args: | |
evaluations (`Union[list, dict]`): | |
A list or dictionary of evaluation modules. The modules can either be passed | |
as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules. | |
The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`. | |
force_prefix (`bool`, *optional*, defaults to `False`): | |
If `True` all scores from the modules are prefixed with their name. If | |
a dictionary is passed the keys are used as name otherwise the module's name. | |
Examples: | |
```py | |
>>> import evaluate | |
>>> accuracy = evaluate.load("accuracy") | |
>>> f1 = evaluate.load("f1") | |
>>> clf_metrics = combine(["accuracy", "f1"]) | |
``` | |
""" | |
return CombinedEvaluations(evaluations, force_prefix=force_prefix) | |