applied-ai-018 commited on
Commit
09e190e
·
verified ·
1 Parent(s): 313f213

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/19.input_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step120/zero/19.input_layernorm.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step120/zero/25.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  5. venv/lib/python3.10/site-packages/sympy/core/__init__.py +100 -0
  6. venv/lib/python3.10/site-packages/sympy/core/_print_helpers.py +65 -0
  7. venv/lib/python3.10/site-packages/sympy/core/assumptions.py +692 -0
  8. venv/lib/python3.10/site-packages/sympy/core/assumptions_generated.py +1615 -0
  9. venv/lib/python3.10/site-packages/sympy/core/basic.py +2233 -0
  10. venv/lib/python3.10/site-packages/sympy/core/cache.py +210 -0
  11. venv/lib/python3.10/site-packages/sympy/core/compatibility.py +35 -0
  12. venv/lib/python3.10/site-packages/sympy/core/containers.py +410 -0
  13. venv/lib/python3.10/site-packages/sympy/core/coreerrors.py +9 -0
  14. venv/lib/python3.10/site-packages/sympy/core/expr.py +0 -0
  15. venv/lib/python3.10/site-packages/sympy/core/exprtools.py +1569 -0
  16. venv/lib/python3.10/site-packages/sympy/core/facts.py +634 -0
  17. venv/lib/python3.10/site-packages/sympy/core/function.py +0 -0
  18. venv/lib/python3.10/site-packages/sympy/core/kind.py +388 -0
  19. venv/lib/python3.10/site-packages/sympy/core/logic.py +427 -0
  20. venv/lib/python3.10/site-packages/sympy/core/mul.py +2195 -0
  21. venv/lib/python3.10/site-packages/sympy/core/multidimensional.py +131 -0
  22. venv/lib/python3.10/site-packages/sympy/core/numbers.py +0 -0
  23. venv/lib/python3.10/site-packages/sympy/core/operations.py +722 -0
  24. venv/lib/python3.10/site-packages/sympy/core/random.py +227 -0
  25. venv/lib/python3.10/site-packages/sympy/core/rules.py +66 -0
  26. venv/lib/python3.10/site-packages/sympy/core/singleton.py +174 -0
  27. venv/lib/python3.10/site-packages/sympy/core/symbol.py +945 -0
  28. venv/lib/python3.10/site-packages/sympy/core/sympify.py +634 -0
  29. venv/lib/python3.10/site-packages/sympy/core/tests/__init__.py +0 -0
  30. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_assumptions.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_complex.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_count_ops.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_evalf.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_expand.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_multidimensional.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_numbers.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_operations.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_relational.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_singleton.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_subs.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_truediv.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_var.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/sympy/core/tests/test_args.py +0 -0
  46. venv/lib/python3.10/site-packages/sympy/core/tests/test_cache.py +91 -0
  47. venv/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py +6 -0
  48. venv/lib/python3.10/site-packages/sympy/core/tests/test_complex.py +226 -0
  49. venv/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py +87 -0
  50. venv/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py +155 -0
ckpts/universal/global_step120/zero/11.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22b4ca883fc01485997e70e63c100dcf3a1ed80c87ba3a89b43d6f52ec30748c
3
+ size 33555612
ckpts/universal/global_step120/zero/19.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf837404b2838b6eed48c444a50dafcbc6ba5fd9f7c5d1e03915cc79107e51c4
3
+ size 9387
ckpts/universal/global_step120/zero/19.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9978eb257c2a4067edc093ab6054e6db02c885e85ccbc3e6db9c0f09cb771c71
3
+ size 9293
ckpts/universal/global_step120/zero/25.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2a43f32a28a814b4c2d3e0ef1e58eb6eae32e41ade877f8de35a8bea1ddb46
3
+ size 33555533
venv/lib/python3.10/site-packages/sympy/core/__init__.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Core module. Provides the basic operations needed in sympy.
2
+ """
3
+
4
+ from .sympify import sympify, SympifyError
5
+ from .cache import cacheit
6
+ from .assumptions import assumptions, check_assumptions, failing_assumptions, common_assumptions
7
+ from .basic import Basic, Atom
8
+ from .singleton import S
9
+ from .expr import Expr, AtomicExpr, UnevaluatedExpr
10
+ from .symbol import Symbol, Wild, Dummy, symbols, var
11
+ from .numbers import Number, Float, Rational, Integer, NumberSymbol, \
12
+ RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \
13
+ AlgebraicNumber, comp, mod_inverse
14
+ from .power import Pow, integer_nthroot, integer_log
15
+ from .mul import Mul, prod
16
+ from .add import Add
17
+ from .mod import Mod
18
+ from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge,
19
+ Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan,
20
+ StrictLessThan )
21
+ from .multidimensional import vectorize
22
+ from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \
23
+ Function, Subs, expand, PoleError, count_ops, \
24
+ expand_mul, expand_log, expand_func, \
25
+ expand_trig, expand_complex, expand_multinomial, nfloat, \
26
+ expand_power_base, expand_power_exp, arity
27
+ from .evalf import PrecisionExhausted, N
28
+ from .containers import Tuple, Dict
29
+ from .exprtools import gcd_terms, factor_terms, factor_nc
30
+ from .parameters import evaluate
31
+ from .kind import UndefinedKind, NumberKind, BooleanKind
32
+ from .traversal import preorder_traversal, bottom_up, use, postorder_traversal
33
+ from .sorting import default_sort_key, ordered
34
+
35
+ # expose singletons
36
+ Catalan = S.Catalan
37
+ EulerGamma = S.EulerGamma
38
+ GoldenRatio = S.GoldenRatio
39
+ TribonacciConstant = S.TribonacciConstant
40
+
41
+ __all__ = [
42
+ 'sympify', 'SympifyError',
43
+
44
+ 'cacheit',
45
+
46
+ 'assumptions', 'check_assumptions', 'failing_assumptions',
47
+ 'common_assumptions',
48
+
49
+ 'Basic', 'Atom',
50
+
51
+ 'S',
52
+
53
+ 'Expr', 'AtomicExpr', 'UnevaluatedExpr',
54
+
55
+ 'Symbol', 'Wild', 'Dummy', 'symbols', 'var',
56
+
57
+ 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber',
58
+ 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo',
59
+ 'AlgebraicNumber', 'comp', 'mod_inverse',
60
+
61
+ 'Pow', 'integer_nthroot', 'integer_log',
62
+
63
+ 'Mul', 'prod',
64
+
65
+ 'Add',
66
+
67
+ 'Mod',
68
+
69
+ 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan',
70
+ 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
71
+
72
+ 'vectorize',
73
+
74
+ 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass',
75
+ 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul',
76
+ 'expand_log', 'expand_func', 'expand_trig', 'expand_complex',
77
+ 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp',
78
+ 'arity',
79
+
80
+ 'PrecisionExhausted', 'N',
81
+
82
+ 'evalf', # The module?
83
+
84
+ 'Tuple', 'Dict',
85
+
86
+ 'gcd_terms', 'factor_terms', 'factor_nc',
87
+
88
+ 'evaluate',
89
+
90
+ 'Catalan',
91
+ 'EulerGamma',
92
+ 'GoldenRatio',
93
+ 'TribonacciConstant',
94
+
95
+ 'UndefinedKind', 'NumberKind', 'BooleanKind',
96
+
97
+ 'preorder_traversal', 'bottom_up', 'use', 'postorder_traversal',
98
+
99
+ 'default_sort_key', 'ordered',
100
+ ]
venv/lib/python3.10/site-packages/sympy/core/_print_helpers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base class to provide str and repr hooks that `init_printing` can overwrite.
3
+
4
+ This is exposed publicly in the `printing.defaults` module,
5
+ but cannot be defined there without causing circular imports.
6
+ """
7
+
8
+ class Printable:
9
+ """
10
+ The default implementation of printing for SymPy classes.
11
+
12
+ This implements a hack that allows us to print elements of built-in
13
+ Python containers in a readable way. Natively Python uses ``repr()``
14
+ even if ``str()`` was explicitly requested. Mix in this trait into
15
+ a class to get proper default printing.
16
+
17
+ This also adds support for LaTeX printing in jupyter notebooks.
18
+ """
19
+
20
+ # Since this class is used as a mixin we set empty slots. That means that
21
+ # instances of any subclasses that use slots will not need to have a
22
+ # __dict__.
23
+ __slots__ = ()
24
+
25
+ # Note, we always use the default ordering (lex) in __str__ and __repr__,
26
+ # regardless of the global setting. See issue 5487.
27
+ def __str__(self):
28
+ from sympy.printing.str import sstr
29
+ return sstr(self, order=None)
30
+
31
+ __repr__ = __str__
32
+
33
+ def _repr_disabled(self):
34
+ """
35
+ No-op repr function used to disable jupyter display hooks.
36
+
37
+ When :func:`sympy.init_printing` is used to disable certain display
38
+ formats, this function is copied into the appropriate ``_repr_*_``
39
+ attributes.
40
+
41
+ While we could just set the attributes to `None``, doing it this way
42
+ allows derived classes to call `super()`.
43
+ """
44
+ return None
45
+
46
+ # We don't implement _repr_png_ here because it would add a large amount of
47
+ # data to any notebook containing SymPy expressions, without adding
48
+ # anything useful to the notebook. It can still enabled manually, e.g.,
49
+ # for the qtconsole, with init_printing().
50
+ _repr_png_ = _repr_disabled
51
+
52
+ _repr_svg_ = _repr_disabled
53
+
54
+ def _repr_latex_(self):
55
+ """
56
+ IPython/Jupyter LaTeX printing
57
+
58
+ To change the behavior of this (e.g., pass in some settings to LaTeX),
59
+ use init_printing(). init_printing() will also enable LaTeX printing
60
+ for built in numeric types like ints and container types that contain
61
+ SymPy objects, like lists and dictionaries of expressions.
62
+ """
63
+ from sympy.printing.latex import latex
64
+ s = latex(self, mode='plain')
65
+ return "$\\displaystyle %s$" % s
venv/lib/python3.10/site-packages/sympy/core/assumptions.py ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains the machinery handling assumptions.
3
+ Do also consider the guide :ref:`assumptions-guide`.
4
+
5
+ All symbolic objects have assumption attributes that can be accessed via
6
+ ``.is_<assumption name>`` attribute.
7
+
8
+ Assumptions determine certain properties of symbolic objects and can
9
+ have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the
10
+ object has the property and ``False`` is returned if it does not or cannot
11
+ (i.e. does not make sense):
12
+
13
+ >>> from sympy import I
14
+ >>> I.is_algebraic
15
+ True
16
+ >>> I.is_real
17
+ False
18
+ >>> I.is_prime
19
+ False
20
+
21
+ When the property cannot be determined (or when a method is not
22
+ implemented) ``None`` will be returned. For example, a generic symbol, ``x``,
23
+ may or may not be positive so a value of ``None`` is returned for ``x.is_positive``.
24
+
25
+ By default, all symbolic values are in the largest set in the given context
26
+ without specifying the property. For example, a symbol that has a property
27
+ being integer, is also real, complex, etc.
28
+
29
+ Here follows a list of possible assumption names:
30
+
31
+ .. glossary::
32
+
33
+ commutative
34
+ object commutes with any other object with
35
+ respect to multiplication operation. See [12]_.
36
+
37
+ complex
38
+ object can have only values from the set
39
+ of complex numbers. See [13]_.
40
+
41
+ imaginary
42
+ object value is a number that can be written as a real
43
+ number multiplied by the imaginary unit ``I``. See
44
+ [3]_. Please note that ``0`` is not considered to be an
45
+ imaginary number, see
46
+ `issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
47
+
48
+ real
49
+ object can have only values from the set
50
+ of real numbers.
51
+
52
+ extended_real
53
+ object can have only values from the set
54
+ of real numbers, ``oo`` and ``-oo``.
55
+
56
+ integer
57
+ object can have only values from the set
58
+ of integers.
59
+
60
+ odd
61
+ even
62
+ object can have only values from the set of
63
+ odd (even) integers [2]_.
64
+
65
+ prime
66
+ object is a natural number greater than 1 that has
67
+ no positive divisors other than 1 and itself. See [6]_.
68
+
69
+ composite
70
+ object is a positive integer that has at least one positive
71
+ divisor other than 1 or the number itself. See [4]_.
72
+
73
+ zero
74
+ object has the value of 0.
75
+
76
+ nonzero
77
+ object is a real number that is not zero.
78
+
79
+ rational
80
+ object can have only values from the set
81
+ of rationals.
82
+
83
+ algebraic
84
+ object can have only values from the set
85
+ of algebraic numbers [11]_.
86
+
87
+ transcendental
88
+ object can have only values from the set
89
+ of transcendental numbers [10]_.
90
+
91
+ irrational
92
+ object value cannot be represented exactly by :class:`~.Rational`, see [5]_.
93
+
94
+ finite
95
+ infinite
96
+ object absolute value is bounded (arbitrarily large).
97
+ See [7]_, [8]_, [9]_.
98
+
99
+ negative
100
+ nonnegative
101
+ object can have only negative (nonnegative)
102
+ values [1]_.
103
+
104
+ positive
105
+ nonpositive
106
+ object can have only positive (nonpositive) values.
107
+
108
+ extended_negative
109
+ extended_nonnegative
110
+ extended_positive
111
+ extended_nonpositive
112
+ extended_nonzero
113
+ as without the extended part, but also including infinity with
114
+ corresponding sign, e.g., extended_positive includes ``oo``
115
+
116
+ hermitian
117
+ antihermitian
118
+ object belongs to the field of Hermitian
119
+ (antihermitian) operators.
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy import Symbol
125
+ >>> x = Symbol('x', real=True); x
126
+ x
127
+ >>> x.is_real
128
+ True
129
+ >>> x.is_complex
130
+ True
131
+
132
+ See Also
133
+ ========
134
+
135
+ .. seealso::
136
+
137
+ :py:class:`sympy.core.numbers.ImaginaryUnit`
138
+ :py:class:`sympy.core.numbers.Zero`
139
+ :py:class:`sympy.core.numbers.One`
140
+ :py:class:`sympy.core.numbers.Infinity`
141
+ :py:class:`sympy.core.numbers.NegativeInfinity`
142
+ :py:class:`sympy.core.numbers.ComplexInfinity`
143
+
144
+ Notes
145
+ =====
146
+
147
+ The fully-resolved assumptions for any SymPy expression
148
+ can be obtained as follows:
149
+
150
+ >>> from sympy.core.assumptions import assumptions
151
+ >>> x = Symbol('x',positive=True)
152
+ >>> assumptions(x + I)
153
+ {'commutative': True, 'complex': True, 'composite': False, 'even':
154
+ False, 'extended_negative': False, 'extended_nonnegative': False,
155
+ 'extended_nonpositive': False, 'extended_nonzero': False,
156
+ 'extended_positive': False, 'extended_real': False, 'finite': True,
157
+ 'imaginary': False, 'infinite': False, 'integer': False, 'irrational':
158
+ False, 'negative': False, 'noninteger': False, 'nonnegative': False,
159
+ 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive':
160
+ False, 'prime': False, 'rational': False, 'real': False, 'zero':
161
+ False}
162
+
163
+ Developers Notes
164
+ ================
165
+
166
+ The current (and possibly incomplete) values are stored
167
+ in the ``obj._assumptions dictionary``; queries to getter methods
168
+ (with property decorators) or attributes of objects/classes
169
+ will return values and update the dictionary.
170
+
171
+ >>> eq = x**2 + I
172
+ >>> eq._assumptions
173
+ {}
174
+ >>> eq.is_finite
175
+ True
176
+ >>> eq._assumptions
177
+ {'finite': True, 'infinite': False}
178
+
179
+ For a :class:`~.Symbol`, there are two locations for assumptions that may
180
+ be of interest. The ``assumptions0`` attribute gives the full set of
181
+ assumptions derived from a given set of initial assumptions. The
182
+ latter assumptions are stored as ``Symbol._assumptions_orig``
183
+
184
+ >>> Symbol('x', prime=True, even=True)._assumptions_orig
185
+ {'even': True, 'prime': True}
186
+
187
+ The ``_assumptions_orig`` are not necessarily canonical nor are they filtered
188
+ in any way: they records the assumptions used to instantiate a Symbol and (for
189
+ storage purposes) represent a more compact representation of the assumptions
190
+ needed to recreate the full set in ``Symbol.assumptions0``.
191
+
192
+
193
+ References
194
+ ==========
195
+
196
+ .. [1] https://en.wikipedia.org/wiki/Negative_number
197
+ .. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
198
+ .. [3] https://en.wikipedia.org/wiki/Imaginary_number
199
+ .. [4] https://en.wikipedia.org/wiki/Composite_number
200
+ .. [5] https://en.wikipedia.org/wiki/Irrational_number
201
+ .. [6] https://en.wikipedia.org/wiki/Prime_number
202
+ .. [7] https://en.wikipedia.org/wiki/Finite
203
+ .. [8] https://docs.python.org/3/library/math.html#math.isfinite
204
+ .. [9] https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
205
+ .. [10] https://en.wikipedia.org/wiki/Transcendental_number
206
+ .. [11] https://en.wikipedia.org/wiki/Algebraic_number
207
+ .. [12] https://en.wikipedia.org/wiki/Commutative_property
208
+ .. [13] https://en.wikipedia.org/wiki/Complex_number
209
+
210
+ """
211
+
212
+ from sympy.utilities.exceptions import sympy_deprecation_warning
213
+
214
+ from .facts import FactRules, FactKB
215
+ from .sympify import sympify
216
+
217
+ from sympy.core.random import _assumptions_shuffle as shuffle
218
+ from sympy.core.assumptions_generated import generated_assumptions as _assumptions
219
+
220
+ def _load_pre_generated_assumption_rules():
221
+ """ Load the assumption rules from pre-generated data
222
+
223
+ To update the pre-generated data, see :method::`_generate_assumption_rules`
224
+ """
225
+ _assume_rules=FactRules._from_python(_assumptions)
226
+ return _assume_rules
227
+
228
+ def _generate_assumption_rules():
229
+ """ Generate the default assumption rules
230
+
231
+ This method should only be called to update the pre-generated
232
+ assumption rules.
233
+
234
+ To update the pre-generated assumptions run: bin/ask_update.py
235
+
236
+ """
237
+ _assume_rules = FactRules([
238
+
239
+ 'integer -> rational',
240
+ 'rational -> real',
241
+ 'rational -> algebraic',
242
+ 'algebraic -> complex',
243
+ 'transcendental == complex & !algebraic',
244
+ 'real -> hermitian',
245
+ 'imaginary -> complex',
246
+ 'imaginary -> antihermitian',
247
+ 'extended_real -> commutative',
248
+ 'complex -> commutative',
249
+ 'complex -> finite',
250
+
251
+ 'odd == integer & !even',
252
+ 'even == integer & !odd',
253
+
254
+ 'real -> complex',
255
+ 'extended_real -> real | infinite',
256
+ 'real == extended_real & finite',
257
+
258
+ 'extended_real == extended_negative | zero | extended_positive',
259
+ 'extended_negative == extended_nonpositive & extended_nonzero',
260
+ 'extended_positive == extended_nonnegative & extended_nonzero',
261
+
262
+ 'extended_nonpositive == extended_real & !extended_positive',
263
+ 'extended_nonnegative == extended_real & !extended_negative',
264
+
265
+ 'real == negative | zero | positive',
266
+ 'negative == nonpositive & nonzero',
267
+ 'positive == nonnegative & nonzero',
268
+
269
+ 'nonpositive == real & !positive',
270
+ 'nonnegative == real & !negative',
271
+
272
+ 'positive == extended_positive & finite',
273
+ 'negative == extended_negative & finite',
274
+ 'nonpositive == extended_nonpositive & finite',
275
+ 'nonnegative == extended_nonnegative & finite',
276
+ 'nonzero == extended_nonzero & finite',
277
+
278
+ 'zero -> even & finite',
279
+ 'zero == extended_nonnegative & extended_nonpositive',
280
+ 'zero == nonnegative & nonpositive',
281
+ 'nonzero -> real',
282
+
283
+ 'prime -> integer & positive',
284
+ 'composite -> integer & positive & !prime',
285
+ '!composite -> !positive | !even | prime',
286
+
287
+ 'irrational == real & !rational',
288
+
289
+ 'imaginary -> !extended_real',
290
+
291
+ 'infinite == !finite',
292
+ 'noninteger == extended_real & !integer',
293
+ 'extended_nonzero == extended_real & !zero',
294
+ ])
295
+ return _assume_rules
296
+
297
+
298
+ _assume_rules = _load_pre_generated_assumption_rules()
299
+ _assume_defined = _assume_rules.defined_facts.copy()
300
+ _assume_defined.add('polar')
301
+ _assume_defined = frozenset(_assume_defined)
302
+
303
+
304
+ def assumptions(expr, _check=None):
305
+ """return the T/F assumptions of ``expr``"""
306
+ n = sympify(expr)
307
+ if n.is_Symbol:
308
+ rv = n.assumptions0 # are any important ones missing?
309
+ if _check is not None:
310
+ rv = {k: rv[k] for k in set(rv) & set(_check)}
311
+ return rv
312
+ rv = {}
313
+ for k in _assume_defined if _check is None else _check:
314
+ v = getattr(n, 'is_{}'.format(k))
315
+ if v is not None:
316
+ rv[k] = v
317
+ return rv
318
+
319
+
320
+ def common_assumptions(exprs, check=None):
321
+ """return those assumptions which have the same True or False
322
+ value for all the given expressions.
323
+
324
+ Examples
325
+ ========
326
+
327
+ >>> from sympy.core import common_assumptions
328
+ >>> from sympy import oo, pi, sqrt
329
+ >>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo])
330
+ {'commutative': True, 'composite': False,
331
+ 'extended_real': True, 'imaginary': False, 'odd': False}
332
+
333
+ By default, all assumptions are tested; pass an iterable of the
334
+ assumptions to limit those that are reported:
335
+
336
+ >>> common_assumptions([0, 1, 2], ['positive', 'integer'])
337
+ {'integer': True}
338
+ """
339
+ check = _assume_defined if check is None else set(check)
340
+ if not check or not exprs:
341
+ return {}
342
+
343
+ # get all assumptions for each
344
+ assume = [assumptions(i, _check=check) for i in sympify(exprs)]
345
+ # focus on those of interest that are True
346
+ for i, e in enumerate(assume):
347
+ assume[i] = {k: e[k] for k in set(e) & check}
348
+ # what assumptions are in common?
349
+ common = set.intersection(*[set(i) for i in assume])
350
+ # which ones hold the same value
351
+ a = assume[0]
352
+ return {k: a[k] for k in common if all(a[k] == b[k]
353
+ for b in assume)}
354
+
355
+
356
+ def failing_assumptions(expr, **assumptions):
357
+ """
358
+ Return a dictionary containing assumptions with values not
359
+ matching those of the passed assumptions.
360
+
361
+ Examples
362
+ ========
363
+
364
+ >>> from sympy import failing_assumptions, Symbol
365
+
366
+ >>> x = Symbol('x', positive=True)
367
+ >>> y = Symbol('y')
368
+ >>> failing_assumptions(6*x + y, positive=True)
369
+ {'positive': None}
370
+
371
+ >>> failing_assumptions(x**2 - 1, positive=True)
372
+ {'positive': None}
373
+
374
+ If *expr* satisfies all of the assumptions, an empty dictionary is returned.
375
+
376
+ >>> failing_assumptions(x**2, positive=True)
377
+ {}
378
+
379
+ """
380
+ expr = sympify(expr)
381
+ failed = {}
382
+ for k in assumptions:
383
+ test = getattr(expr, 'is_%s' % k, None)
384
+ if test is not assumptions[k]:
385
+ failed[k] = test
386
+ return failed # {} or {assumption: value != desired}
387
+
388
+
389
+ def check_assumptions(expr, against=None, **assume):
390
+ """
391
+ Checks whether assumptions of ``expr`` match the T/F assumptions
392
+ given (or possessed by ``against``). True is returned if all
393
+ assumptions match; False is returned if there is a mismatch and
394
+ the assumption in ``expr`` is not None; else None is returned.
395
+
396
+ Explanation
397
+ ===========
398
+
399
+ *assume* is a dict of assumptions with True or False values
400
+
401
+ Examples
402
+ ========
403
+
404
+ >>> from sympy import Symbol, pi, I, exp, check_assumptions
405
+ >>> check_assumptions(-5, integer=True)
406
+ True
407
+ >>> check_assumptions(pi, real=True, integer=False)
408
+ True
409
+ >>> check_assumptions(pi, negative=True)
410
+ False
411
+ >>> check_assumptions(exp(I*pi/7), real=False)
412
+ True
413
+ >>> x = Symbol('x', positive=True)
414
+ >>> check_assumptions(2*x + 1, positive=True)
415
+ True
416
+ >>> check_assumptions(-2*x - 5, positive=True)
417
+ False
418
+
419
+ To check assumptions of *expr* against another variable or expression,
420
+ pass the expression or variable as ``against``.
421
+
422
+ >>> check_assumptions(2*x + 1, x)
423
+ True
424
+
425
+ To see if a number matches the assumptions of an expression, pass
426
+ the number as the first argument, else its specific assumptions
427
+ may not have a non-None value in the expression:
428
+
429
+ >>> check_assumptions(x, 3)
430
+ >>> check_assumptions(3, x)
431
+ True
432
+
433
+ ``None`` is returned if ``check_assumptions()`` could not conclude.
434
+
435
+ >>> check_assumptions(2*x - 1, x)
436
+
437
+ >>> z = Symbol('z')
438
+ >>> check_assumptions(z, real=True)
439
+
440
+ See Also
441
+ ========
442
+
443
+ failing_assumptions
444
+
445
+ """
446
+ expr = sympify(expr)
447
+ if against is not None:
448
+ if assume:
449
+ raise ValueError(
450
+ 'Expecting `against` or `assume`, not both.')
451
+ assume = assumptions(against)
452
+ known = True
453
+ for k, v in assume.items():
454
+ if v is None:
455
+ continue
456
+ e = getattr(expr, 'is_' + k, None)
457
+ if e is None:
458
+ known = None
459
+ elif v != e:
460
+ return False
461
+ return known
462
+
463
+
464
+ class StdFactKB(FactKB):
465
+ """A FactKB specialized for the built-in rules
466
+
467
+ This is the only kind of FactKB that Basic objects should use.
468
+ """
469
+ def __init__(self, facts=None):
470
+ super().__init__(_assume_rules)
471
+ # save a copy of the facts dict
472
+ if not facts:
473
+ self._generator = {}
474
+ elif not isinstance(facts, FactKB):
475
+ self._generator = facts.copy()
476
+ else:
477
+ self._generator = facts.generator
478
+ if facts:
479
+ self.deduce_all_facts(facts)
480
+
481
+ def copy(self):
482
+ return self.__class__(self)
483
+
484
+ @property
485
+ def generator(self):
486
+ return self._generator.copy()
487
+
488
+
489
+ def as_property(fact):
490
+ """Convert a fact name to the name of the corresponding property"""
491
+ return 'is_%s' % fact
492
+
493
+
494
+ def make_property(fact):
495
+ """Create the automagic property corresponding to a fact."""
496
+
497
+ def getit(self):
498
+ try:
499
+ return self._assumptions[fact]
500
+ except KeyError:
501
+ if self._assumptions is self.default_assumptions:
502
+ self._assumptions = self.default_assumptions.copy()
503
+ return _ask(fact, self)
504
+
505
+ getit.func_name = as_property(fact)
506
+ return property(getit)
507
+
508
+
509
+ def _ask(fact, obj):
510
+ """
511
+ Find the truth value for a property of an object.
512
+
513
+ This function is called when a request is made to see what a fact
514
+ value is.
515
+
516
+ For this we use several techniques:
517
+
518
+ First, the fact-evaluation function is tried, if it exists (for
519
+ example _eval_is_integer). Then we try related facts. For example
520
+
521
+ rational --> integer
522
+
523
+ another example is joined rule:
524
+
525
+ integer & !odd --> even
526
+
527
+ so in the latter case if we are looking at what 'even' value is,
528
+ 'integer' and 'odd' facts will be asked.
529
+
530
+ In all cases, when we settle on some fact value, its implications are
531
+ deduced, and the result is cached in ._assumptions.
532
+ """
533
+ # FactKB which is dict-like and maps facts to their known values:
534
+ assumptions = obj._assumptions
535
+
536
+ # A dict that maps facts to their handlers:
537
+ handler_map = obj._prop_handler
538
+
539
+ # This is our queue of facts to check:
540
+ facts_to_check = [fact]
541
+ facts_queued = {fact}
542
+
543
+ # Loop over the queue as it extends
544
+ for fact_i in facts_to_check:
545
+
546
+ # If fact_i has already been determined then we don't need to rerun the
547
+ # handler. There is a potential race condition for multithreaded code
548
+ # though because it's possible that fact_i was checked in another
549
+ # thread. The main logic of the loop below would potentially skip
550
+ # checking assumptions[fact] in this case so we check it once after the
551
+ # loop to be sure.
552
+ if fact_i in assumptions:
553
+ continue
554
+
555
+ # Now we call the associated handler for fact_i if it exists.
556
+ fact_i_value = None
557
+ handler_i = handler_map.get(fact_i)
558
+ if handler_i is not None:
559
+ fact_i_value = handler_i(obj)
560
+
561
+ # If we get a new value for fact_i then we should update our knowledge
562
+ # of fact_i as well as any related facts that can be inferred using the
563
+ # inference rules connecting the fact_i and any other fact values that
564
+ # are already known.
565
+ if fact_i_value is not None:
566
+ assumptions.deduce_all_facts(((fact_i, fact_i_value),))
567
+
568
+ # Usually if assumptions[fact] is now not None then that is because of
569
+ # the call to deduce_all_facts above. The handler for fact_i returned
570
+ # True or False and knowing fact_i (which is equal to fact in the first
571
+ # iteration) implies knowing a value for fact. It is also possible
572
+ # though that independent code e.g. called indirectly by the handler or
573
+ # called in another thread in a multithreaded context might have
574
+ # resulted in assumptions[fact] being set. Either way we return it.
575
+ fact_value = assumptions.get(fact)
576
+ if fact_value is not None:
577
+ return fact_value
578
+
579
+ # Extend the queue with other facts that might determine fact_i. Here
580
+ # we randomise the order of the facts that are checked. This should not
581
+ # lead to any non-determinism if all handlers are logically consistent
582
+ # with the inference rules for the facts. Non-deterministic assumptions
583
+ # queries can result from bugs in the handlers that are exposed by this
584
+ # call to shuffle. These are pushed to the back of the queue meaning
585
+ # that the inference graph is traversed in breadth-first order.
586
+ new_facts_to_check = list(_assume_rules.prereq[fact_i] - facts_queued)
587
+ shuffle(new_facts_to_check)
588
+ facts_to_check.extend(new_facts_to_check)
589
+ facts_queued.update(new_facts_to_check)
590
+
591
+ # The above loop should be able to handle everything fine in a
592
+ # single-threaded context but in multithreaded code it is possible that
593
+ # this thread skipped computing a particular fact that was computed in
594
+ # another thread (due to the continue). In that case it is possible that
595
+ # fact was inferred and is now stored in the assumptions dict but it wasn't
596
+ # checked for in the body of the loop. This is an obscure case but to make
597
+ # sure we catch it we check once here at the end of the loop.
598
+ if fact in assumptions:
599
+ return assumptions[fact]
600
+
601
+ # This query can not be answered. It's possible that e.g. another thread
602
+ # has already stored None for fact but assumptions._tell does not mind if
603
+ # we call _tell twice setting the same value. If this raises
604
+ # InconsistentAssumptions then it probably means that another thread
605
+ # attempted to compute this and got a value of True or False rather than
606
+ # None. In that case there must be a bug in at least one of the handlers.
607
+ # If the handlers are all deterministic and are consistent with the
608
+ # inference rules then the same value should be computed for fact in all
609
+ # threads.
610
+ assumptions._tell(fact, None)
611
+ return None
612
+
613
+
614
+ def _prepare_class_assumptions(cls):
615
+ """Precompute class level assumptions and generate handlers.
616
+
617
+ This is called by Basic.__init_subclass__ each time a Basic subclass is
618
+ defined.
619
+ """
620
+
621
+ local_defs = {}
622
+ for k in _assume_defined:
623
+ attrname = as_property(k)
624
+ v = cls.__dict__.get(attrname, '')
625
+ if isinstance(v, (bool, int, type(None))):
626
+ if v is not None:
627
+ v = bool(v)
628
+ local_defs[k] = v
629
+
630
+ defs = {}
631
+ for base in reversed(cls.__bases__):
632
+ assumptions = getattr(base, '_explicit_class_assumptions', None)
633
+ if assumptions is not None:
634
+ defs.update(assumptions)
635
+ defs.update(local_defs)
636
+
637
+ cls._explicit_class_assumptions = defs
638
+ cls.default_assumptions = StdFactKB(defs)
639
+
640
+ cls._prop_handler = {}
641
+ for k in _assume_defined:
642
+ eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
643
+ if eval_is_meth is not None:
644
+ cls._prop_handler[k] = eval_is_meth
645
+
646
+ # Put definite results directly into the class dict, for speed
647
+ for k, v in cls.default_assumptions.items():
648
+ setattr(cls, as_property(k), v)
649
+
650
+ # protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
651
+ derived_from_bases = set()
652
+ for base in cls.__bases__:
653
+ default_assumptions = getattr(base, 'default_assumptions', None)
654
+ # is an assumption-aware class
655
+ if default_assumptions is not None:
656
+ derived_from_bases.update(default_assumptions)
657
+
658
+ for fact in derived_from_bases - set(cls.default_assumptions):
659
+ pname = as_property(fact)
660
+ if pname not in cls.__dict__:
661
+ setattr(cls, pname, make_property(fact))
662
+
663
+ # Finally, add any missing automagic property (e.g. for Basic)
664
+ for fact in _assume_defined:
665
+ pname = as_property(fact)
666
+ if not hasattr(cls, pname):
667
+ setattr(cls, pname, make_property(fact))
668
+
669
+
670
+ # XXX: ManagedProperties used to be the metaclass for Basic but now Basic does
671
+ # not use a metaclass. We leave this here for backwards compatibility for now
672
+ # in case someone has been using the ManagedProperties class in downstream
673
+ # code. The reason that it might have been used is that when subclassing a
674
+ # class and wanting to use a metaclass the metaclass must be a subclass of the
675
+ # metaclass for the class that is being subclassed. Anyone wanting to subclass
676
+ # Basic and use a metaclass in their subclass would have needed to subclass
677
+ # ManagedProperties. Here ManagedProperties is not the metaclass for Basic any
678
+ # more but it should still be usable as a metaclass for Basic subclasses since
679
+ # it is a subclass of type which is now the metaclass for Basic.
680
+ class ManagedProperties(type):
681
+ def __init__(cls, *args, **kwargs):
682
+ msg = ("The ManagedProperties metaclass. "
683
+ "Basic does not use metaclasses any more")
684
+ sympy_deprecation_warning(msg,
685
+ deprecated_since_version="1.12",
686
+ active_deprecations_target='managedproperties')
687
+
688
+ # Here we still call this function in case someone is using
689
+ # ManagedProperties for something that is not a Basic subclass. For
690
+ # Basic subclasses this function is now called by __init_subclass__ and
691
+ # so this metaclass is not needed any more.
692
+ _prepare_class_assumptions(cls)
venv/lib/python3.10/site-packages/sympy/core/assumptions_generated.py ADDED
@@ -0,0 +1,1615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Do NOT manually edit this file.
3
+ Instead, run ./bin/ask_update.py.
4
+ """
5
+
6
+ defined_facts = [
7
+ 'algebraic',
8
+ 'antihermitian',
9
+ 'commutative',
10
+ 'complex',
11
+ 'composite',
12
+ 'even',
13
+ 'extended_negative',
14
+ 'extended_nonnegative',
15
+ 'extended_nonpositive',
16
+ 'extended_nonzero',
17
+ 'extended_positive',
18
+ 'extended_real',
19
+ 'finite',
20
+ 'hermitian',
21
+ 'imaginary',
22
+ 'infinite',
23
+ 'integer',
24
+ 'irrational',
25
+ 'negative',
26
+ 'noninteger',
27
+ 'nonnegative',
28
+ 'nonpositive',
29
+ 'nonzero',
30
+ 'odd',
31
+ 'positive',
32
+ 'prime',
33
+ 'rational',
34
+ 'real',
35
+ 'transcendental',
36
+ 'zero',
37
+ ] # defined_facts
38
+
39
+
40
+ full_implications = dict( [
41
+ # Implications of algebraic = True:
42
+ (('algebraic', True), set( (
43
+ ('commutative', True),
44
+ ('complex', True),
45
+ ('finite', True),
46
+ ('infinite', False),
47
+ ('transcendental', False),
48
+ ) ),
49
+ ),
50
+ # Implications of algebraic = False:
51
+ (('algebraic', False), set( (
52
+ ('composite', False),
53
+ ('even', False),
54
+ ('integer', False),
55
+ ('odd', False),
56
+ ('prime', False),
57
+ ('rational', False),
58
+ ('zero', False),
59
+ ) ),
60
+ ),
61
+ # Implications of antihermitian = True:
62
+ (('antihermitian', True), set( (
63
+ ) ),
64
+ ),
65
+ # Implications of antihermitian = False:
66
+ (('antihermitian', False), set( (
67
+ ('imaginary', False),
68
+ ) ),
69
+ ),
70
+ # Implications of commutative = True:
71
+ (('commutative', True), set( (
72
+ ) ),
73
+ ),
74
+ # Implications of commutative = False:
75
+ (('commutative', False), set( (
76
+ ('algebraic', False),
77
+ ('complex', False),
78
+ ('composite', False),
79
+ ('even', False),
80
+ ('extended_negative', False),
81
+ ('extended_nonnegative', False),
82
+ ('extended_nonpositive', False),
83
+ ('extended_nonzero', False),
84
+ ('extended_positive', False),
85
+ ('extended_real', False),
86
+ ('imaginary', False),
87
+ ('integer', False),
88
+ ('irrational', False),
89
+ ('negative', False),
90
+ ('noninteger', False),
91
+ ('nonnegative', False),
92
+ ('nonpositive', False),
93
+ ('nonzero', False),
94
+ ('odd', False),
95
+ ('positive', False),
96
+ ('prime', False),
97
+ ('rational', False),
98
+ ('real', False),
99
+ ('transcendental', False),
100
+ ('zero', False),
101
+ ) ),
102
+ ),
103
+ # Implications of complex = True:
104
+ (('complex', True), set( (
105
+ ('commutative', True),
106
+ ('finite', True),
107
+ ('infinite', False),
108
+ ) ),
109
+ ),
110
+ # Implications of complex = False:
111
+ (('complex', False), set( (
112
+ ('algebraic', False),
113
+ ('composite', False),
114
+ ('even', False),
115
+ ('imaginary', False),
116
+ ('integer', False),
117
+ ('irrational', False),
118
+ ('negative', False),
119
+ ('nonnegative', False),
120
+ ('nonpositive', False),
121
+ ('nonzero', False),
122
+ ('odd', False),
123
+ ('positive', False),
124
+ ('prime', False),
125
+ ('rational', False),
126
+ ('real', False),
127
+ ('transcendental', False),
128
+ ('zero', False),
129
+ ) ),
130
+ ),
131
+ # Implications of composite = True:
132
+ (('composite', True), set( (
133
+ ('algebraic', True),
134
+ ('commutative', True),
135
+ ('complex', True),
136
+ ('extended_negative', False),
137
+ ('extended_nonnegative', True),
138
+ ('extended_nonpositive', False),
139
+ ('extended_nonzero', True),
140
+ ('extended_positive', True),
141
+ ('extended_real', True),
142
+ ('finite', True),
143
+ ('hermitian', True),
144
+ ('imaginary', False),
145
+ ('infinite', False),
146
+ ('integer', True),
147
+ ('irrational', False),
148
+ ('negative', False),
149
+ ('noninteger', False),
150
+ ('nonnegative', True),
151
+ ('nonpositive', False),
152
+ ('nonzero', True),
153
+ ('positive', True),
154
+ ('prime', False),
155
+ ('rational', True),
156
+ ('real', True),
157
+ ('transcendental', False),
158
+ ('zero', False),
159
+ ) ),
160
+ ),
161
+ # Implications of composite = False:
162
+ (('composite', False), set( (
163
+ ) ),
164
+ ),
165
+ # Implications of even = True:
166
+ (('even', True), set( (
167
+ ('algebraic', True),
168
+ ('commutative', True),
169
+ ('complex', True),
170
+ ('extended_real', True),
171
+ ('finite', True),
172
+ ('hermitian', True),
173
+ ('imaginary', False),
174
+ ('infinite', False),
175
+ ('integer', True),
176
+ ('irrational', False),
177
+ ('noninteger', False),
178
+ ('odd', False),
179
+ ('rational', True),
180
+ ('real', True),
181
+ ('transcendental', False),
182
+ ) ),
183
+ ),
184
+ # Implications of even = False:
185
+ (('even', False), set( (
186
+ ('zero', False),
187
+ ) ),
188
+ ),
189
+ # Implications of extended_negative = True:
190
+ (('extended_negative', True), set( (
191
+ ('commutative', True),
192
+ ('composite', False),
193
+ ('extended_nonnegative', False),
194
+ ('extended_nonpositive', True),
195
+ ('extended_nonzero', True),
196
+ ('extended_positive', False),
197
+ ('extended_real', True),
198
+ ('imaginary', False),
199
+ ('nonnegative', False),
200
+ ('positive', False),
201
+ ('prime', False),
202
+ ('zero', False),
203
+ ) ),
204
+ ),
205
+ # Implications of extended_negative = False:
206
+ (('extended_negative', False), set( (
207
+ ('negative', False),
208
+ ) ),
209
+ ),
210
+ # Implications of extended_nonnegative = True:
211
+ (('extended_nonnegative', True), set( (
212
+ ('commutative', True),
213
+ ('extended_negative', False),
214
+ ('extended_real', True),
215
+ ('imaginary', False),
216
+ ('negative', False),
217
+ ) ),
218
+ ),
219
+ # Implications of extended_nonnegative = False:
220
+ (('extended_nonnegative', False), set( (
221
+ ('composite', False),
222
+ ('extended_positive', False),
223
+ ('nonnegative', False),
224
+ ('positive', False),
225
+ ('prime', False),
226
+ ('zero', False),
227
+ ) ),
228
+ ),
229
+ # Implications of extended_nonpositive = True:
230
+ (('extended_nonpositive', True), set( (
231
+ ('commutative', True),
232
+ ('composite', False),
233
+ ('extended_positive', False),
234
+ ('extended_real', True),
235
+ ('imaginary', False),
236
+ ('positive', False),
237
+ ('prime', False),
238
+ ) ),
239
+ ),
240
+ # Implications of extended_nonpositive = False:
241
+ (('extended_nonpositive', False), set( (
242
+ ('extended_negative', False),
243
+ ('negative', False),
244
+ ('nonpositive', False),
245
+ ('zero', False),
246
+ ) ),
247
+ ),
248
+ # Implications of extended_nonzero = True:
249
+ (('extended_nonzero', True), set( (
250
+ ('commutative', True),
251
+ ('extended_real', True),
252
+ ('imaginary', False),
253
+ ('zero', False),
254
+ ) ),
255
+ ),
256
+ # Implications of extended_nonzero = False:
257
+ (('extended_nonzero', False), set( (
258
+ ('composite', False),
259
+ ('extended_negative', False),
260
+ ('extended_positive', False),
261
+ ('negative', False),
262
+ ('nonzero', False),
263
+ ('positive', False),
264
+ ('prime', False),
265
+ ) ),
266
+ ),
267
+ # Implications of extended_positive = True:
268
+ (('extended_positive', True), set( (
269
+ ('commutative', True),
270
+ ('extended_negative', False),
271
+ ('extended_nonnegative', True),
272
+ ('extended_nonpositive', False),
273
+ ('extended_nonzero', True),
274
+ ('extended_real', True),
275
+ ('imaginary', False),
276
+ ('negative', False),
277
+ ('nonpositive', False),
278
+ ('zero', False),
279
+ ) ),
280
+ ),
281
+ # Implications of extended_positive = False:
282
+ (('extended_positive', False), set( (
283
+ ('composite', False),
284
+ ('positive', False),
285
+ ('prime', False),
286
+ ) ),
287
+ ),
288
+ # Implications of extended_real = True:
289
+ (('extended_real', True), set( (
290
+ ('commutative', True),
291
+ ('imaginary', False),
292
+ ) ),
293
+ ),
294
+ # Implications of extended_real = False:
295
+ (('extended_real', False), set( (
296
+ ('composite', False),
297
+ ('even', False),
298
+ ('extended_negative', False),
299
+ ('extended_nonnegative', False),
300
+ ('extended_nonpositive', False),
301
+ ('extended_nonzero', False),
302
+ ('extended_positive', False),
303
+ ('integer', False),
304
+ ('irrational', False),
305
+ ('negative', False),
306
+ ('noninteger', False),
307
+ ('nonnegative', False),
308
+ ('nonpositive', False),
309
+ ('nonzero', False),
310
+ ('odd', False),
311
+ ('positive', False),
312
+ ('prime', False),
313
+ ('rational', False),
314
+ ('real', False),
315
+ ('zero', False),
316
+ ) ),
317
+ ),
318
+ # Implications of finite = True:
319
+ (('finite', True), set( (
320
+ ('infinite', False),
321
+ ) ),
322
+ ),
323
+ # Implications of finite = False:
324
+ (('finite', False), set( (
325
+ ('algebraic', False),
326
+ ('complex', False),
327
+ ('composite', False),
328
+ ('even', False),
329
+ ('imaginary', False),
330
+ ('infinite', True),
331
+ ('integer', False),
332
+ ('irrational', False),
333
+ ('negative', False),
334
+ ('nonnegative', False),
335
+ ('nonpositive', False),
336
+ ('nonzero', False),
337
+ ('odd', False),
338
+ ('positive', False),
339
+ ('prime', False),
340
+ ('rational', False),
341
+ ('real', False),
342
+ ('transcendental', False),
343
+ ('zero', False),
344
+ ) ),
345
+ ),
346
+ # Implications of hermitian = True:
347
+ (('hermitian', True), set( (
348
+ ) ),
349
+ ),
350
+ # Implications of hermitian = False:
351
+ (('hermitian', False), set( (
352
+ ('composite', False),
353
+ ('even', False),
354
+ ('integer', False),
355
+ ('irrational', False),
356
+ ('negative', False),
357
+ ('nonnegative', False),
358
+ ('nonpositive', False),
359
+ ('nonzero', False),
360
+ ('odd', False),
361
+ ('positive', False),
362
+ ('prime', False),
363
+ ('rational', False),
364
+ ('real', False),
365
+ ('zero', False),
366
+ ) ),
367
+ ),
368
+ # Implications of imaginary = True:
369
+ (('imaginary', True), set( (
370
+ ('antihermitian', True),
371
+ ('commutative', True),
372
+ ('complex', True),
373
+ ('composite', False),
374
+ ('even', False),
375
+ ('extended_negative', False),
376
+ ('extended_nonnegative', False),
377
+ ('extended_nonpositive', False),
378
+ ('extended_nonzero', False),
379
+ ('extended_positive', False),
380
+ ('extended_real', False),
381
+ ('finite', True),
382
+ ('infinite', False),
383
+ ('integer', False),
384
+ ('irrational', False),
385
+ ('negative', False),
386
+ ('noninteger', False),
387
+ ('nonnegative', False),
388
+ ('nonpositive', False),
389
+ ('nonzero', False),
390
+ ('odd', False),
391
+ ('positive', False),
392
+ ('prime', False),
393
+ ('rational', False),
394
+ ('real', False),
395
+ ('zero', False),
396
+ ) ),
397
+ ),
398
+ # Implications of imaginary = False:
399
+ (('imaginary', False), set( (
400
+ ) ),
401
+ ),
402
+ # Implications of infinite = True:
403
+ (('infinite', True), set( (
404
+ ('algebraic', False),
405
+ ('complex', False),
406
+ ('composite', False),
407
+ ('even', False),
408
+ ('finite', False),
409
+ ('imaginary', False),
410
+ ('integer', False),
411
+ ('irrational', False),
412
+ ('negative', False),
413
+ ('nonnegative', False),
414
+ ('nonpositive', False),
415
+ ('nonzero', False),
416
+ ('odd', False),
417
+ ('positive', False),
418
+ ('prime', False),
419
+ ('rational', False),
420
+ ('real', False),
421
+ ('transcendental', False),
422
+ ('zero', False),
423
+ ) ),
424
+ ),
425
+ # Implications of infinite = False:
426
+ (('infinite', False), set( (
427
+ ('finite', True),
428
+ ) ),
429
+ ),
430
+ # Implications of integer = True:
431
+ (('integer', True), set( (
432
+ ('algebraic', True),
433
+ ('commutative', True),
434
+ ('complex', True),
435
+ ('extended_real', True),
436
+ ('finite', True),
437
+ ('hermitian', True),
438
+ ('imaginary', False),
439
+ ('infinite', False),
440
+ ('irrational', False),
441
+ ('noninteger', False),
442
+ ('rational', True),
443
+ ('real', True),
444
+ ('transcendental', False),
445
+ ) ),
446
+ ),
447
+ # Implications of integer = False:
448
+ (('integer', False), set( (
449
+ ('composite', False),
450
+ ('even', False),
451
+ ('odd', False),
452
+ ('prime', False),
453
+ ('zero', False),
454
+ ) ),
455
+ ),
456
+ # Implications of irrational = True:
457
+ (('irrational', True), set( (
458
+ ('commutative', True),
459
+ ('complex', True),
460
+ ('composite', False),
461
+ ('even', False),
462
+ ('extended_nonzero', True),
463
+ ('extended_real', True),
464
+ ('finite', True),
465
+ ('hermitian', True),
466
+ ('imaginary', False),
467
+ ('infinite', False),
468
+ ('integer', False),
469
+ ('noninteger', True),
470
+ ('nonzero', True),
471
+ ('odd', False),
472
+ ('prime', False),
473
+ ('rational', False),
474
+ ('real', True),
475
+ ('zero', False),
476
+ ) ),
477
+ ),
478
+ # Implications of irrational = False:
479
+ (('irrational', False), set( (
480
+ ) ),
481
+ ),
482
+ # Implications of negative = True:
483
+ (('negative', True), set( (
484
+ ('commutative', True),
485
+ ('complex', True),
486
+ ('composite', False),
487
+ ('extended_negative', True),
488
+ ('extended_nonnegative', False),
489
+ ('extended_nonpositive', True),
490
+ ('extended_nonzero', True),
491
+ ('extended_positive', False),
492
+ ('extended_real', True),
493
+ ('finite', True),
494
+ ('hermitian', True),
495
+ ('imaginary', False),
496
+ ('infinite', False),
497
+ ('nonnegative', False),
498
+ ('nonpositive', True),
499
+ ('nonzero', True),
500
+ ('positive', False),
501
+ ('prime', False),
502
+ ('real', True),
503
+ ('zero', False),
504
+ ) ),
505
+ ),
506
+ # Implications of negative = False:
507
+ (('negative', False), set( (
508
+ ) ),
509
+ ),
510
+ # Implications of noninteger = True:
511
+ (('noninteger', True), set( (
512
+ ('commutative', True),
513
+ ('composite', False),
514
+ ('even', False),
515
+ ('extended_nonzero', True),
516
+ ('extended_real', True),
517
+ ('imaginary', False),
518
+ ('integer', False),
519
+ ('odd', False),
520
+ ('prime', False),
521
+ ('zero', False),
522
+ ) ),
523
+ ),
524
+ # Implications of noninteger = False:
525
+ (('noninteger', False), set( (
526
+ ) ),
527
+ ),
528
+ # Implications of nonnegative = True:
529
+ (('nonnegative', True), set( (
530
+ ('commutative', True),
531
+ ('complex', True),
532
+ ('extended_negative', False),
533
+ ('extended_nonnegative', True),
534
+ ('extended_real', True),
535
+ ('finite', True),
536
+ ('hermitian', True),
537
+ ('imaginary', False),
538
+ ('infinite', False),
539
+ ('negative', False),
540
+ ('real', True),
541
+ ) ),
542
+ ),
543
+ # Implications of nonnegative = False:
544
+ (('nonnegative', False), set( (
545
+ ('composite', False),
546
+ ('positive', False),
547
+ ('prime', False),
548
+ ('zero', False),
549
+ ) ),
550
+ ),
551
+ # Implications of nonpositive = True:
552
+ (('nonpositive', True), set( (
553
+ ('commutative', True),
554
+ ('complex', True),
555
+ ('composite', False),
556
+ ('extended_nonpositive', True),
557
+ ('extended_positive', False),
558
+ ('extended_real', True),
559
+ ('finite', True),
560
+ ('hermitian', True),
561
+ ('imaginary', False),
562
+ ('infinite', False),
563
+ ('positive', False),
564
+ ('prime', False),
565
+ ('real', True),
566
+ ) ),
567
+ ),
568
+ # Implications of nonpositive = False:
569
+ (('nonpositive', False), set( (
570
+ ('negative', False),
571
+ ('zero', False),
572
+ ) ),
573
+ ),
574
+ # Implications of nonzero = True:
575
+ (('nonzero', True), set( (
576
+ ('commutative', True),
577
+ ('complex', True),
578
+ ('extended_nonzero', True),
579
+ ('extended_real', True),
580
+ ('finite', True),
581
+ ('hermitian', True),
582
+ ('imaginary', False),
583
+ ('infinite', False),
584
+ ('real', True),
585
+ ('zero', False),
586
+ ) ),
587
+ ),
588
+ # Implications of nonzero = False:
589
+ (('nonzero', False), set( (
590
+ ('composite', False),
591
+ ('negative', False),
592
+ ('positive', False),
593
+ ('prime', False),
594
+ ) ),
595
+ ),
596
+ # Implications of odd = True:
597
+ (('odd', True), set( (
598
+ ('algebraic', True),
599
+ ('commutative', True),
600
+ ('complex', True),
601
+ ('even', False),
602
+ ('extended_nonzero', True),
603
+ ('extended_real', True),
604
+ ('finite', True),
605
+ ('hermitian', True),
606
+ ('imaginary', False),
607
+ ('infinite', False),
608
+ ('integer', True),
609
+ ('irrational', False),
610
+ ('noninteger', False),
611
+ ('nonzero', True),
612
+ ('rational', True),
613
+ ('real', True),
614
+ ('transcendental', False),
615
+ ('zero', False),
616
+ ) ),
617
+ ),
618
+ # Implications of odd = False:
619
+ (('odd', False), set( (
620
+ ) ),
621
+ ),
622
+ # Implications of positive = True:
623
+ (('positive', True), set( (
624
+ ('commutative', True),
625
+ ('complex', True),
626
+ ('extended_negative', False),
627
+ ('extended_nonnegative', True),
628
+ ('extended_nonpositive', False),
629
+ ('extended_nonzero', True),
630
+ ('extended_positive', True),
631
+ ('extended_real', True),
632
+ ('finite', True),
633
+ ('hermitian', True),
634
+ ('imaginary', False),
635
+ ('infinite', False),
636
+ ('negative', False),
637
+ ('nonnegative', True),
638
+ ('nonpositive', False),
639
+ ('nonzero', True),
640
+ ('real', True),
641
+ ('zero', False),
642
+ ) ),
643
+ ),
644
+ # Implications of positive = False:
645
+ (('positive', False), set( (
646
+ ('composite', False),
647
+ ('prime', False),
648
+ ) ),
649
+ ),
650
+ # Implications of prime = True:
651
+ (('prime', True), set( (
652
+ ('algebraic', True),
653
+ ('commutative', True),
654
+ ('complex', True),
655
+ ('composite', False),
656
+ ('extended_negative', False),
657
+ ('extended_nonnegative', True),
658
+ ('extended_nonpositive', False),
659
+ ('extended_nonzero', True),
660
+ ('extended_positive', True),
661
+ ('extended_real', True),
662
+ ('finite', True),
663
+ ('hermitian', True),
664
+ ('imaginary', False),
665
+ ('infinite', False),
666
+ ('integer', True),
667
+ ('irrational', False),
668
+ ('negative', False),
669
+ ('noninteger', False),
670
+ ('nonnegative', True),
671
+ ('nonpositive', False),
672
+ ('nonzero', True),
673
+ ('positive', True),
674
+ ('rational', True),
675
+ ('real', True),
676
+ ('transcendental', False),
677
+ ('zero', False),
678
+ ) ),
679
+ ),
680
+ # Implications of prime = False:
681
+ (('prime', False), set( (
682
+ ) ),
683
+ ),
684
+ # Implications of rational = True:
685
+ (('rational', True), set( (
686
+ ('algebraic', True),
687
+ ('commutative', True),
688
+ ('complex', True),
689
+ ('extended_real', True),
690
+ ('finite', True),
691
+ ('hermitian', True),
692
+ ('imaginary', False),
693
+ ('infinite', False),
694
+ ('irrational', False),
695
+ ('real', True),
696
+ ('transcendental', False),
697
+ ) ),
698
+ ),
699
+ # Implications of rational = False:
700
+ (('rational', False), set( (
701
+ ('composite', False),
702
+ ('even', False),
703
+ ('integer', False),
704
+ ('odd', False),
705
+ ('prime', False),
706
+ ('zero', False),
707
+ ) ),
708
+ ),
709
+ # Implications of real = True:
710
+ (('real', True), set( (
711
+ ('commutative', True),
712
+ ('complex', True),
713
+ ('extended_real', True),
714
+ ('finite', True),
715
+ ('hermitian', True),
716
+ ('imaginary', False),
717
+ ('infinite', False),
718
+ ) ),
719
+ ),
720
+ # Implications of real = False:
721
+ (('real', False), set( (
722
+ ('composite', False),
723
+ ('even', False),
724
+ ('integer', False),
725
+ ('irrational', False),
726
+ ('negative', False),
727
+ ('nonnegative', False),
728
+ ('nonpositive', False),
729
+ ('nonzero', False),
730
+ ('odd', False),
731
+ ('positive', False),
732
+ ('prime', False),
733
+ ('rational', False),
734
+ ('zero', False),
735
+ ) ),
736
+ ),
737
+ # Implications of transcendental = True:
738
+ (('transcendental', True), set( (
739
+ ('algebraic', False),
740
+ ('commutative', True),
741
+ ('complex', True),
742
+ ('composite', False),
743
+ ('even', False),
744
+ ('finite', True),
745
+ ('infinite', False),
746
+ ('integer', False),
747
+ ('odd', False),
748
+ ('prime', False),
749
+ ('rational', False),
750
+ ('zero', False),
751
+ ) ),
752
+ ),
753
+ # Implications of transcendental = False:
754
+ (('transcendental', False), set( (
755
+ ) ),
756
+ ),
757
+ # Implications of zero = True:
758
+ (('zero', True), set( (
759
+ ('algebraic', True),
760
+ ('commutative', True),
761
+ ('complex', True),
762
+ ('composite', False),
763
+ ('even', True),
764
+ ('extended_negative', False),
765
+ ('extended_nonnegative', True),
766
+ ('extended_nonpositive', True),
767
+ ('extended_nonzero', False),
768
+ ('extended_positive', False),
769
+ ('extended_real', True),
770
+ ('finite', True),
771
+ ('hermitian', True),
772
+ ('imaginary', False),
773
+ ('infinite', False),
774
+ ('integer', True),
775
+ ('irrational', False),
776
+ ('negative', False),
777
+ ('noninteger', False),
778
+ ('nonnegative', True),
779
+ ('nonpositive', True),
780
+ ('nonzero', False),
781
+ ('odd', False),
782
+ ('positive', False),
783
+ ('prime', False),
784
+ ('rational', True),
785
+ ('real', True),
786
+ ('transcendental', False),
787
+ ) ),
788
+ ),
789
+ # Implications of zero = False:
790
+ (('zero', False), set( (
791
+ ) ),
792
+ ),
793
+ ] ) # full_implications
794
+
795
+
796
+ prereq = {
797
+
798
+ # facts that could determine the value of algebraic
799
+ 'algebraic': {
800
+ 'commutative',
801
+ 'complex',
802
+ 'composite',
803
+ 'even',
804
+ 'finite',
805
+ 'infinite',
806
+ 'integer',
807
+ 'odd',
808
+ 'prime',
809
+ 'rational',
810
+ 'transcendental',
811
+ 'zero',
812
+ },
813
+
814
+ # facts that could determine the value of antihermitian
815
+ 'antihermitian': {
816
+ 'imaginary',
817
+ },
818
+
819
+ # facts that could determine the value of commutative
820
+ 'commutative': {
821
+ 'algebraic',
822
+ 'complex',
823
+ 'composite',
824
+ 'even',
825
+ 'extended_negative',
826
+ 'extended_nonnegative',
827
+ 'extended_nonpositive',
828
+ 'extended_nonzero',
829
+ 'extended_positive',
830
+ 'extended_real',
831
+ 'imaginary',
832
+ 'integer',
833
+ 'irrational',
834
+ 'negative',
835
+ 'noninteger',
836
+ 'nonnegative',
837
+ 'nonpositive',
838
+ 'nonzero',
839
+ 'odd',
840
+ 'positive',
841
+ 'prime',
842
+ 'rational',
843
+ 'real',
844
+ 'transcendental',
845
+ 'zero',
846
+ },
847
+
848
+ # facts that could determine the value of complex
849
+ 'complex': {
850
+ 'algebraic',
851
+ 'commutative',
852
+ 'composite',
853
+ 'even',
854
+ 'finite',
855
+ 'imaginary',
856
+ 'infinite',
857
+ 'integer',
858
+ 'irrational',
859
+ 'negative',
860
+ 'nonnegative',
861
+ 'nonpositive',
862
+ 'nonzero',
863
+ 'odd',
864
+ 'positive',
865
+ 'prime',
866
+ 'rational',
867
+ 'real',
868
+ 'transcendental',
869
+ 'zero',
870
+ },
871
+
872
+ # facts that could determine the value of composite
873
+ 'composite': {
874
+ 'algebraic',
875
+ 'commutative',
876
+ 'complex',
877
+ 'extended_negative',
878
+ 'extended_nonnegative',
879
+ 'extended_nonpositive',
880
+ 'extended_nonzero',
881
+ 'extended_positive',
882
+ 'extended_real',
883
+ 'finite',
884
+ 'hermitian',
885
+ 'imaginary',
886
+ 'infinite',
887
+ 'integer',
888
+ 'irrational',
889
+ 'negative',
890
+ 'noninteger',
891
+ 'nonnegative',
892
+ 'nonpositive',
893
+ 'nonzero',
894
+ 'positive',
895
+ 'prime',
896
+ 'rational',
897
+ 'real',
898
+ 'transcendental',
899
+ 'zero',
900
+ },
901
+
902
+ # facts that could determine the value of even
903
+ 'even': {
904
+ 'algebraic',
905
+ 'commutative',
906
+ 'complex',
907
+ 'extended_real',
908
+ 'finite',
909
+ 'hermitian',
910
+ 'imaginary',
911
+ 'infinite',
912
+ 'integer',
913
+ 'irrational',
914
+ 'noninteger',
915
+ 'odd',
916
+ 'rational',
917
+ 'real',
918
+ 'transcendental',
919
+ 'zero',
920
+ },
921
+
922
+ # facts that could determine the value of extended_negative
923
+ 'extended_negative': {
924
+ 'commutative',
925
+ 'composite',
926
+ 'extended_nonnegative',
927
+ 'extended_nonpositive',
928
+ 'extended_nonzero',
929
+ 'extended_positive',
930
+ 'extended_real',
931
+ 'imaginary',
932
+ 'negative',
933
+ 'nonnegative',
934
+ 'positive',
935
+ 'prime',
936
+ 'zero',
937
+ },
938
+
939
+ # facts that could determine the value of extended_nonnegative
940
+ 'extended_nonnegative': {
941
+ 'commutative',
942
+ 'composite',
943
+ 'extended_negative',
944
+ 'extended_positive',
945
+ 'extended_real',
946
+ 'imaginary',
947
+ 'negative',
948
+ 'nonnegative',
949
+ 'positive',
950
+ 'prime',
951
+ 'zero',
952
+ },
953
+
954
+ # facts that could determine the value of extended_nonpositive
955
+ 'extended_nonpositive': {
956
+ 'commutative',
957
+ 'composite',
958
+ 'extended_negative',
959
+ 'extended_positive',
960
+ 'extended_real',
961
+ 'imaginary',
962
+ 'negative',
963
+ 'nonpositive',
964
+ 'positive',
965
+ 'prime',
966
+ 'zero',
967
+ },
968
+
969
+ # facts that could determine the value of extended_nonzero
970
+ 'extended_nonzero': {
971
+ 'commutative',
972
+ 'composite',
973
+ 'extended_negative',
974
+ 'extended_positive',
975
+ 'extended_real',
976
+ 'imaginary',
977
+ 'irrational',
978
+ 'negative',
979
+ 'noninteger',
980
+ 'nonzero',
981
+ 'odd',
982
+ 'positive',
983
+ 'prime',
984
+ 'zero',
985
+ },
986
+
987
+ # facts that could determine the value of extended_positive
988
+ 'extended_positive': {
989
+ 'commutative',
990
+ 'composite',
991
+ 'extended_negative',
992
+ 'extended_nonnegative',
993
+ 'extended_nonpositive',
994
+ 'extended_nonzero',
995
+ 'extended_real',
996
+ 'imaginary',
997
+ 'negative',
998
+ 'nonpositive',
999
+ 'positive',
1000
+ 'prime',
1001
+ 'zero',
1002
+ },
1003
+
1004
+ # facts that could determine the value of extended_real
1005
+ 'extended_real': {
1006
+ 'commutative',
1007
+ 'composite',
1008
+ 'even',
1009
+ 'extended_negative',
1010
+ 'extended_nonnegative',
1011
+ 'extended_nonpositive',
1012
+ 'extended_nonzero',
1013
+ 'extended_positive',
1014
+ 'imaginary',
1015
+ 'integer',
1016
+ 'irrational',
1017
+ 'negative',
1018
+ 'noninteger',
1019
+ 'nonnegative',
1020
+ 'nonpositive',
1021
+ 'nonzero',
1022
+ 'odd',
1023
+ 'positive',
1024
+ 'prime',
1025
+ 'rational',
1026
+ 'real',
1027
+ 'zero',
1028
+ },
1029
+
1030
+ # facts that could determine the value of finite
1031
+ 'finite': {
1032
+ 'algebraic',
1033
+ 'complex',
1034
+ 'composite',
1035
+ 'even',
1036
+ 'imaginary',
1037
+ 'infinite',
1038
+ 'integer',
1039
+ 'irrational',
1040
+ 'negative',
1041
+ 'nonnegative',
1042
+ 'nonpositive',
1043
+ 'nonzero',
1044
+ 'odd',
1045
+ 'positive',
1046
+ 'prime',
1047
+ 'rational',
1048
+ 'real',
1049
+ 'transcendental',
1050
+ 'zero',
1051
+ },
1052
+
1053
+ # facts that could determine the value of hermitian
1054
+ 'hermitian': {
1055
+ 'composite',
1056
+ 'even',
1057
+ 'integer',
1058
+ 'irrational',
1059
+ 'negative',
1060
+ 'nonnegative',
1061
+ 'nonpositive',
1062
+ 'nonzero',
1063
+ 'odd',
1064
+ 'positive',
1065
+ 'prime',
1066
+ 'rational',
1067
+ 'real',
1068
+ 'zero',
1069
+ },
1070
+
1071
+ # facts that could determine the value of imaginary
1072
+ 'imaginary': {
1073
+ 'antihermitian',
1074
+ 'commutative',
1075
+ 'complex',
1076
+ 'composite',
1077
+ 'even',
1078
+ 'extended_negative',
1079
+ 'extended_nonnegative',
1080
+ 'extended_nonpositive',
1081
+ 'extended_nonzero',
1082
+ 'extended_positive',
1083
+ 'extended_real',
1084
+ 'finite',
1085
+ 'infinite',
1086
+ 'integer',
1087
+ 'irrational',
1088
+ 'negative',
1089
+ 'noninteger',
1090
+ 'nonnegative',
1091
+ 'nonpositive',
1092
+ 'nonzero',
1093
+ 'odd',
1094
+ 'positive',
1095
+ 'prime',
1096
+ 'rational',
1097
+ 'real',
1098
+ 'zero',
1099
+ },
1100
+
1101
+ # facts that could determine the value of infinite
1102
+ 'infinite': {
1103
+ 'algebraic',
1104
+ 'complex',
1105
+ 'composite',
1106
+ 'even',
1107
+ 'finite',
1108
+ 'imaginary',
1109
+ 'integer',
1110
+ 'irrational',
1111
+ 'negative',
1112
+ 'nonnegative',
1113
+ 'nonpositive',
1114
+ 'nonzero',
1115
+ 'odd',
1116
+ 'positive',
1117
+ 'prime',
1118
+ 'rational',
1119
+ 'real',
1120
+ 'transcendental',
1121
+ 'zero',
1122
+ },
1123
+
1124
+ # facts that could determine the value of integer
1125
+ 'integer': {
1126
+ 'algebraic',
1127
+ 'commutative',
1128
+ 'complex',
1129
+ 'composite',
1130
+ 'even',
1131
+ 'extended_real',
1132
+ 'finite',
1133
+ 'hermitian',
1134
+ 'imaginary',
1135
+ 'infinite',
1136
+ 'irrational',
1137
+ 'noninteger',
1138
+ 'odd',
1139
+ 'prime',
1140
+ 'rational',
1141
+ 'real',
1142
+ 'transcendental',
1143
+ 'zero',
1144
+ },
1145
+
1146
+ # facts that could determine the value of irrational
1147
+ 'irrational': {
1148
+ 'commutative',
1149
+ 'complex',
1150
+ 'composite',
1151
+ 'even',
1152
+ 'extended_real',
1153
+ 'finite',
1154
+ 'hermitian',
1155
+ 'imaginary',
1156
+ 'infinite',
1157
+ 'integer',
1158
+ 'odd',
1159
+ 'prime',
1160
+ 'rational',
1161
+ 'real',
1162
+ 'zero',
1163
+ },
1164
+
1165
+ # facts that could determine the value of negative
1166
+ 'negative': {
1167
+ 'commutative',
1168
+ 'complex',
1169
+ 'composite',
1170
+ 'extended_negative',
1171
+ 'extended_nonnegative',
1172
+ 'extended_nonpositive',
1173
+ 'extended_nonzero',
1174
+ 'extended_positive',
1175
+ 'extended_real',
1176
+ 'finite',
1177
+ 'hermitian',
1178
+ 'imaginary',
1179
+ 'infinite',
1180
+ 'nonnegative',
1181
+ 'nonpositive',
1182
+ 'nonzero',
1183
+ 'positive',
1184
+ 'prime',
1185
+ 'real',
1186
+ 'zero',
1187
+ },
1188
+
1189
+ # facts that could determine the value of noninteger
1190
+ 'noninteger': {
1191
+ 'commutative',
1192
+ 'composite',
1193
+ 'even',
1194
+ 'extended_real',
1195
+ 'imaginary',
1196
+ 'integer',
1197
+ 'irrational',
1198
+ 'odd',
1199
+ 'prime',
1200
+ 'zero',
1201
+ },
1202
+
1203
+ # facts that could determine the value of nonnegative
1204
+ 'nonnegative': {
1205
+ 'commutative',
1206
+ 'complex',
1207
+ 'composite',
1208
+ 'extended_negative',
1209
+ 'extended_nonnegative',
1210
+ 'extended_real',
1211
+ 'finite',
1212
+ 'hermitian',
1213
+ 'imaginary',
1214
+ 'infinite',
1215
+ 'negative',
1216
+ 'positive',
1217
+ 'prime',
1218
+ 'real',
1219
+ 'zero',
1220
+ },
1221
+
1222
+ # facts that could determine the value of nonpositive
1223
+ 'nonpositive': {
1224
+ 'commutative',
1225
+ 'complex',
1226
+ 'composite',
1227
+ 'extended_nonpositive',
1228
+ 'extended_positive',
1229
+ 'extended_real',
1230
+ 'finite',
1231
+ 'hermitian',
1232
+ 'imaginary',
1233
+ 'infinite',
1234
+ 'negative',
1235
+ 'positive',
1236
+ 'prime',
1237
+ 'real',
1238
+ 'zero',
1239
+ },
1240
+
1241
+ # facts that could determine the value of nonzero
1242
+ 'nonzero': {
1243
+ 'commutative',
1244
+ 'complex',
1245
+ 'composite',
1246
+ 'extended_nonzero',
1247
+ 'extended_real',
1248
+ 'finite',
1249
+ 'hermitian',
1250
+ 'imaginary',
1251
+ 'infinite',
1252
+ 'irrational',
1253
+ 'negative',
1254
+ 'odd',
1255
+ 'positive',
1256
+ 'prime',
1257
+ 'real',
1258
+ 'zero',
1259
+ },
1260
+
1261
+ # facts that could determine the value of odd
1262
+ 'odd': {
1263
+ 'algebraic',
1264
+ 'commutative',
1265
+ 'complex',
1266
+ 'even',
1267
+ 'extended_real',
1268
+ 'finite',
1269
+ 'hermitian',
1270
+ 'imaginary',
1271
+ 'infinite',
1272
+ 'integer',
1273
+ 'irrational',
1274
+ 'noninteger',
1275
+ 'rational',
1276
+ 'real',
1277
+ 'transcendental',
1278
+ 'zero',
1279
+ },
1280
+
1281
+ # facts that could determine the value of positive
1282
+ 'positive': {
1283
+ 'commutative',
1284
+ 'complex',
1285
+ 'composite',
1286
+ 'extended_negative',
1287
+ 'extended_nonnegative',
1288
+ 'extended_nonpositive',
1289
+ 'extended_nonzero',
1290
+ 'extended_positive',
1291
+ 'extended_real',
1292
+ 'finite',
1293
+ 'hermitian',
1294
+ 'imaginary',
1295
+ 'infinite',
1296
+ 'negative',
1297
+ 'nonnegative',
1298
+ 'nonpositive',
1299
+ 'nonzero',
1300
+ 'prime',
1301
+ 'real',
1302
+ 'zero',
1303
+ },
1304
+
1305
+ # facts that could determine the value of prime
1306
+ 'prime': {
1307
+ 'algebraic',
1308
+ 'commutative',
1309
+ 'complex',
1310
+ 'composite',
1311
+ 'extended_negative',
1312
+ 'extended_nonnegative',
1313
+ 'extended_nonpositive',
1314
+ 'extended_nonzero',
1315
+ 'extended_positive',
1316
+ 'extended_real',
1317
+ 'finite',
1318
+ 'hermitian',
1319
+ 'imaginary',
1320
+ 'infinite',
1321
+ 'integer',
1322
+ 'irrational',
1323
+ 'negative',
1324
+ 'noninteger',
1325
+ 'nonnegative',
1326
+ 'nonpositive',
1327
+ 'nonzero',
1328
+ 'positive',
1329
+ 'rational',
1330
+ 'real',
1331
+ 'transcendental',
1332
+ 'zero',
1333
+ },
1334
+
1335
+ # facts that could determine the value of rational
1336
+ 'rational': {
1337
+ 'algebraic',
1338
+ 'commutative',
1339
+ 'complex',
1340
+ 'composite',
1341
+ 'even',
1342
+ 'extended_real',
1343
+ 'finite',
1344
+ 'hermitian',
1345
+ 'imaginary',
1346
+ 'infinite',
1347
+ 'integer',
1348
+ 'irrational',
1349
+ 'odd',
1350
+ 'prime',
1351
+ 'real',
1352
+ 'transcendental',
1353
+ 'zero',
1354
+ },
1355
+
1356
+ # facts that could determine the value of real
1357
+ 'real': {
1358
+ 'commutative',
1359
+ 'complex',
1360
+ 'composite',
1361
+ 'even',
1362
+ 'extended_real',
1363
+ 'finite',
1364
+ 'hermitian',
1365
+ 'imaginary',
1366
+ 'infinite',
1367
+ 'integer',
1368
+ 'irrational',
1369
+ 'negative',
1370
+ 'nonnegative',
1371
+ 'nonpositive',
1372
+ 'nonzero',
1373
+ 'odd',
1374
+ 'positive',
1375
+ 'prime',
1376
+ 'rational',
1377
+ 'zero',
1378
+ },
1379
+
1380
+ # facts that could determine the value of transcendental
1381
+ 'transcendental': {
1382
+ 'algebraic',
1383
+ 'commutative',
1384
+ 'complex',
1385
+ 'composite',
1386
+ 'even',
1387
+ 'finite',
1388
+ 'infinite',
1389
+ 'integer',
1390
+ 'odd',
1391
+ 'prime',
1392
+ 'rational',
1393
+ 'zero',
1394
+ },
1395
+
1396
+ # facts that could determine the value of zero
1397
+ 'zero': {
1398
+ 'algebraic',
1399
+ 'commutative',
1400
+ 'complex',
1401
+ 'composite',
1402
+ 'even',
1403
+ 'extended_negative',
1404
+ 'extended_nonnegative',
1405
+ 'extended_nonpositive',
1406
+ 'extended_nonzero',
1407
+ 'extended_positive',
1408
+ 'extended_real',
1409
+ 'finite',
1410
+ 'hermitian',
1411
+ 'imaginary',
1412
+ 'infinite',
1413
+ 'integer',
1414
+ 'irrational',
1415
+ 'negative',
1416
+ 'noninteger',
1417
+ 'nonnegative',
1418
+ 'nonpositive',
1419
+ 'nonzero',
1420
+ 'odd',
1421
+ 'positive',
1422
+ 'prime',
1423
+ 'rational',
1424
+ 'real',
1425
+ 'transcendental',
1426
+ },
1427
+
1428
+ } # prereq
1429
+
1430
+
1431
+ # Note: the order of the beta rules is used in the beta_triggers
1432
+ beta_rules = [
1433
+
1434
+ # Rules implying composite = True
1435
+ ({('even', True), ('positive', True), ('prime', False)},
1436
+ ('composite', True)),
1437
+
1438
+ # Rules implying even = False
1439
+ ({('composite', False), ('positive', True), ('prime', False)},
1440
+ ('even', False)),
1441
+
1442
+ # Rules implying even = True
1443
+ ({('integer', True), ('odd', False)},
1444
+ ('even', True)),
1445
+
1446
+ # Rules implying extended_negative = True
1447
+ ({('extended_positive', False), ('extended_real', True), ('zero', False)},
1448
+ ('extended_negative', True)),
1449
+ ({('extended_nonpositive', True), ('extended_nonzero', True)},
1450
+ ('extended_negative', True)),
1451
+
1452
+ # Rules implying extended_nonnegative = True
1453
+ ({('extended_negative', False), ('extended_real', True)},
1454
+ ('extended_nonnegative', True)),
1455
+
1456
+ # Rules implying extended_nonpositive = True
1457
+ ({('extended_positive', False), ('extended_real', True)},
1458
+ ('extended_nonpositive', True)),
1459
+
1460
+ # Rules implying extended_nonzero = True
1461
+ ({('extended_real', True), ('zero', False)},
1462
+ ('extended_nonzero', True)),
1463
+
1464
+ # Rules implying extended_positive = True
1465
+ ({('extended_negative', False), ('extended_real', True), ('zero', False)},
1466
+ ('extended_positive', True)),
1467
+ ({('extended_nonnegative', True), ('extended_nonzero', True)},
1468
+ ('extended_positive', True)),
1469
+
1470
+ # Rules implying extended_real = False
1471
+ ({('infinite', False), ('real', False)},
1472
+ ('extended_real', False)),
1473
+ ({('extended_negative', False), ('extended_positive', False), ('zero', False)},
1474
+ ('extended_real', False)),
1475
+
1476
+ # Rules implying infinite = True
1477
+ ({('extended_real', True), ('real', False)},
1478
+ ('infinite', True)),
1479
+
1480
+ # Rules implying irrational = True
1481
+ ({('rational', False), ('real', True)},
1482
+ ('irrational', True)),
1483
+
1484
+ # Rules implying negative = True
1485
+ ({('positive', False), ('real', True), ('zero', False)},
1486
+ ('negative', True)),
1487
+ ({('nonpositive', True), ('nonzero', True)},
1488
+ ('negative', True)),
1489
+ ({('extended_negative', True), ('finite', True)},
1490
+ ('negative', True)),
1491
+
1492
+ # Rules implying noninteger = True
1493
+ ({('extended_real', True), ('integer', False)},
1494
+ ('noninteger', True)),
1495
+
1496
+ # Rules implying nonnegative = True
1497
+ ({('negative', False), ('real', True)},
1498
+ ('nonnegative', True)),
1499
+ ({('extended_nonnegative', True), ('finite', True)},
1500
+ ('nonnegative', True)),
1501
+
1502
+ # Rules implying nonpositive = True
1503
+ ({('positive', False), ('real', True)},
1504
+ ('nonpositive', True)),
1505
+ ({('extended_nonpositive', True), ('finite', True)},
1506
+ ('nonpositive', True)),
1507
+
1508
+ # Rules implying nonzero = True
1509
+ ({('extended_nonzero', True), ('finite', True)},
1510
+ ('nonzero', True)),
1511
+
1512
+ # Rules implying odd = True
1513
+ ({('even', False), ('integer', True)},
1514
+ ('odd', True)),
1515
+
1516
+ # Rules implying positive = False
1517
+ ({('composite', False), ('even', True), ('prime', False)},
1518
+ ('positive', False)),
1519
+
1520
+ # Rules implying positive = True
1521
+ ({('negative', False), ('real', True), ('zero', False)},
1522
+ ('positive', True)),
1523
+ ({('nonnegative', True), ('nonzero', True)},
1524
+ ('positive', True)),
1525
+ ({('extended_positive', True), ('finite', True)},
1526
+ ('positive', True)),
1527
+
1528
+ # Rules implying prime = True
1529
+ ({('composite', False), ('even', True), ('positive', True)},
1530
+ ('prime', True)),
1531
+
1532
+ # Rules implying real = False
1533
+ ({('negative', False), ('positive', False), ('zero', False)},
1534
+ ('real', False)),
1535
+
1536
+ # Rules implying real = True
1537
+ ({('extended_real', True), ('infinite', False)},
1538
+ ('real', True)),
1539
+ ({('extended_real', True), ('finite', True)},
1540
+ ('real', True)),
1541
+
1542
+ # Rules implying transcendental = True
1543
+ ({('algebraic', False), ('complex', True)},
1544
+ ('transcendental', True)),
1545
+
1546
+ # Rules implying zero = True
1547
+ ({('extended_negative', False), ('extended_positive', False), ('extended_real', True)},
1548
+ ('zero', True)),
1549
+ ({('negative', False), ('positive', False), ('real', True)},
1550
+ ('zero', True)),
1551
+ ({('extended_nonnegative', True), ('extended_nonpositive', True)},
1552
+ ('zero', True)),
1553
+ ({('nonnegative', True), ('nonpositive', True)},
1554
+ ('zero', True)),
1555
+
1556
+ ] # beta_rules
1557
+ beta_triggers = {
1558
+ ('algebraic', False): [32, 11, 3, 8, 29, 14, 25, 13, 17, 7],
1559
+ ('algebraic', True): [10, 30, 31, 27, 16, 21, 19, 22],
1560
+ ('antihermitian', False): [],
1561
+ ('commutative', False): [],
1562
+ ('complex', False): [10, 12, 11, 3, 8, 17, 7],
1563
+ ('complex', True): [32, 10, 30, 31, 27, 16, 21, 19, 22],
1564
+ ('composite', False): [1, 28, 24],
1565
+ ('composite', True): [23, 2],
1566
+ ('even', False): [23, 11, 3, 8, 29, 14, 25, 7],
1567
+ ('even', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 0, 28, 24, 7],
1568
+ ('extended_negative', False): [11, 33, 8, 5, 29, 34, 25, 18],
1569
+ ('extended_negative', True): [30, 12, 31, 29, 14, 20, 16, 21, 22, 17],
1570
+ ('extended_nonnegative', False): [11, 3, 6, 29, 14, 20, 7],
1571
+ ('extended_nonnegative', True): [30, 12, 31, 33, 8, 9, 6, 29, 34, 25, 18, 19, 35, 17, 7],
1572
+ ('extended_nonpositive', False): [11, 8, 5, 29, 25, 18, 7],
1573
+ ('extended_nonpositive', True): [30, 12, 31, 3, 33, 4, 5, 29, 14, 34, 20, 21, 35, 17, 7],
1574
+ ('extended_nonzero', False): [11, 33, 6, 5, 29, 34, 20, 18],
1575
+ ('extended_nonzero', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22, 17],
1576
+ ('extended_positive', False): [11, 3, 33, 6, 29, 14, 34, 20],
1577
+ ('extended_positive', True): [30, 12, 31, 29, 25, 18, 27, 19, 22, 17],
1578
+ ('extended_real', False): [],
1579
+ ('extended_real', True): [30, 12, 31, 3, 33, 8, 6, 5, 17, 7],
1580
+ ('finite', False): [11, 3, 8, 17, 7],
1581
+ ('finite', True): [10, 30, 31, 27, 16, 21, 19, 22],
1582
+ ('hermitian', False): [10, 12, 11, 3, 8, 17, 7],
1583
+ ('imaginary', True): [32],
1584
+ ('infinite', False): [10, 30, 31, 27, 16, 21, 19, 22],
1585
+ ('infinite', True): [11, 3, 8, 17, 7],
1586
+ ('integer', False): [11, 3, 8, 29, 14, 25, 17, 7],
1587
+ ('integer', True): [23, 2, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 7],
1588
+ ('irrational', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1589
+ ('negative', False): [29, 34, 25, 18],
1590
+ ('negative', True): [32, 13, 17],
1591
+ ('noninteger', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22],
1592
+ ('nonnegative', False): [11, 3, 8, 29, 14, 20, 7],
1593
+ ('nonnegative', True): [32, 33, 8, 9, 6, 34, 25, 26, 20, 27, 21, 22, 35, 36, 13, 17, 7],
1594
+ ('nonpositive', False): [11, 3, 8, 29, 25, 18, 7],
1595
+ ('nonpositive', True): [32, 3, 33, 4, 5, 14, 34, 15, 18, 16, 19, 22, 35, 36, 13, 17, 7],
1596
+ ('nonzero', False): [29, 34, 20, 18],
1597
+ ('nonzero', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19, 13, 17],
1598
+ ('odd', False): [2],
1599
+ ('odd', True): [3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1600
+ ('positive', False): [29, 14, 34, 20],
1601
+ ('positive', True): [32, 0, 1, 28, 13, 17],
1602
+ ('prime', False): [0, 1, 24],
1603
+ ('prime', True): [23, 2],
1604
+ ('rational', False): [11, 3, 8, 29, 14, 25, 13, 17, 7],
1605
+ ('rational', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 17, 7],
1606
+ ('real', False): [10, 12, 11, 3, 8, 17, 7],
1607
+ ('real', True): [32, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 13, 17, 7],
1608
+ ('transcendental', True): [10, 30, 31, 11, 3, 8, 29, 14, 25, 27, 16, 21, 19, 22, 13, 17, 7],
1609
+ ('zero', False): [11, 3, 8, 29, 14, 25, 7],
1610
+ ('zero', True): [],
1611
+ } # beta_triggers
1612
+
1613
+
1614
+ generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,
1615
+ 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}
venv/lib/python3.10/site-packages/sympy/core/basic.py ADDED
@@ -0,0 +1,2233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for all the objects in SymPy"""
2
+ from __future__ import annotations
3
+
4
+ from collections import defaultdict
5
+ from collections.abc import Mapping
6
+ from itertools import chain, zip_longest
7
+
8
+ from .assumptions import _prepare_class_assumptions
9
+ from .cache import cacheit
10
+ from .core import ordering_of_classes
11
+ from .sympify import _sympify, sympify, SympifyError, _external_converter
12
+ from .sorting import ordered
13
+ from .kind import Kind, UndefinedKind
14
+ from ._print_helpers import Printable
15
+
16
+ from sympy.utilities.decorator import deprecated
17
+ from sympy.utilities.exceptions import sympy_deprecation_warning
18
+ from sympy.utilities.iterables import iterable, numbered_symbols
19
+ from sympy.utilities.misc import filldedent, func_name
20
+
21
+ from inspect import getmro
22
+
23
+
24
+ def as_Basic(expr):
25
+ """Return expr as a Basic instance using strict sympify
26
+ or raise a TypeError; this is just a wrapper to _sympify,
27
+ raising a TypeError instead of a SympifyError."""
28
+ try:
29
+ return _sympify(expr)
30
+ except SympifyError:
31
+ raise TypeError(
32
+ 'Argument must be a Basic object, not `%s`' % func_name(
33
+ expr))
34
+
35
+
36
+ def _old_compare(x: type, y: type) -> int:
37
+ # If the other object is not a Basic subclass, then we are not equal to it.
38
+ if not issubclass(y, Basic):
39
+ return -1
40
+
41
+ n1 = x.__name__
42
+ n2 = y.__name__
43
+ if n1 == n2:
44
+ return 0
45
+
46
+ UNKNOWN = len(ordering_of_classes) + 1
47
+ try:
48
+ i1 = ordering_of_classes.index(n1)
49
+ except ValueError:
50
+ i1 = UNKNOWN
51
+ try:
52
+ i2 = ordering_of_classes.index(n2)
53
+ except ValueError:
54
+ i2 = UNKNOWN
55
+ if i1 == UNKNOWN and i2 == UNKNOWN:
56
+ return (n1 > n2) - (n1 < n2)
57
+ return (i1 > i2) - (i1 < i2)
58
+
59
+
60
+ class Basic(Printable):
61
+ """
62
+ Base class for all SymPy objects.
63
+
64
+ Notes and conventions
65
+ =====================
66
+
67
+ 1) Always use ``.args``, when accessing parameters of some instance:
68
+
69
+ >>> from sympy import cot
70
+ >>> from sympy.abc import x, y
71
+
72
+ >>> cot(x).args
73
+ (x,)
74
+
75
+ >>> cot(x).args[0]
76
+ x
77
+
78
+ >>> (x*y).args
79
+ (x, y)
80
+
81
+ >>> (x*y).args[1]
82
+ y
83
+
84
+
85
+ 2) Never use internal methods or variables (the ones prefixed with ``_``):
86
+
87
+ >>> cot(x)._args # do not use this, use cot(x).args instead
88
+ (x,)
89
+
90
+
91
+ 3) By "SymPy object" we mean something that can be returned by
92
+ ``sympify``. But not all objects one encounters using SymPy are
93
+ subclasses of Basic. For example, mutable objects are not:
94
+
95
+ >>> from sympy import Basic, Matrix, sympify
96
+ >>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
97
+ >>> isinstance(A, Basic)
98
+ False
99
+
100
+ >>> B = sympify(A)
101
+ >>> isinstance(B, Basic)
102
+ True
103
+ """
104
+ __slots__ = ('_mhash', # hash value
105
+ '_args', # arguments
106
+ '_assumptions'
107
+ )
108
+
109
+ _args: tuple[Basic, ...]
110
+ _mhash: int | None
111
+
112
+ @property
113
+ def __sympy__(self):
114
+ return True
115
+
116
+ def __init_subclass__(cls):
117
+ # Initialize the default_assumptions FactKB and also any assumptions
118
+ # property methods. This method will only be called for subclasses of
119
+ # Basic but not for Basic itself so we call
120
+ # _prepare_class_assumptions(Basic) below the class definition.
121
+ _prepare_class_assumptions(cls)
122
+
123
+ # To be overridden with True in the appropriate subclasses
124
+ is_number = False
125
+ is_Atom = False
126
+ is_Symbol = False
127
+ is_symbol = False
128
+ is_Indexed = False
129
+ is_Dummy = False
130
+ is_Wild = False
131
+ is_Function = False
132
+ is_Add = False
133
+ is_Mul = False
134
+ is_Pow = False
135
+ is_Number = False
136
+ is_Float = False
137
+ is_Rational = False
138
+ is_Integer = False
139
+ is_NumberSymbol = False
140
+ is_Order = False
141
+ is_Derivative = False
142
+ is_Piecewise = False
143
+ is_Poly = False
144
+ is_AlgebraicNumber = False
145
+ is_Relational = False
146
+ is_Equality = False
147
+ is_Boolean = False
148
+ is_Not = False
149
+ is_Matrix = False
150
+ is_Vector = False
151
+ is_Point = False
152
+ is_MatAdd = False
153
+ is_MatMul = False
154
+ is_real: bool | None
155
+ is_extended_real: bool | None
156
+ is_zero: bool | None
157
+ is_negative: bool | None
158
+ is_commutative: bool | None
159
+
160
+ kind: Kind = UndefinedKind
161
+
162
+ def __new__(cls, *args):
163
+ obj = object.__new__(cls)
164
+ obj._assumptions = cls.default_assumptions
165
+ obj._mhash = None # will be set by __hash__ method.
166
+
167
+ obj._args = args # all items in args must be Basic objects
168
+ return obj
169
+
170
+ def copy(self):
171
+ return self.func(*self.args)
172
+
173
+ def __getnewargs__(self):
174
+ return self.args
175
+
176
+ def __getstate__(self):
177
+ return None
178
+
179
+ def __setstate__(self, state):
180
+ for name, value in state.items():
181
+ setattr(self, name, value)
182
+
183
+ def __reduce_ex__(self, protocol):
184
+ if protocol < 2:
185
+ msg = "Only pickle protocol 2 or higher is supported by SymPy"
186
+ raise NotImplementedError(msg)
187
+ return super().__reduce_ex__(protocol)
188
+
189
+ def __hash__(self) -> int:
190
+ # hash cannot be cached using cache_it because infinite recurrence
191
+ # occurs as hash is needed for setting cache dictionary keys
192
+ h = self._mhash
193
+ if h is None:
194
+ h = hash((type(self).__name__,) + self._hashable_content())
195
+ self._mhash = h
196
+ return h
197
+
198
+ def _hashable_content(self):
199
+ """Return a tuple of information about self that can be used to
200
+ compute the hash. If a class defines additional attributes,
201
+ like ``name`` in Symbol, then this method should be updated
202
+ accordingly to return such relevant attributes.
203
+
204
+ Defining more than _hashable_content is necessary if __eq__ has
205
+ been defined by a class. See note about this in Basic.__eq__."""
206
+ return self._args
207
+
208
+ @property
209
+ def assumptions0(self):
210
+ """
211
+ Return object `type` assumptions.
212
+
213
+ For example:
214
+
215
+ Symbol('x', real=True)
216
+ Symbol('x', integer=True)
217
+
218
+ are different objects. In other words, besides Python type (Symbol in
219
+ this case), the initial assumptions are also forming their typeinfo.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy import Symbol
225
+ >>> from sympy.abc import x
226
+ >>> x.assumptions0
227
+ {'commutative': True}
228
+ >>> x = Symbol("x", positive=True)
229
+ >>> x.assumptions0
230
+ {'commutative': True, 'complex': True, 'extended_negative': False,
231
+ 'extended_nonnegative': True, 'extended_nonpositive': False,
232
+ 'extended_nonzero': True, 'extended_positive': True, 'extended_real':
233
+ True, 'finite': True, 'hermitian': True, 'imaginary': False,
234
+ 'infinite': False, 'negative': False, 'nonnegative': True,
235
+ 'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
236
+ True, 'zero': False}
237
+ """
238
+ return {}
239
+
240
+ def compare(self, other):
241
+ """
242
+ Return -1, 0, 1 if the object is smaller, equal, or greater than other.
243
+
244
+ Not in the mathematical sense. If the object is of a different type
245
+ from the "other" then their classes are ordered according to
246
+ the sorted_classes list.
247
+
248
+ Examples
249
+ ========
250
+
251
+ >>> from sympy.abc import x, y
252
+ >>> x.compare(y)
253
+ -1
254
+ >>> x.compare(x)
255
+ 0
256
+ >>> y.compare(x)
257
+ 1
258
+
259
+ """
260
+ # all redefinitions of __cmp__ method should start with the
261
+ # following lines:
262
+ if self is other:
263
+ return 0
264
+ n1 = self.__class__
265
+ n2 = other.__class__
266
+ c = _old_compare(n1, n2)
267
+ if c:
268
+ return c
269
+ #
270
+ st = self._hashable_content()
271
+ ot = other._hashable_content()
272
+ c = (len(st) > len(ot)) - (len(st) < len(ot))
273
+ if c:
274
+ return c
275
+ for l, r in zip(st, ot):
276
+ l = Basic(*l) if isinstance(l, frozenset) else l
277
+ r = Basic(*r) if isinstance(r, frozenset) else r
278
+ if isinstance(l, Basic):
279
+ c = l.compare(r)
280
+ else:
281
+ c = (l > r) - (l < r)
282
+ if c:
283
+ return c
284
+ return 0
285
+
286
+ @staticmethod
287
+ def _compare_pretty(a, b):
288
+ from sympy.series.order import Order
289
+ if isinstance(a, Order) and not isinstance(b, Order):
290
+ return 1
291
+ if not isinstance(a, Order) and isinstance(b, Order):
292
+ return -1
293
+
294
+ if a.is_Rational and b.is_Rational:
295
+ l = a.p * b.q
296
+ r = b.p * a.q
297
+ return (l > r) - (l < r)
298
+ else:
299
+ from .symbol import Wild
300
+ p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
301
+ r_a = a.match(p1 * p2**p3)
302
+ if r_a and p3 in r_a:
303
+ a3 = r_a[p3]
304
+ r_b = b.match(p1 * p2**p3)
305
+ if r_b and p3 in r_b:
306
+ b3 = r_b[p3]
307
+ c = Basic.compare(a3, b3)
308
+ if c != 0:
309
+ return c
310
+
311
+ return Basic.compare(a, b)
312
+
313
+ @classmethod
314
+ def fromiter(cls, args, **assumptions):
315
+ """
316
+ Create a new object from an iterable.
317
+
318
+ This is a convenience function that allows one to create objects from
319
+ any iterable, without having to convert to a list or tuple first.
320
+
321
+ Examples
322
+ ========
323
+
324
+ >>> from sympy import Tuple
325
+ >>> Tuple.fromiter(i for i in range(5))
326
+ (0, 1, 2, 3, 4)
327
+
328
+ """
329
+ return cls(*tuple(args), **assumptions)
330
+
331
+ @classmethod
332
+ def class_key(cls):
333
+ """Nice order of classes."""
334
+ return 5, 0, cls.__name__
335
+
336
+ @cacheit
337
+ def sort_key(self, order=None):
338
+ """
339
+ Return a sort key.
340
+
341
+ Examples
342
+ ========
343
+
344
+ >>> from sympy import S, I
345
+
346
+ >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
347
+ [1/2, -I, I]
348
+
349
+ >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
350
+ [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
351
+ >>> sorted(_, key=lambda x: x.sort_key())
352
+ [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
353
+
354
+ """
355
+
356
+ # XXX: remove this when issue 5169 is fixed
357
+ def inner_key(arg):
358
+ if isinstance(arg, Basic):
359
+ return arg.sort_key(order)
360
+ else:
361
+ return arg
362
+
363
+ args = self._sorted_args
364
+ args = len(args), tuple([inner_key(arg) for arg in args])
365
+ return self.class_key(), args, S.One.sort_key(), S.One
366
+
367
+ def _do_eq_sympify(self, other):
368
+ """Returns a boolean indicating whether a == b when either a
369
+ or b is not a Basic. This is only done for types that were either
370
+ added to `converter` by a 3rd party or when the object has `_sympy_`
371
+ defined. This essentially reuses the code in `_sympify` that is
372
+ specific for this use case. Non-user defined types that are meant
373
+ to work with SymPy should be handled directly in the __eq__ methods
374
+ of the `Basic` classes it could equate to and not be converted. Note
375
+ that after conversion, `==` is used again since it is not
376
+ necessarily clear whether `self` or `other`'s __eq__ method needs
377
+ to be used."""
378
+ for superclass in type(other).__mro__:
379
+ conv = _external_converter.get(superclass)
380
+ if conv is not None:
381
+ return self == conv(other)
382
+ if hasattr(other, '_sympy_'):
383
+ return self == other._sympy_()
384
+ return NotImplemented
385
+
386
+ def __eq__(self, other):
387
+ """Return a boolean indicating whether a == b on the basis of
388
+ their symbolic trees.
389
+
390
+ This is the same as a.compare(b) == 0 but faster.
391
+
392
+ Notes
393
+ =====
394
+
395
+ If a class that overrides __eq__() needs to retain the
396
+ implementation of __hash__() from a parent class, the
397
+ interpreter must be told this explicitly by setting
398
+ __hash__ : Callable[[object], int] = <ParentClass>.__hash__.
399
+ Otherwise the inheritance of __hash__() will be blocked,
400
+ just as if __hash__ had been explicitly set to None.
401
+
402
+ References
403
+ ==========
404
+
405
+ from https://docs.python.org/dev/reference/datamodel.html#object.__hash__
406
+ """
407
+ if self is other:
408
+ return True
409
+
410
+ if not isinstance(other, Basic):
411
+ return self._do_eq_sympify(other)
412
+
413
+ # check for pure number expr
414
+ if not (self.is_Number and other.is_Number) and (
415
+ type(self) != type(other)):
416
+ return False
417
+ a, b = self._hashable_content(), other._hashable_content()
418
+ if a != b:
419
+ return False
420
+ # check number *in* an expression
421
+ for a, b in zip(a, b):
422
+ if not isinstance(a, Basic):
423
+ continue
424
+ if a.is_Number and type(a) != type(b):
425
+ return False
426
+ return True
427
+
428
+ def __ne__(self, other):
429
+ """``a != b`` -> Compare two symbolic trees and see whether they are different
430
+
431
+ this is the same as:
432
+
433
+ ``a.compare(b) != 0``
434
+
435
+ but faster
436
+ """
437
+ return not self == other
438
+
439
+ def dummy_eq(self, other, symbol=None):
440
+ """
441
+ Compare two expressions and handle dummy symbols.
442
+
443
+ Examples
444
+ ========
445
+
446
+ >>> from sympy import Dummy
447
+ >>> from sympy.abc import x, y
448
+
449
+ >>> u = Dummy('u')
450
+
451
+ >>> (u**2 + 1).dummy_eq(x**2 + 1)
452
+ True
453
+ >>> (u**2 + 1) == (x**2 + 1)
454
+ False
455
+
456
+ >>> (u**2 + y).dummy_eq(x**2 + y, x)
457
+ True
458
+ >>> (u**2 + y).dummy_eq(x**2 + y, y)
459
+ False
460
+
461
+ """
462
+ s = self.as_dummy()
463
+ o = _sympify(other)
464
+ o = o.as_dummy()
465
+
466
+ dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
467
+
468
+ if len(dummy_symbols) == 1:
469
+ dummy = dummy_symbols.pop()
470
+ else:
471
+ return s == o
472
+
473
+ if symbol is None:
474
+ symbols = o.free_symbols
475
+
476
+ if len(symbols) == 1:
477
+ symbol = symbols.pop()
478
+ else:
479
+ return s == o
480
+
481
+ tmp = dummy.__class__()
482
+
483
+ return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp})
484
+
485
+ def atoms(self, *types):
486
+ """Returns the atoms that form the current object.
487
+
488
+ By default, only objects that are truly atomic and cannot
489
+ be divided into smaller pieces are returned: symbols, numbers,
490
+ and number symbols like I and pi. It is possible to request
491
+ atoms of any type, however, as demonstrated below.
492
+
493
+ Examples
494
+ ========
495
+
496
+ >>> from sympy import I, pi, sin
497
+ >>> from sympy.abc import x, y
498
+ >>> (1 + x + 2*sin(y + I*pi)).atoms()
499
+ {1, 2, I, pi, x, y}
500
+
501
+ If one or more types are given, the results will contain only
502
+ those types of atoms.
503
+
504
+ >>> from sympy import Number, NumberSymbol, Symbol
505
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
506
+ {x, y}
507
+
508
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
509
+ {1, 2}
510
+
511
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
512
+ {1, 2, pi}
513
+
514
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
515
+ {1, 2, I, pi}
516
+
517
+ Note that I (imaginary unit) and zoo (complex infinity) are special
518
+ types of number symbols and are not part of the NumberSymbol class.
519
+
520
+ The type can be given implicitly, too:
521
+
522
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
523
+ {x, y}
524
+
525
+ Be careful to check your assumptions when using the implicit option
526
+ since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
527
+ of SymPy atom, while ``type(S(2))`` is type ``Integer`` and will find all
528
+ integers in an expression:
529
+
530
+ >>> from sympy import S
531
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
532
+ {1}
533
+
534
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
535
+ {1, 2}
536
+
537
+ Finally, arguments to atoms() can select more than atomic atoms: any
538
+ SymPy type (loaded in core/__init__.py) can be listed as an argument
539
+ and those types of "atoms" as found in scanning the arguments of the
540
+ expression recursively:
541
+
542
+ >>> from sympy import Function, Mul
543
+ >>> from sympy.core.function import AppliedUndef
544
+ >>> f = Function('f')
545
+ >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
546
+ {f(x), sin(y + I*pi)}
547
+ >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
548
+ {f(x)}
549
+
550
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
551
+ {I*pi, 2*sin(y + I*pi)}
552
+
553
+ """
554
+ if types:
555
+ types = tuple(
556
+ [t if isinstance(t, type) else type(t) for t in types])
557
+ nodes = _preorder_traversal(self)
558
+ if types:
559
+ result = {node for node in nodes if isinstance(node, types)}
560
+ else:
561
+ result = {node for node in nodes if not node.args}
562
+ return result
563
+
564
+ @property
565
+ def free_symbols(self) -> set[Basic]:
566
+ """Return from the atoms of self those which are free symbols.
567
+
568
+ Not all free symbols are ``Symbol``. Eg: IndexedBase('I')[0].free_symbols
569
+
570
+ For most expressions, all symbols are free symbols. For some classes
571
+ this is not true. e.g. Integrals use Symbols for the dummy variables
572
+ which are bound variables, so Integral has a method to return all
573
+ symbols except those. Derivative keeps track of symbols with respect
574
+ to which it will perform a derivative; those are
575
+ bound variables, too, so it has its own free_symbols method.
576
+
577
+ Any other method that uses bound variables should implement a
578
+ free_symbols method."""
579
+ empty: set[Basic] = set()
580
+ return empty.union(*(a.free_symbols for a in self.args))
581
+
582
+ @property
583
+ def expr_free_symbols(self):
584
+ sympy_deprecation_warning("""
585
+ The expr_free_symbols property is deprecated. Use free_symbols to get
586
+ the free symbols of an expression.
587
+ """,
588
+ deprecated_since_version="1.9",
589
+ active_deprecations_target="deprecated-expr-free-symbols")
590
+ return set()
591
+
592
+ def as_dummy(self):
593
+ """Return the expression with any objects having structurally
594
+ bound symbols replaced with unique, canonical symbols within
595
+ the object in which they appear and having only the default
596
+ assumption for commutativity being True. When applied to a
597
+ symbol a new symbol having only the same commutativity will be
598
+ returned.
599
+
600
+ Examples
601
+ ========
602
+
603
+ >>> from sympy import Integral, Symbol
604
+ >>> from sympy.abc import x
605
+ >>> r = Symbol('r', real=True)
606
+ >>> Integral(r, (r, x)).as_dummy()
607
+ Integral(_0, (_0, x))
608
+ >>> _.variables[0].is_real is None
609
+ True
610
+ >>> r.as_dummy()
611
+ _r
612
+
613
+ Notes
614
+ =====
615
+
616
+ Any object that has structurally bound variables should have
617
+ a property, `bound_symbols` that returns those symbols
618
+ appearing in the object.
619
+ """
620
+ from .symbol import Dummy, Symbol
621
+ def can(x):
622
+ # mask free that shadow bound
623
+ free = x.free_symbols
624
+ bound = set(x.bound_symbols)
625
+ d = {i: Dummy() for i in bound & free}
626
+ x = x.subs(d)
627
+ # replace bound with canonical names
628
+ x = x.xreplace(x.canonical_variables)
629
+ # return after undoing masking
630
+ return x.xreplace({v: k for k, v in d.items()})
631
+ if not self.has(Symbol):
632
+ return self
633
+ return self.replace(
634
+ lambda x: hasattr(x, 'bound_symbols'),
635
+ can,
636
+ simultaneous=False)
637
+
638
+ @property
639
+ def canonical_variables(self):
640
+ """Return a dictionary mapping any variable defined in
641
+ ``self.bound_symbols`` to Symbols that do not clash
642
+ with any free symbols in the expression.
643
+
644
+ Examples
645
+ ========
646
+
647
+ >>> from sympy import Lambda
648
+ >>> from sympy.abc import x
649
+ >>> Lambda(x, 2*x).canonical_variables
650
+ {x: _0}
651
+ """
652
+ if not hasattr(self, 'bound_symbols'):
653
+ return {}
654
+ dums = numbered_symbols('_')
655
+ reps = {}
656
+ # watch out for free symbol that are not in bound symbols;
657
+ # those that are in bound symbols are about to get changed
658
+ bound = self.bound_symbols
659
+ names = {i.name for i in self.free_symbols - set(bound)}
660
+ for b in bound:
661
+ d = next(dums)
662
+ if b.is_Symbol:
663
+ while d.name in names:
664
+ d = next(dums)
665
+ reps[b] = d
666
+ return reps
667
+
668
+ def rcall(self, *args):
669
+ """Apply on the argument recursively through the expression tree.
670
+
671
+ This method is used to simulate a common abuse of notation for
672
+ operators. For instance, in SymPy the following will not work:
673
+
674
+ ``(x+Lambda(y, 2*y))(z) == x+2*z``,
675
+
676
+ however, you can use:
677
+
678
+ >>> from sympy import Lambda
679
+ >>> from sympy.abc import x, y, z
680
+ >>> (x + Lambda(y, 2*y)).rcall(z)
681
+ x + 2*z
682
+ """
683
+ return Basic._recursive_call(self, args)
684
+
685
+ @staticmethod
686
+ def _recursive_call(expr_to_call, on_args):
687
+ """Helper for rcall method."""
688
+ from .symbol import Symbol
689
+ def the_call_method_is_overridden(expr):
690
+ for cls in getmro(type(expr)):
691
+ if '__call__' in cls.__dict__:
692
+ return cls != Basic
693
+
694
+ if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
695
+ if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
696
+ return expr_to_call # transformed into an UndefFunction
697
+ else:
698
+ return expr_to_call(*on_args)
699
+ elif expr_to_call.args:
700
+ args = [Basic._recursive_call(
701
+ sub, on_args) for sub in expr_to_call.args]
702
+ return type(expr_to_call)(*args)
703
+ else:
704
+ return expr_to_call
705
+
706
+ def is_hypergeometric(self, k):
707
+ from sympy.simplify.simplify import hypersimp
708
+ from sympy.functions.elementary.piecewise import Piecewise
709
+ if self.has(Piecewise):
710
+ return None
711
+ return hypersimp(self, k) is not None
712
+
713
+ @property
714
+ def is_comparable(self):
715
+ """Return True if self can be computed to a real number
716
+ (or already is a real number) with precision, else False.
717
+
718
+ Examples
719
+ ========
720
+
721
+ >>> from sympy import exp_polar, pi, I
722
+ >>> (I*exp_polar(I*pi/2)).is_comparable
723
+ True
724
+ >>> (I*exp_polar(I*pi*2)).is_comparable
725
+ False
726
+
727
+ A False result does not mean that `self` cannot be rewritten
728
+ into a form that would be comparable. For example, the
729
+ difference computed below is zero but without simplification
730
+ it does not evaluate to a zero with precision:
731
+
732
+ >>> e = 2**pi*(1 + 2**pi)
733
+ >>> dif = e - e.expand()
734
+ >>> dif.is_comparable
735
+ False
736
+ >>> dif.n(2)._prec
737
+ 1
738
+
739
+ """
740
+ is_extended_real = self.is_extended_real
741
+ if is_extended_real is False:
742
+ return False
743
+ if not self.is_number:
744
+ return False
745
+ # don't re-eval numbers that are already evaluated since
746
+ # this will create spurious precision
747
+ n, i = [p.evalf(2) if not p.is_Number else p
748
+ for p in self.as_real_imag()]
749
+ if not (i.is_Number and n.is_Number):
750
+ return False
751
+ if i:
752
+ # if _prec = 1 we can't decide and if not,
753
+ # the answer is False because numbers with
754
+ # imaginary parts can't be compared
755
+ # so return False
756
+ return False
757
+ else:
758
+ return n._prec != 1
759
+
760
+ @property
761
+ def func(self):
762
+ """
763
+ The top-level function in an expression.
764
+
765
+ The following should hold for all objects::
766
+
767
+ >> x == x.func(*x.args)
768
+
769
+ Examples
770
+ ========
771
+
772
+ >>> from sympy.abc import x
773
+ >>> a = 2*x
774
+ >>> a.func
775
+ <class 'sympy.core.mul.Mul'>
776
+ >>> a.args
777
+ (2, x)
778
+ >>> a.func(*a.args)
779
+ 2*x
780
+ >>> a == a.func(*a.args)
781
+ True
782
+
783
+ """
784
+ return self.__class__
785
+
786
+ @property
787
+ def args(self) -> tuple[Basic, ...]:
788
+ """Returns a tuple of arguments of 'self'.
789
+
790
+ Examples
791
+ ========
792
+
793
+ >>> from sympy import cot
794
+ >>> from sympy.abc import x, y
795
+
796
+ >>> cot(x).args
797
+ (x,)
798
+
799
+ >>> cot(x).args[0]
800
+ x
801
+
802
+ >>> (x*y).args
803
+ (x, y)
804
+
805
+ >>> (x*y).args[1]
806
+ y
807
+
808
+ Notes
809
+ =====
810
+
811
+ Never use self._args, always use self.args.
812
+ Only use _args in __new__ when creating a new function.
813
+ Do not override .args() from Basic (so that it is easy to
814
+ change the interface in the future if needed).
815
+ """
816
+ return self._args
817
+
818
+ @property
819
+ def _sorted_args(self):
820
+ """
821
+ The same as ``args``. Derived classes which do not fix an
822
+ order on their arguments should override this method to
823
+ produce the sorted representation.
824
+ """
825
+ return self.args
826
+
827
+ def as_content_primitive(self, radical=False, clear=True):
828
+ """A stub to allow Basic args (like Tuple) to be skipped when computing
829
+ the content and primitive components of an expression.
830
+
831
+ See Also
832
+ ========
833
+
834
+ sympy.core.expr.Expr.as_content_primitive
835
+ """
836
+ return S.One, self
837
+
838
+ def subs(self, *args, **kwargs):
839
+ """
840
+ Substitutes old for new in an expression after sympifying args.
841
+
842
+ `args` is either:
843
+ - two arguments, e.g. foo.subs(old, new)
844
+ - one iterable argument, e.g. foo.subs(iterable). The iterable may be
845
+ o an iterable container with (old, new) pairs. In this case the
846
+ replacements are processed in the order given with successive
847
+ patterns possibly affecting replacements already made.
848
+ o a dict or set whose key/value items correspond to old/new pairs.
849
+ In this case the old/new pairs will be sorted by op count and in
850
+ case of a tie, by number of args and the default_sort_key. The
851
+ resulting sorted list is then processed as an iterable container
852
+ (see previous).
853
+
854
+ If the keyword ``simultaneous`` is True, the subexpressions will not be
855
+ evaluated until all the substitutions have been made.
856
+
857
+ Examples
858
+ ========
859
+
860
+ >>> from sympy import pi, exp, limit, oo
861
+ >>> from sympy.abc import x, y
862
+ >>> (1 + x*y).subs(x, pi)
863
+ pi*y + 1
864
+ >>> (1 + x*y).subs({x:pi, y:2})
865
+ 1 + 2*pi
866
+ >>> (1 + x*y).subs([(x, pi), (y, 2)])
867
+ 1 + 2*pi
868
+ >>> reps = [(y, x**2), (x, 2)]
869
+ >>> (x + y).subs(reps)
870
+ 6
871
+ >>> (x + y).subs(reversed(reps))
872
+ x**2 + 2
873
+
874
+ >>> (x**2 + x**4).subs(x**2, y)
875
+ y**2 + y
876
+
877
+ To replace only the x**2 but not the x**4, use xreplace:
878
+
879
+ >>> (x**2 + x**4).xreplace({x**2: y})
880
+ x**4 + y
881
+
882
+ To delay evaluation until all substitutions have been made,
883
+ set the keyword ``simultaneous`` to True:
884
+
885
+ >>> (x/y).subs([(x, 0), (y, 0)])
886
+ 0
887
+ >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
888
+ nan
889
+
890
+ This has the added feature of not allowing subsequent substitutions
891
+ to affect those already made:
892
+
893
+ >>> ((x + y)/y).subs({x + y: y, y: x + y})
894
+ 1
895
+ >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
896
+ y/(x + y)
897
+
898
+ In order to obtain a canonical result, unordered iterables are
899
+ sorted by count_op length, number of arguments and by the
900
+ default_sort_key to break any ties. All other iterables are left
901
+ unsorted.
902
+
903
+ >>> from sympy import sqrt, sin, cos
904
+ >>> from sympy.abc import a, b, c, d, e
905
+
906
+ >>> A = (sqrt(sin(2*x)), a)
907
+ >>> B = (sin(2*x), b)
908
+ >>> C = (cos(2*x), c)
909
+ >>> D = (x, d)
910
+ >>> E = (exp(x), e)
911
+
912
+ >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
913
+
914
+ >>> expr.subs(dict([A, B, C, D, E]))
915
+ a*c*sin(d*e) + b
916
+
917
+ The resulting expression represents a literal replacement of the
918
+ old arguments with the new arguments. This may not reflect the
919
+ limiting behavior of the expression:
920
+
921
+ >>> (x**3 - 3*x).subs({x: oo})
922
+ nan
923
+
924
+ >>> limit(x**3 - 3*x, x, oo)
925
+ oo
926
+
927
+ If the substitution will be followed by numerical
928
+ evaluation, it is better to pass the substitution to
929
+ evalf as
930
+
931
+ >>> (1/x).evalf(subs={x: 3.0}, n=21)
932
+ 0.333333333333333333333
933
+
934
+ rather than
935
+
936
+ >>> (1/x).subs({x: 3.0}).evalf(21)
937
+ 0.333333333333333314830
938
+
939
+ as the former will ensure that the desired level of precision is
940
+ obtained.
941
+
942
+ See Also
943
+ ========
944
+ replace: replacement capable of doing wildcard-like matching,
945
+ parsing of match, and conditional replacements
946
+ xreplace: exact node replacement in expr tree; also capable of
947
+ using matching rules
948
+ sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
949
+
950
+ """
951
+ from .containers import Dict
952
+ from .symbol import Dummy, Symbol
953
+ from .numbers import _illegal
954
+
955
+ unordered = False
956
+ if len(args) == 1:
957
+
958
+ sequence = args[0]
959
+ if isinstance(sequence, set):
960
+ unordered = True
961
+ elif isinstance(sequence, (Dict, Mapping)):
962
+ unordered = True
963
+ sequence = sequence.items()
964
+ elif not iterable(sequence):
965
+ raise ValueError(filldedent("""
966
+ When a single argument is passed to subs
967
+ it should be a dictionary of old: new pairs or an iterable
968
+ of (old, new) tuples."""))
969
+ elif len(args) == 2:
970
+ sequence = [args]
971
+ else:
972
+ raise ValueError("subs accepts either 1 or 2 arguments")
973
+
974
+ def sympify_old(old):
975
+ if isinstance(old, str):
976
+ # Use Symbol rather than parse_expr for old
977
+ return Symbol(old)
978
+ elif isinstance(old, type):
979
+ # Allow a type e.g. Function('f') or sin
980
+ return sympify(old, strict=False)
981
+ else:
982
+ return sympify(old, strict=True)
983
+
984
+ def sympify_new(new):
985
+ if isinstance(new, (str, type)):
986
+ # Allow a type or parse a string input
987
+ return sympify(new, strict=False)
988
+ else:
989
+ return sympify(new, strict=True)
990
+
991
+ sequence = [(sympify_old(s1), sympify_new(s2)) for s1, s2 in sequence]
992
+
993
+ # skip if there is no change
994
+ sequence = [(s1, s2) for s1, s2 in sequence if not _aresame(s1, s2)]
995
+
996
+ simultaneous = kwargs.pop('simultaneous', False)
997
+
998
+ if unordered:
999
+ from .sorting import _nodes, default_sort_key
1000
+ sequence = dict(sequence)
1001
+ # order so more complex items are first and items
1002
+ # of identical complexity are ordered so
1003
+ # f(x) < f(y) < x < y
1004
+ # \___ 2 __/ \_1_/ <- number of nodes
1005
+ #
1006
+ # For more complex ordering use an unordered sequence.
1007
+ k = list(ordered(sequence, default=False, keys=(
1008
+ lambda x: -_nodes(x),
1009
+ default_sort_key,
1010
+ )))
1011
+ sequence = [(k, sequence[k]) for k in k]
1012
+ # do infinities first
1013
+ if not simultaneous:
1014
+ redo = [i for i, seq in enumerate(sequence) if seq[1] in _illegal]
1015
+ for i in reversed(redo):
1016
+ sequence.insert(0, sequence.pop(i))
1017
+
1018
+ if simultaneous: # XXX should this be the default for dict subs?
1019
+ reps = {}
1020
+ rv = self
1021
+ kwargs['hack2'] = True
1022
+ m = Dummy('subs_m')
1023
+ for old, new in sequence:
1024
+ com = new.is_commutative
1025
+ if com is None:
1026
+ com = True
1027
+ d = Dummy('subs_d', commutative=com)
1028
+ # using d*m so Subs will be used on dummy variables
1029
+ # in things like Derivative(f(x, y), x) in which x
1030
+ # is both free and bound
1031
+ rv = rv._subs(old, d*m, **kwargs)
1032
+ if not isinstance(rv, Basic):
1033
+ break
1034
+ reps[d] = new
1035
+ reps[m] = S.One # get rid of m
1036
+ return rv.xreplace(reps)
1037
+ else:
1038
+ rv = self
1039
+ for old, new in sequence:
1040
+ rv = rv._subs(old, new, **kwargs)
1041
+ if not isinstance(rv, Basic):
1042
+ break
1043
+ return rv
1044
+
1045
+ @cacheit
1046
+ def _subs(self, old, new, **hints):
1047
+ """Substitutes an expression old -> new.
1048
+
1049
+ If self is not equal to old then _eval_subs is called.
1050
+ If _eval_subs does not want to make any special replacement
1051
+ then a None is received which indicates that the fallback
1052
+ should be applied wherein a search for replacements is made
1053
+ amongst the arguments of self.
1054
+
1055
+ >>> from sympy import Add
1056
+ >>> from sympy.abc import x, y, z
1057
+
1058
+ Examples
1059
+ ========
1060
+
1061
+ Add's _eval_subs knows how to target x + y in the following
1062
+ so it makes the change:
1063
+
1064
+ >>> (x + y + z).subs(x + y, 1)
1065
+ z + 1
1066
+
1067
+ Add's _eval_subs does not need to know how to find x + y in
1068
+ the following:
1069
+
1070
+ >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
1071
+ True
1072
+
1073
+ The returned None will cause the fallback routine to traverse the args and
1074
+ pass the z*(x + y) arg to Mul where the change will take place and the
1075
+ substitution will succeed:
1076
+
1077
+ >>> (z*(x + y) + 3).subs(x + y, 1)
1078
+ z + 3
1079
+
1080
+ ** Developers Notes **
1081
+
1082
+ An _eval_subs routine for a class should be written if:
1083
+
1084
+ 1) any arguments are not instances of Basic (e.g. bool, tuple);
1085
+
1086
+ 2) some arguments should not be targeted (as in integration
1087
+ variables);
1088
+
1089
+ 3) if there is something other than a literal replacement
1090
+ that should be attempted (as in Piecewise where the condition
1091
+ may be updated without doing a replacement).
1092
+
1093
+ If it is overridden, here are some special cases that might arise:
1094
+
1095
+ 1) If it turns out that no special change was made and all
1096
+ the original sub-arguments should be checked for
1097
+ replacements then None should be returned.
1098
+
1099
+ 2) If it is necessary to do substitutions on a portion of
1100
+ the expression then _subs should be called. _subs will
1101
+ handle the case of any sub-expression being equal to old
1102
+ (which usually would not be the case) while its fallback
1103
+ will handle the recursion into the sub-arguments. For
1104
+ example, after Add's _eval_subs removes some matching terms
1105
+ it must process the remaining terms so it calls _subs
1106
+ on each of the un-matched terms and then adds them
1107
+ onto the terms previously obtained.
1108
+
1109
+ 3) If the initial expression should remain unchanged then
1110
+ the original expression should be returned. (Whenever an
1111
+ expression is returned, modified or not, no further
1112
+ substitution of old -> new is attempted.) Sum's _eval_subs
1113
+ routine uses this strategy when a substitution is attempted
1114
+ on any of its summation variables.
1115
+ """
1116
+
1117
+ def fallback(self, old, new):
1118
+ """
1119
+ Try to replace old with new in any of self's arguments.
1120
+ """
1121
+ hit = False
1122
+ args = list(self.args)
1123
+ for i, arg in enumerate(args):
1124
+ if not hasattr(arg, '_eval_subs'):
1125
+ continue
1126
+ arg = arg._subs(old, new, **hints)
1127
+ if not _aresame(arg, args[i]):
1128
+ hit = True
1129
+ args[i] = arg
1130
+ if hit:
1131
+ rv = self.func(*args)
1132
+ hack2 = hints.get('hack2', False)
1133
+ if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
1134
+ coeff = S.One
1135
+ nonnumber = []
1136
+ for i in args:
1137
+ if i.is_Number:
1138
+ coeff *= i
1139
+ else:
1140
+ nonnumber.append(i)
1141
+ nonnumber = self.func(*nonnumber)
1142
+ if coeff is S.One:
1143
+ return nonnumber
1144
+ else:
1145
+ return self.func(coeff, nonnumber, evaluate=False)
1146
+ return rv
1147
+ return self
1148
+
1149
+ if _aresame(self, old):
1150
+ return new
1151
+
1152
+ rv = self._eval_subs(old, new)
1153
+ if rv is None:
1154
+ rv = fallback(self, old, new)
1155
+ return rv
1156
+
1157
+ def _eval_subs(self, old, new):
1158
+ """Override this stub if you want to do anything more than
1159
+ attempt a replacement of old with new in the arguments of self.
1160
+
1161
+ See also
1162
+ ========
1163
+
1164
+ _subs
1165
+ """
1166
+ return None
1167
+
1168
+ def xreplace(self, rule):
1169
+ """
1170
+ Replace occurrences of objects within the expression.
1171
+
1172
+ Parameters
1173
+ ==========
1174
+
1175
+ rule : dict-like
1176
+ Expresses a replacement rule
1177
+
1178
+ Returns
1179
+ =======
1180
+
1181
+ xreplace : the result of the replacement
1182
+
1183
+ Examples
1184
+ ========
1185
+
1186
+ >>> from sympy import symbols, pi, exp
1187
+ >>> x, y, z = symbols('x y z')
1188
+ >>> (1 + x*y).xreplace({x: pi})
1189
+ pi*y + 1
1190
+ >>> (1 + x*y).xreplace({x: pi, y: 2})
1191
+ 1 + 2*pi
1192
+
1193
+ Replacements occur only if an entire node in the expression tree is
1194
+ matched:
1195
+
1196
+ >>> (x*y + z).xreplace({x*y: pi})
1197
+ z + pi
1198
+ >>> (x*y*z).xreplace({x*y: pi})
1199
+ x*y*z
1200
+ >>> (2*x).xreplace({2*x: y, x: z})
1201
+ y
1202
+ >>> (2*2*x).xreplace({2*x: y, x: z})
1203
+ 4*z
1204
+ >>> (x + y + 2).xreplace({x + y: 2})
1205
+ x + y + 2
1206
+ >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
1207
+ x + exp(y) + 2
1208
+
1209
+ xreplace does not differentiate between free and bound symbols. In the
1210
+ following, subs(x, y) would not change x since it is a bound symbol,
1211
+ but xreplace does:
1212
+
1213
+ >>> from sympy import Integral
1214
+ >>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
1215
+ Integral(y, (y, 1, 2*y))
1216
+
1217
+ Trying to replace x with an expression raises an error:
1218
+
1219
+ >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
1220
+ ValueError: Invalid limits given: ((2*y, 1, 4*y),)
1221
+
1222
+ See Also
1223
+ ========
1224
+ replace: replacement capable of doing wildcard-like matching,
1225
+ parsing of match, and conditional replacements
1226
+ subs: substitution of subexpressions as defined by the objects
1227
+ themselves.
1228
+
1229
+ """
1230
+ value, _ = self._xreplace(rule)
1231
+ return value
1232
+
1233
+ def _xreplace(self, rule):
1234
+ """
1235
+ Helper for xreplace. Tracks whether a replacement actually occurred.
1236
+ """
1237
+ if self in rule:
1238
+ return rule[self], True
1239
+ elif rule:
1240
+ args = []
1241
+ changed = False
1242
+ for a in self.args:
1243
+ _xreplace = getattr(a, '_xreplace', None)
1244
+ if _xreplace is not None:
1245
+ a_xr = _xreplace(rule)
1246
+ args.append(a_xr[0])
1247
+ changed |= a_xr[1]
1248
+ else:
1249
+ args.append(a)
1250
+ args = tuple(args)
1251
+ if changed:
1252
+ return self.func(*args), True
1253
+ return self, False
1254
+
1255
+ @cacheit
1256
+ def has(self, *patterns):
1257
+ """
1258
+ Test whether any subexpression matches any of the patterns.
1259
+
1260
+ Examples
1261
+ ========
1262
+
1263
+ >>> from sympy import sin
1264
+ >>> from sympy.abc import x, y, z
1265
+ >>> (x**2 + sin(x*y)).has(z)
1266
+ False
1267
+ >>> (x**2 + sin(x*y)).has(x, y, z)
1268
+ True
1269
+ >>> x.has(x)
1270
+ True
1271
+
1272
+ Note ``has`` is a structural algorithm with no knowledge of
1273
+ mathematics. Consider the following half-open interval:
1274
+
1275
+ >>> from sympy import Interval
1276
+ >>> i = Interval.Lopen(0, 5); i
1277
+ Interval.Lopen(0, 5)
1278
+ >>> i.args
1279
+ (0, 5, True, False)
1280
+ >>> i.has(4) # there is no "4" in the arguments
1281
+ False
1282
+ >>> i.has(0) # there *is* a "0" in the arguments
1283
+ True
1284
+
1285
+ Instead, use ``contains`` to determine whether a number is in the
1286
+ interval or not:
1287
+
1288
+ >>> i.contains(4)
1289
+ True
1290
+ >>> i.contains(0)
1291
+ False
1292
+
1293
+
1294
+ Note that ``expr.has(*patterns)`` is exactly equivalent to
1295
+ ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
1296
+ returned when the list of patterns is empty.
1297
+
1298
+ >>> x.has()
1299
+ False
1300
+
1301
+ """
1302
+ return self._has(iterargs, *patterns)
1303
+
1304
+ def has_xfree(self, s: set[Basic]):
1305
+ """Return True if self has any of the patterns in s as a
1306
+ free argument, else False. This is like `Basic.has_free`
1307
+ but this will only report exact argument matches.
1308
+
1309
+ Examples
1310
+ ========
1311
+
1312
+ >>> from sympy import Function
1313
+ >>> from sympy.abc import x, y
1314
+ >>> f = Function('f')
1315
+ >>> f(x).has_xfree({f})
1316
+ False
1317
+ >>> f(x).has_xfree({f(x)})
1318
+ True
1319
+ >>> f(x + 1).has_xfree({x})
1320
+ True
1321
+ >>> f(x + 1).has_xfree({x + 1})
1322
+ True
1323
+ >>> f(x + y + 1).has_xfree({x + 1})
1324
+ False
1325
+ """
1326
+ # protect O(1) containment check by requiring:
1327
+ if type(s) is not set:
1328
+ raise TypeError('expecting set argument')
1329
+ return any(a in s for a in iterfreeargs(self))
1330
+
1331
+ @cacheit
1332
+ def has_free(self, *patterns):
1333
+ """Return True if self has object(s) ``x`` as a free expression
1334
+ else False.
1335
+
1336
+ Examples
1337
+ ========
1338
+
1339
+ >>> from sympy import Integral, Function
1340
+ >>> from sympy.abc import x, y
1341
+ >>> f = Function('f')
1342
+ >>> g = Function('g')
1343
+ >>> expr = Integral(f(x), (f(x), 1, g(y)))
1344
+ >>> expr.free_symbols
1345
+ {y}
1346
+ >>> expr.has_free(g(y))
1347
+ True
1348
+ >>> expr.has_free(*(x, f(x)))
1349
+ False
1350
+
1351
+ This works for subexpressions and types, too:
1352
+
1353
+ >>> expr.has_free(g)
1354
+ True
1355
+ >>> (x + y + 1).has_free(y + 1)
1356
+ True
1357
+ """
1358
+ if not patterns:
1359
+ return False
1360
+ p0 = patterns[0]
1361
+ if len(patterns) == 1 and iterable(p0) and not isinstance(p0, Basic):
1362
+ # Basic can contain iterables (though not non-Basic, ideally)
1363
+ # but don't encourage mixed passing patterns
1364
+ raise TypeError(filldedent('''
1365
+ Expecting 1 or more Basic args, not a single
1366
+ non-Basic iterable. Don't forget to unpack
1367
+ iterables: `eq.has_free(*patterns)`'''))
1368
+ # try quick test first
1369
+ s = set(patterns)
1370
+ rv = self.has_xfree(s)
1371
+ if rv:
1372
+ return rv
1373
+ # now try matching through slower _has
1374
+ return self._has(iterfreeargs, *patterns)
1375
+
1376
+ def _has(self, iterargs, *patterns):
1377
+ # separate out types and unhashable objects
1378
+ type_set = set() # only types
1379
+ p_set = set() # hashable non-types
1380
+ for p in patterns:
1381
+ if isinstance(p, type) and issubclass(p, Basic):
1382
+ type_set.add(p)
1383
+ continue
1384
+ if not isinstance(p, Basic):
1385
+ try:
1386
+ p = _sympify(p)
1387
+ except SympifyError:
1388
+ continue # Basic won't have this in it
1389
+ p_set.add(p) # fails if object defines __eq__ but
1390
+ # doesn't define __hash__
1391
+ types = tuple(type_set) #
1392
+ for i in iterargs(self): #
1393
+ if i in p_set: # <--- here, too
1394
+ return True
1395
+ if isinstance(i, types):
1396
+ return True
1397
+
1398
+ # use matcher if defined, e.g. operations defines
1399
+ # matcher that checks for exact subset containment,
1400
+ # (x + y + 1).has(x + 1) -> True
1401
+ for i in p_set - type_set: # types don't have matchers
1402
+ if not hasattr(i, '_has_matcher'):
1403
+ continue
1404
+ match = i._has_matcher()
1405
+ if any(match(arg) for arg in iterargs(self)):
1406
+ return True
1407
+
1408
+ # no success
1409
+ return False
1410
+
1411
+ def replace(self, query, value, map=False, simultaneous=True, exact=None):
1412
+ """
1413
+ Replace matching subexpressions of ``self`` with ``value``.
1414
+
1415
+ If ``map = True`` then also return the mapping {old: new} where ``old``
1416
+ was a sub-expression found with query and ``new`` is the replacement
1417
+ value for it. If the expression itself does not match the query, then
1418
+ the returned value will be ``self.xreplace(map)`` otherwise it should
1419
+ be ``self.subs(ordered(map.items()))``.
1420
+
1421
+ Traverses an expression tree and performs replacement of matching
1422
+ subexpressions from the bottom to the top of the tree. The default
1423
+ approach is to do the replacement in a simultaneous fashion so
1424
+ changes made are targeted only once. If this is not desired or causes
1425
+ problems, ``simultaneous`` can be set to False.
1426
+
1427
+ In addition, if an expression containing more than one Wild symbol
1428
+ is being used to match subexpressions and the ``exact`` flag is None
1429
+ it will be set to True so the match will only succeed if all non-zero
1430
+ values are received for each Wild that appears in the match pattern.
1431
+ Setting this to False accepts a match of 0; while setting it True
1432
+ accepts all matches that have a 0 in them. See example below for
1433
+ cautions.
1434
+
1435
+ The list of possible combinations of queries and replacement values
1436
+ is listed below:
1437
+
1438
+ Examples
1439
+ ========
1440
+
1441
+ Initial setup
1442
+
1443
+ >>> from sympy import log, sin, cos, tan, Wild, Mul, Add
1444
+ >>> from sympy.abc import x, y
1445
+ >>> f = log(sin(x)) + tan(sin(x**2))
1446
+
1447
+ 1.1. type -> type
1448
+ obj.replace(type, newtype)
1449
+
1450
+ When object of type ``type`` is found, replace it with the
1451
+ result of passing its argument(s) to ``newtype``.
1452
+
1453
+ >>> f.replace(sin, cos)
1454
+ log(cos(x)) + tan(cos(x**2))
1455
+ >>> sin(x).replace(sin, cos, map=True)
1456
+ (cos(x), {sin(x): cos(x)})
1457
+ >>> (x*y).replace(Mul, Add)
1458
+ x + y
1459
+
1460
+ 1.2. type -> func
1461
+ obj.replace(type, func)
1462
+
1463
+ When object of type ``type`` is found, apply ``func`` to its
1464
+ argument(s). ``func`` must be written to handle the number
1465
+ of arguments of ``type``.
1466
+
1467
+ >>> f.replace(sin, lambda arg: sin(2*arg))
1468
+ log(sin(2*x)) + tan(sin(2*x**2))
1469
+ >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
1470
+ sin(2*x*y)
1471
+
1472
+ 2.1. pattern -> expr
1473
+ obj.replace(pattern(wild), expr(wild))
1474
+
1475
+ Replace subexpressions matching ``pattern`` with the expression
1476
+ written in terms of the Wild symbols in ``pattern``.
1477
+
1478
+ >>> a, b = map(Wild, 'ab')
1479
+ >>> f.replace(sin(a), tan(a))
1480
+ log(tan(x)) + tan(tan(x**2))
1481
+ >>> f.replace(sin(a), tan(a/2))
1482
+ log(tan(x/2)) + tan(tan(x**2/2))
1483
+ >>> f.replace(sin(a), a)
1484
+ log(x) + tan(x**2)
1485
+ >>> (x*y).replace(a*x, a)
1486
+ y
1487
+
1488
+ Matching is exact by default when more than one Wild symbol
1489
+ is used: matching fails unless the match gives non-zero
1490
+ values for all Wild symbols:
1491
+
1492
+ >>> (2*x + y).replace(a*x + b, b - a)
1493
+ y - 2
1494
+ >>> (2*x).replace(a*x + b, b - a)
1495
+ 2*x
1496
+
1497
+ When set to False, the results may be non-intuitive:
1498
+
1499
+ >>> (2*x).replace(a*x + b, b - a, exact=False)
1500
+ 2/x
1501
+
1502
+ 2.2. pattern -> func
1503
+ obj.replace(pattern(wild), lambda wild: expr(wild))
1504
+
1505
+ All behavior is the same as in 2.1 but now a function in terms of
1506
+ pattern variables is used rather than an expression:
1507
+
1508
+ >>> f.replace(sin(a), lambda a: sin(2*a))
1509
+ log(sin(2*x)) + tan(sin(2*x**2))
1510
+
1511
+ 3.1. func -> func
1512
+ obj.replace(filter, func)
1513
+
1514
+ Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
1515
+ is True.
1516
+
1517
+ >>> g = 2*sin(x**3)
1518
+ >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
1519
+ 4*sin(x**9)
1520
+
1521
+ The expression itself is also targeted by the query but is done in
1522
+ such a fashion that changes are not made twice.
1523
+
1524
+ >>> e = x*(x*y + 1)
1525
+ >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
1526
+ 2*x*(2*x*y + 1)
1527
+
1528
+ When matching a single symbol, `exact` will default to True, but
1529
+ this may or may not be the behavior that is desired:
1530
+
1531
+ Here, we want `exact=False`:
1532
+
1533
+ >>> from sympy import Function
1534
+ >>> f = Function('f')
1535
+ >>> e = f(1) + f(0)
1536
+ >>> q = f(a), lambda a: f(a + 1)
1537
+ >>> e.replace(*q, exact=False)
1538
+ f(1) + f(2)
1539
+ >>> e.replace(*q, exact=True)
1540
+ f(0) + f(2)
1541
+
1542
+ But here, the nature of matching makes selecting
1543
+ the right setting tricky:
1544
+
1545
+ >>> e = x**(1 + y)
1546
+ >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
1547
+ x
1548
+ >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
1549
+ x**(-x - y + 1)
1550
+ >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
1551
+ x
1552
+ >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
1553
+ x**(1 - y)
1554
+
1555
+ It is probably better to use a different form of the query
1556
+ that describes the target expression more precisely:
1557
+
1558
+ >>> (1 + x**(1 + y)).replace(
1559
+ ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
1560
+ ... lambda x: x.base**(1 - (x.exp - 1)))
1561
+ ...
1562
+ x**(1 - y) + 1
1563
+
1564
+ See Also
1565
+ ========
1566
+
1567
+ subs: substitution of subexpressions as defined by the objects
1568
+ themselves.
1569
+ xreplace: exact node replacement in expr tree; also capable of
1570
+ using matching rules
1571
+
1572
+ """
1573
+
1574
+ try:
1575
+ query = _sympify(query)
1576
+ except SympifyError:
1577
+ pass
1578
+ try:
1579
+ value = _sympify(value)
1580
+ except SympifyError:
1581
+ pass
1582
+ if isinstance(query, type):
1583
+ _query = lambda expr: isinstance(expr, query)
1584
+
1585
+ if isinstance(value, type):
1586
+ _value = lambda expr, result: value(*expr.args)
1587
+ elif callable(value):
1588
+ _value = lambda expr, result: value(*expr.args)
1589
+ else:
1590
+ raise TypeError(
1591
+ "given a type, replace() expects another "
1592
+ "type or a callable")
1593
+ elif isinstance(query, Basic):
1594
+ _query = lambda expr: expr.match(query)
1595
+ if exact is None:
1596
+ from .symbol import Wild
1597
+ exact = (len(query.atoms(Wild)) > 1)
1598
+
1599
+ if isinstance(value, Basic):
1600
+ if exact:
1601
+ _value = lambda expr, result: (value.subs(result)
1602
+ if all(result.values()) else expr)
1603
+ else:
1604
+ _value = lambda expr, result: value.subs(result)
1605
+ elif callable(value):
1606
+ # match dictionary keys get the trailing underscore stripped
1607
+ # from them and are then passed as keywords to the callable;
1608
+ # if ``exact`` is True, only accept match if there are no null
1609
+ # values amongst those matched.
1610
+ if exact:
1611
+ _value = lambda expr, result: (value(**
1612
+ {str(k)[:-1]: v for k, v in result.items()})
1613
+ if all(val for val in result.values()) else expr)
1614
+ else:
1615
+ _value = lambda expr, result: value(**
1616
+ {str(k)[:-1]: v for k, v in result.items()})
1617
+ else:
1618
+ raise TypeError(
1619
+ "given an expression, replace() expects "
1620
+ "another expression or a callable")
1621
+ elif callable(query):
1622
+ _query = query
1623
+
1624
+ if callable(value):
1625
+ _value = lambda expr, result: value(expr)
1626
+ else:
1627
+ raise TypeError(
1628
+ "given a callable, replace() expects "
1629
+ "another callable")
1630
+ else:
1631
+ raise TypeError(
1632
+ "first argument to replace() must be a "
1633
+ "type, an expression or a callable")
1634
+
1635
+ def walk(rv, F):
1636
+ """Apply ``F`` to args and then to result.
1637
+ """
1638
+ args = getattr(rv, 'args', None)
1639
+ if args is not None:
1640
+ if args:
1641
+ newargs = tuple([walk(a, F) for a in args])
1642
+ if args != newargs:
1643
+ rv = rv.func(*newargs)
1644
+ if simultaneous:
1645
+ # if rv is something that was already
1646
+ # matched (that was changed) then skip
1647
+ # applying F again
1648
+ for i, e in enumerate(args):
1649
+ if rv == e and e != newargs[i]:
1650
+ return rv
1651
+ rv = F(rv)
1652
+ return rv
1653
+
1654
+ mapping = {} # changes that took place
1655
+
1656
+ def rec_replace(expr):
1657
+ result = _query(expr)
1658
+ if result or result == {}:
1659
+ v = _value(expr, result)
1660
+ if v is not None and v != expr:
1661
+ if map:
1662
+ mapping[expr] = v
1663
+ expr = v
1664
+ return expr
1665
+
1666
+ rv = walk(self, rec_replace)
1667
+ return (rv, mapping) if map else rv
1668
+
1669
+ def find(self, query, group=False):
1670
+ """Find all subexpressions matching a query."""
1671
+ query = _make_find_query(query)
1672
+ results = list(filter(query, _preorder_traversal(self)))
1673
+
1674
+ if not group:
1675
+ return set(results)
1676
+ else:
1677
+ groups = {}
1678
+
1679
+ for result in results:
1680
+ if result in groups:
1681
+ groups[result] += 1
1682
+ else:
1683
+ groups[result] = 1
1684
+
1685
+ return groups
1686
+
1687
+ def count(self, query):
1688
+ """Count the number of matching subexpressions."""
1689
+ query = _make_find_query(query)
1690
+ return sum(bool(query(sub)) for sub in _preorder_traversal(self))
1691
+
1692
+ def matches(self, expr, repl_dict=None, old=False):
1693
+ """
1694
+ Helper method for match() that looks for a match between Wild symbols
1695
+ in self and expressions in expr.
1696
+
1697
+ Examples
1698
+ ========
1699
+
1700
+ >>> from sympy import symbols, Wild, Basic
1701
+ >>> a, b, c = symbols('a b c')
1702
+ >>> x = Wild('x')
1703
+ >>> Basic(a + x, x).matches(Basic(a + b, c)) is None
1704
+ True
1705
+ >>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
1706
+ {x_: b + c}
1707
+ """
1708
+ expr = sympify(expr)
1709
+ if not isinstance(expr, self.__class__):
1710
+ return None
1711
+
1712
+ if repl_dict is None:
1713
+ repl_dict = {}
1714
+ else:
1715
+ repl_dict = repl_dict.copy()
1716
+
1717
+ if self == expr:
1718
+ return repl_dict
1719
+
1720
+ if len(self.args) != len(expr.args):
1721
+ return None
1722
+
1723
+ d = repl_dict # already a copy
1724
+ for arg, other_arg in zip(self.args, expr.args):
1725
+ if arg == other_arg:
1726
+ continue
1727
+ if arg.is_Relational:
1728
+ try:
1729
+ d = arg.xreplace(d).matches(other_arg, d, old=old)
1730
+ except TypeError: # Should be InvalidComparisonError when introduced
1731
+ d = None
1732
+ else:
1733
+ d = arg.xreplace(d).matches(other_arg, d, old=old)
1734
+ if d is None:
1735
+ return None
1736
+ return d
1737
+
1738
+ def match(self, pattern, old=False):
1739
+ """
1740
+ Pattern matching.
1741
+
1742
+ Wild symbols match all.
1743
+
1744
+ Return ``None`` when expression (self) does not match
1745
+ with pattern. Otherwise return a dictionary such that::
1746
+
1747
+ pattern.xreplace(self.match(pattern)) == self
1748
+
1749
+ Examples
1750
+ ========
1751
+
1752
+ >>> from sympy import Wild, Sum
1753
+ >>> from sympy.abc import x, y
1754
+ >>> p = Wild("p")
1755
+ >>> q = Wild("q")
1756
+ >>> r = Wild("r")
1757
+ >>> e = (x+y)**(x+y)
1758
+ >>> e.match(p**p)
1759
+ {p_: x + y}
1760
+ >>> e.match(p**q)
1761
+ {p_: x + y, q_: x + y}
1762
+ >>> e = (2*x)**2
1763
+ >>> e.match(p*q**r)
1764
+ {p_: 4, q_: x, r_: 2}
1765
+ >>> (p*q**r).xreplace(e.match(p*q**r))
1766
+ 4*x**2
1767
+
1768
+ Structurally bound symbols are ignored during matching:
1769
+
1770
+ >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
1771
+ {p_: 2}
1772
+
1773
+ But they can be identified if desired:
1774
+
1775
+ >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
1776
+ {p_: 2, q_: x}
1777
+
1778
+ The ``old`` flag will give the old-style pattern matching where
1779
+ expressions and patterns are essentially solved to give the
1780
+ match. Both of the following give None unless ``old=True``:
1781
+
1782
+ >>> (x - 2).match(p - x, old=True)
1783
+ {p_: 2*x - 2}
1784
+ >>> (2/x).match(p*x, old=True)
1785
+ {p_: 2/x**2}
1786
+
1787
+ """
1788
+ pattern = sympify(pattern)
1789
+ # match non-bound symbols
1790
+ canonical = lambda x: x if x.is_Symbol else x.as_dummy()
1791
+ m = canonical(pattern).matches(canonical(self), old=old)
1792
+ if m is None:
1793
+ return m
1794
+ from .symbol import Wild
1795
+ from .function import WildFunction
1796
+ from ..tensor.tensor import WildTensor, WildTensorIndex, WildTensorHead
1797
+ wild = pattern.atoms(Wild, WildFunction, WildTensor, WildTensorIndex, WildTensorHead)
1798
+ # sanity check
1799
+ if set(m) - wild:
1800
+ raise ValueError(filldedent('''
1801
+ Some `matches` routine did not use a copy of repl_dict
1802
+ and injected unexpected symbols. Report this as an
1803
+ error at https://github.com/sympy/sympy/issues'''))
1804
+ # now see if bound symbols were requested
1805
+ bwild = wild - set(m)
1806
+ if not bwild:
1807
+ return m
1808
+ # replace free-Wild symbols in pattern with match result
1809
+ # so they will match but not be in the next match
1810
+ wpat = pattern.xreplace(m)
1811
+ # identify remaining bound wild
1812
+ w = wpat.matches(self, old=old)
1813
+ # add them to m
1814
+ if w:
1815
+ m.update(w)
1816
+ # done
1817
+ return m
1818
+
1819
+ def count_ops(self, visual=None):
1820
+ """Wrapper for count_ops that returns the operation count."""
1821
+ from .function import count_ops
1822
+ return count_ops(self, visual)
1823
+
1824
+ def doit(self, **hints):
1825
+ """Evaluate objects that are not evaluated by default like limits,
1826
+ integrals, sums and products. All objects of this kind will be
1827
+ evaluated recursively, unless some species were excluded via 'hints'
1828
+ or unless the 'deep' hint was set to 'False'.
1829
+
1830
+ >>> from sympy import Integral
1831
+ >>> from sympy.abc import x
1832
+
1833
+ >>> 2*Integral(x, x)
1834
+ 2*Integral(x, x)
1835
+
1836
+ >>> (2*Integral(x, x)).doit()
1837
+ x**2
1838
+
1839
+ >>> (2*Integral(x, x)).doit(deep=False)
1840
+ 2*Integral(x, x)
1841
+
1842
+ """
1843
+ if hints.get('deep', True):
1844
+ terms = [term.doit(**hints) if isinstance(term, Basic) else term
1845
+ for term in self.args]
1846
+ return self.func(*terms)
1847
+ else:
1848
+ return self
1849
+
1850
+ def simplify(self, **kwargs):
1851
+ """See the simplify function in sympy.simplify"""
1852
+ from sympy.simplify.simplify import simplify
1853
+ return simplify(self, **kwargs)
1854
+
1855
+ def refine(self, assumption=True):
1856
+ """See the refine function in sympy.assumptions"""
1857
+ from sympy.assumptions.refine import refine
1858
+ return refine(self, assumption)
1859
+
1860
+ def _eval_derivative_n_times(self, s, n):
1861
+ # This is the default evaluator for derivatives (as called by `diff`
1862
+ # and `Derivative`), it will attempt a loop to derive the expression
1863
+ # `n` times by calling the corresponding `_eval_derivative` method,
1864
+ # while leaving the derivative unevaluated if `n` is symbolic. This
1865
+ # method should be overridden if the object has a closed form for its
1866
+ # symbolic n-th derivative.
1867
+ from .numbers import Integer
1868
+ if isinstance(n, (int, Integer)):
1869
+ obj = self
1870
+ for i in range(n):
1871
+ obj2 = obj._eval_derivative(s)
1872
+ if obj == obj2 or obj2 is None:
1873
+ break
1874
+ obj = obj2
1875
+ return obj2
1876
+ else:
1877
+ return None
1878
+
1879
+ def rewrite(self, *args, deep=True, **hints):
1880
+ """
1881
+ Rewrite *self* using a defined rule.
1882
+
1883
+ Rewriting transforms an expression to another, which is mathematically
1884
+ equivalent but structurally different. For example you can rewrite
1885
+ trigonometric functions as complex exponentials or combinatorial
1886
+ functions as gamma function.
1887
+
1888
+ This method takes a *pattern* and a *rule* as positional arguments.
1889
+ *pattern* is optional parameter which defines the types of expressions
1890
+ that will be transformed. If it is not passed, all possible expressions
1891
+ will be rewritten. *rule* defines how the expression will be rewritten.
1892
+
1893
+ Parameters
1894
+ ==========
1895
+
1896
+ args : Expr
1897
+ A *rule*, or *pattern* and *rule*.
1898
+ - *pattern* is a type or an iterable of types.
1899
+ - *rule* can be any object.
1900
+
1901
+ deep : bool, optional
1902
+ If ``True``, subexpressions are recursively transformed. Default is
1903
+ ``True``.
1904
+
1905
+ Examples
1906
+ ========
1907
+
1908
+ If *pattern* is unspecified, all possible expressions are transformed.
1909
+
1910
+ >>> from sympy import cos, sin, exp, I
1911
+ >>> from sympy.abc import x
1912
+ >>> expr = cos(x) + I*sin(x)
1913
+ >>> expr.rewrite(exp)
1914
+ exp(I*x)
1915
+
1916
+ Pattern can be a type or an iterable of types.
1917
+
1918
+ >>> expr.rewrite(sin, exp)
1919
+ exp(I*x)/2 + cos(x) - exp(-I*x)/2
1920
+ >>> expr.rewrite([cos,], exp)
1921
+ exp(I*x)/2 + I*sin(x) + exp(-I*x)/2
1922
+ >>> expr.rewrite([cos, sin], exp)
1923
+ exp(I*x)
1924
+
1925
+ Rewriting behavior can be implemented by defining ``_eval_rewrite()``
1926
+ method.
1927
+
1928
+ >>> from sympy import Expr, sqrt, pi
1929
+ >>> class MySin(Expr):
1930
+ ... def _eval_rewrite(self, rule, args, **hints):
1931
+ ... x, = args
1932
+ ... if rule == cos:
1933
+ ... return cos(pi/2 - x, evaluate=False)
1934
+ ... if rule == sqrt:
1935
+ ... return sqrt(1 - cos(x)**2)
1936
+ >>> MySin(MySin(x)).rewrite(cos)
1937
+ cos(-cos(-x + pi/2) + pi/2)
1938
+ >>> MySin(x).rewrite(sqrt)
1939
+ sqrt(1 - cos(x)**2)
1940
+
1941
+ Defining ``_eval_rewrite_as_[...]()`` method is supported for backwards
1942
+ compatibility reason. This may be removed in the future and using it is
1943
+ discouraged.
1944
+
1945
+ >>> class MySin(Expr):
1946
+ ... def _eval_rewrite_as_cos(self, *args, **hints):
1947
+ ... x, = args
1948
+ ... return cos(pi/2 - x, evaluate=False)
1949
+ >>> MySin(x).rewrite(cos)
1950
+ cos(-x + pi/2)
1951
+
1952
+ """
1953
+ if not args:
1954
+ return self
1955
+
1956
+ hints.update(deep=deep)
1957
+
1958
+ pattern = args[:-1]
1959
+ rule = args[-1]
1960
+
1961
+ # support old design by _eval_rewrite_as_[...] method
1962
+ if isinstance(rule, str):
1963
+ method = "_eval_rewrite_as_%s" % rule
1964
+ elif hasattr(rule, "__name__"):
1965
+ # rule is class or function
1966
+ clsname = rule.__name__
1967
+ method = "_eval_rewrite_as_%s" % clsname
1968
+ else:
1969
+ # rule is instance
1970
+ clsname = rule.__class__.__name__
1971
+ method = "_eval_rewrite_as_%s" % clsname
1972
+
1973
+ if pattern:
1974
+ if iterable(pattern[0]):
1975
+ pattern = pattern[0]
1976
+ pattern = tuple(p for p in pattern if self.has(p))
1977
+ if not pattern:
1978
+ return self
1979
+ # hereafter, empty pattern is interpreted as all pattern.
1980
+
1981
+ return self._rewrite(pattern, rule, method, **hints)
1982
+
1983
+ def _rewrite(self, pattern, rule, method, **hints):
1984
+ deep = hints.pop('deep', True)
1985
+ if deep:
1986
+ args = [a._rewrite(pattern, rule, method, **hints)
1987
+ for a in self.args]
1988
+ else:
1989
+ args = self.args
1990
+ if not pattern or any(isinstance(self, p) for p in pattern):
1991
+ meth = getattr(self, method, None)
1992
+ if meth is not None:
1993
+ rewritten = meth(*args, **hints)
1994
+ else:
1995
+ rewritten = self._eval_rewrite(rule, args, **hints)
1996
+ if rewritten is not None:
1997
+ return rewritten
1998
+ if not args:
1999
+ return self
2000
+ return self.func(*args)
2001
+
2002
+ def _eval_rewrite(self, rule, args, **hints):
2003
+ return None
2004
+
2005
+ _constructor_postprocessor_mapping = {} # type: ignore
2006
+
2007
+ @classmethod
2008
+ def _exec_constructor_postprocessors(cls, obj):
2009
+ # WARNING: This API is experimental.
2010
+
2011
+ # This is an experimental API that introduces constructor
2012
+ # postprosessors for SymPy Core elements. If an argument of a SymPy
2013
+ # expression has a `_constructor_postprocessor_mapping` attribute, it will
2014
+ # be interpreted as a dictionary containing lists of postprocessing
2015
+ # functions for matching expression node names.
2016
+
2017
+ clsname = obj.__class__.__name__
2018
+ postprocessors = defaultdict(list)
2019
+ for i in obj.args:
2020
+ try:
2021
+ postprocessor_mappings = (
2022
+ Basic._constructor_postprocessor_mapping[cls].items()
2023
+ for cls in type(i).mro()
2024
+ if cls in Basic._constructor_postprocessor_mapping
2025
+ )
2026
+ for k, v in chain.from_iterable(postprocessor_mappings):
2027
+ postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
2028
+ except TypeError:
2029
+ pass
2030
+
2031
+ for f in postprocessors.get(clsname, []):
2032
+ obj = f(obj)
2033
+
2034
+ return obj
2035
+
2036
+ def _sage_(self):
2037
+ """
2038
+ Convert *self* to a symbolic expression of SageMath.
2039
+
2040
+ This version of the method is merely a placeholder.
2041
+ """
2042
+ old_method = self._sage_
2043
+ from sage.interfaces.sympy import sympy_init
2044
+ sympy_init() # may monkey-patch _sage_ method into self's class or superclasses
2045
+ if old_method == self._sage_:
2046
+ raise NotImplementedError('conversion to SageMath is not implemented')
2047
+ else:
2048
+ # call the freshly monkey-patched method
2049
+ return self._sage_()
2050
+
2051
+ def could_extract_minus_sign(self):
2052
+ return False # see Expr.could_extract_minus_sign
2053
+
2054
+
2055
+ # For all Basic subclasses _prepare_class_assumptions is called by
2056
+ # Basic.__init_subclass__ but that method is not called for Basic itself so we
2057
+ # call the function here instead.
2058
+ _prepare_class_assumptions(Basic)
2059
+
2060
+
2061
+ class Atom(Basic):
2062
+ """
2063
+ A parent class for atomic things. An atom is an expression with no subexpressions.
2064
+
2065
+ Examples
2066
+ ========
2067
+
2068
+ Symbol, Number, Rational, Integer, ...
2069
+ But not: Add, Mul, Pow, ...
2070
+ """
2071
+
2072
+ is_Atom = True
2073
+
2074
+ __slots__ = ()
2075
+
2076
+ def matches(self, expr, repl_dict=None, old=False):
2077
+ if self == expr:
2078
+ if repl_dict is None:
2079
+ return {}
2080
+ return repl_dict.copy()
2081
+
2082
+ def xreplace(self, rule, hack2=False):
2083
+ return rule.get(self, self)
2084
+
2085
+ def doit(self, **hints):
2086
+ return self
2087
+
2088
+ @classmethod
2089
+ def class_key(cls):
2090
+ return 2, 0, cls.__name__
2091
+
2092
+ @cacheit
2093
+ def sort_key(self, order=None):
2094
+ return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
2095
+
2096
+ def _eval_simplify(self, **kwargs):
2097
+ return self
2098
+
2099
+ @property
2100
+ def _sorted_args(self):
2101
+ # this is here as a safeguard against accidentally using _sorted_args
2102
+ # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
2103
+ # since there are no args. So the calling routine should be checking
2104
+ # to see that this property is not called for Atoms.
2105
+ raise AttributeError('Atoms have no args. It might be necessary'
2106
+ ' to make a check for Atoms in the calling code.')
2107
+
2108
+
2109
+ def _aresame(a, b):
2110
+ """Return True if a and b are structurally the same, else False.
2111
+
2112
+ Examples
2113
+ ========
2114
+
2115
+ In SymPy (as in Python) two numbers compare the same if they
2116
+ have the same underlying base-2 representation even though
2117
+ they may not be the same type:
2118
+
2119
+ >>> from sympy import S
2120
+ >>> 2.0 == S(2)
2121
+ True
2122
+ >>> 0.5 == S.Half
2123
+ True
2124
+
2125
+ This routine was written to provide a query for such cases that
2126
+ would give false when the types do not match:
2127
+
2128
+ >>> from sympy.core.basic import _aresame
2129
+ >>> _aresame(S(2.0), S(2))
2130
+ False
2131
+
2132
+ """
2133
+ from .numbers import Number
2134
+ from .function import AppliedUndef, UndefinedFunction as UndefFunc
2135
+ if isinstance(a, Number) and isinstance(b, Number):
2136
+ return a == b and a.__class__ == b.__class__
2137
+ for i, j in zip_longest(_preorder_traversal(a), _preorder_traversal(b)):
2138
+ if i != j or type(i) != type(j):
2139
+ if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
2140
+ (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
2141
+ if i.class_key() != j.class_key():
2142
+ return False
2143
+ else:
2144
+ return False
2145
+ return True
2146
+
2147
+
2148
+ def _ne(a, b):
2149
+ # use this as a second test after `a != b` if you want to make
2150
+ # sure that things are truly equal, e.g.
2151
+ # a, b = 0.5, S.Half
2152
+ # a !=b or _ne(a, b) -> True
2153
+ from .numbers import Number
2154
+ # 0.5 == S.Half
2155
+ if isinstance(a, Number) and isinstance(b, Number):
2156
+ return a.__class__ != b.__class__
2157
+
2158
+
2159
+ def _atomic(e, recursive=False):
2160
+ """Return atom-like quantities as far as substitution is
2161
+ concerned: Derivatives, Functions and Symbols. Do not
2162
+ return any 'atoms' that are inside such quantities unless
2163
+ they also appear outside, too, unless `recursive` is True.
2164
+
2165
+ Examples
2166
+ ========
2167
+
2168
+ >>> from sympy import Derivative, Function, cos
2169
+ >>> from sympy.abc import x, y
2170
+ >>> from sympy.core.basic import _atomic
2171
+ >>> f = Function('f')
2172
+ >>> _atomic(x + y)
2173
+ {x, y}
2174
+ >>> _atomic(x + f(y))
2175
+ {x, f(y)}
2176
+ >>> _atomic(Derivative(f(x), x) + cos(x) + y)
2177
+ {y, cos(x), Derivative(f(x), x)}
2178
+
2179
+ """
2180
+ pot = _preorder_traversal(e)
2181
+ seen = set()
2182
+ if isinstance(e, Basic):
2183
+ free = getattr(e, "free_symbols", None)
2184
+ if free is None:
2185
+ return {e}
2186
+ else:
2187
+ return set()
2188
+ from .symbol import Symbol
2189
+ from .function import Derivative, Function
2190
+ atoms = set()
2191
+ for p in pot:
2192
+ if p in seen:
2193
+ pot.skip()
2194
+ continue
2195
+ seen.add(p)
2196
+ if isinstance(p, Symbol) and p in free:
2197
+ atoms.add(p)
2198
+ elif isinstance(p, (Derivative, Function)):
2199
+ if not recursive:
2200
+ pot.skip()
2201
+ atoms.add(p)
2202
+ return atoms
2203
+
2204
+
2205
+ def _make_find_query(query):
2206
+ """Convert the argument of Basic.find() into a callable"""
2207
+ try:
2208
+ query = _sympify(query)
2209
+ except SympifyError:
2210
+ pass
2211
+ if isinstance(query, type):
2212
+ return lambda expr: isinstance(expr, query)
2213
+ elif isinstance(query, Basic):
2214
+ return lambda expr: expr.match(query) is not None
2215
+ return query
2216
+
2217
+ # Delayed to avoid cyclic import
2218
+ from .singleton import S
2219
+ from .traversal import (preorder_traversal as _preorder_traversal,
2220
+ iterargs, iterfreeargs)
2221
+
2222
+ preorder_traversal = deprecated(
2223
+ """
2224
+ Using preorder_traversal from the sympy.core.basic submodule is
2225
+ deprecated.
2226
+
2227
+ Instead, use preorder_traversal from the top-level sympy namespace, like
2228
+
2229
+ sympy.preorder_traversal
2230
+ """,
2231
+ deprecated_since_version="1.10",
2232
+ active_deprecations_target="deprecated-traversal-functions-moved",
2233
+ )(_preorder_traversal)
venv/lib/python3.10/site-packages/sympy/core/cache.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caching facility for SymPy """
2
+ from importlib import import_module
3
+ from typing import Callable
4
+
5
+ class _cache(list):
6
+ """ List of cached functions """
7
+
8
+ def print_cache(self):
9
+ """print cache info"""
10
+
11
+ for item in self:
12
+ name = item.__name__
13
+ myfunc = item
14
+ while hasattr(myfunc, '__wrapped__'):
15
+ if hasattr(myfunc, 'cache_info'):
16
+ info = myfunc.cache_info()
17
+ break
18
+ else:
19
+ myfunc = myfunc.__wrapped__
20
+ else:
21
+ info = None
22
+
23
+ print(name, info)
24
+
25
+ def clear_cache(self):
26
+ """clear cache content"""
27
+ for item in self:
28
+ myfunc = item
29
+ while hasattr(myfunc, '__wrapped__'):
30
+ if hasattr(myfunc, 'cache_clear'):
31
+ myfunc.cache_clear()
32
+ break
33
+ else:
34
+ myfunc = myfunc.__wrapped__
35
+
36
+
37
+ # global cache registry:
38
+ CACHE = _cache()
39
+ # make clear and print methods available
40
+ print_cache = CACHE.print_cache
41
+ clear_cache = CACHE.clear_cache
42
+
43
+ from functools import lru_cache, wraps
44
+
45
+ def __cacheit(maxsize):
46
+ """caching decorator.
47
+
48
+ important: the result of cached function must be *immutable*
49
+
50
+
51
+ Examples
52
+ ========
53
+
54
+ >>> from sympy import cacheit
55
+ >>> @cacheit
56
+ ... def f(a, b):
57
+ ... return a+b
58
+
59
+ >>> @cacheit
60
+ ... def f(a, b): # noqa: F811
61
+ ... return [a, b] # <-- WRONG, returns mutable object
62
+
63
+ to force cacheit to check returned results mutability and consistency,
64
+ set environment variable SYMPY_USE_CACHE to 'debug'
65
+ """
66
+ def func_wrapper(func):
67
+ cfunc = lru_cache(maxsize, typed=True)(func)
68
+
69
+ @wraps(func)
70
+ def wrapper(*args, **kwargs):
71
+ try:
72
+ retval = cfunc(*args, **kwargs)
73
+ except TypeError as e:
74
+ if not e.args or not e.args[0].startswith('unhashable type:'):
75
+ raise
76
+ retval = func(*args, **kwargs)
77
+ return retval
78
+
79
+ wrapper.cache_info = cfunc.cache_info
80
+ wrapper.cache_clear = cfunc.cache_clear
81
+
82
+ CACHE.append(wrapper)
83
+ return wrapper
84
+
85
+ return func_wrapper
86
+ ########################################
87
+
88
+
89
+ def __cacheit_nocache(func):
90
+ return func
91
+
92
+
93
+ def __cacheit_debug(maxsize):
94
+ """cacheit + code to check cache consistency"""
95
+ def func_wrapper(func):
96
+ cfunc = __cacheit(maxsize)(func)
97
+
98
+ @wraps(func)
99
+ def wrapper(*args, **kw_args):
100
+ # always call function itself and compare it with cached version
101
+ r1 = func(*args, **kw_args)
102
+ r2 = cfunc(*args, **kw_args)
103
+
104
+ # try to see if the result is immutable
105
+ #
106
+ # this works because:
107
+ #
108
+ # hash([1,2,3]) -> raise TypeError
109
+ # hash({'a':1, 'b':2}) -> raise TypeError
110
+ # hash((1,[2,3])) -> raise TypeError
111
+ #
112
+ # hash((1,2,3)) -> just computes the hash
113
+ hash(r1), hash(r2)
114
+
115
+ # also see if returned values are the same
116
+ if r1 != r2:
117
+ raise RuntimeError("Returned values are not the same")
118
+ return r1
119
+ return wrapper
120
+ return func_wrapper
121
+
122
+
123
+ def _getenv(key, default=None):
124
+ from os import getenv
125
+ return getenv(key, default)
126
+
127
+ # SYMPY_USE_CACHE=yes/no/debug
128
+ USE_CACHE = _getenv('SYMPY_USE_CACHE', 'yes').lower()
129
+ # SYMPY_CACHE_SIZE=some_integer/None
130
+ # special cases :
131
+ # SYMPY_CACHE_SIZE=0 -> No caching
132
+ # SYMPY_CACHE_SIZE=None -> Unbounded caching
133
+ scs = _getenv('SYMPY_CACHE_SIZE', '1000')
134
+ if scs.lower() == 'none':
135
+ SYMPY_CACHE_SIZE = None
136
+ else:
137
+ try:
138
+ SYMPY_CACHE_SIZE = int(scs)
139
+ except ValueError:
140
+ raise RuntimeError(
141
+ 'SYMPY_CACHE_SIZE must be a valid integer or None. ' + \
142
+ 'Got: %s' % SYMPY_CACHE_SIZE)
143
+
144
+ if USE_CACHE == 'no':
145
+ cacheit = __cacheit_nocache
146
+ elif USE_CACHE == 'yes':
147
+ cacheit = __cacheit(SYMPY_CACHE_SIZE)
148
+ elif USE_CACHE == 'debug':
149
+ cacheit = __cacheit_debug(SYMPY_CACHE_SIZE) # a lot slower
150
+ else:
151
+ raise RuntimeError(
152
+ 'unrecognized value for SYMPY_USE_CACHE: %s' % USE_CACHE)
153
+
154
+
155
+ def cached_property(func):
156
+ '''Decorator to cache property method'''
157
+ attrname = '__' + func.__name__
158
+ _cached_property_sentinel = object()
159
+ def propfunc(self):
160
+ val = getattr(self, attrname, _cached_property_sentinel)
161
+ if val is _cached_property_sentinel:
162
+ val = func(self)
163
+ setattr(self, attrname, val)
164
+ return val
165
+ return property(propfunc)
166
+
167
+
168
+ def lazy_function(module : str, name : str) -> Callable:
169
+ """Create a lazy proxy for a function in a module.
170
+
171
+ The module containing the function is not imported until the function is used.
172
+
173
+ """
174
+ func = None
175
+
176
+ def _get_function():
177
+ nonlocal func
178
+ if func is None:
179
+ func = getattr(import_module(module), name)
180
+ return func
181
+
182
+ # The metaclass is needed so that help() shows the docstring
183
+ class LazyFunctionMeta(type):
184
+ @property
185
+ def __doc__(self):
186
+ docstring = _get_function().__doc__
187
+ docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
188
+ return docstring
189
+
190
+ class LazyFunction(metaclass=LazyFunctionMeta):
191
+ def __call__(self, *args, **kwargs):
192
+ # inline get of function for performance gh-23832
193
+ nonlocal func
194
+ if func is None:
195
+ func = getattr(import_module(module), name)
196
+ return func(*args, **kwargs)
197
+
198
+ @property
199
+ def __doc__(self):
200
+ docstring = _get_function().__doc__
201
+ docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
202
+ return docstring
203
+
204
+ def __str__(self):
205
+ return _get_function().__str__()
206
+
207
+ def __repr__(self):
208
+ return f"<{__class__.__name__} object at 0x{id(self):x}>: wrapping '{module}.{name}'"
209
+
210
+ return LazyFunction()
venv/lib/python3.10/site-packages/sympy/core/compatibility.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. deprecated:: 1.10
3
+
4
+ ``sympy.core.compatibility`` is deprecated. See
5
+ :ref:`sympy-core-compatibility`.
6
+
7
+ Reimplementations of constructs introduced in later versions of Python than
8
+ we support. Also some functions that are needed SymPy-wide and are located
9
+ here for easy import.
10
+
11
+ """
12
+
13
+
14
+ from sympy.utilities.exceptions import sympy_deprecation_warning
15
+
16
+ sympy_deprecation_warning("""
17
+ The sympy.core.compatibility submodule is deprecated.
18
+
19
+ This module was only ever intended for internal use. Some of the functions
20
+ that were in this module are available from the top-level SymPy namespace,
21
+ i.e.,
22
+
23
+ from sympy import ordered, default_sort_key
24
+
25
+ The remaining were only intended for internal SymPy use and should not be used
26
+ by user code.
27
+ """,
28
+ deprecated_since_version="1.10",
29
+ active_deprecations_target="deprecated-sympy-core-compatibility",
30
+ )
31
+
32
+
33
+ from .sorting import ordered, _nodes, default_sort_key # noqa:F401
34
+ from sympy.utilities.misc import as_int as _as_int # noqa:F401
35
+ from sympy.utilities.iterables import iterable, is_sequence, NotIterable # noqa:F401
venv/lib/python3.10/site-packages/sympy/core/containers.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module for SymPy containers
2
+
3
+ (SymPy objects that store other SymPy objects)
4
+
5
+ The containers implemented in this module are subclassed to Basic.
6
+ They are supposed to work seamlessly within the SymPy framework.
7
+ """
8
+
9
+ from collections import OrderedDict
10
+ from collections.abc import MutableSet
11
+ from typing import Any, Callable
12
+
13
+ from .basic import Basic
14
+ from .sorting import default_sort_key, ordered
15
+ from .sympify import _sympify, sympify, _sympy_converter, SympifyError
16
+ from sympy.core.kind import Kind
17
+ from sympy.utilities.iterables import iterable
18
+ from sympy.utilities.misc import as_int
19
+
20
+
21
+ class Tuple(Basic):
22
+ """
23
+ Wrapper around the builtin tuple object.
24
+
25
+ Explanation
26
+ ===========
27
+
28
+ The Tuple is a subclass of Basic, so that it works well in the
29
+ SymPy framework. The wrapped tuple is available as self.args, but
30
+ you can also access elements or slices with [:] syntax.
31
+
32
+ Parameters
33
+ ==========
34
+
35
+ sympify : bool
36
+ If ``False``, ``sympify`` is not called on ``args``. This
37
+ can be used for speedups for very large tuples where the
38
+ elements are known to already be SymPy objects.
39
+
40
+ Examples
41
+ ========
42
+
43
+ >>> from sympy import Tuple, symbols
44
+ >>> a, b, c, d = symbols('a b c d')
45
+ >>> Tuple(a, b, c)[1:]
46
+ (b, c)
47
+ >>> Tuple(a, b, c).subs(a, d)
48
+ (d, b, c)
49
+
50
+ """
51
+
52
+ def __new__(cls, *args, **kwargs):
53
+ if kwargs.get('sympify', True):
54
+ args = (sympify(arg) for arg in args)
55
+ obj = Basic.__new__(cls, *args)
56
+ return obj
57
+
58
+ def __getitem__(self, i):
59
+ if isinstance(i, slice):
60
+ indices = i.indices(len(self))
61
+ return Tuple(*(self.args[j] for j in range(*indices)))
62
+ return self.args[i]
63
+
64
+ def __len__(self):
65
+ return len(self.args)
66
+
67
+ def __contains__(self, item):
68
+ return item in self.args
69
+
70
+ def __iter__(self):
71
+ return iter(self.args)
72
+
73
+ def __add__(self, other):
74
+ if isinstance(other, Tuple):
75
+ return Tuple(*(self.args + other.args))
76
+ elif isinstance(other, tuple):
77
+ return Tuple(*(self.args + other))
78
+ else:
79
+ return NotImplemented
80
+
81
+ def __radd__(self, other):
82
+ if isinstance(other, Tuple):
83
+ return Tuple(*(other.args + self.args))
84
+ elif isinstance(other, tuple):
85
+ return Tuple(*(other + self.args))
86
+ else:
87
+ return NotImplemented
88
+
89
+ def __mul__(self, other):
90
+ try:
91
+ n = as_int(other)
92
+ except ValueError:
93
+ raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other))
94
+ return self.func(*(self.args*n))
95
+
96
+ __rmul__ = __mul__
97
+
98
+ def __eq__(self, other):
99
+ if isinstance(other, Basic):
100
+ return super().__eq__(other)
101
+ return self.args == other
102
+
103
+ def __ne__(self, other):
104
+ if isinstance(other, Basic):
105
+ return super().__ne__(other)
106
+ return self.args != other
107
+
108
+ def __hash__(self):
109
+ return hash(self.args)
110
+
111
+ def _to_mpmath(self, prec):
112
+ return tuple(a._to_mpmath(prec) for a in self.args)
113
+
114
+ def __lt__(self, other):
115
+ return _sympify(self.args < other.args)
116
+
117
+ def __le__(self, other):
118
+ return _sympify(self.args <= other.args)
119
+
120
+ # XXX: Basic defines count() as something different, so we can't
121
+ # redefine it here. Originally this lead to cse() test failure.
122
+ def tuple_count(self, value) -> int:
123
+ """Return number of occurrences of value."""
124
+ return self.args.count(value)
125
+
126
+ def index(self, value, start=None, stop=None):
127
+ """Searches and returns the first index of the value."""
128
+ # XXX: One would expect:
129
+ #
130
+ # return self.args.index(value, start, stop)
131
+ #
132
+ # here. Any trouble with that? Yes:
133
+ #
134
+ # >>> (1,).index(1, None, None)
135
+ # Traceback (most recent call last):
136
+ # File "<stdin>", line 1, in <module>
137
+ # TypeError: slice indices must be integers or None or have an __index__ method
138
+ #
139
+ # See: http://bugs.python.org/issue13340
140
+
141
+ if start is None and stop is None:
142
+ return self.args.index(value)
143
+ elif stop is None:
144
+ return self.args.index(value, start)
145
+ else:
146
+ return self.args.index(value, start, stop)
147
+
148
+ @property
149
+ def kind(self):
150
+ """
151
+ The kind of a Tuple instance.
152
+
153
+ The kind of a Tuple is always of :class:`TupleKind` but
154
+ parametrised by the number of elements and the kind of each element.
155
+
156
+ Examples
157
+ ========
158
+
159
+ >>> from sympy import Tuple, Matrix
160
+ >>> Tuple(1, 2).kind
161
+ TupleKind(NumberKind, NumberKind)
162
+ >>> Tuple(Matrix([1, 2]), 1).kind
163
+ TupleKind(MatrixKind(NumberKind), NumberKind)
164
+ >>> Tuple(1, 2).kind.element_kind
165
+ (NumberKind, NumberKind)
166
+
167
+ See Also
168
+ ========
169
+
170
+ sympy.matrices.common.MatrixKind
171
+ sympy.core.kind.NumberKind
172
+ """
173
+ return TupleKind(*(i.kind for i in self.args))
174
+
175
+ _sympy_converter[tuple] = lambda tup: Tuple(*tup)
176
+
177
+
178
+
179
+
180
+
181
+ def tuple_wrapper(method):
182
+ """
183
+ Decorator that converts any tuple in the function arguments into a Tuple.
184
+
185
+ Explanation
186
+ ===========
187
+
188
+ The motivation for this is to provide simple user interfaces. The user can
189
+ call a function with regular tuples in the argument, and the wrapper will
190
+ convert them to Tuples before handing them to the function.
191
+
192
+ Explanation
193
+ ===========
194
+
195
+ >>> from sympy.core.containers import tuple_wrapper
196
+ >>> def f(*args):
197
+ ... return args
198
+ >>> g = tuple_wrapper(f)
199
+
200
+ The decorated function g sees only the Tuple argument:
201
+
202
+ >>> g(0, (1, 2), 3)
203
+ (0, (1, 2), 3)
204
+
205
+ """
206
+ def wrap_tuples(*args, **kw_args):
207
+ newargs = []
208
+ for arg in args:
209
+ if isinstance(arg, tuple):
210
+ newargs.append(Tuple(*arg))
211
+ else:
212
+ newargs.append(arg)
213
+ return method(*newargs, **kw_args)
214
+ return wrap_tuples
215
+
216
+
217
+ class Dict(Basic):
218
+ """
219
+ Wrapper around the builtin dict object.
220
+
221
+ Explanation
222
+ ===========
223
+
224
+ The Dict is a subclass of Basic, so that it works well in the
225
+ SymPy framework. Because it is immutable, it may be included
226
+ in sets, but its values must all be given at instantiation and
227
+ cannot be changed afterwards. Otherwise it behaves identically
228
+ to the Python dict.
229
+
230
+ Examples
231
+ ========
232
+
233
+ >>> from sympy import Dict, Symbol
234
+
235
+ >>> D = Dict({1: 'one', 2: 'two'})
236
+ >>> for key in D:
237
+ ... if key == 1:
238
+ ... print('%s %s' % (key, D[key]))
239
+ 1 one
240
+
241
+ The args are sympified so the 1 and 2 are Integers and the values
242
+ are Symbols. Queries automatically sympify args so the following work:
243
+
244
+ >>> 1 in D
245
+ True
246
+ >>> D.has(Symbol('one')) # searches keys and values
247
+ True
248
+ >>> 'one' in D # not in the keys
249
+ False
250
+ >>> D[1]
251
+ one
252
+
253
+ """
254
+
255
+ def __new__(cls, *args):
256
+ if len(args) == 1 and isinstance(args[0], (dict, Dict)):
257
+ items = [Tuple(k, v) for k, v in args[0].items()]
258
+ elif iterable(args) and all(len(arg) == 2 for arg in args):
259
+ items = [Tuple(k, v) for k, v in args]
260
+ else:
261
+ raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})')
262
+ elements = frozenset(items)
263
+ obj = Basic.__new__(cls, *ordered(items))
264
+ obj.elements = elements
265
+ obj._dict = dict(items) # In case Tuple decides it wants to sympify
266
+ return obj
267
+
268
+ def __getitem__(self, key):
269
+ """x.__getitem__(y) <==> x[y]"""
270
+ try:
271
+ key = _sympify(key)
272
+ except SympifyError:
273
+ raise KeyError(key)
274
+
275
+ return self._dict[key]
276
+
277
+ def __setitem__(self, key, value):
278
+ raise NotImplementedError("SymPy Dicts are Immutable")
279
+
280
+ def items(self):
281
+ '''Returns a set-like object providing a view on dict's items.
282
+ '''
283
+ return self._dict.items()
284
+
285
+ def keys(self):
286
+ '''Returns the list of the dict's keys.'''
287
+ return self._dict.keys()
288
+
289
+ def values(self):
290
+ '''Returns the list of the dict's values.'''
291
+ return self._dict.values()
292
+
293
+ def __iter__(self):
294
+ '''x.__iter__() <==> iter(x)'''
295
+ return iter(self._dict)
296
+
297
+ def __len__(self):
298
+ '''x.__len__() <==> len(x)'''
299
+ return self._dict.__len__()
300
+
301
+ def get(self, key, default=None):
302
+ '''Returns the value for key if the key is in the dictionary.'''
303
+ try:
304
+ key = _sympify(key)
305
+ except SympifyError:
306
+ return default
307
+ return self._dict.get(key, default)
308
+
309
+ def __contains__(self, key):
310
+ '''D.__contains__(k) -> True if D has a key k, else False'''
311
+ try:
312
+ key = _sympify(key)
313
+ except SympifyError:
314
+ return False
315
+ return key in self._dict
316
+
317
+ def __lt__(self, other):
318
+ return _sympify(self.args < other.args)
319
+
320
+ @property
321
+ def _sorted_args(self):
322
+ return tuple(sorted(self.args, key=default_sort_key))
323
+
324
+ def __eq__(self, other):
325
+ if isinstance(other, dict):
326
+ return self == Dict(other)
327
+ return super().__eq__(other)
328
+
329
+ __hash__ : Callable[[Basic], Any] = Basic.__hash__
330
+
331
+ # this handles dict, defaultdict, OrderedDict
332
+ _sympy_converter[dict] = lambda d: Dict(*d.items())
333
+
334
+ class OrderedSet(MutableSet):
335
+ def __init__(self, iterable=None):
336
+ if iterable:
337
+ self.map = OrderedDict((item, None) for item in iterable)
338
+ else:
339
+ self.map = OrderedDict()
340
+
341
+ def __len__(self):
342
+ return len(self.map)
343
+
344
+ def __contains__(self, key):
345
+ return key in self.map
346
+
347
+ def add(self, key):
348
+ self.map[key] = None
349
+
350
+ def discard(self, key):
351
+ self.map.pop(key)
352
+
353
+ def pop(self, last=True):
354
+ return self.map.popitem(last=last)[0]
355
+
356
+ def __iter__(self):
357
+ yield from self.map.keys()
358
+
359
+ def __repr__(self):
360
+ if not self.map:
361
+ return '%s()' % (self.__class__.__name__,)
362
+ return '%s(%r)' % (self.__class__.__name__, list(self.map.keys()))
363
+
364
+ def intersection(self, other):
365
+ return self.__class__([val for val in self if val in other])
366
+
367
+ def difference(self, other):
368
+ return self.__class__([val for val in self if val not in other])
369
+
370
+ def update(self, iterable):
371
+ for val in iterable:
372
+ self.add(val)
373
+
374
+ class TupleKind(Kind):
375
+ """
376
+ TupleKind is a subclass of Kind, which is used to define Kind of ``Tuple``.
377
+
378
+ Parameters of TupleKind will be kinds of all the arguments in Tuples, for
379
+ example
380
+
381
+ Parameters
382
+ ==========
383
+
384
+ args : tuple(element_kind)
385
+ element_kind is kind of element.
386
+ args is tuple of kinds of element
387
+
388
+ Examples
389
+ ========
390
+
391
+ >>> from sympy import Tuple
392
+ >>> Tuple(1, 2).kind
393
+ TupleKind(NumberKind, NumberKind)
394
+ >>> Tuple(1, 2).kind.element_kind
395
+ (NumberKind, NumberKind)
396
+
397
+ See Also
398
+ ========
399
+
400
+ sympy.core.kind.NumberKind
401
+ MatrixKind
402
+ sympy.sets.sets.SetKind
403
+ """
404
+ def __new__(cls, *args):
405
+ obj = super().__new__(cls, *args)
406
+ obj.element_kind = args
407
+ return obj
408
+
409
+ def __repr__(self):
410
+ return "TupleKind{}".format(self.element_kind)
venv/lib/python3.10/site-packages/sympy/core/coreerrors.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ """Definitions of common exceptions for :mod:`sympy.core` module. """
2
+
3
+
4
+ class BaseCoreError(Exception):
5
+ """Base class for core related exceptions. """
6
+
7
+
8
+ class NonCommutativeExpression(BaseCoreError):
9
+ """Raised when expression didn't have commutative property. """
venv/lib/python3.10/site-packages/sympy/core/expr.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sympy/core/exprtools.py ADDED
@@ -0,0 +1,1569 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for manipulating of large commutative expressions. """
2
+
3
+ from .add import Add
4
+ from .mul import Mul, _keep_coeff
5
+ from .power import Pow
6
+ from .basic import Basic
7
+ from .expr import Expr
8
+ from .function import expand_power_exp
9
+ from .sympify import sympify
10
+ from .numbers import Rational, Integer, Number, I, equal_valued
11
+ from .singleton import S
12
+ from .sorting import default_sort_key, ordered
13
+ from .symbol import Dummy
14
+ from .traversal import preorder_traversal
15
+ from .coreerrors import NonCommutativeExpression
16
+ from .containers import Tuple, Dict
17
+ from sympy.external.gmpy import SYMPY_INTS
18
+ from sympy.utilities.iterables import (common_prefix, common_suffix,
19
+ variations, iterable, is_sequence)
20
+
21
+ from collections import defaultdict
22
+ from typing import Tuple as tTuple
23
+
24
+
25
+ _eps = Dummy(positive=True)
26
+
27
+
28
+ def _isnumber(i):
29
+ return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
30
+
31
+
32
+ def _monotonic_sign(self):
33
+ """Return the value closest to 0 that ``self`` may have if all symbols
34
+ are signed and the result is uniformly the same sign for all values of symbols.
35
+ If a symbol is only signed but not known to be an
36
+ integer or the result is 0 then a symbol representative of the sign of self
37
+ will be returned. Otherwise, None is returned if a) the sign could be positive
38
+ or negative or b) self is not in one of the following forms:
39
+
40
+ - L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
41
+ additive constant; if A is zero then the function can be a monomial whose
42
+ sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
43
+ nonnegative.
44
+ - A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
45
+ that does not have a sign change from positive to negative for any set
46
+ of values for the variables.
47
+ - M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
48
+ - A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
49
+ - P(x): a univariate polynomial
50
+
51
+ Examples
52
+ ========
53
+
54
+ >>> from sympy.core.exprtools import _monotonic_sign as F
55
+ >>> from sympy import Dummy
56
+ >>> nn = Dummy(integer=True, nonnegative=True)
57
+ >>> p = Dummy(integer=True, positive=True)
58
+ >>> p2 = Dummy(integer=True, positive=True)
59
+ >>> F(nn + 1)
60
+ 1
61
+ >>> F(p - 1)
62
+ _nneg
63
+ >>> F(nn*p + 1)
64
+ 1
65
+ >>> F(p2*p + 1)
66
+ 2
67
+ >>> F(nn - 1) # could be negative, zero or positive
68
+ """
69
+ if not self.is_extended_real:
70
+ return
71
+
72
+ if (-self).is_Symbol:
73
+ rv = _monotonic_sign(-self)
74
+ return rv if rv is None else -rv
75
+
76
+ if not self.is_Add and self.as_numer_denom()[1].is_number:
77
+ s = self
78
+ if s.is_prime:
79
+ if s.is_odd:
80
+ return Integer(3)
81
+ else:
82
+ return Integer(2)
83
+ elif s.is_composite:
84
+ if s.is_odd:
85
+ return Integer(9)
86
+ else:
87
+ return Integer(4)
88
+ elif s.is_positive:
89
+ if s.is_even:
90
+ if s.is_prime is False:
91
+ return Integer(4)
92
+ else:
93
+ return Integer(2)
94
+ elif s.is_integer:
95
+ return S.One
96
+ else:
97
+ return _eps
98
+ elif s.is_extended_negative:
99
+ if s.is_even:
100
+ return Integer(-2)
101
+ elif s.is_integer:
102
+ return S.NegativeOne
103
+ else:
104
+ return -_eps
105
+ if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
106
+ return S.Zero
107
+ return None
108
+
109
+ # univariate polynomial
110
+ free = self.free_symbols
111
+ if len(free) == 1:
112
+ if self.is_polynomial():
113
+ from sympy.polys.polytools import real_roots
114
+ from sympy.polys.polyroots import roots
115
+ from sympy.polys.polyerrors import PolynomialError
116
+ x = free.pop()
117
+ x0 = _monotonic_sign(x)
118
+ if x0 in (_eps, -_eps):
119
+ x0 = S.Zero
120
+ if x0 is not None:
121
+ d = self.diff(x)
122
+ if d.is_number:
123
+ currentroots = []
124
+ else:
125
+ try:
126
+ currentroots = real_roots(d)
127
+ except (PolynomialError, NotImplementedError):
128
+ currentroots = [r for r in roots(d, x) if r.is_extended_real]
129
+ y = self.subs(x, x0)
130
+ if x.is_nonnegative and all(
131
+ (r - x0).is_nonpositive for r in currentroots):
132
+ if y.is_nonnegative and d.is_positive:
133
+ if y:
134
+ return y if y.is_positive else Dummy('pos', positive=True)
135
+ else:
136
+ return Dummy('nneg', nonnegative=True)
137
+ if y.is_nonpositive and d.is_negative:
138
+ if y:
139
+ return y if y.is_negative else Dummy('neg', negative=True)
140
+ else:
141
+ return Dummy('npos', nonpositive=True)
142
+ elif x.is_nonpositive and all(
143
+ (r - x0).is_nonnegative for r in currentroots):
144
+ if y.is_nonnegative and d.is_negative:
145
+ if y:
146
+ return Dummy('pos', positive=True)
147
+ else:
148
+ return Dummy('nneg', nonnegative=True)
149
+ if y.is_nonpositive and d.is_positive:
150
+ if y:
151
+ return Dummy('neg', negative=True)
152
+ else:
153
+ return Dummy('npos', nonpositive=True)
154
+ else:
155
+ n, d = self.as_numer_denom()
156
+ den = None
157
+ if n.is_number:
158
+ den = _monotonic_sign(d)
159
+ elif not d.is_number:
160
+ if _monotonic_sign(n) is not None:
161
+ den = _monotonic_sign(d)
162
+ if den is not None and (den.is_positive or den.is_negative):
163
+ v = n*den
164
+ if v.is_positive:
165
+ return Dummy('pos', positive=True)
166
+ elif v.is_nonnegative:
167
+ return Dummy('nneg', nonnegative=True)
168
+ elif v.is_negative:
169
+ return Dummy('neg', negative=True)
170
+ elif v.is_nonpositive:
171
+ return Dummy('npos', nonpositive=True)
172
+ return None
173
+
174
+ # multivariate
175
+ c, a = self.as_coeff_Add()
176
+ v = None
177
+ if not a.is_polynomial():
178
+ # F/A or A/F where A is a number and F is a signed, rational monomial
179
+ n, d = a.as_numer_denom()
180
+ if not (n.is_number or d.is_number):
181
+ return
182
+ if (
183
+ a.is_Mul or a.is_Pow) and \
184
+ a.is_rational and \
185
+ all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
186
+ (a.is_positive or a.is_negative):
187
+ v = S.One
188
+ for ai in Mul.make_args(a):
189
+ if ai.is_number:
190
+ v *= ai
191
+ continue
192
+ reps = {}
193
+ for x in ai.free_symbols:
194
+ reps[x] = _monotonic_sign(x)
195
+ if reps[x] is None:
196
+ return
197
+ v *= ai.subs(reps)
198
+ elif c:
199
+ # signed linear expression
200
+ if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
201
+ free = list(a.free_symbols)
202
+ p = {}
203
+ for i in free:
204
+ v = _monotonic_sign(i)
205
+ if v is None:
206
+ return
207
+ p[i] = v or (_eps if i.is_nonnegative else -_eps)
208
+ v = a.xreplace(p)
209
+ if v is not None:
210
+ rv = v + c
211
+ if v.is_nonnegative and rv.is_positive:
212
+ return rv.subs(_eps, 0)
213
+ if v.is_nonpositive and rv.is_negative:
214
+ return rv.subs(_eps, 0)
215
+
216
+
217
+ def decompose_power(expr: Expr) -> tTuple[Expr, int]:
218
+ """
219
+ Decompose power into symbolic base and integer exponent.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.core.exprtools import decompose_power
225
+ >>> from sympy.abc import x, y
226
+ >>> from sympy import exp
227
+
228
+ >>> decompose_power(x)
229
+ (x, 1)
230
+ >>> decompose_power(x**2)
231
+ (x, 2)
232
+ >>> decompose_power(exp(2*y/3))
233
+ (exp(y/3), 2)
234
+
235
+ """
236
+ base, exp = expr.as_base_exp()
237
+
238
+ if exp.is_Number:
239
+ if exp.is_Rational:
240
+ if not exp.is_Integer:
241
+ base = Pow(base, Rational(1, exp.q)) # type: ignore
242
+ e = exp.p # type: ignore
243
+ else:
244
+ base, e = expr, 1
245
+ else:
246
+ exp, tail = exp.as_coeff_Mul(rational=True)
247
+
248
+ if exp is S.NegativeOne:
249
+ base, e = Pow(base, tail), -1
250
+ elif exp is not S.One:
251
+ # todo: after dropping python 3.7 support, use overload and Literal
252
+ # in as_coeff_Mul to make exp Rational, and remove these 2 ignores
253
+ tail = _keep_coeff(Rational(1, exp.q), tail) # type: ignore
254
+ base, e = Pow(base, tail), exp.p # type: ignore
255
+ else:
256
+ base, e = expr, 1
257
+
258
+ return base, e
259
+
260
+
261
+ def decompose_power_rat(expr: Expr) -> tTuple[Expr, Rational]:
262
+ """
263
+ Decompose power into symbolic base and rational exponent;
264
+ if the exponent is not a Rational, then separate only the
265
+ integer coefficient.
266
+
267
+ Examples
268
+ ========
269
+
270
+ >>> from sympy.core.exprtools import decompose_power_rat
271
+ >>> from sympy.abc import x
272
+ >>> from sympy import sqrt, exp
273
+
274
+ >>> decompose_power_rat(sqrt(x))
275
+ (x, 1/2)
276
+ >>> decompose_power_rat(exp(-3*x/2))
277
+ (exp(x/2), -3)
278
+
279
+ """
280
+ _ = base, exp = expr.as_base_exp()
281
+ return _ if exp.is_Rational else decompose_power(expr)
282
+
283
+
284
+ class Factors:
285
+ """Efficient representation of ``f_1*f_2*...*f_n``."""
286
+
287
+ __slots__ = ('factors', 'gens')
288
+
289
+ def __init__(self, factors=None): # Factors
290
+ """Initialize Factors from dict or expr.
291
+
292
+ Examples
293
+ ========
294
+
295
+ >>> from sympy.core.exprtools import Factors
296
+ >>> from sympy.abc import x
297
+ >>> from sympy import I
298
+ >>> e = 2*x**3
299
+ >>> Factors(e)
300
+ Factors({2: 1, x: 3})
301
+ >>> Factors(e.as_powers_dict())
302
+ Factors({2: 1, x: 3})
303
+ >>> f = _
304
+ >>> f.factors # underlying dictionary
305
+ {2: 1, x: 3}
306
+ >>> f.gens # base of each factor
307
+ frozenset({2, x})
308
+ >>> Factors(0)
309
+ Factors({0: 1})
310
+ >>> Factors(I)
311
+ Factors({I: 1})
312
+
313
+ Notes
314
+ =====
315
+
316
+ Although a dictionary can be passed, only minimal checking is
317
+ performed: powers of -1 and I are made canonical.
318
+
319
+ """
320
+ if isinstance(factors, (SYMPY_INTS, float)):
321
+ factors = S(factors)
322
+ if isinstance(factors, Factors):
323
+ factors = factors.factors.copy()
324
+ elif factors in (None, S.One):
325
+ factors = {}
326
+ elif factors is S.Zero or factors == 0:
327
+ factors = {S.Zero: S.One}
328
+ elif isinstance(factors, Number):
329
+ n = factors
330
+ factors = {}
331
+ if n < 0:
332
+ factors[S.NegativeOne] = S.One
333
+ n = -n
334
+ if n is not S.One:
335
+ if n.is_Float or n.is_Integer or n is S.Infinity:
336
+ factors[n] = S.One
337
+ elif n.is_Rational:
338
+ # since we're processing Numbers, the denominator is
339
+ # stored with a negative exponent; all other factors
340
+ # are left .
341
+ if n.p != 1:
342
+ factors[Integer(n.p)] = S.One
343
+ factors[Integer(n.q)] = S.NegativeOne
344
+ else:
345
+ raise ValueError('Expected Float|Rational|Integer, not %s' % n)
346
+ elif isinstance(factors, Basic) and not factors.args:
347
+ factors = {factors: S.One}
348
+ elif isinstance(factors, Expr):
349
+ c, nc = factors.args_cnc()
350
+ i = c.count(I)
351
+ for _ in range(i):
352
+ c.remove(I)
353
+ factors = dict(Mul._from_args(c).as_powers_dict())
354
+ # Handle all rational Coefficients
355
+ for f in list(factors.keys()):
356
+ if isinstance(f, Rational) and not isinstance(f, Integer):
357
+ p, q = Integer(f.p), Integer(f.q)
358
+ factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
359
+ factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
360
+ factors.pop(f)
361
+ if i:
362
+ factors[I] = factors.get(I, S.Zero) + i
363
+ if nc:
364
+ factors[Mul(*nc, evaluate=False)] = S.One
365
+ else:
366
+ factors = factors.copy() # /!\ should be dict-like
367
+
368
+ # tidy up -/+1 and I exponents if Rational
369
+
370
+ handle = [k for k in factors if k is I or k in (-1, 1)]
371
+ if handle:
372
+ i1 = S.One
373
+ for k in handle:
374
+ if not _isnumber(factors[k]):
375
+ continue
376
+ i1 *= k**factors.pop(k)
377
+ if i1 is not S.One:
378
+ for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
379
+ if a is S.NegativeOne:
380
+ factors[a] = S.One
381
+ elif a is I:
382
+ factors[I] = S.One
383
+ elif a.is_Pow:
384
+ factors[a.base] = factors.get(a.base, S.Zero) + a.exp
385
+ elif equal_valued(a, 1):
386
+ factors[a] = S.One
387
+ elif equal_valued(a, -1):
388
+ factors[-a] = S.One
389
+ factors[S.NegativeOne] = S.One
390
+ else:
391
+ raise ValueError('unexpected factor in i1: %s' % a)
392
+
393
+ self.factors = factors
394
+ keys = getattr(factors, 'keys', None)
395
+ if keys is None:
396
+ raise TypeError('expecting Expr or dictionary')
397
+ self.gens = frozenset(keys())
398
+
399
+ def __hash__(self): # Factors
400
+ keys = tuple(ordered(self.factors.keys()))
401
+ values = [self.factors[k] for k in keys]
402
+ return hash((keys, values))
403
+
404
+ def __repr__(self): # Factors
405
+ return "Factors({%s})" % ', '.join(
406
+ ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
407
+
408
+ @property
409
+ def is_zero(self): # Factors
410
+ """
411
+ >>> from sympy.core.exprtools import Factors
412
+ >>> Factors(0).is_zero
413
+ True
414
+ """
415
+ f = self.factors
416
+ return len(f) == 1 and S.Zero in f
417
+
418
+ @property
419
+ def is_one(self): # Factors
420
+ """
421
+ >>> from sympy.core.exprtools import Factors
422
+ >>> Factors(1).is_one
423
+ True
424
+ """
425
+ return not self.factors
426
+
427
+ def as_expr(self): # Factors
428
+ """Return the underlying expression.
429
+
430
+ Examples
431
+ ========
432
+
433
+ >>> from sympy.core.exprtools import Factors
434
+ >>> from sympy.abc import x, y
435
+ >>> Factors((x*y**2).as_powers_dict()).as_expr()
436
+ x*y**2
437
+
438
+ """
439
+
440
+ args = []
441
+ for factor, exp in self.factors.items():
442
+ if exp != 1:
443
+ if isinstance(exp, Integer):
444
+ b, e = factor.as_base_exp()
445
+ e = _keep_coeff(exp, e)
446
+ args.append(b**e)
447
+ else:
448
+ args.append(factor**exp)
449
+ else:
450
+ args.append(factor)
451
+ return Mul(*args)
452
+
453
+ def mul(self, other): # Factors
454
+ """Return Factors of ``self * other``.
455
+
456
+ Examples
457
+ ========
458
+
459
+ >>> from sympy.core.exprtools import Factors
460
+ >>> from sympy.abc import x, y, z
461
+ >>> a = Factors((x*y**2).as_powers_dict())
462
+ >>> b = Factors((x*y/z).as_powers_dict())
463
+ >>> a.mul(b)
464
+ Factors({x: 2, y: 3, z: -1})
465
+ >>> a*b
466
+ Factors({x: 2, y: 3, z: -1})
467
+ """
468
+ if not isinstance(other, Factors):
469
+ other = Factors(other)
470
+ if any(f.is_zero for f in (self, other)):
471
+ return Factors(S.Zero)
472
+ factors = dict(self.factors)
473
+
474
+ for factor, exp in other.factors.items():
475
+ if factor in factors:
476
+ exp = factors[factor] + exp
477
+
478
+ if not exp:
479
+ del factors[factor]
480
+ continue
481
+
482
+ factors[factor] = exp
483
+
484
+ return Factors(factors)
485
+
486
+ def normal(self, other):
487
+ """Return ``self`` and ``other`` with ``gcd`` removed from each.
488
+ The only differences between this and method ``div`` is that this
489
+ is 1) optimized for the case when there are few factors in common and
490
+ 2) this does not raise an error if ``other`` is zero.
491
+
492
+ See Also
493
+ ========
494
+ div
495
+
496
+ """
497
+ if not isinstance(other, Factors):
498
+ other = Factors(other)
499
+ if other.is_zero:
500
+ return (Factors(), Factors(S.Zero))
501
+ if self.is_zero:
502
+ return (Factors(S.Zero), Factors())
503
+
504
+ self_factors = dict(self.factors)
505
+ other_factors = dict(other.factors)
506
+
507
+ for factor, self_exp in self.factors.items():
508
+ try:
509
+ other_exp = other.factors[factor]
510
+ except KeyError:
511
+ continue
512
+
513
+ exp = self_exp - other_exp
514
+
515
+ if not exp:
516
+ del self_factors[factor]
517
+ del other_factors[factor]
518
+ elif _isnumber(exp):
519
+ if exp > 0:
520
+ self_factors[factor] = exp
521
+ del other_factors[factor]
522
+ else:
523
+ del self_factors[factor]
524
+ other_factors[factor] = -exp
525
+ else:
526
+ r = self_exp.extract_additively(other_exp)
527
+ if r is not None:
528
+ if r:
529
+ self_factors[factor] = r
530
+ del other_factors[factor]
531
+ else: # should be handled already
532
+ del self_factors[factor]
533
+ del other_factors[factor]
534
+ else:
535
+ sc, sa = self_exp.as_coeff_Add()
536
+ if sc:
537
+ oc, oa = other_exp.as_coeff_Add()
538
+ diff = sc - oc
539
+ if diff > 0:
540
+ self_factors[factor] -= oc
541
+ other_exp = oa
542
+ elif diff < 0:
543
+ self_factors[factor] -= sc
544
+ other_factors[factor] -= sc
545
+ other_exp = oa - diff
546
+ else:
547
+ self_factors[factor] = sa
548
+ other_exp = oa
549
+ if other_exp:
550
+ other_factors[factor] = other_exp
551
+ else:
552
+ del other_factors[factor]
553
+
554
+ return Factors(self_factors), Factors(other_factors)
555
+
556
+ def div(self, other): # Factors
557
+ """Return ``self`` and ``other`` with ``gcd`` removed from each.
558
+ This is optimized for the case when there are many factors in common.
559
+
560
+ Examples
561
+ ========
562
+
563
+ >>> from sympy.core.exprtools import Factors
564
+ >>> from sympy.abc import x, y, z
565
+ >>> from sympy import S
566
+
567
+ >>> a = Factors((x*y**2).as_powers_dict())
568
+ >>> a.div(a)
569
+ (Factors({}), Factors({}))
570
+ >>> a.div(x*z)
571
+ (Factors({y: 2}), Factors({z: 1}))
572
+
573
+ The ``/`` operator only gives ``quo``:
574
+
575
+ >>> a/x
576
+ Factors({y: 2})
577
+
578
+ Factors treats its factors as though they are all in the numerator, so
579
+ if you violate this assumption the results will be correct but will
580
+ not strictly correspond to the numerator and denominator of the ratio:
581
+
582
+ >>> a.div(x/z)
583
+ (Factors({y: 2}), Factors({z: -1}))
584
+
585
+ Factors is also naive about bases: it does not attempt any denesting
586
+ of Rational-base terms, for example the following does not become
587
+ 2**(2*x)/2.
588
+
589
+ >>> Factors(2**(2*x + 2)).div(S(8))
590
+ (Factors({2: 2*x + 2}), Factors({8: 1}))
591
+
592
+ factor_terms can clean up such Rational-bases powers:
593
+
594
+ >>> from sympy import factor_terms
595
+ >>> n, d = Factors(2**(2*x + 2)).div(S(8))
596
+ >>> n.as_expr()/d.as_expr()
597
+ 2**(2*x + 2)/8
598
+ >>> factor_terms(_)
599
+ 2**(2*x)/2
600
+
601
+ """
602
+ quo, rem = dict(self.factors), {}
603
+
604
+ if not isinstance(other, Factors):
605
+ other = Factors(other)
606
+ if other.is_zero:
607
+ raise ZeroDivisionError
608
+ if self.is_zero:
609
+ return (Factors(S.Zero), Factors())
610
+
611
+ for factor, exp in other.factors.items():
612
+ if factor in quo:
613
+ d = quo[factor] - exp
614
+ if _isnumber(d):
615
+ if d <= 0:
616
+ del quo[factor]
617
+
618
+ if d >= 0:
619
+ if d:
620
+ quo[factor] = d
621
+
622
+ continue
623
+
624
+ exp = -d
625
+
626
+ else:
627
+ r = quo[factor].extract_additively(exp)
628
+ if r is not None:
629
+ if r:
630
+ quo[factor] = r
631
+ else: # should be handled already
632
+ del quo[factor]
633
+ else:
634
+ other_exp = exp
635
+ sc, sa = quo[factor].as_coeff_Add()
636
+ if sc:
637
+ oc, oa = other_exp.as_coeff_Add()
638
+ diff = sc - oc
639
+ if diff > 0:
640
+ quo[factor] -= oc
641
+ other_exp = oa
642
+ elif diff < 0:
643
+ quo[factor] -= sc
644
+ other_exp = oa - diff
645
+ else:
646
+ quo[factor] = sa
647
+ other_exp = oa
648
+ if other_exp:
649
+ rem[factor] = other_exp
650
+ else:
651
+ assert factor not in rem
652
+ continue
653
+
654
+ rem[factor] = exp
655
+
656
+ return Factors(quo), Factors(rem)
657
+
658
+ def quo(self, other): # Factors
659
+ """Return numerator Factor of ``self / other``.
660
+
661
+ Examples
662
+ ========
663
+
664
+ >>> from sympy.core.exprtools import Factors
665
+ >>> from sympy.abc import x, y, z
666
+ >>> a = Factors((x*y**2).as_powers_dict())
667
+ >>> b = Factors((x*y/z).as_powers_dict())
668
+ >>> a.quo(b) # same as a/b
669
+ Factors({y: 1})
670
+ """
671
+ return self.div(other)[0]
672
+
673
+ def rem(self, other): # Factors
674
+ """Return denominator Factors of ``self / other``.
675
+
676
+ Examples
677
+ ========
678
+
679
+ >>> from sympy.core.exprtools import Factors
680
+ >>> from sympy.abc import x, y, z
681
+ >>> a = Factors((x*y**2).as_powers_dict())
682
+ >>> b = Factors((x*y/z).as_powers_dict())
683
+ >>> a.rem(b)
684
+ Factors({z: -1})
685
+ >>> a.rem(a)
686
+ Factors({})
687
+ """
688
+ return self.div(other)[1]
689
+
690
+ def pow(self, other): # Factors
691
+ """Return self raised to a non-negative integer power.
692
+
693
+ Examples
694
+ ========
695
+
696
+ >>> from sympy.core.exprtools import Factors
697
+ >>> from sympy.abc import x, y
698
+ >>> a = Factors((x*y**2).as_powers_dict())
699
+ >>> a**2
700
+ Factors({x: 2, y: 4})
701
+
702
+ """
703
+ if isinstance(other, Factors):
704
+ other = other.as_expr()
705
+ if other.is_Integer:
706
+ other = int(other)
707
+ if isinstance(other, SYMPY_INTS) and other >= 0:
708
+ factors = {}
709
+
710
+ if other:
711
+ for factor, exp in self.factors.items():
712
+ factors[factor] = exp*other
713
+
714
+ return Factors(factors)
715
+ else:
716
+ raise ValueError("expected non-negative integer, got %s" % other)
717
+
718
+ def gcd(self, other): # Factors
719
+ """Return Factors of ``gcd(self, other)``. The keys are
720
+ the intersection of factors with the minimum exponent for
721
+ each factor.
722
+
723
+ Examples
724
+ ========
725
+
726
+ >>> from sympy.core.exprtools import Factors
727
+ >>> from sympy.abc import x, y, z
728
+ >>> a = Factors((x*y**2).as_powers_dict())
729
+ >>> b = Factors((x*y/z).as_powers_dict())
730
+ >>> a.gcd(b)
731
+ Factors({x: 1, y: 1})
732
+ """
733
+ if not isinstance(other, Factors):
734
+ other = Factors(other)
735
+ if other.is_zero:
736
+ return Factors(self.factors)
737
+
738
+ factors = {}
739
+
740
+ for factor, exp in self.factors.items():
741
+ factor, exp = sympify(factor), sympify(exp)
742
+ if factor in other.factors:
743
+ lt = (exp - other.factors[factor]).is_negative
744
+ if lt == True:
745
+ factors[factor] = exp
746
+ elif lt == False:
747
+ factors[factor] = other.factors[factor]
748
+
749
+ return Factors(factors)
750
+
751
+ def lcm(self, other): # Factors
752
+ """Return Factors of ``lcm(self, other)`` which are
753
+ the union of factors with the maximum exponent for
754
+ each factor.
755
+
756
+ Examples
757
+ ========
758
+
759
+ >>> from sympy.core.exprtools import Factors
760
+ >>> from sympy.abc import x, y, z
761
+ >>> a = Factors((x*y**2).as_powers_dict())
762
+ >>> b = Factors((x*y/z).as_powers_dict())
763
+ >>> a.lcm(b)
764
+ Factors({x: 1, y: 2, z: -1})
765
+ """
766
+ if not isinstance(other, Factors):
767
+ other = Factors(other)
768
+ if any(f.is_zero for f in (self, other)):
769
+ return Factors(S.Zero)
770
+
771
+ factors = dict(self.factors)
772
+
773
+ for factor, exp in other.factors.items():
774
+ if factor in factors:
775
+ exp = max(exp, factors[factor])
776
+
777
+ factors[factor] = exp
778
+
779
+ return Factors(factors)
780
+
781
+ def __mul__(self, other): # Factors
782
+ return self.mul(other)
783
+
784
+ def __divmod__(self, other): # Factors
785
+ return self.div(other)
786
+
787
+ def __truediv__(self, other): # Factors
788
+ return self.quo(other)
789
+
790
+ def __mod__(self, other): # Factors
791
+ return self.rem(other)
792
+
793
+ def __pow__(self, other): # Factors
794
+ return self.pow(other)
795
+
796
+ def __eq__(self, other): # Factors
797
+ if not isinstance(other, Factors):
798
+ other = Factors(other)
799
+ return self.factors == other.factors
800
+
801
+ def __ne__(self, other): # Factors
802
+ return not self == other
803
+
804
+
805
+ class Term:
806
+ """Efficient representation of ``coeff*(numer/denom)``. """
807
+
808
+ __slots__ = ('coeff', 'numer', 'denom')
809
+
810
+ def __init__(self, term, numer=None, denom=None): # Term
811
+ if numer is None and denom is None:
812
+ if not term.is_commutative:
813
+ raise NonCommutativeExpression(
814
+ 'commutative expression expected')
815
+
816
+ coeff, factors = term.as_coeff_mul()
817
+ numer, denom = defaultdict(int), defaultdict(int)
818
+
819
+ for factor in factors:
820
+ base, exp = decompose_power(factor)
821
+
822
+ if base.is_Add:
823
+ cont, base = base.primitive()
824
+ coeff *= cont**exp
825
+
826
+ if exp > 0:
827
+ numer[base] += exp
828
+ else:
829
+ denom[base] += -exp
830
+
831
+ numer = Factors(numer)
832
+ denom = Factors(denom)
833
+ else:
834
+ coeff = term
835
+
836
+ if numer is None:
837
+ numer = Factors()
838
+
839
+ if denom is None:
840
+ denom = Factors()
841
+
842
+ self.coeff = coeff
843
+ self.numer = numer
844
+ self.denom = denom
845
+
846
+ def __hash__(self): # Term
847
+ return hash((self.coeff, self.numer, self.denom))
848
+
849
+ def __repr__(self): # Term
850
+ return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
851
+
852
+ def as_expr(self): # Term
853
+ return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
854
+
855
+ def mul(self, other): # Term
856
+ coeff = self.coeff*other.coeff
857
+ numer = self.numer.mul(other.numer)
858
+ denom = self.denom.mul(other.denom)
859
+
860
+ numer, denom = numer.normal(denom)
861
+
862
+ return Term(coeff, numer, denom)
863
+
864
+ def inv(self): # Term
865
+ return Term(1/self.coeff, self.denom, self.numer)
866
+
867
+ def quo(self, other): # Term
868
+ return self.mul(other.inv())
869
+
870
+ def pow(self, other): # Term
871
+ if other < 0:
872
+ return self.inv().pow(-other)
873
+ else:
874
+ return Term(self.coeff ** other,
875
+ self.numer.pow(other),
876
+ self.denom.pow(other))
877
+
878
+ def gcd(self, other): # Term
879
+ return Term(self.coeff.gcd(other.coeff),
880
+ self.numer.gcd(other.numer),
881
+ self.denom.gcd(other.denom))
882
+
883
+ def lcm(self, other): # Term
884
+ return Term(self.coeff.lcm(other.coeff),
885
+ self.numer.lcm(other.numer),
886
+ self.denom.lcm(other.denom))
887
+
888
+ def __mul__(self, other): # Term
889
+ if isinstance(other, Term):
890
+ return self.mul(other)
891
+ else:
892
+ return NotImplemented
893
+
894
+ def __truediv__(self, other): # Term
895
+ if isinstance(other, Term):
896
+ return self.quo(other)
897
+ else:
898
+ return NotImplemented
899
+
900
+ def __pow__(self, other): # Term
901
+ if isinstance(other, SYMPY_INTS):
902
+ return self.pow(other)
903
+ else:
904
+ return NotImplemented
905
+
906
+ def __eq__(self, other): # Term
907
+ return (self.coeff == other.coeff and
908
+ self.numer == other.numer and
909
+ self.denom == other.denom)
910
+
911
+ def __ne__(self, other): # Term
912
+ return not self == other
913
+
914
+
915
+ def _gcd_terms(terms, isprimitive=False, fraction=True):
916
+ """Helper function for :func:`gcd_terms`.
917
+
918
+ Parameters
919
+ ==========
920
+
921
+ isprimitive : boolean, optional
922
+ If ``isprimitive`` is True then the call to primitive
923
+ for an Add will be skipped. This is useful when the
924
+ content has already been extracted.
925
+
926
+ fraction : boolean, optional
927
+ If ``fraction`` is True then the expression will appear over a common
928
+ denominator, the lcm of all term denominators.
929
+ """
930
+
931
+ if isinstance(terms, Basic) and not isinstance(terms, Tuple):
932
+ terms = Add.make_args(terms)
933
+
934
+ terms = list(map(Term, [t for t in terms if t]))
935
+
936
+ # there is some simplification that may happen if we leave this
937
+ # here rather than duplicate it before the mapping of Term onto
938
+ # the terms
939
+ if len(terms) == 0:
940
+ return S.Zero, S.Zero, S.One
941
+
942
+ if len(terms) == 1:
943
+ cont = terms[0].coeff
944
+ numer = terms[0].numer.as_expr()
945
+ denom = terms[0].denom.as_expr()
946
+
947
+ else:
948
+ cont = terms[0]
949
+ for term in terms[1:]:
950
+ cont = cont.gcd(term)
951
+
952
+ for i, term in enumerate(terms):
953
+ terms[i] = term.quo(cont)
954
+
955
+ if fraction:
956
+ denom = terms[0].denom
957
+
958
+ for term in terms[1:]:
959
+ denom = denom.lcm(term.denom)
960
+
961
+ numers = []
962
+ for term in terms:
963
+ numer = term.numer.mul(denom.quo(term.denom))
964
+ numers.append(term.coeff*numer.as_expr())
965
+ else:
966
+ numers = [t.as_expr() for t in terms]
967
+ denom = Term(S.One).numer
968
+
969
+ cont = cont.as_expr()
970
+ numer = Add(*numers)
971
+ denom = denom.as_expr()
972
+
973
+ if not isprimitive and numer.is_Add:
974
+ _cont, numer = numer.primitive()
975
+ cont *= _cont
976
+
977
+ return cont, numer, denom
978
+
979
+
980
+ def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
981
+ """Compute the GCD of ``terms`` and put them together.
982
+
983
+ Parameters
984
+ ==========
985
+
986
+ terms : Expr
987
+ Can be an expression or a non-Basic sequence of expressions
988
+ which will be handled as though they are terms from a sum.
989
+
990
+ isprimitive : bool, optional
991
+ If ``isprimitive`` is True the _gcd_terms will not run the primitive
992
+ method on the terms.
993
+
994
+ clear : bool, optional
995
+ It controls the removal of integers from the denominator of an Add
996
+ expression. When True (default), all numerical denominator will be cleared;
997
+ when False the denominators will be cleared only if all terms had numerical
998
+ denominators other than 1.
999
+
1000
+ fraction : bool, optional
1001
+ When True (default), will put the expression over a common
1002
+ denominator.
1003
+
1004
+ Examples
1005
+ ========
1006
+
1007
+ >>> from sympy import gcd_terms
1008
+ >>> from sympy.abc import x, y
1009
+
1010
+ >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
1011
+ y*(x + 1)*(x + y + 1)
1012
+ >>> gcd_terms(x/2 + 1)
1013
+ (x + 2)/2
1014
+ >>> gcd_terms(x/2 + 1, clear=False)
1015
+ x/2 + 1
1016
+ >>> gcd_terms(x/2 + y/2, clear=False)
1017
+ (x + y)/2
1018
+ >>> gcd_terms(x/2 + 1/x)
1019
+ (x**2 + 2)/(2*x)
1020
+ >>> gcd_terms(x/2 + 1/x, fraction=False)
1021
+ (x + 2/x)/2
1022
+ >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
1023
+ x/2 + 1/x
1024
+
1025
+ >>> gcd_terms(x/2/y + 1/x/y)
1026
+ (x**2 + 2)/(2*x*y)
1027
+ >>> gcd_terms(x/2/y + 1/x/y, clear=False)
1028
+ (x**2/2 + 1)/(x*y)
1029
+ >>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
1030
+ (x/2 + 1/x)/y
1031
+
1032
+ The ``clear`` flag was ignored in this case because the returned
1033
+ expression was a rational expression, not a simple sum.
1034
+
1035
+ See Also
1036
+ ========
1037
+
1038
+ factor_terms, sympy.polys.polytools.terms_gcd
1039
+
1040
+ """
1041
+ def mask(terms):
1042
+ """replace nc portions of each term with a unique Dummy symbols
1043
+ and return the replacements to restore them"""
1044
+ args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
1045
+ reps = []
1046
+ for i, (c, nc) in enumerate(args):
1047
+ if nc:
1048
+ nc = Mul(*nc)
1049
+ d = Dummy()
1050
+ reps.append((d, nc))
1051
+ c.append(d)
1052
+ args[i] = Mul(*c)
1053
+ else:
1054
+ args[i] = c
1055
+ return args, dict(reps)
1056
+
1057
+ isadd = isinstance(terms, Add)
1058
+ addlike = isadd or not isinstance(terms, Basic) and \
1059
+ is_sequence(terms, include=set) and \
1060
+ not isinstance(terms, Dict)
1061
+
1062
+ if addlike:
1063
+ if isadd: # i.e. an Add
1064
+ terms = list(terms.args)
1065
+ else:
1066
+ terms = sympify(terms)
1067
+ terms, reps = mask(terms)
1068
+ cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
1069
+ numer = numer.xreplace(reps)
1070
+ coeff, factors = cont.as_coeff_Mul()
1071
+ if not clear:
1072
+ c, _coeff = coeff.as_coeff_Mul()
1073
+ if not c.is_Integer and not clear and numer.is_Add:
1074
+ n, d = c.as_numer_denom()
1075
+ _numer = numer/d
1076
+ if any(a.as_coeff_Mul()[0].is_Integer
1077
+ for a in _numer.args):
1078
+ numer = _numer
1079
+ coeff = n*_coeff
1080
+ return _keep_coeff(coeff, factors*numer/denom, clear=clear)
1081
+
1082
+ if not isinstance(terms, Basic):
1083
+ return terms
1084
+
1085
+ if terms.is_Atom:
1086
+ return terms
1087
+
1088
+ if terms.is_Mul:
1089
+ c, args = terms.as_coeff_mul()
1090
+ return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
1091
+ for i in args]), clear=clear)
1092
+
1093
+ def handle(a):
1094
+ # don't treat internal args like terms of an Add
1095
+ if not isinstance(a, Expr):
1096
+ if isinstance(a, Basic):
1097
+ if not a.args:
1098
+ return a
1099
+ return a.func(*[handle(i) for i in a.args])
1100
+ return type(a)([handle(i) for i in a])
1101
+ return gcd_terms(a, isprimitive, clear, fraction)
1102
+
1103
+ if isinstance(terms, Dict):
1104
+ return Dict(*[(k, handle(v)) for k, v in terms.args])
1105
+ return terms.func(*[handle(i) for i in terms.args])
1106
+
1107
+
1108
+ def _factor_sum_int(expr, **kwargs):
1109
+ """Return Sum or Integral object with factors that are not
1110
+ in the wrt variables removed. In cases where there are additive
1111
+ terms in the function of the object that are independent, the
1112
+ object will be separated into two objects.
1113
+
1114
+ Examples
1115
+ ========
1116
+
1117
+ >>> from sympy import Sum, factor_terms
1118
+ >>> from sympy.abc import x, y
1119
+ >>> factor_terms(Sum(x + y, (x, 1, 3)))
1120
+ y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
1121
+ >>> factor_terms(Sum(x*y, (x, 1, 3)))
1122
+ y*Sum(x, (x, 1, 3))
1123
+
1124
+ Notes
1125
+ =====
1126
+
1127
+ If a function in the summand or integrand is replaced
1128
+ with a symbol, then this simplification should not be
1129
+ done or else an incorrect result will be obtained when
1130
+ the symbol is replaced with an expression that depends
1131
+ on the variables of summation/integration:
1132
+
1133
+ >>> eq = Sum(y, (x, 1, 3))
1134
+ >>> factor_terms(eq).subs(y, x).doit()
1135
+ 3*x
1136
+ >>> eq.subs(y, x).doit()
1137
+ 6
1138
+ """
1139
+ result = expr.function
1140
+ if result == 0:
1141
+ return S.Zero
1142
+ limits = expr.limits
1143
+
1144
+ # get the wrt variables
1145
+ wrt = {i.args[0] for i in limits}
1146
+
1147
+ # factor out any common terms that are independent of wrt
1148
+ f = factor_terms(result, **kwargs)
1149
+ i, d = f.as_independent(*wrt)
1150
+ if isinstance(f, Add):
1151
+ return i * expr.func(1, *limits) + expr.func(d, *limits)
1152
+ else:
1153
+ return i * expr.func(d, *limits)
1154
+
1155
+
1156
+ def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
1157
+ """Remove common factors from terms in all arguments without
1158
+ changing the underlying structure of the expr. No expansion or
1159
+ simplification (and no processing of non-commutatives) is performed.
1160
+
1161
+ Parameters
1162
+ ==========
1163
+
1164
+ radical: bool, optional
1165
+ If radical=True then a radical common to all terms will be factored
1166
+ out of any Add sub-expressions of the expr.
1167
+
1168
+ clear : bool, optional
1169
+ If clear=False (default) then coefficients will not be separated
1170
+ from a single Add if they can be distributed to leave one or more
1171
+ terms with integer coefficients.
1172
+
1173
+ fraction : bool, optional
1174
+ If fraction=True (default is False) then a common denominator will be
1175
+ constructed for the expression.
1176
+
1177
+ sign : bool, optional
1178
+ If sign=True (default) then even if the only factor in common is a -1,
1179
+ it will be factored out of the expression.
1180
+
1181
+ Examples
1182
+ ========
1183
+
1184
+ >>> from sympy import factor_terms, Symbol
1185
+ >>> from sympy.abc import x, y
1186
+ >>> factor_terms(x + x*(2 + 4*y)**3)
1187
+ x*(8*(2*y + 1)**3 + 1)
1188
+ >>> A = Symbol('A', commutative=False)
1189
+ >>> factor_terms(x*A + x*A + x*y*A)
1190
+ x*(y*A + 2*A)
1191
+
1192
+ When ``clear`` is False, a rational will only be factored out of an
1193
+ Add expression if all terms of the Add have coefficients that are
1194
+ fractions:
1195
+
1196
+ >>> factor_terms(x/2 + 1, clear=False)
1197
+ x/2 + 1
1198
+ >>> factor_terms(x/2 + 1, clear=True)
1199
+ (x + 2)/2
1200
+
1201
+ If a -1 is all that can be factored out, to *not* factor it out, the
1202
+ flag ``sign`` must be False:
1203
+
1204
+ >>> factor_terms(-x - y)
1205
+ -(x + y)
1206
+ >>> factor_terms(-x - y, sign=False)
1207
+ -x - y
1208
+ >>> factor_terms(-2*x - 2*y, sign=False)
1209
+ -2*(x + y)
1210
+
1211
+ See Also
1212
+ ========
1213
+
1214
+ gcd_terms, sympy.polys.polytools.terms_gcd
1215
+
1216
+ """
1217
+ def do(expr):
1218
+ from sympy.concrete.summations import Sum
1219
+ from sympy.integrals.integrals import Integral
1220
+ is_iterable = iterable(expr)
1221
+
1222
+ if not isinstance(expr, Basic) or expr.is_Atom:
1223
+ if is_iterable:
1224
+ return type(expr)([do(i) for i in expr])
1225
+ return expr
1226
+
1227
+ if expr.is_Pow or expr.is_Function or \
1228
+ is_iterable or not hasattr(expr, 'args_cnc'):
1229
+ args = expr.args
1230
+ newargs = tuple([do(i) for i in args])
1231
+ if newargs == args:
1232
+ return expr
1233
+ return expr.func(*newargs)
1234
+
1235
+ if isinstance(expr, (Sum, Integral)):
1236
+ return _factor_sum_int(expr,
1237
+ radical=radical, clear=clear,
1238
+ fraction=fraction, sign=sign)
1239
+
1240
+ cont, p = expr.as_content_primitive(radical=radical, clear=clear)
1241
+ if p.is_Add:
1242
+ list_args = [do(a) for a in Add.make_args(p)]
1243
+ # get a common negative (if there) which gcd_terms does not remove
1244
+ if not any(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is None
1245
+ for a in list_args):
1246
+ cont = -cont
1247
+ list_args = [-a for a in list_args]
1248
+ # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
1249
+ special = {}
1250
+ for i, a in enumerate(list_args):
1251
+ b, e = a.as_base_exp()
1252
+ if e.is_Mul and e != Mul(*e.args):
1253
+ list_args[i] = Dummy()
1254
+ special[list_args[i]] = a
1255
+ # rebuild p not worrying about the order which gcd_terms will fix
1256
+ p = Add._from_args(list_args)
1257
+ p = gcd_terms(p,
1258
+ isprimitive=True,
1259
+ clear=clear,
1260
+ fraction=fraction).xreplace(special)
1261
+ elif p.args:
1262
+ p = p.func(
1263
+ *[do(a) for a in p.args])
1264
+ rv = _keep_coeff(cont, p, clear=clear, sign=sign)
1265
+ return rv
1266
+ expr = sympify(expr)
1267
+ return do(expr)
1268
+
1269
+
1270
+ def _mask_nc(eq, name=None):
1271
+ """
1272
+ Return ``eq`` with non-commutative objects replaced with Dummy
1273
+ symbols. A dictionary that can be used to restore the original
1274
+ values is returned: if it is None, the expression is noncommutative
1275
+ and cannot be made commutative. The third value returned is a list
1276
+ of any non-commutative symbols that appear in the returned equation.
1277
+
1278
+ Explanation
1279
+ ===========
1280
+
1281
+ All non-commutative objects other than Symbols are replaced with
1282
+ a non-commutative Symbol. Identical objects will be identified
1283
+ by identical symbols.
1284
+
1285
+ If there is only 1 non-commutative object in an expression it will
1286
+ be replaced with a commutative symbol. Otherwise, the non-commutative
1287
+ entities are retained and the calling routine should handle
1288
+ replacements in this case since some care must be taken to keep
1289
+ track of the ordering of symbols when they occur within Muls.
1290
+
1291
+ Parameters
1292
+ ==========
1293
+
1294
+ name : str
1295
+ ``name``, if given, is the name that will be used with numbered Dummy
1296
+ variables that will replace the non-commutative objects and is mainly
1297
+ used for doctesting purposes.
1298
+
1299
+ Examples
1300
+ ========
1301
+
1302
+ >>> from sympy.physics.secondquant import Commutator, NO, F, Fd
1303
+ >>> from sympy import symbols
1304
+ >>> from sympy.core.exprtools import _mask_nc
1305
+ >>> from sympy.abc import x, y
1306
+ >>> A, B, C = symbols('A,B,C', commutative=False)
1307
+
1308
+ One nc-symbol:
1309
+
1310
+ >>> _mask_nc(A**2 - x**2, 'd')
1311
+ (_d0**2 - x**2, {_d0: A}, [])
1312
+
1313
+ Multiple nc-symbols:
1314
+
1315
+ >>> _mask_nc(A**2 - B**2, 'd')
1316
+ (A**2 - B**2, {}, [A, B])
1317
+
1318
+ An nc-object with nc-symbols but no others outside of it:
1319
+
1320
+ >>> _mask_nc(1 + x*Commutator(A, B), 'd')
1321
+ (_d0*x + 1, {_d0: Commutator(A, B)}, [])
1322
+ >>> _mask_nc(NO(Fd(x)*F(y)), 'd')
1323
+ (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
1324
+
1325
+ Multiple nc-objects:
1326
+
1327
+ >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
1328
+ >>> _mask_nc(eq, 'd')
1329
+ (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
1330
+
1331
+ Multiple nc-objects and nc-symbols:
1332
+
1333
+ >>> eq = A*Commutator(A, B) + B*Commutator(A, C)
1334
+ >>> _mask_nc(eq, 'd')
1335
+ (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
1336
+
1337
+ """
1338
+ name = name or 'mask'
1339
+ # Make Dummy() append sequential numbers to the name
1340
+
1341
+ def numbered_names():
1342
+ i = 0
1343
+ while True:
1344
+ yield name + str(i)
1345
+ i += 1
1346
+
1347
+ names = numbered_names()
1348
+
1349
+ def Dummy(*args, **kwargs):
1350
+ from .symbol import Dummy
1351
+ return Dummy(next(names), *args, **kwargs)
1352
+
1353
+ expr = eq
1354
+ if expr.is_commutative:
1355
+ return eq, {}, []
1356
+
1357
+ # identify nc-objects; symbols and other
1358
+ rep = []
1359
+ nc_obj = set()
1360
+ nc_syms = set()
1361
+ pot = preorder_traversal(expr, keys=default_sort_key)
1362
+ for i, a in enumerate(pot):
1363
+ if any(a == r[0] for r in rep):
1364
+ pot.skip()
1365
+ elif not a.is_commutative:
1366
+ if a.is_symbol:
1367
+ nc_syms.add(a)
1368
+ pot.skip()
1369
+ elif not (a.is_Add or a.is_Mul or a.is_Pow):
1370
+ nc_obj.add(a)
1371
+ pot.skip()
1372
+
1373
+ # If there is only one nc symbol or object, it can be factored regularly
1374
+ # but polys is going to complain, so replace it with a Dummy.
1375
+ if len(nc_obj) == 1 and not nc_syms:
1376
+ rep.append((nc_obj.pop(), Dummy()))
1377
+ elif len(nc_syms) == 1 and not nc_obj:
1378
+ rep.append((nc_syms.pop(), Dummy()))
1379
+
1380
+ # Any remaining nc-objects will be replaced with an nc-Dummy and
1381
+ # identified as an nc-Symbol to watch out for
1382
+ nc_obj = sorted(nc_obj, key=default_sort_key)
1383
+ for n in nc_obj:
1384
+ nc = Dummy(commutative=False)
1385
+ rep.append((n, nc))
1386
+ nc_syms.add(nc)
1387
+ expr = expr.subs(rep)
1388
+
1389
+ nc_syms = list(nc_syms)
1390
+ nc_syms.sort(key=default_sort_key)
1391
+ return expr, {v: k for k, v in rep}, nc_syms
1392
+
1393
+
1394
+ def factor_nc(expr):
1395
+ """Return the factored form of ``expr`` while handling non-commutative
1396
+ expressions.
1397
+
1398
+ Examples
1399
+ ========
1400
+
1401
+ >>> from sympy import factor_nc, Symbol
1402
+ >>> from sympy.abc import x
1403
+ >>> A = Symbol('A', commutative=False)
1404
+ >>> B = Symbol('B', commutative=False)
1405
+ >>> factor_nc((x**2 + 2*A*x + A**2).expand())
1406
+ (x + A)**2
1407
+ >>> factor_nc(((x + A)*(x + B)).expand())
1408
+ (x + A)*(x + B)
1409
+ """
1410
+ expr = sympify(expr)
1411
+ if not isinstance(expr, Expr) or not expr.args:
1412
+ return expr
1413
+ if not expr.is_Add:
1414
+ return expr.func(*[factor_nc(a) for a in expr.args])
1415
+ expr = expr.func(*[expand_power_exp(i) for i in expr.args])
1416
+
1417
+ from sympy.polys.polytools import gcd, factor
1418
+ expr, rep, nc_symbols = _mask_nc(expr)
1419
+
1420
+ if rep:
1421
+ return factor(expr).subs(rep)
1422
+ else:
1423
+ args = [a.args_cnc() for a in Add.make_args(expr)]
1424
+ c = g = l = r = S.One
1425
+ hit = False
1426
+ # find any commutative gcd term
1427
+ for i, a in enumerate(args):
1428
+ if i == 0:
1429
+ c = Mul._from_args(a[0])
1430
+ elif a[0]:
1431
+ c = gcd(c, Mul._from_args(a[0]))
1432
+ else:
1433
+ c = S.One
1434
+ if c is not S.One:
1435
+ hit = True
1436
+ c, g = c.as_coeff_Mul()
1437
+ if g is not S.One:
1438
+ for i, (cc, _) in enumerate(args):
1439
+ cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
1440
+ args[i][0] = cc
1441
+ for i, (cc, _) in enumerate(args):
1442
+ if cc:
1443
+ cc[0] = cc[0]/c
1444
+ else:
1445
+ cc = [1/c]
1446
+ args[i][0] = cc
1447
+ # find any noncommutative common prefix
1448
+ for i, a in enumerate(args):
1449
+ if i == 0:
1450
+ n = a[1][:]
1451
+ else:
1452
+ n = common_prefix(n, a[1])
1453
+ if not n:
1454
+ # is there a power that can be extracted?
1455
+ if not args[0][1]:
1456
+ break
1457
+ b, e = args[0][1][0].as_base_exp()
1458
+ ok = False
1459
+ if e.is_Integer:
1460
+ for t in args:
1461
+ if not t[1]:
1462
+ break
1463
+ bt, et = t[1][0].as_base_exp()
1464
+ if et.is_Integer and bt == b:
1465
+ e = min(e, et)
1466
+ else:
1467
+ break
1468
+ else:
1469
+ ok = hit = True
1470
+ l = b**e
1471
+ il = b**-e
1472
+ for _ in args:
1473
+ _[1][0] = il*_[1][0]
1474
+ break
1475
+ if not ok:
1476
+ break
1477
+ else:
1478
+ hit = True
1479
+ lenn = len(n)
1480
+ l = Mul(*n)
1481
+ for _ in args:
1482
+ _[1] = _[1][lenn:]
1483
+ # find any noncommutative common suffix
1484
+ for i, a in enumerate(args):
1485
+ if i == 0:
1486
+ n = a[1][:]
1487
+ else:
1488
+ n = common_suffix(n, a[1])
1489
+ if not n:
1490
+ # is there a power that can be extracted?
1491
+ if not args[0][1]:
1492
+ break
1493
+ b, e = args[0][1][-1].as_base_exp()
1494
+ ok = False
1495
+ if e.is_Integer:
1496
+ for t in args:
1497
+ if not t[1]:
1498
+ break
1499
+ bt, et = t[1][-1].as_base_exp()
1500
+ if et.is_Integer and bt == b:
1501
+ e = min(e, et)
1502
+ else:
1503
+ break
1504
+ else:
1505
+ ok = hit = True
1506
+ r = b**e
1507
+ il = b**-e
1508
+ for _ in args:
1509
+ _[1][-1] = _[1][-1]*il
1510
+ break
1511
+ if not ok:
1512
+ break
1513
+ else:
1514
+ hit = True
1515
+ lenn = len(n)
1516
+ r = Mul(*n)
1517
+ for _ in args:
1518
+ _[1] = _[1][:len(_[1]) - lenn]
1519
+ if hit:
1520
+ mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
1521
+ else:
1522
+ mid = expr
1523
+
1524
+ from sympy.simplify.powsimp import powsimp
1525
+
1526
+ # sort the symbols so the Dummys would appear in the same
1527
+ # order as the original symbols, otherwise you may introduce
1528
+ # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
1529
+ # and the former factors into two terms, (A - B)*(A + B) while the
1530
+ # latter factors into 3 terms, (-1)*(x - y)*(x + y)
1531
+ rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
1532
+ unrep1 = [(v, k) for k, v in rep1]
1533
+ unrep1.reverse()
1534
+ new_mid, r2, _ = _mask_nc(mid.subs(rep1))
1535
+ new_mid = powsimp(factor(new_mid))
1536
+
1537
+ new_mid = new_mid.subs(r2).subs(unrep1)
1538
+
1539
+ if new_mid.is_Pow:
1540
+ return _keep_coeff(c, g*l*new_mid*r)
1541
+
1542
+ if new_mid.is_Mul:
1543
+ def _pemexpand(expr):
1544
+ "Expand with the minimal set of hints necessary to check the result."
1545
+ return expr.expand(deep=True, mul=True, power_exp=True,
1546
+ power_base=False, basic=False, multinomial=True, log=False)
1547
+ # XXX TODO there should be a way to inspect what order the terms
1548
+ # must be in and just select the plausible ordering without
1549
+ # checking permutations
1550
+ cfac = []
1551
+ ncfac = []
1552
+ for f in new_mid.args:
1553
+ if f.is_commutative:
1554
+ cfac.append(f)
1555
+ else:
1556
+ b, e = f.as_base_exp()
1557
+ if e.is_Integer:
1558
+ ncfac.extend([b]*e)
1559
+ else:
1560
+ ncfac.append(f)
1561
+ pre_mid = g*Mul(*cfac)*l
1562
+ target = _pemexpand(expr/c)
1563
+ for s in variations(ncfac, len(ncfac)):
1564
+ ok = pre_mid*Mul(*s)*r
1565
+ if _pemexpand(ok) == target:
1566
+ return _keep_coeff(c, ok)
1567
+
1568
+ # mid was an Add that didn't factor successfully
1569
+ return _keep_coeff(c, g*l*mid*r)
venv/lib/python3.10/site-packages/sympy/core/facts.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""This is rule-based deduction system for SymPy
2
+
3
+ The whole thing is split into two parts
4
+
5
+ - rules compilation and preparation of tables
6
+ - runtime inference
7
+
8
+ For rule-based inference engines, the classical work is RETE algorithm [1],
9
+ [2] Although we are not implementing it in full (or even significantly)
10
+ it's still worth a read to understand the underlying ideas.
11
+
12
+ In short, every rule in a system of rules is one of two forms:
13
+
14
+ - atom -> ... (alpha rule)
15
+ - And(atom1, atom2, ...) -> ... (beta rule)
16
+
17
+
18
+ The major complexity is in efficient beta-rules processing and usually for an
19
+ expert system a lot of effort goes into code that operates on beta-rules.
20
+
21
+
22
+ Here we take minimalistic approach to get something usable first.
23
+
24
+ - (preparation) of alpha- and beta- networks, everything except
25
+ - (runtime) FactRules.deduce_all_facts
26
+
27
+ _____________________________________
28
+ ( Kirr: I've never thought that doing )
29
+ ( logic stuff is that difficult... )
30
+ -------------------------------------
31
+ o ^__^
32
+ o (oo)\_______
33
+ (__)\ )\/\
34
+ ||----w |
35
+ || ||
36
+
37
+
38
+ Some references on the topic
39
+ ----------------------------
40
+
41
+ [1] https://en.wikipedia.org/wiki/Rete_algorithm
42
+ [2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
43
+
44
+ https://en.wikipedia.org/wiki/Propositional_formula
45
+ https://en.wikipedia.org/wiki/Inference_rule
46
+ https://en.wikipedia.org/wiki/List_of_rules_of_inference
47
+ """
48
+
49
+ from collections import defaultdict
50
+ from typing import Iterator
51
+
52
+ from .logic import Logic, And, Or, Not
53
+
54
+
55
+ def _base_fact(atom):
56
+ """Return the literal fact of an atom.
57
+
58
+ Effectively, this merely strips the Not around a fact.
59
+ """
60
+ if isinstance(atom, Not):
61
+ return atom.arg
62
+ else:
63
+ return atom
64
+
65
+
66
+ def _as_pair(atom):
67
+ if isinstance(atom, Not):
68
+ return (atom.arg, False)
69
+ else:
70
+ return (atom, True)
71
+
72
+ # XXX this prepares forward-chaining rules for alpha-network
73
+
74
+
75
+ def transitive_closure(implications):
76
+ """
77
+ Computes the transitive closure of a list of implications
78
+
79
+ Uses Warshall's algorithm, as described at
80
+ http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf.
81
+ """
82
+ full_implications = set(implications)
83
+ literals = set().union(*map(set, full_implications))
84
+
85
+ for k in literals:
86
+ for i in literals:
87
+ if (i, k) in full_implications:
88
+ for j in literals:
89
+ if (k, j) in full_implications:
90
+ full_implications.add((i, j))
91
+
92
+ return full_implications
93
+
94
+
95
+ def deduce_alpha_implications(implications):
96
+ """deduce all implications
97
+
98
+ Description by example
99
+ ----------------------
100
+
101
+ given set of logic rules:
102
+
103
+ a -> b
104
+ b -> c
105
+
106
+ we deduce all possible rules:
107
+
108
+ a -> b, c
109
+ b -> c
110
+
111
+
112
+ implications: [] of (a,b)
113
+ return: {} of a -> set([b, c, ...])
114
+ """
115
+ implications = implications + [(Not(j), Not(i)) for (i, j) in implications]
116
+ res = defaultdict(set)
117
+ full_implications = transitive_closure(implications)
118
+ for a, b in full_implications:
119
+ if a == b:
120
+ continue # skip a->a cyclic input
121
+
122
+ res[a].add(b)
123
+
124
+ # Clean up tautologies and check consistency
125
+ for a, impl in res.items():
126
+ impl.discard(a)
127
+ na = Not(a)
128
+ if na in impl:
129
+ raise ValueError(
130
+ 'implications are inconsistent: %s -> %s %s' % (a, na, impl))
131
+
132
+ return res
133
+
134
+
135
+ def apply_beta_to_alpha_route(alpha_implications, beta_rules):
136
+ """apply additional beta-rules (And conditions) to already-built
137
+ alpha implication tables
138
+
139
+ TODO: write about
140
+
141
+ - static extension of alpha-chains
142
+ - attaching refs to beta-nodes to alpha chains
143
+
144
+
145
+ e.g.
146
+
147
+ alpha_implications:
148
+
149
+ a -> [b, !c, d]
150
+ b -> [d]
151
+ ...
152
+
153
+
154
+ beta_rules:
155
+
156
+ &(b,d) -> e
157
+
158
+
159
+ then we'll extend a's rule to the following
160
+
161
+ a -> [b, !c, d, e]
162
+ """
163
+ x_impl = {}
164
+ for x in alpha_implications.keys():
165
+ x_impl[x] = (set(alpha_implications[x]), [])
166
+ for bcond, bimpl in beta_rules:
167
+ for bk in bcond.args:
168
+ if bk in x_impl:
169
+ continue
170
+ x_impl[bk] = (set(), [])
171
+
172
+ # static extensions to alpha rules:
173
+ # A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c
174
+ seen_static_extension = True
175
+ while seen_static_extension:
176
+ seen_static_extension = False
177
+
178
+ for bcond, bimpl in beta_rules:
179
+ if not isinstance(bcond, And):
180
+ raise TypeError("Cond is not And")
181
+ bargs = set(bcond.args)
182
+ for x, (ximpls, bb) in x_impl.items():
183
+ x_all = ximpls | {x}
184
+ # A: ... -> a B: &(...) -> a is non-informative
185
+ if bimpl not in x_all and bargs.issubset(x_all):
186
+ ximpls.add(bimpl)
187
+
188
+ # we introduced new implication - now we have to restore
189
+ # completeness of the whole set.
190
+ bimpl_impl = x_impl.get(bimpl)
191
+ if bimpl_impl is not None:
192
+ ximpls |= bimpl_impl[0]
193
+ seen_static_extension = True
194
+
195
+ # attach beta-nodes which can be possibly triggered by an alpha-chain
196
+ for bidx, (bcond, bimpl) in enumerate(beta_rules):
197
+ bargs = set(bcond.args)
198
+ for x, (ximpls, bb) in x_impl.items():
199
+ x_all = ximpls | {x}
200
+ # A: ... -> a B: &(...) -> a (non-informative)
201
+ if bimpl in x_all:
202
+ continue
203
+ # A: x -> a... B: &(!a,...) -> ... (will never trigger)
204
+ # A: x -> a... B: &(...) -> !a (will never trigger)
205
+ if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all):
206
+ continue
207
+
208
+ if bargs & x_all:
209
+ bb.append(bidx)
210
+
211
+ return x_impl
212
+
213
+
214
+ def rules_2prereq(rules):
215
+ """build prerequisites table from rules
216
+
217
+ Description by example
218
+ ----------------------
219
+
220
+ given set of logic rules:
221
+
222
+ a -> b, c
223
+ b -> c
224
+
225
+ we build prerequisites (from what points something can be deduced):
226
+
227
+ b <- a
228
+ c <- a, b
229
+
230
+ rules: {} of a -> [b, c, ...]
231
+ return: {} of c <- [a, b, ...]
232
+
233
+ Note however, that this prerequisites may be *not* enough to prove a
234
+ fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b)
235
+ is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=?
236
+ """
237
+ prereq = defaultdict(set)
238
+ for (a, _), impl in rules.items():
239
+ if isinstance(a, Not):
240
+ a = a.args[0]
241
+ for (i, _) in impl:
242
+ if isinstance(i, Not):
243
+ i = i.args[0]
244
+ prereq[i].add(a)
245
+ return prereq
246
+
247
+ ################
248
+ # RULES PROVER #
249
+ ################
250
+
251
+
252
+ class TautologyDetected(Exception):
253
+ """(internal) Prover uses it for reporting detected tautology"""
254
+ pass
255
+
256
+
257
+ class Prover:
258
+ """ai - prover of logic rules
259
+
260
+ given a set of initial rules, Prover tries to prove all possible rules
261
+ which follow from given premises.
262
+
263
+ As a result proved_rules are always either in one of two forms: alpha or
264
+ beta:
265
+
266
+ Alpha rules
267
+ -----------
268
+
269
+ This are rules of the form::
270
+
271
+ a -> b & c & d & ...
272
+
273
+
274
+ Beta rules
275
+ ----------
276
+
277
+ This are rules of the form::
278
+
279
+ &(a,b,...) -> c & d & ...
280
+
281
+
282
+ i.e. beta rules are join conditions that say that something follows when
283
+ *several* facts are true at the same time.
284
+ """
285
+
286
+ def __init__(self):
287
+ self.proved_rules = []
288
+ self._rules_seen = set()
289
+
290
+ def split_alpha_beta(self):
291
+ """split proved rules into alpha and beta chains"""
292
+ rules_alpha = [] # a -> b
293
+ rules_beta = [] # &(...) -> b
294
+ for a, b in self.proved_rules:
295
+ if isinstance(a, And):
296
+ rules_beta.append((a, b))
297
+ else:
298
+ rules_alpha.append((a, b))
299
+ return rules_alpha, rules_beta
300
+
301
+ @property
302
+ def rules_alpha(self):
303
+ return self.split_alpha_beta()[0]
304
+
305
+ @property
306
+ def rules_beta(self):
307
+ return self.split_alpha_beta()[1]
308
+
309
+ def process_rule(self, a, b):
310
+ """process a -> b rule""" # TODO write more?
311
+ if (not a) or isinstance(b, bool):
312
+ return
313
+ if isinstance(a, bool):
314
+ return
315
+ if (a, b) in self._rules_seen:
316
+ return
317
+ else:
318
+ self._rules_seen.add((a, b))
319
+
320
+ # this is the core of processing
321
+ try:
322
+ self._process_rule(a, b)
323
+ except TautologyDetected:
324
+ pass
325
+
326
+ def _process_rule(self, a, b):
327
+ # right part first
328
+
329
+ # a -> b & c --> a -> b ; a -> c
330
+ # (?) FIXME this is only correct when b & c != null !
331
+
332
+ if isinstance(b, And):
333
+ sorted_bargs = sorted(b.args, key=str)
334
+ for barg in sorted_bargs:
335
+ self.process_rule(a, barg)
336
+
337
+ # a -> b | c --> !b & !c -> !a
338
+ # --> a & !b -> c
339
+ # --> a & !c -> b
340
+ elif isinstance(b, Or):
341
+ sorted_bargs = sorted(b.args, key=str)
342
+ # detect tautology first
343
+ if not isinstance(a, Logic): # Atom
344
+ # tautology: a -> a|c|...
345
+ if a in sorted_bargs:
346
+ raise TautologyDetected(a, b, 'a -> a|c|...')
347
+ self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a))
348
+
349
+ for bidx in range(len(sorted_bargs)):
350
+ barg = sorted_bargs[bidx]
351
+ brest = sorted_bargs[:bidx] + sorted_bargs[bidx + 1:]
352
+ self.process_rule(And(a, Not(barg)), Or(*brest))
353
+
354
+ # left part
355
+
356
+ # a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS
357
+ # (this will be the basis of beta-network)
358
+ elif isinstance(a, And):
359
+ sorted_aargs = sorted(a.args, key=str)
360
+ if b in sorted_aargs:
361
+ raise TautologyDetected(a, b, 'a & b -> a')
362
+ self.proved_rules.append((a, b))
363
+ # XXX NOTE at present we ignore !c -> !a | !b
364
+
365
+ elif isinstance(a, Or):
366
+ sorted_aargs = sorted(a.args, key=str)
367
+ if b in sorted_aargs:
368
+ raise TautologyDetected(a, b, 'a | b -> a')
369
+ for aarg in sorted_aargs:
370
+ self.process_rule(aarg, b)
371
+
372
+ else:
373
+ # both `a` and `b` are atoms
374
+ self.proved_rules.append((a, b)) # a -> b
375
+ self.proved_rules.append((Not(b), Not(a))) # !b -> !a
376
+
377
+ ########################################
378
+
379
+
380
+ class FactRules:
381
+ """Rules that describe how to deduce facts in logic space
382
+
383
+ When defined, these rules allow implications to quickly be determined
384
+ for a set of facts. For this precomputed deduction tables are used.
385
+ see `deduce_all_facts` (forward-chaining)
386
+
387
+ Also it is possible to gather prerequisites for a fact, which is tried
388
+ to be proven. (backward-chaining)
389
+
390
+
391
+ Definition Syntax
392
+ -----------------
393
+
394
+ a -> b -- a=T -> b=T (and automatically b=F -> a=F)
395
+ a -> !b -- a=T -> b=F
396
+ a == b -- a -> b & b -> a
397
+ a -> b & c -- a=T -> b=T & c=T
398
+ # TODO b | c
399
+
400
+
401
+ Internals
402
+ ---------
403
+
404
+ .full_implications[k, v]: all the implications of fact k=v
405
+ .beta_triggers[k, v]: beta rules that might be triggered when k=v
406
+ .prereq -- {} k <- [] of k's prerequisites
407
+
408
+ .defined_facts -- set of defined fact names
409
+ """
410
+
411
+ def __init__(self, rules):
412
+ """Compile rules into internal lookup tables"""
413
+
414
+ if isinstance(rules, str):
415
+ rules = rules.splitlines()
416
+
417
+ # --- parse and process rules ---
418
+ P = Prover()
419
+
420
+ for rule in rules:
421
+ # XXX `a` is hardcoded to be always atom
422
+ a, op, b = rule.split(None, 2)
423
+
424
+ a = Logic.fromstring(a)
425
+ b = Logic.fromstring(b)
426
+
427
+ if op == '->':
428
+ P.process_rule(a, b)
429
+ elif op == '==':
430
+ P.process_rule(a, b)
431
+ P.process_rule(b, a)
432
+ else:
433
+ raise ValueError('unknown op %r' % op)
434
+
435
+ # --- build deduction networks ---
436
+ self.beta_rules = []
437
+ for bcond, bimpl in P.rules_beta:
438
+ self.beta_rules.append(
439
+ ({_as_pair(a) for a in bcond.args}, _as_pair(bimpl)))
440
+
441
+ # deduce alpha implications
442
+ impl_a = deduce_alpha_implications(P.rules_alpha)
443
+
444
+ # now:
445
+ # - apply beta rules to alpha chains (static extension), and
446
+ # - further associate beta rules to alpha chain (for inference
447
+ # at runtime)
448
+ impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta)
449
+
450
+ # extract defined fact names
451
+ self.defined_facts = {_base_fact(k) for k in impl_ab.keys()}
452
+
453
+ # build rels (forward chains)
454
+ full_implications = defaultdict(set)
455
+ beta_triggers = defaultdict(set)
456
+ for k, (impl, betaidxs) in impl_ab.items():
457
+ full_implications[_as_pair(k)] = {_as_pair(i) for i in impl}
458
+ beta_triggers[_as_pair(k)] = betaidxs
459
+
460
+ self.full_implications = full_implications
461
+ self.beta_triggers = beta_triggers
462
+
463
+ # build prereq (backward chains)
464
+ prereq = defaultdict(set)
465
+ rel_prereq = rules_2prereq(full_implications)
466
+ for k, pitems in rel_prereq.items():
467
+ prereq[k] |= pitems
468
+ self.prereq = prereq
469
+
470
+ def _to_python(self) -> str:
471
+ """ Generate a string with plain python representation of the instance """
472
+ return '\n'.join(self.print_rules())
473
+
474
+ @classmethod
475
+ def _from_python(cls, data : dict):
476
+ """ Generate an instance from the plain python representation """
477
+ self = cls('')
478
+ for key in ['full_implications', 'beta_triggers', 'prereq']:
479
+ d=defaultdict(set)
480
+ d.update(data[key])
481
+ setattr(self, key, d)
482
+ self.beta_rules = data['beta_rules']
483
+ self.defined_facts = set(data['defined_facts'])
484
+
485
+ return self
486
+
487
+ def _defined_facts_lines(self):
488
+ yield 'defined_facts = ['
489
+ for fact in sorted(self.defined_facts):
490
+ yield f' {fact!r},'
491
+ yield '] # defined_facts'
492
+
493
+ def _full_implications_lines(self):
494
+ yield 'full_implications = dict( ['
495
+ for fact in sorted(self.defined_facts):
496
+ for value in (True, False):
497
+ yield f' # Implications of {fact} = {value}:'
498
+ yield f' (({fact!r}, {value!r}), set( ('
499
+ implications = self.full_implications[(fact, value)]
500
+ for implied in sorted(implications):
501
+ yield f' {implied!r},'
502
+ yield ' ) ),'
503
+ yield ' ),'
504
+ yield ' ] ) # full_implications'
505
+
506
+ def _prereq_lines(self):
507
+ yield 'prereq = {'
508
+ yield ''
509
+ for fact in sorted(self.prereq):
510
+ yield f' # facts that could determine the value of {fact}'
511
+ yield f' {fact!r}: {{'
512
+ for pfact in sorted(self.prereq[fact]):
513
+ yield f' {pfact!r},'
514
+ yield ' },'
515
+ yield ''
516
+ yield '} # prereq'
517
+
518
+ def _beta_rules_lines(self):
519
+ reverse_implications = defaultdict(list)
520
+ for n, (pre, implied) in enumerate(self.beta_rules):
521
+ reverse_implications[implied].append((pre, n))
522
+
523
+ yield '# Note: the order of the beta rules is used in the beta_triggers'
524
+ yield 'beta_rules = ['
525
+ yield ''
526
+ m = 0
527
+ indices = {}
528
+ for implied in sorted(reverse_implications):
529
+ fact, value = implied
530
+ yield f' # Rules implying {fact} = {value}'
531
+ for pre, n in reverse_implications[implied]:
532
+ indices[n] = m
533
+ m += 1
534
+ setstr = ", ".join(map(str, sorted(pre)))
535
+ yield f' ({{{setstr}}},'
536
+ yield f' {implied!r}),'
537
+ yield ''
538
+ yield '] # beta_rules'
539
+
540
+ yield 'beta_triggers = {'
541
+ for query in sorted(self.beta_triggers):
542
+ fact, value = query
543
+ triggers = [indices[n] for n in self.beta_triggers[query]]
544
+ yield f' {query!r}: {triggers!r},'
545
+ yield '} # beta_triggers'
546
+
547
+ def print_rules(self) -> Iterator[str]:
548
+ """ Returns a generator with lines to represent the facts and rules """
549
+ yield from self._defined_facts_lines()
550
+ yield ''
551
+ yield ''
552
+ yield from self._full_implications_lines()
553
+ yield ''
554
+ yield ''
555
+ yield from self._prereq_lines()
556
+ yield ''
557
+ yield ''
558
+ yield from self._beta_rules_lines()
559
+ yield ''
560
+ yield ''
561
+ yield "generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,"
562
+ yield " 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}"
563
+
564
+
565
+ class InconsistentAssumptions(ValueError):
566
+ def __str__(self):
567
+ kb, fact, value = self.args
568
+ return "%s, %s=%s" % (kb, fact, value)
569
+
570
+
571
+ class FactKB(dict):
572
+ """
573
+ A simple propositional knowledge base relying on compiled inference rules.
574
+ """
575
+ def __str__(self):
576
+ return '{\n%s}' % ',\n'.join(
577
+ ["\t%s: %s" % i for i in sorted(self.items())])
578
+
579
+ def __init__(self, rules):
580
+ self.rules = rules
581
+
582
+ def _tell(self, k, v):
583
+ """Add fact k=v to the knowledge base.
584
+
585
+ Returns True if the KB has actually been updated, False otherwise.
586
+ """
587
+ if k in self and self[k] is not None:
588
+ if self[k] == v:
589
+ return False
590
+ else:
591
+ raise InconsistentAssumptions(self, k, v)
592
+ else:
593
+ self[k] = v
594
+ return True
595
+
596
+ # *********************************************
597
+ # * This is the workhorse, so keep it *fast*. *
598
+ # *********************************************
599
+ def deduce_all_facts(self, facts):
600
+ """
601
+ Update the KB with all the implications of a list of facts.
602
+
603
+ Facts can be specified as a dictionary or as a list of (key, value)
604
+ pairs.
605
+ """
606
+ # keep frequently used attributes locally, so we'll avoid extra
607
+ # attribute access overhead
608
+ full_implications = self.rules.full_implications
609
+ beta_triggers = self.rules.beta_triggers
610
+ beta_rules = self.rules.beta_rules
611
+
612
+ if isinstance(facts, dict):
613
+ facts = facts.items()
614
+
615
+ while facts:
616
+ beta_maytrigger = set()
617
+
618
+ # --- alpha chains ---
619
+ for k, v in facts:
620
+ if not self._tell(k, v) or v is None:
621
+ continue
622
+
623
+ # lookup routing tables
624
+ for key, value in full_implications[k, v]:
625
+ self._tell(key, value)
626
+
627
+ beta_maytrigger.update(beta_triggers[k, v])
628
+
629
+ # --- beta chains ---
630
+ facts = []
631
+ for bidx in beta_maytrigger:
632
+ bcond, bimpl = beta_rules[bidx]
633
+ if all(self.get(k) is v for k, v in bcond):
634
+ facts.append(bimpl)
venv/lib/python3.10/site-packages/sympy/core/function.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sympy/core/kind.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module to efficiently partition SymPy objects.
3
+
4
+ This system is introduced because class of SymPy object does not always
5
+ represent the mathematical classification of the entity. For example,
6
+ ``Integral(1, x)`` and ``Integral(Matrix([1,2]), x)`` are both instance
7
+ of ``Integral`` class. However the former is number and the latter is
8
+ matrix.
9
+
10
+ One way to resolve this is defining subclass for each mathematical type,
11
+ such as ``MatAdd`` for the addition between matrices. Basic algebraic
12
+ operation such as addition or multiplication take this approach, but
13
+ defining every class for every mathematical object is not scalable.
14
+
15
+ Therefore, we define the "kind" of the object and let the expression
16
+ infer the kind of itself from its arguments. Function and class can
17
+ filter the arguments by their kind, and behave differently according to
18
+ the type of itself.
19
+
20
+ This module defines basic kinds for core objects. Other kinds such as
21
+ ``ArrayKind`` or ``MatrixKind`` can be found in corresponding modules.
22
+
23
+ .. notes::
24
+ This approach is experimental, and can be replaced or deleted in the future.
25
+ See https://github.com/sympy/sympy/pull/20549.
26
+ """
27
+
28
+ from collections import defaultdict
29
+
30
+ from .cache import cacheit
31
+ from sympy.multipledispatch.dispatcher import (Dispatcher,
32
+ ambiguity_warn, ambiguity_register_error_ignore_dup,
33
+ str_signature, RaiseNotImplementedError)
34
+
35
+
36
+ class KindMeta(type):
37
+ """
38
+ Metaclass for ``Kind``.
39
+
40
+ Assigns empty ``dict`` as class attribute ``_inst`` for every class,
41
+ in order to endow singleton-like behavior.
42
+ """
43
+ def __new__(cls, clsname, bases, dct):
44
+ dct['_inst'] = {}
45
+ return super().__new__(cls, clsname, bases, dct)
46
+
47
+
48
+ class Kind(object, metaclass=KindMeta):
49
+ """
50
+ Base class for kinds.
51
+
52
+ Kind of the object represents the mathematical classification that
53
+ the entity falls into. It is expected that functions and classes
54
+ recognize and filter the argument by its kind.
55
+
56
+ Kind of every object must be carefully selected so that it shows the
57
+ intention of design. Expressions may have different kind according
58
+ to the kind of its arguments. For example, arguments of ``Add``
59
+ must have common kind since addition is group operator, and the
60
+ resulting ``Add()`` has the same kind.
61
+
62
+ For the performance, each kind is as broad as possible and is not
63
+ based on set theory. For example, ``NumberKind`` includes not only
64
+ complex number but expression containing ``S.Infinity`` or ``S.NaN``
65
+ which are not strictly number.
66
+
67
+ Kind may have arguments as parameter. For example, ``MatrixKind()``
68
+ may be constructed with one element which represents the kind of its
69
+ elements.
70
+
71
+ ``Kind`` behaves in singleton-like fashion. Same signature will
72
+ return the same object.
73
+
74
+ """
75
+ def __new__(cls, *args):
76
+ if args in cls._inst:
77
+ inst = cls._inst[args]
78
+ else:
79
+ inst = super().__new__(cls)
80
+ cls._inst[args] = inst
81
+ return inst
82
+
83
+
84
+ class _UndefinedKind(Kind):
85
+ """
86
+ Default kind for all SymPy object. If the kind is not defined for
87
+ the object, or if the object cannot infer the kind from its
88
+ arguments, this will be returned.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy import Expr
94
+ >>> Expr().kind
95
+ UndefinedKind
96
+ """
97
+ def __new__(cls):
98
+ return super().__new__(cls)
99
+
100
+ def __repr__(self):
101
+ return "UndefinedKind"
102
+
103
+ UndefinedKind = _UndefinedKind()
104
+
105
+
106
+ class _NumberKind(Kind):
107
+ """
108
+ Kind for all numeric object.
109
+
110
+ This kind represents every number, including complex numbers,
111
+ infinity and ``S.NaN``. Other objects such as quaternions do not
112
+ have this kind.
113
+
114
+ Most ``Expr`` are initially designed to represent the number, so
115
+ this will be the most common kind in SymPy core. For example
116
+ ``Symbol()``, which represents a scalar, has this kind as long as it
117
+ is commutative.
118
+
119
+ Numbers form a field. Any operation between number-kind objects will
120
+ result this kind as well.
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import S, oo, Symbol
126
+ >>> S.One.kind
127
+ NumberKind
128
+ >>> (-oo).kind
129
+ NumberKind
130
+ >>> S.NaN.kind
131
+ NumberKind
132
+
133
+ Commutative symbol are treated as number.
134
+
135
+ >>> x = Symbol('x')
136
+ >>> x.kind
137
+ NumberKind
138
+ >>> Symbol('y', commutative=False).kind
139
+ UndefinedKind
140
+
141
+ Operation between numbers results number.
142
+
143
+ >>> (x+1).kind
144
+ NumberKind
145
+
146
+ See Also
147
+ ========
148
+
149
+ sympy.core.expr.Expr.is_Number : check if the object is strictly
150
+ subclass of ``Number`` class.
151
+
152
+ sympy.core.expr.Expr.is_number : check if the object is number
153
+ without any free symbol.
154
+
155
+ """
156
+ def __new__(cls):
157
+ return super().__new__(cls)
158
+
159
+ def __repr__(self):
160
+ return "NumberKind"
161
+
162
+ NumberKind = _NumberKind()
163
+
164
+
165
+ class _BooleanKind(Kind):
166
+ """
167
+ Kind for boolean objects.
168
+
169
+ SymPy's ``S.true``, ``S.false``, and built-in ``True`` and ``False``
170
+ have this kind. Boolean number ``1`` and ``0`` are not relevant.
171
+
172
+ Examples
173
+ ========
174
+
175
+ >>> from sympy import S, Q
176
+ >>> S.true.kind
177
+ BooleanKind
178
+ >>> Q.even(3).kind
179
+ BooleanKind
180
+ """
181
+ def __new__(cls):
182
+ return super().__new__(cls)
183
+
184
+ def __repr__(self):
185
+ return "BooleanKind"
186
+
187
+ BooleanKind = _BooleanKind()
188
+
189
+
190
+ class KindDispatcher:
191
+ """
192
+ Dispatcher to select a kind from multiple kinds by binary dispatching.
193
+
194
+ .. notes::
195
+ This approach is experimental, and can be replaced or deleted in
196
+ the future.
197
+
198
+ Explanation
199
+ ===========
200
+
201
+ SymPy object's :obj:`sympy.core.kind.Kind()` vaguely represents the
202
+ algebraic structure where the object belongs to. Therefore, with
203
+ given operation, we can always find a dominating kind among the
204
+ different kinds. This class selects the kind by recursive binary
205
+ dispatching. If the result cannot be determined, ``UndefinedKind``
206
+ is returned.
207
+
208
+ Examples
209
+ ========
210
+
211
+ Multiplication between numbers return number.
212
+
213
+ >>> from sympy import NumberKind, Mul
214
+ >>> Mul._kind_dispatcher(NumberKind, NumberKind)
215
+ NumberKind
216
+
217
+ Multiplication between number and unknown-kind object returns unknown kind.
218
+
219
+ >>> from sympy import UndefinedKind
220
+ >>> Mul._kind_dispatcher(NumberKind, UndefinedKind)
221
+ UndefinedKind
222
+
223
+ Any number and order of kinds is allowed.
224
+
225
+ >>> Mul._kind_dispatcher(UndefinedKind, NumberKind)
226
+ UndefinedKind
227
+ >>> Mul._kind_dispatcher(NumberKind, UndefinedKind, NumberKind)
228
+ UndefinedKind
229
+
230
+ Since matrix forms a vector space over scalar field, multiplication
231
+ between matrix with numeric element and number returns matrix with
232
+ numeric element.
233
+
234
+ >>> from sympy.matrices import MatrixKind
235
+ >>> Mul._kind_dispatcher(MatrixKind(NumberKind), NumberKind)
236
+ MatrixKind(NumberKind)
237
+
238
+ If a matrix with number element and another matrix with unknown-kind
239
+ element are multiplied, we know that the result is matrix but the
240
+ kind of its elements is unknown.
241
+
242
+ >>> Mul._kind_dispatcher(MatrixKind(NumberKind), MatrixKind(UndefinedKind))
243
+ MatrixKind(UndefinedKind)
244
+
245
+ Parameters
246
+ ==========
247
+
248
+ name : str
249
+
250
+ commutative : bool, optional
251
+ If True, binary dispatch will be automatically registered in
252
+ reversed order as well.
253
+
254
+ doc : str, optional
255
+
256
+ """
257
+ def __init__(self, name, commutative=False, doc=None):
258
+ self.name = name
259
+ self.doc = doc
260
+ self.commutative = commutative
261
+ self._dispatcher = Dispatcher(name)
262
+
263
+ def __repr__(self):
264
+ return "<dispatched %s>" % self.name
265
+
266
+ def register(self, *types, **kwargs):
267
+ """
268
+ Register the binary dispatcher for two kind classes.
269
+
270
+ If *self.commutative* is ``True``, signature in reversed order is
271
+ automatically registered as well.
272
+ """
273
+ on_ambiguity = kwargs.pop("on_ambiguity", None)
274
+ if not on_ambiguity:
275
+ if self.commutative:
276
+ on_ambiguity = ambiguity_register_error_ignore_dup
277
+ else:
278
+ on_ambiguity = ambiguity_warn
279
+ kwargs.update(on_ambiguity=on_ambiguity)
280
+
281
+ if not len(types) == 2:
282
+ raise RuntimeError(
283
+ "Only binary dispatch is supported, but got %s types: <%s>." % (
284
+ len(types), str_signature(types)
285
+ ))
286
+
287
+ def _(func):
288
+ self._dispatcher.add(types, func, **kwargs)
289
+ if self.commutative:
290
+ self._dispatcher.add(tuple(reversed(types)), func, **kwargs)
291
+ return _
292
+
293
+ def __call__(self, *args, **kwargs):
294
+ if self.commutative:
295
+ kinds = frozenset(args)
296
+ else:
297
+ kinds = []
298
+ prev = None
299
+ for a in args:
300
+ if prev is not a:
301
+ kinds.append(a)
302
+ prev = a
303
+ return self.dispatch_kinds(kinds, **kwargs)
304
+
305
+ @cacheit
306
+ def dispatch_kinds(self, kinds, **kwargs):
307
+ # Quick exit for the case where all kinds are same
308
+ if len(kinds) == 1:
309
+ result, = kinds
310
+ if not isinstance(result, Kind):
311
+ raise RuntimeError("%s is not a kind." % result)
312
+ return result
313
+
314
+ for i,kind in enumerate(kinds):
315
+ if not isinstance(kind, Kind):
316
+ raise RuntimeError("%s is not a kind." % kind)
317
+
318
+ if i == 0:
319
+ result = kind
320
+ else:
321
+ prev_kind = result
322
+
323
+ t1, t2 = type(prev_kind), type(kind)
324
+ k1, k2 = prev_kind, kind
325
+ func = self._dispatcher.dispatch(t1, t2)
326
+ if func is None and self.commutative:
327
+ # try reversed order
328
+ func = self._dispatcher.dispatch(t2, t1)
329
+ k1, k2 = k2, k1
330
+ if func is None:
331
+ # unregistered kind relation
332
+ result = UndefinedKind
333
+ else:
334
+ result = func(k1, k2)
335
+ if not isinstance(result, Kind):
336
+ raise RuntimeError(
337
+ "Dispatcher for {!r} and {!r} must return a Kind, but got {!r}".format(
338
+ prev_kind, kind, result
339
+ ))
340
+
341
+ return result
342
+
343
+ @property
344
+ def __doc__(self):
345
+ docs = [
346
+ "Kind dispatcher : %s" % self.name,
347
+ "Note that support for this is experimental. See the docs for :class:`KindDispatcher` for details"
348
+ ]
349
+
350
+ if self.doc:
351
+ docs.append(self.doc)
352
+
353
+ s = "Registered kind classes\n"
354
+ s += '=' * len(s)
355
+ docs.append(s)
356
+
357
+ amb_sigs = []
358
+
359
+ typ_sigs = defaultdict(list)
360
+ for sigs in self._dispatcher.ordering[::-1]:
361
+ key = self._dispatcher.funcs[sigs]
362
+ typ_sigs[key].append(sigs)
363
+
364
+ for func, sigs in typ_sigs.items():
365
+
366
+ sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
367
+
368
+ if isinstance(func, RaiseNotImplementedError):
369
+ amb_sigs.append(sigs_str)
370
+ continue
371
+
372
+ s = 'Inputs: %s\n' % sigs_str
373
+ s += '-' * len(s) + '\n'
374
+ if func.__doc__:
375
+ s += func.__doc__.strip()
376
+ else:
377
+ s += func.__name__
378
+ docs.append(s)
379
+
380
+ if amb_sigs:
381
+ s = "Ambiguous kind classes\n"
382
+ s += '=' * len(s)
383
+ docs.append(s)
384
+
385
+ s = '\n'.join(amb_sigs)
386
+ docs.append(s)
387
+
388
+ return '\n\n'.join(docs)
venv/lib/python3.10/site-packages/sympy/core/logic.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Logic expressions handling
2
+
3
+ NOTE
4
+ ----
5
+
6
+ at present this is mainly needed for facts.py, feel free however to improve
7
+ this stuff for general purpose.
8
+ """
9
+
10
+ from __future__ import annotations
11
+ from typing import Optional
12
+
13
+ # Type of a fuzzy bool
14
+ FuzzyBool = Optional[bool]
15
+
16
+
17
+ def _torf(args):
18
+ """Return True if all args are True, False if they
19
+ are all False, else None.
20
+
21
+ >>> from sympy.core.logic import _torf
22
+ >>> _torf((True, True))
23
+ True
24
+ >>> _torf((False, False))
25
+ False
26
+ >>> _torf((True, False))
27
+ """
28
+ sawT = sawF = False
29
+ for a in args:
30
+ if a is True:
31
+ if sawF:
32
+ return
33
+ sawT = True
34
+ elif a is False:
35
+ if sawT:
36
+ return
37
+ sawF = True
38
+ else:
39
+ return
40
+ return sawT
41
+
42
+
43
+ def _fuzzy_group(args, quick_exit=False):
44
+ """Return True if all args are True, None if there is any None else False
45
+ unless ``quick_exit`` is True (then return None as soon as a second False
46
+ is seen.
47
+
48
+ ``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
49
+ conservative in returning a False, waiting to make sure that all
50
+ arguments are True or False and returning None if any arguments are
51
+ None. It also has the capability of permiting only a single False and
52
+ returning None if more than one is seen. For example, the presence of a
53
+ single transcendental amongst rationals would indicate that the group is
54
+ no longer rational; but a second transcendental in the group would make the
55
+ determination impossible.
56
+
57
+
58
+ Examples
59
+ ========
60
+
61
+ >>> from sympy.core.logic import _fuzzy_group
62
+
63
+ By default, multiple Falses mean the group is broken:
64
+
65
+ >>> _fuzzy_group([False, False, True])
66
+ False
67
+
68
+ If multiple Falses mean the group status is unknown then set
69
+ `quick_exit` to True so None can be returned when the 2nd False is seen:
70
+
71
+ >>> _fuzzy_group([False, False, True], quick_exit=True)
72
+
73
+ But if only a single False is seen then the group is known to
74
+ be broken:
75
+
76
+ >>> _fuzzy_group([False, True, True], quick_exit=True)
77
+ False
78
+
79
+ """
80
+ saw_other = False
81
+ for a in args:
82
+ if a is True:
83
+ continue
84
+ if a is None:
85
+ return
86
+ if quick_exit and saw_other:
87
+ return
88
+ saw_other = True
89
+ return not saw_other
90
+
91
+
92
+ def fuzzy_bool(x):
93
+ """Return True, False or None according to x.
94
+
95
+ Whereas bool(x) returns True or False, fuzzy_bool allows
96
+ for the None value and non-false values (which become None), too.
97
+
98
+ Examples
99
+ ========
100
+
101
+ >>> from sympy.core.logic import fuzzy_bool
102
+ >>> from sympy.abc import x
103
+ >>> fuzzy_bool(x), fuzzy_bool(None)
104
+ (None, None)
105
+ >>> bool(x), bool(None)
106
+ (True, False)
107
+
108
+ """
109
+ if x is None:
110
+ return None
111
+ if x in (True, False):
112
+ return bool(x)
113
+
114
+
115
+ def fuzzy_and(args):
116
+ """Return True (all True), False (any False) or None.
117
+
118
+ Examples
119
+ ========
120
+
121
+ >>> from sympy.core.logic import fuzzy_and
122
+ >>> from sympy import Dummy
123
+
124
+ If you had a list of objects to test the commutivity of
125
+ and you want the fuzzy_and logic applied, passing an
126
+ iterator will allow the commutativity to only be computed
127
+ as many times as necessary. With this list, False can be
128
+ returned after analyzing the first symbol:
129
+
130
+ >>> syms = [Dummy(commutative=False), Dummy()]
131
+ >>> fuzzy_and(s.is_commutative for s in syms)
132
+ False
133
+
134
+ That False would require less work than if a list of pre-computed
135
+ items was sent:
136
+
137
+ >>> fuzzy_and([s.is_commutative for s in syms])
138
+ False
139
+ """
140
+
141
+ rv = True
142
+ for ai in args:
143
+ ai = fuzzy_bool(ai)
144
+ if ai is False:
145
+ return False
146
+ if rv: # this will stop updating if a None is ever trapped
147
+ rv = ai
148
+ return rv
149
+
150
+
151
+ def fuzzy_not(v):
152
+ """
153
+ Not in fuzzy logic
154
+
155
+ Return None if `v` is None else `not v`.
156
+
157
+ Examples
158
+ ========
159
+
160
+ >>> from sympy.core.logic import fuzzy_not
161
+ >>> fuzzy_not(True)
162
+ False
163
+ >>> fuzzy_not(None)
164
+ >>> fuzzy_not(False)
165
+ True
166
+
167
+ """
168
+ if v is None:
169
+ return v
170
+ else:
171
+ return not v
172
+
173
+
174
+ def fuzzy_or(args):
175
+ """
176
+ Or in fuzzy logic. Returns True (any True), False (all False), or None
177
+
178
+ See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
179
+ related to the two by the standard De Morgan's law.
180
+
181
+ >>> from sympy.core.logic import fuzzy_or
182
+ >>> fuzzy_or([True, False])
183
+ True
184
+ >>> fuzzy_or([True, None])
185
+ True
186
+ >>> fuzzy_or([False, False])
187
+ False
188
+ >>> print(fuzzy_or([False, None]))
189
+ None
190
+
191
+ """
192
+ rv = False
193
+ for ai in args:
194
+ ai = fuzzy_bool(ai)
195
+ if ai is True:
196
+ return True
197
+ if rv is False: # this will stop updating if a None is ever trapped
198
+ rv = ai
199
+ return rv
200
+
201
+
202
+ def fuzzy_xor(args):
203
+ """Return None if any element of args is not True or False, else
204
+ True (if there are an odd number of True elements), else False."""
205
+ t = f = 0
206
+ for a in args:
207
+ ai = fuzzy_bool(a)
208
+ if ai:
209
+ t += 1
210
+ elif ai is False:
211
+ f += 1
212
+ else:
213
+ return
214
+ return t % 2 == 1
215
+
216
+
217
+ def fuzzy_nand(args):
218
+ """Return False if all args are True, True if they are all False,
219
+ else None."""
220
+ return fuzzy_not(fuzzy_and(args))
221
+
222
+
223
+ class Logic:
224
+ """Logical expression"""
225
+ # {} 'op' -> LogicClass
226
+ op_2class: dict[str, type[Logic]] = {}
227
+
228
+ def __new__(cls, *args):
229
+ obj = object.__new__(cls)
230
+ obj.args = args
231
+ return obj
232
+
233
+ def __getnewargs__(self):
234
+ return self.args
235
+
236
+ def __hash__(self):
237
+ return hash((type(self).__name__,) + tuple(self.args))
238
+
239
+ def __eq__(a, b):
240
+ if not isinstance(b, type(a)):
241
+ return False
242
+ else:
243
+ return a.args == b.args
244
+
245
+ def __ne__(a, b):
246
+ if not isinstance(b, type(a)):
247
+ return True
248
+ else:
249
+ return a.args != b.args
250
+
251
+ def __lt__(self, other):
252
+ if self.__cmp__(other) == -1:
253
+ return True
254
+ return False
255
+
256
+ def __cmp__(self, other):
257
+ if type(self) is not type(other):
258
+ a = str(type(self))
259
+ b = str(type(other))
260
+ else:
261
+ a = self.args
262
+ b = other.args
263
+ return (a > b) - (a < b)
264
+
265
+ def __str__(self):
266
+ return '%s(%s)' % (self.__class__.__name__,
267
+ ', '.join(str(a) for a in self.args))
268
+
269
+ __repr__ = __str__
270
+
271
+ @staticmethod
272
+ def fromstring(text):
273
+ """Logic from string with space around & and | but none after !.
274
+
275
+ e.g.
276
+
277
+ !a & b | c
278
+ """
279
+ lexpr = None # current logical expression
280
+ schedop = None # scheduled operation
281
+ for term in text.split():
282
+ # operation symbol
283
+ if term in '&|':
284
+ if schedop is not None:
285
+ raise ValueError(
286
+ 'double op forbidden: "%s %s"' % (term, schedop))
287
+ if lexpr is None:
288
+ raise ValueError(
289
+ '%s cannot be in the beginning of expression' % term)
290
+ schedop = term
291
+ continue
292
+ if '&' in term or '|' in term:
293
+ raise ValueError('& and | must have space around them')
294
+ if term[0] == '!':
295
+ if len(term) == 1:
296
+ raise ValueError('do not include space after "!"')
297
+ term = Not(term[1:])
298
+
299
+ # already scheduled operation, e.g. '&'
300
+ if schedop:
301
+ lexpr = Logic.op_2class[schedop](lexpr, term)
302
+ schedop = None
303
+ continue
304
+
305
+ # this should be atom
306
+ if lexpr is not None:
307
+ raise ValueError(
308
+ 'missing op between "%s" and "%s"' % (lexpr, term))
309
+
310
+ lexpr = term
311
+
312
+ # let's check that we ended up in correct state
313
+ if schedop is not None:
314
+ raise ValueError('premature end-of-expression in "%s"' % text)
315
+ if lexpr is None:
316
+ raise ValueError('"%s" is empty' % text)
317
+
318
+ # everything looks good now
319
+ return lexpr
320
+
321
+
322
+ class AndOr_Base(Logic):
323
+
324
+ def __new__(cls, *args):
325
+ bargs = []
326
+ for a in args:
327
+ if a == cls.op_x_notx:
328
+ return a
329
+ elif a == (not cls.op_x_notx):
330
+ continue # skip this argument
331
+ bargs.append(a)
332
+
333
+ args = sorted(set(cls.flatten(bargs)), key=hash)
334
+
335
+ for a in args:
336
+ if Not(a) in args:
337
+ return cls.op_x_notx
338
+
339
+ if len(args) == 1:
340
+ return args.pop()
341
+ elif len(args) == 0:
342
+ return not cls.op_x_notx
343
+
344
+ return Logic.__new__(cls, *args)
345
+
346
+ @classmethod
347
+ def flatten(cls, args):
348
+ # quick-n-dirty flattening for And and Or
349
+ args_queue = list(args)
350
+ res = []
351
+
352
+ while True:
353
+ try:
354
+ arg = args_queue.pop(0)
355
+ except IndexError:
356
+ break
357
+ if isinstance(arg, Logic):
358
+ if isinstance(arg, cls):
359
+ args_queue.extend(arg.args)
360
+ continue
361
+ res.append(arg)
362
+
363
+ args = tuple(res)
364
+ return args
365
+
366
+
367
+ class And(AndOr_Base):
368
+ op_x_notx = False
369
+
370
+ def _eval_propagate_not(self):
371
+ # !(a&b&c ...) == !a | !b | !c ...
372
+ return Or(*[Not(a) for a in self.args])
373
+
374
+ # (a|b|...) & c == (a&c) | (b&c) | ...
375
+ def expand(self):
376
+
377
+ # first locate Or
378
+ for i, arg in enumerate(self.args):
379
+ if isinstance(arg, Or):
380
+ arest = self.args[:i] + self.args[i + 1:]
381
+
382
+ orterms = [And(*(arest + (a,))) for a in arg.args]
383
+ for j in range(len(orterms)):
384
+ if isinstance(orterms[j], Logic):
385
+ orterms[j] = orterms[j].expand()
386
+
387
+ res = Or(*orterms)
388
+ return res
389
+
390
+ return self
391
+
392
+
393
+ class Or(AndOr_Base):
394
+ op_x_notx = True
395
+
396
+ def _eval_propagate_not(self):
397
+ # !(a|b|c ...) == !a & !b & !c ...
398
+ return And(*[Not(a) for a in self.args])
399
+
400
+
401
+ class Not(Logic):
402
+
403
+ def __new__(cls, arg):
404
+ if isinstance(arg, str):
405
+ return Logic.__new__(cls, arg)
406
+
407
+ elif isinstance(arg, bool):
408
+ return not arg
409
+ elif isinstance(arg, Not):
410
+ return arg.args[0]
411
+
412
+ elif isinstance(arg, Logic):
413
+ # XXX this is a hack to expand right from the beginning
414
+ arg = arg._eval_propagate_not()
415
+ return arg
416
+
417
+ else:
418
+ raise ValueError('Not: unknown argument %r' % (arg,))
419
+
420
+ @property
421
+ def arg(self):
422
+ return self.args[0]
423
+
424
+
425
+ Logic.op_2class['&'] = And
426
+ Logic.op_2class['|'] = Or
427
+ Logic.op_2class['!'] = Not
venv/lib/python3.10/site-packages/sympy/core/mul.py ADDED
@@ -0,0 +1,2195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+ from collections import defaultdict
3
+ from functools import cmp_to_key, reduce
4
+ from itertools import product
5
+ import operator
6
+
7
+ from .sympify import sympify
8
+ from .basic import Basic
9
+ from .singleton import S
10
+ from .operations import AssocOp, AssocOpDispatcher
11
+ from .cache import cacheit
12
+ from .logic import fuzzy_not, _fuzzy_group
13
+ from .expr import Expr
14
+ from .parameters import global_parameters
15
+ from .kind import KindDispatcher
16
+ from .traversal import bottom_up
17
+
18
+ from sympy.utilities.iterables import sift
19
+
20
+ # internal marker to indicate:
21
+ # "there are still non-commutative objects -- don't forget to process them"
22
+ class NC_Marker:
23
+ is_Order = False
24
+ is_Mul = False
25
+ is_Number = False
26
+ is_Poly = False
27
+
28
+ is_commutative = False
29
+
30
+
31
+ # Key for sorting commutative args in canonical order
32
+ _args_sortkey = cmp_to_key(Basic.compare)
33
+ def _mulsort(args):
34
+ # in-place sorting of args
35
+ args.sort(key=_args_sortkey)
36
+
37
+
38
+ def _unevaluated_Mul(*args):
39
+ """Return a well-formed unevaluated Mul: Numbers are collected and
40
+ put in slot 0, any arguments that are Muls will be flattened, and args
41
+ are sorted. Use this when args have changed but you still want to return
42
+ an unevaluated Mul.
43
+
44
+ Examples
45
+ ========
46
+
47
+ >>> from sympy.core.mul import _unevaluated_Mul as uMul
48
+ >>> from sympy import S, sqrt, Mul
49
+ >>> from sympy.abc import x
50
+ >>> a = uMul(*[S(3.0), x, S(2)])
51
+ >>> a.args[0]
52
+ 6.00000000000000
53
+ >>> a.args[1]
54
+ x
55
+
56
+ Two unevaluated Muls with the same arguments will
57
+ always compare as equal during testing:
58
+
59
+ >>> m = uMul(sqrt(2), sqrt(3))
60
+ >>> m == uMul(sqrt(3), sqrt(2))
61
+ True
62
+ >>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
63
+ >>> m == uMul(u)
64
+ True
65
+ >>> m == Mul(*m.args)
66
+ False
67
+
68
+ """
69
+ args = list(args)
70
+ newargs = []
71
+ ncargs = []
72
+ co = S.One
73
+ while args:
74
+ a = args.pop()
75
+ if a.is_Mul:
76
+ c, nc = a.args_cnc()
77
+ args.extend(c)
78
+ if nc:
79
+ ncargs.append(Mul._from_args(nc))
80
+ elif a.is_Number:
81
+ co *= a
82
+ else:
83
+ newargs.append(a)
84
+ _mulsort(newargs)
85
+ if co is not S.One:
86
+ newargs.insert(0, co)
87
+ if ncargs:
88
+ newargs.append(Mul._from_args(ncargs))
89
+ return Mul._from_args(newargs)
90
+
91
+
92
+ class Mul(Expr, AssocOp):
93
+ """
94
+ Expression representing multiplication operation for algebraic field.
95
+
96
+ .. deprecated:: 1.7
97
+
98
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
99
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
100
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
101
+
102
+ Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
103
+ on most scalar objects in SymPy calls this class.
104
+
105
+ Another use of ``Mul()`` is to represent the structure of abstract
106
+ multiplication so that its arguments can be substituted to return
107
+ different class. Refer to examples section for this.
108
+
109
+ ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
110
+ The evaluation logic includes:
111
+
112
+ 1. Flattening
113
+ ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
114
+
115
+ 2. Identity removing
116
+ ``Mul(x, 1, y)`` -> ``Mul(x, y)``
117
+
118
+ 3. Exponent collecting by ``.as_base_exp()``
119
+ ``Mul(x, x**2)`` -> ``Pow(x, 3)``
120
+
121
+ 4. Term sorting
122
+ ``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
123
+
124
+ Since multiplication can be vector space operation, arguments may
125
+ have the different :obj:`sympy.core.kind.Kind()`. Kind of the
126
+ resulting object is automatically inferred.
127
+
128
+ Examples
129
+ ========
130
+
131
+ >>> from sympy import Mul
132
+ >>> from sympy.abc import x, y
133
+ >>> Mul(x, 1)
134
+ x
135
+ >>> Mul(x, x)
136
+ x**2
137
+
138
+ If ``evaluate=False`` is passed, result is not evaluated.
139
+
140
+ >>> Mul(1, 2, evaluate=False)
141
+ 1*2
142
+ >>> Mul(x, x, evaluate=False)
143
+ x*x
144
+
145
+ ``Mul()`` also represents the general structure of multiplication
146
+ operation.
147
+
148
+ >>> from sympy import MatrixSymbol
149
+ >>> A = MatrixSymbol('A', 2,2)
150
+ >>> expr = Mul(x,y).subs({y:A})
151
+ >>> expr
152
+ x*A
153
+ >>> type(expr)
154
+ <class 'sympy.matrices.expressions.matmul.MatMul'>
155
+
156
+ See Also
157
+ ========
158
+
159
+ MatMul
160
+
161
+ """
162
+ __slots__ = ()
163
+
164
+ args: tTuple[Expr]
165
+
166
+ is_Mul = True
167
+
168
+ _args_type = Expr
169
+ _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
170
+
171
+ @property
172
+ def kind(self):
173
+ arg_kinds = (a.kind for a in self.args)
174
+ return self._kind_dispatcher(*arg_kinds)
175
+
176
+ def could_extract_minus_sign(self):
177
+ if self == (-self):
178
+ return False # e.g. zoo*x == -zoo*x
179
+ c = self.args[0]
180
+ return c.is_Number and c.is_extended_negative
181
+
182
+ def __neg__(self):
183
+ c, args = self.as_coeff_mul()
184
+ if args[0] is not S.ComplexInfinity:
185
+ c = -c
186
+ if c is not S.One:
187
+ if args[0].is_Number:
188
+ args = list(args)
189
+ if c is S.NegativeOne:
190
+ args[0] = -args[0]
191
+ else:
192
+ args[0] *= c
193
+ else:
194
+ args = (c,) + args
195
+ return self._from_args(args, self.is_commutative)
196
+
197
+ @classmethod
198
+ def flatten(cls, seq):
199
+ """Return commutative, noncommutative and order arguments by
200
+ combining related terms.
201
+
202
+ Notes
203
+ =====
204
+ * In an expression like ``a*b*c``, Python process this through SymPy
205
+ as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
206
+
207
+ - Sometimes terms are not combined as one would like:
208
+ {c.f. https://github.com/sympy/sympy/issues/4596}
209
+
210
+ >>> from sympy import Mul, sqrt
211
+ >>> from sympy.abc import x, y, z
212
+ >>> 2*(x + 1) # this is the 2-arg Mul behavior
213
+ 2*x + 2
214
+ >>> y*(x + 1)*2
215
+ 2*y*(x + 1)
216
+ >>> 2*(x + 1)*y # 2-arg result will be obtained first
217
+ y*(2*x + 2)
218
+ >>> Mul(2, x + 1, y) # all 3 args simultaneously processed
219
+ 2*y*(x + 1)
220
+ >>> 2*((x + 1)*y) # parentheses can control this behavior
221
+ 2*y*(x + 1)
222
+
223
+ Powers with compound bases may not find a single base to
224
+ combine with unless all arguments are processed at once.
225
+ Post-processing may be necessary in such cases.
226
+ {c.f. https://github.com/sympy/sympy/issues/5728}
227
+
228
+ >>> a = sqrt(x*sqrt(y))
229
+ >>> a**3
230
+ (x*sqrt(y))**(3/2)
231
+ >>> Mul(a,a,a)
232
+ (x*sqrt(y))**(3/2)
233
+ >>> a*a*a
234
+ x*sqrt(y)*sqrt(x*sqrt(y))
235
+ >>> _.subs(a.base, z).subs(z, a.base)
236
+ (x*sqrt(y))**(3/2)
237
+
238
+ - If more than two terms are being multiplied then all the
239
+ previous terms will be re-processed for each new argument.
240
+ So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
241
+ expression, then ``a*b*c`` (or building up the product
242
+ with ``*=``) will process all the arguments of ``a`` and
243
+ ``b`` twice: once when ``a*b`` is computed and again when
244
+ ``c`` is multiplied.
245
+
246
+ Using ``Mul(a, b, c)`` will process all arguments once.
247
+
248
+ * The results of Mul are cached according to arguments, so flatten
249
+ will only be called once for ``Mul(a, b, c)``. If you can
250
+ structure a calculation so the arguments are most likely to be
251
+ repeats then this can save time in computing the answer. For
252
+ example, say you had a Mul, M, that you wished to divide by ``d[i]``
253
+ and multiply by ``n[i]`` and you suspect there are many repeats
254
+ in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
255
+ than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
256
+ product, ``M*n[i]`` will be returned without flattening -- the
257
+ cached value will be returned. If you divide by the ``d[i]``
258
+ first (and those are more unique than the ``n[i]``) then that will
259
+ create a new Mul, ``M/d[i]`` the args of which will be traversed
260
+ again when it is multiplied by ``n[i]``.
261
+
262
+ {c.f. https://github.com/sympy/sympy/issues/5706}
263
+
264
+ This consideration is moot if the cache is turned off.
265
+
266
+ NB
267
+ --
268
+ The validity of the above notes depends on the implementation
269
+ details of Mul and flatten which may change at any time. Therefore,
270
+ you should only consider them when your code is highly performance
271
+ sensitive.
272
+
273
+ Removal of 1 from the sequence is already handled by AssocOp.__new__.
274
+ """
275
+
276
+ from sympy.calculus.accumulationbounds import AccumBounds
277
+ from sympy.matrices.expressions import MatrixExpr
278
+ rv = None
279
+ if len(seq) == 2:
280
+ a, b = seq
281
+ if b.is_Rational:
282
+ a, b = b, a
283
+ seq = [a, b]
284
+ assert a is not S.One
285
+ if not a.is_zero and a.is_Rational:
286
+ r, b = b.as_coeff_Mul()
287
+ if b.is_Add:
288
+ if r is not S.One: # 2-arg hack
289
+ # leave the Mul as a Mul?
290
+ ar = a*r
291
+ if ar is S.One:
292
+ arb = b
293
+ else:
294
+ arb = cls(a*r, b, evaluate=False)
295
+ rv = [arb], [], None
296
+ elif global_parameters.distribute and b.is_commutative:
297
+ newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
298
+ rv = [newb], [], None
299
+ if rv:
300
+ return rv
301
+
302
+ # apply associativity, separate commutative part of seq
303
+ c_part = [] # out: commutative factors
304
+ nc_part = [] # out: non-commutative factors
305
+
306
+ nc_seq = []
307
+
308
+ coeff = S.One # standalone term
309
+ # e.g. 3 * ...
310
+
311
+ c_powers = [] # (base,exp) n
312
+ # e.g. (x,n) for x
313
+
314
+ num_exp = [] # (num-base, exp) y
315
+ # e.g. (3, y) for ... * 3 * ...
316
+
317
+ neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
318
+
319
+ pnum_rat = {} # (num-base, Rat-exp) 1/2
320
+ # e.g. (3, 1/2) for ... * 3 * ...
321
+
322
+ order_symbols = None
323
+
324
+ # --- PART 1 ---
325
+ #
326
+ # "collect powers and coeff":
327
+ #
328
+ # o coeff
329
+ # o c_powers
330
+ # o num_exp
331
+ # o neg1e
332
+ # o pnum_rat
333
+ #
334
+ # NOTE: this is optimized for all-objects-are-commutative case
335
+ for o in seq:
336
+ # O(x)
337
+ if o.is_Order:
338
+ o, order_symbols = o.as_expr_variables(order_symbols)
339
+
340
+ # Mul([...])
341
+ if o.is_Mul:
342
+ if o.is_commutative:
343
+ seq.extend(o.args) # XXX zerocopy?
344
+
345
+ else:
346
+ # NCMul can have commutative parts as well
347
+ for q in o.args:
348
+ if q.is_commutative:
349
+ seq.append(q)
350
+ else:
351
+ nc_seq.append(q)
352
+
353
+ # append non-commutative marker, so we don't forget to
354
+ # process scheduled non-commutative objects
355
+ seq.append(NC_Marker)
356
+
357
+ continue
358
+
359
+ # 3
360
+ elif o.is_Number:
361
+ if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
362
+ # we know for sure the result will be nan
363
+ return [S.NaN], [], None
364
+ elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
365
+ coeff *= o
366
+ if coeff is S.NaN:
367
+ # we know for sure the result will be nan
368
+ return [S.NaN], [], None
369
+ continue
370
+
371
+ elif isinstance(o, AccumBounds):
372
+ coeff = o.__mul__(coeff)
373
+ continue
374
+
375
+ elif o is S.ComplexInfinity:
376
+ if not coeff:
377
+ # 0 * zoo = NaN
378
+ return [S.NaN], [], None
379
+ coeff = S.ComplexInfinity
380
+ continue
381
+
382
+ elif o is S.ImaginaryUnit:
383
+ neg1e += S.Half
384
+ continue
385
+
386
+ elif o.is_commutative:
387
+ # e
388
+ # o = b
389
+ b, e = o.as_base_exp()
390
+
391
+ # y
392
+ # 3
393
+ if o.is_Pow:
394
+ if b.is_Number:
395
+
396
+ # get all the factors with numeric base so they can be
397
+ # combined below, but don't combine negatives unless
398
+ # the exponent is an integer
399
+ if e.is_Rational:
400
+ if e.is_Integer:
401
+ coeff *= Pow(b, e) # it is an unevaluated power
402
+ continue
403
+ elif e.is_negative: # also a sign of an unevaluated power
404
+ seq.append(Pow(b, e))
405
+ continue
406
+ elif b.is_negative:
407
+ neg1e += e
408
+ b = -b
409
+ if b is not S.One:
410
+ pnum_rat.setdefault(b, []).append(e)
411
+ continue
412
+ elif b.is_positive or e.is_integer:
413
+ num_exp.append((b, e))
414
+ continue
415
+
416
+ c_powers.append((b, e))
417
+
418
+ # NON-COMMUTATIVE
419
+ # TODO: Make non-commutative exponents not combine automatically
420
+ else:
421
+ if o is not NC_Marker:
422
+ nc_seq.append(o)
423
+
424
+ # process nc_seq (if any)
425
+ while nc_seq:
426
+ o = nc_seq.pop(0)
427
+ if not nc_part:
428
+ nc_part.append(o)
429
+ continue
430
+
431
+ # b c b+c
432
+ # try to combine last terms: a * a -> a
433
+ o1 = nc_part.pop()
434
+ b1, e1 = o1.as_base_exp()
435
+ b2, e2 = o.as_base_exp()
436
+ new_exp = e1 + e2
437
+ # Only allow powers to combine if the new exponent is
438
+ # not an Add. This allow things like a**2*b**3 == a**5
439
+ # if a.is_commutative == False, but prohibits
440
+ # a**x*a**y and x**a*x**b from combining (x,y commute).
441
+ if b1 == b2 and (not new_exp.is_Add):
442
+ o12 = b1 ** new_exp
443
+
444
+ # now o12 could be a commutative object
445
+ if o12.is_commutative:
446
+ seq.append(o12)
447
+ continue
448
+ else:
449
+ nc_seq.insert(0, o12)
450
+
451
+ else:
452
+ nc_part.extend([o1, o])
453
+
454
+ # We do want a combined exponent if it would not be an Add, such as
455
+ # y 2y 3y
456
+ # x * x -> x
457
+ # We determine if two exponents have the same term by using
458
+ # as_coeff_Mul.
459
+ #
460
+ # Unfortunately, this isn't smart enough to consider combining into
461
+ # exponents that might already be adds, so things like:
462
+ # z - y y
463
+ # x * x will be left alone. This is because checking every possible
464
+ # combination can slow things down.
465
+
466
+ # gather exponents of common bases...
467
+ def _gather(c_powers):
468
+ common_b = {} # b:e
469
+ for b, e in c_powers:
470
+ co = e.as_coeff_Mul()
471
+ common_b.setdefault(b, {}).setdefault(
472
+ co[1], []).append(co[0])
473
+ for b, d in common_b.items():
474
+ for di, li in d.items():
475
+ d[di] = Add(*li)
476
+ new_c_powers = []
477
+ for b, e in common_b.items():
478
+ new_c_powers.extend([(b, c*t) for t, c in e.items()])
479
+ return new_c_powers
480
+
481
+ # in c_powers
482
+ c_powers = _gather(c_powers)
483
+
484
+ # and in num_exp
485
+ num_exp = _gather(num_exp)
486
+
487
+ # --- PART 2 ---
488
+ #
489
+ # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
490
+ # o combine collected powers (2**x * 3**x -> 6**x)
491
+ # with numeric base
492
+
493
+ # ................................
494
+ # now we have:
495
+ # - coeff:
496
+ # - c_powers: (b, e)
497
+ # - num_exp: (2, e)
498
+ # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
499
+
500
+ # 0 1
501
+ # x -> 1 x -> x
502
+
503
+ # this should only need to run twice; if it fails because
504
+ # it needs to be run more times, perhaps this should be
505
+ # changed to a "while True" loop -- the only reason it
506
+ # isn't such now is to allow a less-than-perfect result to
507
+ # be obtained rather than raising an error or entering an
508
+ # infinite loop
509
+ for i in range(2):
510
+ new_c_powers = []
511
+ changed = False
512
+ for b, e in c_powers:
513
+ if e.is_zero:
514
+ # canceling out infinities yields NaN
515
+ if (b.is_Add or b.is_Mul) and any(infty in b.args
516
+ for infty in (S.ComplexInfinity, S.Infinity,
517
+ S.NegativeInfinity)):
518
+ return [S.NaN], [], None
519
+ continue
520
+ if e is S.One:
521
+ if b.is_Number:
522
+ coeff *= b
523
+ continue
524
+ p = b
525
+ if e is not S.One:
526
+ p = Pow(b, e)
527
+ # check to make sure that the base doesn't change
528
+ # after exponentiation; to allow for unevaluated
529
+ # Pow, we only do so if b is not already a Pow
530
+ if p.is_Pow and not b.is_Pow:
531
+ bi = b
532
+ b, e = p.as_base_exp()
533
+ if b != bi:
534
+ changed = True
535
+ c_part.append(p)
536
+ new_c_powers.append((b, e))
537
+ # there might have been a change, but unless the base
538
+ # matches some other base, there is nothing to do
539
+ if changed and len({
540
+ b for b, e in new_c_powers}) != len(new_c_powers):
541
+ # start over again
542
+ c_part = []
543
+ c_powers = _gather(new_c_powers)
544
+ else:
545
+ break
546
+
547
+ # x x x
548
+ # 2 * 3 -> 6
549
+ inv_exp_dict = {} # exp:Mul(num-bases) x x
550
+ # e.g. x:6 for ... * 2 * 3 * ...
551
+ for b, e in num_exp:
552
+ inv_exp_dict.setdefault(e, []).append(b)
553
+ for e, b in inv_exp_dict.items():
554
+ inv_exp_dict[e] = cls(*b)
555
+ c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
556
+
557
+ # b, e -> e' = sum(e), b
558
+ # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
559
+ comb_e = {}
560
+ for b, e in pnum_rat.items():
561
+ comb_e.setdefault(Add(*e), []).append(b)
562
+ del pnum_rat
563
+ # process them, reducing exponents to values less than 1
564
+ # and updating coeff if necessary else adding them to
565
+ # num_rat for further processing
566
+ num_rat = []
567
+ for e, b in comb_e.items():
568
+ b = cls(*b)
569
+ if e.q == 1:
570
+ coeff *= Pow(b, e)
571
+ continue
572
+ if e.p > e.q:
573
+ e_i, ep = divmod(e.p, e.q)
574
+ coeff *= Pow(b, e_i)
575
+ e = Rational(ep, e.q)
576
+ num_rat.append((b, e))
577
+ del comb_e
578
+
579
+ # extract gcd of bases in num_rat
580
+ # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
581
+ pnew = defaultdict(list)
582
+ i = 0 # steps through num_rat which may grow
583
+ while i < len(num_rat):
584
+ bi, ei = num_rat[i]
585
+ grow = []
586
+ for j in range(i + 1, len(num_rat)):
587
+ bj, ej = num_rat[j]
588
+ g = bi.gcd(bj)
589
+ if g is not S.One:
590
+ # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
591
+ # this might have a gcd with something else
592
+ e = ei + ej
593
+ if e.q == 1:
594
+ coeff *= Pow(g, e)
595
+ else:
596
+ if e.p > e.q:
597
+ e_i, ep = divmod(e.p, e.q) # change e in place
598
+ coeff *= Pow(g, e_i)
599
+ e = Rational(ep, e.q)
600
+ grow.append((g, e))
601
+ # update the jth item
602
+ num_rat[j] = (bj/g, ej)
603
+ # update bi that we are checking with
604
+ bi = bi/g
605
+ if bi is S.One:
606
+ break
607
+ if bi is not S.One:
608
+ obj = Pow(bi, ei)
609
+ if obj.is_Number:
610
+ coeff *= obj
611
+ else:
612
+ # changes like sqrt(12) -> 2*sqrt(3)
613
+ for obj in Mul.make_args(obj):
614
+ if obj.is_Number:
615
+ coeff *= obj
616
+ else:
617
+ assert obj.is_Pow
618
+ bi, ei = obj.args
619
+ pnew[ei].append(bi)
620
+
621
+ num_rat.extend(grow)
622
+ i += 1
623
+
624
+ # combine bases of the new powers
625
+ for e, b in pnew.items():
626
+ pnew[e] = cls(*b)
627
+
628
+ # handle -1 and I
629
+ if neg1e:
630
+ # treat I as (-1)**(1/2) and compute -1's total exponent
631
+ p, q = neg1e.as_numer_denom()
632
+ # if the integer part is odd, extract -1
633
+ n, p = divmod(p, q)
634
+ if n % 2:
635
+ coeff = -coeff
636
+ # if it's a multiple of 1/2 extract I
637
+ if q == 2:
638
+ c_part.append(S.ImaginaryUnit)
639
+ elif p:
640
+ # see if there is any positive base this power of
641
+ # -1 can join
642
+ neg1e = Rational(p, q)
643
+ for e, b in pnew.items():
644
+ if e == neg1e and b.is_positive:
645
+ pnew[e] = -b
646
+ break
647
+ else:
648
+ # keep it separate; we've already evaluated it as
649
+ # much as possible so evaluate=False
650
+ c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
651
+
652
+ # add all the pnew powers
653
+ c_part.extend([Pow(b, e) for e, b in pnew.items()])
654
+
655
+ # oo, -oo
656
+ if coeff in (S.Infinity, S.NegativeInfinity):
657
+ def _handle_for_oo(c_part, coeff_sign):
658
+ new_c_part = []
659
+ for t in c_part:
660
+ if t.is_extended_positive:
661
+ continue
662
+ if t.is_extended_negative:
663
+ coeff_sign *= -1
664
+ continue
665
+ new_c_part.append(t)
666
+ return new_c_part, coeff_sign
667
+ c_part, coeff_sign = _handle_for_oo(c_part, 1)
668
+ nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
669
+ coeff *= coeff_sign
670
+
671
+ # zoo
672
+ if coeff is S.ComplexInfinity:
673
+ # zoo might be
674
+ # infinite_real + bounded_im
675
+ # bounded_real + infinite_im
676
+ # infinite_real + infinite_im
677
+ # and non-zero real or imaginary will not change that status.
678
+ c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
679
+ c.is_extended_real is not None)]
680
+ nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
681
+ c.is_extended_real is not None)]
682
+
683
+ # 0
684
+ elif coeff.is_zero:
685
+ # we know for sure the result will be 0 except the multiplicand
686
+ # is infinity or a matrix
687
+ if any(isinstance(c, MatrixExpr) for c in nc_part):
688
+ return [coeff], nc_part, order_symbols
689
+ if any(c.is_finite == False for c in c_part):
690
+ return [S.NaN], [], order_symbols
691
+ return [coeff], [], order_symbols
692
+
693
+ # check for straggling Numbers that were produced
694
+ _new = []
695
+ for i in c_part:
696
+ if i.is_Number:
697
+ coeff *= i
698
+ else:
699
+ _new.append(i)
700
+ c_part = _new
701
+
702
+ # order commutative part canonically
703
+ _mulsort(c_part)
704
+
705
+ # current code expects coeff to be always in slot-0
706
+ if coeff is not S.One:
707
+ c_part.insert(0, coeff)
708
+
709
+ # we are done
710
+ if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
711
+ c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
712
+ # 2*(1+a) -> 2 + 2 * a
713
+ coeff = c_part[0]
714
+ c_part = [Add(*[coeff*f for f in c_part[1].args])]
715
+
716
+ return c_part, nc_part, order_symbols
717
+
718
+ def _eval_power(self, e):
719
+
720
+ # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
721
+ cargs, nc = self.args_cnc(split_1=False)
722
+
723
+ if e.is_Integer:
724
+ return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
725
+ Pow(Mul._from_args(nc), e, evaluate=False)
726
+ if e.is_Rational and e.q == 2:
727
+ if self.is_imaginary:
728
+ a = self.as_real_imag()[1]
729
+ if a.is_Rational:
730
+ from .power import integer_nthroot
731
+ n, d = abs(a/2).as_numer_denom()
732
+ n, t = integer_nthroot(n, 2)
733
+ if t:
734
+ d, t = integer_nthroot(d, 2)
735
+ if t:
736
+ from sympy.functions.elementary.complexes import sign
737
+ r = sympify(n)/d
738
+ return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
739
+
740
+ p = Pow(self, e, evaluate=False)
741
+
742
+ if e.is_Rational or e.is_Float:
743
+ return p._eval_expand_power_base()
744
+
745
+ return p
746
+
747
+ @classmethod
748
+ def class_key(cls):
749
+ return 3, 0, cls.__name__
750
+
751
+ def _eval_evalf(self, prec):
752
+ c, m = self.as_coeff_Mul()
753
+ if c is S.NegativeOne:
754
+ if m.is_Mul:
755
+ rv = -AssocOp._eval_evalf(m, prec)
756
+ else:
757
+ mnew = m._eval_evalf(prec)
758
+ if mnew is not None:
759
+ m = mnew
760
+ rv = -m
761
+ else:
762
+ rv = AssocOp._eval_evalf(self, prec)
763
+ if rv.is_number:
764
+ return rv.expand()
765
+ return rv
766
+
767
+ @property
768
+ def _mpc_(self):
769
+ """
770
+ Convert self to an mpmath mpc if possible
771
+ """
772
+ from .numbers import Float
773
+ im_part, imag_unit = self.as_coeff_Mul()
774
+ if imag_unit is not S.ImaginaryUnit:
775
+ # ValueError may seem more reasonable but since it's a @property,
776
+ # we need to use AttributeError to keep from confusing things like
777
+ # hasattr.
778
+ raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
779
+
780
+ return (Float(0)._mpf_, Float(im_part)._mpf_)
781
+
782
+ @cacheit
783
+ def as_two_terms(self):
784
+ """Return head and tail of self.
785
+
786
+ This is the most efficient way to get the head and tail of an
787
+ expression.
788
+
789
+ - if you want only the head, use self.args[0];
790
+ - if you want to process the arguments of the tail then use
791
+ self.as_coef_mul() which gives the head and a tuple containing
792
+ the arguments of the tail when treated as a Mul.
793
+ - if you want the coefficient when self is treated as an Add
794
+ then use self.as_coeff_add()[0]
795
+
796
+ Examples
797
+ ========
798
+
799
+ >>> from sympy.abc import x, y
800
+ >>> (3*x*y).as_two_terms()
801
+ (3, x*y)
802
+ """
803
+ args = self.args
804
+
805
+ if len(args) == 1:
806
+ return S.One, self
807
+ elif len(args) == 2:
808
+ return args
809
+
810
+ else:
811
+ return args[0], self._new_rawargs(*args[1:])
812
+
813
+ @cacheit
814
+ def as_coeff_mul(self, *deps, rational=True, **kwargs):
815
+ if deps:
816
+ l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
817
+ return self._new_rawargs(*l2), tuple(l1)
818
+ args = self.args
819
+ if args[0].is_Number:
820
+ if not rational or args[0].is_Rational:
821
+ return args[0], args[1:]
822
+ elif args[0].is_extended_negative:
823
+ return S.NegativeOne, (-args[0],) + args[1:]
824
+ return S.One, args
825
+
826
+ def as_coeff_Mul(self, rational=False):
827
+ """
828
+ Efficiently extract the coefficient of a product.
829
+ """
830
+ coeff, args = self.args[0], self.args[1:]
831
+
832
+ if coeff.is_Number:
833
+ if not rational or coeff.is_Rational:
834
+ if len(args) == 1:
835
+ return coeff, args[0]
836
+ else:
837
+ return coeff, self._new_rawargs(*args)
838
+ elif coeff.is_extended_negative:
839
+ return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
840
+ return S.One, self
841
+
842
+ def as_real_imag(self, deep=True, **hints):
843
+ from sympy.functions.elementary.complexes import Abs, im, re
844
+ other = []
845
+ coeffr = []
846
+ coeffi = []
847
+ addterms = S.One
848
+ for a in self.args:
849
+ r, i = a.as_real_imag()
850
+ if i.is_zero:
851
+ coeffr.append(r)
852
+ elif r.is_zero:
853
+ coeffi.append(i*S.ImaginaryUnit)
854
+ elif a.is_commutative:
855
+ aconj = a.conjugate() if other else None
856
+ # search for complex conjugate pairs:
857
+ for i, x in enumerate(other):
858
+ if x == aconj:
859
+ coeffr.append(Abs(x)**2)
860
+ del other[i]
861
+ break
862
+ else:
863
+ if a.is_Add:
864
+ addterms *= a
865
+ else:
866
+ other.append(a)
867
+ else:
868
+ other.append(a)
869
+ m = self.func(*other)
870
+ if hints.get('ignore') == m:
871
+ return
872
+ if len(coeffi) % 2:
873
+ imco = im(coeffi.pop(0))
874
+ # all other pairs make a real factor; they will be
875
+ # put into reco below
876
+ else:
877
+ imco = S.Zero
878
+ reco = self.func(*(coeffr + coeffi))
879
+ r, i = (reco*re(m), reco*im(m))
880
+ if addterms == 1:
881
+ if m == 1:
882
+ if imco.is_zero:
883
+ return (reco, S.Zero)
884
+ else:
885
+ return (S.Zero, reco*imco)
886
+ if imco is S.Zero:
887
+ return (r, i)
888
+ return (-imco*i, imco*r)
889
+ from .function import expand_mul
890
+ addre, addim = expand_mul(addterms, deep=False).as_real_imag()
891
+ if imco is S.Zero:
892
+ return (r*addre - i*addim, i*addre + r*addim)
893
+ else:
894
+ r, i = -imco*i, imco*r
895
+ return (r*addre - i*addim, r*addim + i*addre)
896
+
897
+ @staticmethod
898
+ def _expandsums(sums):
899
+ """
900
+ Helper function for _eval_expand_mul.
901
+
902
+ sums must be a list of instances of Basic.
903
+ """
904
+
905
+ L = len(sums)
906
+ if L == 1:
907
+ return sums[0].args
908
+ terms = []
909
+ left = Mul._expandsums(sums[:L//2])
910
+ right = Mul._expandsums(sums[L//2:])
911
+
912
+ terms = [Mul(a, b) for a in left for b in right]
913
+ added = Add(*terms)
914
+ return Add.make_args(added) # it may have collapsed down to one term
915
+
916
+ def _eval_expand_mul(self, **hints):
917
+ from sympy.simplify.radsimp import fraction
918
+
919
+ # Handle things like 1/(x*(x + 1)), which are automatically converted
920
+ # to 1/x*1/(x + 1)
921
+ expr = self
922
+ n, d = fraction(expr)
923
+ if d.is_Mul:
924
+ n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
925
+ for i in (n, d)]
926
+ expr = n/d
927
+ if not expr.is_Mul:
928
+ return expr
929
+
930
+ plain, sums, rewrite = [], [], False
931
+ for factor in expr.args:
932
+ if factor.is_Add:
933
+ sums.append(factor)
934
+ rewrite = True
935
+ else:
936
+ if factor.is_commutative:
937
+ plain.append(factor)
938
+ else:
939
+ sums.append(Basic(factor)) # Wrapper
940
+
941
+ if not rewrite:
942
+ return expr
943
+ else:
944
+ plain = self.func(*plain)
945
+ if sums:
946
+ deep = hints.get("deep", False)
947
+ terms = self.func._expandsums(sums)
948
+ args = []
949
+ for term in terms:
950
+ t = self.func(plain, term)
951
+ if t.is_Mul and any(a.is_Add for a in t.args) and deep:
952
+ t = t._eval_expand_mul()
953
+ args.append(t)
954
+ return Add(*args)
955
+ else:
956
+ return plain
957
+
958
+ @cacheit
959
+ def _eval_derivative(self, s):
960
+ args = list(self.args)
961
+ terms = []
962
+ for i in range(len(args)):
963
+ d = args[i].diff(s)
964
+ if d:
965
+ # Note: reduce is used in step of Mul as Mul is unable to
966
+ # handle subtypes and operation priority:
967
+ terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
968
+ return Add.fromiter(terms)
969
+
970
+ @cacheit
971
+ def _eval_derivative_n_times(self, s, n):
972
+ from .function import AppliedUndef
973
+ from .symbol import Symbol, symbols, Dummy
974
+ if not isinstance(s, (AppliedUndef, Symbol)):
975
+ # other types of s may not be well behaved, e.g.
976
+ # (cos(x)*sin(y)).diff([[x, y, z]])
977
+ return super()._eval_derivative_n_times(s, n)
978
+ from .numbers import Integer
979
+ args = self.args
980
+ m = len(args)
981
+ if isinstance(n, (int, Integer)):
982
+ # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
983
+ terms = []
984
+ from sympy.ntheory.multinomial import multinomial_coefficients_iterator
985
+ for kvals, c in multinomial_coefficients_iterator(m, n):
986
+ p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
987
+ terms.append(c * p)
988
+ return Add(*terms)
989
+ from sympy.concrete.summations import Sum
990
+ from sympy.functions.combinatorial.factorials import factorial
991
+ from sympy.functions.elementary.miscellaneous import Max
992
+ kvals = symbols("k1:%i" % m, cls=Dummy)
993
+ klast = n - sum(kvals)
994
+ nfact = factorial(n)
995
+ e, l = (# better to use the multinomial?
996
+ nfact/prod(map(factorial, kvals))/factorial(klast)*\
997
+ Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
998
+ args[-1].diff((s, Max(0, klast))),
999
+ [(k, 0, n) for k in kvals])
1000
+ return Sum(e, *l)
1001
+
1002
+ def _eval_difference_delta(self, n, step):
1003
+ from sympy.series.limitseq import difference_delta as dd
1004
+ arg0 = self.args[0]
1005
+ rest = Mul(*self.args[1:])
1006
+ return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
1007
+ rest)
1008
+
1009
+ def _matches_simple(self, expr, repl_dict):
1010
+ # handle (w*3).matches('x*5') -> {w: x*5/3}
1011
+ coeff, terms = self.as_coeff_Mul()
1012
+ terms = Mul.make_args(terms)
1013
+ if len(terms) == 1:
1014
+ newexpr = self.__class__._combine_inverse(expr, coeff)
1015
+ return terms[0].matches(newexpr, repl_dict)
1016
+ return
1017
+
1018
+ def matches(self, expr, repl_dict=None, old=False):
1019
+ expr = sympify(expr)
1020
+ if self.is_commutative and expr.is_commutative:
1021
+ return self._matches_commutative(expr, repl_dict, old)
1022
+ elif self.is_commutative is not expr.is_commutative:
1023
+ return None
1024
+
1025
+ # Proceed only if both both expressions are non-commutative
1026
+ c1, nc1 = self.args_cnc()
1027
+ c2, nc2 = expr.args_cnc()
1028
+ c1, c2 = [c or [1] for c in [c1, c2]]
1029
+
1030
+ # TODO: Should these be self.func?
1031
+ comm_mul_self = Mul(*c1)
1032
+ comm_mul_expr = Mul(*c2)
1033
+
1034
+ repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
1035
+
1036
+ # If the commutative arguments didn't match and aren't equal, then
1037
+ # then the expression as a whole doesn't match
1038
+ if not repl_dict and c1 != c2:
1039
+ return None
1040
+
1041
+ # Now match the non-commutative arguments, expanding powers to
1042
+ # multiplications
1043
+ nc1 = Mul._matches_expand_pows(nc1)
1044
+ nc2 = Mul._matches_expand_pows(nc2)
1045
+
1046
+ repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
1047
+
1048
+ return repl_dict or None
1049
+
1050
+ @staticmethod
1051
+ def _matches_expand_pows(arg_list):
1052
+ new_args = []
1053
+ for arg in arg_list:
1054
+ if arg.is_Pow and arg.exp > 0:
1055
+ new_args.extend([arg.base] * arg.exp)
1056
+ else:
1057
+ new_args.append(arg)
1058
+ return new_args
1059
+
1060
+ @staticmethod
1061
+ def _matches_noncomm(nodes, targets, repl_dict=None):
1062
+ """Non-commutative multiplication matcher.
1063
+
1064
+ `nodes` is a list of symbols within the matcher multiplication
1065
+ expression, while `targets` is a list of arguments in the
1066
+ multiplication expression being matched against.
1067
+ """
1068
+ if repl_dict is None:
1069
+ repl_dict = {}
1070
+ else:
1071
+ repl_dict = repl_dict.copy()
1072
+
1073
+ # List of possible future states to be considered
1074
+ agenda = []
1075
+ # The current matching state, storing index in nodes and targets
1076
+ state = (0, 0)
1077
+ node_ind, target_ind = state
1078
+ # Mapping between wildcard indices and the index ranges they match
1079
+ wildcard_dict = {}
1080
+
1081
+ while target_ind < len(targets) and node_ind < len(nodes):
1082
+ node = nodes[node_ind]
1083
+
1084
+ if node.is_Wild:
1085
+ Mul._matches_add_wildcard(wildcard_dict, state)
1086
+
1087
+ states_matches = Mul._matches_new_states(wildcard_dict, state,
1088
+ nodes, targets)
1089
+ if states_matches:
1090
+ new_states, new_matches = states_matches
1091
+ agenda.extend(new_states)
1092
+ if new_matches:
1093
+ for match in new_matches:
1094
+ repl_dict[match] = new_matches[match]
1095
+ if not agenda:
1096
+ return None
1097
+ else:
1098
+ state = agenda.pop()
1099
+ node_ind, target_ind = state
1100
+
1101
+ return repl_dict
1102
+
1103
+ @staticmethod
1104
+ def _matches_add_wildcard(dictionary, state):
1105
+ node_ind, target_ind = state
1106
+ if node_ind in dictionary:
1107
+ begin, end = dictionary[node_ind]
1108
+ dictionary[node_ind] = (begin, target_ind)
1109
+ else:
1110
+ dictionary[node_ind] = (target_ind, target_ind)
1111
+
1112
+ @staticmethod
1113
+ def _matches_new_states(dictionary, state, nodes, targets):
1114
+ node_ind, target_ind = state
1115
+ node = nodes[node_ind]
1116
+ target = targets[target_ind]
1117
+
1118
+ # Don't advance at all if we've exhausted the targets but not the nodes
1119
+ if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
1120
+ return None
1121
+
1122
+ if node.is_Wild:
1123
+ match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
1124
+ nodes, targets)
1125
+ if match_attempt:
1126
+ # If the same node has been matched before, don't return
1127
+ # anything if the current match is diverging from the previous
1128
+ # match
1129
+ other_node_inds = Mul._matches_get_other_nodes(dictionary,
1130
+ nodes, node_ind)
1131
+ for ind in other_node_inds:
1132
+ other_begin, other_end = dictionary[ind]
1133
+ curr_begin, curr_end = dictionary[node_ind]
1134
+
1135
+ other_targets = targets[other_begin:other_end + 1]
1136
+ current_targets = targets[curr_begin:curr_end + 1]
1137
+
1138
+ for curr, other in zip(current_targets, other_targets):
1139
+ if curr != other:
1140
+ return None
1141
+
1142
+ # A wildcard node can match more than one target, so only the
1143
+ # target index is advanced
1144
+ new_state = [(node_ind, target_ind + 1)]
1145
+ # Only move on to the next node if there is one
1146
+ if node_ind < len(nodes) - 1:
1147
+ new_state.append((node_ind + 1, target_ind + 1))
1148
+ return new_state, match_attempt
1149
+ else:
1150
+ # If we're not at a wildcard, then make sure we haven't exhausted
1151
+ # nodes but not targets, since in this case one node can only match
1152
+ # one target
1153
+ if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
1154
+ return None
1155
+
1156
+ match_attempt = node.matches(target)
1157
+
1158
+ if match_attempt:
1159
+ return [(node_ind + 1, target_ind + 1)], match_attempt
1160
+ elif node == target:
1161
+ return [(node_ind + 1, target_ind + 1)], None
1162
+ else:
1163
+ return None
1164
+
1165
+ @staticmethod
1166
+ def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
1167
+ """Determine matches of a wildcard with sub-expression in `target`."""
1168
+ wildcard = nodes[wildcard_ind]
1169
+ begin, end = dictionary[wildcard_ind]
1170
+ terms = targets[begin:end + 1]
1171
+ # TODO: Should this be self.func?
1172
+ mult = Mul(*terms) if len(terms) > 1 else terms[0]
1173
+ return wildcard.matches(mult)
1174
+
1175
+ @staticmethod
1176
+ def _matches_get_other_nodes(dictionary, nodes, node_ind):
1177
+ """Find other wildcards that may have already been matched."""
1178
+ ind_node = nodes[node_ind]
1179
+ return [ind for ind in dictionary if nodes[ind] == ind_node]
1180
+
1181
+ @staticmethod
1182
+ def _combine_inverse(lhs, rhs):
1183
+ """
1184
+ Returns lhs/rhs, but treats arguments like symbols, so things
1185
+ like oo/oo return 1 (instead of a nan) and ``I`` behaves like
1186
+ a symbol instead of sqrt(-1).
1187
+ """
1188
+ from sympy.simplify.simplify import signsimp
1189
+ from .symbol import Dummy
1190
+ if lhs == rhs:
1191
+ return S.One
1192
+
1193
+ def check(l, r):
1194
+ if l.is_Float and r.is_comparable:
1195
+ # if both objects are added to 0 they will share the same "normalization"
1196
+ # and are more likely to compare the same. Since Add(foo, 0) will not allow
1197
+ # the 0 to pass, we use __add__ directly.
1198
+ return l.__add__(0) == r.evalf().__add__(0)
1199
+ return False
1200
+ if check(lhs, rhs) or check(rhs, lhs):
1201
+ return S.One
1202
+ if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
1203
+ # gruntz and limit wants a literal I to not combine
1204
+ # with a power of -1
1205
+ d = Dummy('I')
1206
+ _i = {S.ImaginaryUnit: d}
1207
+ i_ = {d: S.ImaginaryUnit}
1208
+ a = lhs.xreplace(_i).as_powers_dict()
1209
+ b = rhs.xreplace(_i).as_powers_dict()
1210
+ blen = len(b)
1211
+ for bi in tuple(b.keys()):
1212
+ if bi in a:
1213
+ a[bi] -= b.pop(bi)
1214
+ if not a[bi]:
1215
+ a.pop(bi)
1216
+ if len(b) != blen:
1217
+ lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
1218
+ rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
1219
+ rv = lhs/rhs
1220
+ srv = signsimp(rv)
1221
+ return srv if srv.is_Number else rv
1222
+
1223
+ def as_powers_dict(self):
1224
+ d = defaultdict(int)
1225
+ for term in self.args:
1226
+ for b, e in term.as_powers_dict().items():
1227
+ d[b] += e
1228
+ return d
1229
+
1230
+ def as_numer_denom(self):
1231
+ # don't use _from_args to rebuild the numerators and denominators
1232
+ # as the order is not guaranteed to be the same once they have
1233
+ # been separated from each other
1234
+ numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
1235
+ return self.func(*numers), self.func(*denoms)
1236
+
1237
+ def as_base_exp(self):
1238
+ e1 = None
1239
+ bases = []
1240
+ nc = 0
1241
+ for m in self.args:
1242
+ b, e = m.as_base_exp()
1243
+ if not b.is_commutative:
1244
+ nc += 1
1245
+ if e1 is None:
1246
+ e1 = e
1247
+ elif e != e1 or nc > 1:
1248
+ return self, S.One
1249
+ bases.append(b)
1250
+ return self.func(*bases), e1
1251
+
1252
+ def _eval_is_polynomial(self, syms):
1253
+ return all(term._eval_is_polynomial(syms) for term in self.args)
1254
+
1255
+ def _eval_is_rational_function(self, syms):
1256
+ return all(term._eval_is_rational_function(syms) for term in self.args)
1257
+
1258
+ def _eval_is_meromorphic(self, x, a):
1259
+ return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
1260
+ quick_exit=True)
1261
+
1262
+ def _eval_is_algebraic_expr(self, syms):
1263
+ return all(term._eval_is_algebraic_expr(syms) for term in self.args)
1264
+
1265
+ _eval_is_commutative = lambda self: _fuzzy_group(
1266
+ a.is_commutative for a in self.args)
1267
+
1268
+ def _eval_is_complex(self):
1269
+ comp = _fuzzy_group(a.is_complex for a in self.args)
1270
+ if comp is False:
1271
+ if any(a.is_infinite for a in self.args):
1272
+ if any(a.is_zero is not False for a in self.args):
1273
+ return None
1274
+ return False
1275
+ return comp
1276
+
1277
+ def _eval_is_zero_infinite_helper(self):
1278
+ #
1279
+ # Helper used by _eval_is_zero and _eval_is_infinite.
1280
+ #
1281
+ # Three-valued logic is tricky so let us reason this carefully. It
1282
+ # would be nice to say that we just check is_zero/is_infinite in all
1283
+ # args but we need to be careful about the case that one arg is zero
1284
+ # and another is infinite like Mul(0, oo) or more importantly a case
1285
+ # where it is not known if the arguments are zero or infinite like
1286
+ # Mul(y, 1/x). If either y or x could be zero then there is a
1287
+ # *possibility* that we have Mul(0, oo) which should give None for both
1288
+ # is_zero and is_infinite.
1289
+ #
1290
+ # We keep track of whether we have seen a zero or infinity but we also
1291
+ # need to keep track of whether we have *possibly* seen one which
1292
+ # would be indicated by None.
1293
+ #
1294
+ # For each argument there is the possibility that is_zero might give
1295
+ # True, False or None and likewise that is_infinite might give True,
1296
+ # False or None, giving 9 combinations. The True cases for is_zero and
1297
+ # is_infinite are mutually exclusive though so there are 3 main cases:
1298
+ #
1299
+ # - is_zero = True
1300
+ # - is_infinite = True
1301
+ # - is_zero and is_infinite are both either False or None
1302
+ #
1303
+ # At the end seen_zero and seen_infinite can be any of 9 combinations
1304
+ # of True/False/None. Unless one is False though we cannot return
1305
+ # anything except None:
1306
+ #
1307
+ # - is_zero=True needs seen_zero=True and seen_infinite=False
1308
+ # - is_zero=False needs seen_zero=False
1309
+ # - is_infinite=True needs seen_infinite=True and seen_zero=False
1310
+ # - is_infinite=False needs seen_infinite=False
1311
+ # - anything else gives both is_zero=None and is_infinite=None
1312
+ #
1313
+ # The loop only sets the flags to True or None and never back to False.
1314
+ # Hence as soon as neither flag is False we exit early returning None.
1315
+ # In particular as soon as we encounter a single arg that has
1316
+ # is_zero=is_infinite=None we exit. This is a common case since it is
1317
+ # the default assumptions for a Symbol and also the case for most
1318
+ # expressions containing such a symbol. The early exit gives a big
1319
+ # speedup for something like Mul(*symbols('x:1000')).is_zero.
1320
+ #
1321
+ seen_zero = seen_infinite = False
1322
+
1323
+ for a in self.args:
1324
+ if a.is_zero:
1325
+ if seen_infinite is not False:
1326
+ return None, None
1327
+ seen_zero = True
1328
+ elif a.is_infinite:
1329
+ if seen_zero is not False:
1330
+ return None, None
1331
+ seen_infinite = True
1332
+ else:
1333
+ if seen_zero is False and a.is_zero is None:
1334
+ if seen_infinite is not False:
1335
+ return None, None
1336
+ seen_zero = None
1337
+ if seen_infinite is False and a.is_infinite is None:
1338
+ if seen_zero is not False:
1339
+ return None, None
1340
+ seen_infinite = None
1341
+
1342
+ return seen_zero, seen_infinite
1343
+
1344
+ def _eval_is_zero(self):
1345
+ # True iff any arg is zero and no arg is infinite but need to handle
1346
+ # three valued logic carefully.
1347
+ seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
1348
+
1349
+ if seen_zero is False:
1350
+ return False
1351
+ elif seen_zero is True and seen_infinite is False:
1352
+ return True
1353
+ else:
1354
+ return None
1355
+
1356
+ def _eval_is_infinite(self):
1357
+ # True iff any arg is infinite and no arg is zero but need to handle
1358
+ # three valued logic carefully.
1359
+ seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
1360
+
1361
+ if seen_infinite is True and seen_zero is False:
1362
+ return True
1363
+ elif seen_infinite is False:
1364
+ return False
1365
+ else:
1366
+ return None
1367
+
1368
+ # We do not need to implement _eval_is_finite because the assumptions
1369
+ # system can infer it from finite = not infinite.
1370
+
1371
+ def _eval_is_rational(self):
1372
+ r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
1373
+ if r:
1374
+ return r
1375
+ elif r is False:
1376
+ # All args except one are rational
1377
+ if all(a.is_zero is False for a in self.args):
1378
+ return False
1379
+
1380
+ def _eval_is_algebraic(self):
1381
+ r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
1382
+ if r:
1383
+ return r
1384
+ elif r is False:
1385
+ # All args except one are algebraic
1386
+ if all(a.is_zero is False for a in self.args):
1387
+ return False
1388
+
1389
+ # without involving odd/even checks this code would suffice:
1390
+ #_eval_is_integer = lambda self: _fuzzy_group(
1391
+ # (a.is_integer for a in self.args), quick_exit=True)
1392
+ def _eval_is_integer(self):
1393
+ from sympy.ntheory.factor_ import trailing
1394
+ is_rational = self._eval_is_rational()
1395
+ if is_rational is False:
1396
+ return False
1397
+
1398
+ numerators = []
1399
+ denominators = []
1400
+ unknown = False
1401
+ for a in self.args:
1402
+ hit = False
1403
+ if a.is_integer:
1404
+ if abs(a) is not S.One:
1405
+ numerators.append(a)
1406
+ elif a.is_Rational:
1407
+ n, d = a.as_numer_denom()
1408
+ if abs(n) is not S.One:
1409
+ numerators.append(n)
1410
+ if d is not S.One:
1411
+ denominators.append(d)
1412
+ elif a.is_Pow:
1413
+ b, e = a.as_base_exp()
1414
+ if not b.is_integer or not e.is_integer:
1415
+ hit = unknown = True
1416
+ if e.is_negative:
1417
+ denominators.append(2 if a is S.Half else
1418
+ Pow(a, S.NegativeOne))
1419
+ elif not hit:
1420
+ # int b and pos int e: a = b**e is integer
1421
+ assert not e.is_positive
1422
+ # for rational self and e equal to zero: a = b**e is 1
1423
+ assert not e.is_zero
1424
+ return # sign of e unknown -> self.is_integer unknown
1425
+ else:
1426
+ # x**2, 2**x, or x**y with x and y int-unknown -> unknown
1427
+ return
1428
+ else:
1429
+ return
1430
+
1431
+ if not denominators and not unknown:
1432
+ return True
1433
+
1434
+ allodd = lambda x: all(i.is_odd for i in x)
1435
+ alleven = lambda x: all(i.is_even for i in x)
1436
+ anyeven = lambda x: any(i.is_even for i in x)
1437
+
1438
+ from .relational import is_gt
1439
+ if not numerators and denominators and all(
1440
+ is_gt(_, S.One) for _ in denominators):
1441
+ return False
1442
+ elif unknown:
1443
+ return
1444
+ elif allodd(numerators) and anyeven(denominators):
1445
+ return False
1446
+ elif anyeven(numerators) and denominators == [2]:
1447
+ return True
1448
+ elif alleven(numerators) and allodd(denominators
1449
+ ) and (Mul(*denominators, evaluate=False) - 1
1450
+ ).is_positive:
1451
+ return False
1452
+ if len(denominators) == 1:
1453
+ d = denominators[0]
1454
+ if d.is_Integer and d.is_even:
1455
+ # if minimal power of 2 in num vs den is not
1456
+ # negative then we have an integer
1457
+ if (Add(*[i.as_base_exp()[1] for i in
1458
+ numerators if i.is_even]) - trailing(d.p)
1459
+ ).is_nonnegative:
1460
+ return True
1461
+ if len(numerators) == 1:
1462
+ n = numerators[0]
1463
+ if n.is_Integer and n.is_even:
1464
+ # if minimal power of 2 in den vs num is positive
1465
+ # then we have have a non-integer
1466
+ if (Add(*[i.as_base_exp()[1] for i in
1467
+ denominators if i.is_even]) - trailing(n.p)
1468
+ ).is_positive:
1469
+ return False
1470
+
1471
+ def _eval_is_polar(self):
1472
+ has_polar = any(arg.is_polar for arg in self.args)
1473
+ return has_polar and \
1474
+ all(arg.is_polar or arg.is_positive for arg in self.args)
1475
+
1476
+ def _eval_is_extended_real(self):
1477
+ return self._eval_real_imag(True)
1478
+
1479
+ def _eval_real_imag(self, real):
1480
+ zero = False
1481
+ t_not_re_im = None
1482
+
1483
+ for t in self.args:
1484
+ if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
1485
+ return False
1486
+ elif t.is_imaginary: # I
1487
+ real = not real
1488
+ elif t.is_extended_real: # 2
1489
+ if not zero:
1490
+ z = t.is_zero
1491
+ if not z and zero is False:
1492
+ zero = z
1493
+ elif z:
1494
+ if all(a.is_finite for a in self.args):
1495
+ return True
1496
+ return
1497
+ elif t.is_extended_real is False:
1498
+ # symbolic or literal like `2 + I` or symbolic imaginary
1499
+ if t_not_re_im:
1500
+ return # complex terms might cancel
1501
+ t_not_re_im = t
1502
+ elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
1503
+ if t_not_re_im:
1504
+ return # complex terms might cancel
1505
+ t_not_re_im = t
1506
+ else:
1507
+ return
1508
+
1509
+ if t_not_re_im:
1510
+ if t_not_re_im.is_extended_real is False:
1511
+ if real: # like 3
1512
+ return zero # 3*(smthng like 2 + I or i) is not real
1513
+ if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
1514
+ if not real: # like I
1515
+ return zero # I*(smthng like 2 or 2 + I) is not real
1516
+ elif zero is False:
1517
+ return real # can't be trumped by 0
1518
+ elif real:
1519
+ return real # doesn't matter what zero is
1520
+
1521
+ def _eval_is_imaginary(self):
1522
+ if all(a.is_zero is False and a.is_finite for a in self.args):
1523
+ return self._eval_real_imag(False)
1524
+
1525
+ def _eval_is_hermitian(self):
1526
+ return self._eval_herm_antiherm(True)
1527
+
1528
+ def _eval_is_antihermitian(self):
1529
+ return self._eval_herm_antiherm(False)
1530
+
1531
+ def _eval_herm_antiherm(self, herm):
1532
+ for t in self.args:
1533
+ if t.is_hermitian is None or t.is_antihermitian is None:
1534
+ return
1535
+ if t.is_hermitian:
1536
+ continue
1537
+ elif t.is_antihermitian:
1538
+ herm = not herm
1539
+ else:
1540
+ return
1541
+
1542
+ if herm is not False:
1543
+ return herm
1544
+
1545
+ is_zero = self._eval_is_zero()
1546
+ if is_zero:
1547
+ return True
1548
+ elif is_zero is False:
1549
+ return herm
1550
+
1551
+ def _eval_is_irrational(self):
1552
+ for t in self.args:
1553
+ a = t.is_irrational
1554
+ if a:
1555
+ others = list(self.args)
1556
+ others.remove(t)
1557
+ if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
1558
+ return True
1559
+ return
1560
+ if a is None:
1561
+ return
1562
+ if all(x.is_real for x in self.args):
1563
+ return False
1564
+
1565
+ def _eval_is_extended_positive(self):
1566
+ """Return True if self is positive, False if not, and None if it
1567
+ cannot be determined.
1568
+
1569
+ Explanation
1570
+ ===========
1571
+
1572
+ This algorithm is non-recursive and works by keeping track of the
1573
+ sign which changes when a negative or nonpositive is encountered.
1574
+ Whether a nonpositive or nonnegative is seen is also tracked since
1575
+ the presence of these makes it impossible to return True, but
1576
+ possible to return False if the end result is nonpositive. e.g.
1577
+
1578
+ pos * neg * nonpositive -> pos or zero -> None is returned
1579
+ pos * neg * nonnegative -> neg or zero -> False is returned
1580
+ """
1581
+ return self._eval_pos_neg(1)
1582
+
1583
+ def _eval_pos_neg(self, sign):
1584
+ saw_NON = saw_NOT = False
1585
+ for t in self.args:
1586
+ if t.is_extended_positive:
1587
+ continue
1588
+ elif t.is_extended_negative:
1589
+ sign = -sign
1590
+ elif t.is_zero:
1591
+ if all(a.is_finite for a in self.args):
1592
+ return False
1593
+ return
1594
+ elif t.is_extended_nonpositive:
1595
+ sign = -sign
1596
+ saw_NON = True
1597
+ elif t.is_extended_nonnegative:
1598
+ saw_NON = True
1599
+ # FIXME: is_positive/is_negative is False doesn't take account of
1600
+ # Symbol('x', infinite=True, extended_real=True) which has
1601
+ # e.g. is_positive is False but has uncertain sign.
1602
+ elif t.is_positive is False:
1603
+ sign = -sign
1604
+ if saw_NOT:
1605
+ return
1606
+ saw_NOT = True
1607
+ elif t.is_negative is False:
1608
+ if saw_NOT:
1609
+ return
1610
+ saw_NOT = True
1611
+ else:
1612
+ return
1613
+ if sign == 1 and saw_NON is False and saw_NOT is False:
1614
+ return True
1615
+ if sign < 0:
1616
+ return False
1617
+
1618
+ def _eval_is_extended_negative(self):
1619
+ return self._eval_pos_neg(-1)
1620
+
1621
+ def _eval_is_odd(self):
1622
+ is_integer = self._eval_is_integer()
1623
+ if is_integer is not True:
1624
+ return is_integer
1625
+
1626
+ from sympy.simplify.radsimp import fraction
1627
+ n, d = fraction(self)
1628
+ if d.is_Integer and d.is_even:
1629
+ from sympy.ntheory.factor_ import trailing
1630
+ # if minimal power of 2 in num vs den is
1631
+ # positive then we have an even number
1632
+ if (Add(*[i.as_base_exp()[1] for i in
1633
+ Mul.make_args(n) if i.is_even]) - trailing(d.p)
1634
+ ).is_positive:
1635
+ return False
1636
+ return
1637
+ r, acc = True, 1
1638
+ for t in self.args:
1639
+ if abs(t) is S.One:
1640
+ continue
1641
+ if t.is_even:
1642
+ return False
1643
+ if r is False:
1644
+ pass
1645
+ elif acc != 1 and (acc + t).is_odd:
1646
+ r = False
1647
+ elif t.is_even is None:
1648
+ r = None
1649
+ acc = t
1650
+ return r
1651
+
1652
+ def _eval_is_even(self):
1653
+ from sympy.simplify.radsimp import fraction
1654
+ n, d = fraction(self)
1655
+ if n.is_Integer and n.is_even:
1656
+ # if minimal power of 2 in den vs num is not
1657
+ # negative then this is not an integer and
1658
+ # can't be even
1659
+ from sympy.ntheory.factor_ import trailing
1660
+ if (Add(*[i.as_base_exp()[1] for i in
1661
+ Mul.make_args(d) if i.is_even]) - trailing(n.p)
1662
+ ).is_nonnegative:
1663
+ return False
1664
+
1665
+ def _eval_is_composite(self):
1666
+ """
1667
+ Here we count the number of arguments that have a minimum value
1668
+ greater than two.
1669
+ If there are more than one of such a symbol then the result is composite.
1670
+ Else, the result cannot be determined.
1671
+ """
1672
+ number_of_args = 0 # count of symbols with minimum value greater than one
1673
+ for arg in self.args:
1674
+ if not (arg.is_integer and arg.is_positive):
1675
+ return None
1676
+ if (arg-1).is_positive:
1677
+ number_of_args += 1
1678
+
1679
+ if number_of_args > 1:
1680
+ return True
1681
+
1682
+ def _eval_subs(self, old, new):
1683
+ from sympy.functions.elementary.complexes import sign
1684
+ from sympy.ntheory.factor_ import multiplicity
1685
+ from sympy.simplify.powsimp import powdenest
1686
+ from sympy.simplify.radsimp import fraction
1687
+
1688
+ if not old.is_Mul:
1689
+ return None
1690
+
1691
+ # try keep replacement literal so -2*x doesn't replace 4*x
1692
+ if old.args[0].is_Number and old.args[0] < 0:
1693
+ if self.args[0].is_Number:
1694
+ if self.args[0] < 0:
1695
+ return self._subs(-old, -new)
1696
+ return None
1697
+
1698
+ def base_exp(a):
1699
+ # if I and -1 are in a Mul, they get both end up with
1700
+ # a -1 base (see issue 6421); all we want here are the
1701
+ # true Pow or exp separated into base and exponent
1702
+ from sympy.functions.elementary.exponential import exp
1703
+ if a.is_Pow or isinstance(a, exp):
1704
+ return a.as_base_exp()
1705
+ return a, S.One
1706
+
1707
+ def breakup(eq):
1708
+ """break up powers of eq when treated as a Mul:
1709
+ b**(Rational*e) -> b**e, Rational
1710
+ commutatives come back as a dictionary {b**e: Rational}
1711
+ noncommutatives come back as a list [(b**e, Rational)]
1712
+ """
1713
+
1714
+ (c, nc) = (defaultdict(int), [])
1715
+ for a in Mul.make_args(eq):
1716
+ a = powdenest(a)
1717
+ (b, e) = base_exp(a)
1718
+ if e is not S.One:
1719
+ (co, _) = e.as_coeff_mul()
1720
+ b = Pow(b, e/co)
1721
+ e = co
1722
+ if a.is_commutative:
1723
+ c[b] += e
1724
+ else:
1725
+ nc.append([b, e])
1726
+ return (c, nc)
1727
+
1728
+ def rejoin(b, co):
1729
+ """
1730
+ Put rational back with exponent; in general this is not ok, but
1731
+ since we took it from the exponent for analysis, it's ok to put
1732
+ it back.
1733
+ """
1734
+
1735
+ (b, e) = base_exp(b)
1736
+ return Pow(b, e*co)
1737
+
1738
+ def ndiv(a, b):
1739
+ """if b divides a in an extractive way (like 1/4 divides 1/2
1740
+ but not vice versa, and 2/5 does not divide 1/3) then return
1741
+ the integer number of times it divides, else return 0.
1742
+ """
1743
+ if not b.q % a.q or not a.q % b.q:
1744
+ return int(a/b)
1745
+ return 0
1746
+
1747
+ # give Muls in the denominator a chance to be changed (see issue 5651)
1748
+ # rv will be the default return value
1749
+ rv = None
1750
+ n, d = fraction(self)
1751
+ self2 = self
1752
+ if d is not S.One:
1753
+ self2 = n._subs(old, new)/d._subs(old, new)
1754
+ if not self2.is_Mul:
1755
+ return self2._subs(old, new)
1756
+ if self2 != self:
1757
+ rv = self2
1758
+
1759
+ # Now continue with regular substitution.
1760
+
1761
+ # handle the leading coefficient and use it to decide if anything
1762
+ # should even be started; we always know where to find the Rational
1763
+ # so it's a quick test
1764
+
1765
+ co_self = self2.args[0]
1766
+ co_old = old.args[0]
1767
+ co_xmul = None
1768
+ if co_old.is_Rational and co_self.is_Rational:
1769
+ # if coeffs are the same there will be no updating to do
1770
+ # below after breakup() step; so skip (and keep co_xmul=None)
1771
+ if co_old != co_self:
1772
+ co_xmul = co_self.extract_multiplicatively(co_old)
1773
+ elif co_old.is_Rational:
1774
+ return rv
1775
+
1776
+ # break self and old into factors
1777
+
1778
+ (c, nc) = breakup(self2)
1779
+ (old_c, old_nc) = breakup(old)
1780
+
1781
+ # update the coefficients if we had an extraction
1782
+ # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
1783
+ # then co_self in c is replaced by (3/5)**2 and co_residual
1784
+ # is 2*(1/7)**2
1785
+
1786
+ if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
1787
+ mult = S(multiplicity(abs(co_old), co_self))
1788
+ c.pop(co_self)
1789
+ if co_old in c:
1790
+ c[co_old] += mult
1791
+ else:
1792
+ c[co_old] = mult
1793
+ co_residual = co_self/co_old**mult
1794
+ else:
1795
+ co_residual = 1
1796
+
1797
+ # do quick tests to see if we can't succeed
1798
+
1799
+ ok = True
1800
+ if len(old_nc) > len(nc):
1801
+ # more non-commutative terms
1802
+ ok = False
1803
+ elif len(old_c) > len(c):
1804
+ # more commutative terms
1805
+ ok = False
1806
+ elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
1807
+ # unmatched non-commutative bases
1808
+ ok = False
1809
+ elif set(old_c).difference(set(c)):
1810
+ # unmatched commutative terms
1811
+ ok = False
1812
+ elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
1813
+ # differences in sign
1814
+ ok = False
1815
+ if not ok:
1816
+ return rv
1817
+
1818
+ if not old_c:
1819
+ cdid = None
1820
+ else:
1821
+ rat = []
1822
+ for (b, old_e) in old_c.items():
1823
+ c_e = c[b]
1824
+ rat.append(ndiv(c_e, old_e))
1825
+ if not rat[-1]:
1826
+ return rv
1827
+ cdid = min(rat)
1828
+
1829
+ if not old_nc:
1830
+ ncdid = None
1831
+ for i in range(len(nc)):
1832
+ nc[i] = rejoin(*nc[i])
1833
+ else:
1834
+ ncdid = 0 # number of nc replacements we did
1835
+ take = len(old_nc) # how much to look at each time
1836
+ limit = cdid or S.Infinity # max number that we can take
1837
+ failed = [] # failed terms will need subs if other terms pass
1838
+ i = 0
1839
+ while limit and i + take <= len(nc):
1840
+ hit = False
1841
+
1842
+ # the bases must be equivalent in succession, and
1843
+ # the powers must be extractively compatible on the
1844
+ # first and last factor but equal in between.
1845
+
1846
+ rat = []
1847
+ for j in range(take):
1848
+ if nc[i + j][0] != old_nc[j][0]:
1849
+ break
1850
+ elif j == 0:
1851
+ rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
1852
+ elif j == take - 1:
1853
+ rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
1854
+ elif nc[i + j][1] != old_nc[j][1]:
1855
+ break
1856
+ else:
1857
+ rat.append(1)
1858
+ j += 1
1859
+ else:
1860
+ ndo = min(rat)
1861
+ if ndo:
1862
+ if take == 1:
1863
+ if cdid:
1864
+ ndo = min(cdid, ndo)
1865
+ nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
1866
+ nc[i][1] - ndo*old_nc[0][1])
1867
+ else:
1868
+ ndo = 1
1869
+
1870
+ # the left residual
1871
+
1872
+ l = rejoin(nc[i][0], nc[i][1] - ndo*
1873
+ old_nc[0][1])
1874
+
1875
+ # eliminate all middle terms
1876
+
1877
+ mid = new
1878
+
1879
+ # the right residual (which may be the same as the middle if take == 2)
1880
+
1881
+ ir = i + take - 1
1882
+ r = (nc[ir][0], nc[ir][1] - ndo*
1883
+ old_nc[-1][1])
1884
+ if r[1]:
1885
+ if i + take < len(nc):
1886
+ nc[i:i + take] = [l*mid, r]
1887
+ else:
1888
+ r = rejoin(*r)
1889
+ nc[i:i + take] = [l*mid*r]
1890
+ else:
1891
+
1892
+ # there was nothing left on the right
1893
+
1894
+ nc[i:i + take] = [l*mid]
1895
+
1896
+ limit -= ndo
1897
+ ncdid += ndo
1898
+ hit = True
1899
+ if not hit:
1900
+
1901
+ # do the subs on this failing factor
1902
+
1903
+ failed.append(i)
1904
+ i += 1
1905
+ else:
1906
+
1907
+ if not ncdid:
1908
+ return rv
1909
+
1910
+ # although we didn't fail, certain nc terms may have
1911
+ # failed so we rebuild them after attempting a partial
1912
+ # subs on them
1913
+
1914
+ failed.extend(range(i, len(nc)))
1915
+ for i in failed:
1916
+ nc[i] = rejoin(*nc[i]).subs(old, new)
1917
+
1918
+ # rebuild the expression
1919
+
1920
+ if cdid is None:
1921
+ do = ncdid
1922
+ elif ncdid is None:
1923
+ do = cdid
1924
+ else:
1925
+ do = min(ncdid, cdid)
1926
+
1927
+ margs = []
1928
+ for b in c:
1929
+ if b in old_c:
1930
+
1931
+ # calculate the new exponent
1932
+
1933
+ e = c[b] - old_c[b]*do
1934
+ margs.append(rejoin(b, e))
1935
+ else:
1936
+ margs.append(rejoin(b.subs(old, new), c[b]))
1937
+ if cdid and not ncdid:
1938
+
1939
+ # in case we are replacing commutative with non-commutative,
1940
+ # we want the new term to come at the front just like the
1941
+ # rest of this routine
1942
+
1943
+ margs = [Pow(new, cdid)] + margs
1944
+ return co_residual*self2.func(*margs)*self2.func(*nc)
1945
+
1946
+ def _eval_nseries(self, x, n, logx, cdir=0):
1947
+ from .function import PoleError
1948
+ from sympy.functions.elementary.integers import ceiling
1949
+ from sympy.series.order import Order
1950
+
1951
+ def coeff_exp(term, x):
1952
+ lt = term.as_coeff_exponent(x)
1953
+ if lt[0].has(x):
1954
+ try:
1955
+ lt = term.leadterm(x)
1956
+ except ValueError:
1957
+ return term, S.Zero
1958
+ return lt
1959
+
1960
+ ords = []
1961
+
1962
+ try:
1963
+ for t in self.args:
1964
+ coeff, exp = t.leadterm(x)
1965
+ if not coeff.has(x):
1966
+ ords.append((t, exp))
1967
+ else:
1968
+ raise ValueError
1969
+
1970
+ n0 = sum(t[1] for t in ords if t[1].is_number)
1971
+ facs = []
1972
+ for t, m in ords:
1973
+ n1 = ceiling(n - n0 + (m if m.is_number else 0))
1974
+ s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
1975
+ ns = s.getn()
1976
+ if ns is not None:
1977
+ if ns < n1: # less than expected
1978
+ n -= n1 - ns # reduce n
1979
+ facs.append(s)
1980
+
1981
+ except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
1982
+ n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
1983
+ if n0.is_nonnegative:
1984
+ n0 = S.Zero
1985
+ facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
1986
+ from sympy.simplify.powsimp import powsimp
1987
+ res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
1988
+ if res.has(Order):
1989
+ res += Order(x**n, x)
1990
+ return res
1991
+
1992
+ res = S.Zero
1993
+ ords2 = [Add.make_args(factor) for factor in facs]
1994
+
1995
+ for fac in product(*ords2):
1996
+ ords3 = [coeff_exp(term, x) for term in fac]
1997
+ coeffs, powers = zip(*ords3)
1998
+ power = sum(powers)
1999
+ if (power - n).is_negative:
2000
+ res += Mul(*coeffs)*(x**power)
2001
+
2002
+ def max_degree(e, x):
2003
+ if e is x:
2004
+ return S.One
2005
+ if e.is_Atom:
2006
+ return S.Zero
2007
+ if e.is_Add:
2008
+ return max(max_degree(a, x) for a in e.args)
2009
+ if e.is_Mul:
2010
+ return Add(*[max_degree(a, x) for a in e.args])
2011
+ if e.is_Pow:
2012
+ return max_degree(e.base, x)*e.exp
2013
+ return S.Zero
2014
+
2015
+ if self.is_polynomial(x):
2016
+ from sympy.polys.polyerrors import PolynomialError
2017
+ from sympy.polys.polytools import degree
2018
+ try:
2019
+ if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
2020
+ res += Order(x**n, x)
2021
+ except PolynomialError:
2022
+ pass
2023
+ else:
2024
+ return res
2025
+
2026
+ if res != self:
2027
+ if (self - res).subs(x, 0) == S.Zero and n > 0:
2028
+ lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
2029
+ if lt == S.Zero:
2030
+ return res
2031
+ res += Order(x**n, x)
2032
+ return res
2033
+
2034
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
2035
+ return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
2036
+
2037
+ def _eval_conjugate(self):
2038
+ return self.func(*[t.conjugate() for t in self.args])
2039
+
2040
+ def _eval_transpose(self):
2041
+ return self.func(*[t.transpose() for t in self.args[::-1]])
2042
+
2043
+ def _eval_adjoint(self):
2044
+ return self.func(*[t.adjoint() for t in self.args[::-1]])
2045
+
2046
+ def as_content_primitive(self, radical=False, clear=True):
2047
+ """Return the tuple (R, self/R) where R is the positive Rational
2048
+ extracted from self.
2049
+
2050
+ Examples
2051
+ ========
2052
+
2053
+ >>> from sympy import sqrt
2054
+ >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
2055
+ (6, -sqrt(2)*(1 - sqrt(2)))
2056
+
2057
+ See docstring of Expr.as_content_primitive for more examples.
2058
+ """
2059
+
2060
+ coef = S.One
2061
+ args = []
2062
+ for a in self.args:
2063
+ c, p = a.as_content_primitive(radical=radical, clear=clear)
2064
+ coef *= c
2065
+ if p is not S.One:
2066
+ args.append(p)
2067
+ # don't use self._from_args here to reconstruct args
2068
+ # since there may be identical args now that should be combined
2069
+ # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
2070
+ return coef, self.func(*args)
2071
+
2072
+ def as_ordered_factors(self, order=None):
2073
+ """Transform an expression into an ordered list of factors.
2074
+
2075
+ Examples
2076
+ ========
2077
+
2078
+ >>> from sympy import sin, cos
2079
+ >>> from sympy.abc import x, y
2080
+
2081
+ >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
2082
+ [2, x, y, sin(x), cos(x)]
2083
+
2084
+ """
2085
+ cpart, ncpart = self.args_cnc()
2086
+ cpart.sort(key=lambda expr: expr.sort_key(order=order))
2087
+ return cpart + ncpart
2088
+
2089
+ @property
2090
+ def _sorted_args(self):
2091
+ return tuple(self.as_ordered_factors())
2092
+
2093
+ mul = AssocOpDispatcher('mul')
2094
+
2095
+
2096
+ def prod(a, start=1):
2097
+ """Return product of elements of a. Start with int 1 so if only
2098
+ ints are included then an int result is returned.
2099
+
2100
+ Examples
2101
+ ========
2102
+
2103
+ >>> from sympy import prod, S
2104
+ >>> prod(range(3))
2105
+ 0
2106
+ >>> type(_) is int
2107
+ True
2108
+ >>> prod([S(2), 3])
2109
+ 6
2110
+ >>> _.is_Integer
2111
+ True
2112
+
2113
+ You can start the product at something other than 1:
2114
+
2115
+ >>> prod([1, 2], 3)
2116
+ 6
2117
+
2118
+ """
2119
+ return reduce(operator.mul, a, start)
2120
+
2121
+
2122
+ def _keep_coeff(coeff, factors, clear=True, sign=False):
2123
+ """Return ``coeff*factors`` unevaluated if necessary.
2124
+
2125
+ If ``clear`` is False, do not keep the coefficient as a factor
2126
+ if it can be distributed on a single factor such that one or
2127
+ more terms will still have integer coefficients.
2128
+
2129
+ If ``sign`` is True, allow a coefficient of -1 to remain factored out.
2130
+
2131
+ Examples
2132
+ ========
2133
+
2134
+ >>> from sympy.core.mul import _keep_coeff
2135
+ >>> from sympy.abc import x, y
2136
+ >>> from sympy import S
2137
+
2138
+ >>> _keep_coeff(S.Half, x + 2)
2139
+ (x + 2)/2
2140
+ >>> _keep_coeff(S.Half, x + 2, clear=False)
2141
+ x/2 + 1
2142
+ >>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
2143
+ y*(x + 2)/2
2144
+ >>> _keep_coeff(S(-1), x + y)
2145
+ -x - y
2146
+ >>> _keep_coeff(S(-1), x + y, sign=True)
2147
+ -(x + y)
2148
+ """
2149
+ if not coeff.is_Number:
2150
+ if factors.is_Number:
2151
+ factors, coeff = coeff, factors
2152
+ else:
2153
+ return coeff*factors
2154
+ if factors is S.One:
2155
+ return coeff
2156
+ if coeff is S.One:
2157
+ return factors
2158
+ elif coeff is S.NegativeOne and not sign:
2159
+ return -factors
2160
+ elif factors.is_Add:
2161
+ if not clear and coeff.is_Rational and coeff.q != 1:
2162
+ args = [i.as_coeff_Mul() for i in factors.args]
2163
+ args = [(_keep_coeff(c, coeff), m) for c, m in args]
2164
+ if any(c.is_Integer for c, _ in args):
2165
+ return Add._from_args([Mul._from_args(
2166
+ i[1:] if i[0] == 1 else i) for i in args])
2167
+ return Mul(coeff, factors, evaluate=False)
2168
+ elif factors.is_Mul:
2169
+ margs = list(factors.args)
2170
+ if margs[0].is_Number:
2171
+ margs[0] *= coeff
2172
+ if margs[0] == 1:
2173
+ margs.pop(0)
2174
+ else:
2175
+ margs.insert(0, coeff)
2176
+ return Mul._from_args(margs)
2177
+ else:
2178
+ m = coeff*factors
2179
+ if m.is_Number and not factors.is_Number:
2180
+ m = Mul._from_args((coeff, factors))
2181
+ return m
2182
+
2183
+ def expand_2arg(e):
2184
+ def do(e):
2185
+ if e.is_Mul:
2186
+ c, r = e.as_coeff_Mul()
2187
+ if c.is_Number and r.is_Add:
2188
+ return _unevaluated_Add(*[c*ri for ri in r.args])
2189
+ return e
2190
+ return bottom_up(e, do)
2191
+
2192
+
2193
+ from .numbers import Rational
2194
+ from .power import Pow
2195
+ from .add import Add, _unevaluated_Add
venv/lib/python3.10/site-packages/sympy/core/multidimensional.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provides functionality for multidimensional usage of scalar-functions.
3
+
4
+ Read the vectorize docstring for more details.
5
+ """
6
+
7
+ from functools import wraps
8
+
9
+
10
+ def apply_on_element(f, args, kwargs, n):
11
+ """
12
+ Returns a structure with the same dimension as the specified argument,
13
+ where each basic element is replaced by the function f applied on it. All
14
+ other arguments stay the same.
15
+ """
16
+ # Get the specified argument.
17
+ if isinstance(n, int):
18
+ structure = args[n]
19
+ is_arg = True
20
+ elif isinstance(n, str):
21
+ structure = kwargs[n]
22
+ is_arg = False
23
+
24
+ # Define reduced function that is only dependent on the specified argument.
25
+ def f_reduced(x):
26
+ if hasattr(x, "__iter__"):
27
+ return list(map(f_reduced, x))
28
+ else:
29
+ if is_arg:
30
+ args[n] = x
31
+ else:
32
+ kwargs[n] = x
33
+ return f(*args, **kwargs)
34
+
35
+ # f_reduced will call itself recursively so that in the end f is applied to
36
+ # all basic elements.
37
+ return list(map(f_reduced, structure))
38
+
39
+
40
+ def iter_copy(structure):
41
+ """
42
+ Returns a copy of an iterable object (also copying all embedded iterables).
43
+ """
44
+ return [iter_copy(i) if hasattr(i, "__iter__") else i for i in structure]
45
+
46
+
47
+ def structure_copy(structure):
48
+ """
49
+ Returns a copy of the given structure (numpy-array, list, iterable, ..).
50
+ """
51
+ if hasattr(structure, "copy"):
52
+ return structure.copy()
53
+ return iter_copy(structure)
54
+
55
+
56
+ class vectorize:
57
+ """
58
+ Generalizes a function taking scalars to accept multidimensional arguments.
59
+
60
+ Examples
61
+ ========
62
+
63
+ >>> from sympy import vectorize, diff, sin, symbols, Function
64
+ >>> x, y, z = symbols('x y z')
65
+ >>> f, g, h = list(map(Function, 'fgh'))
66
+
67
+ >>> @vectorize(0)
68
+ ... def vsin(x):
69
+ ... return sin(x)
70
+
71
+ >>> vsin([1, x, y])
72
+ [sin(1), sin(x), sin(y)]
73
+
74
+ >>> @vectorize(0, 1)
75
+ ... def vdiff(f, y):
76
+ ... return diff(f, y)
77
+
78
+ >>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
79
+ [[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)], [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]
80
+ """
81
+ def __init__(self, *mdargs):
82
+ """
83
+ The given numbers and strings characterize the arguments that will be
84
+ treated as data structures, where the decorated function will be applied
85
+ to every single element.
86
+ If no argument is given, everything is treated multidimensional.
87
+ """
88
+ for a in mdargs:
89
+ if not isinstance(a, (int, str)):
90
+ raise TypeError("a is of invalid type")
91
+ self.mdargs = mdargs
92
+
93
+ def __call__(self, f):
94
+ """
95
+ Returns a wrapper for the one-dimensional function that can handle
96
+ multidimensional arguments.
97
+ """
98
+ @wraps(f)
99
+ def wrapper(*args, **kwargs):
100
+ # Get arguments that should be treated multidimensional
101
+ if self.mdargs:
102
+ mdargs = self.mdargs
103
+ else:
104
+ mdargs = range(len(args)) + kwargs.keys()
105
+
106
+ arglength = len(args)
107
+
108
+ for n in mdargs:
109
+ if isinstance(n, int):
110
+ if n >= arglength:
111
+ continue
112
+ entry = args[n]
113
+ is_arg = True
114
+ elif isinstance(n, str):
115
+ try:
116
+ entry = kwargs[n]
117
+ except KeyError:
118
+ continue
119
+ is_arg = False
120
+ if hasattr(entry, "__iter__"):
121
+ # Create now a copy of the given array and manipulate then
122
+ # the entries directly.
123
+ if is_arg:
124
+ args = list(args)
125
+ args[n] = structure_copy(entry)
126
+ else:
127
+ kwargs[n] = structure_copy(entry)
128
+ result = apply_on_element(wrapper, args, kwargs, n)
129
+ return result
130
+ return f(*args, **kwargs)
131
+ return wrapper
venv/lib/python3.10/site-packages/sympy/core/numbers.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sympy/core/operations.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from operator import attrgetter
3
+ from collections import defaultdict
4
+
5
+ from sympy.utilities.exceptions import sympy_deprecation_warning
6
+
7
+ from .sympify import _sympify as _sympify_, sympify
8
+ from .basic import Basic
9
+ from .cache import cacheit
10
+ from .sorting import ordered
11
+ from .logic import fuzzy_and
12
+ from .parameters import global_parameters
13
+ from sympy.utilities.iterables import sift
14
+ from sympy.multipledispatch.dispatcher import (Dispatcher,
15
+ ambiguity_register_error_ignore_dup,
16
+ str_signature, RaiseNotImplementedError)
17
+
18
+
19
+ class AssocOp(Basic):
20
+ """ Associative operations, can separate noncommutative and
21
+ commutative parts.
22
+
23
+ (a op b) op c == a op (b op c) == a op b op c.
24
+
25
+ Base class for Add and Mul.
26
+
27
+ This is an abstract base class, concrete derived classes must define
28
+ the attribute `identity`.
29
+
30
+ .. deprecated:: 1.7
31
+
32
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
33
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
34
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
35
+
36
+ Parameters
37
+ ==========
38
+
39
+ *args :
40
+ Arguments which are operated
41
+
42
+ evaluate : bool, optional
43
+ Evaluate the operation. If not passed, refer to ``global_parameters.evaluate``.
44
+ """
45
+
46
+ # for performance reason, we don't let is_commutative go to assumptions,
47
+ # and keep it right here
48
+ __slots__: tuple[str, ...] = ('is_commutative',)
49
+
50
+ _args_type: type[Basic] | None = None
51
+
52
+ @cacheit
53
+ def __new__(cls, *args, evaluate=None, _sympify=True):
54
+ # Allow faster processing by passing ``_sympify=False``, if all arguments
55
+ # are already sympified.
56
+ if _sympify:
57
+ args = list(map(_sympify_, args))
58
+
59
+ # Disallow non-Expr args in Add/Mul
60
+ typ = cls._args_type
61
+ if typ is not None:
62
+ from .relational import Relational
63
+ if any(isinstance(arg, Relational) for arg in args):
64
+ raise TypeError("Relational cannot be used in %s" % cls.__name__)
65
+
66
+ # This should raise TypeError once deprecation period is over:
67
+ for arg in args:
68
+ if not isinstance(arg, typ):
69
+ sympy_deprecation_warning(
70
+ f"""
71
+
72
+ Using non-Expr arguments in {cls.__name__} is deprecated (in this case, one of
73
+ the arguments has type {type(arg).__name__!r}).
74
+
75
+ If you really did intend to use a multiplication or addition operation with
76
+ this object, use the * or + operator instead.
77
+
78
+ """,
79
+ deprecated_since_version="1.7",
80
+ active_deprecations_target="non-expr-args-deprecated",
81
+ stacklevel=4,
82
+ )
83
+
84
+ if evaluate is None:
85
+ evaluate = global_parameters.evaluate
86
+ if not evaluate:
87
+ obj = cls._from_args(args)
88
+ obj = cls._exec_constructor_postprocessors(obj)
89
+ return obj
90
+
91
+ args = [a for a in args if a is not cls.identity]
92
+
93
+ if len(args) == 0:
94
+ return cls.identity
95
+ if len(args) == 1:
96
+ return args[0]
97
+
98
+ c_part, nc_part, order_symbols = cls.flatten(args)
99
+ is_commutative = not nc_part
100
+ obj = cls._from_args(c_part + nc_part, is_commutative)
101
+ obj = cls._exec_constructor_postprocessors(obj)
102
+
103
+ if order_symbols is not None:
104
+ from sympy.series.order import Order
105
+ return Order(obj, *order_symbols)
106
+ return obj
107
+
108
+ @classmethod
109
+ def _from_args(cls, args, is_commutative=None):
110
+ """Create new instance with already-processed args.
111
+ If the args are not in canonical order, then a non-canonical
112
+ result will be returned, so use with caution. The order of
113
+ args may change if the sign of the args is changed."""
114
+ if len(args) == 0:
115
+ return cls.identity
116
+ elif len(args) == 1:
117
+ return args[0]
118
+
119
+ obj = super().__new__(cls, *args)
120
+ if is_commutative is None:
121
+ is_commutative = fuzzy_and(a.is_commutative for a in args)
122
+ obj.is_commutative = is_commutative
123
+ return obj
124
+
125
+ def _new_rawargs(self, *args, reeval=True, **kwargs):
126
+ """Create new instance of own class with args exactly as provided by
127
+ caller but returning the self class identity if args is empty.
128
+
129
+ Examples
130
+ ========
131
+
132
+ This is handy when we want to optimize things, e.g.
133
+
134
+ >>> from sympy import Mul, S
135
+ >>> from sympy.abc import x, y
136
+ >>> e = Mul(3, x, y)
137
+ >>> e.args
138
+ (3, x, y)
139
+ >>> Mul(*e.args[1:])
140
+ x*y
141
+ >>> e._new_rawargs(*e.args[1:]) # the same as above, but faster
142
+ x*y
143
+
144
+ Note: use this with caution. There is no checking of arguments at
145
+ all. This is best used when you are rebuilding an Add or Mul after
146
+ simply removing one or more args. If, for example, modifications,
147
+ result in extra 1s being inserted they will show up in the result:
148
+
149
+ >>> m = (x*y)._new_rawargs(S.One, x); m
150
+ 1*x
151
+ >>> m == x
152
+ False
153
+ >>> m.is_Mul
154
+ True
155
+
156
+ Another issue to be aware of is that the commutativity of the result
157
+ is based on the commutativity of self. If you are rebuilding the
158
+ terms that came from a commutative object then there will be no
159
+ problem, but if self was non-commutative then what you are
160
+ rebuilding may now be commutative.
161
+
162
+ Although this routine tries to do as little as possible with the
163
+ input, getting the commutativity right is important, so this level
164
+ of safety is enforced: commutativity will always be recomputed if
165
+ self is non-commutative and kwarg `reeval=False` has not been
166
+ passed.
167
+ """
168
+ if reeval and self.is_commutative is False:
169
+ is_commutative = None
170
+ else:
171
+ is_commutative = self.is_commutative
172
+ return self._from_args(args, is_commutative)
173
+
174
+ @classmethod
175
+ def flatten(cls, seq):
176
+ """Return seq so that none of the elements are of type `cls`. This is
177
+ the vanilla routine that will be used if a class derived from AssocOp
178
+ does not define its own flatten routine."""
179
+ # apply associativity, no commutativity property is used
180
+ new_seq = []
181
+ while seq:
182
+ o = seq.pop()
183
+ if o.__class__ is cls: # classes must match exactly
184
+ seq.extend(o.args)
185
+ else:
186
+ new_seq.append(o)
187
+ new_seq.reverse()
188
+
189
+ # c_part, nc_part, order_symbols
190
+ return [], new_seq, None
191
+
192
+ def _matches_commutative(self, expr, repl_dict=None, old=False):
193
+ """
194
+ Matches Add/Mul "pattern" to an expression "expr".
195
+
196
+ repl_dict ... a dictionary of (wild: expression) pairs, that get
197
+ returned with the results
198
+
199
+ This function is the main workhorse for Add/Mul.
200
+
201
+ Examples
202
+ ========
203
+
204
+ >>> from sympy import symbols, Wild, sin
205
+ >>> a = Wild("a")
206
+ >>> b = Wild("b")
207
+ >>> c = Wild("c")
208
+ >>> x, y, z = symbols("x y z")
209
+ >>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
210
+ {a_: x, b_: y, c_: z}
211
+
212
+ In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
213
+ the expression.
214
+
215
+ The repl_dict contains parts that were already matched. For example
216
+ here:
217
+
218
+ >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
219
+ {a_: x, b_: y, c_: z}
220
+
221
+ the only function of the repl_dict is to return it in the
222
+ result, e.g. if you omit it:
223
+
224
+ >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
225
+ {b_: y, c_: z}
226
+
227
+ the "a: x" is not returned in the result, but otherwise it is
228
+ equivalent.
229
+
230
+ """
231
+ from .function import _coeff_isneg
232
+ # make sure expr is Expr if pattern is Expr
233
+ from .expr import Expr
234
+ if isinstance(self, Expr) and not isinstance(expr, Expr):
235
+ return None
236
+
237
+ if repl_dict is None:
238
+ repl_dict = {}
239
+
240
+ # handle simple patterns
241
+ if self == expr:
242
+ return repl_dict
243
+
244
+ d = self._matches_simple(expr, repl_dict)
245
+ if d is not None:
246
+ return d
247
+
248
+ # eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
249
+ from .function import WildFunction
250
+ from .symbol import Wild
251
+ wild_part, exact_part = sift(self.args, lambda p:
252
+ p.has(Wild, WildFunction) and not expr.has(p),
253
+ binary=True)
254
+ if not exact_part:
255
+ wild_part = list(ordered(wild_part))
256
+ if self.is_Add:
257
+ # in addition to normal ordered keys, impose
258
+ # sorting on Muls with leading Number to put
259
+ # them in order
260
+ wild_part = sorted(wild_part, key=lambda x:
261
+ x.args[0] if x.is_Mul and x.args[0].is_Number else
262
+ 0)
263
+ else:
264
+ exact = self._new_rawargs(*exact_part)
265
+ free = expr.free_symbols
266
+ if free and (exact.free_symbols - free):
267
+ # there are symbols in the exact part that are not
268
+ # in the expr; but if there are no free symbols, let
269
+ # the matching continue
270
+ return None
271
+ newexpr = self._combine_inverse(expr, exact)
272
+ if not old and (expr.is_Add or expr.is_Mul):
273
+ check = newexpr
274
+ if _coeff_isneg(check):
275
+ check = -check
276
+ if check.count_ops() > expr.count_ops():
277
+ return None
278
+ newpattern = self._new_rawargs(*wild_part)
279
+ return newpattern.matches(newexpr, repl_dict)
280
+
281
+ # now to real work ;)
282
+ i = 0
283
+ saw = set()
284
+ while expr not in saw:
285
+ saw.add(expr)
286
+ args = tuple(ordered(self.make_args(expr)))
287
+ if self.is_Add and expr.is_Add:
288
+ # in addition to normal ordered keys, impose
289
+ # sorting on Muls with leading Number to put
290
+ # them in order
291
+ args = tuple(sorted(args, key=lambda x:
292
+ x.args[0] if x.is_Mul and x.args[0].is_Number else
293
+ 0))
294
+ expr_list = (self.identity,) + args
295
+ for last_op in reversed(expr_list):
296
+ for w in reversed(wild_part):
297
+ d1 = w.matches(last_op, repl_dict)
298
+ if d1 is not None:
299
+ d2 = self.xreplace(d1).matches(expr, d1)
300
+ if d2 is not None:
301
+ return d2
302
+
303
+ if i == 0:
304
+ if self.is_Mul:
305
+ # make e**i look like Mul
306
+ if expr.is_Pow and expr.exp.is_Integer:
307
+ from .mul import Mul
308
+ if expr.exp > 0:
309
+ expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
310
+ else:
311
+ expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
312
+ i += 1
313
+ continue
314
+
315
+ elif self.is_Add:
316
+ # make i*e look like Add
317
+ c, e = expr.as_coeff_Mul()
318
+ if abs(c) > 1:
319
+ from .add import Add
320
+ if c > 0:
321
+ expr = Add(*[e, (c - 1)*e], evaluate=False)
322
+ else:
323
+ expr = Add(*[-e, (c + 1)*e], evaluate=False)
324
+ i += 1
325
+ continue
326
+
327
+ # try collection on non-Wild symbols
328
+ from sympy.simplify.radsimp import collect
329
+ was = expr
330
+ did = set()
331
+ for w in reversed(wild_part):
332
+ c, w = w.as_coeff_mul(Wild)
333
+ free = c.free_symbols - did
334
+ if free:
335
+ did.update(free)
336
+ expr = collect(expr, free)
337
+ if expr != was:
338
+ i += 0
339
+ continue
340
+
341
+ break # if we didn't continue, there is nothing more to do
342
+
343
+ return
344
+
345
+ def _has_matcher(self):
346
+ """Helper for .has() that checks for containment of
347
+ subexpressions within an expr by using sets of args
348
+ of similar nodes, e.g. x + 1 in x + y + 1 checks
349
+ to see that {x, 1} & {x, y, 1} == {x, 1}
350
+ """
351
+ def _ncsplit(expr):
352
+ # this is not the same as args_cnc because here
353
+ # we don't assume expr is a Mul -- hence deal with args --
354
+ # and always return a set.
355
+ cpart, ncpart = sift(expr.args,
356
+ lambda arg: arg.is_commutative is True, binary=True)
357
+ return set(cpart), ncpart
358
+
359
+ c, nc = _ncsplit(self)
360
+ cls = self.__class__
361
+
362
+ def is_in(expr):
363
+ if isinstance(expr, cls):
364
+ if expr == self:
365
+ return True
366
+ _c, _nc = _ncsplit(expr)
367
+ if (c & _c) == c:
368
+ if not nc:
369
+ return True
370
+ elif len(nc) <= len(_nc):
371
+ for i in range(len(_nc) - len(nc) + 1):
372
+ if _nc[i:i + len(nc)] == nc:
373
+ return True
374
+ return False
375
+ return is_in
376
+
377
+ def _eval_evalf(self, prec):
378
+ """
379
+ Evaluate the parts of self that are numbers; if the whole thing
380
+ was a number with no functions it would have been evaluated, but
381
+ it wasn't so we must judiciously extract the numbers and reconstruct
382
+ the object. This is *not* simply replacing numbers with evaluated
383
+ numbers. Numbers should be handled in the largest pure-number
384
+ expression as possible. So the code below separates ``self`` into
385
+ number and non-number parts and evaluates the number parts and
386
+ walks the args of the non-number part recursively (doing the same
387
+ thing).
388
+ """
389
+ from .add import Add
390
+ from .mul import Mul
391
+ from .symbol import Symbol
392
+ from .function import AppliedUndef
393
+ if isinstance(self, (Mul, Add)):
394
+ x, tail = self.as_independent(Symbol, AppliedUndef)
395
+ # if x is an AssocOp Function then the _evalf below will
396
+ # call _eval_evalf (here) so we must break the recursion
397
+ if not (tail is self.identity or
398
+ isinstance(x, AssocOp) and x.is_Function or
399
+ x is self.identity and isinstance(tail, AssocOp)):
400
+ # here, we have a number so we just call to _evalf with prec;
401
+ # prec is not the same as n, it is the binary precision so
402
+ # that's why we don't call to evalf.
403
+ x = x._evalf(prec) if x is not self.identity else self.identity
404
+ args = []
405
+ tail_args = tuple(self.func.make_args(tail))
406
+ for a in tail_args:
407
+ # here we call to _eval_evalf since we don't know what we
408
+ # are dealing with and all other _eval_evalf routines should
409
+ # be doing the same thing (i.e. taking binary prec and
410
+ # finding the evalf-able args)
411
+ newa = a._eval_evalf(prec)
412
+ if newa is None:
413
+ args.append(a)
414
+ else:
415
+ args.append(newa)
416
+ return self.func(x, *args)
417
+
418
+ # this is the same as above, but there were no pure-number args to
419
+ # deal with
420
+ args = []
421
+ for a in self.args:
422
+ newa = a._eval_evalf(prec)
423
+ if newa is None:
424
+ args.append(a)
425
+ else:
426
+ args.append(newa)
427
+ return self.func(*args)
428
+
429
+ @classmethod
430
+ def make_args(cls, expr):
431
+ """
432
+ Return a sequence of elements `args` such that cls(*args) == expr
433
+
434
+ Examples
435
+ ========
436
+
437
+ >>> from sympy import Symbol, Mul, Add
438
+ >>> x, y = map(Symbol, 'xy')
439
+
440
+ >>> Mul.make_args(x*y)
441
+ (x, y)
442
+ >>> Add.make_args(x*y)
443
+ (x*y,)
444
+ >>> set(Add.make_args(x*y + y)) == set([y, x*y])
445
+ True
446
+
447
+ """
448
+ if isinstance(expr, cls):
449
+ return expr.args
450
+ else:
451
+ return (sympify(expr),)
452
+
453
+ def doit(self, **hints):
454
+ if hints.get('deep', True):
455
+ terms = [term.doit(**hints) for term in self.args]
456
+ else:
457
+ terms = self.args
458
+ return self.func(*terms, evaluate=True)
459
+
460
+ class ShortCircuit(Exception):
461
+ pass
462
+
463
+
464
+ class LatticeOp(AssocOp):
465
+ """
466
+ Join/meet operations of an algebraic lattice[1].
467
+
468
+ Explanation
469
+ ===========
470
+
471
+ These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
472
+ commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
473
+ Common examples are AND, OR, Union, Intersection, max or min. They have an
474
+ identity element (op(identity, a) = a) and an absorbing element
475
+ conventionally called zero (op(zero, a) = zero).
476
+
477
+ This is an abstract base class, concrete derived classes must declare
478
+ attributes zero and identity. All defining properties are then respected.
479
+
480
+ Examples
481
+ ========
482
+
483
+ >>> from sympy import Integer
484
+ >>> from sympy.core.operations import LatticeOp
485
+ >>> class my_join(LatticeOp):
486
+ ... zero = Integer(0)
487
+ ... identity = Integer(1)
488
+ >>> my_join(2, 3) == my_join(3, 2)
489
+ True
490
+ >>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
491
+ True
492
+ >>> my_join(0, 1, 4, 2, 3, 4)
493
+ 0
494
+ >>> my_join(1, 2)
495
+ 2
496
+
497
+ References
498
+ ==========
499
+
500
+ .. [1] https://en.wikipedia.org/wiki/Lattice_%28order%29
501
+ """
502
+
503
+ is_commutative = True
504
+
505
+ def __new__(cls, *args, **options):
506
+ args = (_sympify_(arg) for arg in args)
507
+
508
+ try:
509
+ # /!\ args is a generator and _new_args_filter
510
+ # must be careful to handle as such; this
511
+ # is done so short-circuiting can be done
512
+ # without having to sympify all values
513
+ _args = frozenset(cls._new_args_filter(args))
514
+ except ShortCircuit:
515
+ return sympify(cls.zero)
516
+ if not _args:
517
+ return sympify(cls.identity)
518
+ elif len(_args) == 1:
519
+ return set(_args).pop()
520
+ else:
521
+ # XXX in almost every other case for __new__, *_args is
522
+ # passed along, but the expectation here is for _args
523
+ obj = super(AssocOp, cls).__new__(cls, *ordered(_args))
524
+ obj._argset = _args
525
+ return obj
526
+
527
+ @classmethod
528
+ def _new_args_filter(cls, arg_sequence, call_cls=None):
529
+ """Generator filtering args"""
530
+ ncls = call_cls or cls
531
+ for arg in arg_sequence:
532
+ if arg == ncls.zero:
533
+ raise ShortCircuit(arg)
534
+ elif arg == ncls.identity:
535
+ continue
536
+ elif arg.func == ncls:
537
+ yield from arg.args
538
+ else:
539
+ yield arg
540
+
541
+ @classmethod
542
+ def make_args(cls, expr):
543
+ """
544
+ Return a set of args such that cls(*arg_set) == expr.
545
+ """
546
+ if isinstance(expr, cls):
547
+ return expr._argset
548
+ else:
549
+ return frozenset([sympify(expr)])
550
+
551
+ @staticmethod
552
+ def _compare_pretty(a, b):
553
+ return (str(a) > str(b)) - (str(a) < str(b))
554
+
555
+
556
+ class AssocOpDispatcher:
557
+ """
558
+ Handler dispatcher for associative operators
559
+
560
+ .. notes::
561
+ This approach is experimental, and can be replaced or deleted in the future.
562
+ See https://github.com/sympy/sympy/pull/19463.
563
+
564
+ Explanation
565
+ ===========
566
+
567
+ If arguments of different types are passed, the classes which handle the operation for each type
568
+ are collected. Then, a class which performs the operation is selected by recursive binary dispatching.
569
+ Dispatching relation can be registered by ``register_handlerclass`` method.
570
+
571
+ Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to
572
+ different handler classes. All logic dealing with the order of arguments must be implemented
573
+ in the handler class.
574
+
575
+ Examples
576
+ ========
577
+
578
+ >>> from sympy import Add, Expr, Symbol
579
+ >>> from sympy.core.add import add
580
+
581
+ >>> class NewExpr(Expr):
582
+ ... @property
583
+ ... def _add_handler(self):
584
+ ... return NewAdd
585
+ >>> class NewAdd(NewExpr, Add):
586
+ ... pass
587
+ >>> add.register_handlerclass((Add, NewAdd), NewAdd)
588
+
589
+ >>> a, b = Symbol('a'), NewExpr()
590
+ >>> add(a, b) == NewAdd(a, b)
591
+ True
592
+
593
+ """
594
+ def __init__(self, name, doc=None):
595
+ self.name = name
596
+ self.doc = doc
597
+ self.handlerattr = "_%s_handler" % name
598
+ self._handlergetter = attrgetter(self.handlerattr)
599
+ self._dispatcher = Dispatcher(name)
600
+
601
+ def __repr__(self):
602
+ return "<dispatched %s>" % self.name
603
+
604
+ def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup):
605
+ """
606
+ Register the handler class for two classes, in both straight and reversed order.
607
+
608
+ Paramteters
609
+ ===========
610
+
611
+ classes : tuple of two types
612
+ Classes who are compared with each other.
613
+
614
+ typ:
615
+ Class which is registered to represent *cls1* and *cls2*.
616
+ Handler method of *self* must be implemented in this class.
617
+ """
618
+ if not len(classes) == 2:
619
+ raise RuntimeError(
620
+ "Only binary dispatch is supported, but got %s types: <%s>." % (
621
+ len(classes), str_signature(classes)
622
+ ))
623
+ if len(set(classes)) == 1:
624
+ raise RuntimeError(
625
+ "Duplicate types <%s> cannot be dispatched." % str_signature(classes)
626
+ )
627
+ self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity)
628
+ self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity)
629
+
630
+ @cacheit
631
+ def __call__(self, *args, _sympify=True, **kwargs):
632
+ """
633
+ Parameters
634
+ ==========
635
+
636
+ *args :
637
+ Arguments which are operated
638
+ """
639
+ if _sympify:
640
+ args = tuple(map(_sympify_, args))
641
+ handlers = frozenset(map(self._handlergetter, args))
642
+
643
+ # no need to sympify again
644
+ return self.dispatch(handlers)(*args, _sympify=False, **kwargs)
645
+
646
+ @cacheit
647
+ def dispatch(self, handlers):
648
+ """
649
+ Select the handler class, and return its handler method.
650
+ """
651
+
652
+ # Quick exit for the case where all handlers are same
653
+ if len(handlers) == 1:
654
+ h, = handlers
655
+ if not isinstance(h, type):
656
+ raise RuntimeError("Handler {!r} is not a type.".format(h))
657
+ return h
658
+
659
+ # Recursively select with registered binary priority
660
+ for i, typ in enumerate(handlers):
661
+
662
+ if not isinstance(typ, type):
663
+ raise RuntimeError("Handler {!r} is not a type.".format(typ))
664
+
665
+ if i == 0:
666
+ handler = typ
667
+ else:
668
+ prev_handler = handler
669
+ handler = self._dispatcher.dispatch(prev_handler, typ)
670
+
671
+ if not isinstance(handler, type):
672
+ raise RuntimeError(
673
+ "Dispatcher for {!r} and {!r} must return a type, but got {!r}".format(
674
+ prev_handler, typ, handler
675
+ ))
676
+
677
+ # return handler class
678
+ return handler
679
+
680
+ @property
681
+ def __doc__(self):
682
+ docs = [
683
+ "Multiply dispatched associative operator: %s" % self.name,
684
+ "Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details"
685
+ ]
686
+
687
+ if self.doc:
688
+ docs.append(self.doc)
689
+
690
+ s = "Registered handler classes\n"
691
+ s += '=' * len(s)
692
+ docs.append(s)
693
+
694
+ amb_sigs = []
695
+
696
+ typ_sigs = defaultdict(list)
697
+ for sigs in self._dispatcher.ordering[::-1]:
698
+ key = self._dispatcher.funcs[sigs]
699
+ typ_sigs[key].append(sigs)
700
+
701
+ for typ, sigs in typ_sigs.items():
702
+
703
+ sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
704
+
705
+ if isinstance(typ, RaiseNotImplementedError):
706
+ amb_sigs.append(sigs_str)
707
+ continue
708
+
709
+ s = 'Inputs: %s\n' % sigs_str
710
+ s += '-' * len(s) + '\n'
711
+ s += typ.__name__
712
+ docs.append(s)
713
+
714
+ if amb_sigs:
715
+ s = "Ambiguous handler classes\n"
716
+ s += '=' * len(s)
717
+ docs.append(s)
718
+
719
+ s = '\n'.join(amb_sigs)
720
+ docs.append(s)
721
+
722
+ return '\n\n'.join(docs)
venv/lib/python3.10/site-packages/sympy/core/random.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ When you need to use random numbers in SymPy library code, import from here
3
+ so there is only one generator working for SymPy. Imports from here should
4
+ behave the same as if they were being imported from Python's random module.
5
+ But only the routines currently used in SymPy are included here. To use others
6
+ import ``rng`` and access the method directly. For example, to capture the
7
+ current state of the generator use ``rng.getstate()``.
8
+
9
+ There is intentionally no Random to import from here. If you want
10
+ to control the state of the generator, import ``seed`` and call it
11
+ with or without an argument to set the state.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy.core.random import random, seed
17
+ >>> assert random() < 1
18
+ >>> seed(1); a = random()
19
+ >>> b = random()
20
+ >>> seed(1); c = random()
21
+ >>> assert a == c
22
+ >>> assert a != b # remote possibility this will fail
23
+
24
+ """
25
+ from sympy.utilities.iterables import is_sequence
26
+ from sympy.utilities.misc import as_int
27
+
28
+ import random as _random
29
+ rng = _random.Random()
30
+
31
+ choice = rng.choice
32
+ random = rng.random
33
+ randint = rng.randint
34
+ randrange = rng.randrange
35
+ sample = rng.sample
36
+ # seed = rng.seed
37
+ shuffle = rng.shuffle
38
+ uniform = rng.uniform
39
+
40
+ _assumptions_rng = _random.Random()
41
+ _assumptions_shuffle = _assumptions_rng.shuffle
42
+
43
+
44
+ def seed(a=None, version=2):
45
+ rng.seed(a=a, version=version)
46
+ _assumptions_rng.seed(a=a, version=version)
47
+
48
+
49
+ def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None):
50
+ """
51
+ Return a random complex number.
52
+
53
+ To reduce chance of hitting branch cuts or anything, we guarantee
54
+ b <= Im z <= d, a <= Re z <= c
55
+
56
+ When rational is True, a rational approximation to a random number
57
+ is obtained within specified tolerance, if any.
58
+ """
59
+ from sympy.core.numbers import I
60
+ from sympy.simplify.simplify import nsimplify
61
+ A, B = uniform(a, c), uniform(b, d)
62
+ if not rational:
63
+ return A + I*B
64
+ return (nsimplify(A, rational=True, tolerance=tolerance) +
65
+ I*nsimplify(B, rational=True, tolerance=tolerance))
66
+
67
+
68
+ def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1):
69
+ """
70
+ Test numerically that f and g agree when evaluated in the argument z.
71
+
72
+ If z is None, all symbols will be tested. This routine does not test
73
+ whether there are Floats present with precision higher than 15 digits
74
+ so if there are, your results may not be what you expect due to round-
75
+ off errors.
76
+
77
+ Examples
78
+ ========
79
+
80
+ >>> from sympy import sin, cos
81
+ >>> from sympy.abc import x
82
+ >>> from sympy.core.random import verify_numerically as tn
83
+ >>> tn(sin(x)**2 + cos(x)**2, 1, x)
84
+ True
85
+ """
86
+ from sympy.core.symbol import Symbol
87
+ from sympy.core.sympify import sympify
88
+ from sympy.core.numbers import comp
89
+ f, g = (sympify(i) for i in (f, g))
90
+ if z is None:
91
+ z = f.free_symbols | g.free_symbols
92
+ elif isinstance(z, Symbol):
93
+ z = [z]
94
+ reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z]))
95
+ z1 = f.subs(reps).n()
96
+ z2 = g.subs(reps).n()
97
+ return comp(z1, z2, tol)
98
+
99
+
100
+ def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1):
101
+ """
102
+ Test numerically that the symbolically computed derivative of f
103
+ with respect to z is correct.
104
+
105
+ This routine does not test whether there are Floats present with
106
+ precision higher than 15 digits so if there are, your results may
107
+ not be what you expect due to round-off errors.
108
+
109
+ Examples
110
+ ========
111
+
112
+ >>> from sympy import sin
113
+ >>> from sympy.abc import x
114
+ >>> from sympy.core.random import test_derivative_numerically as td
115
+ >>> td(sin(x), x)
116
+ True
117
+ """
118
+ from sympy.core.numbers import comp
119
+ from sympy.core.function import Derivative
120
+ z0 = random_complex_number(a, b, c, d)
121
+ f1 = f.diff(z).subs(z, z0)
122
+ f2 = Derivative(f, z).doit_numerically(z0)
123
+ return comp(f1.n(), f2.n(), tol)
124
+
125
+
126
+ def _randrange(seed=None):
127
+ """Return a randrange generator.
128
+
129
+ ``seed`` can be
130
+
131
+ * None - return randomly seeded generator
132
+ * int - return a generator seeded with the int
133
+ * list - the values to be returned will be taken from the list
134
+ in the order given; the provided list is not modified.
135
+
136
+ Examples
137
+ ========
138
+
139
+ >>> from sympy.core.random import _randrange
140
+ >>> rr = _randrange()
141
+ >>> rr(1000) # doctest: +SKIP
142
+ 999
143
+ >>> rr = _randrange(3)
144
+ >>> rr(1000) # doctest: +SKIP
145
+ 238
146
+ >>> rr = _randrange([0, 5, 1, 3, 4])
147
+ >>> rr(3), rr(3)
148
+ (0, 1)
149
+ """
150
+ if seed is None:
151
+ return randrange
152
+ elif isinstance(seed, int):
153
+ rng.seed(seed)
154
+ return randrange
155
+ elif is_sequence(seed):
156
+ seed = list(seed) # make a copy
157
+ seed.reverse()
158
+
159
+ def give(a, b=None, seq=seed):
160
+ if b is None:
161
+ a, b = 0, a
162
+ a, b = as_int(a), as_int(b)
163
+ w = b - a
164
+ if w < 1:
165
+ raise ValueError('_randrange got empty range')
166
+ try:
167
+ x = seq.pop()
168
+ except IndexError:
169
+ raise ValueError('_randrange sequence was too short')
170
+ if a <= x < b:
171
+ return x
172
+ else:
173
+ return give(a, b, seq)
174
+ return give
175
+ else:
176
+ raise ValueError('_randrange got an unexpected seed')
177
+
178
+
179
+ def _randint(seed=None):
180
+ """Return a randint generator.
181
+
182
+ ``seed`` can be
183
+
184
+ * None - return randomly seeded generator
185
+ * int - return a generator seeded with the int
186
+ * list - the values to be returned will be taken from the list
187
+ in the order given; the provided list is not modified.
188
+
189
+ Examples
190
+ ========
191
+
192
+ >>> from sympy.core.random import _randint
193
+ >>> ri = _randint()
194
+ >>> ri(1, 1000) # doctest: +SKIP
195
+ 999
196
+ >>> ri = _randint(3)
197
+ >>> ri(1, 1000) # doctest: +SKIP
198
+ 238
199
+ >>> ri = _randint([0, 5, 1, 2, 4])
200
+ >>> ri(1, 3), ri(1, 3)
201
+ (1, 2)
202
+ """
203
+ if seed is None:
204
+ return randint
205
+ elif isinstance(seed, int):
206
+ rng.seed(seed)
207
+ return randint
208
+ elif is_sequence(seed):
209
+ seed = list(seed) # make a copy
210
+ seed.reverse()
211
+
212
+ def give(a, b, seq=seed):
213
+ a, b = as_int(a), as_int(b)
214
+ w = b - a
215
+ if w < 0:
216
+ raise ValueError('_randint got empty range')
217
+ try:
218
+ x = seq.pop()
219
+ except IndexError:
220
+ raise ValueError('_randint sequence was too short')
221
+ if a <= x <= b:
222
+ return x
223
+ else:
224
+ return give(a, b, seq)
225
+ return give
226
+ else:
227
+ raise ValueError('_randint got an unexpected seed')
venv/lib/python3.10/site-packages/sympy/core/rules.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Replacement rules.
3
+ """
4
+
5
+ class Transform:
6
+ """
7
+ Immutable mapping that can be used as a generic transformation rule.
8
+
9
+ Parameters
10
+ ==========
11
+
12
+ transform : callable
13
+ Computes the value corresponding to any key.
14
+
15
+ filter : callable, optional
16
+ If supplied, specifies which objects are in the mapping.
17
+
18
+ Examples
19
+ ========
20
+
21
+ >>> from sympy.core.rules import Transform
22
+ >>> from sympy.abc import x
23
+
24
+ This Transform will return, as a value, one more than the key:
25
+
26
+ >>> add1 = Transform(lambda x: x + 1)
27
+ >>> add1[1]
28
+ 2
29
+ >>> add1[x]
30
+ x + 1
31
+
32
+ By default, all values are considered to be in the dictionary. If a filter
33
+ is supplied, only the objects for which it returns True are considered as
34
+ being in the dictionary:
35
+
36
+ >>> add1_odd = Transform(lambda x: x + 1, lambda x: x%2 == 1)
37
+ >>> 2 in add1_odd
38
+ False
39
+ >>> add1_odd.get(2, 0)
40
+ 0
41
+ >>> 3 in add1_odd
42
+ True
43
+ >>> add1_odd[3]
44
+ 4
45
+ >>> add1_odd.get(3, 0)
46
+ 4
47
+ """
48
+
49
+ def __init__(self, transform, filter=lambda x: True):
50
+ self._transform = transform
51
+ self._filter = filter
52
+
53
+ def __contains__(self, item):
54
+ return self._filter(item)
55
+
56
+ def __getitem__(self, key):
57
+ if self._filter(key):
58
+ return self._transform(key)
59
+ else:
60
+ raise KeyError(key)
61
+
62
+ def get(self, item, default=None):
63
+ if item in self:
64
+ return self[item]
65
+ else:
66
+ return default
venv/lib/python3.10/site-packages/sympy/core/singleton.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Singleton mechanism"""
2
+
3
+
4
+ from .core import Registry
5
+ from .sympify import sympify
6
+
7
+
8
+ class SingletonRegistry(Registry):
9
+ """
10
+ The registry for the singleton classes (accessible as ``S``).
11
+
12
+ Explanation
13
+ ===========
14
+
15
+ This class serves as two separate things.
16
+
17
+ The first thing it is is the ``SingletonRegistry``. Several classes in
18
+ SymPy appear so often that they are singletonized, that is, using some
19
+ metaprogramming they are made so that they can only be instantiated once
20
+ (see the :class:`sympy.core.singleton.Singleton` class for details). For
21
+ instance, every time you create ``Integer(0)``, this will return the same
22
+ instance, :class:`sympy.core.numbers.Zero`. All singleton instances are
23
+ attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as
24
+ ``S.Zero``.
25
+
26
+ Singletonization offers two advantages: it saves memory, and it allows
27
+ fast comparison. It saves memory because no matter how many times the
28
+ singletonized objects appear in expressions in memory, they all point to
29
+ the same single instance in memory. The fast comparison comes from the
30
+ fact that you can use ``is`` to compare exact instances in Python
31
+ (usually, you need to use ``==`` to compare things). ``is`` compares
32
+ objects by memory address, and is very fast.
33
+
34
+ Examples
35
+ ========
36
+
37
+ >>> from sympy import S, Integer
38
+ >>> a = Integer(0)
39
+ >>> a is S.Zero
40
+ True
41
+
42
+ For the most part, the fact that certain objects are singletonized is an
43
+ implementation detail that users should not need to worry about. In SymPy
44
+ library code, ``is`` comparison is often used for performance purposes
45
+ The primary advantage of ``S`` for end users is the convenient access to
46
+ certain instances that are otherwise difficult to type, like ``S.Half``
47
+ (instead of ``Rational(1, 2)``).
48
+
49
+ When using ``is`` comparison, make sure the argument is sympified. For
50
+ instance,
51
+
52
+ >>> x = 0
53
+ >>> x is S.Zero
54
+ False
55
+
56
+ This problem is not an issue when using ``==``, which is recommended for
57
+ most use-cases:
58
+
59
+ >>> 0 == S.Zero
60
+ True
61
+
62
+ The second thing ``S`` is is a shortcut for
63
+ :func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is
64
+ the function that converts Python objects such as ``int(1)`` into SymPy
65
+ objects such as ``Integer(1)``. It also converts the string form of an
66
+ expression into a SymPy expression, like ``sympify("x**2")`` ->
67
+ ``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)``
68
+ (basically, ``S.__call__`` has been defined to call ``sympify``).
69
+
70
+ This is for convenience, since ``S`` is a single letter. It's mostly
71
+ useful for defining rational numbers. Consider an expression like ``x +
72
+ 1/2``. If you enter this directly in Python, it will evaluate the ``1/2``
73
+ and give ``0.5``, because both arguments are ints (see also
74
+ :ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want
75
+ the quotient of two integers to give an exact rational number. The way
76
+ Python's evaluation works, at least one side of an operator needs to be a
77
+ SymPy object for the SymPy evaluation to take over. You could write this
78
+ as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter
79
+ version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the
80
+ division will return a ``Rational`` type, since it will call
81
+ ``Integer.__truediv__``, which knows how to return a ``Rational``.
82
+
83
+ """
84
+ __slots__ = ()
85
+
86
+ # Also allow things like S(5)
87
+ __call__ = staticmethod(sympify)
88
+
89
+ def __init__(self):
90
+ self._classes_to_install = {}
91
+ # Dict of classes that have been registered, but that have not have been
92
+ # installed as an attribute of this SingletonRegistry.
93
+ # Installation automatically happens at the first attempt to access the
94
+ # attribute.
95
+ # The purpose of this is to allow registration during class
96
+ # initialization during import, but not trigger object creation until
97
+ # actual use (which should not happen until after all imports are
98
+ # finished).
99
+
100
+ def register(self, cls):
101
+ # Make sure a duplicate class overwrites the old one
102
+ if hasattr(self, cls.__name__):
103
+ delattr(self, cls.__name__)
104
+ self._classes_to_install[cls.__name__] = cls
105
+
106
+ def __getattr__(self, name):
107
+ """Python calls __getattr__ if no attribute of that name was installed
108
+ yet.
109
+
110
+ Explanation
111
+ ===========
112
+
113
+ This __getattr__ checks whether a class with the requested name was
114
+ already registered but not installed; if no, raises an AttributeError.
115
+ Otherwise, retrieves the class, calculates its singleton value, installs
116
+ it as an attribute of the given name, and unregisters the class."""
117
+ if name not in self._classes_to_install:
118
+ raise AttributeError(
119
+ "Attribute '%s' was not installed on SymPy registry %s" % (
120
+ name, self))
121
+ class_to_install = self._classes_to_install[name]
122
+ value_to_install = class_to_install()
123
+ self.__setattr__(name, value_to_install)
124
+ del self._classes_to_install[name]
125
+ return value_to_install
126
+
127
+ def __repr__(self):
128
+ return "S"
129
+
130
+ S = SingletonRegistry()
131
+
132
+
133
+ class Singleton(type):
134
+ """
135
+ Metaclass for singleton classes.
136
+
137
+ Explanation
138
+ ===========
139
+
140
+ A singleton class has only one instance which is returned every time the
141
+ class is instantiated. Additionally, this instance can be accessed through
142
+ the global registry object ``S`` as ``S.<class_name>``.
143
+
144
+ Examples
145
+ ========
146
+
147
+ >>> from sympy import S, Basic
148
+ >>> from sympy.core.singleton import Singleton
149
+ >>> class MySingleton(Basic, metaclass=Singleton):
150
+ ... pass
151
+ >>> Basic() is Basic()
152
+ False
153
+ >>> MySingleton() is MySingleton()
154
+ True
155
+ >>> S.MySingleton is MySingleton()
156
+ True
157
+
158
+ Notes
159
+ =====
160
+
161
+ Instance creation is delayed until the first time the value is accessed.
162
+ (SymPy versions before 1.0 would create the instance during class
163
+ creation time, which would be prone to import cycles.)
164
+ """
165
+ def __init__(cls, *args, **kwargs):
166
+ cls._instance = obj = Basic.__new__(cls)
167
+ cls.__new__ = lambda cls: obj
168
+ cls.__getnewargs__ = lambda obj: ()
169
+ cls.__getstate__ = lambda obj: None
170
+ S.register(cls)
171
+
172
+
173
+ # Delayed to avoid cyclic import
174
+ from .basic import Basic
venv/lib/python3.10/site-packages/sympy/core/symbol.py ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from .assumptions import StdFactKB, _assume_defined
4
+ from .basic import Basic, Atom
5
+ from .cache import cacheit
6
+ from .containers import Tuple
7
+ from .expr import Expr, AtomicExpr
8
+ from .function import AppliedUndef, FunctionClass
9
+ from .kind import NumberKind, UndefinedKind
10
+ from .logic import fuzzy_bool
11
+ from .singleton import S
12
+ from .sorting import ordered
13
+ from .sympify import sympify
14
+ from sympy.logic.boolalg import Boolean
15
+ from sympy.utilities.iterables import sift, is_sequence
16
+ from sympy.utilities.misc import filldedent
17
+
18
+ import string
19
+ import re as _re
20
+ import random
21
+ from itertools import product
22
+ from typing import Any
23
+
24
+
25
+ class Str(Atom):
26
+ """
27
+ Represents string in SymPy.
28
+
29
+ Explanation
30
+ ===========
31
+
32
+ Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy
33
+ objects, e.g. denoting the name of the instance. However, since ``Symbol``
34
+ represents mathematical scalar, this class should be used instead.
35
+
36
+ """
37
+ __slots__ = ('name',)
38
+
39
+ def __new__(cls, name, **kwargs):
40
+ if not isinstance(name, str):
41
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
42
+ obj = Expr.__new__(cls, **kwargs)
43
+ obj.name = name
44
+ return obj
45
+
46
+ def __getnewargs__(self):
47
+ return (self.name,)
48
+
49
+ def _hashable_content(self):
50
+ return (self.name,)
51
+
52
+
53
+ def _filter_assumptions(kwargs):
54
+ """Split the given dict into assumptions and non-assumptions.
55
+ Keys are taken as assumptions if they correspond to an
56
+ entry in ``_assume_defined``.
57
+ """
58
+ assumptions, nonassumptions = map(dict, sift(kwargs.items(),
59
+ lambda i: i[0] in _assume_defined,
60
+ binary=True))
61
+ Symbol._sanitize(assumptions)
62
+ return assumptions, nonassumptions
63
+
64
+ def _symbol(s, matching_symbol=None, **assumptions):
65
+ """Return s if s is a Symbol, else if s is a string, return either
66
+ the matching_symbol if the names are the same or else a new symbol
67
+ with the same assumptions as the matching symbol (or the
68
+ assumptions as provided).
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import Symbol
74
+ >>> from sympy.core.symbol import _symbol
75
+ >>> _symbol('y')
76
+ y
77
+ >>> _.is_real is None
78
+ True
79
+ >>> _symbol('y', real=True).is_real
80
+ True
81
+
82
+ >>> x = Symbol('x')
83
+ >>> _symbol(x, real=True)
84
+ x
85
+ >>> _.is_real is None # ignore attribute if s is a Symbol
86
+ True
87
+
88
+ Below, the variable sym has the name 'foo':
89
+
90
+ >>> sym = Symbol('foo', real=True)
91
+
92
+ Since 'x' is not the same as sym's name, a new symbol is created:
93
+
94
+ >>> _symbol('x', sym).name
95
+ 'x'
96
+
97
+ It will acquire any assumptions give:
98
+
99
+ >>> _symbol('x', sym, real=False).is_real
100
+ False
101
+
102
+ Since 'foo' is the same as sym's name, sym is returned
103
+
104
+ >>> _symbol('foo', sym)
105
+ foo
106
+
107
+ Any assumptions given are ignored:
108
+
109
+ >>> _symbol('foo', sym, real=False).is_real
110
+ True
111
+
112
+ NB: the symbol here may not be the same as a symbol with the same
113
+ name defined elsewhere as a result of different assumptions.
114
+
115
+ See Also
116
+ ========
117
+
118
+ sympy.core.symbol.Symbol
119
+
120
+ """
121
+ if isinstance(s, str):
122
+ if matching_symbol and matching_symbol.name == s:
123
+ return matching_symbol
124
+ return Symbol(s, **assumptions)
125
+ elif isinstance(s, Symbol):
126
+ return s
127
+ else:
128
+ raise ValueError('symbol must be string for symbol name or Symbol')
129
+
130
+ def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions):
131
+ """
132
+ Return a symbol whose name is derivated from *xname* but is unique
133
+ from any other symbols in *exprs*.
134
+
135
+ *xname* and symbol names in *exprs* are passed to *compare* to be
136
+ converted to comparable forms. If ``compare(xname)`` is not unique,
137
+ it is recursively passed to *modify* until unique name is acquired.
138
+
139
+ Parameters
140
+ ==========
141
+
142
+ xname : str or Symbol
143
+ Base name for the new symbol.
144
+
145
+ exprs : Expr or iterable of Expr
146
+ Expressions whose symbols are compared to *xname*.
147
+
148
+ compare : function
149
+ Unary function which transforms *xname* and symbol names from
150
+ *exprs* to comparable form.
151
+
152
+ modify : function
153
+ Unary function which modifies the string. Default is appending
154
+ the number, or increasing the number if exists.
155
+
156
+ Examples
157
+ ========
158
+
159
+ By default, a number is appended to *xname* to generate unique name.
160
+ If the number already exists, it is recursively increased.
161
+
162
+ >>> from sympy.core.symbol import uniquely_named_symbol, Symbol
163
+ >>> uniquely_named_symbol('x', Symbol('x'))
164
+ x0
165
+ >>> uniquely_named_symbol('x', (Symbol('x'), Symbol('x0')))
166
+ x1
167
+ >>> uniquely_named_symbol('x0', (Symbol('x1'), Symbol('x0')))
168
+ x2
169
+
170
+ Name generation can be controlled by passing *modify* parameter.
171
+
172
+ >>> from sympy.abc import x
173
+ >>> uniquely_named_symbol('x', x, modify=lambda s: 2*s)
174
+ xx
175
+
176
+ """
177
+ def numbered_string_incr(s, start=0):
178
+ if not s:
179
+ return str(start)
180
+ i = len(s) - 1
181
+ while i != -1:
182
+ if not s[i].isdigit():
183
+ break
184
+ i -= 1
185
+ n = str(int(s[i + 1:] or start - 1) + 1)
186
+ return s[:i + 1] + n
187
+
188
+ default = None
189
+ if is_sequence(xname):
190
+ xname, default = xname
191
+ x = compare(xname)
192
+ if not exprs:
193
+ return _symbol(x, default, **assumptions)
194
+ if not is_sequence(exprs):
195
+ exprs = [exprs]
196
+ names = set().union(
197
+ [i.name for e in exprs for i in e.atoms(Symbol)] +
198
+ [i.func.name for e in exprs for i in e.atoms(AppliedUndef)])
199
+ if modify is None:
200
+ modify = numbered_string_incr
201
+ while any(x == compare(s) for s in names):
202
+ x = modify(x)
203
+ return _symbol(x, default, **assumptions)
204
+ _uniquely_named_symbol = uniquely_named_symbol
205
+
206
+ class Symbol(AtomicExpr, Boolean):
207
+ """
208
+ Assumptions:
209
+ commutative = True
210
+
211
+ You can override the default assumptions in the constructor.
212
+
213
+ Examples
214
+ ========
215
+
216
+ >>> from sympy import symbols
217
+ >>> A,B = symbols('A,B', commutative = False)
218
+ >>> bool(A*B != B*A)
219
+ True
220
+ >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative
221
+ True
222
+
223
+ """
224
+
225
+ is_comparable = False
226
+
227
+ __slots__ = ('name', '_assumptions_orig', '_assumptions0')
228
+
229
+ name: str
230
+
231
+ is_Symbol = True
232
+ is_symbol = True
233
+
234
+ @property
235
+ def kind(self):
236
+ if self.is_commutative:
237
+ return NumberKind
238
+ return UndefinedKind
239
+
240
+ @property
241
+ def _diff_wrt(self):
242
+ """Allow derivatives wrt Symbols.
243
+
244
+ Examples
245
+ ========
246
+
247
+ >>> from sympy import Symbol
248
+ >>> x = Symbol('x')
249
+ >>> x._diff_wrt
250
+ True
251
+ """
252
+ return True
253
+
254
+ @staticmethod
255
+ def _sanitize(assumptions, obj=None):
256
+ """Remove None, convert values to bool, check commutativity *in place*.
257
+ """
258
+
259
+ # be strict about commutativity: cannot be None
260
+ is_commutative = fuzzy_bool(assumptions.get('commutative', True))
261
+ if is_commutative is None:
262
+ whose = '%s ' % obj.__name__ if obj else ''
263
+ raise ValueError(
264
+ '%scommutativity must be True or False.' % whose)
265
+
266
+ # sanitize other assumptions so 1 -> True and 0 -> False
267
+ for key in list(assumptions.keys()):
268
+ v = assumptions[key]
269
+ if v is None:
270
+ assumptions.pop(key)
271
+ continue
272
+ assumptions[key] = bool(v)
273
+
274
+ def _merge(self, assumptions):
275
+ base = self.assumptions0
276
+ for k in set(assumptions) & set(base):
277
+ if assumptions[k] != base[k]:
278
+ raise ValueError(filldedent('''
279
+ non-matching assumptions for %s: existing value
280
+ is %s and new value is %s''' % (
281
+ k, base[k], assumptions[k])))
282
+ base.update(assumptions)
283
+ return base
284
+
285
+ def __new__(cls, name, **assumptions):
286
+ """Symbols are identified by name and assumptions::
287
+
288
+ >>> from sympy import Symbol
289
+ >>> Symbol("x") == Symbol("x")
290
+ True
291
+ >>> Symbol("x", real=True) == Symbol("x", real=False)
292
+ False
293
+
294
+ """
295
+ cls._sanitize(assumptions, cls)
296
+ return Symbol.__xnew_cached_(cls, name, **assumptions)
297
+
298
+ @staticmethod
299
+ def __xnew__(cls, name, **assumptions): # never cached (e.g. dummy)
300
+ if not isinstance(name, str):
301
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
302
+
303
+ # This is retained purely so that srepr can include commutative=True if
304
+ # that was explicitly specified but not if it was not. Ideally srepr
305
+ # should not distinguish these cases because the symbols otherwise
306
+ # compare equal and are considered equivalent.
307
+ #
308
+ # See https://github.com/sympy/sympy/issues/8873
309
+ #
310
+ assumptions_orig = assumptions.copy()
311
+
312
+ # The only assumption that is assumed by default is comutative=True:
313
+ assumptions.setdefault('commutative', True)
314
+
315
+ assumptions_kb = StdFactKB(assumptions)
316
+ assumptions0 = dict(assumptions_kb)
317
+
318
+ obj = Expr.__new__(cls)
319
+ obj.name = name
320
+
321
+ obj._assumptions = assumptions_kb
322
+ obj._assumptions_orig = assumptions_orig
323
+ obj._assumptions0 = assumptions0
324
+
325
+ # The three assumptions dicts are all a little different:
326
+ #
327
+ # >>> from sympy import Symbol
328
+ # >>> x = Symbol('x', finite=True)
329
+ # >>> x.is_positive # query an assumption
330
+ # >>> x._assumptions
331
+ # {'finite': True, 'infinite': False, 'commutative': True, 'positive': None}
332
+ # >>> x._assumptions0
333
+ # {'finite': True, 'infinite': False, 'commutative': True}
334
+ # >>> x._assumptions_orig
335
+ # {'finite': True}
336
+ #
337
+ # Two symbols with the same name are equal if their _assumptions0 are
338
+ # the same. Arguably it should be _assumptions_orig that is being
339
+ # compared because that is more transparent to the user (it is
340
+ # what was passed to the constructor modulo changes made by _sanitize).
341
+
342
+ return obj
343
+
344
+ @staticmethod
345
+ @cacheit
346
+ def __xnew_cached_(cls, name, **assumptions): # symbols are always cached
347
+ return Symbol.__xnew__(cls, name, **assumptions)
348
+
349
+ def __getnewargs_ex__(self):
350
+ return ((self.name,), self._assumptions_orig)
351
+
352
+ # NOTE: __setstate__ is not needed for pickles created by __getnewargs_ex__
353
+ # but was used before Symbol was changed to use __getnewargs_ex__ in v1.9.
354
+ # Pickles created in previous SymPy versions will still need __setstate__
355
+ # so that they can be unpickled in SymPy > v1.9.
356
+
357
+ def __setstate__(self, state):
358
+ for name, value in state.items():
359
+ setattr(self, name, value)
360
+
361
+ def _hashable_content(self):
362
+ # Note: user-specified assumptions not hashed, just derived ones
363
+ return (self.name,) + tuple(sorted(self.assumptions0.items()))
364
+
365
+ def _eval_subs(self, old, new):
366
+ if old.is_Pow:
367
+ from sympy.core.power import Pow
368
+ return Pow(self, S.One, evaluate=False)._eval_subs(old, new)
369
+
370
+ def _eval_refine(self, assumptions):
371
+ return self
372
+
373
+ @property
374
+ def assumptions0(self):
375
+ return self._assumptions0.copy()
376
+
377
+ @cacheit
378
+ def sort_key(self, order=None):
379
+ return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One
380
+
381
+ def as_dummy(self):
382
+ # only put commutativity in explicitly if it is False
383
+ return Dummy(self.name) if self.is_commutative is not False \
384
+ else Dummy(self.name, commutative=self.is_commutative)
385
+
386
+ def as_real_imag(self, deep=True, **hints):
387
+ if hints.get('ignore') == self:
388
+ return None
389
+ else:
390
+ from sympy.functions.elementary.complexes import im, re
391
+ return (re(self), im(self))
392
+
393
+ def is_constant(self, *wrt, **flags):
394
+ if not wrt:
395
+ return False
396
+ return self not in wrt
397
+
398
+ @property
399
+ def free_symbols(self):
400
+ return {self}
401
+
402
+ binary_symbols = free_symbols # in this case, not always
403
+
404
+ def as_set(self):
405
+ return S.UniversalSet
406
+
407
+
408
+ class Dummy(Symbol):
409
+ """Dummy symbols are each unique, even if they have the same name:
410
+
411
+ Examples
412
+ ========
413
+
414
+ >>> from sympy import Dummy
415
+ >>> Dummy("x") == Dummy("x")
416
+ False
417
+
418
+ If a name is not supplied then a string value of an internal count will be
419
+ used. This is useful when a temporary variable is needed and the name
420
+ of the variable used in the expression is not important.
421
+
422
+ >>> Dummy() #doctest: +SKIP
423
+ _Dummy_10
424
+
425
+ """
426
+
427
+ # In the rare event that a Dummy object needs to be recreated, both the
428
+ # `name` and `dummy_index` should be passed. This is used by `srepr` for
429
+ # example:
430
+ # >>> d1 = Dummy()
431
+ # >>> d2 = eval(srepr(d1))
432
+ # >>> d2 == d1
433
+ # True
434
+ #
435
+ # If a new session is started between `srepr` and `eval`, there is a very
436
+ # small chance that `d2` will be equal to a previously-created Dummy.
437
+
438
+ _count = 0
439
+ _prng = random.Random()
440
+ _base_dummy_index = _prng.randint(10**6, 9*10**6)
441
+
442
+ __slots__ = ('dummy_index',)
443
+
444
+ is_Dummy = True
445
+
446
+ def __new__(cls, name=None, dummy_index=None, **assumptions):
447
+ if dummy_index is not None:
448
+ assert name is not None, "If you specify a dummy_index, you must also provide a name"
449
+
450
+ if name is None:
451
+ name = "Dummy_" + str(Dummy._count)
452
+
453
+ if dummy_index is None:
454
+ dummy_index = Dummy._base_dummy_index + Dummy._count
455
+ Dummy._count += 1
456
+
457
+ cls._sanitize(assumptions, cls)
458
+ obj = Symbol.__xnew__(cls, name, **assumptions)
459
+
460
+ obj.dummy_index = dummy_index
461
+
462
+ return obj
463
+
464
+ def __getnewargs_ex__(self):
465
+ return ((self.name, self.dummy_index), self._assumptions_orig)
466
+
467
+ @cacheit
468
+ def sort_key(self, order=None):
469
+ return self.class_key(), (
470
+ 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One
471
+
472
+ def _hashable_content(self):
473
+ return Symbol._hashable_content(self) + (self.dummy_index,)
474
+
475
+
476
+ class Wild(Symbol):
477
+ """
478
+ A Wild symbol matches anything, or anything
479
+ without whatever is explicitly excluded.
480
+
481
+ Parameters
482
+ ==========
483
+
484
+ name : str
485
+ Name of the Wild instance.
486
+
487
+ exclude : iterable, optional
488
+ Instances in ``exclude`` will not be matched.
489
+
490
+ properties : iterable of functions, optional
491
+ Functions, each taking an expressions as input
492
+ and returns a ``bool``. All functions in ``properties``
493
+ need to return ``True`` in order for the Wild instance
494
+ to match the expression.
495
+
496
+ Examples
497
+ ========
498
+
499
+ >>> from sympy import Wild, WildFunction, cos, pi
500
+ >>> from sympy.abc import x, y, z
501
+ >>> a = Wild('a')
502
+ >>> x.match(a)
503
+ {a_: x}
504
+ >>> pi.match(a)
505
+ {a_: pi}
506
+ >>> (3*x**2).match(a*x)
507
+ {a_: 3*x}
508
+ >>> cos(x).match(a)
509
+ {a_: cos(x)}
510
+ >>> b = Wild('b', exclude=[x])
511
+ >>> (3*x**2).match(b*x)
512
+ >>> b.match(a)
513
+ {a_: b_}
514
+ >>> A = WildFunction('A')
515
+ >>> A.match(a)
516
+ {a_: A_}
517
+
518
+ Tips
519
+ ====
520
+
521
+ When using Wild, be sure to use the exclude
522
+ keyword to make the pattern more precise.
523
+ Without the exclude pattern, you may get matches
524
+ that are technically correct, but not what you
525
+ wanted. For example, using the above without
526
+ exclude:
527
+
528
+ >>> from sympy import symbols
529
+ >>> a, b = symbols('a b', cls=Wild)
530
+ >>> (2 + 3*y).match(a*x + b*y)
531
+ {a_: 2/x, b_: 3}
532
+
533
+ This is technically correct, because
534
+ (2/x)*x + 3*y == 2 + 3*y, but you probably
535
+ wanted it to not match at all. The issue is that
536
+ you really did not want a and b to include x and y,
537
+ and the exclude parameter lets you specify exactly
538
+ this. With the exclude parameter, the pattern will
539
+ not match.
540
+
541
+ >>> a = Wild('a', exclude=[x, y])
542
+ >>> b = Wild('b', exclude=[x, y])
543
+ >>> (2 + 3*y).match(a*x + b*y)
544
+
545
+ Exclude also helps remove ambiguity from matches.
546
+
547
+ >>> E = 2*x**3*y*z
548
+ >>> a, b = symbols('a b', cls=Wild)
549
+ >>> E.match(a*b)
550
+ {a_: 2*y*z, b_: x**3}
551
+ >>> a = Wild('a', exclude=[x, y])
552
+ >>> E.match(a*b)
553
+ {a_: z, b_: 2*x**3*y}
554
+ >>> a = Wild('a', exclude=[x, y, z])
555
+ >>> E.match(a*b)
556
+ {a_: 2, b_: x**3*y*z}
557
+
558
+ Wild also accepts a ``properties`` parameter:
559
+
560
+ >>> a = Wild('a', properties=[lambda k: k.is_Integer])
561
+ >>> E.match(a*b)
562
+ {a_: 2, b_: x**3*y*z}
563
+
564
+ """
565
+ is_Wild = True
566
+
567
+ __slots__ = ('exclude', 'properties')
568
+
569
+ def __new__(cls, name, exclude=(), properties=(), **assumptions):
570
+ exclude = tuple([sympify(x) for x in exclude])
571
+ properties = tuple(properties)
572
+ cls._sanitize(assumptions, cls)
573
+ return Wild.__xnew__(cls, name, exclude, properties, **assumptions)
574
+
575
+ def __getnewargs__(self):
576
+ return (self.name, self.exclude, self.properties)
577
+
578
+ @staticmethod
579
+ @cacheit
580
+ def __xnew__(cls, name, exclude, properties, **assumptions):
581
+ obj = Symbol.__xnew__(cls, name, **assumptions)
582
+ obj.exclude = exclude
583
+ obj.properties = properties
584
+ return obj
585
+
586
+ def _hashable_content(self):
587
+ return super()._hashable_content() + (self.exclude, self.properties)
588
+
589
+ # TODO add check against another Wild
590
+ def matches(self, expr, repl_dict=None, old=False):
591
+ if any(expr.has(x) for x in self.exclude):
592
+ return None
593
+ if not all(f(expr) for f in self.properties):
594
+ return None
595
+ if repl_dict is None:
596
+ repl_dict = {}
597
+ else:
598
+ repl_dict = repl_dict.copy()
599
+ repl_dict[self] = expr
600
+ return repl_dict
601
+
602
+
603
+ _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])')
604
+
605
+
606
+ def symbols(names, *, cls=Symbol, **args) -> Any:
607
+ r"""
608
+ Transform strings into instances of :class:`Symbol` class.
609
+
610
+ :func:`symbols` function returns a sequence of symbols with names taken
611
+ from ``names`` argument, which can be a comma or whitespace delimited
612
+ string, or a sequence of strings::
613
+
614
+ >>> from sympy import symbols, Function
615
+
616
+ >>> x, y, z = symbols('x,y,z')
617
+ >>> a, b, c = symbols('a b c')
618
+
619
+ The type of output is dependent on the properties of input arguments::
620
+
621
+ >>> symbols('x')
622
+ x
623
+ >>> symbols('x,')
624
+ (x,)
625
+ >>> symbols('x,y')
626
+ (x, y)
627
+ >>> symbols(('a', 'b', 'c'))
628
+ (a, b, c)
629
+ >>> symbols(['a', 'b', 'c'])
630
+ [a, b, c]
631
+ >>> symbols({'a', 'b', 'c'})
632
+ {a, b, c}
633
+
634
+ If an iterable container is needed for a single symbol, set the ``seq``
635
+ argument to ``True`` or terminate the symbol name with a comma::
636
+
637
+ >>> symbols('x', seq=True)
638
+ (x,)
639
+
640
+ To reduce typing, range syntax is supported to create indexed symbols.
641
+ Ranges are indicated by a colon and the type of range is determined by
642
+ the character to the right of the colon. If the character is a digit
643
+ then all contiguous digits to the left are taken as the nonnegative
644
+ starting value (or 0 if there is no digit left of the colon) and all
645
+ contiguous digits to the right are taken as 1 greater than the ending
646
+ value::
647
+
648
+ >>> symbols('x:10')
649
+ (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
650
+
651
+ >>> symbols('x5:10')
652
+ (x5, x6, x7, x8, x9)
653
+ >>> symbols('x5(:2)')
654
+ (x50, x51)
655
+
656
+ >>> symbols('x5:10,y:5')
657
+ (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
658
+
659
+ >>> symbols(('x5:10', 'y:5'))
660
+ ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
661
+
662
+ If the character to the right of the colon is a letter, then the single
663
+ letter to the left (or 'a' if there is none) is taken as the start
664
+ and all characters in the lexicographic range *through* the letter to
665
+ the right are used as the range::
666
+
667
+ >>> symbols('x:z')
668
+ (x, y, z)
669
+ >>> symbols('x:c') # null range
670
+ ()
671
+ >>> symbols('x(:c)')
672
+ (xa, xb, xc)
673
+
674
+ >>> symbols(':c')
675
+ (a, b, c)
676
+
677
+ >>> symbols('a:d, x:z')
678
+ (a, b, c, d, x, y, z)
679
+
680
+ >>> symbols(('a:d', 'x:z'))
681
+ ((a, b, c, d), (x, y, z))
682
+
683
+ Multiple ranges are supported; contiguous numerical ranges should be
684
+ separated by parentheses to disambiguate the ending number of one
685
+ range from the starting number of the next::
686
+
687
+ >>> symbols('x:2(1:3)')
688
+ (x01, x02, x11, x12)
689
+ >>> symbols(':3:2') # parsing is from left to right
690
+ (00, 01, 10, 11, 20, 21)
691
+
692
+ Only one pair of parentheses surrounding ranges are removed, so to
693
+ include parentheses around ranges, double them. And to include spaces,
694
+ commas, or colons, escape them with a backslash::
695
+
696
+ >>> symbols('x((a:b))')
697
+ (x(a), x(b))
698
+ >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))'
699
+ (x(0,0), x(0,1))
700
+
701
+ All newly created symbols have assumptions set according to ``args``::
702
+
703
+ >>> a = symbols('a', integer=True)
704
+ >>> a.is_integer
705
+ True
706
+
707
+ >>> x, y, z = symbols('x,y,z', real=True)
708
+ >>> x.is_real and y.is_real and z.is_real
709
+ True
710
+
711
+ Despite its name, :func:`symbols` can create symbol-like objects like
712
+ instances of Function or Wild classes. To achieve this, set ``cls``
713
+ keyword argument to the desired type::
714
+
715
+ >>> symbols('f,g,h', cls=Function)
716
+ (f, g, h)
717
+
718
+ >>> type(_[0])
719
+ <class 'sympy.core.function.UndefinedFunction'>
720
+
721
+ """
722
+ result = []
723
+
724
+ if isinstance(names, str):
725
+ marker = 0
726
+ splitters = r'\,', r'\:', r'\ '
727
+ literals: list[tuple[str, str]] = []
728
+ for splitter in splitters:
729
+ if splitter in names:
730
+ while chr(marker) in names:
731
+ marker += 1
732
+ lit_char = chr(marker)
733
+ marker += 1
734
+ names = names.replace(splitter, lit_char)
735
+ literals.append((lit_char, splitter[1:]))
736
+ def literal(s):
737
+ if literals:
738
+ for c, l in literals:
739
+ s = s.replace(c, l)
740
+ return s
741
+
742
+ names = names.strip()
743
+ as_seq = names.endswith(',')
744
+ if as_seq:
745
+ names = names[:-1].rstrip()
746
+ if not names:
747
+ raise ValueError('no symbols given')
748
+
749
+ # split on commas
750
+ names = [n.strip() for n in names.split(',')]
751
+ if not all(n for n in names):
752
+ raise ValueError('missing symbol between commas')
753
+ # split on spaces
754
+ for i in range(len(names) - 1, -1, -1):
755
+ names[i: i + 1] = names[i].split()
756
+
757
+ seq = args.pop('seq', as_seq)
758
+
759
+ for name in names:
760
+ if not name:
761
+ raise ValueError('missing symbol')
762
+
763
+ if ':' not in name:
764
+ symbol = cls(literal(name), **args)
765
+ result.append(symbol)
766
+ continue
767
+
768
+ split: list[str] = _range.split(name)
769
+ split_list: list[list[str]] = []
770
+ # remove 1 layer of bounding parentheses around ranges
771
+ for i in range(len(split) - 1):
772
+ if i and ':' in split[i] and split[i] != ':' and \
773
+ split[i - 1].endswith('(') and \
774
+ split[i + 1].startswith(')'):
775
+ split[i - 1] = split[i - 1][:-1]
776
+ split[i + 1] = split[i + 1][1:]
777
+ for s in split:
778
+ if ':' in s:
779
+ if s.endswith(':'):
780
+ raise ValueError('missing end range')
781
+ a, b = s.split(':')
782
+ if b[-1] in string.digits:
783
+ a_i = 0 if not a else int(a)
784
+ b_i = int(b)
785
+ split_list.append([str(c) for c in range(a_i, b_i)])
786
+ else:
787
+ a = a or 'a'
788
+ split_list.append([string.ascii_letters[c] for c in range(
789
+ string.ascii_letters.index(a),
790
+ string.ascii_letters.index(b) + 1)]) # inclusive
791
+ if not split_list[-1]:
792
+ break
793
+ else:
794
+ split_list.append([s])
795
+ else:
796
+ seq = True
797
+ if len(split_list) == 1:
798
+ names = split_list[0]
799
+ else:
800
+ names = [''.join(s) for s in product(*split_list)]
801
+ if literals:
802
+ result.extend([cls(literal(s), **args) for s in names])
803
+ else:
804
+ result.extend([cls(s, **args) for s in names])
805
+
806
+ if not seq and len(result) <= 1:
807
+ if not result:
808
+ return ()
809
+ return result[0]
810
+
811
+ return tuple(result)
812
+ else:
813
+ for name in names:
814
+ result.append(symbols(name, cls=cls, **args))
815
+
816
+ return type(names)(result)
817
+
818
+
819
+ def var(names, **args):
820
+ """
821
+ Create symbols and inject them into the global namespace.
822
+
823
+ Explanation
824
+ ===========
825
+
826
+ This calls :func:`symbols` with the same arguments and puts the results
827
+ into the *global* namespace. It's recommended not to use :func:`var` in
828
+ library code, where :func:`symbols` has to be used::
829
+
830
+ Examples
831
+ ========
832
+
833
+ >>> from sympy import var
834
+
835
+ >>> var('x')
836
+ x
837
+ >>> x # noqa: F821
838
+ x
839
+
840
+ >>> var('a,ab,abc')
841
+ (a, ab, abc)
842
+ >>> abc # noqa: F821
843
+ abc
844
+
845
+ >>> var('x,y', real=True)
846
+ (x, y)
847
+ >>> x.is_real and y.is_real # noqa: F821
848
+ True
849
+
850
+ See :func:`symbols` documentation for more details on what kinds of
851
+ arguments can be passed to :func:`var`.
852
+
853
+ """
854
+ def traverse(symbols, frame):
855
+ """Recursively inject symbols to the global namespace. """
856
+ for symbol in symbols:
857
+ if isinstance(symbol, Basic):
858
+ frame.f_globals[symbol.name] = symbol
859
+ elif isinstance(symbol, FunctionClass):
860
+ frame.f_globals[symbol.__name__] = symbol
861
+ else:
862
+ traverse(symbol, frame)
863
+
864
+ from inspect import currentframe
865
+ frame = currentframe().f_back
866
+
867
+ try:
868
+ syms = symbols(names, **args)
869
+
870
+ if syms is not None:
871
+ if isinstance(syms, Basic):
872
+ frame.f_globals[syms.name] = syms
873
+ elif isinstance(syms, FunctionClass):
874
+ frame.f_globals[syms.__name__] = syms
875
+ else:
876
+ traverse(syms, frame)
877
+ finally:
878
+ del frame # break cyclic dependencies as stated in inspect docs
879
+
880
+ return syms
881
+
882
+ def disambiguate(*iter):
883
+ """
884
+ Return a Tuple containing the passed expressions with symbols
885
+ that appear the same when printed replaced with numerically
886
+ subscripted symbols, and all Dummy symbols replaced with Symbols.
887
+
888
+ Parameters
889
+ ==========
890
+
891
+ iter: list of symbols or expressions.
892
+
893
+ Examples
894
+ ========
895
+
896
+ >>> from sympy.core.symbol import disambiguate
897
+ >>> from sympy import Dummy, Symbol, Tuple
898
+ >>> from sympy.abc import y
899
+
900
+ >>> tup = Symbol('_x'), Dummy('x'), Dummy('x')
901
+ >>> disambiguate(*tup)
902
+ (x_2, x, x_1)
903
+
904
+ >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y)
905
+ >>> disambiguate(*eqs)
906
+ (x_1/y, x/y)
907
+
908
+ >>> ix = Symbol('x', integer=True)
909
+ >>> vx = Symbol('x')
910
+ >>> disambiguate(vx + ix)
911
+ (x + x_1,)
912
+
913
+ To make your own mapping of symbols to use, pass only the free symbols
914
+ of the expressions and create a dictionary:
915
+
916
+ >>> free = eqs.free_symbols
917
+ >>> mapping = dict(zip(free, disambiguate(*free)))
918
+ >>> eqs.xreplace(mapping)
919
+ (x_1/y, x/y)
920
+
921
+ """
922
+ new_iter = Tuple(*iter)
923
+ key = lambda x:tuple(sorted(x.assumptions0.items()))
924
+ syms = ordered(new_iter.free_symbols, keys=key)
925
+ mapping = {}
926
+ for s in syms:
927
+ mapping.setdefault(str(s).lstrip('_'), []).append(s)
928
+ reps = {}
929
+ for k in mapping:
930
+ # the first or only symbol doesn't get subscripted but make
931
+ # sure that it's a Symbol, not a Dummy
932
+ mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0)
933
+ if mapping[k][0] != mapk0:
934
+ reps[mapping[k][0]] = mapk0
935
+ # the others get subscripts (and are made into Symbols)
936
+ skip = 0
937
+ for i in range(1, len(mapping[k])):
938
+ while True:
939
+ name = "%s_%i" % (k, i + skip)
940
+ if name not in mapping:
941
+ break
942
+ skip += 1
943
+ ki = mapping[k][i]
944
+ reps[ki] = Symbol(name, **ki.assumptions0)
945
+ return new_iter.xreplace(reps)
venv/lib/python3.10/site-packages/sympy/core/sympify.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """sympify -- convert objects SymPy internal format"""
2
+
3
+ from __future__ import annotations
4
+ from typing import Any, Callable
5
+
6
+ from inspect import getmro
7
+ import string
8
+ from sympy.core.random import choice
9
+
10
+ from .parameters import global_parameters
11
+
12
+ from sympy.utilities.exceptions import sympy_deprecation_warning
13
+ from sympy.utilities.iterables import iterable
14
+
15
+
16
+ class SympifyError(ValueError):
17
+ def __init__(self, expr, base_exc=None):
18
+ self.expr = expr
19
+ self.base_exc = base_exc
20
+
21
+ def __str__(self):
22
+ if self.base_exc is None:
23
+ return "SympifyError: %r" % (self.expr,)
24
+
25
+ return ("Sympify of expression '%s' failed, because of exception being "
26
+ "raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
27
+ str(self.base_exc)))
28
+
29
+
30
+ converter: dict[type[Any], Callable[[Any], Basic]] = {}
31
+
32
+ #holds the conversions defined in SymPy itself, i.e. non-user defined conversions
33
+ _sympy_converter: dict[type[Any], Callable[[Any], Basic]] = {}
34
+
35
+ #alias for clearer use in the library
36
+ _external_converter = converter
37
+
38
+ class CantSympify:
39
+ """
40
+ Mix in this trait to a class to disallow sympification of its instances.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy import sympify
46
+ >>> from sympy.core.sympify import CantSympify
47
+
48
+ >>> class Something(dict):
49
+ ... pass
50
+ ...
51
+ >>> sympify(Something())
52
+ {}
53
+
54
+ >>> class Something(dict, CantSympify):
55
+ ... pass
56
+ ...
57
+ >>> sympify(Something())
58
+ Traceback (most recent call last):
59
+ ...
60
+ SympifyError: SympifyError: {}
61
+
62
+ """
63
+
64
+ __slots__ = ()
65
+
66
+
67
+ def _is_numpy_instance(a):
68
+ """
69
+ Checks if an object is an instance of a type from the numpy module.
70
+ """
71
+ # This check avoids unnecessarily importing NumPy. We check the whole
72
+ # __mro__ in case any base type is a numpy type.
73
+ return any(type_.__module__ == 'numpy'
74
+ for type_ in type(a).__mro__)
75
+
76
+
77
+ def _convert_numpy_types(a, **sympify_args):
78
+ """
79
+ Converts a numpy datatype input to an appropriate SymPy type.
80
+ """
81
+ import numpy as np
82
+ if not isinstance(a, np.floating):
83
+ if np.iscomplex(a):
84
+ return _sympy_converter[complex](a.item())
85
+ else:
86
+ return sympify(a.item(), **sympify_args)
87
+ else:
88
+ try:
89
+ from .numbers import Float
90
+ prec = np.finfo(a).nmant + 1
91
+ # E.g. double precision means prec=53 but nmant=52
92
+ # Leading bit of mantissa is always 1, so is not stored
93
+ a = str(list(np.reshape(np.asarray(a),
94
+ (1, np.size(a)))[0]))[1:-1]
95
+ return Float(a, precision=prec)
96
+ except NotImplementedError:
97
+ raise SympifyError('Translation for numpy float : %s '
98
+ 'is not implemented' % a)
99
+
100
+
101
+ def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
102
+ evaluate=None):
103
+ """
104
+ Converts an arbitrary expression to a type that can be used inside SymPy.
105
+
106
+ Explanation
107
+ ===========
108
+
109
+ It will convert Python ints into instances of :class:`~.Integer`, floats
110
+ into instances of :class:`~.Float`, etc. It is also able to coerce
111
+ symbolic expressions which inherit from :class:`~.Basic`. This can be
112
+ useful in cooperation with SAGE.
113
+
114
+ .. warning::
115
+ Note that this function uses ``eval``, and thus shouldn't be used on
116
+ unsanitized input.
117
+
118
+ If the argument is already a type that SymPy understands, it will do
119
+ nothing but return that value. This can be used at the beginning of a
120
+ function to ensure you are working with the correct type.
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import sympify
126
+
127
+ >>> sympify(2).is_integer
128
+ True
129
+ >>> sympify(2).is_real
130
+ True
131
+
132
+ >>> sympify(2.0).is_real
133
+ True
134
+ >>> sympify("2.0").is_real
135
+ True
136
+ >>> sympify("2e-45").is_real
137
+ True
138
+
139
+ If the expression could not be converted, a SympifyError is raised.
140
+
141
+ >>> sympify("x***2")
142
+ Traceback (most recent call last):
143
+ ...
144
+ SympifyError: SympifyError: "could not parse 'x***2'"
145
+
146
+ Locals
147
+ ------
148
+
149
+ The sympification happens with access to everything that is loaded
150
+ by ``from sympy import *``; anything used in a string that is not
151
+ defined by that import will be converted to a symbol. In the following,
152
+ the ``bitcount`` function is treated as a symbol and the ``O`` is
153
+ interpreted as the :class:`~.Order` object (used with series) and it raises
154
+ an error when used improperly:
155
+
156
+ >>> s = 'bitcount(42)'
157
+ >>> sympify(s)
158
+ bitcount(42)
159
+ >>> sympify("O(x)")
160
+ O(x)
161
+ >>> sympify("O + 1")
162
+ Traceback (most recent call last):
163
+ ...
164
+ TypeError: unbound method...
165
+
166
+ In order to have ``bitcount`` be recognized it can be imported into a
167
+ namespace dictionary and passed as locals:
168
+
169
+ >>> ns = {}
170
+ >>> exec('from sympy.core.evalf import bitcount', ns)
171
+ >>> sympify(s, locals=ns)
172
+ 6
173
+
174
+ In order to have the ``O`` interpreted as a Symbol, identify it as such
175
+ in the namespace dictionary. This can be done in a variety of ways; all
176
+ three of the following are possibilities:
177
+
178
+ >>> from sympy import Symbol
179
+ >>> ns["O"] = Symbol("O") # method 1
180
+ >>> exec('from sympy.abc import O', ns) # method 2
181
+ >>> ns.update(dict(O=Symbol("O"))) # method 3
182
+ >>> sympify("O + 1", locals=ns)
183
+ O + 1
184
+
185
+ If you want *all* single-letter and Greek-letter variables to be symbols
186
+ then you can use the clashing-symbols dictionaries that have been defined
187
+ there as private variables: ``_clash1`` (single-letter variables),
188
+ ``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and
189
+ multi-letter names that are defined in ``abc``).
190
+
191
+ >>> from sympy.abc import _clash1
192
+ >>> set(_clash1) # if this fails, see issue #23903
193
+ {'E', 'I', 'N', 'O', 'Q', 'S'}
194
+ >>> sympify('I & Q', _clash1)
195
+ I & Q
196
+
197
+ Strict
198
+ ------
199
+
200
+ If the option ``strict`` is set to ``True``, only the types for which an
201
+ explicit conversion has been defined are converted. In the other
202
+ cases, a SympifyError is raised.
203
+
204
+ >>> print(sympify(None))
205
+ None
206
+ >>> sympify(None, strict=True)
207
+ Traceback (most recent call last):
208
+ ...
209
+ SympifyError: SympifyError: None
210
+
211
+ .. deprecated:: 1.6
212
+
213
+ ``sympify(obj)`` automatically falls back to ``str(obj)`` when all
214
+ other conversion methods fail, but this is deprecated. ``strict=True``
215
+ will disable this deprecated behavior. See
216
+ :ref:`deprecated-sympify-string-fallback`.
217
+
218
+ Evaluation
219
+ ----------
220
+
221
+ If the option ``evaluate`` is set to ``False``, then arithmetic and
222
+ operators will be converted into their SymPy equivalents and the
223
+ ``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
224
+ be denested first. This is done via an AST transformation that replaces
225
+ operators with their SymPy equivalents, so if an operand redefines any
226
+ of those operations, the redefined operators will not be used. If
227
+ argument a is not a string, the mathematical expression is evaluated
228
+ before being passed to sympify, so adding ``evaluate=False`` will still
229
+ return the evaluated result of expression.
230
+
231
+ >>> sympify('2**2 / 3 + 5')
232
+ 19/3
233
+ >>> sympify('2**2 / 3 + 5', evaluate=False)
234
+ 2**2/3 + 5
235
+ >>> sympify('4/2+7', evaluate=True)
236
+ 9
237
+ >>> sympify('4/2+7', evaluate=False)
238
+ 4/2 + 7
239
+ >>> sympify(4/2+7, evaluate=False)
240
+ 9.00000000000000
241
+
242
+ Extending
243
+ ---------
244
+
245
+ To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
246
+ just define a ``_sympy_`` method to your class. You can do that even to
247
+ classes that you do not own by subclassing or adding the method at runtime.
248
+
249
+ >>> from sympy import Matrix
250
+ >>> class MyList1(object):
251
+ ... def __iter__(self):
252
+ ... yield 1
253
+ ... yield 2
254
+ ... return
255
+ ... def __getitem__(self, i): return list(self)[i]
256
+ ... def _sympy_(self): return Matrix(self)
257
+ >>> sympify(MyList1())
258
+ Matrix([
259
+ [1],
260
+ [2]])
261
+
262
+ If you do not have control over the class definition you could also use the
263
+ ``converter`` global dictionary. The key is the class and the value is a
264
+ function that takes a single argument and returns the desired SymPy
265
+ object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
266
+
267
+ >>> class MyList2(object): # XXX Do not do this if you control the class!
268
+ ... def __iter__(self): # Use _sympy_!
269
+ ... yield 1
270
+ ... yield 2
271
+ ... return
272
+ ... def __getitem__(self, i): return list(self)[i]
273
+ >>> from sympy.core.sympify import converter
274
+ >>> converter[MyList2] = lambda x: Matrix(x)
275
+ >>> sympify(MyList2())
276
+ Matrix([
277
+ [1],
278
+ [2]])
279
+
280
+ Notes
281
+ =====
282
+
283
+ The keywords ``rational`` and ``convert_xor`` are only used
284
+ when the input is a string.
285
+
286
+ convert_xor
287
+ -----------
288
+
289
+ >>> sympify('x^y',convert_xor=True)
290
+ x**y
291
+ >>> sympify('x^y',convert_xor=False)
292
+ x ^ y
293
+
294
+ rational
295
+ --------
296
+
297
+ >>> sympify('0.1',rational=False)
298
+ 0.1
299
+ >>> sympify('0.1',rational=True)
300
+ 1/10
301
+
302
+ Sometimes autosimplification during sympification results in expressions
303
+ that are very different in structure than what was entered. Until such
304
+ autosimplification is no longer done, the ``kernS`` function might be of
305
+ some use. In the example below you can see how an expression reduces to
306
+ $-1$ by autosimplification, but does not do so when ``kernS`` is used.
307
+
308
+ >>> from sympy.core.sympify import kernS
309
+ >>> from sympy.abc import x
310
+ >>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
311
+ -1
312
+ >>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
313
+ >>> sympify(s)
314
+ -1
315
+ >>> kernS(s)
316
+ -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
317
+
318
+ Parameters
319
+ ==========
320
+
321
+ a :
322
+ - any object defined in SymPy
323
+ - standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal``
324
+ - strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``)
325
+ - booleans, including ``None`` (will leave ``None`` unchanged)
326
+ - dicts, lists, sets or tuples containing any of the above
327
+
328
+ convert_xor : bool, optional
329
+ If true, treats ``^`` as exponentiation.
330
+ If False, treats ``^`` as XOR itself.
331
+ Used only when input is a string.
332
+
333
+ locals : any object defined in SymPy, optional
334
+ In order to have strings be recognized it can be imported
335
+ into a namespace dictionary and passed as locals.
336
+
337
+ strict : bool, optional
338
+ If the option strict is set to ``True``, only the types for which
339
+ an explicit conversion has been defined are converted. In the
340
+ other cases, a SympifyError is raised.
341
+
342
+ rational : bool, optional
343
+ If ``True``, converts floats into :class:`~.Rational`.
344
+ If ``False``, it lets floats remain as it is.
345
+ Used only when input is a string.
346
+
347
+ evaluate : bool, optional
348
+ If False, then arithmetic and operators will be converted into
349
+ their SymPy equivalents. If True the expression will be evaluated
350
+ and the result will be returned.
351
+
352
+ """
353
+ # XXX: If a is a Basic subclass rather than instance (e.g. sin rather than
354
+ # sin(x)) then a.__sympy__ will be the property. Only on the instance will
355
+ # a.__sympy__ give the *value* of the property (True). Since sympify(sin)
356
+ # was used for a long time we allow it to pass. However if strict=True as
357
+ # is the case in internal calls to _sympify then we only allow
358
+ # is_sympy=True.
359
+ #
360
+ # https://github.com/sympy/sympy/issues/20124
361
+ is_sympy = getattr(a, '__sympy__', None)
362
+ if is_sympy is True:
363
+ return a
364
+ elif is_sympy is not None:
365
+ if not strict:
366
+ return a
367
+ else:
368
+ raise SympifyError(a)
369
+
370
+ if isinstance(a, CantSympify):
371
+ raise SympifyError(a)
372
+
373
+ cls = getattr(a, "__class__", None)
374
+
375
+ #Check if there exists a converter for any of the types in the mro
376
+ for superclass in getmro(cls):
377
+ #First check for user defined converters
378
+ conv = _external_converter.get(superclass)
379
+ if conv is None:
380
+ #if none exists, check for SymPy defined converters
381
+ conv = _sympy_converter.get(superclass)
382
+ if conv is not None:
383
+ return conv(a)
384
+
385
+ if cls is type(None):
386
+ if strict:
387
+ raise SympifyError(a)
388
+ else:
389
+ return a
390
+
391
+ if evaluate is None:
392
+ evaluate = global_parameters.evaluate
393
+
394
+ # Support for basic numpy datatypes
395
+ if _is_numpy_instance(a):
396
+ import numpy as np
397
+ if np.isscalar(a):
398
+ return _convert_numpy_types(a, locals=locals,
399
+ convert_xor=convert_xor, strict=strict, rational=rational,
400
+ evaluate=evaluate)
401
+
402
+ _sympy_ = getattr(a, "_sympy_", None)
403
+ if _sympy_ is not None:
404
+ try:
405
+ return a._sympy_()
406
+ # XXX: Catches AttributeError: 'SymPyConverter' object has no
407
+ # attribute 'tuple'
408
+ # This is probably a bug somewhere but for now we catch it here.
409
+ except AttributeError:
410
+ pass
411
+
412
+ if not strict:
413
+ # Put numpy array conversion _before_ float/int, see
414
+ # <https://github.com/sympy/sympy/issues/13924>.
415
+ flat = getattr(a, "flat", None)
416
+ if flat is not None:
417
+ shape = getattr(a, "shape", None)
418
+ if shape is not None:
419
+ from sympy.tensor.array import Array
420
+ return Array(a.flat, a.shape) # works with e.g. NumPy arrays
421
+
422
+ if not isinstance(a, str):
423
+ if _is_numpy_instance(a):
424
+ import numpy as np
425
+ assert not isinstance(a, np.number)
426
+ if isinstance(a, np.ndarray):
427
+ # Scalar arrays (those with zero dimensions) have sympify
428
+ # called on the scalar element.
429
+ if a.ndim == 0:
430
+ try:
431
+ return sympify(a.item(),
432
+ locals=locals,
433
+ convert_xor=convert_xor,
434
+ strict=strict,
435
+ rational=rational,
436
+ evaluate=evaluate)
437
+ except SympifyError:
438
+ pass
439
+ else:
440
+ # float and int can coerce size-one numpy arrays to their lone
441
+ # element. See issue https://github.com/numpy/numpy/issues/10404.
442
+ for coerce in (float, int):
443
+ try:
444
+ return sympify(coerce(a))
445
+ except (TypeError, ValueError, AttributeError, SympifyError):
446
+ continue
447
+
448
+ if strict:
449
+ raise SympifyError(a)
450
+
451
+ if iterable(a):
452
+ try:
453
+ return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
454
+ rational=rational, evaluate=evaluate) for x in a])
455
+ except TypeError:
456
+ # Not all iterables are rebuildable with their type.
457
+ pass
458
+
459
+ if not isinstance(a, str):
460
+ try:
461
+ a = str(a)
462
+ except Exception as exc:
463
+ raise SympifyError(a, exc)
464
+ sympy_deprecation_warning(
465
+ f"""
466
+ The string fallback in sympify() is deprecated.
467
+
468
+ To explicitly convert the string form of an object, use
469
+ sympify(str(obj)). To add define sympify behavior on custom
470
+ objects, use sympy.core.sympify.converter or define obj._sympy_
471
+ (see the sympify() docstring).
472
+
473
+ sympify() performed the string fallback resulting in the following string:
474
+
475
+ {a!r}
476
+ """,
477
+ deprecated_since_version='1.6',
478
+ active_deprecations_target="deprecated-sympify-string-fallback",
479
+ )
480
+
481
+ from sympy.parsing.sympy_parser import (parse_expr, TokenError,
482
+ standard_transformations)
483
+ from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
484
+ from sympy.parsing.sympy_parser import rationalize as t_rationalize
485
+
486
+ transformations = standard_transformations
487
+
488
+ if rational:
489
+ transformations += (t_rationalize,)
490
+ if convert_xor:
491
+ transformations += (t_convert_xor,)
492
+
493
+ try:
494
+ a = a.replace('\n', '')
495
+ expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
496
+ except (TokenError, SyntaxError) as exc:
497
+ raise SympifyError('could not parse %r' % a, exc)
498
+
499
+ return expr
500
+
501
+
502
+ def _sympify(a):
503
+ """
504
+ Short version of :func:`~.sympify` for internal usage for ``__add__`` and
505
+ ``__eq__`` methods where it is ok to allow some things (like Python
506
+ integers and floats) in the expression. This excludes things (like strings)
507
+ that are unwise to allow into such an expression.
508
+
509
+ >>> from sympy import Integer
510
+ >>> Integer(1) == 1
511
+ True
512
+
513
+ >>> Integer(1) == '1'
514
+ False
515
+
516
+ >>> from sympy.abc import x
517
+ >>> x + 1
518
+ x + 1
519
+
520
+ >>> x + '1'
521
+ Traceback (most recent call last):
522
+ ...
523
+ TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
524
+
525
+ see: sympify
526
+
527
+ """
528
+ return sympify(a, strict=True)
529
+
530
+
531
+ def kernS(s):
532
+ """Use a hack to try keep autosimplification from distributing a
533
+ a number into an Add; this modification does not
534
+ prevent the 2-arg Mul from becoming an Add, however.
535
+
536
+ Examples
537
+ ========
538
+
539
+ >>> from sympy.core.sympify import kernS
540
+ >>> from sympy.abc import x, y
541
+
542
+ The 2-arg Mul distributes a number (or minus sign) across the terms
543
+ of an expression, but kernS will prevent that:
544
+
545
+ >>> 2*(x + y), -(x + 1)
546
+ (2*x + 2*y, -x - 1)
547
+ >>> kernS('2*(x + y)')
548
+ 2*(x + y)
549
+ >>> kernS('-(x + 1)')
550
+ -(x + 1)
551
+
552
+ If use of the hack fails, the un-hacked string will be passed to sympify...
553
+ and you get what you get.
554
+
555
+ XXX This hack should not be necessary once issue 4596 has been resolved.
556
+ """
557
+ hit = False
558
+ quoted = '"' in s or "'" in s
559
+ if '(' in s and not quoted:
560
+ if s.count('(') != s.count(")"):
561
+ raise SympifyError('unmatched left parenthesis')
562
+
563
+ # strip all space from s
564
+ s = ''.join(s.split())
565
+ olds = s
566
+ # now use space to represent a symbol that
567
+ # will
568
+ # step 1. turn potential 2-arg Muls into 3-arg versions
569
+ # 1a. *( -> * *(
570
+ s = s.replace('*(', '* *(')
571
+ # 1b. close up exponentials
572
+ s = s.replace('** *', '**')
573
+ # 2. handle the implied multiplication of a negated
574
+ # parenthesized expression in two steps
575
+ # 2a: -(...) --> -( *(...)
576
+ target = '-( *('
577
+ s = s.replace('-(', target)
578
+ # 2b: double the matching closing parenthesis
579
+ # -( *(...) --> -( *(...))
580
+ i = nest = 0
581
+ assert target.endswith('(') # assumption below
582
+ while True:
583
+ j = s.find(target, i)
584
+ if j == -1:
585
+ break
586
+ j += len(target) - 1
587
+ for j in range(j, len(s)):
588
+ if s[j] == "(":
589
+ nest += 1
590
+ elif s[j] == ")":
591
+ nest -= 1
592
+ if nest == 0:
593
+ break
594
+ s = s[:j] + ")" + s[j:]
595
+ i = j + 2 # the first char after 2nd )
596
+ if ' ' in s:
597
+ # get a unique kern
598
+ kern = '_'
599
+ while kern in s:
600
+ kern += choice(string.ascii_letters + string.digits)
601
+ s = s.replace(' ', kern)
602
+ hit = kern in s
603
+ else:
604
+ hit = False
605
+
606
+ for i in range(2):
607
+ try:
608
+ expr = sympify(s)
609
+ break
610
+ except TypeError: # the kern might cause unknown errors...
611
+ if hit:
612
+ s = olds # maybe it didn't like the kern; use un-kerned s
613
+ hit = False
614
+ continue
615
+ expr = sympify(s) # let original error raise
616
+
617
+ if not hit:
618
+ return expr
619
+
620
+ from .symbol import Symbol
621
+ rep = {Symbol(kern): 1}
622
+ def _clear(expr):
623
+ if isinstance(expr, (list, tuple, set)):
624
+ return type(expr)([_clear(e) for e in expr])
625
+ if hasattr(expr, 'subs'):
626
+ return expr.subs(rep, hack2=True)
627
+ return expr
628
+ expr = _clear(expr)
629
+ # hope that kern is not there anymore
630
+ return expr
631
+
632
+
633
+ # Avoid circular import
634
+ from .basic import Basic
venv/lib/python3.10/site-packages/sympy/core/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc ADDED
Binary file (217 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_assumptions.cpython-310.pyc ADDED
Binary file (33.6 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_basic.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_complex.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_count_ops.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_evalf.cpython-310.pyc ADDED
Binary file (31.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_expand.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_multidimensional.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_numbers.cpython-310.pyc ADDED
Binary file (76.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_operations.cpython-310.pyc ADDED
Binary file (4.41 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_relational.cpython-310.pyc ADDED
Binary file (44.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_singleton.cpython-310.pyc ADDED
Binary file (2.03 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_subs.cpython-310.pyc ADDED
Binary file (33.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_truediv.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_var.cpython-310.pyc ADDED
Binary file (1.91 kB). View file
 
venv/lib/python3.10/site-packages/sympy/core/tests/test_args.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sympy/core/tests/test_cache.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from sympy.core.cache import cacheit, cached_property, lazy_function
3
+ from sympy.testing.pytest import raises
4
+
5
+ def test_cacheit_doc():
6
+ @cacheit
7
+ def testfn():
8
+ "test docstring"
9
+ pass
10
+
11
+ assert testfn.__doc__ == "test docstring"
12
+ assert testfn.__name__ == "testfn"
13
+
14
+ def test_cacheit_unhashable():
15
+ @cacheit
16
+ def testit(x):
17
+ return x
18
+
19
+ assert testit(1) == 1
20
+ assert testit(1) == 1
21
+ a = {}
22
+ assert testit(a) == {}
23
+ a[1] = 2
24
+ assert testit(a) == {1: 2}
25
+
26
+ def test_cachit_exception():
27
+ # Make sure the cache doesn't call functions multiple times when they
28
+ # raise TypeError
29
+
30
+ a = []
31
+
32
+ @cacheit
33
+ def testf(x):
34
+ a.append(0)
35
+ raise TypeError
36
+
37
+ raises(TypeError, lambda: testf(1))
38
+ assert len(a) == 1
39
+
40
+ a.clear()
41
+ # Unhashable type
42
+ raises(TypeError, lambda: testf([]))
43
+ assert len(a) == 1
44
+
45
+ @cacheit
46
+ def testf2(x):
47
+ a.append(0)
48
+ raise TypeError("Error")
49
+
50
+ a.clear()
51
+ raises(TypeError, lambda: testf2(1))
52
+ assert len(a) == 1
53
+
54
+ a.clear()
55
+ # Unhashable type
56
+ raises(TypeError, lambda: testf2([]))
57
+ assert len(a) == 1
58
+
59
+ def test_cached_property():
60
+ class A:
61
+ def __init__(self, value):
62
+ self.value = value
63
+ self.calls = 0
64
+
65
+ @cached_property
66
+ def prop(self):
67
+ self.calls = self.calls + 1
68
+ return self.value
69
+
70
+ a = A(2)
71
+ assert a.calls == 0
72
+ assert a.prop == 2
73
+ assert a.calls == 1
74
+ assert a.prop == 2
75
+ assert a.calls == 1
76
+ b = A(None)
77
+ assert b.prop == None
78
+
79
+
80
+ def test_lazy_function():
81
+ module_name='xmlrpc.client'
82
+ function_name = 'gzip_decode'
83
+ lazy = lazy_function(module_name, function_name)
84
+ assert lazy(b'') == b''
85
+ assert module_name in sys.modules
86
+ assert function_name in str(lazy)
87
+ repr_lazy = repr(lazy)
88
+ assert 'LazyFunction' in repr_lazy
89
+ assert function_name in repr_lazy
90
+
91
+ lazy = lazy_function('sympy.core.cache', 'cheap')
venv/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from sympy.testing.pytest import warns_deprecated_sympy
2
+
3
+ def test_compatibility_submodule():
4
+ # Test the sympy.core.compatibility deprecation warning
5
+ with warns_deprecated_sympy():
6
+ import sympy.core.compatibility # noqa:F401
venv/lib/python3.10/site-packages/sympy/core/tests/test_complex.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import expand_complex
2
+ from sympy.core.numbers import (I, Integer, Rational, pi)
3
+ from sympy.core.power import Pow
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import (Symbol, symbols)
6
+ from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
7
+ from sympy.functions.elementary.exponential import exp
8
+ from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
9
+ from sympy.functions.elementary.miscellaneous import sqrt
10
+ from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
11
+
12
+ def test_complex():
13
+ a = Symbol("a", real=True)
14
+ b = Symbol("b", real=True)
15
+ e = (a + I*b)*(a - I*b)
16
+ assert e.expand() == a**2 + b**2
17
+ assert sqrt(I) == Pow(I, S.Half)
18
+
19
+
20
+ def test_conjugate():
21
+ a = Symbol("a", real=True)
22
+ b = Symbol("b", real=True)
23
+ c = Symbol("c", imaginary=True)
24
+ d = Symbol("d", imaginary=True)
25
+ x = Symbol('x')
26
+ z = a + I*b + c + I*d
27
+ zc = a - I*b - c + I*d
28
+ assert conjugate(z) == zc
29
+ assert conjugate(exp(z)) == exp(zc)
30
+ assert conjugate(exp(I*x)) == exp(-I*conjugate(x))
31
+ assert conjugate(z**5) == zc**5
32
+ assert conjugate(abs(x)) == abs(x)
33
+ assert conjugate(sign(z)) == sign(zc)
34
+ assert conjugate(sin(z)) == sin(zc)
35
+ assert conjugate(cos(z)) == cos(zc)
36
+ assert conjugate(tan(z)) == tan(zc)
37
+ assert conjugate(cot(z)) == cot(zc)
38
+ assert conjugate(sinh(z)) == sinh(zc)
39
+ assert conjugate(cosh(z)) == cosh(zc)
40
+ assert conjugate(tanh(z)) == tanh(zc)
41
+ assert conjugate(coth(z)) == coth(zc)
42
+
43
+
44
+ def test_abs1():
45
+ a = Symbol("a", real=True)
46
+ b = Symbol("b", real=True)
47
+ assert abs(a) == Abs(a)
48
+ assert abs(-a) == abs(a)
49
+ assert abs(a + I*b) == sqrt(a**2 + b**2)
50
+
51
+
52
+ def test_abs2():
53
+ a = Symbol("a", real=False)
54
+ b = Symbol("b", real=False)
55
+ assert abs(a) != a
56
+ assert abs(-a) != a
57
+ assert abs(a + I*b) != sqrt(a**2 + b**2)
58
+
59
+
60
+ def test_evalc():
61
+ x = Symbol("x", real=True)
62
+ y = Symbol("y", real=True)
63
+ z = Symbol("z")
64
+ assert ((x + I*y)**2).expand(complex=True) == x**2 + 2*I*x*y - y**2
65
+ assert expand_complex(z**(2*I)) == (re((re(z) + I*im(z))**(2*I)) +
66
+ I*im((re(z) + I*im(z))**(2*I)))
67
+ assert expand_complex(
68
+ z**(2*I), deep=False) == I*im(z**(2*I)) + re(z**(2*I))
69
+
70
+ assert exp(I*x) != cos(x) + I*sin(x)
71
+ assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
72
+ assert exp(I*x + y).expand(complex=True) == exp(y)*cos(x) + I*sin(x)*exp(y)
73
+
74
+ assert sin(I*x).expand(complex=True) == I * sinh(x)
75
+ assert sin(x + I*y).expand(complex=True) == sin(x)*cosh(y) + \
76
+ I * sinh(y) * cos(x)
77
+
78
+ assert cos(I*x).expand(complex=True) == cosh(x)
79
+ assert cos(x + I*y).expand(complex=True) == cos(x)*cosh(y) - \
80
+ I * sinh(y) * sin(x)
81
+
82
+ assert tan(I*x).expand(complex=True) == tanh(x) * I
83
+ assert tan(x + I*y).expand(complex=True) == (
84
+ sin(2*x)/(cos(2*x) + cosh(2*y)) +
85
+ I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
86
+
87
+ assert sinh(I*x).expand(complex=True) == I * sin(x)
88
+ assert sinh(x + I*y).expand(complex=True) == sinh(x)*cos(y) + \
89
+ I * sin(y) * cosh(x)
90
+
91
+ assert cosh(I*x).expand(complex=True) == cos(x)
92
+ assert cosh(x + I*y).expand(complex=True) == cosh(x)*cos(y) + \
93
+ I * sin(y) * sinh(x)
94
+
95
+ assert tanh(I*x).expand(complex=True) == tan(x) * I
96
+ assert tanh(x + I*y).expand(complex=True) == (
97
+ (sinh(x)*cosh(x) + I*cos(y)*sin(y)) /
98
+ (sinh(x)**2 + cos(y)**2)).expand()
99
+
100
+
101
+ def test_pythoncomplex():
102
+ x = Symbol("x")
103
+ assert 4j*x != 4*x*I
104
+ assert 4j*x == 4.0*x*I
105
+ assert 4.1j*x != 4*x*I
106
+
107
+
108
+ def test_rootcomplex():
109
+ R = Rational
110
+ assert ((+1 + I)**R(1, 2)).expand(
111
+ complex=True) == 2**R(1, 4)*cos( pi/8) + 2**R(1, 4)*sin( pi/8)*I
112
+ assert ((-1 - I)**R(1, 2)).expand(
113
+ complex=True) == 2**R(1, 4)*cos(3*pi/8) - 2**R(1, 4)*sin(3*pi/8)*I
114
+ assert (sqrt(-10)*I).as_real_imag() == (-sqrt(10), 0)
115
+
116
+
117
+ def test_expand_inverse():
118
+ assert (1/(1 + I)).expand(complex=True) == (1 - I)/2
119
+ assert ((1 + 2*I)**(-2)).expand(complex=True) == (-3 - 4*I)/25
120
+ assert ((1 + I)**(-8)).expand(complex=True) == Rational(1, 16)
121
+
122
+
123
+ def test_expand_complex():
124
+ assert ((2 + 3*I)**10).expand(complex=True) == -341525 - 145668*I
125
+ # the following two tests are to ensure the SymPy uses an efficient
126
+ # algorithm for calculating powers of complex numbers. They should execute
127
+ # in something like 0.01s.
128
+ assert ((2 + 3*I)**1000).expand(complex=True) == \
129
+ -81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999 + \
130
+ 46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I
131
+ assert ((2 + 3*I/4)**1000).expand(complex=True) == \
132
+ Integer(1)*37079892761199059751745775382463070250205990218394308874593455293485167797989691280095867197640410033222367257278387021789651672598831503296531725827158233077451476545928116965316544607115843772405184272449644892857783761260737279675075819921259597776770965829089907990486964515784097181964312256560561065607846661496055417619388874421218472707497847700629822858068783288579581649321248495739224020822198695759609598745114438265083593711851665996586461937988748911532242908776883696631067311443171682974330675406616373422505939887984366289623091300746049101284856530270685577940283077888955692921951247230006346681086274961362500646889925803654263491848309446197554307105991537357310209426736453173441104334496173618419659521888945605315751089087820455852582920963561495787655250624781448951403353654348109893478206364632640344111022531861683064175862889459084900614967785405977231549003280842218501570429860550379522498497412180001/114813069527425452423283320117768198402231770208869520047764273682576626139237031385665948631650626991844596463898746277344711896086305533142593135616665318539129989145312280000688779148240044871428926990063486244781615463646388363947317026040466353970904996558162398808944629605623311649536164221970332681344168908984458505602379484807914058900934776500429002716706625830522008132236281291761267883317206598995396418127021779858404042159853183251540889433902091920554957783589672039160081957216630582755380425583726015528348786419432054508915275783882625175435528800822842770817965453762184851149029376 + \
133
+ I*421638390580169706973991429333213477486930178424989246669892530737775352519112934278994501272111385966211392610029433824534634841747911783746811994443436271013377059560245191441549885048056920190833693041257216263519792201852046825443439142932464031501882145407459174948712992271510309541474392303461939389368955986650538525895866713074543004916049550090364398070215427272240155060576252568700906004691224321432509053286859100920489253598392100207663785243368195857086816912514025693453058403158416856847185079684216151337200057494966741268925263085619240941610301610538225414050394612058339070756009433535451561664522479191267503989904464718368605684297071150902631208673621618217106272361061676184840810762902463998065947687814692402219182668782278472952758690939877465065070481351343206840649517150634973307937551168752642148704904383991876969408056379195860410677814566225456558230131911142229028179902418223009651437985670625/1793954211366022694113801876840128100034871409513586250746316776290259783425578615401030447369541046747571819748417910583511123376348523955353017744010395602173906080395504375010762174191250701116076984219741972574712741619474818186676828531882286780795390571221287481389759837587864244524002565968286448146002639202882164150037179450123657170327105882819203167448541028601906377066191895183769810676831353109303069033234715310287563158747705988305326397404720186258671215368588625611876280581509852855552819149745718992630449787803625851701801184123166018366180137512856918294030710215034138299203584
134
+ assert ((2 + 3*I)**-1000).expand(complex=True) == \
135
+ Integer(1)*-81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001 - Integer(1)*46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001
136
+ assert ((2 + 3*I/4)**-1000).expand(complex=True) == \
137
+ Integer(1)*4257256305661027385394552848555894604806501409793288342610746813288539790051927148781268212212078237301273165351052934681382567968787279534591114913777456610214738290619922068269909423637926549603264174216950025398244509039145410016404821694746262142525173737175066432954496592560621330313807235750500564940782099283410261748370262433487444897446779072067625787246390824312580440138770014838135245148574339248259670887549732495841810961088930810608893772914812838358159009303794863047635845688453859317690488124382253918725010358589723156019888846606295866740117645571396817375322724096486161308083462637370825829567578309445855481578518239186117686659177284332344643124760453112513611749309168470605289172320376911472635805822082051716625171429727162039621902266619821870482519063133136820085579315127038372190224739238686708451840610064871885616258831386810233957438253532027049148030157164346719204500373766157143311767338973363806106967439378604898250533766359989107510507493549529158818602327525235240510049484816090584478644771183158342479140194633579061295740839490629457435283873180259847394582069479062820225159699506175855369539201399183443253793905149785994830358114153241481884290274629611529758663543080724574566578220908907477622643689220814376054314972190402285121776593824615083669045183404206291739005554569305329760211752815718335731118664756831942466773261465213581616104242113894521054475516019456867271362053692785300826523328020796670205463390909136593859765912483565093461468865534470710132881677639651348709376/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001 - Integer(1)*3098214262599218784594285246258841485430681674561917573155883806818465520660668045042109232930382494608383663464454841313154390741655282039877410154577448327874989496074260116195788919037407420625081798124301494353693248757853222257918294662198297114746822817460991242508743651430439120439020484502408313310689912381846149597061657483084652685283853595100434135149479564507015504022249330340259111426799121454516345905101620532787348293877485702600390665276070250119465888154331218827342488849948540687659846652377277250614246402784754153678374932540789808703029043827352976139228402417432199779415751301480406673762521987999573209628597459357964214510139892316208670927074795773830798600837815329291912002136924506221066071242281626618211060464126372574400100990746934953437169840312584285942093951405864225230033279614235191326102697164613004299868695519642598882914862568516635347204441042798206770888274175592401790040170576311989738272102077819127459014286741435419468254146418098278519775722104890854275995510700298782146199325790002255362719776098816136732897323406228294203133323296591166026338391813696715894870956511298793595675308998014158717167429941371979636895553724830981754579086664608880698350866487717403917070872269853194118364230971216854931998642990452908852258008095741042117326241406479532880476938937997238098399302185675832474590293188864060116934035867037219176916416481757918864533515526389079998129329045569609325290897577497835388451456680707076072624629697883854217331728051953671643278797380171857920000*I/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001
138
+
139
+ a = Symbol('a', real=True)
140
+ b = Symbol('b', real=True)
141
+ assert exp(a*(2 + I*b)).expand(complex=True) == \
142
+ I*exp(2*a)*sin(a*b) + exp(2*a)*cos(a*b)
143
+
144
+
145
+ def test_expand():
146
+ f = (16 - 2*sqrt(29))**2
147
+ assert f.expand() == 372 - 64*sqrt(29)
148
+ f = (Integer(1)/2 + I/2)**10
149
+ assert f.expand() == I/32
150
+ f = (Integer(1)/2 + I)**10
151
+ assert f.expand() == Integer(237)/1024 - 779*I/256
152
+
153
+
154
+ def test_re_im1652():
155
+ x = Symbol('x')
156
+ assert re(x) == re(conjugate(x))
157
+ assert im(x) == - im(conjugate(x))
158
+ assert im(x)*re(conjugate(x)) + im(conjugate(x)) * re(x) == 0
159
+
160
+
161
+ def test_issue_5084():
162
+ x = Symbol('x')
163
+ assert ((x + x*I)/(1 + I)).as_real_imag() == (re((x + I*x)/(1 + I)
164
+ ), im((x + I*x)/(1 + I)))
165
+
166
+
167
+ def test_issue_5236():
168
+ assert (cos(1 + I)**3).as_real_imag() == (-3*sin(1)**2*sinh(1)**2*cos(1)*cosh(1) +
169
+ cos(1)**3*cosh(1)**3, -3*cos(1)**2*cosh(1)**2*sin(1)*sinh(1) + sin(1)**3*sinh(1)**3)
170
+
171
+
172
+ def test_real_imag():
173
+ x, y, z = symbols('x, y, z')
174
+ X, Y, Z = symbols('X, Y, Z', commutative=False)
175
+ a = Symbol('a', real=True)
176
+ assert (2*a*x).as_real_imag() == (2*a*re(x), 2*a*im(x))
177
+
178
+ # issue 5395:
179
+ assert (x*x.conjugate()).as_real_imag() == (Abs(x)**2, 0)
180
+ assert im(x*x.conjugate()) == 0
181
+ assert im(x*y.conjugate()*z*y) == im(x*z)*Abs(y)**2
182
+ assert im(x*y.conjugate()*x*y) == im(x**2)*Abs(y)**2
183
+ assert im(Z*y.conjugate()*X*y) == im(Z*X)*Abs(y)**2
184
+ assert im(X*X.conjugate()) == im(X*X.conjugate(), evaluate=False)
185
+ assert (sin(x)*sin(x).conjugate()).as_real_imag() == \
186
+ (Abs(sin(x))**2, 0)
187
+
188
+ # issue 6573:
189
+ assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2*re(x)*im(x))
190
+
191
+ # issue 6428:
192
+ r = Symbol('r', real=True)
193
+ i = Symbol('i', imaginary=True)
194
+ assert (i*r*x).as_real_imag() == (I*i*r*im(x), -I*i*r*re(x))
195
+ assert (i*r*x*(y + 2)).as_real_imag() == (
196
+ I*i*r*(re(y) + 2)*im(x) + I*i*r*re(x)*im(y),
197
+ -I*i*r*(re(y) + 2)*re(x) + I*i*r*im(x)*im(y))
198
+
199
+ # issue 7106:
200
+ assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
201
+ assert ((1 + 2*I)*(1 + 3*I)).as_real_imag() == (-5, 5)
202
+
203
+
204
+ def test_pow_issue_1724():
205
+ e = ((S.NegativeOne)**(S.One/3))
206
+ assert e.conjugate().n() == e.n().conjugate()
207
+ e = S('-2/3 - (-29/54 + sqrt(93)/18)**(1/3) - 1/(9*(-29/54 + sqrt(93)/18)**(1/3))')
208
+ assert e.conjugate().n() == e.n().conjugate()
209
+ e = 2**I
210
+ assert e.conjugate().n() == e.n().conjugate()
211
+
212
+
213
+ def test_issue_5429():
214
+ assert sqrt(I).conjugate() != sqrt(I)
215
+
216
+ def test_issue_4124():
217
+ from sympy.core.numbers import oo
218
+ assert expand_complex(I*oo) == oo*I
219
+
220
+ def test_issue_11518():
221
+ x = Symbol("x", real=True)
222
+ y = Symbol("y", real=True)
223
+ r = sqrt(x**2 + y**2)
224
+ assert conjugate(r) == r
225
+ s = abs(x + I * y)
226
+ assert conjugate(s) == r
venv/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+
5
+ from sympy.testing.pytest import XFAIL
6
+
7
+ class SymbolInMulOnce(Symbol):
8
+ # Test class for a symbol that can only appear once in a `Mul` expression.
9
+ pass
10
+
11
+
12
+ Basic._constructor_postprocessor_mapping[SymbolInMulOnce] = {
13
+ "Mul": [lambda x: x],
14
+ "Pow": [lambda x: x.base if isinstance(x.base, SymbolInMulOnce) else x],
15
+ "Add": [lambda x: x],
16
+ }
17
+
18
+
19
+ def _postprocess_SymbolRemovesOtherSymbols(expr):
20
+ args = tuple(i for i in expr.args if not isinstance(i, Symbol) or isinstance(i, SymbolRemovesOtherSymbols))
21
+ if args == expr.args:
22
+ return expr
23
+ return Mul.fromiter(args)
24
+
25
+
26
+ class SymbolRemovesOtherSymbols(Symbol):
27
+ # Test class for a symbol that removes other symbols in `Mul`.
28
+ pass
29
+
30
+ Basic._constructor_postprocessor_mapping[SymbolRemovesOtherSymbols] = {
31
+ "Mul": [_postprocess_SymbolRemovesOtherSymbols],
32
+ }
33
+
34
+ class SubclassSymbolInMulOnce(SymbolInMulOnce):
35
+ pass
36
+
37
+ class SubclassSymbolRemovesOtherSymbols(SymbolRemovesOtherSymbols):
38
+ pass
39
+
40
+
41
+ def test_constructor_postprocessors1():
42
+ x = SymbolInMulOnce("x")
43
+ y = SymbolInMulOnce("y")
44
+ assert isinstance(3*x, Mul)
45
+ assert (3*x).args == (3, x)
46
+ assert x*x == x
47
+ assert 3*x*x == 3*x
48
+ assert 2*x*x + x == 3*x
49
+ assert x**3*y*y == x*y
50
+ assert x**5 + y*x**3 == x + x*y
51
+
52
+ w = SymbolRemovesOtherSymbols("w")
53
+ assert x*w == w
54
+ assert (3*w).args == (3, w)
55
+ assert set((w + x).args) == {x, w}
56
+
57
+ def test_constructor_postprocessors2():
58
+ x = SubclassSymbolInMulOnce("x")
59
+ y = SubclassSymbolInMulOnce("y")
60
+ assert isinstance(3*x, Mul)
61
+ assert (3*x).args == (3, x)
62
+ assert x*x == x
63
+ assert 3*x*x == 3*x
64
+ assert 2*x*x + x == 3*x
65
+ assert x**3*y*y == x*y
66
+ assert x**5 + y*x**3 == x + x*y
67
+
68
+ w = SubclassSymbolRemovesOtherSymbols("w")
69
+ assert x*w == w
70
+ assert (3*w).args == (3, w)
71
+ assert set((w + x).args) == {x, w}
72
+
73
+
74
+ @XFAIL
75
+ def test_subexpression_postprocessors():
76
+ # The postprocessors used to work with subexpressions, but the
77
+ # functionality was removed. See #15948.
78
+ a = symbols("a")
79
+ x = SymbolInMulOnce("x")
80
+ w = SymbolRemovesOtherSymbols("w")
81
+ assert 3*a*w**2 == 3*w**2
82
+ assert 3*a*x**3*w**2 == 3*w**2
83
+
84
+ x = SubclassSymbolInMulOnce("x")
85
+ w = SubclassSymbolRemovesOtherSymbols("w")
86
+ assert 3*a*w**2 == 3*w**2
87
+ assert 3*a*x**3*w**2 == 3*w**2
venv/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import Sum
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.function import (Derivative, Function, count_ops)
4
+ from sympy.core.numbers import (I, Rational, pi)
5
+ from sympy.core.relational import (Eq, Rel)
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import (Symbol, symbols)
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.functions.elementary.trigonometric import (cos, sin)
10
+ from sympy.integrals.integrals import Integral
11
+ from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand,
12
+ Nor, Not, Or, Xor)
13
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
14
+ from sympy.core.containers import Tuple
15
+
16
+ x, y, z = symbols('x,y,z')
17
+ a, b, c = symbols('a,b,c')
18
+
19
+ def test_count_ops_non_visual():
20
+ def count(val):
21
+ return count_ops(val, visual=False)
22
+ assert count(x) == 0
23
+ assert count(x) is not S.Zero
24
+ assert count(x + y) == 1
25
+ assert count(x + y) is not S.One
26
+ assert count(x + y*x + 2*y) == 4
27
+ assert count({x + y: x}) == 1
28
+ assert count({x + y: S(2) + x}) is not S.One
29
+ assert count(x < y) == 1
30
+ assert count(Or(x,y)) == 1
31
+ assert count(And(x,y)) == 1
32
+ assert count(Not(x)) == 1
33
+ assert count(Nor(x,y)) == 2
34
+ assert count(Nand(x,y)) == 2
35
+ assert count(Xor(x,y)) == 1
36
+ assert count(Implies(x,y)) == 1
37
+ assert count(Equivalent(x,y)) == 1
38
+ assert count(ITE(x,y,z)) == 1
39
+ assert count(ITE(True,x,y)) == 0
40
+
41
+
42
+ def test_count_ops_visual():
43
+ ADD, MUL, POW, SIN, COS, EXP, AND, D, G, M = symbols(
44
+ 'Add Mul Pow sin cos exp And Derivative Integral Sum'.upper())
45
+ DIV, SUB, NEG = symbols('DIV SUB NEG')
46
+ LT, LE, GT, GE, EQ, NE = symbols('LT LE GT GE EQ NE')
47
+ NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols(
48
+ 'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper())
49
+
50
+ def count(val):
51
+ return count_ops(val, visual=True)
52
+
53
+ assert count(7) is S.Zero
54
+ assert count(S(7)) is S.Zero
55
+ assert count(-1) == NEG
56
+ assert count(-2) == NEG
57
+ assert count(S(2)/3) == DIV
58
+ assert count(Rational(2, 3)) == DIV
59
+ assert count(pi/3) == DIV
60
+ assert count(-pi/3) == DIV + NEG
61
+ assert count(I - 1) == SUB
62
+ assert count(1 - I) == SUB
63
+ assert count(1 - 2*I) == SUB + MUL
64
+
65
+ assert count(x) is S.Zero
66
+ assert count(-x) == NEG
67
+ assert count(-2*x/3) == NEG + DIV + MUL
68
+ assert count(Rational(-2, 3)*x) == NEG + DIV + MUL
69
+ assert count(1/x) == DIV
70
+ assert count(1/(x*y)) == DIV + MUL
71
+ assert count(-1/x) == NEG + DIV
72
+ assert count(-2/x) == NEG + DIV
73
+ assert count(x/y) == DIV
74
+ assert count(-x/y) == NEG + DIV
75
+
76
+ assert count(x**2) == POW
77
+ assert count(-x**2) == POW + NEG
78
+ assert count(-2*x**2) == POW + MUL + NEG
79
+
80
+ assert count(x + pi/3) == ADD + DIV
81
+ assert count(x + S.One/3) == ADD + DIV
82
+ assert count(x + Rational(1, 3)) == ADD + DIV
83
+ assert count(x + y) == ADD
84
+ assert count(x - y) == SUB
85
+ assert count(y - x) == SUB
86
+ assert count(-1/(x - y)) == DIV + NEG + SUB
87
+ assert count(-1/(y - x)) == DIV + NEG + SUB
88
+ assert count(1 + x**y) == ADD + POW
89
+ assert count(1 + x + y) == 2*ADD
90
+ assert count(1 + x + y + z) == 3*ADD
91
+ assert count(1 + x**y + 2*x*y + y**2) == 3*ADD + 2*POW + 2*MUL
92
+ assert count(2*z + y + x + 1) == 3*ADD + MUL
93
+ assert count(2*z + y**17 + x + 1) == 3*ADD + MUL + POW
94
+ assert count(2*z + y**17 + x + sin(x)) == 3*ADD + POW + MUL + SIN
95
+ assert count(2*z + y**17 + x + sin(x**2)) == 3*ADD + MUL + 2*POW + SIN
96
+ assert count(2*z + y**17 + x + sin(
97
+ x**2) + exp(cos(x))) == 4*ADD + MUL + 2*POW + EXP + COS + SIN
98
+
99
+ assert count(Derivative(x, x)) == D
100
+ assert count(Integral(x, x) + 2*x/(1 + x)) == G + DIV + MUL + 2*ADD
101
+ assert count(Sum(x, (x, 1, x + 1)) + 2*x/(1 + x)) == M + DIV + MUL + 3*ADD
102
+ assert count(Basic()) is S.Zero
103
+
104
+ assert count({x + 1: sin(x)}) == ADD + SIN
105
+ assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD
106
+ assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2*ADD
107
+ assert count({}) is S.Zero
108
+ assert count([x + 1, sin(x)*y, None]) == SIN + ADD + MUL
109
+ assert count([]) is S.Zero
110
+
111
+ assert count(Basic()) == 0
112
+ assert count(Basic(Basic(),Basic(x,x+y))) == ADD + 2*BASIC
113
+ assert count(Basic(x, x + y)) == ADD + BASIC
114
+ assert [count(Rel(x, y, op)) for op in '< <= > >= == <> !='.split()
115
+ ] == [LT, LE, GT, GE, EQ, NE, NE]
116
+ assert count(Or(x, y)) == OR
117
+ assert count(And(x, y)) == AND
118
+ assert count(Or(x, Or(y, And(z, a)))) == AND + OR
119
+ assert count(Nor(x, y)) == NOT + OR
120
+ assert count(Nand(x, y)) == NOT + AND
121
+ assert count(Xor(x, y)) == XOR
122
+ assert count(Implies(x, y)) == IMPLIES
123
+ assert count(Equivalent(x, y)) == EQUIVALENT
124
+ assert count(ITE(x, y, z)) == _ITE
125
+ assert count([Or(x, y), And(x, y), Basic(x + y)]
126
+ ) == ADD + AND + BASIC + OR
127
+
128
+ assert count(Basic(Tuple(x))) == BASIC + TUPLE
129
+ #It checks that TUPLE is counted as an operation.
130
+
131
+ assert count(Eq(x + y, S(2))) == ADD + EQ
132
+
133
+
134
+ def test_issue_9324():
135
+ def count(val):
136
+ return count_ops(val, visual=False)
137
+
138
+ M = MatrixSymbol('M', 10, 10)
139
+ assert count(M[0, 0]) == 0
140
+ assert count(2 * M[0, 0] + M[5, 7]) == 2
141
+ P = MatrixSymbol('P', 3, 3)
142
+ Q = MatrixSymbol('Q', 3, 3)
143
+ assert count(P + Q) == 1
144
+ m = Symbol('m', integer=True)
145
+ n = Symbol('n', integer=True)
146
+ M = MatrixSymbol('M', m + n, m * m)
147
+ assert count(M[0, 1]) == 2
148
+
149
+
150
+ def test_issue_21532():
151
+ f = Function('f')
152
+ g = Function('g')
153
+ FUNC_F, FUNC_G = symbols('FUNC_F, FUNC_G')
154
+ assert f(x).count_ops(visual=True) == FUNC_F
155
+ assert g(x).count_ops(visual=True) == FUNC_G