Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/mp_rank_00_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_01_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_02_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_03_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_04_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_05_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_06_model_states.pt +3 -0
- ckpts/universal/global_step40/mp_rank_07_model_states.pt +3 -0
- ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.py +11 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi +15 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py +1114 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi +16 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/setup.py +12 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py +453 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py +354 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py +93 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_multiarray.py +16 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_numeric.py +17 -0
- venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_regression.py +31 -0
- venv/lib/python3.10/site-packages/numpy/typing/__init__.py +175 -0
- venv/lib/python3.10/site-packages/numpy/typing/mypy_plugin.py +196 -0
- venv/lib/python3.10/site-packages/numpy/typing/setup.py +11 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi +121 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi +33 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_like.pyi +16 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi +14 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi +20 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/char.pyi +66 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/chararray.pyi +62 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/constants.pyi +7 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/datasource.pyi +15 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/dtype.pyi +20 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/flatiter.pyi +25 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi +161 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/histograms.pyi +12 -0
ckpts/universal/global_step40/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b7d35b36f77067fc43080d60dd3ef746bc7cf3392e64b745bb189df6d181803
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/mp_rank_01_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f15d2ad8b9c13e89266a02d8334fbd0dffe08e6327b0d1e62dbc8a5f98d8887
|
3 |
+
size 4230020
|
ckpts/universal/global_step40/mp_rank_02_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:993e4f3b1663d6b7feeb5f0a573c122d4cffef1ae58a090d53c1a3d38232e32d
|
3 |
+
size 4230020
|
ckpts/universal/global_step40/mp_rank_03_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:950695f4903c0daf2607beba21d30a9ba630f0344037c93569e79ce4bc4e0b83
|
3 |
+
size 4230020
|
ckpts/universal/global_step40/mp_rank_04_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10234e7ac599d8a5d5f21852832c76f968cda22e0f99cb4b769646bb76c364f4
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/mp_rank_05_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce135a01f4c2defcf6a168ec5fb8291faaf7c966cfeb92ba648b6f7404507ad8
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/mp_rank_06_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73eb5f72b6bb9868c1a608707fdfa8674fbc30bb44351016675e89949cab7920
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/mp_rank_07_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc249171ab7e29645b27c09175560c00640839f21402776edcf487d6695fa8a7
|
3 |
+
size 4230084
|
ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d507ceadfd0c8d1bb6fc106ccf3a723668faeebe4c271070786ff2b86ef084aa
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Sub-package containing the matrix class and related functions.
|
2 |
+
|
3 |
+
"""
|
4 |
+
from . import defmatrix
|
5 |
+
from .defmatrix import *
|
6 |
+
|
7 |
+
__all__ = defmatrix.__all__
|
8 |
+
|
9 |
+
from numpy._pytesttester import PytestTester
|
10 |
+
test = PytestTester(__name__)
|
11 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from numpy import (
|
4 |
+
matrix as matrix,
|
5 |
+
)
|
6 |
+
|
7 |
+
from numpy.matrixlib.defmatrix import (
|
8 |
+
bmat as bmat,
|
9 |
+
mat as mat,
|
10 |
+
asmatrix as asmatrix,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__: list[str]
|
14 |
+
__path__: list[str]
|
15 |
+
test: PytestTester
|
venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (421 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc
ADDED
Binary file (29.6 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['matrix', 'bmat', 'mat', 'asmatrix']
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import warnings
|
5 |
+
import ast
|
6 |
+
|
7 |
+
from .._utils import set_module
|
8 |
+
import numpy.core.numeric as N
|
9 |
+
from numpy.core.numeric import concatenate, isscalar
|
10 |
+
# While not in __all__, matrix_power used to be defined here, so we import
|
11 |
+
# it for backward compatibility.
|
12 |
+
from numpy.linalg import matrix_power
|
13 |
+
|
14 |
+
|
15 |
+
def _convert_from_string(data):
|
16 |
+
for char in '[]':
|
17 |
+
data = data.replace(char, '')
|
18 |
+
|
19 |
+
rows = data.split(';')
|
20 |
+
newdata = []
|
21 |
+
count = 0
|
22 |
+
for row in rows:
|
23 |
+
trow = row.split(',')
|
24 |
+
newrow = []
|
25 |
+
for col in trow:
|
26 |
+
temp = col.split()
|
27 |
+
newrow.extend(map(ast.literal_eval, temp))
|
28 |
+
if count == 0:
|
29 |
+
Ncols = len(newrow)
|
30 |
+
elif len(newrow) != Ncols:
|
31 |
+
raise ValueError("Rows not the same size.")
|
32 |
+
count += 1
|
33 |
+
newdata.append(newrow)
|
34 |
+
return newdata
|
35 |
+
|
36 |
+
|
37 |
+
@set_module('numpy')
|
38 |
+
def asmatrix(data, dtype=None):
|
39 |
+
"""
|
40 |
+
Interpret the input as a matrix.
|
41 |
+
|
42 |
+
Unlike `matrix`, `asmatrix` does not make a copy if the input is already
|
43 |
+
a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
----------
|
47 |
+
data : array_like
|
48 |
+
Input data.
|
49 |
+
dtype : data-type
|
50 |
+
Data-type of the output matrix.
|
51 |
+
|
52 |
+
Returns
|
53 |
+
-------
|
54 |
+
mat : matrix
|
55 |
+
`data` interpreted as a matrix.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
--------
|
59 |
+
>>> x = np.array([[1, 2], [3, 4]])
|
60 |
+
|
61 |
+
>>> m = np.asmatrix(x)
|
62 |
+
|
63 |
+
>>> x[0,0] = 5
|
64 |
+
|
65 |
+
>>> m
|
66 |
+
matrix([[5, 2],
|
67 |
+
[3, 4]])
|
68 |
+
|
69 |
+
"""
|
70 |
+
return matrix(data, dtype=dtype, copy=False)
|
71 |
+
|
72 |
+
|
73 |
+
@set_module('numpy')
|
74 |
+
class matrix(N.ndarray):
|
75 |
+
"""
|
76 |
+
matrix(data, dtype=None, copy=True)
|
77 |
+
|
78 |
+
.. note:: It is no longer recommended to use this class, even for linear
|
79 |
+
algebra. Instead use regular arrays. The class may be removed
|
80 |
+
in the future.
|
81 |
+
|
82 |
+
Returns a matrix from an array-like object, or from a string of data.
|
83 |
+
A matrix is a specialized 2-D array that retains its 2-D nature
|
84 |
+
through operations. It has certain special operators, such as ``*``
|
85 |
+
(matrix multiplication) and ``**`` (matrix power).
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
data : array_like or string
|
90 |
+
If `data` is a string, it is interpreted as a matrix with commas
|
91 |
+
or spaces separating columns, and semicolons separating rows.
|
92 |
+
dtype : data-type
|
93 |
+
Data-type of the output matrix.
|
94 |
+
copy : bool
|
95 |
+
If `data` is already an `ndarray`, then this flag determines
|
96 |
+
whether the data is copied (the default), or whether a view is
|
97 |
+
constructed.
|
98 |
+
|
99 |
+
See Also
|
100 |
+
--------
|
101 |
+
array
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> a = np.matrix('1 2; 3 4')
|
106 |
+
>>> a
|
107 |
+
matrix([[1, 2],
|
108 |
+
[3, 4]])
|
109 |
+
|
110 |
+
>>> np.matrix([[1, 2], [3, 4]])
|
111 |
+
matrix([[1, 2],
|
112 |
+
[3, 4]])
|
113 |
+
|
114 |
+
"""
|
115 |
+
__array_priority__ = 10.0
|
116 |
+
def __new__(subtype, data, dtype=None, copy=True):
|
117 |
+
warnings.warn('the matrix subclass is not the recommended way to '
|
118 |
+
'represent matrices or deal with linear algebra (see '
|
119 |
+
'https://docs.scipy.org/doc/numpy/user/'
|
120 |
+
'numpy-for-matlab-users.html). '
|
121 |
+
'Please adjust your code to use regular ndarray.',
|
122 |
+
PendingDeprecationWarning, stacklevel=2)
|
123 |
+
if isinstance(data, matrix):
|
124 |
+
dtype2 = data.dtype
|
125 |
+
if (dtype is None):
|
126 |
+
dtype = dtype2
|
127 |
+
if (dtype2 == dtype) and (not copy):
|
128 |
+
return data
|
129 |
+
return data.astype(dtype)
|
130 |
+
|
131 |
+
if isinstance(data, N.ndarray):
|
132 |
+
if dtype is None:
|
133 |
+
intype = data.dtype
|
134 |
+
else:
|
135 |
+
intype = N.dtype(dtype)
|
136 |
+
new = data.view(subtype)
|
137 |
+
if intype != data.dtype:
|
138 |
+
return new.astype(intype)
|
139 |
+
if copy: return new.copy()
|
140 |
+
else: return new
|
141 |
+
|
142 |
+
if isinstance(data, str):
|
143 |
+
data = _convert_from_string(data)
|
144 |
+
|
145 |
+
# now convert data to an array
|
146 |
+
arr = N.array(data, dtype=dtype, copy=copy)
|
147 |
+
ndim = arr.ndim
|
148 |
+
shape = arr.shape
|
149 |
+
if (ndim > 2):
|
150 |
+
raise ValueError("matrix must be 2-dimensional")
|
151 |
+
elif ndim == 0:
|
152 |
+
shape = (1, 1)
|
153 |
+
elif ndim == 1:
|
154 |
+
shape = (1, shape[0])
|
155 |
+
|
156 |
+
order = 'C'
|
157 |
+
if (ndim == 2) and arr.flags.fortran:
|
158 |
+
order = 'F'
|
159 |
+
|
160 |
+
if not (order or arr.flags.contiguous):
|
161 |
+
arr = arr.copy()
|
162 |
+
|
163 |
+
ret = N.ndarray.__new__(subtype, shape, arr.dtype,
|
164 |
+
buffer=arr,
|
165 |
+
order=order)
|
166 |
+
return ret
|
167 |
+
|
168 |
+
def __array_finalize__(self, obj):
|
169 |
+
self._getitem = False
|
170 |
+
if (isinstance(obj, matrix) and obj._getitem): return
|
171 |
+
ndim = self.ndim
|
172 |
+
if (ndim == 2):
|
173 |
+
return
|
174 |
+
if (ndim > 2):
|
175 |
+
newshape = tuple([x for x in self.shape if x > 1])
|
176 |
+
ndim = len(newshape)
|
177 |
+
if ndim == 2:
|
178 |
+
self.shape = newshape
|
179 |
+
return
|
180 |
+
elif (ndim > 2):
|
181 |
+
raise ValueError("shape too large to be a matrix.")
|
182 |
+
else:
|
183 |
+
newshape = self.shape
|
184 |
+
if ndim == 0:
|
185 |
+
self.shape = (1, 1)
|
186 |
+
elif ndim == 1:
|
187 |
+
self.shape = (1, newshape[0])
|
188 |
+
return
|
189 |
+
|
190 |
+
def __getitem__(self, index):
|
191 |
+
self._getitem = True
|
192 |
+
|
193 |
+
try:
|
194 |
+
out = N.ndarray.__getitem__(self, index)
|
195 |
+
finally:
|
196 |
+
self._getitem = False
|
197 |
+
|
198 |
+
if not isinstance(out, N.ndarray):
|
199 |
+
return out
|
200 |
+
|
201 |
+
if out.ndim == 0:
|
202 |
+
return out[()]
|
203 |
+
if out.ndim == 1:
|
204 |
+
sh = out.shape[0]
|
205 |
+
# Determine when we should have a column array
|
206 |
+
try:
|
207 |
+
n = len(index)
|
208 |
+
except Exception:
|
209 |
+
n = 0
|
210 |
+
if n > 1 and isscalar(index[1]):
|
211 |
+
out.shape = (sh, 1)
|
212 |
+
else:
|
213 |
+
out.shape = (1, sh)
|
214 |
+
return out
|
215 |
+
|
216 |
+
def __mul__(self, other):
|
217 |
+
if isinstance(other, (N.ndarray, list, tuple)) :
|
218 |
+
# This promotes 1-D vectors to row vectors
|
219 |
+
return N.dot(self, asmatrix(other))
|
220 |
+
if isscalar(other) or not hasattr(other, '__rmul__') :
|
221 |
+
return N.dot(self, other)
|
222 |
+
return NotImplemented
|
223 |
+
|
224 |
+
def __rmul__(self, other):
|
225 |
+
return N.dot(other, self)
|
226 |
+
|
227 |
+
def __imul__(self, other):
|
228 |
+
self[:] = self * other
|
229 |
+
return self
|
230 |
+
|
231 |
+
def __pow__(self, other):
|
232 |
+
return matrix_power(self, other)
|
233 |
+
|
234 |
+
def __ipow__(self, other):
|
235 |
+
self[:] = self ** other
|
236 |
+
return self
|
237 |
+
|
238 |
+
def __rpow__(self, other):
|
239 |
+
return NotImplemented
|
240 |
+
|
241 |
+
def _align(self, axis):
|
242 |
+
"""A convenience function for operations that need to preserve axis
|
243 |
+
orientation.
|
244 |
+
"""
|
245 |
+
if axis is None:
|
246 |
+
return self[0, 0]
|
247 |
+
elif axis==0:
|
248 |
+
return self
|
249 |
+
elif axis==1:
|
250 |
+
return self.transpose()
|
251 |
+
else:
|
252 |
+
raise ValueError("unsupported axis")
|
253 |
+
|
254 |
+
def _collapse(self, axis):
|
255 |
+
"""A convenience function for operations that want to collapse
|
256 |
+
to a scalar like _align, but are using keepdims=True
|
257 |
+
"""
|
258 |
+
if axis is None:
|
259 |
+
return self[0, 0]
|
260 |
+
else:
|
261 |
+
return self
|
262 |
+
|
263 |
+
# Necessary because base-class tolist expects dimension
|
264 |
+
# reduction by x[0]
|
265 |
+
def tolist(self):
|
266 |
+
"""
|
267 |
+
Return the matrix as a (possibly nested) list.
|
268 |
+
|
269 |
+
See `ndarray.tolist` for full documentation.
|
270 |
+
|
271 |
+
See Also
|
272 |
+
--------
|
273 |
+
ndarray.tolist
|
274 |
+
|
275 |
+
Examples
|
276 |
+
--------
|
277 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
278 |
+
matrix([[ 0, 1, 2, 3],
|
279 |
+
[ 4, 5, 6, 7],
|
280 |
+
[ 8, 9, 10, 11]])
|
281 |
+
>>> x.tolist()
|
282 |
+
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
|
283 |
+
|
284 |
+
"""
|
285 |
+
return self.__array__().tolist()
|
286 |
+
|
287 |
+
# To preserve orientation of result...
|
288 |
+
def sum(self, axis=None, dtype=None, out=None):
|
289 |
+
"""
|
290 |
+
Returns the sum of the matrix elements, along the given axis.
|
291 |
+
|
292 |
+
Refer to `numpy.sum` for full documentation.
|
293 |
+
|
294 |
+
See Also
|
295 |
+
--------
|
296 |
+
numpy.sum
|
297 |
+
|
298 |
+
Notes
|
299 |
+
-----
|
300 |
+
This is the same as `ndarray.sum`, except that where an `ndarray` would
|
301 |
+
be returned, a `matrix` object is returned instead.
|
302 |
+
|
303 |
+
Examples
|
304 |
+
--------
|
305 |
+
>>> x = np.matrix([[1, 2], [4, 3]])
|
306 |
+
>>> x.sum()
|
307 |
+
10
|
308 |
+
>>> x.sum(axis=1)
|
309 |
+
matrix([[3],
|
310 |
+
[7]])
|
311 |
+
>>> x.sum(axis=1, dtype='float')
|
312 |
+
matrix([[3.],
|
313 |
+
[7.]])
|
314 |
+
>>> out = np.zeros((2, 1), dtype='float')
|
315 |
+
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
|
316 |
+
matrix([[3.],
|
317 |
+
[7.]])
|
318 |
+
|
319 |
+
"""
|
320 |
+
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
321 |
+
|
322 |
+
|
323 |
+
# To update docstring from array to matrix...
|
324 |
+
def squeeze(self, axis=None):
|
325 |
+
"""
|
326 |
+
Return a possibly reshaped matrix.
|
327 |
+
|
328 |
+
Refer to `numpy.squeeze` for more documentation.
|
329 |
+
|
330 |
+
Parameters
|
331 |
+
----------
|
332 |
+
axis : None or int or tuple of ints, optional
|
333 |
+
Selects a subset of the axes of length one in the shape.
|
334 |
+
If an axis is selected with shape entry greater than one,
|
335 |
+
an error is raised.
|
336 |
+
|
337 |
+
Returns
|
338 |
+
-------
|
339 |
+
squeezed : matrix
|
340 |
+
The matrix, but as a (1, N) matrix if it had shape (N, 1).
|
341 |
+
|
342 |
+
See Also
|
343 |
+
--------
|
344 |
+
numpy.squeeze : related function
|
345 |
+
|
346 |
+
Notes
|
347 |
+
-----
|
348 |
+
If `m` has a single column then that column is returned
|
349 |
+
as the single row of a matrix. Otherwise `m` is returned.
|
350 |
+
The returned matrix is always either `m` itself or a view into `m`.
|
351 |
+
Supplying an axis keyword argument will not affect the returned matrix
|
352 |
+
but it may cause an error to be raised.
|
353 |
+
|
354 |
+
Examples
|
355 |
+
--------
|
356 |
+
>>> c = np.matrix([[1], [2]])
|
357 |
+
>>> c
|
358 |
+
matrix([[1],
|
359 |
+
[2]])
|
360 |
+
>>> c.squeeze()
|
361 |
+
matrix([[1, 2]])
|
362 |
+
>>> r = c.T
|
363 |
+
>>> r
|
364 |
+
matrix([[1, 2]])
|
365 |
+
>>> r.squeeze()
|
366 |
+
matrix([[1, 2]])
|
367 |
+
>>> m = np.matrix([[1, 2], [3, 4]])
|
368 |
+
>>> m.squeeze()
|
369 |
+
matrix([[1, 2],
|
370 |
+
[3, 4]])
|
371 |
+
|
372 |
+
"""
|
373 |
+
return N.ndarray.squeeze(self, axis=axis)
|
374 |
+
|
375 |
+
|
376 |
+
# To update docstring from array to matrix...
|
377 |
+
def flatten(self, order='C'):
|
378 |
+
"""
|
379 |
+
Return a flattened copy of the matrix.
|
380 |
+
|
381 |
+
All `N` elements of the matrix are placed into a single row.
|
382 |
+
|
383 |
+
Parameters
|
384 |
+
----------
|
385 |
+
order : {'C', 'F', 'A', 'K'}, optional
|
386 |
+
'C' means to flatten in row-major (C-style) order. 'F' means to
|
387 |
+
flatten in column-major (Fortran-style) order. 'A' means to
|
388 |
+
flatten in column-major order if `m` is Fortran *contiguous* in
|
389 |
+
memory, row-major order otherwise. 'K' means to flatten `m` in
|
390 |
+
the order the elements occur in memory. The default is 'C'.
|
391 |
+
|
392 |
+
Returns
|
393 |
+
-------
|
394 |
+
y : matrix
|
395 |
+
A copy of the matrix, flattened to a `(1, N)` matrix where `N`
|
396 |
+
is the number of elements in the original matrix.
|
397 |
+
|
398 |
+
See Also
|
399 |
+
--------
|
400 |
+
ravel : Return a flattened array.
|
401 |
+
flat : A 1-D flat iterator over the matrix.
|
402 |
+
|
403 |
+
Examples
|
404 |
+
--------
|
405 |
+
>>> m = np.matrix([[1,2], [3,4]])
|
406 |
+
>>> m.flatten()
|
407 |
+
matrix([[1, 2, 3, 4]])
|
408 |
+
>>> m.flatten('F')
|
409 |
+
matrix([[1, 3, 2, 4]])
|
410 |
+
|
411 |
+
"""
|
412 |
+
return N.ndarray.flatten(self, order=order)
|
413 |
+
|
414 |
+
def mean(self, axis=None, dtype=None, out=None):
|
415 |
+
"""
|
416 |
+
Returns the average of the matrix elements along the given axis.
|
417 |
+
|
418 |
+
Refer to `numpy.mean` for full documentation.
|
419 |
+
|
420 |
+
See Also
|
421 |
+
--------
|
422 |
+
numpy.mean
|
423 |
+
|
424 |
+
Notes
|
425 |
+
-----
|
426 |
+
Same as `ndarray.mean` except that, where that returns an `ndarray`,
|
427 |
+
this returns a `matrix` object.
|
428 |
+
|
429 |
+
Examples
|
430 |
+
--------
|
431 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
432 |
+
>>> x
|
433 |
+
matrix([[ 0, 1, 2, 3],
|
434 |
+
[ 4, 5, 6, 7],
|
435 |
+
[ 8, 9, 10, 11]])
|
436 |
+
>>> x.mean()
|
437 |
+
5.5
|
438 |
+
>>> x.mean(0)
|
439 |
+
matrix([[4., 5., 6., 7.]])
|
440 |
+
>>> x.mean(1)
|
441 |
+
matrix([[ 1.5],
|
442 |
+
[ 5.5],
|
443 |
+
[ 9.5]])
|
444 |
+
|
445 |
+
"""
|
446 |
+
return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
447 |
+
|
448 |
+
def std(self, axis=None, dtype=None, out=None, ddof=0):
|
449 |
+
"""
|
450 |
+
Return the standard deviation of the array elements along the given axis.
|
451 |
+
|
452 |
+
Refer to `numpy.std` for full documentation.
|
453 |
+
|
454 |
+
See Also
|
455 |
+
--------
|
456 |
+
numpy.std
|
457 |
+
|
458 |
+
Notes
|
459 |
+
-----
|
460 |
+
This is the same as `ndarray.std`, except that where an `ndarray` would
|
461 |
+
be returned, a `matrix` object is returned instead.
|
462 |
+
|
463 |
+
Examples
|
464 |
+
--------
|
465 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
466 |
+
>>> x
|
467 |
+
matrix([[ 0, 1, 2, 3],
|
468 |
+
[ 4, 5, 6, 7],
|
469 |
+
[ 8, 9, 10, 11]])
|
470 |
+
>>> x.std()
|
471 |
+
3.4520525295346629 # may vary
|
472 |
+
>>> x.std(0)
|
473 |
+
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
|
474 |
+
>>> x.std(1)
|
475 |
+
matrix([[ 1.11803399],
|
476 |
+
[ 1.11803399],
|
477 |
+
[ 1.11803399]])
|
478 |
+
|
479 |
+
"""
|
480 |
+
return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
|
481 |
+
|
482 |
+
def var(self, axis=None, dtype=None, out=None, ddof=0):
|
483 |
+
"""
|
484 |
+
Returns the variance of the matrix elements, along the given axis.
|
485 |
+
|
486 |
+
Refer to `numpy.var` for full documentation.
|
487 |
+
|
488 |
+
See Also
|
489 |
+
--------
|
490 |
+
numpy.var
|
491 |
+
|
492 |
+
Notes
|
493 |
+
-----
|
494 |
+
This is the same as `ndarray.var`, except that where an `ndarray` would
|
495 |
+
be returned, a `matrix` object is returned instead.
|
496 |
+
|
497 |
+
Examples
|
498 |
+
--------
|
499 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
500 |
+
>>> x
|
501 |
+
matrix([[ 0, 1, 2, 3],
|
502 |
+
[ 4, 5, 6, 7],
|
503 |
+
[ 8, 9, 10, 11]])
|
504 |
+
>>> x.var()
|
505 |
+
11.916666666666666
|
506 |
+
>>> x.var(0)
|
507 |
+
matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary
|
508 |
+
>>> x.var(1)
|
509 |
+
matrix([[1.25],
|
510 |
+
[1.25],
|
511 |
+
[1.25]])
|
512 |
+
|
513 |
+
"""
|
514 |
+
return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
|
515 |
+
|
516 |
+
def prod(self, axis=None, dtype=None, out=None):
|
517 |
+
"""
|
518 |
+
Return the product of the array elements over the given axis.
|
519 |
+
|
520 |
+
Refer to `prod` for full documentation.
|
521 |
+
|
522 |
+
See Also
|
523 |
+
--------
|
524 |
+
prod, ndarray.prod
|
525 |
+
|
526 |
+
Notes
|
527 |
+
-----
|
528 |
+
Same as `ndarray.prod`, except, where that returns an `ndarray`, this
|
529 |
+
returns a `matrix` object instead.
|
530 |
+
|
531 |
+
Examples
|
532 |
+
--------
|
533 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
534 |
+
matrix([[ 0, 1, 2, 3],
|
535 |
+
[ 4, 5, 6, 7],
|
536 |
+
[ 8, 9, 10, 11]])
|
537 |
+
>>> x.prod()
|
538 |
+
0
|
539 |
+
>>> x.prod(0)
|
540 |
+
matrix([[ 0, 45, 120, 231]])
|
541 |
+
>>> x.prod(1)
|
542 |
+
matrix([[ 0],
|
543 |
+
[ 840],
|
544 |
+
[7920]])
|
545 |
+
|
546 |
+
"""
|
547 |
+
return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
548 |
+
|
549 |
+
def any(self, axis=None, out=None):
|
550 |
+
"""
|
551 |
+
Test whether any array element along a given axis evaluates to True.
|
552 |
+
|
553 |
+
Refer to `numpy.any` for full documentation.
|
554 |
+
|
555 |
+
Parameters
|
556 |
+
----------
|
557 |
+
axis : int, optional
|
558 |
+
Axis along which logical OR is performed
|
559 |
+
out : ndarray, optional
|
560 |
+
Output to existing array instead of creating new one, must have
|
561 |
+
same shape as expected output
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
any : bool, ndarray
|
566 |
+
Returns a single bool if `axis` is ``None``; otherwise,
|
567 |
+
returns `ndarray`
|
568 |
+
|
569 |
+
"""
|
570 |
+
return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis)
|
571 |
+
|
572 |
+
def all(self, axis=None, out=None):
|
573 |
+
"""
|
574 |
+
Test whether all matrix elements along a given axis evaluate to True.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
----------
|
578 |
+
See `numpy.all` for complete descriptions
|
579 |
+
|
580 |
+
See Also
|
581 |
+
--------
|
582 |
+
numpy.all
|
583 |
+
|
584 |
+
Notes
|
585 |
+
-----
|
586 |
+
This is the same as `ndarray.all`, but it returns a `matrix` object.
|
587 |
+
|
588 |
+
Examples
|
589 |
+
--------
|
590 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
591 |
+
matrix([[ 0, 1, 2, 3],
|
592 |
+
[ 4, 5, 6, 7],
|
593 |
+
[ 8, 9, 10, 11]])
|
594 |
+
>>> y = x[0]; y
|
595 |
+
matrix([[0, 1, 2, 3]])
|
596 |
+
>>> (x == y)
|
597 |
+
matrix([[ True, True, True, True],
|
598 |
+
[False, False, False, False],
|
599 |
+
[False, False, False, False]])
|
600 |
+
>>> (x == y).all()
|
601 |
+
False
|
602 |
+
>>> (x == y).all(0)
|
603 |
+
matrix([[False, False, False, False]])
|
604 |
+
>>> (x == y).all(1)
|
605 |
+
matrix([[ True],
|
606 |
+
[False],
|
607 |
+
[False]])
|
608 |
+
|
609 |
+
"""
|
610 |
+
return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis)
|
611 |
+
|
612 |
+
def max(self, axis=None, out=None):
|
613 |
+
"""
|
614 |
+
Return the maximum value along an axis.
|
615 |
+
|
616 |
+
Parameters
|
617 |
+
----------
|
618 |
+
See `amax` for complete descriptions
|
619 |
+
|
620 |
+
See Also
|
621 |
+
--------
|
622 |
+
amax, ndarray.max
|
623 |
+
|
624 |
+
Notes
|
625 |
+
-----
|
626 |
+
This is the same as `ndarray.max`, but returns a `matrix` object
|
627 |
+
where `ndarray.max` would return an ndarray.
|
628 |
+
|
629 |
+
Examples
|
630 |
+
--------
|
631 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
632 |
+
matrix([[ 0, 1, 2, 3],
|
633 |
+
[ 4, 5, 6, 7],
|
634 |
+
[ 8, 9, 10, 11]])
|
635 |
+
>>> x.max()
|
636 |
+
11
|
637 |
+
>>> x.max(0)
|
638 |
+
matrix([[ 8, 9, 10, 11]])
|
639 |
+
>>> x.max(1)
|
640 |
+
matrix([[ 3],
|
641 |
+
[ 7],
|
642 |
+
[11]])
|
643 |
+
|
644 |
+
"""
|
645 |
+
return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis)
|
646 |
+
|
647 |
+
def argmax(self, axis=None, out=None):
|
648 |
+
"""
|
649 |
+
Indexes of the maximum values along an axis.
|
650 |
+
|
651 |
+
Return the indexes of the first occurrences of the maximum values
|
652 |
+
along the specified axis. If axis is None, the index is for the
|
653 |
+
flattened matrix.
|
654 |
+
|
655 |
+
Parameters
|
656 |
+
----------
|
657 |
+
See `numpy.argmax` for complete descriptions
|
658 |
+
|
659 |
+
See Also
|
660 |
+
--------
|
661 |
+
numpy.argmax
|
662 |
+
|
663 |
+
Notes
|
664 |
+
-----
|
665 |
+
This is the same as `ndarray.argmax`, but returns a `matrix` object
|
666 |
+
where `ndarray.argmax` would return an `ndarray`.
|
667 |
+
|
668 |
+
Examples
|
669 |
+
--------
|
670 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
671 |
+
matrix([[ 0, 1, 2, 3],
|
672 |
+
[ 4, 5, 6, 7],
|
673 |
+
[ 8, 9, 10, 11]])
|
674 |
+
>>> x.argmax()
|
675 |
+
11
|
676 |
+
>>> x.argmax(0)
|
677 |
+
matrix([[2, 2, 2, 2]])
|
678 |
+
>>> x.argmax(1)
|
679 |
+
matrix([[3],
|
680 |
+
[3],
|
681 |
+
[3]])
|
682 |
+
|
683 |
+
"""
|
684 |
+
return N.ndarray.argmax(self, axis, out)._align(axis)
|
685 |
+
|
686 |
+
def min(self, axis=None, out=None):
|
687 |
+
"""
|
688 |
+
Return the minimum value along an axis.
|
689 |
+
|
690 |
+
Parameters
|
691 |
+
----------
|
692 |
+
See `amin` for complete descriptions.
|
693 |
+
|
694 |
+
See Also
|
695 |
+
--------
|
696 |
+
amin, ndarray.min
|
697 |
+
|
698 |
+
Notes
|
699 |
+
-----
|
700 |
+
This is the same as `ndarray.min`, but returns a `matrix` object
|
701 |
+
where `ndarray.min` would return an ndarray.
|
702 |
+
|
703 |
+
Examples
|
704 |
+
--------
|
705 |
+
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
|
706 |
+
matrix([[ 0, -1, -2, -3],
|
707 |
+
[ -4, -5, -6, -7],
|
708 |
+
[ -8, -9, -10, -11]])
|
709 |
+
>>> x.min()
|
710 |
+
-11
|
711 |
+
>>> x.min(0)
|
712 |
+
matrix([[ -8, -9, -10, -11]])
|
713 |
+
>>> x.min(1)
|
714 |
+
matrix([[ -3],
|
715 |
+
[ -7],
|
716 |
+
[-11]])
|
717 |
+
|
718 |
+
"""
|
719 |
+
return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis)
|
720 |
+
|
721 |
+
def argmin(self, axis=None, out=None):
|
722 |
+
"""
|
723 |
+
Indexes of the minimum values along an axis.
|
724 |
+
|
725 |
+
Return the indexes of the first occurrences of the minimum values
|
726 |
+
along the specified axis. If axis is None, the index is for the
|
727 |
+
flattened matrix.
|
728 |
+
|
729 |
+
Parameters
|
730 |
+
----------
|
731 |
+
See `numpy.argmin` for complete descriptions.
|
732 |
+
|
733 |
+
See Also
|
734 |
+
--------
|
735 |
+
numpy.argmin
|
736 |
+
|
737 |
+
Notes
|
738 |
+
-----
|
739 |
+
This is the same as `ndarray.argmin`, but returns a `matrix` object
|
740 |
+
where `ndarray.argmin` would return an `ndarray`.
|
741 |
+
|
742 |
+
Examples
|
743 |
+
--------
|
744 |
+
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
|
745 |
+
matrix([[ 0, -1, -2, -3],
|
746 |
+
[ -4, -5, -6, -7],
|
747 |
+
[ -8, -9, -10, -11]])
|
748 |
+
>>> x.argmin()
|
749 |
+
11
|
750 |
+
>>> x.argmin(0)
|
751 |
+
matrix([[2, 2, 2, 2]])
|
752 |
+
>>> x.argmin(1)
|
753 |
+
matrix([[3],
|
754 |
+
[3],
|
755 |
+
[3]])
|
756 |
+
|
757 |
+
"""
|
758 |
+
return N.ndarray.argmin(self, axis, out)._align(axis)
|
759 |
+
|
760 |
+
def ptp(self, axis=None, out=None):
|
761 |
+
"""
|
762 |
+
Peak-to-peak (maximum - minimum) value along the given axis.
|
763 |
+
|
764 |
+
Refer to `numpy.ptp` for full documentation.
|
765 |
+
|
766 |
+
See Also
|
767 |
+
--------
|
768 |
+
numpy.ptp
|
769 |
+
|
770 |
+
Notes
|
771 |
+
-----
|
772 |
+
Same as `ndarray.ptp`, except, where that would return an `ndarray` object,
|
773 |
+
this returns a `matrix` object.
|
774 |
+
|
775 |
+
Examples
|
776 |
+
--------
|
777 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
778 |
+
matrix([[ 0, 1, 2, 3],
|
779 |
+
[ 4, 5, 6, 7],
|
780 |
+
[ 8, 9, 10, 11]])
|
781 |
+
>>> x.ptp()
|
782 |
+
11
|
783 |
+
>>> x.ptp(0)
|
784 |
+
matrix([[8, 8, 8, 8]])
|
785 |
+
>>> x.ptp(1)
|
786 |
+
matrix([[3],
|
787 |
+
[3],
|
788 |
+
[3]])
|
789 |
+
|
790 |
+
"""
|
791 |
+
return N.ndarray.ptp(self, axis, out)._align(axis)
|
792 |
+
|
793 |
+
@property
|
794 |
+
def I(self):
|
795 |
+
"""
|
796 |
+
Returns the (multiplicative) inverse of invertible `self`.
|
797 |
+
|
798 |
+
Parameters
|
799 |
+
----------
|
800 |
+
None
|
801 |
+
|
802 |
+
Returns
|
803 |
+
-------
|
804 |
+
ret : matrix object
|
805 |
+
If `self` is non-singular, `ret` is such that ``ret * self`` ==
|
806 |
+
``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return
|
807 |
+
``True``.
|
808 |
+
|
809 |
+
Raises
|
810 |
+
------
|
811 |
+
numpy.linalg.LinAlgError: Singular matrix
|
812 |
+
If `self` is singular.
|
813 |
+
|
814 |
+
See Also
|
815 |
+
--------
|
816 |
+
linalg.inv
|
817 |
+
|
818 |
+
Examples
|
819 |
+
--------
|
820 |
+
>>> m = np.matrix('[1, 2; 3, 4]'); m
|
821 |
+
matrix([[1, 2],
|
822 |
+
[3, 4]])
|
823 |
+
>>> m.getI()
|
824 |
+
matrix([[-2. , 1. ],
|
825 |
+
[ 1.5, -0.5]])
|
826 |
+
>>> m.getI() * m
|
827 |
+
matrix([[ 1., 0.], # may vary
|
828 |
+
[ 0., 1.]])
|
829 |
+
|
830 |
+
"""
|
831 |
+
M, N = self.shape
|
832 |
+
if M == N:
|
833 |
+
from numpy.linalg import inv as func
|
834 |
+
else:
|
835 |
+
from numpy.linalg import pinv as func
|
836 |
+
return asmatrix(func(self))
|
837 |
+
|
838 |
+
@property
|
839 |
+
def A(self):
|
840 |
+
"""
|
841 |
+
Return `self` as an `ndarray` object.
|
842 |
+
|
843 |
+
Equivalent to ``np.asarray(self)``.
|
844 |
+
|
845 |
+
Parameters
|
846 |
+
----------
|
847 |
+
None
|
848 |
+
|
849 |
+
Returns
|
850 |
+
-------
|
851 |
+
ret : ndarray
|
852 |
+
`self` as an `ndarray`
|
853 |
+
|
854 |
+
Examples
|
855 |
+
--------
|
856 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
857 |
+
matrix([[ 0, 1, 2, 3],
|
858 |
+
[ 4, 5, 6, 7],
|
859 |
+
[ 8, 9, 10, 11]])
|
860 |
+
>>> x.getA()
|
861 |
+
array([[ 0, 1, 2, 3],
|
862 |
+
[ 4, 5, 6, 7],
|
863 |
+
[ 8, 9, 10, 11]])
|
864 |
+
|
865 |
+
"""
|
866 |
+
return self.__array__()
|
867 |
+
|
868 |
+
@property
|
869 |
+
def A1(self):
|
870 |
+
"""
|
871 |
+
Return `self` as a flattened `ndarray`.
|
872 |
+
|
873 |
+
Equivalent to ``np.asarray(x).ravel()``
|
874 |
+
|
875 |
+
Parameters
|
876 |
+
----------
|
877 |
+
None
|
878 |
+
|
879 |
+
Returns
|
880 |
+
-------
|
881 |
+
ret : ndarray
|
882 |
+
`self`, 1-D, as an `ndarray`
|
883 |
+
|
884 |
+
Examples
|
885 |
+
--------
|
886 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
887 |
+
matrix([[ 0, 1, 2, 3],
|
888 |
+
[ 4, 5, 6, 7],
|
889 |
+
[ 8, 9, 10, 11]])
|
890 |
+
>>> x.getA1()
|
891 |
+
array([ 0, 1, 2, ..., 9, 10, 11])
|
892 |
+
|
893 |
+
|
894 |
+
"""
|
895 |
+
return self.__array__().ravel()
|
896 |
+
|
897 |
+
|
898 |
+
def ravel(self, order='C'):
|
899 |
+
"""
|
900 |
+
Return a flattened matrix.
|
901 |
+
|
902 |
+
Refer to `numpy.ravel` for more documentation.
|
903 |
+
|
904 |
+
Parameters
|
905 |
+
----------
|
906 |
+
order : {'C', 'F', 'A', 'K'}, optional
|
907 |
+
The elements of `m` are read using this index order. 'C' means to
|
908 |
+
index the elements in C-like order, with the last axis index
|
909 |
+
changing fastest, back to the first axis index changing slowest.
|
910 |
+
'F' means to index the elements in Fortran-like index order, with
|
911 |
+
the first index changing fastest, and the last index changing
|
912 |
+
slowest. Note that the 'C' and 'F' options take no account of the
|
913 |
+
memory layout of the underlying array, and only refer to the order
|
914 |
+
of axis indexing. 'A' means to read the elements in Fortran-like
|
915 |
+
index order if `m` is Fortran *contiguous* in memory, C-like order
|
916 |
+
otherwise. 'K' means to read the elements in the order they occur
|
917 |
+
in memory, except for reversing the data when strides are negative.
|
918 |
+
By default, 'C' index order is used.
|
919 |
+
|
920 |
+
Returns
|
921 |
+
-------
|
922 |
+
ret : matrix
|
923 |
+
Return the matrix flattened to shape `(1, N)` where `N`
|
924 |
+
is the number of elements in the original matrix.
|
925 |
+
A copy is made only if necessary.
|
926 |
+
|
927 |
+
See Also
|
928 |
+
--------
|
929 |
+
matrix.flatten : returns a similar output matrix but always a copy
|
930 |
+
matrix.flat : a flat iterator on the array.
|
931 |
+
numpy.ravel : related function which returns an ndarray
|
932 |
+
|
933 |
+
"""
|
934 |
+
return N.ndarray.ravel(self, order=order)
|
935 |
+
|
936 |
+
@property
|
937 |
+
def T(self):
|
938 |
+
"""
|
939 |
+
Returns the transpose of the matrix.
|
940 |
+
|
941 |
+
Does *not* conjugate! For the complex conjugate transpose, use ``.H``.
|
942 |
+
|
943 |
+
Parameters
|
944 |
+
----------
|
945 |
+
None
|
946 |
+
|
947 |
+
Returns
|
948 |
+
-------
|
949 |
+
ret : matrix object
|
950 |
+
The (non-conjugated) transpose of the matrix.
|
951 |
+
|
952 |
+
See Also
|
953 |
+
--------
|
954 |
+
transpose, getH
|
955 |
+
|
956 |
+
Examples
|
957 |
+
--------
|
958 |
+
>>> m = np.matrix('[1, 2; 3, 4]')
|
959 |
+
>>> m
|
960 |
+
matrix([[1, 2],
|
961 |
+
[3, 4]])
|
962 |
+
>>> m.getT()
|
963 |
+
matrix([[1, 3],
|
964 |
+
[2, 4]])
|
965 |
+
|
966 |
+
"""
|
967 |
+
return self.transpose()
|
968 |
+
|
969 |
+
@property
|
970 |
+
def H(self):
|
971 |
+
"""
|
972 |
+
Returns the (complex) conjugate transpose of `self`.
|
973 |
+
|
974 |
+
Equivalent to ``np.transpose(self)`` if `self` is real-valued.
|
975 |
+
|
976 |
+
Parameters
|
977 |
+
----------
|
978 |
+
None
|
979 |
+
|
980 |
+
Returns
|
981 |
+
-------
|
982 |
+
ret : matrix object
|
983 |
+
complex conjugate transpose of `self`
|
984 |
+
|
985 |
+
Examples
|
986 |
+
--------
|
987 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4)))
|
988 |
+
>>> z = x - 1j*x; z
|
989 |
+
matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],
|
990 |
+
[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
|
991 |
+
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
|
992 |
+
>>> z.getH()
|
993 |
+
matrix([[ 0. -0.j, 4. +4.j, 8. +8.j],
|
994 |
+
[ 1. +1.j, 5. +5.j, 9. +9.j],
|
995 |
+
[ 2. +2.j, 6. +6.j, 10.+10.j],
|
996 |
+
[ 3. +3.j, 7. +7.j, 11.+11.j]])
|
997 |
+
|
998 |
+
"""
|
999 |
+
if issubclass(self.dtype.type, N.complexfloating):
|
1000 |
+
return self.transpose().conjugate()
|
1001 |
+
else:
|
1002 |
+
return self.transpose()
|
1003 |
+
|
1004 |
+
# kept for compatibility
|
1005 |
+
getT = T.fget
|
1006 |
+
getA = A.fget
|
1007 |
+
getA1 = A1.fget
|
1008 |
+
getH = H.fget
|
1009 |
+
getI = I.fget
|
1010 |
+
|
1011 |
+
def _from_string(str, gdict, ldict):
|
1012 |
+
rows = str.split(';')
|
1013 |
+
rowtup = []
|
1014 |
+
for row in rows:
|
1015 |
+
trow = row.split(',')
|
1016 |
+
newrow = []
|
1017 |
+
for x in trow:
|
1018 |
+
newrow.extend(x.split())
|
1019 |
+
trow = newrow
|
1020 |
+
coltup = []
|
1021 |
+
for col in trow:
|
1022 |
+
col = col.strip()
|
1023 |
+
try:
|
1024 |
+
thismat = ldict[col]
|
1025 |
+
except KeyError:
|
1026 |
+
try:
|
1027 |
+
thismat = gdict[col]
|
1028 |
+
except KeyError as e:
|
1029 |
+
raise NameError(f"name {col!r} is not defined") from None
|
1030 |
+
|
1031 |
+
coltup.append(thismat)
|
1032 |
+
rowtup.append(concatenate(coltup, axis=-1))
|
1033 |
+
return concatenate(rowtup, axis=0)
|
1034 |
+
|
1035 |
+
|
1036 |
+
@set_module('numpy')
|
1037 |
+
def bmat(obj, ldict=None, gdict=None):
|
1038 |
+
"""
|
1039 |
+
Build a matrix object from a string, nested sequence, or array.
|
1040 |
+
|
1041 |
+
Parameters
|
1042 |
+
----------
|
1043 |
+
obj : str or array_like
|
1044 |
+
Input data. If a string, variables in the current scope may be
|
1045 |
+
referenced by name.
|
1046 |
+
ldict : dict, optional
|
1047 |
+
A dictionary that replaces local operands in current frame.
|
1048 |
+
Ignored if `obj` is not a string or `gdict` is None.
|
1049 |
+
gdict : dict, optional
|
1050 |
+
A dictionary that replaces global operands in current frame.
|
1051 |
+
Ignored if `obj` is not a string.
|
1052 |
+
|
1053 |
+
Returns
|
1054 |
+
-------
|
1055 |
+
out : matrix
|
1056 |
+
Returns a matrix object, which is a specialized 2-D array.
|
1057 |
+
|
1058 |
+
See Also
|
1059 |
+
--------
|
1060 |
+
block :
|
1061 |
+
A generalization of this function for N-d arrays, that returns normal
|
1062 |
+
ndarrays.
|
1063 |
+
|
1064 |
+
Examples
|
1065 |
+
--------
|
1066 |
+
>>> A = np.mat('1 1; 1 1')
|
1067 |
+
>>> B = np.mat('2 2; 2 2')
|
1068 |
+
>>> C = np.mat('3 4; 5 6')
|
1069 |
+
>>> D = np.mat('7 8; 9 0')
|
1070 |
+
|
1071 |
+
All the following expressions construct the same block matrix:
|
1072 |
+
|
1073 |
+
>>> np.bmat([[A, B], [C, D]])
|
1074 |
+
matrix([[1, 1, 2, 2],
|
1075 |
+
[1, 1, 2, 2],
|
1076 |
+
[3, 4, 7, 8],
|
1077 |
+
[5, 6, 9, 0]])
|
1078 |
+
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
|
1079 |
+
matrix([[1, 1, 2, 2],
|
1080 |
+
[1, 1, 2, 2],
|
1081 |
+
[3, 4, 7, 8],
|
1082 |
+
[5, 6, 9, 0]])
|
1083 |
+
>>> np.bmat('A,B; C,D')
|
1084 |
+
matrix([[1, 1, 2, 2],
|
1085 |
+
[1, 1, 2, 2],
|
1086 |
+
[3, 4, 7, 8],
|
1087 |
+
[5, 6, 9, 0]])
|
1088 |
+
|
1089 |
+
"""
|
1090 |
+
if isinstance(obj, str):
|
1091 |
+
if gdict is None:
|
1092 |
+
# get previous frame
|
1093 |
+
frame = sys._getframe().f_back
|
1094 |
+
glob_dict = frame.f_globals
|
1095 |
+
loc_dict = frame.f_locals
|
1096 |
+
else:
|
1097 |
+
glob_dict = gdict
|
1098 |
+
loc_dict = ldict
|
1099 |
+
|
1100 |
+
return matrix(_from_string(obj, glob_dict, loc_dict))
|
1101 |
+
|
1102 |
+
if isinstance(obj, (tuple, list)):
|
1103 |
+
# [[A,B],[C,D]]
|
1104 |
+
arr_rows = []
|
1105 |
+
for row in obj:
|
1106 |
+
if isinstance(row, N.ndarray): # not 2-d
|
1107 |
+
return matrix(concatenate(obj, axis=-1))
|
1108 |
+
else:
|
1109 |
+
arr_rows.append(concatenate(row, axis=-1))
|
1110 |
+
return matrix(concatenate(arr_rows, axis=0))
|
1111 |
+
if isinstance(obj, N.ndarray):
|
1112 |
+
return matrix(obj)
|
1113 |
+
|
1114 |
+
mat = asmatrix
|
venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence, Mapping
|
2 |
+
from typing import Any
|
3 |
+
from numpy import matrix as matrix
|
4 |
+
from numpy._typing import ArrayLike, DTypeLike, NDArray
|
5 |
+
|
6 |
+
__all__: list[str]
|
7 |
+
|
8 |
+
def bmat(
|
9 |
+
obj: str | Sequence[ArrayLike] | NDArray[Any],
|
10 |
+
ldict: None | Mapping[str, Any] = ...,
|
11 |
+
gdict: None | Mapping[str, Any] = ...,
|
12 |
+
) -> matrix[Any, Any]: ...
|
13 |
+
|
14 |
+
def asmatrix(data: ArrayLike, dtype: DTypeLike = ...) -> matrix[Any, Any]: ...
|
15 |
+
|
16 |
+
mat = asmatrix
|
venv/lib/python3.10/site-packages/numpy/matrixlib/setup.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
def configuration(parent_package='', top_path=None):
|
3 |
+
from numpy.distutils.misc_util import Configuration
|
4 |
+
config = Configuration('matrixlib', parent_package, top_path)
|
5 |
+
config.add_subpackage('tests')
|
6 |
+
config.add_data_files('*.pyi')
|
7 |
+
return config
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
from numpy.distutils.core import setup
|
11 |
+
config = configuration(top_path='').todict()
|
12 |
+
setup(**config)
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy import matrix, asmatrix, bmat
|
5 |
+
from numpy.testing import (
|
6 |
+
assert_, assert_equal, assert_almost_equal, assert_array_equal,
|
7 |
+
assert_array_almost_equal, assert_raises
|
8 |
+
)
|
9 |
+
from numpy.linalg import matrix_power
|
10 |
+
from numpy.matrixlib import mat
|
11 |
+
|
12 |
+
class TestCtor:
|
13 |
+
def test_basic(self):
|
14 |
+
A = np.array([[1, 2], [3, 4]])
|
15 |
+
mA = matrix(A)
|
16 |
+
assert_(np.all(mA.A == A))
|
17 |
+
|
18 |
+
B = bmat("A,A;A,A")
|
19 |
+
C = bmat([[A, A], [A, A]])
|
20 |
+
D = np.array([[1, 2, 1, 2],
|
21 |
+
[3, 4, 3, 4],
|
22 |
+
[1, 2, 1, 2],
|
23 |
+
[3, 4, 3, 4]])
|
24 |
+
assert_(np.all(B.A == D))
|
25 |
+
assert_(np.all(C.A == D))
|
26 |
+
|
27 |
+
E = np.array([[5, 6], [7, 8]])
|
28 |
+
AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
|
29 |
+
assert_(np.all(bmat([A, E]) == AEresult))
|
30 |
+
|
31 |
+
vec = np.arange(5)
|
32 |
+
mvec = matrix(vec)
|
33 |
+
assert_(mvec.shape == (1, 5))
|
34 |
+
|
35 |
+
def test_exceptions(self):
|
36 |
+
# Check for ValueError when called with invalid string data.
|
37 |
+
assert_raises(ValueError, matrix, "invalid")
|
38 |
+
|
39 |
+
def test_bmat_nondefault_str(self):
|
40 |
+
A = np.array([[1, 2], [3, 4]])
|
41 |
+
B = np.array([[5, 6], [7, 8]])
|
42 |
+
Aresult = np.array([[1, 2, 1, 2],
|
43 |
+
[3, 4, 3, 4],
|
44 |
+
[1, 2, 1, 2],
|
45 |
+
[3, 4, 3, 4]])
|
46 |
+
mixresult = np.array([[1, 2, 5, 6],
|
47 |
+
[3, 4, 7, 8],
|
48 |
+
[5, 6, 1, 2],
|
49 |
+
[7, 8, 3, 4]])
|
50 |
+
assert_(np.all(bmat("A,A;A,A") == Aresult))
|
51 |
+
assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
|
52 |
+
assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
|
53 |
+
assert_(
|
54 |
+
np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
|
55 |
+
b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
|
56 |
+
assert_(np.all(b2 == mixresult))
|
57 |
+
|
58 |
+
|
59 |
+
class TestProperties:
|
60 |
+
def test_sum(self):
|
61 |
+
"""Test whether matrix.sum(axis=1) preserves orientation.
|
62 |
+
Fails in NumPy <= 0.9.6.2127.
|
63 |
+
"""
|
64 |
+
M = matrix([[1, 2, 0, 0],
|
65 |
+
[3, 4, 0, 0],
|
66 |
+
[1, 2, 1, 2],
|
67 |
+
[3, 4, 3, 4]])
|
68 |
+
sum0 = matrix([8, 12, 4, 6])
|
69 |
+
sum1 = matrix([3, 7, 6, 14]).T
|
70 |
+
sumall = 30
|
71 |
+
assert_array_equal(sum0, M.sum(axis=0))
|
72 |
+
assert_array_equal(sum1, M.sum(axis=1))
|
73 |
+
assert_equal(sumall, M.sum())
|
74 |
+
|
75 |
+
assert_array_equal(sum0, np.sum(M, axis=0))
|
76 |
+
assert_array_equal(sum1, np.sum(M, axis=1))
|
77 |
+
assert_equal(sumall, np.sum(M))
|
78 |
+
|
79 |
+
def test_prod(self):
|
80 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
81 |
+
assert_equal(x.prod(), 720)
|
82 |
+
assert_equal(x.prod(0), matrix([[4, 10, 18]]))
|
83 |
+
assert_equal(x.prod(1), matrix([[6], [120]]))
|
84 |
+
|
85 |
+
assert_equal(np.prod(x), 720)
|
86 |
+
assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
|
87 |
+
assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))
|
88 |
+
|
89 |
+
y = matrix([0, 1, 3])
|
90 |
+
assert_(y.prod() == 0)
|
91 |
+
|
92 |
+
def test_max(self):
|
93 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
94 |
+
assert_equal(x.max(), 6)
|
95 |
+
assert_equal(x.max(0), matrix([[4, 5, 6]]))
|
96 |
+
assert_equal(x.max(1), matrix([[3], [6]]))
|
97 |
+
|
98 |
+
assert_equal(np.max(x), 6)
|
99 |
+
assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
|
100 |
+
assert_equal(np.max(x, axis=1), matrix([[3], [6]]))
|
101 |
+
|
102 |
+
def test_min(self):
|
103 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
104 |
+
assert_equal(x.min(), 1)
|
105 |
+
assert_equal(x.min(0), matrix([[1, 2, 3]]))
|
106 |
+
assert_equal(x.min(1), matrix([[1], [4]]))
|
107 |
+
|
108 |
+
assert_equal(np.min(x), 1)
|
109 |
+
assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
|
110 |
+
assert_equal(np.min(x, axis=1), matrix([[1], [4]]))
|
111 |
+
|
112 |
+
def test_ptp(self):
|
113 |
+
x = np.arange(4).reshape((2, 2))
|
114 |
+
assert_(x.ptp() == 3)
|
115 |
+
assert_(np.all(x.ptp(0) == np.array([2, 2])))
|
116 |
+
assert_(np.all(x.ptp(1) == np.array([1, 1])))
|
117 |
+
|
118 |
+
def test_var(self):
|
119 |
+
x = np.arange(9).reshape((3, 3))
|
120 |
+
mx = x.view(np.matrix)
|
121 |
+
assert_equal(x.var(ddof=0), mx.var(ddof=0))
|
122 |
+
assert_equal(x.var(ddof=1), mx.var(ddof=1))
|
123 |
+
|
124 |
+
def test_basic(self):
|
125 |
+
import numpy.linalg as linalg
|
126 |
+
|
127 |
+
A = np.array([[1., 2.],
|
128 |
+
[3., 4.]])
|
129 |
+
mA = matrix(A)
|
130 |
+
assert_(np.allclose(linalg.inv(A), mA.I))
|
131 |
+
assert_(np.all(np.array(np.transpose(A) == mA.T)))
|
132 |
+
assert_(np.all(np.array(np.transpose(A) == mA.H)))
|
133 |
+
assert_(np.all(A == mA.A))
|
134 |
+
|
135 |
+
B = A + 2j*A
|
136 |
+
mB = matrix(B)
|
137 |
+
assert_(np.allclose(linalg.inv(B), mB.I))
|
138 |
+
assert_(np.all(np.array(np.transpose(B) == mB.T)))
|
139 |
+
assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
|
140 |
+
|
141 |
+
def test_pinv(self):
|
142 |
+
x = matrix(np.arange(6).reshape(2, 3))
|
143 |
+
xpinv = matrix([[-0.77777778, 0.27777778],
|
144 |
+
[-0.11111111, 0.11111111],
|
145 |
+
[ 0.55555556, -0.05555556]])
|
146 |
+
assert_almost_equal(x.I, xpinv)
|
147 |
+
|
148 |
+
def test_comparisons(self):
|
149 |
+
A = np.arange(100).reshape(10, 10)
|
150 |
+
mA = matrix(A)
|
151 |
+
mB = matrix(A) + 0.1
|
152 |
+
assert_(np.all(mB == A+0.1))
|
153 |
+
assert_(np.all(mB == matrix(A+0.1)))
|
154 |
+
assert_(not np.any(mB == matrix(A-0.1)))
|
155 |
+
assert_(np.all(mA < mB))
|
156 |
+
assert_(np.all(mA <= mB))
|
157 |
+
assert_(np.all(mA <= mA))
|
158 |
+
assert_(not np.any(mA < mA))
|
159 |
+
|
160 |
+
assert_(not np.any(mB < mA))
|
161 |
+
assert_(np.all(mB >= mA))
|
162 |
+
assert_(np.all(mB >= mB))
|
163 |
+
assert_(not np.any(mB > mB))
|
164 |
+
|
165 |
+
assert_(np.all(mA == mA))
|
166 |
+
assert_(not np.any(mA == mB))
|
167 |
+
assert_(np.all(mB != mA))
|
168 |
+
|
169 |
+
assert_(not np.all(abs(mA) > 0))
|
170 |
+
assert_(np.all(abs(mB > 0)))
|
171 |
+
|
172 |
+
def test_asmatrix(self):
|
173 |
+
A = np.arange(100).reshape(10, 10)
|
174 |
+
mA = asmatrix(A)
|
175 |
+
A[0, 0] = -10
|
176 |
+
assert_(A[0, 0] == mA[0, 0])
|
177 |
+
|
178 |
+
def test_noaxis(self):
|
179 |
+
A = matrix([[1, 0], [0, 1]])
|
180 |
+
assert_(A.sum() == matrix(2))
|
181 |
+
assert_(A.mean() == matrix(0.5))
|
182 |
+
|
183 |
+
def test_repr(self):
|
184 |
+
A = matrix([[1, 0], [0, 1]])
|
185 |
+
assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])")
|
186 |
+
|
187 |
+
def test_make_bool_matrix_from_str(self):
|
188 |
+
A = matrix('True; True; False')
|
189 |
+
B = matrix([[True], [True], [False]])
|
190 |
+
assert_array_equal(A, B)
|
191 |
+
|
192 |
+
class TestCasting:
|
193 |
+
def test_basic(self):
|
194 |
+
A = np.arange(100).reshape(10, 10)
|
195 |
+
mA = matrix(A)
|
196 |
+
|
197 |
+
mB = mA.copy()
|
198 |
+
O = np.ones((10, 10), np.float64) * 0.1
|
199 |
+
mB = mB + O
|
200 |
+
assert_(mB.dtype.type == np.float64)
|
201 |
+
assert_(np.all(mA != mB))
|
202 |
+
assert_(np.all(mB == mA+0.1))
|
203 |
+
|
204 |
+
mC = mA.copy()
|
205 |
+
O = np.ones((10, 10), np.complex128)
|
206 |
+
mC = mC * O
|
207 |
+
assert_(mC.dtype.type == np.complex128)
|
208 |
+
assert_(np.all(mA != mB))
|
209 |
+
|
210 |
+
|
211 |
+
class TestAlgebra:
|
212 |
+
def test_basic(self):
|
213 |
+
import numpy.linalg as linalg
|
214 |
+
|
215 |
+
A = np.array([[1., 2.], [3., 4.]])
|
216 |
+
mA = matrix(A)
|
217 |
+
|
218 |
+
B = np.identity(2)
|
219 |
+
for i in range(6):
|
220 |
+
assert_(np.allclose((mA ** i).A, B))
|
221 |
+
B = np.dot(B, A)
|
222 |
+
|
223 |
+
Ainv = linalg.inv(A)
|
224 |
+
B = np.identity(2)
|
225 |
+
for i in range(6):
|
226 |
+
assert_(np.allclose((mA ** -i).A, B))
|
227 |
+
B = np.dot(B, Ainv)
|
228 |
+
|
229 |
+
assert_(np.allclose((mA * mA).A, np.dot(A, A)))
|
230 |
+
assert_(np.allclose((mA + mA).A, (A + A)))
|
231 |
+
assert_(np.allclose((3*mA).A, (3*A)))
|
232 |
+
|
233 |
+
mA2 = matrix(A)
|
234 |
+
mA2 *= 3
|
235 |
+
assert_(np.allclose(mA2.A, 3*A))
|
236 |
+
|
237 |
+
def test_pow(self):
|
238 |
+
"""Test raising a matrix to an integer power works as expected."""
|
239 |
+
m = matrix("1. 2.; 3. 4.")
|
240 |
+
m2 = m.copy()
|
241 |
+
m2 **= 2
|
242 |
+
mi = m.copy()
|
243 |
+
mi **= -1
|
244 |
+
m4 = m2.copy()
|
245 |
+
m4 **= 2
|
246 |
+
assert_array_almost_equal(m2, m**2)
|
247 |
+
assert_array_almost_equal(m4, np.dot(m2, m2))
|
248 |
+
assert_array_almost_equal(np.dot(mi, m), np.eye(2))
|
249 |
+
|
250 |
+
def test_scalar_type_pow(self):
|
251 |
+
m = matrix([[1, 2], [3, 4]])
|
252 |
+
for scalar_t in [np.int8, np.uint8]:
|
253 |
+
two = scalar_t(2)
|
254 |
+
assert_array_almost_equal(m ** 2, m ** two)
|
255 |
+
|
256 |
+
def test_notimplemented(self):
|
257 |
+
'''Check that 'not implemented' operations produce a failure.'''
|
258 |
+
A = matrix([[1., 2.],
|
259 |
+
[3., 4.]])
|
260 |
+
|
261 |
+
# __rpow__
|
262 |
+
with assert_raises(TypeError):
|
263 |
+
1.0**A
|
264 |
+
|
265 |
+
# __mul__ with something not a list, ndarray, tuple, or scalar
|
266 |
+
with assert_raises(TypeError):
|
267 |
+
A*object()
|
268 |
+
|
269 |
+
|
270 |
+
class TestMatrixReturn:
|
271 |
+
def test_instance_methods(self):
|
272 |
+
a = matrix([1.0], dtype='f8')
|
273 |
+
methodargs = {
|
274 |
+
'astype': ('intc',),
|
275 |
+
'clip': (0.0, 1.0),
|
276 |
+
'compress': ([1],),
|
277 |
+
'repeat': (1,),
|
278 |
+
'reshape': (1,),
|
279 |
+
'swapaxes': (0, 0),
|
280 |
+
'dot': np.array([1.0]),
|
281 |
+
}
|
282 |
+
excluded_methods = [
|
283 |
+
'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
|
284 |
+
'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
|
285 |
+
'searchsorted', 'setflags', 'setfield', 'sort',
|
286 |
+
'partition', 'argpartition',
|
287 |
+
'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
|
288 |
+
'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
|
289 |
+
'prod', 'std', 'ctypes', 'itemset',
|
290 |
+
]
|
291 |
+
for attrib in dir(a):
|
292 |
+
if attrib.startswith('_') or attrib in excluded_methods:
|
293 |
+
continue
|
294 |
+
f = getattr(a, attrib)
|
295 |
+
if isinstance(f, collections.abc.Callable):
|
296 |
+
# reset contents of a
|
297 |
+
a.astype('f8')
|
298 |
+
a.fill(1.0)
|
299 |
+
if attrib in methodargs:
|
300 |
+
args = methodargs[attrib]
|
301 |
+
else:
|
302 |
+
args = ()
|
303 |
+
b = f(*args)
|
304 |
+
assert_(type(b) is matrix, "%s" % attrib)
|
305 |
+
assert_(type(a.real) is matrix)
|
306 |
+
assert_(type(a.imag) is matrix)
|
307 |
+
c, d = matrix([0.0]).nonzero()
|
308 |
+
assert_(type(c) is np.ndarray)
|
309 |
+
assert_(type(d) is np.ndarray)
|
310 |
+
|
311 |
+
|
312 |
+
class TestIndexing:
|
313 |
+
def test_basic(self):
|
314 |
+
x = asmatrix(np.zeros((3, 2), float))
|
315 |
+
y = np.zeros((3, 1), float)
|
316 |
+
y[:, 0] = [0.8, 0.2, 0.3]
|
317 |
+
x[:, 1] = y > 0.5
|
318 |
+
assert_equal(x, [[0, 1], [0, 0], [0, 0]])
|
319 |
+
|
320 |
+
|
321 |
+
class TestNewScalarIndexing:
|
322 |
+
a = matrix([[1, 2], [3, 4]])
|
323 |
+
|
324 |
+
def test_dimesions(self):
|
325 |
+
a = self.a
|
326 |
+
x = a[0]
|
327 |
+
assert_equal(x.ndim, 2)
|
328 |
+
|
329 |
+
def test_array_from_matrix_list(self):
|
330 |
+
a = self.a
|
331 |
+
x = np.array([a, a])
|
332 |
+
assert_equal(x.shape, [2, 2, 2])
|
333 |
+
|
334 |
+
def test_array_to_list(self):
|
335 |
+
a = self.a
|
336 |
+
assert_equal(a.tolist(), [[1, 2], [3, 4]])
|
337 |
+
|
338 |
+
def test_fancy_indexing(self):
|
339 |
+
a = self.a
|
340 |
+
x = a[1, [0, 1, 0]]
|
341 |
+
assert_(isinstance(x, matrix))
|
342 |
+
assert_equal(x, matrix([[3, 4, 3]]))
|
343 |
+
x = a[[1, 0]]
|
344 |
+
assert_(isinstance(x, matrix))
|
345 |
+
assert_equal(x, matrix([[3, 4], [1, 2]]))
|
346 |
+
x = a[[[1], [0]], [[1, 0], [0, 1]]]
|
347 |
+
assert_(isinstance(x, matrix))
|
348 |
+
assert_equal(x, matrix([[4, 3], [1, 2]]))
|
349 |
+
|
350 |
+
def test_matrix_element(self):
|
351 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
352 |
+
assert_equal(x[0][0], matrix([[1, 2, 3]]))
|
353 |
+
assert_equal(x[0][0].shape, (1, 3))
|
354 |
+
assert_equal(x[0].shape, (1, 3))
|
355 |
+
assert_equal(x[:, 0].shape, (2, 1))
|
356 |
+
|
357 |
+
x = matrix(0)
|
358 |
+
assert_equal(x[0, 0], 0)
|
359 |
+
assert_equal(x[0], 0)
|
360 |
+
assert_equal(x[:, 0].shape, x.shape)
|
361 |
+
|
362 |
+
def test_scalar_indexing(self):
|
363 |
+
x = asmatrix(np.zeros((3, 2), float))
|
364 |
+
assert_equal(x[0, 0], x[0][0])
|
365 |
+
|
366 |
+
def test_row_column_indexing(self):
|
367 |
+
x = asmatrix(np.eye(2))
|
368 |
+
assert_array_equal(x[0,:], [[1, 0]])
|
369 |
+
assert_array_equal(x[1,:], [[0, 1]])
|
370 |
+
assert_array_equal(x[:, 0], [[1], [0]])
|
371 |
+
assert_array_equal(x[:, 1], [[0], [1]])
|
372 |
+
|
373 |
+
def test_boolean_indexing(self):
|
374 |
+
A = np.arange(6)
|
375 |
+
A.shape = (3, 2)
|
376 |
+
x = asmatrix(A)
|
377 |
+
assert_array_equal(x[:, np.array([True, False])], x[:, 0])
|
378 |
+
assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
|
379 |
+
|
380 |
+
def test_list_indexing(self):
|
381 |
+
A = np.arange(6)
|
382 |
+
A.shape = (3, 2)
|
383 |
+
x = asmatrix(A)
|
384 |
+
assert_array_equal(x[:, [1, 0]], x[:, ::-1])
|
385 |
+
assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
|
386 |
+
|
387 |
+
|
388 |
+
class TestPower:
|
389 |
+
def test_returntype(self):
|
390 |
+
a = np.array([[0, 1], [0, 0]])
|
391 |
+
assert_(type(matrix_power(a, 2)) is np.ndarray)
|
392 |
+
a = mat(a)
|
393 |
+
assert_(type(matrix_power(a, 2)) is matrix)
|
394 |
+
|
395 |
+
def test_list(self):
|
396 |
+
assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])
|
397 |
+
|
398 |
+
|
399 |
+
class TestShape:
|
400 |
+
|
401 |
+
a = np.array([[1], [2]])
|
402 |
+
m = matrix([[1], [2]])
|
403 |
+
|
404 |
+
def test_shape(self):
|
405 |
+
assert_equal(self.a.shape, (2, 1))
|
406 |
+
assert_equal(self.m.shape, (2, 1))
|
407 |
+
|
408 |
+
def test_numpy_ravel(self):
|
409 |
+
assert_equal(np.ravel(self.a).shape, (2,))
|
410 |
+
assert_equal(np.ravel(self.m).shape, (2,))
|
411 |
+
|
412 |
+
def test_member_ravel(self):
|
413 |
+
assert_equal(self.a.ravel().shape, (2,))
|
414 |
+
assert_equal(self.m.ravel().shape, (1, 2))
|
415 |
+
|
416 |
+
def test_member_flatten(self):
|
417 |
+
assert_equal(self.a.flatten().shape, (2,))
|
418 |
+
assert_equal(self.m.flatten().shape, (1, 2))
|
419 |
+
|
420 |
+
def test_numpy_ravel_order(self):
|
421 |
+
x = np.array([[1, 2, 3], [4, 5, 6]])
|
422 |
+
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
423 |
+
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
424 |
+
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
425 |
+
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
426 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
427 |
+
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
428 |
+
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
429 |
+
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
430 |
+
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
431 |
+
|
432 |
+
def test_matrix_ravel_order(self):
|
433 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
434 |
+
assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
|
435 |
+
assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
|
436 |
+
assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
|
437 |
+
assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])
|
438 |
+
|
439 |
+
def test_array_memory_sharing(self):
|
440 |
+
assert_(np.may_share_memory(self.a, self.a.ravel()))
|
441 |
+
assert_(not np.may_share_memory(self.a, self.a.flatten()))
|
442 |
+
|
443 |
+
def test_matrix_memory_sharing(self):
|
444 |
+
assert_(np.may_share_memory(self.m, self.m.ravel()))
|
445 |
+
assert_(not np.may_share_memory(self.m, self.m.flatten()))
|
446 |
+
|
447 |
+
def test_expand_dims_matrix(self):
|
448 |
+
# matrices are always 2d - so expand_dims only makes sense when the
|
449 |
+
# type is changed away from matrix.
|
450 |
+
a = np.arange(10).reshape((2, 5)).view(np.matrix)
|
451 |
+
expanded = np.expand_dims(a, axis=1)
|
452 |
+
assert_equal(expanded.ndim, 3)
|
453 |
+
assert_(not isinstance(expanded, np.matrix))
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests of interaction of matrix with other parts of numpy.
|
2 |
+
|
3 |
+
Note that tests with MaskedArray and linalg are done in separate files.
|
4 |
+
"""
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import textwrap
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from numpy.testing import (assert_, assert_equal, assert_raises,
|
12 |
+
assert_raises_regex, assert_array_equal,
|
13 |
+
assert_almost_equal, assert_array_almost_equal)
|
14 |
+
|
15 |
+
|
16 |
+
def test_fancy_indexing():
|
17 |
+
# The matrix class messes with the shape. While this is always
|
18 |
+
# weird (getitem is not used, it does not have setitem nor knows
|
19 |
+
# about fancy indexing), this tests gh-3110
|
20 |
+
# 2018-04-29: moved here from core.tests.test_index.
|
21 |
+
m = np.matrix([[1, 2], [3, 4]])
|
22 |
+
|
23 |
+
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
|
24 |
+
|
25 |
+
# gh-3110. Note the transpose currently because matrices do *not*
|
26 |
+
# support dimension fixing for fancy indexing correctly.
|
27 |
+
x = np.asmatrix(np.arange(50).reshape(5, 10))
|
28 |
+
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
|
29 |
+
|
30 |
+
|
31 |
+
def test_polynomial_mapdomain():
|
32 |
+
# test that polynomial preserved matrix subtype.
|
33 |
+
# 2018-04-29: moved here from polynomial.tests.polyutils.
|
34 |
+
dom1 = [0, 4]
|
35 |
+
dom2 = [1, 3]
|
36 |
+
x = np.matrix([dom1, dom1])
|
37 |
+
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
|
38 |
+
assert_(isinstance(res, np.matrix))
|
39 |
+
|
40 |
+
|
41 |
+
def test_sort_matrix_none():
|
42 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
43 |
+
a = np.matrix([[2, 1, 0]])
|
44 |
+
actual = np.sort(a, axis=None)
|
45 |
+
expected = np.matrix([[0, 1, 2]])
|
46 |
+
assert_equal(actual, expected)
|
47 |
+
assert_(type(expected) is np.matrix)
|
48 |
+
|
49 |
+
|
50 |
+
def test_partition_matrix_none():
|
51 |
+
# gh-4301
|
52 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
53 |
+
a = np.matrix([[2, 1, 0]])
|
54 |
+
actual = np.partition(a, 1, axis=None)
|
55 |
+
expected = np.matrix([[0, 1, 2]])
|
56 |
+
assert_equal(actual, expected)
|
57 |
+
assert_(type(expected) is np.matrix)
|
58 |
+
|
59 |
+
|
60 |
+
def test_dot_scalar_and_matrix_of_objects():
|
61 |
+
# Ticket #2469
|
62 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
63 |
+
arr = np.matrix([1, 2], dtype=object)
|
64 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
65 |
+
assert_equal(np.dot(arr, 3), desired)
|
66 |
+
assert_equal(np.dot(3, arr), desired)
|
67 |
+
|
68 |
+
|
69 |
+
def test_inner_scalar_and_matrix():
|
70 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
71 |
+
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
72 |
+
sca = np.array(3, dtype=dt)[()]
|
73 |
+
arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
|
74 |
+
desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
|
75 |
+
assert_equal(np.inner(arr, sca), desired)
|
76 |
+
assert_equal(np.inner(sca, arr), desired)
|
77 |
+
|
78 |
+
|
79 |
+
def test_inner_scalar_and_matrix_of_objects():
|
80 |
+
# Ticket #4482
|
81 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
82 |
+
arr = np.matrix([1, 2], dtype=object)
|
83 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
84 |
+
assert_equal(np.inner(arr, 3), desired)
|
85 |
+
assert_equal(np.inner(3, arr), desired)
|
86 |
+
|
87 |
+
|
88 |
+
def test_iter_allocate_output_subtype():
|
89 |
+
# Make sure that the subtype with priority wins
|
90 |
+
# 2018-04-29: moved here from core.tests.test_nditer, given the
|
91 |
+
# matrix specific shape test.
|
92 |
+
|
93 |
+
# matrix vs ndarray
|
94 |
+
a = np.matrix([[1, 2], [3, 4]])
|
95 |
+
b = np.arange(4).reshape(2, 2).T
|
96 |
+
i = np.nditer([a, b, None], [],
|
97 |
+
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
98 |
+
assert_(type(i.operands[2]) is np.matrix)
|
99 |
+
assert_(type(i.operands[2]) is not np.ndarray)
|
100 |
+
assert_equal(i.operands[2].shape, (2, 2))
|
101 |
+
|
102 |
+
# matrix always wants things to be 2D
|
103 |
+
b = np.arange(4).reshape(1, 2, 2)
|
104 |
+
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
|
105 |
+
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
106 |
+
# but if subtypes are disabled, the result can still work
|
107 |
+
i = np.nditer([a, b, None], [],
|
108 |
+
[['readonly'], ['readonly'],
|
109 |
+
['writeonly', 'allocate', 'no_subtype']])
|
110 |
+
assert_(type(i.operands[2]) is np.ndarray)
|
111 |
+
assert_(type(i.operands[2]) is not np.matrix)
|
112 |
+
assert_equal(i.operands[2].shape, (1, 2, 2))
|
113 |
+
|
114 |
+
|
115 |
+
def like_function():
|
116 |
+
# 2018-04-29: moved here from core.tests.test_numeric
|
117 |
+
a = np.matrix([[1, 2], [3, 4]])
|
118 |
+
for like_function in np.zeros_like, np.ones_like, np.empty_like:
|
119 |
+
b = like_function(a)
|
120 |
+
assert_(type(b) is np.matrix)
|
121 |
+
|
122 |
+
c = like_function(a, subok=False)
|
123 |
+
assert_(type(c) is not np.matrix)
|
124 |
+
|
125 |
+
|
126 |
+
def test_array_astype():
|
127 |
+
# 2018-04-29: copied here from core.tests.test_api
|
128 |
+
# subok=True passes through a matrix
|
129 |
+
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
|
130 |
+
b = a.astype('f4', subok=True, copy=False)
|
131 |
+
assert_(a is b)
|
132 |
+
|
133 |
+
# subok=True is default, and creates a subtype on a cast
|
134 |
+
b = a.astype('i4', copy=False)
|
135 |
+
assert_equal(a, b)
|
136 |
+
assert_equal(type(b), np.matrix)
|
137 |
+
|
138 |
+
# subok=False never returns a matrix
|
139 |
+
b = a.astype('f4', subok=False, copy=False)
|
140 |
+
assert_equal(a, b)
|
141 |
+
assert_(not (a is b))
|
142 |
+
assert_(type(b) is not np.matrix)
|
143 |
+
|
144 |
+
|
145 |
+
def test_stack():
|
146 |
+
# 2018-04-29: copied here from core.tests.test_shape_base
|
147 |
+
# check np.matrix cannot be stacked
|
148 |
+
m = np.matrix([[1, 2], [3, 4]])
|
149 |
+
assert_raises_regex(ValueError, 'shape too large to be a matrix',
|
150 |
+
np.stack, [m, m])
|
151 |
+
|
152 |
+
|
153 |
+
def test_object_scalar_multiply():
|
154 |
+
# Tickets #2469 and #4482
|
155 |
+
# 2018-04-29: moved here from core.tests.test_ufunc
|
156 |
+
arr = np.matrix([1, 2], dtype=object)
|
157 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
158 |
+
assert_equal(np.multiply(arr, 3), desired)
|
159 |
+
assert_equal(np.multiply(3, arr), desired)
|
160 |
+
|
161 |
+
|
162 |
+
def test_nanfunctions_matrices():
|
163 |
+
# Check that it works and that type and
|
164 |
+
# shape are preserved
|
165 |
+
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
166 |
+
mat = np.matrix(np.eye(3))
|
167 |
+
for f in [np.nanmin, np.nanmax]:
|
168 |
+
res = f(mat, axis=0)
|
169 |
+
assert_(isinstance(res, np.matrix))
|
170 |
+
assert_(res.shape == (1, 3))
|
171 |
+
res = f(mat, axis=1)
|
172 |
+
assert_(isinstance(res, np.matrix))
|
173 |
+
assert_(res.shape == (3, 1))
|
174 |
+
res = f(mat)
|
175 |
+
assert_(np.isscalar(res))
|
176 |
+
# check that rows of nan are dealt with for subclasses (#4628)
|
177 |
+
mat[1] = np.nan
|
178 |
+
for f in [np.nanmin, np.nanmax]:
|
179 |
+
with warnings.catch_warnings(record=True) as w:
|
180 |
+
warnings.simplefilter('always')
|
181 |
+
res = f(mat, axis=0)
|
182 |
+
assert_(isinstance(res, np.matrix))
|
183 |
+
assert_(not np.any(np.isnan(res)))
|
184 |
+
assert_(len(w) == 0)
|
185 |
+
|
186 |
+
with warnings.catch_warnings(record=True) as w:
|
187 |
+
warnings.simplefilter('always')
|
188 |
+
res = f(mat, axis=1)
|
189 |
+
assert_(isinstance(res, np.matrix))
|
190 |
+
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
|
191 |
+
and not np.isnan(res[2, 0]))
|
192 |
+
assert_(len(w) == 1, 'no warning raised')
|
193 |
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
194 |
+
|
195 |
+
with warnings.catch_warnings(record=True) as w:
|
196 |
+
warnings.simplefilter('always')
|
197 |
+
res = f(mat)
|
198 |
+
assert_(np.isscalar(res))
|
199 |
+
assert_(res != np.nan)
|
200 |
+
assert_(len(w) == 0)
|
201 |
+
|
202 |
+
|
203 |
+
def test_nanfunctions_matrices_general():
|
204 |
+
# Check that it works and that type and
|
205 |
+
# shape are preserved
|
206 |
+
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
207 |
+
mat = np.matrix(np.eye(3))
|
208 |
+
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
|
209 |
+
np.nanmean, np.nanvar, np.nanstd):
|
210 |
+
res = f(mat, axis=0)
|
211 |
+
assert_(isinstance(res, np.matrix))
|
212 |
+
assert_(res.shape == (1, 3))
|
213 |
+
res = f(mat, axis=1)
|
214 |
+
assert_(isinstance(res, np.matrix))
|
215 |
+
assert_(res.shape == (3, 1))
|
216 |
+
res = f(mat)
|
217 |
+
assert_(np.isscalar(res))
|
218 |
+
|
219 |
+
for f in np.nancumsum, np.nancumprod:
|
220 |
+
res = f(mat, axis=0)
|
221 |
+
assert_(isinstance(res, np.matrix))
|
222 |
+
assert_(res.shape == (3, 3))
|
223 |
+
res = f(mat, axis=1)
|
224 |
+
assert_(isinstance(res, np.matrix))
|
225 |
+
assert_(res.shape == (3, 3))
|
226 |
+
res = f(mat)
|
227 |
+
assert_(isinstance(res, np.matrix))
|
228 |
+
assert_(res.shape == (1, 3*3))
|
229 |
+
|
230 |
+
|
231 |
+
def test_average_matrix():
|
232 |
+
# 2018-04-29: moved here from core.tests.test_function_base.
|
233 |
+
y = np.matrix(np.random.rand(5, 5))
|
234 |
+
assert_array_equal(y.mean(0), np.average(y, 0))
|
235 |
+
|
236 |
+
a = np.matrix([[1, 2], [3, 4]])
|
237 |
+
w = np.matrix([[1, 2], [3, 4]])
|
238 |
+
|
239 |
+
r = np.average(a, axis=0, weights=w)
|
240 |
+
assert_equal(type(r), np.matrix)
|
241 |
+
assert_equal(r, [[2.5, 10.0/3]])
|
242 |
+
|
243 |
+
|
244 |
+
def test_trapz_matrix():
|
245 |
+
# Test to make sure matrices give the same answer as ndarrays
|
246 |
+
# 2018-04-29: moved here from core.tests.test_function_base.
|
247 |
+
x = np.linspace(0, 5)
|
248 |
+
y = x * x
|
249 |
+
r = np.trapz(y, x)
|
250 |
+
mx = np.matrix(x)
|
251 |
+
my = np.matrix(y)
|
252 |
+
mr = np.trapz(my, mx)
|
253 |
+
assert_almost_equal(mr, r)
|
254 |
+
|
255 |
+
|
256 |
+
def test_ediff1d_matrix():
|
257 |
+
# 2018-04-29: moved here from core.tests.test_arraysetops.
|
258 |
+
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
|
259 |
+
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
|
260 |
+
|
261 |
+
|
262 |
+
def test_apply_along_axis_matrix():
|
263 |
+
# this test is particularly malicious because matrix
|
264 |
+
# refuses to become 1d
|
265 |
+
# 2018-04-29: moved here from core.tests.test_shape_base.
|
266 |
+
def double(row):
|
267 |
+
return row * 2
|
268 |
+
|
269 |
+
m = np.matrix([[0, 1], [2, 3]])
|
270 |
+
expected = np.matrix([[0, 2], [4, 6]])
|
271 |
+
|
272 |
+
result = np.apply_along_axis(double, 0, m)
|
273 |
+
assert_(isinstance(result, np.matrix))
|
274 |
+
assert_array_equal(result, expected)
|
275 |
+
|
276 |
+
result = np.apply_along_axis(double, 1, m)
|
277 |
+
assert_(isinstance(result, np.matrix))
|
278 |
+
assert_array_equal(result, expected)
|
279 |
+
|
280 |
+
|
281 |
+
def test_kron_matrix():
|
282 |
+
# 2018-04-29: moved here from core.tests.test_shape_base.
|
283 |
+
a = np.ones([2, 2])
|
284 |
+
m = np.asmatrix(a)
|
285 |
+
assert_equal(type(np.kron(a, a)), np.ndarray)
|
286 |
+
assert_equal(type(np.kron(m, m)), np.matrix)
|
287 |
+
assert_equal(type(np.kron(a, m)), np.matrix)
|
288 |
+
assert_equal(type(np.kron(m, a)), np.matrix)
|
289 |
+
|
290 |
+
|
291 |
+
class TestConcatenatorMatrix:
|
292 |
+
# 2018-04-29: moved here from core.tests.test_index_tricks.
|
293 |
+
def test_matrix(self):
|
294 |
+
a = [1, 2]
|
295 |
+
b = [3, 4]
|
296 |
+
|
297 |
+
ab_r = np.r_['r', a, b]
|
298 |
+
ab_c = np.r_['c', a, b]
|
299 |
+
|
300 |
+
assert_equal(type(ab_r), np.matrix)
|
301 |
+
assert_equal(type(ab_c), np.matrix)
|
302 |
+
|
303 |
+
assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
|
304 |
+
assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
|
305 |
+
|
306 |
+
assert_raises(ValueError, lambda: np.r_['rc', a, b])
|
307 |
+
|
308 |
+
def test_matrix_scalar(self):
|
309 |
+
r = np.r_['r', [1, 2], 3]
|
310 |
+
assert_equal(type(r), np.matrix)
|
311 |
+
assert_equal(np.array(r), [[1, 2, 3]])
|
312 |
+
|
313 |
+
def test_matrix_builder(self):
|
314 |
+
a = np.array([1])
|
315 |
+
b = np.array([2])
|
316 |
+
c = np.array([3])
|
317 |
+
d = np.array([4])
|
318 |
+
actual = np.r_['a, b; c, d']
|
319 |
+
expected = np.bmat([[a, b], [c, d]])
|
320 |
+
|
321 |
+
assert_equal(actual, expected)
|
322 |
+
assert_equal(type(actual), type(expected))
|
323 |
+
|
324 |
+
|
325 |
+
def test_array_equal_error_message_matrix():
|
326 |
+
# 2018-04-29: moved here from testing.tests.test_utils.
|
327 |
+
with pytest.raises(AssertionError) as exc_info:
|
328 |
+
assert_equal(np.array([1, 2]), np.matrix([1, 2]))
|
329 |
+
msg = str(exc_info.value)
|
330 |
+
msg_reference = textwrap.dedent("""\
|
331 |
+
|
332 |
+
Arrays are not equal
|
333 |
+
|
334 |
+
(shapes (2,), (1, 2) mismatch)
|
335 |
+
x: array([1, 2])
|
336 |
+
y: matrix([[1, 2]])""")
|
337 |
+
assert_equal(msg, msg_reference)
|
338 |
+
|
339 |
+
|
340 |
+
def test_array_almost_equal_matrix():
|
341 |
+
# Matrix slicing keeps things 2-D, while array does not necessarily.
|
342 |
+
# See gh-8452.
|
343 |
+
# 2018-04-29: moved here from testing.tests.test_utils.
|
344 |
+
m1 = np.matrix([[1., 2.]])
|
345 |
+
m2 = np.matrix([[1., np.nan]])
|
346 |
+
m3 = np.matrix([[1., -np.inf]])
|
347 |
+
m4 = np.matrix([[np.nan, np.inf]])
|
348 |
+
m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
|
349 |
+
for assert_func in assert_array_almost_equal, assert_almost_equal:
|
350 |
+
for m in m1, m2, m3, m4, m5:
|
351 |
+
assert_func(m, m)
|
352 |
+
a = np.array(m)
|
353 |
+
assert_func(a, m)
|
354 |
+
assert_func(m, a)
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module using the matrix class."""
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from numpy.linalg.tests.test_linalg import (
|
5 |
+
LinalgCase, apply_tag, TestQR as _TestQR, LinalgTestCase,
|
6 |
+
_TestNorm2D, _TestNormDoubleBase, _TestNormSingleBase, _TestNormInt64Base,
|
7 |
+
SolveCases, InvCases, EigvalsCases, EigCases, SVDCases, CondCases,
|
8 |
+
PinvCases, DetCases, LstsqCases)
|
9 |
+
|
10 |
+
|
11 |
+
CASES = []
|
12 |
+
|
13 |
+
# square test cases
|
14 |
+
CASES += apply_tag('square', [
|
15 |
+
LinalgCase("0x0_matrix",
|
16 |
+
np.empty((0, 0), dtype=np.double).view(np.matrix),
|
17 |
+
np.empty((0, 1), dtype=np.double).view(np.matrix),
|
18 |
+
tags={'size-0'}),
|
19 |
+
LinalgCase("matrix_b_only",
|
20 |
+
np.array([[1., 2.], [3., 4.]]),
|
21 |
+
np.matrix([2., 1.]).T),
|
22 |
+
LinalgCase("matrix_a_and_b",
|
23 |
+
np.matrix([[1., 2.], [3., 4.]]),
|
24 |
+
np.matrix([2., 1.]).T),
|
25 |
+
])
|
26 |
+
|
27 |
+
# hermitian test-cases
|
28 |
+
CASES += apply_tag('hermitian', [
|
29 |
+
LinalgCase("hmatrix_a_and_b",
|
30 |
+
np.matrix([[1., 2.], [2., 1.]]),
|
31 |
+
None),
|
32 |
+
])
|
33 |
+
# No need to make generalized or strided cases for matrices.
|
34 |
+
|
35 |
+
|
36 |
+
class MatrixTestCase(LinalgTestCase):
|
37 |
+
TEST_CASES = CASES
|
38 |
+
|
39 |
+
|
40 |
+
class TestSolveMatrix(SolveCases, MatrixTestCase):
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
class TestInvMatrix(InvCases, MatrixTestCase):
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
class TestEigvalsMatrix(EigvalsCases, MatrixTestCase):
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
class TestEigMatrix(EigCases, MatrixTestCase):
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
class TestSVDMatrix(SVDCases, MatrixTestCase):
|
57 |
+
pass
|
58 |
+
|
59 |
+
|
60 |
+
class TestCondMatrix(CondCases, MatrixTestCase):
|
61 |
+
pass
|
62 |
+
|
63 |
+
|
64 |
+
class TestPinvMatrix(PinvCases, MatrixTestCase):
|
65 |
+
pass
|
66 |
+
|
67 |
+
|
68 |
+
class TestDetMatrix(DetCases, MatrixTestCase):
|
69 |
+
pass
|
70 |
+
|
71 |
+
|
72 |
+
class TestLstsqMatrix(LstsqCases, MatrixTestCase):
|
73 |
+
pass
|
74 |
+
|
75 |
+
|
76 |
+
class _TestNorm2DMatrix(_TestNorm2D):
|
77 |
+
array = np.matrix
|
78 |
+
|
79 |
+
|
80 |
+
class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase):
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase):
|
85 |
+
pass
|
86 |
+
|
87 |
+
|
88 |
+
class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base):
|
89 |
+
pass
|
90 |
+
|
91 |
+
|
92 |
+
class TestQRMatrix(_TestQR):
|
93 |
+
array = np.matrix
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_multiarray.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_, assert_equal, assert_array_equal
|
3 |
+
|
4 |
+
class TestView:
|
5 |
+
def test_type(self):
|
6 |
+
x = np.array([1, 2, 3])
|
7 |
+
assert_(isinstance(x.view(np.matrix), np.matrix))
|
8 |
+
|
9 |
+
def test_keywords(self):
|
10 |
+
x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
|
11 |
+
# We must be specific about the endianness here:
|
12 |
+
y = x.view(dtype='<i2', type=np.matrix)
|
13 |
+
assert_array_equal(y, [[513]])
|
14 |
+
|
15 |
+
assert_(isinstance(y, np.matrix))
|
16 |
+
assert_equal(y.dtype, np.dtype('<i2'))
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_numeric.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_equal
|
3 |
+
|
4 |
+
class TestDot:
|
5 |
+
def test_matscalar(self):
|
6 |
+
b1 = np.matrix(np.ones((3, 3), dtype=complex))
|
7 |
+
assert_equal(b1*1.0, b1)
|
8 |
+
|
9 |
+
|
10 |
+
def test_diagonal():
|
11 |
+
b1 = np.matrix([[1,2],[3,4]])
|
12 |
+
diag_b1 = np.matrix([[1, 4]])
|
13 |
+
array_b1 = np.array([1, 4])
|
14 |
+
|
15 |
+
assert_equal(b1.diagonal(), diag_b1)
|
16 |
+
assert_equal(np.diagonal(b1), array_b1)
|
17 |
+
assert_equal(np.diag(b1), array_b1)
|
venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_regression.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_, assert_equal, assert_raises
|
3 |
+
|
4 |
+
|
5 |
+
class TestRegression:
|
6 |
+
def test_kron_matrix(self):
|
7 |
+
# Ticket #71
|
8 |
+
x = np.matrix('[1 0; 1 0]')
|
9 |
+
assert_equal(type(np.kron(x, x)), type(x))
|
10 |
+
|
11 |
+
def test_matrix_properties(self):
|
12 |
+
# Ticket #125
|
13 |
+
a = np.matrix([1.0], dtype=float)
|
14 |
+
assert_(type(a.real) is np.matrix)
|
15 |
+
assert_(type(a.imag) is np.matrix)
|
16 |
+
c, d = np.matrix([0.0]).nonzero()
|
17 |
+
assert_(type(c) is np.ndarray)
|
18 |
+
assert_(type(d) is np.ndarray)
|
19 |
+
|
20 |
+
def test_matrix_multiply_by_1d_vector(self):
|
21 |
+
# Ticket #473
|
22 |
+
def mul():
|
23 |
+
np.mat(np.eye(2))*np.ones(2)
|
24 |
+
|
25 |
+
assert_raises(ValueError, mul)
|
26 |
+
|
27 |
+
def test_matrix_std_argmax(self):
|
28 |
+
# Ticket #83
|
29 |
+
x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
|
30 |
+
assert_equal(x.std().shape, ())
|
31 |
+
assert_equal(x.argmax().shape, ())
|
venv/lib/python3.10/site-packages/numpy/typing/__init__.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
============================
|
3 |
+
Typing (:mod:`numpy.typing`)
|
4 |
+
============================
|
5 |
+
|
6 |
+
.. versionadded:: 1.20
|
7 |
+
|
8 |
+
Large parts of the NumPy API have :pep:`484`-style type annotations. In
|
9 |
+
addition a number of type aliases are available to users, most prominently
|
10 |
+
the two below:
|
11 |
+
|
12 |
+
- `ArrayLike`: objects that can be converted to arrays
|
13 |
+
- `DTypeLike`: objects that can be converted to dtypes
|
14 |
+
|
15 |
+
.. _typing-extensions: https://pypi.org/project/typing-extensions/
|
16 |
+
|
17 |
+
Mypy plugin
|
18 |
+
-----------
|
19 |
+
|
20 |
+
.. versionadded:: 1.21
|
21 |
+
|
22 |
+
.. automodule:: numpy.typing.mypy_plugin
|
23 |
+
|
24 |
+
.. currentmodule:: numpy.typing
|
25 |
+
|
26 |
+
Differences from the runtime NumPy API
|
27 |
+
--------------------------------------
|
28 |
+
|
29 |
+
NumPy is very flexible. Trying to describe the full range of
|
30 |
+
possibilities statically would result in types that are not very
|
31 |
+
helpful. For that reason, the typed NumPy API is often stricter than
|
32 |
+
the runtime NumPy API. This section describes some notable
|
33 |
+
differences.
|
34 |
+
|
35 |
+
ArrayLike
|
36 |
+
~~~~~~~~~
|
37 |
+
|
38 |
+
The `ArrayLike` type tries to avoid creating object arrays. For
|
39 |
+
example,
|
40 |
+
|
41 |
+
.. code-block:: python
|
42 |
+
|
43 |
+
>>> np.array(x**2 for x in range(10))
|
44 |
+
array(<generator object <genexpr> at ...>, dtype=object)
|
45 |
+
|
46 |
+
is valid NumPy code which will create a 0-dimensional object
|
47 |
+
array. Type checkers will complain about the above example when using
|
48 |
+
the NumPy types however. If you really intended to do the above, then
|
49 |
+
you can either use a ``# type: ignore`` comment:
|
50 |
+
|
51 |
+
.. code-block:: python
|
52 |
+
|
53 |
+
>>> np.array(x**2 for x in range(10)) # type: ignore
|
54 |
+
|
55 |
+
or explicitly type the array like object as `~typing.Any`:
|
56 |
+
|
57 |
+
.. code-block:: python
|
58 |
+
|
59 |
+
>>> from typing import Any
|
60 |
+
>>> array_like: Any = (x**2 for x in range(10))
|
61 |
+
>>> np.array(array_like)
|
62 |
+
array(<generator object <genexpr> at ...>, dtype=object)
|
63 |
+
|
64 |
+
ndarray
|
65 |
+
~~~~~~~
|
66 |
+
|
67 |
+
It's possible to mutate the dtype of an array at runtime. For example,
|
68 |
+
the following code is valid:
|
69 |
+
|
70 |
+
.. code-block:: python
|
71 |
+
|
72 |
+
>>> x = np.array([1, 2])
|
73 |
+
>>> x.dtype = np.bool_
|
74 |
+
|
75 |
+
This sort of mutation is not allowed by the types. Users who want to
|
76 |
+
write statically typed code should instead use the `numpy.ndarray.view`
|
77 |
+
method to create a view of the array with a different dtype.
|
78 |
+
|
79 |
+
DTypeLike
|
80 |
+
~~~~~~~~~
|
81 |
+
|
82 |
+
The `DTypeLike` type tries to avoid creation of dtype objects using
|
83 |
+
dictionary of fields like below:
|
84 |
+
|
85 |
+
.. code-block:: python
|
86 |
+
|
87 |
+
>>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)})
|
88 |
+
|
89 |
+
Although this is valid NumPy code, the type checker will complain about it,
|
90 |
+
since its usage is discouraged.
|
91 |
+
Please see : :ref:`Data type objects <arrays.dtypes>`
|
92 |
+
|
93 |
+
Number precision
|
94 |
+
~~~~~~~~~~~~~~~~
|
95 |
+
|
96 |
+
The precision of `numpy.number` subclasses is treated as a covariant generic
|
97 |
+
parameter (see :class:`~NBitBase`), simplifying the annotating of processes
|
98 |
+
involving precision-based casting.
|
99 |
+
|
100 |
+
.. code-block:: python
|
101 |
+
|
102 |
+
>>> from typing import TypeVar
|
103 |
+
>>> import numpy as np
|
104 |
+
>>> import numpy.typing as npt
|
105 |
+
|
106 |
+
>>> T = TypeVar("T", bound=npt.NBitBase)
|
107 |
+
>>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]":
|
108 |
+
... ...
|
109 |
+
|
110 |
+
Consequently, the likes of `~numpy.float16`, `~numpy.float32` and
|
111 |
+
`~numpy.float64` are still sub-types of `~numpy.floating`, but, contrary to
|
112 |
+
runtime, they're not necessarily considered as sub-classes.
|
113 |
+
|
114 |
+
Timedelta64
|
115 |
+
~~~~~~~~~~~
|
116 |
+
|
117 |
+
The `~numpy.timedelta64` class is not considered a subclass of
|
118 |
+
`~numpy.signedinteger`, the former only inheriting from `~numpy.generic`
|
119 |
+
while static type checking.
|
120 |
+
|
121 |
+
0D arrays
|
122 |
+
~~~~~~~~~
|
123 |
+
|
124 |
+
During runtime numpy aggressively casts any passed 0D arrays into their
|
125 |
+
corresponding `~numpy.generic` instance. Until the introduction of shape
|
126 |
+
typing (see :pep:`646`) it is unfortunately not possible to make the
|
127 |
+
necessary distinction between 0D and >0D arrays. While thus not strictly
|
128 |
+
correct, all operations are that can potentially perform a 0D-array -> scalar
|
129 |
+
cast are currently annotated as exclusively returning an `ndarray`.
|
130 |
+
|
131 |
+
If it is known in advance that an operation _will_ perform a
|
132 |
+
0D-array -> scalar cast, then one can consider manually remedying the
|
133 |
+
situation with either `typing.cast` or a ``# type: ignore`` comment.
|
134 |
+
|
135 |
+
Record array dtypes
|
136 |
+
~~~~~~~~~~~~~~~~~~~
|
137 |
+
|
138 |
+
The dtype of `numpy.recarray`, and the `numpy.rec` functions in general,
|
139 |
+
can be specified in one of two ways:
|
140 |
+
|
141 |
+
* Directly via the ``dtype`` argument.
|
142 |
+
* With up to five helper arguments that operate via `numpy.format_parser`:
|
143 |
+
``formats``, ``names``, ``titles``, ``aligned`` and ``byteorder``.
|
144 |
+
|
145 |
+
These two approaches are currently typed as being mutually exclusive,
|
146 |
+
*i.e.* if ``dtype`` is specified than one may not specify ``formats``.
|
147 |
+
While this mutual exclusivity is not (strictly) enforced during runtime,
|
148 |
+
combining both dtype specifiers can lead to unexpected or even downright
|
149 |
+
buggy behavior.
|
150 |
+
|
151 |
+
API
|
152 |
+
---
|
153 |
+
|
154 |
+
"""
|
155 |
+
# NOTE: The API section will be appended with additional entries
|
156 |
+
# further down in this file
|
157 |
+
|
158 |
+
from numpy._typing import (
|
159 |
+
ArrayLike,
|
160 |
+
DTypeLike,
|
161 |
+
NBitBase,
|
162 |
+
NDArray,
|
163 |
+
)
|
164 |
+
|
165 |
+
__all__ = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"]
|
166 |
+
|
167 |
+
if __doc__ is not None:
|
168 |
+
from numpy._typing._add_docstring import _docstrings
|
169 |
+
__doc__ += _docstrings
|
170 |
+
__doc__ += '\n.. autoclass:: numpy.typing.NBitBase\n'
|
171 |
+
del _docstrings
|
172 |
+
|
173 |
+
from numpy._pytesttester import PytestTester
|
174 |
+
test = PytestTester(__name__)
|
175 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/typing/mypy_plugin.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A mypy_ plugin for managing a number of platform-specific annotations.
|
2 |
+
Its functionality can be split into three distinct parts:
|
3 |
+
|
4 |
+
* Assigning the (platform-dependent) precisions of certain `~numpy.number`
|
5 |
+
subclasses, including the likes of `~numpy.int_`, `~numpy.intp` and
|
6 |
+
`~numpy.longlong`. See the documentation on
|
7 |
+
:ref:`scalar types <arrays.scalars.built-in>` for a comprehensive overview
|
8 |
+
of the affected classes. Without the plugin the precision of all relevant
|
9 |
+
classes will be inferred as `~typing.Any`.
|
10 |
+
* Removing all extended-precision `~numpy.number` subclasses that are
|
11 |
+
unavailable for the platform in question. Most notably this includes the
|
12 |
+
likes of `~numpy.float128` and `~numpy.complex256`. Without the plugin *all*
|
13 |
+
extended-precision types will, as far as mypy is concerned, be available
|
14 |
+
to all platforms.
|
15 |
+
* Assigning the (platform-dependent) precision of `~numpy.ctypeslib.c_intp`.
|
16 |
+
Without the plugin the type will default to `ctypes.c_int64`.
|
17 |
+
|
18 |
+
.. versionadded:: 1.22
|
19 |
+
|
20 |
+
Examples
|
21 |
+
--------
|
22 |
+
To enable the plugin, one must add it to their mypy `configuration file`_:
|
23 |
+
|
24 |
+
.. code-block:: ini
|
25 |
+
|
26 |
+
[mypy]
|
27 |
+
plugins = numpy.typing.mypy_plugin
|
28 |
+
|
29 |
+
.. _mypy: http://mypy-lang.org/
|
30 |
+
.. _configuration file: https://mypy.readthedocs.io/en/stable/config_file.html
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
from __future__ import annotations
|
35 |
+
|
36 |
+
from collections.abc import Iterable
|
37 |
+
from typing import Final, TYPE_CHECKING, Callable
|
38 |
+
|
39 |
+
import numpy as np
|
40 |
+
|
41 |
+
try:
|
42 |
+
import mypy.types
|
43 |
+
from mypy.types import Type
|
44 |
+
from mypy.plugin import Plugin, AnalyzeTypeContext
|
45 |
+
from mypy.nodes import MypyFile, ImportFrom, Statement
|
46 |
+
from mypy.build import PRI_MED
|
47 |
+
|
48 |
+
_HookFunc = Callable[[AnalyzeTypeContext], Type]
|
49 |
+
MYPY_EX: None | ModuleNotFoundError = None
|
50 |
+
except ModuleNotFoundError as ex:
|
51 |
+
MYPY_EX = ex
|
52 |
+
|
53 |
+
__all__: list[str] = []
|
54 |
+
|
55 |
+
|
56 |
+
def _get_precision_dict() -> dict[str, str]:
|
57 |
+
names = [
|
58 |
+
("_NBitByte", np.byte),
|
59 |
+
("_NBitShort", np.short),
|
60 |
+
("_NBitIntC", np.intc),
|
61 |
+
("_NBitIntP", np.intp),
|
62 |
+
("_NBitInt", np.int_),
|
63 |
+
("_NBitLongLong", np.longlong),
|
64 |
+
|
65 |
+
("_NBitHalf", np.half),
|
66 |
+
("_NBitSingle", np.single),
|
67 |
+
("_NBitDouble", np.double),
|
68 |
+
("_NBitLongDouble", np.longdouble),
|
69 |
+
]
|
70 |
+
ret = {}
|
71 |
+
for name, typ in names:
|
72 |
+
n: int = 8 * typ().dtype.itemsize
|
73 |
+
ret[f'numpy._typing._nbit.{name}'] = f"numpy._{n}Bit"
|
74 |
+
return ret
|
75 |
+
|
76 |
+
|
77 |
+
def _get_extended_precision_list() -> list[str]:
|
78 |
+
extended_names = [
|
79 |
+
"uint128",
|
80 |
+
"uint256",
|
81 |
+
"int128",
|
82 |
+
"int256",
|
83 |
+
"float80",
|
84 |
+
"float96",
|
85 |
+
"float128",
|
86 |
+
"float256",
|
87 |
+
"complex160",
|
88 |
+
"complex192",
|
89 |
+
"complex256",
|
90 |
+
"complex512",
|
91 |
+
]
|
92 |
+
return [i for i in extended_names if hasattr(np, i)]
|
93 |
+
|
94 |
+
|
95 |
+
def _get_c_intp_name() -> str:
|
96 |
+
# Adapted from `np.core._internal._getintp_ctype`
|
97 |
+
char = np.dtype('p').char
|
98 |
+
if char == 'i':
|
99 |
+
return "c_int"
|
100 |
+
elif char == 'l':
|
101 |
+
return "c_long"
|
102 |
+
elif char == 'q':
|
103 |
+
return "c_longlong"
|
104 |
+
else:
|
105 |
+
return "c_long"
|
106 |
+
|
107 |
+
|
108 |
+
#: A dictionary mapping type-aliases in `numpy._typing._nbit` to
|
109 |
+
#: concrete `numpy.typing.NBitBase` subclasses.
|
110 |
+
_PRECISION_DICT: Final = _get_precision_dict()
|
111 |
+
|
112 |
+
#: A list with the names of all extended precision `np.number` subclasses.
|
113 |
+
_EXTENDED_PRECISION_LIST: Final = _get_extended_precision_list()
|
114 |
+
|
115 |
+
#: The name of the ctypes quivalent of `np.intp`
|
116 |
+
_C_INTP: Final = _get_c_intp_name()
|
117 |
+
|
118 |
+
|
119 |
+
def _hook(ctx: AnalyzeTypeContext) -> Type:
|
120 |
+
"""Replace a type-alias with a concrete ``NBitBase`` subclass."""
|
121 |
+
typ, _, api = ctx
|
122 |
+
name = typ.name.split(".")[-1]
|
123 |
+
name_new = _PRECISION_DICT[f"numpy._typing._nbit.{name}"]
|
124 |
+
return api.named_type(name_new)
|
125 |
+
|
126 |
+
|
127 |
+
if TYPE_CHECKING or MYPY_EX is None:
|
128 |
+
def _index(iterable: Iterable[Statement], id: str) -> int:
|
129 |
+
"""Identify the first ``ImportFrom`` instance the specified `id`."""
|
130 |
+
for i, value in enumerate(iterable):
|
131 |
+
if getattr(value, "id", None) == id:
|
132 |
+
return i
|
133 |
+
raise ValueError("Failed to identify a `ImportFrom` instance "
|
134 |
+
f"with the following id: {id!r}")
|
135 |
+
|
136 |
+
def _override_imports(
|
137 |
+
file: MypyFile,
|
138 |
+
module: str,
|
139 |
+
imports: list[tuple[str, None | str]],
|
140 |
+
) -> None:
|
141 |
+
"""Override the first `module`-based import with new `imports`."""
|
142 |
+
# Construct a new `from module import y` statement
|
143 |
+
import_obj = ImportFrom(module, 0, names=imports)
|
144 |
+
import_obj.is_top_level = True
|
145 |
+
|
146 |
+
# Replace the first `module`-based import statement with `import_obj`
|
147 |
+
for lst in [file.defs, file.imports]: # type: list[Statement]
|
148 |
+
i = _index(lst, module)
|
149 |
+
lst[i] = import_obj
|
150 |
+
|
151 |
+
class _NumpyPlugin(Plugin):
|
152 |
+
"""A mypy plugin for handling versus numpy-specific typing tasks."""
|
153 |
+
|
154 |
+
def get_type_analyze_hook(self, fullname: str) -> None | _HookFunc:
|
155 |
+
"""Set the precision of platform-specific `numpy.number`
|
156 |
+
subclasses.
|
157 |
+
|
158 |
+
For example: `numpy.int_`, `numpy.longlong` and `numpy.longdouble`.
|
159 |
+
"""
|
160 |
+
if fullname in _PRECISION_DICT:
|
161 |
+
return _hook
|
162 |
+
return None
|
163 |
+
|
164 |
+
def get_additional_deps(
|
165 |
+
self, file: MypyFile
|
166 |
+
) -> list[tuple[int, str, int]]:
|
167 |
+
"""Handle all import-based overrides.
|
168 |
+
|
169 |
+
* Import platform-specific extended-precision `numpy.number`
|
170 |
+
subclasses (*e.g.* `numpy.float96`, `numpy.float128` and
|
171 |
+
`numpy.complex256`).
|
172 |
+
* Import the appropriate `ctypes` equivalent to `numpy.intp`.
|
173 |
+
|
174 |
+
"""
|
175 |
+
ret = [(PRI_MED, file.fullname, -1)]
|
176 |
+
|
177 |
+
if file.fullname == "numpy":
|
178 |
+
_override_imports(
|
179 |
+
file, "numpy._typing._extended_precision",
|
180 |
+
imports=[(v, v) for v in _EXTENDED_PRECISION_LIST],
|
181 |
+
)
|
182 |
+
elif file.fullname == "numpy.ctypeslib":
|
183 |
+
_override_imports(
|
184 |
+
file, "ctypes",
|
185 |
+
imports=[(_C_INTP, "_c_intp")],
|
186 |
+
)
|
187 |
+
return ret
|
188 |
+
|
189 |
+
def plugin(version: str) -> type[_NumpyPlugin]:
|
190 |
+
"""An entry-point for mypy."""
|
191 |
+
return _NumpyPlugin
|
192 |
+
|
193 |
+
else:
|
194 |
+
def plugin(version: str) -> type[_NumpyPlugin]:
|
195 |
+
"""An entry-point for mypy."""
|
196 |
+
raise MYPY_EX
|
venv/lib/python3.10/site-packages/numpy/typing/setup.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def configuration(parent_package='', top_path=None):
|
2 |
+
from numpy.distutils.misc_util import Configuration
|
3 |
+
config = Configuration('typing', parent_package, top_path)
|
4 |
+
config.add_subpackage('tests')
|
5 |
+
config.add_data_dir('tests/data')
|
6 |
+
return config
|
7 |
+
|
8 |
+
|
9 |
+
if __name__ == '__main__':
|
10 |
+
from numpy.distutils.core import setup
|
11 |
+
setup(configuration=configuration)
|
venv/lib/python3.10/site-packages/numpy/typing/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc
ADDED
Binary file (7.37 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
b_ = np.bool_()
|
5 |
+
dt = np.datetime64(0, "D")
|
6 |
+
td = np.timedelta64(0, "D")
|
7 |
+
|
8 |
+
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
|
9 |
+
AR_u: np.ndarray[Any, np.dtype[np.uint32]]
|
10 |
+
AR_i: np.ndarray[Any, np.dtype[np.int64]]
|
11 |
+
AR_f: np.ndarray[Any, np.dtype[np.float64]]
|
12 |
+
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
|
13 |
+
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
|
14 |
+
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
|
15 |
+
|
16 |
+
ANY: Any
|
17 |
+
|
18 |
+
AR_LIKE_b: list[bool]
|
19 |
+
AR_LIKE_u: list[np.uint32]
|
20 |
+
AR_LIKE_i: list[int]
|
21 |
+
AR_LIKE_f: list[float]
|
22 |
+
AR_LIKE_c: list[complex]
|
23 |
+
AR_LIKE_m: list[np.timedelta64]
|
24 |
+
AR_LIKE_M: list[np.datetime64]
|
25 |
+
|
26 |
+
# Array subtraction
|
27 |
+
|
28 |
+
# NOTE: mypys `NoReturn` errors are, unfortunately, not that great
|
29 |
+
_1 = AR_b - AR_LIKE_b # E: Need type annotation
|
30 |
+
_2 = AR_LIKE_b - AR_b # E: Need type annotation
|
31 |
+
AR_i - bytes() # E: No overload variant
|
32 |
+
|
33 |
+
AR_f - AR_LIKE_m # E: Unsupported operand types
|
34 |
+
AR_f - AR_LIKE_M # E: Unsupported operand types
|
35 |
+
AR_c - AR_LIKE_m # E: Unsupported operand types
|
36 |
+
AR_c - AR_LIKE_M # E: Unsupported operand types
|
37 |
+
|
38 |
+
AR_m - AR_LIKE_f # E: Unsupported operand types
|
39 |
+
AR_M - AR_LIKE_f # E: Unsupported operand types
|
40 |
+
AR_m - AR_LIKE_c # E: Unsupported operand types
|
41 |
+
AR_M - AR_LIKE_c # E: Unsupported operand types
|
42 |
+
|
43 |
+
AR_m - AR_LIKE_M # E: Unsupported operand types
|
44 |
+
AR_LIKE_m - AR_M # E: Unsupported operand types
|
45 |
+
|
46 |
+
# array floor division
|
47 |
+
|
48 |
+
AR_M // AR_LIKE_b # E: Unsupported operand types
|
49 |
+
AR_M // AR_LIKE_u # E: Unsupported operand types
|
50 |
+
AR_M // AR_LIKE_i # E: Unsupported operand types
|
51 |
+
AR_M // AR_LIKE_f # E: Unsupported operand types
|
52 |
+
AR_M // AR_LIKE_c # E: Unsupported operand types
|
53 |
+
AR_M // AR_LIKE_m # E: Unsupported operand types
|
54 |
+
AR_M // AR_LIKE_M # E: Unsupported operand types
|
55 |
+
|
56 |
+
AR_b // AR_LIKE_M # E: Unsupported operand types
|
57 |
+
AR_u // AR_LIKE_M # E: Unsupported operand types
|
58 |
+
AR_i // AR_LIKE_M # E: Unsupported operand types
|
59 |
+
AR_f // AR_LIKE_M # E: Unsupported operand types
|
60 |
+
AR_c // AR_LIKE_M # E: Unsupported operand types
|
61 |
+
AR_m // AR_LIKE_M # E: Unsupported operand types
|
62 |
+
AR_M // AR_LIKE_M # E: Unsupported operand types
|
63 |
+
|
64 |
+
_3 = AR_m // AR_LIKE_b # E: Need type annotation
|
65 |
+
AR_m // AR_LIKE_c # E: Unsupported operand types
|
66 |
+
|
67 |
+
AR_b // AR_LIKE_m # E: Unsupported operand types
|
68 |
+
AR_u // AR_LIKE_m # E: Unsupported operand types
|
69 |
+
AR_i // AR_LIKE_m # E: Unsupported operand types
|
70 |
+
AR_f // AR_LIKE_m # E: Unsupported operand types
|
71 |
+
AR_c // AR_LIKE_m # E: Unsupported operand types
|
72 |
+
|
73 |
+
# Array multiplication
|
74 |
+
|
75 |
+
AR_b *= AR_LIKE_u # E: incompatible type
|
76 |
+
AR_b *= AR_LIKE_i # E: incompatible type
|
77 |
+
AR_b *= AR_LIKE_f # E: incompatible type
|
78 |
+
AR_b *= AR_LIKE_c # E: incompatible type
|
79 |
+
AR_b *= AR_LIKE_m # E: incompatible type
|
80 |
+
|
81 |
+
AR_u *= AR_LIKE_i # E: incompatible type
|
82 |
+
AR_u *= AR_LIKE_f # E: incompatible type
|
83 |
+
AR_u *= AR_LIKE_c # E: incompatible type
|
84 |
+
AR_u *= AR_LIKE_m # E: incompatible type
|
85 |
+
|
86 |
+
AR_i *= AR_LIKE_f # E: incompatible type
|
87 |
+
AR_i *= AR_LIKE_c # E: incompatible type
|
88 |
+
AR_i *= AR_LIKE_m # E: incompatible type
|
89 |
+
|
90 |
+
AR_f *= AR_LIKE_c # E: incompatible type
|
91 |
+
AR_f *= AR_LIKE_m # E: incompatible type
|
92 |
+
|
93 |
+
# Array power
|
94 |
+
|
95 |
+
AR_b **= AR_LIKE_b # E: Invalid self argument
|
96 |
+
AR_b **= AR_LIKE_u # E: Invalid self argument
|
97 |
+
AR_b **= AR_LIKE_i # E: Invalid self argument
|
98 |
+
AR_b **= AR_LIKE_f # E: Invalid self argument
|
99 |
+
AR_b **= AR_LIKE_c # E: Invalid self argument
|
100 |
+
|
101 |
+
AR_u **= AR_LIKE_i # E: incompatible type
|
102 |
+
AR_u **= AR_LIKE_f # E: incompatible type
|
103 |
+
AR_u **= AR_LIKE_c # E: incompatible type
|
104 |
+
|
105 |
+
AR_i **= AR_LIKE_f # E: incompatible type
|
106 |
+
AR_i **= AR_LIKE_c # E: incompatible type
|
107 |
+
|
108 |
+
AR_f **= AR_LIKE_c # E: incompatible type
|
109 |
+
|
110 |
+
# Scalars
|
111 |
+
|
112 |
+
b_ - b_ # E: No overload variant
|
113 |
+
|
114 |
+
dt + dt # E: Unsupported operand types
|
115 |
+
td - dt # E: Unsupported operand types
|
116 |
+
td % 1 # E: Unsupported operand types
|
117 |
+
td / dt # E: No overload
|
118 |
+
td % dt # E: Unsupported operand types
|
119 |
+
|
120 |
+
-b_ # E: Unsupported operand type
|
121 |
+
+b_ # E: Unsupported operand type
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
a: np.ndarray
|
4 |
+
generator = (i for i in range(10))
|
5 |
+
|
6 |
+
np.require(a, requirements=1) # E: No overload variant
|
7 |
+
np.require(a, requirements="TEST") # E: incompatible type
|
8 |
+
|
9 |
+
np.zeros("test") # E: incompatible type
|
10 |
+
np.zeros() # E: require at least one argument
|
11 |
+
|
12 |
+
np.ones("test") # E: incompatible type
|
13 |
+
np.ones() # E: require at least one argument
|
14 |
+
|
15 |
+
np.array(0, float, True) # E: No overload variant
|
16 |
+
|
17 |
+
np.linspace(None, 'bob') # E: No overload variant
|
18 |
+
np.linspace(0, 2, num=10.0) # E: No overload variant
|
19 |
+
np.linspace(0, 2, endpoint='True') # E: No overload variant
|
20 |
+
np.linspace(0, 2, retstep=b'False') # E: No overload variant
|
21 |
+
np.linspace(0, 2, dtype=0) # E: No overload variant
|
22 |
+
np.linspace(0, 2, axis=None) # E: No overload variant
|
23 |
+
|
24 |
+
np.logspace(None, 'bob') # E: No overload variant
|
25 |
+
np.logspace(0, 2, base=None) # E: No overload variant
|
26 |
+
|
27 |
+
np.geomspace(None, 'bob') # E: No overload variant
|
28 |
+
|
29 |
+
np.stack(generator) # E: No overload variant
|
30 |
+
np.hstack({1, 2}) # E: No overload variant
|
31 |
+
np.vstack(1) # E: No overload variant
|
32 |
+
|
33 |
+
np.array([1], like=1) # E: No overload variant
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_like.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy._typing import ArrayLike
|
3 |
+
|
4 |
+
|
5 |
+
class A:
|
6 |
+
pass
|
7 |
+
|
8 |
+
|
9 |
+
x1: ArrayLike = (i for i in range(10)) # E: Incompatible types in assignment
|
10 |
+
x2: ArrayLike = A() # E: Incompatible types in assignment
|
11 |
+
x3: ArrayLike = {1: "foo", 2: "bar"} # E: Incompatible types in assignment
|
12 |
+
|
13 |
+
scalar = np.int64(1)
|
14 |
+
scalar.__array__(dtype=np.float64) # E: No overload variant
|
15 |
+
array = np.array([1])
|
16 |
+
array.__array__(dtype=np.float64) # E: No overload variant
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_pad.pyi
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import numpy.typing as npt
|
3 |
+
|
4 |
+
AR_i8: npt.NDArray[np.int64]
|
5 |
+
|
6 |
+
np.pad(AR_i8, 2, mode="bob") # E: No overload variant
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable
|
2 |
+
from typing import Any
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
AR: np.ndarray
|
6 |
+
func1: Callable[[Any], str]
|
7 |
+
func2: Callable[[np.integer[Any]], str]
|
8 |
+
|
9 |
+
np.array2string(AR, style=None) # E: Unexpected keyword argument
|
10 |
+
np.array2string(AR, legacy="1.14") # E: incompatible type
|
11 |
+
np.array2string(AR, sign="*") # E: incompatible type
|
12 |
+
np.array2string(AR, floatmode="default") # E: incompatible type
|
13 |
+
np.array2string(AR, formatter={"A": func1}) # E: incompatible type
|
14 |
+
np.array2string(AR, formatter={"float": func2}) # E: Incompatible types
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
AR_i8: np.ndarray[Any, np.dtype[np.int64]]
|
5 |
+
ar_iter = np.lib.Arrayterator(AR_i8)
|
6 |
+
|
7 |
+
np.lib.Arrayterator(np.int64()) # E: incompatible type
|
8 |
+
ar_iter.shape = (10, 5) # E: is read-only
|
9 |
+
ar_iter[None] # E: Invalid index type
|
10 |
+
ar_iter[None, 1] # E: Invalid index type
|
11 |
+
ar_iter[np.intp()] # E: Invalid index type
|
12 |
+
ar_iter[np.intp(), ...] # E: Invalid index type
|
13 |
+
ar_iter[AR_i8] # E: Invalid index type
|
14 |
+
ar_iter[AR_i8, :] # E: Invalid index type
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
i8 = np.int64()
|
4 |
+
i4 = np.int32()
|
5 |
+
u8 = np.uint64()
|
6 |
+
b_ = np.bool_()
|
7 |
+
i = int()
|
8 |
+
|
9 |
+
f8 = np.float64()
|
10 |
+
|
11 |
+
b_ >> f8 # E: No overload variant
|
12 |
+
i8 << f8 # E: No overload variant
|
13 |
+
i | f8 # E: Unsupported operand types
|
14 |
+
i8 ^ f8 # E: No overload variant
|
15 |
+
u8 & f8 # E: No overload variant
|
16 |
+
~f8 # E: Unsupported operand type
|
17 |
+
|
18 |
+
# mypys' error message for `NoReturn` is unfortunately pretty bad
|
19 |
+
# TODO: Re-enable this once we add support for numerical precision for `number`s
|
20 |
+
# a = u8 | 0 # E: Need type annotation
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/char.pyi
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import numpy.typing as npt
|
3 |
+
|
4 |
+
AR_U: npt.NDArray[np.str_]
|
5 |
+
AR_S: npt.NDArray[np.bytes_]
|
6 |
+
|
7 |
+
np.char.equal(AR_U, AR_S) # E: incompatible type
|
8 |
+
|
9 |
+
np.char.not_equal(AR_U, AR_S) # E: incompatible type
|
10 |
+
|
11 |
+
np.char.greater_equal(AR_U, AR_S) # E: incompatible type
|
12 |
+
|
13 |
+
np.char.less_equal(AR_U, AR_S) # E: incompatible type
|
14 |
+
|
15 |
+
np.char.greater(AR_U, AR_S) # E: incompatible type
|
16 |
+
|
17 |
+
np.char.less(AR_U, AR_S) # E: incompatible type
|
18 |
+
|
19 |
+
np.char.encode(AR_S) # E: incompatible type
|
20 |
+
np.char.decode(AR_U) # E: incompatible type
|
21 |
+
|
22 |
+
np.char.join(AR_U, b"_") # E: incompatible type
|
23 |
+
np.char.join(AR_S, "_") # E: incompatible type
|
24 |
+
|
25 |
+
np.char.ljust(AR_U, 5, fillchar=b"a") # E: incompatible type
|
26 |
+
np.char.ljust(AR_S, 5, fillchar="a") # E: incompatible type
|
27 |
+
np.char.rjust(AR_U, 5, fillchar=b"a") # E: incompatible type
|
28 |
+
np.char.rjust(AR_S, 5, fillchar="a") # E: incompatible type
|
29 |
+
|
30 |
+
np.char.lstrip(AR_U, chars=b"a") # E: incompatible type
|
31 |
+
np.char.lstrip(AR_S, chars="a") # E: incompatible type
|
32 |
+
np.char.strip(AR_U, chars=b"a") # E: incompatible type
|
33 |
+
np.char.strip(AR_S, chars="a") # E: incompatible type
|
34 |
+
np.char.rstrip(AR_U, chars=b"a") # E: incompatible type
|
35 |
+
np.char.rstrip(AR_S, chars="a") # E: incompatible type
|
36 |
+
|
37 |
+
np.char.partition(AR_U, b"a") # E: incompatible type
|
38 |
+
np.char.partition(AR_S, "a") # E: incompatible type
|
39 |
+
np.char.rpartition(AR_U, b"a") # E: incompatible type
|
40 |
+
np.char.rpartition(AR_S, "a") # E: incompatible type
|
41 |
+
|
42 |
+
np.char.replace(AR_U, b"_", b"-") # E: incompatible type
|
43 |
+
np.char.replace(AR_S, "_", "-") # E: incompatible type
|
44 |
+
|
45 |
+
np.char.split(AR_U, b"_") # E: incompatible type
|
46 |
+
np.char.split(AR_S, "_") # E: incompatible type
|
47 |
+
np.char.rsplit(AR_U, b"_") # E: incompatible type
|
48 |
+
np.char.rsplit(AR_S, "_") # E: incompatible type
|
49 |
+
|
50 |
+
np.char.count(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
51 |
+
np.char.count(AR_S, "a", end=9) # E: incompatible type
|
52 |
+
|
53 |
+
np.char.endswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
54 |
+
np.char.endswith(AR_S, "a", end=9) # E: incompatible type
|
55 |
+
np.char.startswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
56 |
+
np.char.startswith(AR_S, "a", end=9) # E: incompatible type
|
57 |
+
|
58 |
+
np.char.find(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
59 |
+
np.char.find(AR_S, "a", end=9) # E: incompatible type
|
60 |
+
np.char.rfind(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
61 |
+
np.char.rfind(AR_S, "a", end=9) # E: incompatible type
|
62 |
+
|
63 |
+
np.char.index(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
64 |
+
np.char.index(AR_S, "a", end=9) # E: incompatible type
|
65 |
+
np.char.rindex(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
|
66 |
+
np.char.rindex(AR_S, "a", end=9) # E: incompatible type
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/chararray.pyi
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
AR_U: np.chararray[Any, np.dtype[np.str_]]
|
5 |
+
AR_S: np.chararray[Any, np.dtype[np.bytes_]]
|
6 |
+
|
7 |
+
AR_S.encode() # E: Invalid self argument
|
8 |
+
AR_U.decode() # E: Invalid self argument
|
9 |
+
|
10 |
+
AR_U.join(b"_") # E: incompatible type
|
11 |
+
AR_S.join("_") # E: incompatible type
|
12 |
+
|
13 |
+
AR_U.ljust(5, fillchar=b"a") # E: incompatible type
|
14 |
+
AR_S.ljust(5, fillchar="a") # E: incompatible type
|
15 |
+
AR_U.rjust(5, fillchar=b"a") # E: incompatible type
|
16 |
+
AR_S.rjust(5, fillchar="a") # E: incompatible type
|
17 |
+
|
18 |
+
AR_U.lstrip(chars=b"a") # E: incompatible type
|
19 |
+
AR_S.lstrip(chars="a") # E: incompatible type
|
20 |
+
AR_U.strip(chars=b"a") # E: incompatible type
|
21 |
+
AR_S.strip(chars="a") # E: incompatible type
|
22 |
+
AR_U.rstrip(chars=b"a") # E: incompatible type
|
23 |
+
AR_S.rstrip(chars="a") # E: incompatible type
|
24 |
+
|
25 |
+
AR_U.partition(b"a") # E: incompatible type
|
26 |
+
AR_S.partition("a") # E: incompatible type
|
27 |
+
AR_U.rpartition(b"a") # E: incompatible type
|
28 |
+
AR_S.rpartition("a") # E: incompatible type
|
29 |
+
|
30 |
+
AR_U.replace(b"_", b"-") # E: incompatible type
|
31 |
+
AR_S.replace("_", "-") # E: incompatible type
|
32 |
+
|
33 |
+
AR_U.split(b"_") # E: incompatible type
|
34 |
+
AR_S.split("_") # E: incompatible type
|
35 |
+
AR_S.split(1) # E: incompatible type
|
36 |
+
AR_U.rsplit(b"_") # E: incompatible type
|
37 |
+
AR_S.rsplit("_") # E: incompatible type
|
38 |
+
|
39 |
+
AR_U.count(b"a", start=[1, 2, 3]) # E: incompatible type
|
40 |
+
AR_S.count("a", end=9) # E: incompatible type
|
41 |
+
|
42 |
+
AR_U.endswith(b"a", start=[1, 2, 3]) # E: incompatible type
|
43 |
+
AR_S.endswith("a", end=9) # E: incompatible type
|
44 |
+
AR_U.startswith(b"a", start=[1, 2, 3]) # E: incompatible type
|
45 |
+
AR_S.startswith("a", end=9) # E: incompatible type
|
46 |
+
|
47 |
+
AR_U.find(b"a", start=[1, 2, 3]) # E: incompatible type
|
48 |
+
AR_S.find("a", end=9) # E: incompatible type
|
49 |
+
AR_U.rfind(b"a", start=[1, 2, 3]) # E: incompatible type
|
50 |
+
AR_S.rfind("a", end=9) # E: incompatible type
|
51 |
+
|
52 |
+
AR_U.index(b"a", start=[1, 2, 3]) # E: incompatible type
|
53 |
+
AR_S.index("a", end=9) # E: incompatible type
|
54 |
+
AR_U.rindex(b"a", start=[1, 2, 3]) # E: incompatible type
|
55 |
+
AR_S.rindex("a", end=9) # E: incompatible type
|
56 |
+
|
57 |
+
AR_U == AR_S # E: Unsupported operand types
|
58 |
+
AR_U != AR_S # E: Unsupported operand types
|
59 |
+
AR_U >= AR_S # E: Unsupported operand types
|
60 |
+
AR_U <= AR_S # E: Unsupported operand types
|
61 |
+
AR_U > AR_S # E: Unsupported operand types
|
62 |
+
AR_U < AR_S # E: Unsupported operand types
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/comparisons.pyi
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
AR_i: np.ndarray[Any, np.dtype[np.int64]]
|
5 |
+
AR_f: np.ndarray[Any, np.dtype[np.float64]]
|
6 |
+
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
|
7 |
+
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
|
8 |
+
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
|
9 |
+
|
10 |
+
AR_f > AR_m # E: Unsupported operand types
|
11 |
+
AR_c > AR_m # E: Unsupported operand types
|
12 |
+
|
13 |
+
AR_m > AR_f # E: Unsupported operand types
|
14 |
+
AR_m > AR_c # E: Unsupported operand types
|
15 |
+
|
16 |
+
AR_i > AR_M # E: Unsupported operand types
|
17 |
+
AR_f > AR_M # E: Unsupported operand types
|
18 |
+
AR_m > AR_M # E: Unsupported operand types
|
19 |
+
|
20 |
+
AR_M > AR_i # E: Unsupported operand types
|
21 |
+
AR_M > AR_f # E: Unsupported operand types
|
22 |
+
AR_M > AR_m # E: Unsupported operand types
|
23 |
+
|
24 |
+
AR_i > str() # E: No overload variant
|
25 |
+
AR_i > bytes() # E: No overload variant
|
26 |
+
str() > AR_M # E: Unsupported operand types
|
27 |
+
bytes() > AR_M # E: Unsupported operand types
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/constants.pyi
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
np.Inf = np.Inf # E: Cannot assign to final
|
4 |
+
np.ALLOW_THREADS = np.ALLOW_THREADS # E: Cannot assign to final
|
5 |
+
np.little_endian = np.little_endian # E: Cannot assign to final
|
6 |
+
np.UFUNC_PYVALS_NAME = "bob" # E: Incompatible types
|
7 |
+
np.CLIP = 2 # E: Incompatible types
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/datasource.pyi
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
path: Path
|
5 |
+
d1: np.DataSource
|
6 |
+
|
7 |
+
d1.abspath(path) # E: incompatible type
|
8 |
+
d1.abspath(b"...") # E: incompatible type
|
9 |
+
|
10 |
+
d1.exists(path) # E: incompatible type
|
11 |
+
d1.exists(b"...") # E: incompatible type
|
12 |
+
|
13 |
+
d1.open(path, "r") # E: incompatible type
|
14 |
+
d1.open(b"...", encoding="utf8") # E: incompatible type
|
15 |
+
d1.open(None, newline="/n") # E: incompatible type
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/dtype.pyi
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class Test1:
|
5 |
+
not_dtype = np.dtype(float)
|
6 |
+
|
7 |
+
|
8 |
+
class Test2:
|
9 |
+
dtype = float
|
10 |
+
|
11 |
+
|
12 |
+
np.dtype(Test1()) # E: No overload variant of "dtype" matches
|
13 |
+
np.dtype(Test2()) # E: incompatible type
|
14 |
+
|
15 |
+
np.dtype( # E: No overload variant of "dtype" matches
|
16 |
+
{
|
17 |
+
"field1": (float, 1),
|
18 |
+
"field2": (int, 3),
|
19 |
+
}
|
20 |
+
)
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
AR_i: np.ndarray[Any, np.dtype[np.int64]]
|
5 |
+
AR_f: np.ndarray[Any, np.dtype[np.float64]]
|
6 |
+
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
|
7 |
+
AR_U: np.ndarray[Any, np.dtype[np.str_]]
|
8 |
+
|
9 |
+
np.einsum("i,i->i", AR_i, AR_m) # E: incompatible type
|
10 |
+
np.einsum("i,i->i", AR_f, AR_f, dtype=np.int32) # E: incompatible type
|
11 |
+
np.einsum("i,i->i", AR_i, AR_i, out=AR_U) # E: Value of type variable "_ArrayType" of "einsum" cannot be
|
12 |
+
np.einsum("i,i->i", AR_i, AR_i, out=AR_U, casting="unsafe") # E: No overload variant
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/flatiter.pyi
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy._typing import _SupportsArray
|
5 |
+
|
6 |
+
|
7 |
+
class Index:
|
8 |
+
def __index__(self) -> int:
|
9 |
+
...
|
10 |
+
|
11 |
+
|
12 |
+
a: "np.flatiter[np.ndarray]"
|
13 |
+
supports_array: _SupportsArray
|
14 |
+
|
15 |
+
a.base = Any # E: Property "base" defined in "flatiter" is read-only
|
16 |
+
a.coords = Any # E: Property "coords" defined in "flatiter" is read-only
|
17 |
+
a.index = Any # E: Property "index" defined in "flatiter" is read-only
|
18 |
+
a.copy(order='C') # E: Unexpected keyword argument
|
19 |
+
|
20 |
+
# NOTE: Contrary to `ndarray.__getitem__` its counterpart in `flatiter`
|
21 |
+
# does not accept objects with the `__array__` or `__index__` protocols;
|
22 |
+
# boolean indexing is just plain broken (gh-17175)
|
23 |
+
a[np.bool_()] # E: No overload variant of "__getitem__"
|
24 |
+
a[Index()] # E: No overload variant of "__getitem__"
|
25 |
+
a[supports_array] # E: No overload variant of "__getitem__"
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for :mod:`numpy.core.fromnumeric`."""
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import numpy.typing as npt
|
5 |
+
|
6 |
+
A = np.array(True, ndmin=2, dtype=bool)
|
7 |
+
A.setflags(write=False)
|
8 |
+
AR_U: npt.NDArray[np.str_]
|
9 |
+
|
10 |
+
a = np.bool_(True)
|
11 |
+
|
12 |
+
np.take(a, None) # E: No overload variant
|
13 |
+
np.take(a, axis=1.0) # E: No overload variant
|
14 |
+
np.take(A, out=1) # E: No overload variant
|
15 |
+
np.take(A, mode="bob") # E: No overload variant
|
16 |
+
|
17 |
+
np.reshape(a, None) # E: No overload variant
|
18 |
+
np.reshape(A, 1, order="bob") # E: No overload variant
|
19 |
+
|
20 |
+
np.choose(a, None) # E: No overload variant
|
21 |
+
np.choose(a, out=1.0) # E: No overload variant
|
22 |
+
np.choose(A, mode="bob") # E: No overload variant
|
23 |
+
|
24 |
+
np.repeat(a, None) # E: No overload variant
|
25 |
+
np.repeat(A, 1, axis=1.0) # E: No overload variant
|
26 |
+
|
27 |
+
np.swapaxes(A, None, 1) # E: No overload variant
|
28 |
+
np.swapaxes(A, 1, [0]) # E: No overload variant
|
29 |
+
|
30 |
+
np.transpose(A, axes=1.0) # E: No overload variant
|
31 |
+
|
32 |
+
np.partition(a, None) # E: No overload variant
|
33 |
+
np.partition( # E: No overload variant
|
34 |
+
a, 0, axis="bob"
|
35 |
+
)
|
36 |
+
np.partition( # E: No overload variant
|
37 |
+
A, 0, kind="bob"
|
38 |
+
)
|
39 |
+
np.partition(
|
40 |
+
A, 0, order=range(5) # E: Argument "order" to "partition" has incompatible type
|
41 |
+
)
|
42 |
+
|
43 |
+
np.argpartition(
|
44 |
+
a, None # E: incompatible type
|
45 |
+
)
|
46 |
+
np.argpartition(
|
47 |
+
a, 0, axis="bob" # E: incompatible type
|
48 |
+
)
|
49 |
+
np.argpartition(
|
50 |
+
A, 0, kind="bob" # E: incompatible type
|
51 |
+
)
|
52 |
+
np.argpartition(
|
53 |
+
A, 0, order=range(5) # E: Argument "order" to "argpartition" has incompatible type
|
54 |
+
)
|
55 |
+
|
56 |
+
np.sort(A, axis="bob") # E: No overload variant
|
57 |
+
np.sort(A, kind="bob") # E: No overload variant
|
58 |
+
np.sort(A, order=range(5)) # E: Argument "order" to "sort" has incompatible type
|
59 |
+
|
60 |
+
np.argsort(A, axis="bob") # E: Argument "axis" to "argsort" has incompatible type
|
61 |
+
np.argsort(A, kind="bob") # E: Argument "kind" to "argsort" has incompatible type
|
62 |
+
np.argsort(A, order=range(5)) # E: Argument "order" to "argsort" has incompatible type
|
63 |
+
|
64 |
+
np.argmax(A, axis="bob") # E: No overload variant of "argmax" matches argument type
|
65 |
+
np.argmax(A, kind="bob") # E: No overload variant of "argmax" matches argument type
|
66 |
+
|
67 |
+
np.argmin(A, axis="bob") # E: No overload variant of "argmin" matches argument type
|
68 |
+
np.argmin(A, kind="bob") # E: No overload variant of "argmin" matches argument type
|
69 |
+
|
70 |
+
np.searchsorted( # E: No overload variant of "searchsorted" matches argument type
|
71 |
+
A[0], 0, side="bob"
|
72 |
+
)
|
73 |
+
np.searchsorted( # E: No overload variant of "searchsorted" matches argument type
|
74 |
+
A[0], 0, sorter=1.0
|
75 |
+
)
|
76 |
+
|
77 |
+
np.resize(A, 1.0) # E: No overload variant
|
78 |
+
|
79 |
+
np.squeeze(A, 1.0) # E: No overload variant of "squeeze" matches argument type
|
80 |
+
|
81 |
+
np.diagonal(A, offset=None) # E: No overload variant
|
82 |
+
np.diagonal(A, axis1="bob") # E: No overload variant
|
83 |
+
np.diagonal(A, axis2=[]) # E: No overload variant
|
84 |
+
|
85 |
+
np.trace(A, offset=None) # E: No overload variant
|
86 |
+
np.trace(A, axis1="bob") # E: No overload variant
|
87 |
+
np.trace(A, axis2=[]) # E: No overload variant
|
88 |
+
|
89 |
+
np.ravel(a, order="bob") # E: No overload variant
|
90 |
+
|
91 |
+
np.compress( # E: No overload variant
|
92 |
+
[True], A, axis=1.0
|
93 |
+
)
|
94 |
+
|
95 |
+
np.clip(a, 1, 2, out=1) # E: No overload variant of "clip" matches argument type
|
96 |
+
|
97 |
+
np.sum(a, axis=1.0) # E: No overload variant
|
98 |
+
np.sum(a, keepdims=1.0) # E: No overload variant
|
99 |
+
np.sum(a, initial=[1]) # E: No overload variant
|
100 |
+
|
101 |
+
np.all(a, axis=1.0) # E: No overload variant
|
102 |
+
np.all(a, keepdims=1.0) # E: No overload variant
|
103 |
+
np.all(a, out=1.0) # E: No overload variant
|
104 |
+
|
105 |
+
np.any(a, axis=1.0) # E: No overload variant
|
106 |
+
np.any(a, keepdims=1.0) # E: No overload variant
|
107 |
+
np.any(a, out=1.0) # E: No overload variant
|
108 |
+
|
109 |
+
np.cumsum(a, axis=1.0) # E: No overload variant
|
110 |
+
np.cumsum(a, dtype=1.0) # E: No overload variant
|
111 |
+
np.cumsum(a, out=1.0) # E: No overload variant
|
112 |
+
|
113 |
+
np.ptp(a, axis=1.0) # E: No overload variant
|
114 |
+
np.ptp(a, keepdims=1.0) # E: No overload variant
|
115 |
+
np.ptp(a, out=1.0) # E: No overload variant
|
116 |
+
|
117 |
+
np.amax(a, axis=1.0) # E: No overload variant
|
118 |
+
np.amax(a, keepdims=1.0) # E: No overload variant
|
119 |
+
np.amax(a, out=1.0) # E: No overload variant
|
120 |
+
np.amax(a, initial=[1.0]) # E: No overload variant
|
121 |
+
np.amax(a, where=[1.0]) # E: incompatible type
|
122 |
+
|
123 |
+
np.amin(a, axis=1.0) # E: No overload variant
|
124 |
+
np.amin(a, keepdims=1.0) # E: No overload variant
|
125 |
+
np.amin(a, out=1.0) # E: No overload variant
|
126 |
+
np.amin(a, initial=[1.0]) # E: No overload variant
|
127 |
+
np.amin(a, where=[1.0]) # E: incompatible type
|
128 |
+
|
129 |
+
np.prod(a, axis=1.0) # E: No overload variant
|
130 |
+
np.prod(a, out=False) # E: No overload variant
|
131 |
+
np.prod(a, keepdims=1.0) # E: No overload variant
|
132 |
+
np.prod(a, initial=int) # E: No overload variant
|
133 |
+
np.prod(a, where=1.0) # E: No overload variant
|
134 |
+
np.prod(AR_U) # E: incompatible type
|
135 |
+
|
136 |
+
np.cumprod(a, axis=1.0) # E: No overload variant
|
137 |
+
np.cumprod(a, out=False) # E: No overload variant
|
138 |
+
np.cumprod(AR_U) # E: incompatible type
|
139 |
+
|
140 |
+
np.size(a, axis=1.0) # E: Argument "axis" to "size" has incompatible type
|
141 |
+
|
142 |
+
np.around(a, decimals=1.0) # E: No overload variant
|
143 |
+
np.around(a, out=type) # E: No overload variant
|
144 |
+
np.around(AR_U) # E: incompatible type
|
145 |
+
|
146 |
+
np.mean(a, axis=1.0) # E: No overload variant
|
147 |
+
np.mean(a, out=False) # E: No overload variant
|
148 |
+
np.mean(a, keepdims=1.0) # E: No overload variant
|
149 |
+
np.mean(AR_U) # E: incompatible type
|
150 |
+
|
151 |
+
np.std(a, axis=1.0) # E: No overload variant
|
152 |
+
np.std(a, out=False) # E: No overload variant
|
153 |
+
np.std(a, ddof='test') # E: No overload variant
|
154 |
+
np.std(a, keepdims=1.0) # E: No overload variant
|
155 |
+
np.std(AR_U) # E: incompatible type
|
156 |
+
|
157 |
+
np.var(a, axis=1.0) # E: No overload variant
|
158 |
+
np.var(a, out=False) # E: No overload variant
|
159 |
+
np.var(a, ddof='test') # E: No overload variant
|
160 |
+
np.var(a, keepdims=1.0) # E: No overload variant
|
161 |
+
np.var(AR_U) # E: incompatible type
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/histograms.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import numpy.typing as npt
|
3 |
+
|
4 |
+
AR_i8: npt.NDArray[np.int64]
|
5 |
+
AR_f8: npt.NDArray[np.float64]
|
6 |
+
|
7 |
+
np.histogram_bin_edges(AR_i8, range=(0, 1, 2)) # E: incompatible type
|
8 |
+
|
9 |
+
np.histogram(AR_i8, range=(0, 1, 2)) # E: incompatible type
|
10 |
+
|
11 |
+
np.histogramdd(AR_i8, range=(0, 1)) # E: incompatible type
|
12 |
+
np.histogramdd(AR_i8, range=[(0, 1, 2)]) # E: incompatible type
|