Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/15.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/15.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/17.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/__init__.py +81 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py +146 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py +362 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py +725 -0
- venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py +1097 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/__init__.py +70 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py +162 -0
- venv/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py +1820 -0
- venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/configuration_mgp_str.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/modeling_mgp_str.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mgp_str/processing_mgp_str.py +230 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py +59 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +158 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py +222 -0
- venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +942 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__init__.py +111 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/configuration_seamless_m4t.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/feature_extraction_seamless_m4t.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/modeling_seamless_m4t.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/processing_seamless_m4t.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/configuration_seamless_m4t.py +416 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py +397 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +306 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/modeling_seamless_m4t.py +0 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/processing_seamless_m4t.py +117 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t.py +562 -0
- venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py +446 -0
- venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/configuration_vilt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/convert_vilt_original_to_pytorch.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/15.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f6133aed6e4cbc1847338e6787c9b3d52878c67fd8e4c05897ccfa3dce89c1f
|
3 |
+
size 50332843
|
ckpts/universal/global_step40/zero/15.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1052f284ef706155459598fa4d0a5cd04f0901ae70c09a0c08e36312fbf4bee0
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/17.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39acee8a8a6e6e56c894fb1a77385dd607d89daf7f254d5fb6b636ffb17d38a2
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c55508f6386cabcde92c10133fb91e6e18086f699b4d3e3ba62a6f34214e0bd1
|
3 |
+
size 33555612
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc
ADDED
Binary file (79.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cvt/__init__.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"]}
|
20 |
+
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_cvt"] = [
|
29 |
+
"CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
30 |
+
"CvtForImageClassification",
|
31 |
+
"CvtModel",
|
32 |
+
"CvtPreTrainedModel",
|
33 |
+
]
|
34 |
+
|
35 |
+
try:
|
36 |
+
if not is_tf_available():
|
37 |
+
raise OptionalDependencyNotAvailable()
|
38 |
+
except OptionalDependencyNotAvailable:
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
_import_structure["modeling_tf_cvt"] = [
|
42 |
+
"TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
43 |
+
"TFCvtForImageClassification",
|
44 |
+
"TFCvtModel",
|
45 |
+
"TFCvtPreTrainedModel",
|
46 |
+
]
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_torch_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .modeling_cvt import (
|
58 |
+
CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
59 |
+
CvtForImageClassification,
|
60 |
+
CvtModel,
|
61 |
+
CvtPreTrainedModel,
|
62 |
+
)
|
63 |
+
|
64 |
+
try:
|
65 |
+
if not is_tf_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .modeling_tf_cvt import (
|
71 |
+
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
72 |
+
TFCvtForImageClassification,
|
73 |
+
TFCvtModel,
|
74 |
+
TFCvtPreTrainedModel,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
else:
|
79 |
+
import sys
|
80 |
+
|
81 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.45 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CvT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class CvtConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model
|
30 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the CvT
|
32 |
+
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
num_channels (`int`, *optional*, defaults to 3):
|
39 |
+
The number of input channels.
|
40 |
+
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`):
|
41 |
+
The kernel size of each encoder's patch embedding.
|
42 |
+
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`):
|
43 |
+
The stride size of each encoder's patch embedding.
|
44 |
+
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
|
45 |
+
The padding size of each encoder's patch embedding.
|
46 |
+
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`):
|
47 |
+
Dimension of each of the encoder blocks.
|
48 |
+
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`):
|
49 |
+
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
50 |
+
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`):
|
51 |
+
The number of layers in each encoder block.
|
52 |
+
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`):
|
53 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
54 |
+
encoder blocks.
|
55 |
+
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
|
56 |
+
The dropout ratio for the attention probabilities.
|
57 |
+
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
|
58 |
+
The dropout ratio for the patch embeddings probabilities.
|
59 |
+
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
|
60 |
+
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
61 |
+
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`):
|
62 |
+
The bias bool for query, key and value in attentions
|
63 |
+
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`):
|
64 |
+
Whether or not to add a classification token to the output of each of the last 3 stages.
|
65 |
+
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`):
|
66 |
+
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For
|
67 |
+
Linear projection use "avg".
|
68 |
+
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
|
69 |
+
The kernel size for query, key and value in attention layer
|
70 |
+
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
71 |
+
The padding size for key and value in attention layer
|
72 |
+
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
73 |
+
The stride size for key and value in attention layer
|
74 |
+
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
75 |
+
The padding size for query in attention layer
|
76 |
+
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
77 |
+
The stride size for query in attention layer
|
78 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
80 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
81 |
+
The epsilon used by the layer normalization layers.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import CvtConfig, CvtModel
|
87 |
+
|
88 |
+
>>> # Initializing a Cvt msft/cvt style configuration
|
89 |
+
>>> configuration = CvtConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the msft/cvt style configuration
|
92 |
+
>>> model = CvtModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "cvt"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
num_channels=3,
|
103 |
+
patch_sizes=[7, 3, 3],
|
104 |
+
patch_stride=[4, 2, 2],
|
105 |
+
patch_padding=[2, 1, 1],
|
106 |
+
embed_dim=[64, 192, 384],
|
107 |
+
num_heads=[1, 3, 6],
|
108 |
+
depth=[1, 2, 10],
|
109 |
+
mlp_ratio=[4.0, 4.0, 4.0],
|
110 |
+
attention_drop_rate=[0.0, 0.0, 0.0],
|
111 |
+
drop_rate=[0.0, 0.0, 0.0],
|
112 |
+
drop_path_rate=[0.0, 0.0, 0.1],
|
113 |
+
qkv_bias=[True, True, True],
|
114 |
+
cls_token=[False, False, True],
|
115 |
+
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"],
|
116 |
+
kernel_qkv=[3, 3, 3],
|
117 |
+
padding_kv=[1, 1, 1],
|
118 |
+
stride_kv=[2, 2, 2],
|
119 |
+
padding_q=[1, 1, 1],
|
120 |
+
stride_q=[1, 1, 1],
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1e-12,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
self.num_channels = num_channels
|
127 |
+
self.patch_sizes = patch_sizes
|
128 |
+
self.patch_stride = patch_stride
|
129 |
+
self.patch_padding = patch_padding
|
130 |
+
self.embed_dim = embed_dim
|
131 |
+
self.num_heads = num_heads
|
132 |
+
self.depth = depth
|
133 |
+
self.mlp_ratio = mlp_ratio
|
134 |
+
self.attention_drop_rate = attention_drop_rate
|
135 |
+
self.drop_rate = drop_rate
|
136 |
+
self.drop_path_rate = drop_path_rate
|
137 |
+
self.qkv_bias = qkv_bias
|
138 |
+
self.cls_token = cls_token
|
139 |
+
self.qkv_projection_method = qkv_projection_method
|
140 |
+
self.kernel_qkv = kernel_qkv
|
141 |
+
self.padding_kv = padding_kv
|
142 |
+
self.stride_kv = stride_kv
|
143 |
+
self.padding_q = padding_q
|
144 |
+
self.stride_q = stride_q
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
venv/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert CvT checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/microsoft/CvT"""
|
18 |
+
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import json
|
22 |
+
from collections import OrderedDict
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import cached_download, hf_hub_url
|
26 |
+
|
27 |
+
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
|
28 |
+
|
29 |
+
|
30 |
+
def embeddings(idx):
|
31 |
+
"""
|
32 |
+
The function helps in renaming embedding layer weights.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
idx: stage number in original model
|
36 |
+
"""
|
37 |
+
embed = []
|
38 |
+
embed.append(
|
39 |
+
(
|
40 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
|
41 |
+
f"stage{idx}.patch_embed.proj.weight",
|
42 |
+
)
|
43 |
+
)
|
44 |
+
embed.append(
|
45 |
+
(
|
46 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
|
47 |
+
f"stage{idx}.patch_embed.proj.bias",
|
48 |
+
)
|
49 |
+
)
|
50 |
+
embed.append(
|
51 |
+
(
|
52 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
|
53 |
+
f"stage{idx}.patch_embed.norm.weight",
|
54 |
+
)
|
55 |
+
)
|
56 |
+
embed.append(
|
57 |
+
(
|
58 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
|
59 |
+
f"stage{idx}.patch_embed.norm.bias",
|
60 |
+
)
|
61 |
+
)
|
62 |
+
return embed
|
63 |
+
|
64 |
+
|
65 |
+
def attention(idx, cnt):
|
66 |
+
"""
|
67 |
+
The function helps in renaming attention block layers weights.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
idx: stage number in original model
|
71 |
+
cnt: count of blocks in each stage
|
72 |
+
"""
|
73 |
+
attention_weights = []
|
74 |
+
attention_weights.append(
|
75 |
+
(
|
76 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
|
77 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
|
78 |
+
)
|
79 |
+
)
|
80 |
+
attention_weights.append(
|
81 |
+
(
|
82 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
|
83 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
|
84 |
+
)
|
85 |
+
)
|
86 |
+
attention_weights.append(
|
87 |
+
(
|
88 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
|
89 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
|
90 |
+
)
|
91 |
+
)
|
92 |
+
attention_weights.append(
|
93 |
+
(
|
94 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
|
95 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
|
96 |
+
)
|
97 |
+
)
|
98 |
+
attention_weights.append(
|
99 |
+
(
|
100 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
|
101 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
|
102 |
+
)
|
103 |
+
)
|
104 |
+
attention_weights.append(
|
105 |
+
(
|
106 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
|
107 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
|
108 |
+
)
|
109 |
+
)
|
110 |
+
attention_weights.append(
|
111 |
+
(
|
112 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
|
113 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
|
114 |
+
)
|
115 |
+
)
|
116 |
+
attention_weights.append(
|
117 |
+
(
|
118 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
|
119 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
|
120 |
+
)
|
121 |
+
)
|
122 |
+
attention_weights.append(
|
123 |
+
(
|
124 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
|
125 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
|
126 |
+
)
|
127 |
+
)
|
128 |
+
attention_weights.append(
|
129 |
+
(
|
130 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
|
131 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
|
132 |
+
)
|
133 |
+
)
|
134 |
+
attention_weights.append(
|
135 |
+
(
|
136 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
|
137 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
|
138 |
+
)
|
139 |
+
)
|
140 |
+
attention_weights.append(
|
141 |
+
(
|
142 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
|
143 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
|
144 |
+
)
|
145 |
+
)
|
146 |
+
attention_weights.append(
|
147 |
+
(
|
148 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
|
149 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
|
150 |
+
)
|
151 |
+
)
|
152 |
+
attention_weights.append(
|
153 |
+
(
|
154 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
|
155 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
|
156 |
+
)
|
157 |
+
)
|
158 |
+
attention_weights.append(
|
159 |
+
(
|
160 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
|
161 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
|
162 |
+
)
|
163 |
+
)
|
164 |
+
attention_weights.append(
|
165 |
+
(
|
166 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
|
167 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
|
168 |
+
)
|
169 |
+
)
|
170 |
+
attention_weights.append(
|
171 |
+
(
|
172 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
|
173 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
|
174 |
+
)
|
175 |
+
)
|
176 |
+
attention_weights.append(
|
177 |
+
(
|
178 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
|
179 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
|
180 |
+
)
|
181 |
+
)
|
182 |
+
attention_weights.append(
|
183 |
+
(
|
184 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
|
185 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
|
186 |
+
)
|
187 |
+
)
|
188 |
+
attention_weights.append(
|
189 |
+
(
|
190 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
|
191 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
|
192 |
+
)
|
193 |
+
)
|
194 |
+
attention_weights.append(
|
195 |
+
(
|
196 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
|
197 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
|
198 |
+
)
|
199 |
+
)
|
200 |
+
attention_weights.append(
|
201 |
+
(
|
202 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
|
203 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
|
204 |
+
)
|
205 |
+
)
|
206 |
+
attention_weights.append(
|
207 |
+
(
|
208 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
|
209 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
|
210 |
+
)
|
211 |
+
)
|
212 |
+
attention_weights.append(
|
213 |
+
(
|
214 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
|
215 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
|
216 |
+
)
|
217 |
+
)
|
218 |
+
attention_weights.append(
|
219 |
+
(
|
220 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
|
221 |
+
f"stage{idx}.blocks.{cnt}.attn.proj.weight",
|
222 |
+
)
|
223 |
+
)
|
224 |
+
attention_weights.append(
|
225 |
+
(
|
226 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
|
227 |
+
f"stage{idx}.blocks.{cnt}.attn.proj.bias",
|
228 |
+
)
|
229 |
+
)
|
230 |
+
attention_weights.append(
|
231 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight")
|
232 |
+
)
|
233 |
+
attention_weights.append(
|
234 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias")
|
235 |
+
)
|
236 |
+
attention_weights.append(
|
237 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight")
|
238 |
+
)
|
239 |
+
attention_weights.append(
|
240 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias")
|
241 |
+
)
|
242 |
+
attention_weights.append(
|
243 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight")
|
244 |
+
)
|
245 |
+
attention_weights.append(
|
246 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias")
|
247 |
+
)
|
248 |
+
attention_weights.append(
|
249 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight")
|
250 |
+
)
|
251 |
+
attention_weights.append(
|
252 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias")
|
253 |
+
)
|
254 |
+
return attention_weights
|
255 |
+
|
256 |
+
|
257 |
+
def cls_token(idx):
|
258 |
+
"""
|
259 |
+
Function helps in renaming cls_token weights
|
260 |
+
"""
|
261 |
+
token = []
|
262 |
+
token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token"))
|
263 |
+
return token
|
264 |
+
|
265 |
+
|
266 |
+
def final():
|
267 |
+
"""
|
268 |
+
Function helps in renaming final classification layer
|
269 |
+
"""
|
270 |
+
head = []
|
271 |
+
head.append(("layernorm.weight", "norm.weight"))
|
272 |
+
head.append(("layernorm.bias", "norm.bias"))
|
273 |
+
head.append(("classifier.weight", "head.weight"))
|
274 |
+
head.append(("classifier.bias", "head.bias"))
|
275 |
+
return head
|
276 |
+
|
277 |
+
|
278 |
+
def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder):
|
279 |
+
"""
|
280 |
+
Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint
|
281 |
+
"""
|
282 |
+
img_labels_file = "imagenet-1k-id2label.json"
|
283 |
+
num_labels = 1000
|
284 |
+
|
285 |
+
repo_id = "huggingface/label-files"
|
286 |
+
num_labels = num_labels
|
287 |
+
id2label = json.load(open(cached_download(hf_hub_url(repo_id, img_labels_file, repo_type="dataset")), "r"))
|
288 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
289 |
+
|
290 |
+
id2label = id2label
|
291 |
+
label2id = {v: k for k, v in id2label.items()}
|
292 |
+
|
293 |
+
config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id)
|
294 |
+
|
295 |
+
# For depth size 13 (13 = 1+2+10)
|
296 |
+
if cvt_model.rsplit("/", 1)[-1][4:6] == "13":
|
297 |
+
config.depth = [1, 2, 10]
|
298 |
+
|
299 |
+
# For depth size 21 (21 = 1+4+16)
|
300 |
+
elif cvt_model.rsplit("/", 1)[-1][4:6] == "21":
|
301 |
+
config.depth = [1, 4, 16]
|
302 |
+
|
303 |
+
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
|
304 |
+
else:
|
305 |
+
config.depth = [2, 2, 20]
|
306 |
+
config.num_heads = [3, 12, 16]
|
307 |
+
config.embed_dim = [192, 768, 1024]
|
308 |
+
|
309 |
+
model = CvtForImageClassification(config)
|
310 |
+
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k")
|
311 |
+
image_processor.size["shortest_edge"] = image_size
|
312 |
+
original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
|
313 |
+
|
314 |
+
huggingface_weights = OrderedDict()
|
315 |
+
list_of_state_dict = []
|
316 |
+
|
317 |
+
for idx in range(len(config.depth)):
|
318 |
+
if config.cls_token[idx]:
|
319 |
+
list_of_state_dict = list_of_state_dict + cls_token(idx)
|
320 |
+
list_of_state_dict = list_of_state_dict + embeddings(idx)
|
321 |
+
for cnt in range(config.depth[idx]):
|
322 |
+
list_of_state_dict = list_of_state_dict + attention(idx, cnt)
|
323 |
+
|
324 |
+
list_of_state_dict = list_of_state_dict + final()
|
325 |
+
for gg in list_of_state_dict:
|
326 |
+
print(gg)
|
327 |
+
for i in range(len(list_of_state_dict)):
|
328 |
+
huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]]
|
329 |
+
|
330 |
+
model.load_state_dict(huggingface_weights)
|
331 |
+
model.save_pretrained(pytorch_dump_folder)
|
332 |
+
image_processor.save_pretrained(pytorch_dump_folder)
|
333 |
+
|
334 |
+
|
335 |
+
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
|
336 |
+
|
337 |
+
if __name__ == "__main__":
|
338 |
+
parser = argparse.ArgumentParser()
|
339 |
+
parser.add_argument(
|
340 |
+
"--cvt_model",
|
341 |
+
default="cvt-w24",
|
342 |
+
type=str,
|
343 |
+
help="Name of the cvt model you'd like to convert.",
|
344 |
+
)
|
345 |
+
parser.add_argument(
|
346 |
+
"--image_size",
|
347 |
+
default=384,
|
348 |
+
type=int,
|
349 |
+
help="Input Image Size",
|
350 |
+
)
|
351 |
+
parser.add_argument(
|
352 |
+
"--cvt_file_name",
|
353 |
+
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
|
354 |
+
type=str,
|
355 |
+
help="Input Image Size",
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
359 |
+
)
|
360 |
+
|
361 |
+
args = parser.parse_args()
|
362 |
+
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CvT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
28 |
+
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
|
29 |
+
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
30 |
+
from ...utils import logging
|
31 |
+
from .configuration_cvt import CvtConfig
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
# General docstring
|
37 |
+
_CONFIG_FOR_DOC = "CvtConfig"
|
38 |
+
|
39 |
+
# Base docstring
|
40 |
+
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
|
41 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
|
42 |
+
|
43 |
+
# Image classification docstring
|
44 |
+
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
|
45 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
46 |
+
|
47 |
+
|
48 |
+
from ..deprecated._archive_maps import CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class BaseModelOutputWithCLSToken(ModelOutput):
|
53 |
+
"""
|
54 |
+
Base class for model's outputs, with potential hidden states and attentions.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
58 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
59 |
+
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
|
60 |
+
Classification token at the output of the last layer of the model.
|
61 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
62 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
63 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
64 |
+
plus the initial embedding outputs.
|
65 |
+
"""
|
66 |
+
|
67 |
+
last_hidden_state: torch.FloatTensor = None
|
68 |
+
cls_token_value: torch.FloatTensor = None
|
69 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
73 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
74 |
+
"""
|
75 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
76 |
+
|
77 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
78 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
79 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
80 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
81 |
+
argument.
|
82 |
+
"""
|
83 |
+
if drop_prob == 0.0 or not training:
|
84 |
+
return input
|
85 |
+
keep_prob = 1 - drop_prob
|
86 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
87 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
88 |
+
random_tensor.floor_() # binarize
|
89 |
+
output = input.div(keep_prob) * random_tensor
|
90 |
+
return output
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
94 |
+
class CvtDropPath(nn.Module):
|
95 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
96 |
+
|
97 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
98 |
+
super().__init__()
|
99 |
+
self.drop_prob = drop_prob
|
100 |
+
|
101 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
102 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
103 |
+
|
104 |
+
def extra_repr(self) -> str:
|
105 |
+
return "p={}".format(self.drop_prob)
|
106 |
+
|
107 |
+
|
108 |
+
class CvtEmbeddings(nn.Module):
|
109 |
+
"""
|
110 |
+
Construct the CvT embeddings.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
|
114 |
+
super().__init__()
|
115 |
+
self.convolution_embeddings = CvtConvEmbeddings(
|
116 |
+
patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
|
117 |
+
)
|
118 |
+
self.dropout = nn.Dropout(dropout_rate)
|
119 |
+
|
120 |
+
def forward(self, pixel_values):
|
121 |
+
hidden_state = self.convolution_embeddings(pixel_values)
|
122 |
+
hidden_state = self.dropout(hidden_state)
|
123 |
+
return hidden_state
|
124 |
+
|
125 |
+
|
126 |
+
class CvtConvEmbeddings(nn.Module):
|
127 |
+
"""
|
128 |
+
Image to Conv Embedding.
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
|
132 |
+
super().__init__()
|
133 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
134 |
+
self.patch_size = patch_size
|
135 |
+
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
|
136 |
+
self.normalization = nn.LayerNorm(embed_dim)
|
137 |
+
|
138 |
+
def forward(self, pixel_values):
|
139 |
+
pixel_values = self.projection(pixel_values)
|
140 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
141 |
+
hidden_size = height * width
|
142 |
+
# rearrange "b c h w -> b (h w) c"
|
143 |
+
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
|
144 |
+
if self.normalization:
|
145 |
+
pixel_values = self.normalization(pixel_values)
|
146 |
+
# rearrange "b (h w) c" -> b c h w"
|
147 |
+
pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
148 |
+
return pixel_values
|
149 |
+
|
150 |
+
|
151 |
+
class CvtSelfAttentionConvProjection(nn.Module):
|
152 |
+
def __init__(self, embed_dim, kernel_size, padding, stride):
|
153 |
+
super().__init__()
|
154 |
+
self.convolution = nn.Conv2d(
|
155 |
+
embed_dim,
|
156 |
+
embed_dim,
|
157 |
+
kernel_size=kernel_size,
|
158 |
+
padding=padding,
|
159 |
+
stride=stride,
|
160 |
+
bias=False,
|
161 |
+
groups=embed_dim,
|
162 |
+
)
|
163 |
+
self.normalization = nn.BatchNorm2d(embed_dim)
|
164 |
+
|
165 |
+
def forward(self, hidden_state):
|
166 |
+
hidden_state = self.convolution(hidden_state)
|
167 |
+
hidden_state = self.normalization(hidden_state)
|
168 |
+
return hidden_state
|
169 |
+
|
170 |
+
|
171 |
+
class CvtSelfAttentionLinearProjection(nn.Module):
|
172 |
+
def forward(self, hidden_state):
|
173 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
174 |
+
hidden_size = height * width
|
175 |
+
# rearrange " b c h w -> b (h w) c"
|
176 |
+
hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
|
177 |
+
return hidden_state
|
178 |
+
|
179 |
+
|
180 |
+
class CvtSelfAttentionProjection(nn.Module):
|
181 |
+
def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
|
182 |
+
super().__init__()
|
183 |
+
if projection_method == "dw_bn":
|
184 |
+
self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
|
185 |
+
self.linear_projection = CvtSelfAttentionLinearProjection()
|
186 |
+
|
187 |
+
def forward(self, hidden_state):
|
188 |
+
hidden_state = self.convolution_projection(hidden_state)
|
189 |
+
hidden_state = self.linear_projection(hidden_state)
|
190 |
+
return hidden_state
|
191 |
+
|
192 |
+
|
193 |
+
class CvtSelfAttention(nn.Module):
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
num_heads,
|
197 |
+
embed_dim,
|
198 |
+
kernel_size,
|
199 |
+
padding_q,
|
200 |
+
padding_kv,
|
201 |
+
stride_q,
|
202 |
+
stride_kv,
|
203 |
+
qkv_projection_method,
|
204 |
+
qkv_bias,
|
205 |
+
attention_drop_rate,
|
206 |
+
with_cls_token=True,
|
207 |
+
**kwargs,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
self.scale = embed_dim**-0.5
|
211 |
+
self.with_cls_token = with_cls_token
|
212 |
+
self.embed_dim = embed_dim
|
213 |
+
self.num_heads = num_heads
|
214 |
+
|
215 |
+
self.convolution_projection_query = CvtSelfAttentionProjection(
|
216 |
+
embed_dim,
|
217 |
+
kernel_size,
|
218 |
+
padding_q,
|
219 |
+
stride_q,
|
220 |
+
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
|
221 |
+
)
|
222 |
+
self.convolution_projection_key = CvtSelfAttentionProjection(
|
223 |
+
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
|
224 |
+
)
|
225 |
+
self.convolution_projection_value = CvtSelfAttentionProjection(
|
226 |
+
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
|
227 |
+
)
|
228 |
+
|
229 |
+
self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
230 |
+
self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
231 |
+
self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
232 |
+
|
233 |
+
self.dropout = nn.Dropout(attention_drop_rate)
|
234 |
+
|
235 |
+
def rearrange_for_multi_head_attention(self, hidden_state):
|
236 |
+
batch_size, hidden_size, _ = hidden_state.shape
|
237 |
+
head_dim = self.embed_dim // self.num_heads
|
238 |
+
# rearrange 'b t (h d) -> b h t d'
|
239 |
+
return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
|
240 |
+
|
241 |
+
def forward(self, hidden_state, height, width):
|
242 |
+
if self.with_cls_token:
|
243 |
+
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
|
244 |
+
batch_size, hidden_size, num_channels = hidden_state.shape
|
245 |
+
# rearrange "b (h w) c -> b c h w"
|
246 |
+
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
247 |
+
|
248 |
+
key = self.convolution_projection_key(hidden_state)
|
249 |
+
query = self.convolution_projection_query(hidden_state)
|
250 |
+
value = self.convolution_projection_value(hidden_state)
|
251 |
+
|
252 |
+
if self.with_cls_token:
|
253 |
+
query = torch.cat((cls_token, query), dim=1)
|
254 |
+
key = torch.cat((cls_token, key), dim=1)
|
255 |
+
value = torch.cat((cls_token, value), dim=1)
|
256 |
+
|
257 |
+
head_dim = self.embed_dim // self.num_heads
|
258 |
+
|
259 |
+
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
|
260 |
+
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
|
261 |
+
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
|
262 |
+
|
263 |
+
attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
|
264 |
+
attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
|
265 |
+
attention_probs = self.dropout(attention_probs)
|
266 |
+
|
267 |
+
context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
|
268 |
+
# rearrange"b h t d -> b t (h d)"
|
269 |
+
_, _, hidden_size, _ = context.shape
|
270 |
+
context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
|
271 |
+
return context
|
272 |
+
|
273 |
+
|
274 |
+
class CvtSelfOutput(nn.Module):
|
275 |
+
"""
|
276 |
+
The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
|
277 |
+
layernorm applied before each block.
|
278 |
+
"""
|
279 |
+
|
280 |
+
def __init__(self, embed_dim, drop_rate):
|
281 |
+
super().__init__()
|
282 |
+
self.dense = nn.Linear(embed_dim, embed_dim)
|
283 |
+
self.dropout = nn.Dropout(drop_rate)
|
284 |
+
|
285 |
+
def forward(self, hidden_state, input_tensor):
|
286 |
+
hidden_state = self.dense(hidden_state)
|
287 |
+
hidden_state = self.dropout(hidden_state)
|
288 |
+
return hidden_state
|
289 |
+
|
290 |
+
|
291 |
+
class CvtAttention(nn.Module):
|
292 |
+
def __init__(
|
293 |
+
self,
|
294 |
+
num_heads,
|
295 |
+
embed_dim,
|
296 |
+
kernel_size,
|
297 |
+
padding_q,
|
298 |
+
padding_kv,
|
299 |
+
stride_q,
|
300 |
+
stride_kv,
|
301 |
+
qkv_projection_method,
|
302 |
+
qkv_bias,
|
303 |
+
attention_drop_rate,
|
304 |
+
drop_rate,
|
305 |
+
with_cls_token=True,
|
306 |
+
):
|
307 |
+
super().__init__()
|
308 |
+
self.attention = CvtSelfAttention(
|
309 |
+
num_heads,
|
310 |
+
embed_dim,
|
311 |
+
kernel_size,
|
312 |
+
padding_q,
|
313 |
+
padding_kv,
|
314 |
+
stride_q,
|
315 |
+
stride_kv,
|
316 |
+
qkv_projection_method,
|
317 |
+
qkv_bias,
|
318 |
+
attention_drop_rate,
|
319 |
+
with_cls_token,
|
320 |
+
)
|
321 |
+
self.output = CvtSelfOutput(embed_dim, drop_rate)
|
322 |
+
self.pruned_heads = set()
|
323 |
+
|
324 |
+
def prune_heads(self, heads):
|
325 |
+
if len(heads) == 0:
|
326 |
+
return
|
327 |
+
heads, index = find_pruneable_heads_and_indices(
|
328 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
329 |
+
)
|
330 |
+
|
331 |
+
# Prune linear layers
|
332 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
333 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
334 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
335 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
336 |
+
|
337 |
+
# Update hyper params and store pruned heads
|
338 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
339 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
340 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
341 |
+
|
342 |
+
def forward(self, hidden_state, height, width):
|
343 |
+
self_output = self.attention(hidden_state, height, width)
|
344 |
+
attention_output = self.output(self_output, hidden_state)
|
345 |
+
return attention_output
|
346 |
+
|
347 |
+
|
348 |
+
class CvtIntermediate(nn.Module):
|
349 |
+
def __init__(self, embed_dim, mlp_ratio):
|
350 |
+
super().__init__()
|
351 |
+
self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
|
352 |
+
self.activation = nn.GELU()
|
353 |
+
|
354 |
+
def forward(self, hidden_state):
|
355 |
+
hidden_state = self.dense(hidden_state)
|
356 |
+
hidden_state = self.activation(hidden_state)
|
357 |
+
return hidden_state
|
358 |
+
|
359 |
+
|
360 |
+
class CvtOutput(nn.Module):
|
361 |
+
def __init__(self, embed_dim, mlp_ratio, drop_rate):
|
362 |
+
super().__init__()
|
363 |
+
self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
|
364 |
+
self.dropout = nn.Dropout(drop_rate)
|
365 |
+
|
366 |
+
def forward(self, hidden_state, input_tensor):
|
367 |
+
hidden_state = self.dense(hidden_state)
|
368 |
+
hidden_state = self.dropout(hidden_state)
|
369 |
+
hidden_state = hidden_state + input_tensor
|
370 |
+
return hidden_state
|
371 |
+
|
372 |
+
|
373 |
+
class CvtLayer(nn.Module):
|
374 |
+
"""
|
375 |
+
CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
num_heads,
|
381 |
+
embed_dim,
|
382 |
+
kernel_size,
|
383 |
+
padding_q,
|
384 |
+
padding_kv,
|
385 |
+
stride_q,
|
386 |
+
stride_kv,
|
387 |
+
qkv_projection_method,
|
388 |
+
qkv_bias,
|
389 |
+
attention_drop_rate,
|
390 |
+
drop_rate,
|
391 |
+
mlp_ratio,
|
392 |
+
drop_path_rate,
|
393 |
+
with_cls_token=True,
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
self.attention = CvtAttention(
|
397 |
+
num_heads,
|
398 |
+
embed_dim,
|
399 |
+
kernel_size,
|
400 |
+
padding_q,
|
401 |
+
padding_kv,
|
402 |
+
stride_q,
|
403 |
+
stride_kv,
|
404 |
+
qkv_projection_method,
|
405 |
+
qkv_bias,
|
406 |
+
attention_drop_rate,
|
407 |
+
drop_rate,
|
408 |
+
with_cls_token,
|
409 |
+
)
|
410 |
+
|
411 |
+
self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
|
412 |
+
self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
|
413 |
+
self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
414 |
+
self.layernorm_before = nn.LayerNorm(embed_dim)
|
415 |
+
self.layernorm_after = nn.LayerNorm(embed_dim)
|
416 |
+
|
417 |
+
def forward(self, hidden_state, height, width):
|
418 |
+
self_attention_output = self.attention(
|
419 |
+
self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
|
420 |
+
height,
|
421 |
+
width,
|
422 |
+
)
|
423 |
+
attention_output = self_attention_output
|
424 |
+
attention_output = self.drop_path(attention_output)
|
425 |
+
|
426 |
+
# first residual connection
|
427 |
+
hidden_state = attention_output + hidden_state
|
428 |
+
|
429 |
+
# in Cvt, layernorm is also applied after self-attention
|
430 |
+
layer_output = self.layernorm_after(hidden_state)
|
431 |
+
layer_output = self.intermediate(layer_output)
|
432 |
+
|
433 |
+
# second residual connection is done here
|
434 |
+
layer_output = self.output(layer_output, hidden_state)
|
435 |
+
layer_output = self.drop_path(layer_output)
|
436 |
+
return layer_output
|
437 |
+
|
438 |
+
|
439 |
+
class CvtStage(nn.Module):
|
440 |
+
def __init__(self, config, stage):
|
441 |
+
super().__init__()
|
442 |
+
self.config = config
|
443 |
+
self.stage = stage
|
444 |
+
if self.config.cls_token[self.stage]:
|
445 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
|
446 |
+
|
447 |
+
self.embedding = CvtEmbeddings(
|
448 |
+
patch_size=config.patch_sizes[self.stage],
|
449 |
+
stride=config.patch_stride[self.stage],
|
450 |
+
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
|
451 |
+
embed_dim=config.embed_dim[self.stage],
|
452 |
+
padding=config.patch_padding[self.stage],
|
453 |
+
dropout_rate=config.drop_rate[self.stage],
|
454 |
+
)
|
455 |
+
|
456 |
+
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
|
457 |
+
|
458 |
+
self.layers = nn.Sequential(
|
459 |
+
*[
|
460 |
+
CvtLayer(
|
461 |
+
num_heads=config.num_heads[self.stage],
|
462 |
+
embed_dim=config.embed_dim[self.stage],
|
463 |
+
kernel_size=config.kernel_qkv[self.stage],
|
464 |
+
padding_q=config.padding_q[self.stage],
|
465 |
+
padding_kv=config.padding_kv[self.stage],
|
466 |
+
stride_kv=config.stride_kv[self.stage],
|
467 |
+
stride_q=config.stride_q[self.stage],
|
468 |
+
qkv_projection_method=config.qkv_projection_method[self.stage],
|
469 |
+
qkv_bias=config.qkv_bias[self.stage],
|
470 |
+
attention_drop_rate=config.attention_drop_rate[self.stage],
|
471 |
+
drop_rate=config.drop_rate[self.stage],
|
472 |
+
drop_path_rate=drop_path_rates[self.stage],
|
473 |
+
mlp_ratio=config.mlp_ratio[self.stage],
|
474 |
+
with_cls_token=config.cls_token[self.stage],
|
475 |
+
)
|
476 |
+
for _ in range(config.depth[self.stage])
|
477 |
+
]
|
478 |
+
)
|
479 |
+
|
480 |
+
def forward(self, hidden_state):
|
481 |
+
cls_token = None
|
482 |
+
hidden_state = self.embedding(hidden_state)
|
483 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
484 |
+
# rearrange b c h w -> b (h w) c"
|
485 |
+
hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
|
486 |
+
if self.config.cls_token[self.stage]:
|
487 |
+
cls_token = self.cls_token.expand(batch_size, -1, -1)
|
488 |
+
hidden_state = torch.cat((cls_token, hidden_state), dim=1)
|
489 |
+
|
490 |
+
for layer in self.layers:
|
491 |
+
layer_outputs = layer(hidden_state, height, width)
|
492 |
+
hidden_state = layer_outputs
|
493 |
+
|
494 |
+
if self.config.cls_token[self.stage]:
|
495 |
+
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
|
496 |
+
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
497 |
+
return hidden_state, cls_token
|
498 |
+
|
499 |
+
|
500 |
+
class CvtEncoder(nn.Module):
|
501 |
+
def __init__(self, config):
|
502 |
+
super().__init__()
|
503 |
+
self.config = config
|
504 |
+
self.stages = nn.ModuleList([])
|
505 |
+
for stage_idx in range(len(config.depth)):
|
506 |
+
self.stages.append(CvtStage(config, stage_idx))
|
507 |
+
|
508 |
+
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
|
509 |
+
all_hidden_states = () if output_hidden_states else None
|
510 |
+
hidden_state = pixel_values
|
511 |
+
|
512 |
+
cls_token = None
|
513 |
+
for _, (stage_module) in enumerate(self.stages):
|
514 |
+
hidden_state, cls_token = stage_module(hidden_state)
|
515 |
+
if output_hidden_states:
|
516 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
517 |
+
|
518 |
+
if not return_dict:
|
519 |
+
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
|
520 |
+
|
521 |
+
return BaseModelOutputWithCLSToken(
|
522 |
+
last_hidden_state=hidden_state,
|
523 |
+
cls_token_value=cls_token,
|
524 |
+
hidden_states=all_hidden_states,
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
class CvtPreTrainedModel(PreTrainedModel):
|
529 |
+
"""
|
530 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
531 |
+
models.
|
532 |
+
"""
|
533 |
+
|
534 |
+
config_class = CvtConfig
|
535 |
+
base_model_prefix = "cvt"
|
536 |
+
main_input_name = "pixel_values"
|
537 |
+
|
538 |
+
def _init_weights(self, module):
|
539 |
+
"""Initialize the weights"""
|
540 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
541 |
+
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
|
542 |
+
if module.bias is not None:
|
543 |
+
module.bias.data.zero_()
|
544 |
+
elif isinstance(module, nn.LayerNorm):
|
545 |
+
module.bias.data.zero_()
|
546 |
+
module.weight.data.fill_(1.0)
|
547 |
+
elif isinstance(module, CvtStage):
|
548 |
+
if self.config.cls_token[module.stage]:
|
549 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
550 |
+
torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
|
551 |
+
)
|
552 |
+
|
553 |
+
|
554 |
+
CVT_START_DOCSTRING = r"""
|
555 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
556 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
557 |
+
behavior.
|
558 |
+
|
559 |
+
Parameters:
|
560 |
+
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
|
561 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
562 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
563 |
+
"""
|
564 |
+
|
565 |
+
CVT_INPUTS_DOCSTRING = r"""
|
566 |
+
Args:
|
567 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
568 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
|
569 |
+
for details.
|
570 |
+
output_hidden_states (`bool`, *optional*):
|
571 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
572 |
+
more detail.
|
573 |
+
return_dict (`bool`, *optional*):
|
574 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
575 |
+
"""
|
576 |
+
|
577 |
+
|
578 |
+
@add_start_docstrings(
|
579 |
+
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
|
580 |
+
CVT_START_DOCSTRING,
|
581 |
+
)
|
582 |
+
class CvtModel(CvtPreTrainedModel):
|
583 |
+
def __init__(self, config, add_pooling_layer=True):
|
584 |
+
super().__init__(config)
|
585 |
+
self.config = config
|
586 |
+
self.encoder = CvtEncoder(config)
|
587 |
+
self.post_init()
|
588 |
+
|
589 |
+
def _prune_heads(self, heads_to_prune):
|
590 |
+
"""
|
591 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
592 |
+
class PreTrainedModel
|
593 |
+
"""
|
594 |
+
for layer, heads in heads_to_prune.items():
|
595 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
596 |
+
|
597 |
+
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
|
598 |
+
@add_code_sample_docstrings(
|
599 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
600 |
+
output_type=BaseModelOutputWithCLSToken,
|
601 |
+
config_class=_CONFIG_FOR_DOC,
|
602 |
+
modality="vision",
|
603 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
604 |
+
)
|
605 |
+
def forward(
|
606 |
+
self,
|
607 |
+
pixel_values: Optional[torch.Tensor] = None,
|
608 |
+
output_hidden_states: Optional[bool] = None,
|
609 |
+
return_dict: Optional[bool] = None,
|
610 |
+
) -> Union[Tuple, BaseModelOutputWithCLSToken]:
|
611 |
+
output_hidden_states = (
|
612 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
613 |
+
)
|
614 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
615 |
+
|
616 |
+
if pixel_values is None:
|
617 |
+
raise ValueError("You have to specify pixel_values")
|
618 |
+
|
619 |
+
encoder_outputs = self.encoder(
|
620 |
+
pixel_values,
|
621 |
+
output_hidden_states=output_hidden_states,
|
622 |
+
return_dict=return_dict,
|
623 |
+
)
|
624 |
+
sequence_output = encoder_outputs[0]
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
return (sequence_output,) + encoder_outputs[1:]
|
628 |
+
|
629 |
+
return BaseModelOutputWithCLSToken(
|
630 |
+
last_hidden_state=sequence_output,
|
631 |
+
cls_token_value=encoder_outputs.cls_token_value,
|
632 |
+
hidden_states=encoder_outputs.hidden_states,
|
633 |
+
)
|
634 |
+
|
635 |
+
|
636 |
+
@add_start_docstrings(
|
637 |
+
"""
|
638 |
+
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
639 |
+
the [CLS] token) e.g. for ImageNet.
|
640 |
+
""",
|
641 |
+
CVT_START_DOCSTRING,
|
642 |
+
)
|
643 |
+
class CvtForImageClassification(CvtPreTrainedModel):
|
644 |
+
def __init__(self, config):
|
645 |
+
super().__init__(config)
|
646 |
+
|
647 |
+
self.num_labels = config.num_labels
|
648 |
+
self.cvt = CvtModel(config, add_pooling_layer=False)
|
649 |
+
self.layernorm = nn.LayerNorm(config.embed_dim[-1])
|
650 |
+
# Classifier head
|
651 |
+
self.classifier = (
|
652 |
+
nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
653 |
+
)
|
654 |
+
|
655 |
+
# Initialize weights and apply final processing
|
656 |
+
self.post_init()
|
657 |
+
|
658 |
+
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
|
659 |
+
@add_code_sample_docstrings(
|
660 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
661 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
662 |
+
config_class=_CONFIG_FOR_DOC,
|
663 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
664 |
+
)
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
pixel_values: Optional[torch.Tensor] = None,
|
668 |
+
labels: Optional[torch.Tensor] = None,
|
669 |
+
output_hidden_states: Optional[bool] = None,
|
670 |
+
return_dict: Optional[bool] = None,
|
671 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
672 |
+
r"""
|
673 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
674 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
675 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
676 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
677 |
+
"""
|
678 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
679 |
+
outputs = self.cvt(
|
680 |
+
pixel_values,
|
681 |
+
output_hidden_states=output_hidden_states,
|
682 |
+
return_dict=return_dict,
|
683 |
+
)
|
684 |
+
|
685 |
+
sequence_output = outputs[0]
|
686 |
+
cls_token = outputs[1]
|
687 |
+
if self.config.cls_token[-1]:
|
688 |
+
sequence_output = self.layernorm(cls_token)
|
689 |
+
else:
|
690 |
+
batch_size, num_channels, height, width = sequence_output.shape
|
691 |
+
# rearrange "b c h w -> b (h w) c"
|
692 |
+
sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
|
693 |
+
sequence_output = self.layernorm(sequence_output)
|
694 |
+
|
695 |
+
sequence_output_mean = sequence_output.mean(dim=1)
|
696 |
+
logits = self.classifier(sequence_output_mean)
|
697 |
+
|
698 |
+
loss = None
|
699 |
+
if labels is not None:
|
700 |
+
if self.config.problem_type is None:
|
701 |
+
if self.config.num_labels == 1:
|
702 |
+
self.config.problem_type = "regression"
|
703 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
704 |
+
self.config.problem_type = "single_label_classification"
|
705 |
+
else:
|
706 |
+
self.config.problem_type = "multi_label_classification"
|
707 |
+
|
708 |
+
if self.config.problem_type == "regression":
|
709 |
+
loss_fct = MSELoss()
|
710 |
+
if self.config.num_labels == 1:
|
711 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
712 |
+
else:
|
713 |
+
loss = loss_fct(logits, labels)
|
714 |
+
elif self.config.problem_type == "single_label_classification":
|
715 |
+
loss_fct = CrossEntropyLoss()
|
716 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
717 |
+
elif self.config.problem_type == "multi_label_classification":
|
718 |
+
loss_fct = BCEWithLogitsLoss()
|
719 |
+
loss = loss_fct(logits, labels)
|
720 |
+
|
721 |
+
if not return_dict:
|
722 |
+
output = (logits,) + outputs[2:]
|
723 |
+
return ((loss,) + output) if loss is not None else output
|
724 |
+
|
725 |
+
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py
ADDED
@@ -0,0 +1,1097 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Cvt model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import collections.abc
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention
|
27 |
+
from ...modeling_tf_utils import (
|
28 |
+
TFModelInputType,
|
29 |
+
TFPreTrainedModel,
|
30 |
+
TFSequenceClassificationLoss,
|
31 |
+
get_initializer,
|
32 |
+
keras,
|
33 |
+
keras_serializable,
|
34 |
+
unpack_inputs,
|
35 |
+
)
|
36 |
+
from ...tf_utils import shape_list, stable_softmax
|
37 |
+
from ...utils import (
|
38 |
+
ModelOutput,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_cvt import CvtConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
# General docstring
|
50 |
+
_CONFIG_FOR_DOC = "CvtConfig"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class TFBaseModelOutputWithCLSToken(ModelOutput):
|
58 |
+
"""
|
59 |
+
Base class for model's outputs.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
63 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
64 |
+
cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`):
|
65 |
+
Classification token at the output of the last layer of the model.
|
66 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
67 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
68 |
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
|
69 |
+
the initial embedding outputs.
|
70 |
+
"""
|
71 |
+
|
72 |
+
last_hidden_state: tf.Tensor = None
|
73 |
+
cls_token_value: tf.Tensor = None
|
74 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
75 |
+
|
76 |
+
|
77 |
+
class TFCvtDropPath(keras.layers.Layer):
|
78 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
79 |
+
References:
|
80 |
+
(1) github.com:rwightman/pytorch-image-models
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, drop_prob: float, **kwargs):
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
self.drop_prob = drop_prob
|
86 |
+
|
87 |
+
def call(self, x: tf.Tensor, training=None):
|
88 |
+
if self.drop_prob == 0.0 or not training:
|
89 |
+
return x
|
90 |
+
keep_prob = 1 - self.drop_prob
|
91 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
92 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype)
|
93 |
+
random_tensor = tf.floor(random_tensor)
|
94 |
+
return (x / keep_prob) * random_tensor
|
95 |
+
|
96 |
+
|
97 |
+
class TFCvtEmbeddings(keras.layers.Layer):
|
98 |
+
"""Construct the Convolutional Token Embeddings."""
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
config: CvtConfig,
|
103 |
+
patch_size: int,
|
104 |
+
num_channels: int,
|
105 |
+
embed_dim: int,
|
106 |
+
stride: int,
|
107 |
+
padding: int,
|
108 |
+
dropout_rate: float,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(**kwargs)
|
112 |
+
self.convolution_embeddings = TFCvtConvEmbeddings(
|
113 |
+
config,
|
114 |
+
patch_size=patch_size,
|
115 |
+
num_channels=num_channels,
|
116 |
+
embed_dim=embed_dim,
|
117 |
+
stride=stride,
|
118 |
+
padding=padding,
|
119 |
+
name="convolution_embeddings",
|
120 |
+
)
|
121 |
+
self.dropout = keras.layers.Dropout(dropout_rate)
|
122 |
+
|
123 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
124 |
+
hidden_state = self.convolution_embeddings(pixel_values)
|
125 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
126 |
+
return hidden_state
|
127 |
+
|
128 |
+
def build(self, input_shape=None):
|
129 |
+
if self.built:
|
130 |
+
return
|
131 |
+
self.built = True
|
132 |
+
if getattr(self, "convolution_embeddings", None) is not None:
|
133 |
+
with tf.name_scope(self.convolution_embeddings.name):
|
134 |
+
self.convolution_embeddings.build(None)
|
135 |
+
|
136 |
+
|
137 |
+
class TFCvtConvEmbeddings(keras.layers.Layer):
|
138 |
+
"""Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts."""
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
config: CvtConfig,
|
143 |
+
patch_size: int,
|
144 |
+
num_channels: int,
|
145 |
+
embed_dim: int,
|
146 |
+
stride: int,
|
147 |
+
padding: int,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
self.padding = keras.layers.ZeroPadding2D(padding=padding)
|
152 |
+
self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
153 |
+
self.projection = keras.layers.Conv2D(
|
154 |
+
filters=embed_dim,
|
155 |
+
kernel_size=patch_size,
|
156 |
+
strides=stride,
|
157 |
+
padding="valid",
|
158 |
+
data_format="channels_last",
|
159 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
160 |
+
name="projection",
|
161 |
+
)
|
162 |
+
# Using the same default epsilon as PyTorch
|
163 |
+
self.normalization = keras.layers.LayerNormalization(epsilon=1e-5, name="normalization")
|
164 |
+
self.num_channels = num_channels
|
165 |
+
self.embed_dim = embed_dim
|
166 |
+
|
167 |
+
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
|
168 |
+
if isinstance(pixel_values, dict):
|
169 |
+
pixel_values = pixel_values["pixel_values"]
|
170 |
+
|
171 |
+
pixel_values = self.projection(self.padding(pixel_values))
|
172 |
+
|
173 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
174 |
+
batch_size, height, width, num_channels = shape_list(pixel_values)
|
175 |
+
hidden_size = height * width
|
176 |
+
pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels))
|
177 |
+
pixel_values = self.normalization(pixel_values)
|
178 |
+
|
179 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
180 |
+
pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels))
|
181 |
+
return pixel_values
|
182 |
+
|
183 |
+
def build(self, input_shape=None):
|
184 |
+
if self.built:
|
185 |
+
return
|
186 |
+
self.built = True
|
187 |
+
if getattr(self, "projection", None) is not None:
|
188 |
+
with tf.name_scope(self.projection.name):
|
189 |
+
self.projection.build([None, None, None, self.num_channels])
|
190 |
+
if getattr(self, "normalization", None) is not None:
|
191 |
+
with tf.name_scope(self.normalization.name):
|
192 |
+
self.normalization.build([None, None, self.embed_dim])
|
193 |
+
|
194 |
+
|
195 |
+
class TFCvtSelfAttentionConvProjection(keras.layers.Layer):
|
196 |
+
"""Convolutional projection layer."""
|
197 |
+
|
198 |
+
def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs):
|
199 |
+
super().__init__(**kwargs)
|
200 |
+
self.padding = keras.layers.ZeroPadding2D(padding=padding)
|
201 |
+
self.convolution = keras.layers.Conv2D(
|
202 |
+
filters=embed_dim,
|
203 |
+
kernel_size=kernel_size,
|
204 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
205 |
+
padding="valid",
|
206 |
+
strides=stride,
|
207 |
+
use_bias=False,
|
208 |
+
name="convolution",
|
209 |
+
groups=embed_dim,
|
210 |
+
)
|
211 |
+
# Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum)
|
212 |
+
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
|
213 |
+
self.embed_dim = embed_dim
|
214 |
+
|
215 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
216 |
+
hidden_state = self.convolution(self.padding(hidden_state))
|
217 |
+
hidden_state = self.normalization(hidden_state, training=training)
|
218 |
+
return hidden_state
|
219 |
+
|
220 |
+
def build(self, input_shape=None):
|
221 |
+
if self.built:
|
222 |
+
return
|
223 |
+
self.built = True
|
224 |
+
if getattr(self, "convolution", None) is not None:
|
225 |
+
with tf.name_scope(self.convolution.name):
|
226 |
+
self.convolution.build([None, None, None, self.embed_dim])
|
227 |
+
if getattr(self, "normalization", None) is not None:
|
228 |
+
with tf.name_scope(self.normalization.name):
|
229 |
+
self.normalization.build([None, None, None, self.embed_dim])
|
230 |
+
|
231 |
+
|
232 |
+
class TFCvtSelfAttentionLinearProjection(keras.layers.Layer):
|
233 |
+
"""Linear projection layer used to flatten tokens into 1D."""
|
234 |
+
|
235 |
+
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
236 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
237 |
+
batch_size, height, width, num_channels = shape_list(hidden_state)
|
238 |
+
hidden_size = height * width
|
239 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
|
240 |
+
return hidden_state
|
241 |
+
|
242 |
+
|
243 |
+
class TFCvtSelfAttentionProjection(keras.layers.Layer):
|
244 |
+
"""Convolutional Projection for Attention."""
|
245 |
+
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
config: CvtConfig,
|
249 |
+
embed_dim: int,
|
250 |
+
kernel_size: int,
|
251 |
+
stride: int,
|
252 |
+
padding: int,
|
253 |
+
projection_method: str = "dw_bn",
|
254 |
+
**kwargs,
|
255 |
+
):
|
256 |
+
super().__init__(**kwargs)
|
257 |
+
if projection_method == "dw_bn":
|
258 |
+
self.convolution_projection = TFCvtSelfAttentionConvProjection(
|
259 |
+
config, embed_dim, kernel_size, stride, padding, name="convolution_projection"
|
260 |
+
)
|
261 |
+
self.linear_projection = TFCvtSelfAttentionLinearProjection()
|
262 |
+
|
263 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
264 |
+
hidden_state = self.convolution_projection(hidden_state, training=training)
|
265 |
+
hidden_state = self.linear_projection(hidden_state)
|
266 |
+
return hidden_state
|
267 |
+
|
268 |
+
def build(self, input_shape=None):
|
269 |
+
if self.built:
|
270 |
+
return
|
271 |
+
self.built = True
|
272 |
+
if getattr(self, "convolution_projection", None) is not None:
|
273 |
+
with tf.name_scope(self.convolution_projection.name):
|
274 |
+
self.convolution_projection.build(None)
|
275 |
+
|
276 |
+
|
277 |
+
class TFCvtSelfAttention(keras.layers.Layer):
|
278 |
+
"""
|
279 |
+
Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for
|
280 |
+
query, key, and value embeddings.
|
281 |
+
"""
|
282 |
+
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
config: CvtConfig,
|
286 |
+
num_heads: int,
|
287 |
+
embed_dim: int,
|
288 |
+
kernel_size: int,
|
289 |
+
stride_q: int,
|
290 |
+
stride_kv: int,
|
291 |
+
padding_q: int,
|
292 |
+
padding_kv: int,
|
293 |
+
qkv_projection_method: str,
|
294 |
+
qkv_bias: bool,
|
295 |
+
attention_drop_rate: float,
|
296 |
+
with_cls_token: bool = True,
|
297 |
+
**kwargs,
|
298 |
+
):
|
299 |
+
super().__init__(**kwargs)
|
300 |
+
self.scale = embed_dim**-0.5
|
301 |
+
self.with_cls_token = with_cls_token
|
302 |
+
self.embed_dim = embed_dim
|
303 |
+
self.num_heads = num_heads
|
304 |
+
|
305 |
+
self.convolution_projection_query = TFCvtSelfAttentionProjection(
|
306 |
+
config,
|
307 |
+
embed_dim,
|
308 |
+
kernel_size,
|
309 |
+
stride_q,
|
310 |
+
padding_q,
|
311 |
+
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
|
312 |
+
name="convolution_projection_query",
|
313 |
+
)
|
314 |
+
self.convolution_projection_key = TFCvtSelfAttentionProjection(
|
315 |
+
config,
|
316 |
+
embed_dim,
|
317 |
+
kernel_size,
|
318 |
+
stride_kv,
|
319 |
+
padding_kv,
|
320 |
+
projection_method=qkv_projection_method,
|
321 |
+
name="convolution_projection_key",
|
322 |
+
)
|
323 |
+
self.convolution_projection_value = TFCvtSelfAttentionProjection(
|
324 |
+
config,
|
325 |
+
embed_dim,
|
326 |
+
kernel_size,
|
327 |
+
stride_kv,
|
328 |
+
padding_kv,
|
329 |
+
projection_method=qkv_projection_method,
|
330 |
+
name="convolution_projection_value",
|
331 |
+
)
|
332 |
+
|
333 |
+
self.projection_query = keras.layers.Dense(
|
334 |
+
units=embed_dim,
|
335 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
336 |
+
use_bias=qkv_bias,
|
337 |
+
bias_initializer="zeros",
|
338 |
+
name="projection_query",
|
339 |
+
)
|
340 |
+
self.projection_key = keras.layers.Dense(
|
341 |
+
units=embed_dim,
|
342 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
343 |
+
use_bias=qkv_bias,
|
344 |
+
bias_initializer="zeros",
|
345 |
+
name="projection_key",
|
346 |
+
)
|
347 |
+
self.projection_value = keras.layers.Dense(
|
348 |
+
units=embed_dim,
|
349 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
350 |
+
use_bias=qkv_bias,
|
351 |
+
bias_initializer="zeros",
|
352 |
+
name="projection_value",
|
353 |
+
)
|
354 |
+
self.dropout = keras.layers.Dropout(attention_drop_rate)
|
355 |
+
|
356 |
+
def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
357 |
+
batch_size, hidden_size, _ = shape_list(hidden_state)
|
358 |
+
head_dim = self.embed_dim // self.num_heads
|
359 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim))
|
360 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3))
|
361 |
+
return hidden_state
|
362 |
+
|
363 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
|
364 |
+
if self.with_cls_token:
|
365 |
+
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
|
366 |
+
|
367 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
368 |
+
batch_size, hidden_size, num_channels = shape_list(hidden_state)
|
369 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
|
370 |
+
|
371 |
+
key = self.convolution_projection_key(hidden_state, training=training)
|
372 |
+
query = self.convolution_projection_query(hidden_state, training=training)
|
373 |
+
value = self.convolution_projection_value(hidden_state, training=training)
|
374 |
+
|
375 |
+
if self.with_cls_token:
|
376 |
+
query = tf.concat((cls_token, query), axis=1)
|
377 |
+
key = tf.concat((cls_token, key), axis=1)
|
378 |
+
value = tf.concat((cls_token, value), axis=1)
|
379 |
+
|
380 |
+
head_dim = self.embed_dim // self.num_heads
|
381 |
+
|
382 |
+
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
|
383 |
+
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
|
384 |
+
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
|
385 |
+
|
386 |
+
attention_score = tf.matmul(query, key, transpose_b=True) * self.scale
|
387 |
+
attention_probs = stable_softmax(logits=attention_score, axis=-1)
|
388 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
389 |
+
|
390 |
+
context = tf.matmul(attention_probs, value)
|
391 |
+
# "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)"
|
392 |
+
_, _, hidden_size, _ = shape_list(context)
|
393 |
+
context = tf.transpose(context, perm=(0, 2, 1, 3))
|
394 |
+
context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim))
|
395 |
+
return context
|
396 |
+
|
397 |
+
def build(self, input_shape=None):
|
398 |
+
if self.built:
|
399 |
+
return
|
400 |
+
self.built = True
|
401 |
+
if getattr(self, "convolution_projection_query", None) is not None:
|
402 |
+
with tf.name_scope(self.convolution_projection_query.name):
|
403 |
+
self.convolution_projection_query.build(None)
|
404 |
+
if getattr(self, "convolution_projection_key", None) is not None:
|
405 |
+
with tf.name_scope(self.convolution_projection_key.name):
|
406 |
+
self.convolution_projection_key.build(None)
|
407 |
+
if getattr(self, "convolution_projection_value", None) is not None:
|
408 |
+
with tf.name_scope(self.convolution_projection_value.name):
|
409 |
+
self.convolution_projection_value.build(None)
|
410 |
+
if getattr(self, "projection_query", None) is not None:
|
411 |
+
with tf.name_scope(self.projection_query.name):
|
412 |
+
self.projection_query.build([None, None, self.embed_dim])
|
413 |
+
if getattr(self, "projection_key", None) is not None:
|
414 |
+
with tf.name_scope(self.projection_key.name):
|
415 |
+
self.projection_key.build([None, None, self.embed_dim])
|
416 |
+
if getattr(self, "projection_value", None) is not None:
|
417 |
+
with tf.name_scope(self.projection_value.name):
|
418 |
+
self.projection_value.build([None, None, self.embed_dim])
|
419 |
+
|
420 |
+
|
421 |
+
class TFCvtSelfOutput(keras.layers.Layer):
|
422 |
+
"""Output of the Attention layer ."""
|
423 |
+
|
424 |
+
def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs):
|
425 |
+
super().__init__(**kwargs)
|
426 |
+
self.dense = keras.layers.Dense(
|
427 |
+
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
428 |
+
)
|
429 |
+
self.dropout = keras.layers.Dropout(drop_rate)
|
430 |
+
self.embed_dim = embed_dim
|
431 |
+
|
432 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
433 |
+
hidden_state = self.dense(inputs=hidden_state)
|
434 |
+
hidden_state = self.dropout(inputs=hidden_state, training=training)
|
435 |
+
return hidden_state
|
436 |
+
|
437 |
+
def build(self, input_shape=None):
|
438 |
+
if self.built:
|
439 |
+
return
|
440 |
+
self.built = True
|
441 |
+
if getattr(self, "dense", None) is not None:
|
442 |
+
with tf.name_scope(self.dense.name):
|
443 |
+
self.dense.build([None, None, self.embed_dim])
|
444 |
+
|
445 |
+
|
446 |
+
class TFCvtAttention(keras.layers.Layer):
|
447 |
+
"""Attention layer. First chunk of the convolutional transformer block."""
|
448 |
+
|
449 |
+
def __init__(
|
450 |
+
self,
|
451 |
+
config: CvtConfig,
|
452 |
+
num_heads: int,
|
453 |
+
embed_dim: int,
|
454 |
+
kernel_size: int,
|
455 |
+
stride_q: int,
|
456 |
+
stride_kv: int,
|
457 |
+
padding_q: int,
|
458 |
+
padding_kv: int,
|
459 |
+
qkv_projection_method: str,
|
460 |
+
qkv_bias: bool,
|
461 |
+
attention_drop_rate: float,
|
462 |
+
drop_rate: float,
|
463 |
+
with_cls_token: bool = True,
|
464 |
+
**kwargs,
|
465 |
+
):
|
466 |
+
super().__init__(**kwargs)
|
467 |
+
self.attention = TFCvtSelfAttention(
|
468 |
+
config,
|
469 |
+
num_heads,
|
470 |
+
embed_dim,
|
471 |
+
kernel_size,
|
472 |
+
stride_q,
|
473 |
+
stride_kv,
|
474 |
+
padding_q,
|
475 |
+
padding_kv,
|
476 |
+
qkv_projection_method,
|
477 |
+
qkv_bias,
|
478 |
+
attention_drop_rate,
|
479 |
+
with_cls_token,
|
480 |
+
name="attention",
|
481 |
+
)
|
482 |
+
self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output")
|
483 |
+
|
484 |
+
def prune_heads(self, heads):
|
485 |
+
raise NotImplementedError
|
486 |
+
|
487 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False):
|
488 |
+
self_output = self.attention(hidden_state, height, width, training=training)
|
489 |
+
attention_output = self.dense_output(self_output, training=training)
|
490 |
+
return attention_output
|
491 |
+
|
492 |
+
def build(self, input_shape=None):
|
493 |
+
if self.built:
|
494 |
+
return
|
495 |
+
self.built = True
|
496 |
+
if getattr(self, "attention", None) is not None:
|
497 |
+
with tf.name_scope(self.attention.name):
|
498 |
+
self.attention.build(None)
|
499 |
+
if getattr(self, "dense_output", None) is not None:
|
500 |
+
with tf.name_scope(self.dense_output.name):
|
501 |
+
self.dense_output.build(None)
|
502 |
+
|
503 |
+
|
504 |
+
class TFCvtIntermediate(keras.layers.Layer):
|
505 |
+
"""Intermediate dense layer. Second chunk of the convolutional transformer block."""
|
506 |
+
|
507 |
+
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs):
|
508 |
+
super().__init__(**kwargs)
|
509 |
+
self.dense = keras.layers.Dense(
|
510 |
+
units=int(embed_dim * mlp_ratio),
|
511 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
512 |
+
activation="gelu",
|
513 |
+
name="dense",
|
514 |
+
)
|
515 |
+
self.embed_dim = embed_dim
|
516 |
+
|
517 |
+
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
518 |
+
hidden_state = self.dense(hidden_state)
|
519 |
+
return hidden_state
|
520 |
+
|
521 |
+
def build(self, input_shape=None):
|
522 |
+
if self.built:
|
523 |
+
return
|
524 |
+
self.built = True
|
525 |
+
if getattr(self, "dense", None) is not None:
|
526 |
+
with tf.name_scope(self.dense.name):
|
527 |
+
self.dense.build([None, None, self.embed_dim])
|
528 |
+
|
529 |
+
|
530 |
+
class TFCvtOutput(keras.layers.Layer):
|
531 |
+
"""
|
532 |
+
Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection.
|
533 |
+
"""
|
534 |
+
|
535 |
+
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, drop_rate: int, **kwargs):
|
536 |
+
super().__init__(**kwargs)
|
537 |
+
self.dense = keras.layers.Dense(
|
538 |
+
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
539 |
+
)
|
540 |
+
self.dropout = keras.layers.Dropout(drop_rate)
|
541 |
+
self.embed_dim = embed_dim
|
542 |
+
self.mlp_ratio = mlp_ratio
|
543 |
+
|
544 |
+
def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
545 |
+
hidden_state = self.dense(inputs=hidden_state)
|
546 |
+
hidden_state = self.dropout(inputs=hidden_state, training=training)
|
547 |
+
hidden_state = hidden_state + input_tensor
|
548 |
+
return hidden_state
|
549 |
+
|
550 |
+
def build(self, input_shape=None):
|
551 |
+
if self.built:
|
552 |
+
return
|
553 |
+
self.built = True
|
554 |
+
if getattr(self, "dense", None) is not None:
|
555 |
+
with tf.name_scope(self.dense.name):
|
556 |
+
self.dense.build([None, None, int(self.embed_dim * self.mlp_ratio)])
|
557 |
+
|
558 |
+
|
559 |
+
class TFCvtLayer(keras.layers.Layer):
|
560 |
+
"""
|
561 |
+
Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It
|
562 |
+
consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the
|
563 |
+
`Block` class in the original implementation.
|
564 |
+
"""
|
565 |
+
|
566 |
+
def __init__(
|
567 |
+
self,
|
568 |
+
config: CvtConfig,
|
569 |
+
num_heads: int,
|
570 |
+
embed_dim: int,
|
571 |
+
kernel_size: int,
|
572 |
+
stride_q: int,
|
573 |
+
stride_kv: int,
|
574 |
+
padding_q: int,
|
575 |
+
padding_kv: int,
|
576 |
+
qkv_projection_method: str,
|
577 |
+
qkv_bias: bool,
|
578 |
+
attention_drop_rate: float,
|
579 |
+
drop_rate: float,
|
580 |
+
mlp_ratio: float,
|
581 |
+
drop_path_rate: float,
|
582 |
+
with_cls_token: bool = True,
|
583 |
+
**kwargs,
|
584 |
+
):
|
585 |
+
super().__init__(**kwargs)
|
586 |
+
self.attention = TFCvtAttention(
|
587 |
+
config,
|
588 |
+
num_heads,
|
589 |
+
embed_dim,
|
590 |
+
kernel_size,
|
591 |
+
stride_q,
|
592 |
+
stride_kv,
|
593 |
+
padding_q,
|
594 |
+
padding_kv,
|
595 |
+
qkv_projection_method,
|
596 |
+
qkv_bias,
|
597 |
+
attention_drop_rate,
|
598 |
+
drop_rate,
|
599 |
+
with_cls_token,
|
600 |
+
name="attention",
|
601 |
+
)
|
602 |
+
self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate")
|
603 |
+
self.dense_output = TFCvtOutput(config, embed_dim, mlp_ratio, drop_rate, name="output")
|
604 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour.
|
605 |
+
self.drop_path = (
|
606 |
+
TFCvtDropPath(drop_path_rate, name="drop_path")
|
607 |
+
if drop_path_rate > 0.0
|
608 |
+
else keras.layers.Activation("linear", name="drop_path")
|
609 |
+
)
|
610 |
+
# Using the same default epsilon as PyTorch
|
611 |
+
self.layernorm_before = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before")
|
612 |
+
self.layernorm_after = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after")
|
613 |
+
self.embed_dim = embed_dim
|
614 |
+
|
615 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
|
616 |
+
# in Cvt, layernorm is applied before self-attention
|
617 |
+
attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training)
|
618 |
+
attention_output = self.drop_path(attention_output, training=training)
|
619 |
+
|
620 |
+
# first residual connection
|
621 |
+
hidden_state = attention_output + hidden_state
|
622 |
+
|
623 |
+
# in Cvt, layernorm is also applied after self-attention
|
624 |
+
layer_output = self.layernorm_after(hidden_state)
|
625 |
+
layer_output = self.intermediate(layer_output)
|
626 |
+
|
627 |
+
# second residual connection is done here
|
628 |
+
layer_output = self.dense_output(layer_output, hidden_state)
|
629 |
+
layer_output = self.drop_path(layer_output, training=training)
|
630 |
+
return layer_output
|
631 |
+
|
632 |
+
def build(self, input_shape=None):
|
633 |
+
if self.built:
|
634 |
+
return
|
635 |
+
self.built = True
|
636 |
+
if getattr(self, "attention", None) is not None:
|
637 |
+
with tf.name_scope(self.attention.name):
|
638 |
+
self.attention.build(None)
|
639 |
+
if getattr(self, "intermediate", None) is not None:
|
640 |
+
with tf.name_scope(self.intermediate.name):
|
641 |
+
self.intermediate.build(None)
|
642 |
+
if getattr(self, "dense_output", None) is not None:
|
643 |
+
with tf.name_scope(self.dense_output.name):
|
644 |
+
self.dense_output.build(None)
|
645 |
+
if getattr(self, "drop_path", None) is not None:
|
646 |
+
with tf.name_scope(self.drop_path.name):
|
647 |
+
self.drop_path.build(None)
|
648 |
+
if getattr(self, "layernorm_before", None) is not None:
|
649 |
+
with tf.name_scope(self.layernorm_before.name):
|
650 |
+
self.layernorm_before.build([None, None, self.embed_dim])
|
651 |
+
if getattr(self, "layernorm_after", None) is not None:
|
652 |
+
with tf.name_scope(self.layernorm_after.name):
|
653 |
+
self.layernorm_after.build([None, None, self.embed_dim])
|
654 |
+
|
655 |
+
|
656 |
+
class TFCvtStage(keras.layers.Layer):
|
657 |
+
"""
|
658 |
+
Cvt stage (encoder block). Each stage has 2 parts :
|
659 |
+
- (1) A Convolutional Token Embedding layer
|
660 |
+
- (2) A Convolutional Transformer Block (layer).
|
661 |
+
The classification token is added only in the last stage.
|
662 |
+
|
663 |
+
Args:
|
664 |
+
config ([`CvtConfig`]): Model configuration class.
|
665 |
+
stage (`int`): Stage number.
|
666 |
+
"""
|
667 |
+
|
668 |
+
def __init__(self, config: CvtConfig, stage: int, **kwargs):
|
669 |
+
super().__init__(**kwargs)
|
670 |
+
self.config = config
|
671 |
+
self.stage = stage
|
672 |
+
if self.config.cls_token[self.stage]:
|
673 |
+
self.cls_token = self.add_weight(
|
674 |
+
shape=(1, 1, self.config.embed_dim[-1]),
|
675 |
+
initializer=get_initializer(self.config.initializer_range),
|
676 |
+
trainable=True,
|
677 |
+
name="cvt.encoder.stages.2.cls_token",
|
678 |
+
)
|
679 |
+
|
680 |
+
self.embedding = TFCvtEmbeddings(
|
681 |
+
self.config,
|
682 |
+
patch_size=config.patch_sizes[self.stage],
|
683 |
+
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
|
684 |
+
stride=config.patch_stride[self.stage],
|
685 |
+
embed_dim=config.embed_dim[self.stage],
|
686 |
+
padding=config.patch_padding[self.stage],
|
687 |
+
dropout_rate=config.drop_rate[self.stage],
|
688 |
+
name="embedding",
|
689 |
+
)
|
690 |
+
|
691 |
+
drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage])
|
692 |
+
drop_path_rates = [x.numpy().item() for x in drop_path_rates]
|
693 |
+
self.layers = [
|
694 |
+
TFCvtLayer(
|
695 |
+
config,
|
696 |
+
num_heads=config.num_heads[self.stage],
|
697 |
+
embed_dim=config.embed_dim[self.stage],
|
698 |
+
kernel_size=config.kernel_qkv[self.stage],
|
699 |
+
stride_q=config.stride_q[self.stage],
|
700 |
+
stride_kv=config.stride_kv[self.stage],
|
701 |
+
padding_q=config.padding_q[self.stage],
|
702 |
+
padding_kv=config.padding_kv[self.stage],
|
703 |
+
qkv_projection_method=config.qkv_projection_method[self.stage],
|
704 |
+
qkv_bias=config.qkv_bias[self.stage],
|
705 |
+
attention_drop_rate=config.attention_drop_rate[self.stage],
|
706 |
+
drop_rate=config.drop_rate[self.stage],
|
707 |
+
mlp_ratio=config.mlp_ratio[self.stage],
|
708 |
+
drop_path_rate=drop_path_rates[self.stage],
|
709 |
+
with_cls_token=config.cls_token[self.stage],
|
710 |
+
name=f"layers.{j}",
|
711 |
+
)
|
712 |
+
for j in range(config.depth[self.stage])
|
713 |
+
]
|
714 |
+
|
715 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False):
|
716 |
+
cls_token = None
|
717 |
+
hidden_state = self.embedding(hidden_state, training)
|
718 |
+
|
719 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
720 |
+
batch_size, height, width, num_channels = shape_list(hidden_state)
|
721 |
+
hidden_size = height * width
|
722 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
|
723 |
+
|
724 |
+
if self.config.cls_token[self.stage]:
|
725 |
+
cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
|
726 |
+
hidden_state = tf.concat((cls_token, hidden_state), axis=1)
|
727 |
+
|
728 |
+
for layer in self.layers:
|
729 |
+
layer_outputs = layer(hidden_state, height, width, training=training)
|
730 |
+
hidden_state = layer_outputs
|
731 |
+
|
732 |
+
if self.config.cls_token[self.stage]:
|
733 |
+
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
|
734 |
+
|
735 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
736 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
|
737 |
+
return hidden_state, cls_token
|
738 |
+
|
739 |
+
def build(self, input_shape=None):
|
740 |
+
if self.built:
|
741 |
+
return
|
742 |
+
self.built = True
|
743 |
+
if getattr(self, "embedding", None) is not None:
|
744 |
+
with tf.name_scope(self.embedding.name):
|
745 |
+
self.embedding.build(None)
|
746 |
+
if getattr(self, "layers", None) is not None:
|
747 |
+
for layer in self.layers:
|
748 |
+
with tf.name_scope(layer.name):
|
749 |
+
layer.build(None)
|
750 |
+
|
751 |
+
|
752 |
+
class TFCvtEncoder(keras.layers.Layer):
|
753 |
+
"""
|
754 |
+
Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers
|
755 |
+
(depth) being 1, 2 and 10.
|
756 |
+
|
757 |
+
Args:
|
758 |
+
config ([`CvtConfig`]): Model configuration class.
|
759 |
+
"""
|
760 |
+
|
761 |
+
config_class = CvtConfig
|
762 |
+
|
763 |
+
def __init__(self, config: CvtConfig, **kwargs):
|
764 |
+
super().__init__(**kwargs)
|
765 |
+
self.config = config
|
766 |
+
self.stages = [
|
767 |
+
TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth))
|
768 |
+
]
|
769 |
+
|
770 |
+
def call(
|
771 |
+
self,
|
772 |
+
pixel_values: TFModelInputType,
|
773 |
+
output_hidden_states: Optional[bool] = False,
|
774 |
+
return_dict: Optional[bool] = True,
|
775 |
+
training: Optional[bool] = False,
|
776 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
777 |
+
all_hidden_states = () if output_hidden_states else None
|
778 |
+
hidden_state = pixel_values
|
779 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width)
|
780 |
+
# as input format. So change the input format to (batch_size, height, width, num_channels).
|
781 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1))
|
782 |
+
|
783 |
+
cls_token = None
|
784 |
+
for _, (stage_module) in enumerate(self.stages):
|
785 |
+
hidden_state, cls_token = stage_module(hidden_state, training=training)
|
786 |
+
if output_hidden_states:
|
787 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
788 |
+
|
789 |
+
# Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules
|
790 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2))
|
791 |
+
if output_hidden_states:
|
792 |
+
all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states])
|
793 |
+
|
794 |
+
if not return_dict:
|
795 |
+
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
|
796 |
+
|
797 |
+
return TFBaseModelOutputWithCLSToken(
|
798 |
+
last_hidden_state=hidden_state,
|
799 |
+
cls_token_value=cls_token,
|
800 |
+
hidden_states=all_hidden_states,
|
801 |
+
)
|
802 |
+
|
803 |
+
def build(self, input_shape=None):
|
804 |
+
if self.built:
|
805 |
+
return
|
806 |
+
self.built = True
|
807 |
+
if getattr(self, "stages", None) is not None:
|
808 |
+
for layer in self.stages:
|
809 |
+
with tf.name_scope(layer.name):
|
810 |
+
layer.build(None)
|
811 |
+
|
812 |
+
|
813 |
+
@keras_serializable
|
814 |
+
class TFCvtMainLayer(keras.layers.Layer):
|
815 |
+
"""Construct the Cvt model."""
|
816 |
+
|
817 |
+
config_class = CvtConfig
|
818 |
+
|
819 |
+
def __init__(self, config: CvtConfig, **kwargs):
|
820 |
+
super().__init__(**kwargs)
|
821 |
+
self.config = config
|
822 |
+
self.encoder = TFCvtEncoder(config, name="encoder")
|
823 |
+
|
824 |
+
@unpack_inputs
|
825 |
+
def call(
|
826 |
+
self,
|
827 |
+
pixel_values: TFModelInputType | None = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
training: Optional[bool] = False,
|
831 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
832 |
+
if pixel_values is None:
|
833 |
+
raise ValueError("You have to specify pixel_values")
|
834 |
+
|
835 |
+
encoder_outputs = self.encoder(
|
836 |
+
pixel_values,
|
837 |
+
output_hidden_states=output_hidden_states,
|
838 |
+
return_dict=return_dict,
|
839 |
+
training=training,
|
840 |
+
)
|
841 |
+
|
842 |
+
sequence_output = encoder_outputs[0]
|
843 |
+
|
844 |
+
if not return_dict:
|
845 |
+
return (sequence_output,) + encoder_outputs[1:]
|
846 |
+
|
847 |
+
return TFBaseModelOutputWithCLSToken(
|
848 |
+
last_hidden_state=sequence_output,
|
849 |
+
cls_token_value=encoder_outputs.cls_token_value,
|
850 |
+
hidden_states=encoder_outputs.hidden_states,
|
851 |
+
)
|
852 |
+
|
853 |
+
def build(self, input_shape=None):
|
854 |
+
if self.built:
|
855 |
+
return
|
856 |
+
self.built = True
|
857 |
+
if getattr(self, "encoder", None) is not None:
|
858 |
+
with tf.name_scope(self.encoder.name):
|
859 |
+
self.encoder.build(None)
|
860 |
+
|
861 |
+
|
862 |
+
class TFCvtPreTrainedModel(TFPreTrainedModel):
|
863 |
+
"""
|
864 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
865 |
+
models.
|
866 |
+
"""
|
867 |
+
|
868 |
+
config_class = CvtConfig
|
869 |
+
base_model_prefix = "cvt"
|
870 |
+
main_input_name = "pixel_values"
|
871 |
+
|
872 |
+
|
873 |
+
TFCVT_START_DOCSTRING = r"""
|
874 |
+
|
875 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
876 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
877 |
+
etc.)
|
878 |
+
|
879 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
880 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
881 |
+
behavior.
|
882 |
+
|
883 |
+
<Tip>
|
884 |
+
|
885 |
+
TF 2.0 models accepts two formats as inputs:
|
886 |
+
|
887 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
888 |
+
- having all inputs as a list, tuple or dict in the first positional arguments.
|
889 |
+
|
890 |
+
This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
|
891 |
+
tensors in the first argument of the model call function: `model(inputs)`.
|
892 |
+
|
893 |
+
</Tip>
|
894 |
+
|
895 |
+
Args:
|
896 |
+
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
|
897 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
898 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
899 |
+
"""
|
900 |
+
|
901 |
+
TFCVT_INPUTS_DOCSTRING = r"""
|
902 |
+
Args:
|
903 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
904 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
|
905 |
+
for details.
|
906 |
+
|
907 |
+
output_hidden_states (`bool`, *optional*):
|
908 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
909 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
910 |
+
used instead.
|
911 |
+
return_dict (`bool`, *optional*):
|
912 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
913 |
+
eager mode, in graph mode the value will always be set to True.
|
914 |
+
training (`bool`, *optional*, defaults to `False``):
|
915 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
916 |
+
behaviors between training and evaluation).
|
917 |
+
"""
|
918 |
+
|
919 |
+
|
920 |
+
@add_start_docstrings(
|
921 |
+
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
|
922 |
+
TFCVT_START_DOCSTRING,
|
923 |
+
)
|
924 |
+
class TFCvtModel(TFCvtPreTrainedModel):
|
925 |
+
def __init__(self, config: CvtConfig, *inputs, **kwargs):
|
926 |
+
super().__init__(config, *inputs, **kwargs)
|
927 |
+
|
928 |
+
self.cvt = TFCvtMainLayer(config, name="cvt")
|
929 |
+
|
930 |
+
@unpack_inputs
|
931 |
+
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
|
932 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC)
|
933 |
+
def call(
|
934 |
+
self,
|
935 |
+
pixel_values: tf.Tensor | None = None,
|
936 |
+
output_hidden_states: Optional[bool] = None,
|
937 |
+
return_dict: Optional[bool] = None,
|
938 |
+
training: Optional[bool] = False,
|
939 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
940 |
+
r"""
|
941 |
+
Returns:
|
942 |
+
|
943 |
+
Examples:
|
944 |
+
|
945 |
+
```python
|
946 |
+
>>> from transformers import AutoImageProcessor, TFCvtModel
|
947 |
+
>>> from PIL import Image
|
948 |
+
>>> import requests
|
949 |
+
|
950 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
951 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
952 |
+
|
953 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
|
954 |
+
>>> model = TFCvtModel.from_pretrained("microsoft/cvt-13")
|
955 |
+
|
956 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
957 |
+
>>> outputs = model(**inputs)
|
958 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
959 |
+
```"""
|
960 |
+
|
961 |
+
if pixel_values is None:
|
962 |
+
raise ValueError("You have to specify pixel_values")
|
963 |
+
|
964 |
+
outputs = self.cvt(
|
965 |
+
pixel_values=pixel_values,
|
966 |
+
output_hidden_states=output_hidden_states,
|
967 |
+
return_dict=return_dict,
|
968 |
+
training=training,
|
969 |
+
)
|
970 |
+
|
971 |
+
if not return_dict:
|
972 |
+
return (outputs[0],) + outputs[1:]
|
973 |
+
|
974 |
+
return TFBaseModelOutputWithCLSToken(
|
975 |
+
last_hidden_state=outputs.last_hidden_state,
|
976 |
+
cls_token_value=outputs.cls_token_value,
|
977 |
+
hidden_states=outputs.hidden_states,
|
978 |
+
)
|
979 |
+
|
980 |
+
def build(self, input_shape=None):
|
981 |
+
if self.built:
|
982 |
+
return
|
983 |
+
self.built = True
|
984 |
+
if getattr(self, "cvt", None) is not None:
|
985 |
+
with tf.name_scope(self.cvt.name):
|
986 |
+
self.cvt.build(None)
|
987 |
+
|
988 |
+
|
989 |
+
@add_start_docstrings(
|
990 |
+
"""
|
991 |
+
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
992 |
+
the [CLS] token) e.g. for ImageNet.
|
993 |
+
""",
|
994 |
+
TFCVT_START_DOCSTRING,
|
995 |
+
)
|
996 |
+
class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss):
|
997 |
+
def __init__(self, config: CvtConfig, *inputs, **kwargs):
|
998 |
+
super().__init__(config, *inputs, **kwargs)
|
999 |
+
|
1000 |
+
self.num_labels = config.num_labels
|
1001 |
+
self.cvt = TFCvtMainLayer(config, name="cvt")
|
1002 |
+
# Using same default epsilon as in the original implementation.
|
1003 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm")
|
1004 |
+
|
1005 |
+
# Classifier head
|
1006 |
+
self.classifier = keras.layers.Dense(
|
1007 |
+
units=config.num_labels,
|
1008 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1009 |
+
use_bias=True,
|
1010 |
+
bias_initializer="zeros",
|
1011 |
+
name="classifier",
|
1012 |
+
)
|
1013 |
+
self.config = config
|
1014 |
+
|
1015 |
+
@unpack_inputs
|
1016 |
+
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
|
1017 |
+
@replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC)
|
1018 |
+
def call(
|
1019 |
+
self,
|
1020 |
+
pixel_values: tf.Tensor | None = None,
|
1021 |
+
labels: tf.Tensor | None = None,
|
1022 |
+
output_hidden_states: Optional[bool] = None,
|
1023 |
+
return_dict: Optional[bool] = None,
|
1024 |
+
training: Optional[bool] = False,
|
1025 |
+
) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
|
1026 |
+
r"""
|
1027 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1028 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1029 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1030 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1031 |
+
|
1032 |
+
Returns:
|
1033 |
+
|
1034 |
+
Examples:
|
1035 |
+
|
1036 |
+
```python
|
1037 |
+
>>> from transformers import AutoImageProcessor, TFCvtForImageClassification
|
1038 |
+
>>> import tensorflow as tf
|
1039 |
+
>>> from PIL import Image
|
1040 |
+
>>> import requests
|
1041 |
+
|
1042 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1043 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1044 |
+
|
1045 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
|
1046 |
+
>>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13")
|
1047 |
+
|
1048 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
1049 |
+
>>> outputs = model(**inputs)
|
1050 |
+
>>> logits = outputs.logits
|
1051 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
1052 |
+
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
|
1053 |
+
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
|
1054 |
+
```"""
|
1055 |
+
|
1056 |
+
outputs = self.cvt(
|
1057 |
+
pixel_values,
|
1058 |
+
output_hidden_states=output_hidden_states,
|
1059 |
+
return_dict=return_dict,
|
1060 |
+
training=training,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
sequence_output = outputs[0]
|
1064 |
+
cls_token = outputs[1]
|
1065 |
+
if self.config.cls_token[-1]:
|
1066 |
+
sequence_output = self.layernorm(cls_token)
|
1067 |
+
else:
|
1068 |
+
# rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels"
|
1069 |
+
batch_size, num_channels, height, width = shape_list(sequence_output)
|
1070 |
+
sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width))
|
1071 |
+
sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1))
|
1072 |
+
sequence_output = self.layernorm(sequence_output)
|
1073 |
+
|
1074 |
+
sequence_output_mean = tf.reduce_mean(sequence_output, axis=1)
|
1075 |
+
logits = self.classifier(sequence_output_mean)
|
1076 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1077 |
+
|
1078 |
+
if not return_dict:
|
1079 |
+
output = (logits,) + outputs[2:]
|
1080 |
+
return ((loss,) + output) if loss is not None else output
|
1081 |
+
|
1082 |
+
return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
1083 |
+
|
1084 |
+
def build(self, input_shape=None):
|
1085 |
+
if self.built:
|
1086 |
+
return
|
1087 |
+
self.built = True
|
1088 |
+
if getattr(self, "cvt", None) is not None:
|
1089 |
+
with tf.name_scope(self.cvt.name):
|
1090 |
+
self.cvt.build(None)
|
1091 |
+
if getattr(self, "layernorm", None) is not None:
|
1092 |
+
with tf.name_scope(self.layernorm.name):
|
1093 |
+
self.layernorm.build([None, None, self.config.embed_dim[-1]])
|
1094 |
+
if getattr(self, "classifier", None) is not None:
|
1095 |
+
if hasattr(self.classifier, "name"):
|
1096 |
+
with tf.name_scope(self.classifier.name):
|
1097 |
+
self.classifier.build([None, None, self.config.embed_dim[-1]])
|
venv/lib/python3.10/site-packages/transformers/models/ernie/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_ernie"] = [
|
31 |
+
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"ErnieForCausalLM",
|
33 |
+
"ErnieForMaskedLM",
|
34 |
+
"ErnieForMultipleChoice",
|
35 |
+
"ErnieForNextSentencePrediction",
|
36 |
+
"ErnieForPreTraining",
|
37 |
+
"ErnieForQuestionAnswering",
|
38 |
+
"ErnieForSequenceClassification",
|
39 |
+
"ErnieForTokenClassification",
|
40 |
+
"ErnieModel",
|
41 |
+
"ErniePreTrainedModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .modeling_ernie import (
|
54 |
+
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
55 |
+
ErnieForCausalLM,
|
56 |
+
ErnieForMaskedLM,
|
57 |
+
ErnieForMultipleChoice,
|
58 |
+
ErnieForNextSentencePrediction,
|
59 |
+
ErnieForPreTraining,
|
60 |
+
ErnieForQuestionAnswering,
|
61 |
+
ErnieForSequenceClassification,
|
62 |
+
ErnieForTokenClassification,
|
63 |
+
ErnieModel,
|
64 |
+
ErniePreTrainedModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
else:
|
68 |
+
import sys
|
69 |
+
|
70 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc
ADDED
Binary file (6.88 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc
ADDED
Binary file (52.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ERNIE model configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfig
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class ErnieConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
|
34 |
+
instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
+
configuration with the defaults will yield a similar configuration to that of the ERNIE
|
36 |
+
[nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
44 |
+
Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
|
46 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
47 |
+
Dimensionality of the encoder layers and the pooler layer.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
53 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
54 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
62 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
63 |
+
just in case (e.g., 512 or 1024 or 2048).
|
64 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
65 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
|
66 |
+
task_type_vocab_size (`int`, *optional*, defaults to 3):
|
67 |
+
The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
|
68 |
+
use_task_id (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether or not the model support `task_type_ids`
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
73 |
+
The epsilon used by the layer normalization layers.
|
74 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
75 |
+
Padding token id.
|
76 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
77 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
78 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
79 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
80 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
81 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
82 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
84 |
+
relevant if `config.is_decoder=True`.
|
85 |
+
classifier_dropout (`float`, *optional*):
|
86 |
+
The dropout ratio for the classification head.
|
87 |
+
|
88 |
+
Examples:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import ErnieConfig, ErnieModel
|
92 |
+
|
93 |
+
>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
|
94 |
+
>>> configuration = ErnieConfig()
|
95 |
+
|
96 |
+
>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
|
97 |
+
>>> model = ErnieModel(configuration)
|
98 |
+
|
99 |
+
>>> # Accessing the model configuration
|
100 |
+
>>> configuration = model.config
|
101 |
+
```"""
|
102 |
+
|
103 |
+
model_type = "ernie"
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
vocab_size=30522,
|
108 |
+
hidden_size=768,
|
109 |
+
num_hidden_layers=12,
|
110 |
+
num_attention_heads=12,
|
111 |
+
intermediate_size=3072,
|
112 |
+
hidden_act="gelu",
|
113 |
+
hidden_dropout_prob=0.1,
|
114 |
+
attention_probs_dropout_prob=0.1,
|
115 |
+
max_position_embeddings=512,
|
116 |
+
type_vocab_size=2,
|
117 |
+
task_type_vocab_size=3,
|
118 |
+
use_task_id=False,
|
119 |
+
initializer_range=0.02,
|
120 |
+
layer_norm_eps=1e-12,
|
121 |
+
pad_token_id=0,
|
122 |
+
position_embedding_type="absolute",
|
123 |
+
use_cache=True,
|
124 |
+
classifier_dropout=None,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
128 |
+
|
129 |
+
self.vocab_size = vocab_size
|
130 |
+
self.hidden_size = hidden_size
|
131 |
+
self.num_hidden_layers = num_hidden_layers
|
132 |
+
self.num_attention_heads = num_attention_heads
|
133 |
+
self.hidden_act = hidden_act
|
134 |
+
self.intermediate_size = intermediate_size
|
135 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
136 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.type_vocab_size = type_vocab_size
|
139 |
+
self.task_type_vocab_size = task_type_vocab_size
|
140 |
+
self.use_task_id = use_task_id
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.layer_norm_eps = layer_norm_eps
|
143 |
+
self.position_embedding_type = position_embedding_type
|
144 |
+
self.use_cache = use_cache
|
145 |
+
self.classifier_dropout = classifier_dropout
|
146 |
+
|
147 |
+
|
148 |
+
class ErnieOnnxConfig(OnnxConfig):
|
149 |
+
@property
|
150 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
151 |
+
if self.task == "multiple-choice":
|
152 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
153 |
+
else:
|
154 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
155 |
+
return OrderedDict(
|
156 |
+
[
|
157 |
+
("input_ids", dynamic_axis),
|
158 |
+
("attention_mask", dynamic_axis),
|
159 |
+
("token_type_ids", dynamic_axis),
|
160 |
+
("task_type_ids", dynamic_axis),
|
161 |
+
]
|
162 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py
ADDED
@@ -0,0 +1,1820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch ERNIE model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
|
28 |
+
from ...activations import ACT2FN
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from ...modeling_utils import PreTrainedModel
|
41 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
42 |
+
from ...utils import (
|
43 |
+
ModelOutput,
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from .configuration_ernie import ErnieConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh"
|
56 |
+
_CONFIG_FOR_DOC = "ErnieConfig"
|
57 |
+
|
58 |
+
|
59 |
+
from ..deprecated._archive_maps import ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
60 |
+
|
61 |
+
|
62 |
+
class ErnieEmbeddings(nn.Module):
|
63 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
68 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
69 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
70 |
+
self.use_task_id = config.use_task_id
|
71 |
+
if config.use_task_id:
|
72 |
+
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
|
73 |
+
|
74 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
75 |
+
# any TensorFlow checkpoint file
|
76 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
77 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
78 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
79 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
80 |
+
self.register_buffer(
|
81 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
82 |
+
)
|
83 |
+
self.register_buffer(
|
84 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
85 |
+
)
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
input_ids: Optional[torch.LongTensor] = None,
|
90 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
91 |
+
task_type_ids: Optional[torch.LongTensor] = None,
|
92 |
+
position_ids: Optional[torch.LongTensor] = None,
|
93 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
94 |
+
past_key_values_length: int = 0,
|
95 |
+
) -> torch.Tensor:
|
96 |
+
if input_ids is not None:
|
97 |
+
input_shape = input_ids.size()
|
98 |
+
else:
|
99 |
+
input_shape = inputs_embeds.size()[:-1]
|
100 |
+
|
101 |
+
seq_length = input_shape[1]
|
102 |
+
|
103 |
+
if position_ids is None:
|
104 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
105 |
+
|
106 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
107 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
108 |
+
# issue #5664
|
109 |
+
if token_type_ids is None:
|
110 |
+
if hasattr(self, "token_type_ids"):
|
111 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
112 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
113 |
+
token_type_ids = buffered_token_type_ids_expanded
|
114 |
+
else:
|
115 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
116 |
+
|
117 |
+
if inputs_embeds is None:
|
118 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
119 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
120 |
+
|
121 |
+
embeddings = inputs_embeds + token_type_embeddings
|
122 |
+
if self.position_embedding_type == "absolute":
|
123 |
+
position_embeddings = self.position_embeddings(position_ids)
|
124 |
+
embeddings += position_embeddings
|
125 |
+
|
126 |
+
# add `task_type_id` for ERNIE model
|
127 |
+
if self.use_task_id:
|
128 |
+
if task_type_ids is None:
|
129 |
+
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
130 |
+
task_type_embeddings = self.task_type_embeddings(task_type_ids)
|
131 |
+
embeddings += task_type_embeddings
|
132 |
+
|
133 |
+
embeddings = self.LayerNorm(embeddings)
|
134 |
+
embeddings = self.dropout(embeddings)
|
135 |
+
return embeddings
|
136 |
+
|
137 |
+
|
138 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie
|
139 |
+
class ErnieSelfAttention(nn.Module):
|
140 |
+
def __init__(self, config, position_embedding_type=None):
|
141 |
+
super().__init__()
|
142 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
143 |
+
raise ValueError(
|
144 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
145 |
+
f"heads ({config.num_attention_heads})"
|
146 |
+
)
|
147 |
+
|
148 |
+
self.num_attention_heads = config.num_attention_heads
|
149 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
150 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
151 |
+
|
152 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
153 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
154 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
155 |
+
|
156 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
157 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
158 |
+
config, "position_embedding_type", "absolute"
|
159 |
+
)
|
160 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
161 |
+
self.max_position_embeddings = config.max_position_embeddings
|
162 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
163 |
+
|
164 |
+
self.is_decoder = config.is_decoder
|
165 |
+
|
166 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
167 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
168 |
+
x = x.view(new_x_shape)
|
169 |
+
return x.permute(0, 2, 1, 3)
|
170 |
+
|
171 |
+
def forward(
|
172 |
+
self,
|
173 |
+
hidden_states: torch.Tensor,
|
174 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
175 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
176 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
177 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
179 |
+
output_attentions: Optional[bool] = False,
|
180 |
+
) -> Tuple[torch.Tensor]:
|
181 |
+
mixed_query_layer = self.query(hidden_states)
|
182 |
+
|
183 |
+
# If this is instantiated as a cross-attention module, the keys
|
184 |
+
# and values come from an encoder; the attention mask needs to be
|
185 |
+
# such that the encoder's padding tokens are not attended to.
|
186 |
+
is_cross_attention = encoder_hidden_states is not None
|
187 |
+
|
188 |
+
if is_cross_attention and past_key_value is not None:
|
189 |
+
# reuse k,v, cross_attentions
|
190 |
+
key_layer = past_key_value[0]
|
191 |
+
value_layer = past_key_value[1]
|
192 |
+
attention_mask = encoder_attention_mask
|
193 |
+
elif is_cross_attention:
|
194 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
195 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
196 |
+
attention_mask = encoder_attention_mask
|
197 |
+
elif past_key_value is not None:
|
198 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
199 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
200 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
201 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
202 |
+
else:
|
203 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
204 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
205 |
+
|
206 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
207 |
+
|
208 |
+
use_cache = past_key_value is not None
|
209 |
+
if self.is_decoder:
|
210 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
211 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
212 |
+
# key/value_states (first "if" case)
|
213 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
214 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
215 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
216 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
217 |
+
past_key_value = (key_layer, value_layer)
|
218 |
+
|
219 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
220 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
221 |
+
|
222 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
223 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
224 |
+
if use_cache:
|
225 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
226 |
+
-1, 1
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
230 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
231 |
+
distance = position_ids_l - position_ids_r
|
232 |
+
|
233 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
234 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
235 |
+
|
236 |
+
if self.position_embedding_type == "relative_key":
|
237 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
238 |
+
attention_scores = attention_scores + relative_position_scores
|
239 |
+
elif self.position_embedding_type == "relative_key_query":
|
240 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
241 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
242 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
243 |
+
|
244 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
245 |
+
if attention_mask is not None:
|
246 |
+
# Apply the attention mask is (precomputed for all layers in ErnieModel forward() function)
|
247 |
+
attention_scores = attention_scores + attention_mask
|
248 |
+
|
249 |
+
# Normalize the attention scores to probabilities.
|
250 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
251 |
+
|
252 |
+
# This is actually dropping out entire tokens to attend to, which might
|
253 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
254 |
+
attention_probs = self.dropout(attention_probs)
|
255 |
+
|
256 |
+
# Mask heads if we want to
|
257 |
+
if head_mask is not None:
|
258 |
+
attention_probs = attention_probs * head_mask
|
259 |
+
|
260 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
261 |
+
|
262 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
263 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
264 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
265 |
+
|
266 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
267 |
+
|
268 |
+
if self.is_decoder:
|
269 |
+
outputs = outputs + (past_key_value,)
|
270 |
+
return outputs
|
271 |
+
|
272 |
+
|
273 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie
|
274 |
+
class ErnieSelfOutput(nn.Module):
|
275 |
+
def __init__(self, config):
|
276 |
+
super().__init__()
|
277 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
278 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
279 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
280 |
+
|
281 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
282 |
+
hidden_states = self.dense(hidden_states)
|
283 |
+
hidden_states = self.dropout(hidden_states)
|
284 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
|
288 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie
|
289 |
+
class ErnieAttention(nn.Module):
|
290 |
+
def __init__(self, config, position_embedding_type=None):
|
291 |
+
super().__init__()
|
292 |
+
self.self = ErnieSelfAttention(config, position_embedding_type=position_embedding_type)
|
293 |
+
self.output = ErnieSelfOutput(config)
|
294 |
+
self.pruned_heads = set()
|
295 |
+
|
296 |
+
def prune_heads(self, heads):
|
297 |
+
if len(heads) == 0:
|
298 |
+
return
|
299 |
+
heads, index = find_pruneable_heads_and_indices(
|
300 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
301 |
+
)
|
302 |
+
|
303 |
+
# Prune linear layers
|
304 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
305 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
306 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
307 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
308 |
+
|
309 |
+
# Update hyper params and store pruned heads
|
310 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
311 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
312 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
313 |
+
|
314 |
+
def forward(
|
315 |
+
self,
|
316 |
+
hidden_states: torch.Tensor,
|
317 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
318 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
319 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
320 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
321 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
322 |
+
output_attentions: Optional[bool] = False,
|
323 |
+
) -> Tuple[torch.Tensor]:
|
324 |
+
self_outputs = self.self(
|
325 |
+
hidden_states,
|
326 |
+
attention_mask,
|
327 |
+
head_mask,
|
328 |
+
encoder_hidden_states,
|
329 |
+
encoder_attention_mask,
|
330 |
+
past_key_value,
|
331 |
+
output_attentions,
|
332 |
+
)
|
333 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
334 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
335 |
+
return outputs
|
336 |
+
|
337 |
+
|
338 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie
|
339 |
+
class ErnieIntermediate(nn.Module):
|
340 |
+
def __init__(self, config):
|
341 |
+
super().__init__()
|
342 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
343 |
+
if isinstance(config.hidden_act, str):
|
344 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
345 |
+
else:
|
346 |
+
self.intermediate_act_fn = config.hidden_act
|
347 |
+
|
348 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
349 |
+
hidden_states = self.dense(hidden_states)
|
350 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
351 |
+
return hidden_states
|
352 |
+
|
353 |
+
|
354 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie
|
355 |
+
class ErnieOutput(nn.Module):
|
356 |
+
def __init__(self, config):
|
357 |
+
super().__init__()
|
358 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
359 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
360 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
361 |
+
|
362 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
363 |
+
hidden_states = self.dense(hidden_states)
|
364 |
+
hidden_states = self.dropout(hidden_states)
|
365 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
366 |
+
return hidden_states
|
367 |
+
|
368 |
+
|
369 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie
|
370 |
+
class ErnieLayer(nn.Module):
|
371 |
+
def __init__(self, config):
|
372 |
+
super().__init__()
|
373 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
374 |
+
self.seq_len_dim = 1
|
375 |
+
self.attention = ErnieAttention(config)
|
376 |
+
self.is_decoder = config.is_decoder
|
377 |
+
self.add_cross_attention = config.add_cross_attention
|
378 |
+
if self.add_cross_attention:
|
379 |
+
if not self.is_decoder:
|
380 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
381 |
+
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
|
382 |
+
self.intermediate = ErnieIntermediate(config)
|
383 |
+
self.output = ErnieOutput(config)
|
384 |
+
|
385 |
+
def forward(
|
386 |
+
self,
|
387 |
+
hidden_states: torch.Tensor,
|
388 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
389 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
390 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
391 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
392 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
393 |
+
output_attentions: Optional[bool] = False,
|
394 |
+
) -> Tuple[torch.Tensor]:
|
395 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
396 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
397 |
+
self_attention_outputs = self.attention(
|
398 |
+
hidden_states,
|
399 |
+
attention_mask,
|
400 |
+
head_mask,
|
401 |
+
output_attentions=output_attentions,
|
402 |
+
past_key_value=self_attn_past_key_value,
|
403 |
+
)
|
404 |
+
attention_output = self_attention_outputs[0]
|
405 |
+
|
406 |
+
# if decoder, the last output is tuple of self-attn cache
|
407 |
+
if self.is_decoder:
|
408 |
+
outputs = self_attention_outputs[1:-1]
|
409 |
+
present_key_value = self_attention_outputs[-1]
|
410 |
+
else:
|
411 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
412 |
+
|
413 |
+
cross_attn_present_key_value = None
|
414 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
415 |
+
if not hasattr(self, "crossattention"):
|
416 |
+
raise ValueError(
|
417 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
418 |
+
" by setting `config.add_cross_attention=True`"
|
419 |
+
)
|
420 |
+
|
421 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
422 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
423 |
+
cross_attention_outputs = self.crossattention(
|
424 |
+
attention_output,
|
425 |
+
attention_mask,
|
426 |
+
head_mask,
|
427 |
+
encoder_hidden_states,
|
428 |
+
encoder_attention_mask,
|
429 |
+
cross_attn_past_key_value,
|
430 |
+
output_attentions,
|
431 |
+
)
|
432 |
+
attention_output = cross_attention_outputs[0]
|
433 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
434 |
+
|
435 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
436 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
437 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
438 |
+
|
439 |
+
layer_output = apply_chunking_to_forward(
|
440 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
441 |
+
)
|
442 |
+
outputs = (layer_output,) + outputs
|
443 |
+
|
444 |
+
# if decoder, return the attn key/values as the last output
|
445 |
+
if self.is_decoder:
|
446 |
+
outputs = outputs + (present_key_value,)
|
447 |
+
|
448 |
+
return outputs
|
449 |
+
|
450 |
+
def feed_forward_chunk(self, attention_output):
|
451 |
+
intermediate_output = self.intermediate(attention_output)
|
452 |
+
layer_output = self.output(intermediate_output, attention_output)
|
453 |
+
return layer_output
|
454 |
+
|
455 |
+
|
456 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie
|
457 |
+
class ErnieEncoder(nn.Module):
|
458 |
+
def __init__(self, config):
|
459 |
+
super().__init__()
|
460 |
+
self.config = config
|
461 |
+
self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)])
|
462 |
+
self.gradient_checkpointing = False
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states: torch.Tensor,
|
467 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
468 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
469 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
470 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
471 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
472 |
+
use_cache: Optional[bool] = None,
|
473 |
+
output_attentions: Optional[bool] = False,
|
474 |
+
output_hidden_states: Optional[bool] = False,
|
475 |
+
return_dict: Optional[bool] = True,
|
476 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
477 |
+
all_hidden_states = () if output_hidden_states else None
|
478 |
+
all_self_attentions = () if output_attentions else None
|
479 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
480 |
+
|
481 |
+
if self.gradient_checkpointing and self.training:
|
482 |
+
if use_cache:
|
483 |
+
logger.warning_once(
|
484 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
485 |
+
)
|
486 |
+
use_cache = False
|
487 |
+
|
488 |
+
next_decoder_cache = () if use_cache else None
|
489 |
+
for i, layer_module in enumerate(self.layer):
|
490 |
+
if output_hidden_states:
|
491 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
492 |
+
|
493 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
494 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
495 |
+
|
496 |
+
if self.gradient_checkpointing and self.training:
|
497 |
+
layer_outputs = self._gradient_checkpointing_func(
|
498 |
+
layer_module.__call__,
|
499 |
+
hidden_states,
|
500 |
+
attention_mask,
|
501 |
+
layer_head_mask,
|
502 |
+
encoder_hidden_states,
|
503 |
+
encoder_attention_mask,
|
504 |
+
past_key_value,
|
505 |
+
output_attentions,
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
layer_outputs = layer_module(
|
509 |
+
hidden_states,
|
510 |
+
attention_mask,
|
511 |
+
layer_head_mask,
|
512 |
+
encoder_hidden_states,
|
513 |
+
encoder_attention_mask,
|
514 |
+
past_key_value,
|
515 |
+
output_attentions,
|
516 |
+
)
|
517 |
+
|
518 |
+
hidden_states = layer_outputs[0]
|
519 |
+
if use_cache:
|
520 |
+
next_decoder_cache += (layer_outputs[-1],)
|
521 |
+
if output_attentions:
|
522 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
523 |
+
if self.config.add_cross_attention:
|
524 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
525 |
+
|
526 |
+
if output_hidden_states:
|
527 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
528 |
+
|
529 |
+
if not return_dict:
|
530 |
+
return tuple(
|
531 |
+
v
|
532 |
+
for v in [
|
533 |
+
hidden_states,
|
534 |
+
next_decoder_cache,
|
535 |
+
all_hidden_states,
|
536 |
+
all_self_attentions,
|
537 |
+
all_cross_attentions,
|
538 |
+
]
|
539 |
+
if v is not None
|
540 |
+
)
|
541 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
542 |
+
last_hidden_state=hidden_states,
|
543 |
+
past_key_values=next_decoder_cache,
|
544 |
+
hidden_states=all_hidden_states,
|
545 |
+
attentions=all_self_attentions,
|
546 |
+
cross_attentions=all_cross_attentions,
|
547 |
+
)
|
548 |
+
|
549 |
+
|
550 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie
|
551 |
+
class ErniePooler(nn.Module):
|
552 |
+
def __init__(self, config):
|
553 |
+
super().__init__()
|
554 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
555 |
+
self.activation = nn.Tanh()
|
556 |
+
|
557 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
558 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
559 |
+
# to the first token.
|
560 |
+
first_token_tensor = hidden_states[:, 0]
|
561 |
+
pooled_output = self.dense(first_token_tensor)
|
562 |
+
pooled_output = self.activation(pooled_output)
|
563 |
+
return pooled_output
|
564 |
+
|
565 |
+
|
566 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie
|
567 |
+
class ErniePredictionHeadTransform(nn.Module):
|
568 |
+
def __init__(self, config):
|
569 |
+
super().__init__()
|
570 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
571 |
+
if isinstance(config.hidden_act, str):
|
572 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
573 |
+
else:
|
574 |
+
self.transform_act_fn = config.hidden_act
|
575 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
576 |
+
|
577 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
578 |
+
hidden_states = self.dense(hidden_states)
|
579 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
580 |
+
hidden_states = self.LayerNorm(hidden_states)
|
581 |
+
return hidden_states
|
582 |
+
|
583 |
+
|
584 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie
|
585 |
+
class ErnieLMPredictionHead(nn.Module):
|
586 |
+
def __init__(self, config):
|
587 |
+
super().__init__()
|
588 |
+
self.transform = ErniePredictionHeadTransform(config)
|
589 |
+
|
590 |
+
# The output weights are the same as the input embeddings, but there is
|
591 |
+
# an output-only bias for each token.
|
592 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
593 |
+
|
594 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
595 |
+
|
596 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
597 |
+
self.decoder.bias = self.bias
|
598 |
+
|
599 |
+
def forward(self, hidden_states):
|
600 |
+
hidden_states = self.transform(hidden_states)
|
601 |
+
hidden_states = self.decoder(hidden_states)
|
602 |
+
return hidden_states
|
603 |
+
|
604 |
+
|
605 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie
|
606 |
+
class ErnieOnlyMLMHead(nn.Module):
|
607 |
+
def __init__(self, config):
|
608 |
+
super().__init__()
|
609 |
+
self.predictions = ErnieLMPredictionHead(config)
|
610 |
+
|
611 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
612 |
+
prediction_scores = self.predictions(sequence_output)
|
613 |
+
return prediction_scores
|
614 |
+
|
615 |
+
|
616 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie
|
617 |
+
class ErnieOnlyNSPHead(nn.Module):
|
618 |
+
def __init__(self, config):
|
619 |
+
super().__init__()
|
620 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
621 |
+
|
622 |
+
def forward(self, pooled_output):
|
623 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
624 |
+
return seq_relationship_score
|
625 |
+
|
626 |
+
|
627 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie
|
628 |
+
class ErniePreTrainingHeads(nn.Module):
|
629 |
+
def __init__(self, config):
|
630 |
+
super().__init__()
|
631 |
+
self.predictions = ErnieLMPredictionHead(config)
|
632 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
633 |
+
|
634 |
+
def forward(self, sequence_output, pooled_output):
|
635 |
+
prediction_scores = self.predictions(sequence_output)
|
636 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
637 |
+
return prediction_scores, seq_relationship_score
|
638 |
+
|
639 |
+
|
640 |
+
class ErniePreTrainedModel(PreTrainedModel):
|
641 |
+
"""
|
642 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
643 |
+
models.
|
644 |
+
"""
|
645 |
+
|
646 |
+
config_class = ErnieConfig
|
647 |
+
base_model_prefix = "ernie"
|
648 |
+
supports_gradient_checkpointing = True
|
649 |
+
|
650 |
+
def _init_weights(self, module):
|
651 |
+
"""Initialize the weights"""
|
652 |
+
if isinstance(module, nn.Linear):
|
653 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
654 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
655 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
656 |
+
if module.bias is not None:
|
657 |
+
module.bias.data.zero_()
|
658 |
+
elif isinstance(module, nn.Embedding):
|
659 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
660 |
+
if module.padding_idx is not None:
|
661 |
+
module.weight.data[module.padding_idx].zero_()
|
662 |
+
elif isinstance(module, nn.LayerNorm):
|
663 |
+
module.bias.data.zero_()
|
664 |
+
module.weight.data.fill_(1.0)
|
665 |
+
|
666 |
+
|
667 |
+
@dataclass
|
668 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
|
669 |
+
class ErnieForPreTrainingOutput(ModelOutput):
|
670 |
+
"""
|
671 |
+
Output type of [`ErnieForPreTraining`].
|
672 |
+
|
673 |
+
Args:
|
674 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
675 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
676 |
+
(classification) loss.
|
677 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
678 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
679 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
680 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
681 |
+
before SoftMax).
|
682 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
683 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
684 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
685 |
+
|
686 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
687 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
688 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
689 |
+
sequence_length)`.
|
690 |
+
|
691 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
692 |
+
heads.
|
693 |
+
"""
|
694 |
+
|
695 |
+
loss: Optional[torch.FloatTensor] = None
|
696 |
+
prediction_logits: torch.FloatTensor = None
|
697 |
+
seq_relationship_logits: torch.FloatTensor = None
|
698 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
699 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
700 |
+
|
701 |
+
|
702 |
+
ERNIE_START_DOCSTRING = r"""
|
703 |
+
|
704 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
705 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
706 |
+
etc.)
|
707 |
+
|
708 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
709 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
710 |
+
and behavior.
|
711 |
+
|
712 |
+
Parameters:
|
713 |
+
config ([`ErnieConfig`]): Model configuration class with all the parameters of the model.
|
714 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
715 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
716 |
+
"""
|
717 |
+
|
718 |
+
ERNIE_INPUTS_DOCSTRING = r"""
|
719 |
+
Args:
|
720 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
721 |
+
Indices of input sequence tokens in the vocabulary.
|
722 |
+
|
723 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
724 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
725 |
+
|
726 |
+
[What are input IDs?](../glossary#input-ids)
|
727 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
728 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
729 |
+
|
730 |
+
- 1 for tokens that are **not masked**,
|
731 |
+
- 0 for tokens that are **masked**.
|
732 |
+
|
733 |
+
[What are attention masks?](../glossary#attention-mask)
|
734 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
735 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
736 |
+
1]`:
|
737 |
+
|
738 |
+
- 0 corresponds to a *sentence A* token,
|
739 |
+
- 1 corresponds to a *sentence B* token.
|
740 |
+
|
741 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
742 |
+
task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
743 |
+
Task type embedding is a special embedding to represent the characteristic of different tasks, such as
|
744 |
+
word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We
|
745 |
+
assign a `task_type_id` to each task and the `task_type_id` is in the range `[0,
|
746 |
+
config.task_type_vocab_size-1]
|
747 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
748 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
749 |
+
config.max_position_embeddings - 1]`.
|
750 |
+
|
751 |
+
[What are position IDs?](../glossary#position-ids)
|
752 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
753 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
754 |
+
|
755 |
+
- 1 indicates the head is **not masked**,
|
756 |
+
- 0 indicates the head is **masked**.
|
757 |
+
|
758 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
759 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
760 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
761 |
+
model's internal embedding lookup matrix.
|
762 |
+
output_attentions (`bool`, *optional*):
|
763 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
764 |
+
tensors for more detail.
|
765 |
+
output_hidden_states (`bool`, *optional*):
|
766 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
767 |
+
more detail.
|
768 |
+
return_dict (`bool`, *optional*):
|
769 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
770 |
+
"""
|
771 |
+
|
772 |
+
|
773 |
+
@add_start_docstrings(
|
774 |
+
"The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.",
|
775 |
+
ERNIE_START_DOCSTRING,
|
776 |
+
)
|
777 |
+
class ErnieModel(ErniePreTrainedModel):
|
778 |
+
"""
|
779 |
+
|
780 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
781 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
782 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
783 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
784 |
+
|
785 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
786 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
787 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
788 |
+
"""
|
789 |
+
|
790 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Ernie
|
791 |
+
def __init__(self, config, add_pooling_layer=True):
|
792 |
+
super().__init__(config)
|
793 |
+
self.config = config
|
794 |
+
|
795 |
+
self.embeddings = ErnieEmbeddings(config)
|
796 |
+
self.encoder = ErnieEncoder(config)
|
797 |
+
|
798 |
+
self.pooler = ErniePooler(config) if add_pooling_layer else None
|
799 |
+
|
800 |
+
# Initialize weights and apply final processing
|
801 |
+
self.post_init()
|
802 |
+
|
803 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings
|
804 |
+
def get_input_embeddings(self):
|
805 |
+
return self.embeddings.word_embeddings
|
806 |
+
|
807 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings
|
808 |
+
def set_input_embeddings(self, value):
|
809 |
+
self.embeddings.word_embeddings = value
|
810 |
+
|
811 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
|
812 |
+
def _prune_heads(self, heads_to_prune):
|
813 |
+
"""
|
814 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
815 |
+
class PreTrainedModel
|
816 |
+
"""
|
817 |
+
for layer, heads in heads_to_prune.items():
|
818 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
819 |
+
|
820 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
821 |
+
@add_code_sample_docstrings(
|
822 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
823 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
824 |
+
config_class=_CONFIG_FOR_DOC,
|
825 |
+
)
|
826 |
+
def forward(
|
827 |
+
self,
|
828 |
+
input_ids: Optional[torch.Tensor] = None,
|
829 |
+
attention_mask: Optional[torch.Tensor] = None,
|
830 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
831 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
832 |
+
position_ids: Optional[torch.Tensor] = None,
|
833 |
+
head_mask: Optional[torch.Tensor] = None,
|
834 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
835 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
836 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
837 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
838 |
+
use_cache: Optional[bool] = None,
|
839 |
+
output_attentions: Optional[bool] = None,
|
840 |
+
output_hidden_states: Optional[bool] = None,
|
841 |
+
return_dict: Optional[bool] = None,
|
842 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
843 |
+
r"""
|
844 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
845 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
846 |
+
the model is configured as a decoder.
|
847 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
848 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
849 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
850 |
+
|
851 |
+
- 1 for tokens that are **not masked**,
|
852 |
+
- 0 for tokens that are **masked**.
|
853 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
854 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
855 |
+
|
856 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
857 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
858 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
859 |
+
use_cache (`bool`, *optional*):
|
860 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
861 |
+
`past_key_values`).
|
862 |
+
"""
|
863 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
864 |
+
output_hidden_states = (
|
865 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
866 |
+
)
|
867 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
868 |
+
|
869 |
+
if self.config.is_decoder:
|
870 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
871 |
+
else:
|
872 |
+
use_cache = False
|
873 |
+
|
874 |
+
if input_ids is not None and inputs_embeds is not None:
|
875 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
876 |
+
elif input_ids is not None:
|
877 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
878 |
+
input_shape = input_ids.size()
|
879 |
+
elif inputs_embeds is not None:
|
880 |
+
input_shape = inputs_embeds.size()[:-1]
|
881 |
+
else:
|
882 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
883 |
+
|
884 |
+
batch_size, seq_length = input_shape
|
885 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
886 |
+
|
887 |
+
# past_key_values_length
|
888 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
889 |
+
|
890 |
+
if attention_mask is None:
|
891 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
892 |
+
|
893 |
+
if token_type_ids is None:
|
894 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
895 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
896 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
897 |
+
token_type_ids = buffered_token_type_ids_expanded
|
898 |
+
else:
|
899 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
900 |
+
|
901 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
902 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
903 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
904 |
+
|
905 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
906 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
907 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
908 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
909 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
910 |
+
if encoder_attention_mask is None:
|
911 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
912 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
913 |
+
else:
|
914 |
+
encoder_extended_attention_mask = None
|
915 |
+
|
916 |
+
# Prepare head mask if needed
|
917 |
+
# 1.0 in head_mask indicate we keep the head
|
918 |
+
# attention_probs has shape bsz x n_heads x N x N
|
919 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
920 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
921 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
922 |
+
|
923 |
+
embedding_output = self.embeddings(
|
924 |
+
input_ids=input_ids,
|
925 |
+
position_ids=position_ids,
|
926 |
+
token_type_ids=token_type_ids,
|
927 |
+
task_type_ids=task_type_ids,
|
928 |
+
inputs_embeds=inputs_embeds,
|
929 |
+
past_key_values_length=past_key_values_length,
|
930 |
+
)
|
931 |
+
encoder_outputs = self.encoder(
|
932 |
+
embedding_output,
|
933 |
+
attention_mask=extended_attention_mask,
|
934 |
+
head_mask=head_mask,
|
935 |
+
encoder_hidden_states=encoder_hidden_states,
|
936 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
937 |
+
past_key_values=past_key_values,
|
938 |
+
use_cache=use_cache,
|
939 |
+
output_attentions=output_attentions,
|
940 |
+
output_hidden_states=output_hidden_states,
|
941 |
+
return_dict=return_dict,
|
942 |
+
)
|
943 |
+
sequence_output = encoder_outputs[0]
|
944 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
945 |
+
|
946 |
+
if not return_dict:
|
947 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
948 |
+
|
949 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
950 |
+
last_hidden_state=sequence_output,
|
951 |
+
pooler_output=pooled_output,
|
952 |
+
past_key_values=encoder_outputs.past_key_values,
|
953 |
+
hidden_states=encoder_outputs.hidden_states,
|
954 |
+
attentions=encoder_outputs.attentions,
|
955 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
956 |
+
)
|
957 |
+
|
958 |
+
|
959 |
+
@add_start_docstrings(
|
960 |
+
"""
|
961 |
+
Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
962 |
+
sentence prediction (classification)` head.
|
963 |
+
""",
|
964 |
+
ERNIE_START_DOCSTRING,
|
965 |
+
)
|
966 |
+
class ErnieForPreTraining(ErniePreTrainedModel):
|
967 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
968 |
+
|
969 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie
|
970 |
+
def __init__(self, config):
|
971 |
+
super().__init__(config)
|
972 |
+
|
973 |
+
self.ernie = ErnieModel(config)
|
974 |
+
self.cls = ErniePreTrainingHeads(config)
|
975 |
+
|
976 |
+
# Initialize weights and apply final processing
|
977 |
+
self.post_init()
|
978 |
+
|
979 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings
|
980 |
+
def get_output_embeddings(self):
|
981 |
+
return self.cls.predictions.decoder
|
982 |
+
|
983 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings
|
984 |
+
def set_output_embeddings(self, new_embeddings):
|
985 |
+
self.cls.predictions.decoder = new_embeddings
|
986 |
+
|
987 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
988 |
+
@replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
989 |
+
def forward(
|
990 |
+
self,
|
991 |
+
input_ids: Optional[torch.Tensor] = None,
|
992 |
+
attention_mask: Optional[torch.Tensor] = None,
|
993 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
994 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
995 |
+
position_ids: Optional[torch.Tensor] = None,
|
996 |
+
head_mask: Optional[torch.Tensor] = None,
|
997 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
998 |
+
labels: Optional[torch.Tensor] = None,
|
999 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
1000 |
+
output_attentions: Optional[bool] = None,
|
1001 |
+
output_hidden_states: Optional[bool] = None,
|
1002 |
+
return_dict: Optional[bool] = None,
|
1003 |
+
) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]:
|
1004 |
+
r"""
|
1005 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1006 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1007 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
1008 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1009 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1010 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
1011 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1012 |
+
|
1013 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1014 |
+
- 1 indicates sequence B is a random sequence.
|
1015 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1016 |
+
Used to hide legacy arguments that have been deprecated.
|
1017 |
+
|
1018 |
+
Returns:
|
1019 |
+
|
1020 |
+
Example:
|
1021 |
+
|
1022 |
+
```python
|
1023 |
+
>>> from transformers import AutoTokenizer, ErnieForPreTraining
|
1024 |
+
>>> import torch
|
1025 |
+
|
1026 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
1027 |
+
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
1028 |
+
|
1029 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1030 |
+
>>> outputs = model(**inputs)
|
1031 |
+
|
1032 |
+
>>> prediction_logits = outputs.prediction_logits
|
1033 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1034 |
+
```
|
1035 |
+
"""
|
1036 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1037 |
+
|
1038 |
+
outputs = self.ernie(
|
1039 |
+
input_ids,
|
1040 |
+
attention_mask=attention_mask,
|
1041 |
+
token_type_ids=token_type_ids,
|
1042 |
+
task_type_ids=task_type_ids,
|
1043 |
+
position_ids=position_ids,
|
1044 |
+
head_mask=head_mask,
|
1045 |
+
inputs_embeds=inputs_embeds,
|
1046 |
+
output_attentions=output_attentions,
|
1047 |
+
output_hidden_states=output_hidden_states,
|
1048 |
+
return_dict=return_dict,
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
sequence_output, pooled_output = outputs[:2]
|
1052 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1053 |
+
|
1054 |
+
total_loss = None
|
1055 |
+
if labels is not None and next_sentence_label is not None:
|
1056 |
+
loss_fct = CrossEntropyLoss()
|
1057 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1058 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1059 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1060 |
+
|
1061 |
+
if not return_dict:
|
1062 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1063 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1064 |
+
|
1065 |
+
return ErnieForPreTrainingOutput(
|
1066 |
+
loss=total_loss,
|
1067 |
+
prediction_logits=prediction_scores,
|
1068 |
+
seq_relationship_logits=seq_relationship_score,
|
1069 |
+
hidden_states=outputs.hidden_states,
|
1070 |
+
attentions=outputs.attentions,
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
|
1074 |
+
@add_start_docstrings(
|
1075 |
+
"""Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING
|
1076 |
+
)
|
1077 |
+
class ErnieForCausalLM(ErniePreTrainedModel):
|
1078 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1079 |
+
|
1080 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie
|
1081 |
+
def __init__(self, config):
|
1082 |
+
super().__init__(config)
|
1083 |
+
|
1084 |
+
if not config.is_decoder:
|
1085 |
+
logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`")
|
1086 |
+
|
1087 |
+
self.ernie = ErnieModel(config, add_pooling_layer=False)
|
1088 |
+
self.cls = ErnieOnlyMLMHead(config)
|
1089 |
+
|
1090 |
+
# Initialize weights and apply final processing
|
1091 |
+
self.post_init()
|
1092 |
+
|
1093 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings
|
1094 |
+
def get_output_embeddings(self):
|
1095 |
+
return self.cls.predictions.decoder
|
1096 |
+
|
1097 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings
|
1098 |
+
def set_output_embeddings(self, new_embeddings):
|
1099 |
+
self.cls.predictions.decoder = new_embeddings
|
1100 |
+
|
1101 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1102 |
+
@add_code_sample_docstrings(
|
1103 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1104 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1105 |
+
config_class=_CONFIG_FOR_DOC,
|
1106 |
+
)
|
1107 |
+
def forward(
|
1108 |
+
self,
|
1109 |
+
input_ids: Optional[torch.Tensor] = None,
|
1110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1111 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1112 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1113 |
+
position_ids: Optional[torch.Tensor] = None,
|
1114 |
+
head_mask: Optional[torch.Tensor] = None,
|
1115 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1116 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1117 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1118 |
+
labels: Optional[torch.Tensor] = None,
|
1119 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1120 |
+
use_cache: Optional[bool] = None,
|
1121 |
+
output_attentions: Optional[bool] = None,
|
1122 |
+
output_hidden_states: Optional[bool] = None,
|
1123 |
+
return_dict: Optional[bool] = None,
|
1124 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1125 |
+
r"""
|
1126 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1127 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1128 |
+
the model is configured as a decoder.
|
1129 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1130 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1131 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1132 |
+
|
1133 |
+
- 1 for tokens that are **not masked**,
|
1134 |
+
- 0 for tokens that are **masked**.
|
1135 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1136 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1137 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1138 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1139 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1140 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1141 |
+
|
1142 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1143 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1144 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1145 |
+
use_cache (`bool`, *optional*):
|
1146 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1147 |
+
`past_key_values`).
|
1148 |
+
"""
|
1149 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1150 |
+
if labels is not None:
|
1151 |
+
use_cache = False
|
1152 |
+
|
1153 |
+
outputs = self.ernie(
|
1154 |
+
input_ids,
|
1155 |
+
attention_mask=attention_mask,
|
1156 |
+
token_type_ids=token_type_ids,
|
1157 |
+
task_type_ids=task_type_ids,
|
1158 |
+
position_ids=position_ids,
|
1159 |
+
head_mask=head_mask,
|
1160 |
+
inputs_embeds=inputs_embeds,
|
1161 |
+
encoder_hidden_states=encoder_hidden_states,
|
1162 |
+
encoder_attention_mask=encoder_attention_mask,
|
1163 |
+
past_key_values=past_key_values,
|
1164 |
+
use_cache=use_cache,
|
1165 |
+
output_attentions=output_attentions,
|
1166 |
+
output_hidden_states=output_hidden_states,
|
1167 |
+
return_dict=return_dict,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
sequence_output = outputs[0]
|
1171 |
+
prediction_scores = self.cls(sequence_output)
|
1172 |
+
|
1173 |
+
lm_loss = None
|
1174 |
+
if labels is not None:
|
1175 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1176 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1177 |
+
labels = labels[:, 1:].contiguous()
|
1178 |
+
loss_fct = CrossEntropyLoss()
|
1179 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1180 |
+
|
1181 |
+
if not return_dict:
|
1182 |
+
output = (prediction_scores,) + outputs[2:]
|
1183 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1184 |
+
|
1185 |
+
return CausalLMOutputWithCrossAttentions(
|
1186 |
+
loss=lm_loss,
|
1187 |
+
logits=prediction_scores,
|
1188 |
+
past_key_values=outputs.past_key_values,
|
1189 |
+
hidden_states=outputs.hidden_states,
|
1190 |
+
attentions=outputs.attentions,
|
1191 |
+
cross_attentions=outputs.cross_attentions,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.prepare_inputs_for_generation
|
1195 |
+
def prepare_inputs_for_generation(
|
1196 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
1197 |
+
):
|
1198 |
+
input_shape = input_ids.shape
|
1199 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1200 |
+
if attention_mask is None:
|
1201 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1202 |
+
|
1203 |
+
# cut decoder_input_ids if past_key_values is used
|
1204 |
+
if past_key_values is not None:
|
1205 |
+
past_length = past_key_values[0][0].shape[2]
|
1206 |
+
|
1207 |
+
# Some generation methods already pass only the last input ID
|
1208 |
+
if input_ids.shape[1] > past_length:
|
1209 |
+
remove_prefix_length = past_length
|
1210 |
+
else:
|
1211 |
+
# Default to old behavior: keep only final ID
|
1212 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1213 |
+
|
1214 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1215 |
+
|
1216 |
+
return {
|
1217 |
+
"input_ids": input_ids,
|
1218 |
+
"attention_mask": attention_mask,
|
1219 |
+
"past_key_values": past_key_values,
|
1220 |
+
"use_cache": use_cache,
|
1221 |
+
}
|
1222 |
+
|
1223 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
|
1224 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1225 |
+
reordered_past = ()
|
1226 |
+
for layer_past in past_key_values:
|
1227 |
+
reordered_past += (
|
1228 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1229 |
+
)
|
1230 |
+
return reordered_past
|
1231 |
+
|
1232 |
+
|
1233 |
+
@add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING)
|
1234 |
+
class ErnieForMaskedLM(ErniePreTrainedModel):
|
1235 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1236 |
+
|
1237 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie
|
1238 |
+
def __init__(self, config):
|
1239 |
+
super().__init__(config)
|
1240 |
+
|
1241 |
+
if config.is_decoder:
|
1242 |
+
logger.warning(
|
1243 |
+
"If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for "
|
1244 |
+
"bi-directional self-attention."
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
self.ernie = ErnieModel(config, add_pooling_layer=False)
|
1248 |
+
self.cls = ErnieOnlyMLMHead(config)
|
1249 |
+
|
1250 |
+
# Initialize weights and apply final processing
|
1251 |
+
self.post_init()
|
1252 |
+
|
1253 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings
|
1254 |
+
def get_output_embeddings(self):
|
1255 |
+
return self.cls.predictions.decoder
|
1256 |
+
|
1257 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings
|
1258 |
+
def set_output_embeddings(self, new_embeddings):
|
1259 |
+
self.cls.predictions.decoder = new_embeddings
|
1260 |
+
|
1261 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1262 |
+
@add_code_sample_docstrings(
|
1263 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1264 |
+
output_type=MaskedLMOutput,
|
1265 |
+
config_class=_CONFIG_FOR_DOC,
|
1266 |
+
expected_output="'paris'",
|
1267 |
+
expected_loss=0.88,
|
1268 |
+
)
|
1269 |
+
def forward(
|
1270 |
+
self,
|
1271 |
+
input_ids: Optional[torch.Tensor] = None,
|
1272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1273 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1274 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1275 |
+
position_ids: Optional[torch.Tensor] = None,
|
1276 |
+
head_mask: Optional[torch.Tensor] = None,
|
1277 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1278 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1279 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1280 |
+
labels: Optional[torch.Tensor] = None,
|
1281 |
+
output_attentions: Optional[bool] = None,
|
1282 |
+
output_hidden_states: Optional[bool] = None,
|
1283 |
+
return_dict: Optional[bool] = None,
|
1284 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1285 |
+
r"""
|
1286 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1287 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1288 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1289 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1290 |
+
"""
|
1291 |
+
|
1292 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1293 |
+
|
1294 |
+
outputs = self.ernie(
|
1295 |
+
input_ids,
|
1296 |
+
attention_mask=attention_mask,
|
1297 |
+
token_type_ids=token_type_ids,
|
1298 |
+
task_type_ids=task_type_ids,
|
1299 |
+
position_ids=position_ids,
|
1300 |
+
head_mask=head_mask,
|
1301 |
+
inputs_embeds=inputs_embeds,
|
1302 |
+
encoder_hidden_states=encoder_hidden_states,
|
1303 |
+
encoder_attention_mask=encoder_attention_mask,
|
1304 |
+
output_attentions=output_attentions,
|
1305 |
+
output_hidden_states=output_hidden_states,
|
1306 |
+
return_dict=return_dict,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
sequence_output = outputs[0]
|
1310 |
+
prediction_scores = self.cls(sequence_output)
|
1311 |
+
|
1312 |
+
masked_lm_loss = None
|
1313 |
+
if labels is not None:
|
1314 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1315 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1316 |
+
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (prediction_scores,) + outputs[2:]
|
1319 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1320 |
+
|
1321 |
+
return MaskedLMOutput(
|
1322 |
+
loss=masked_lm_loss,
|
1323 |
+
logits=prediction_scores,
|
1324 |
+
hidden_states=outputs.hidden_states,
|
1325 |
+
attentions=outputs.attentions,
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation
|
1329 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1330 |
+
input_shape = input_ids.shape
|
1331 |
+
effective_batch_size = input_shape[0]
|
1332 |
+
|
1333 |
+
# add a dummy token
|
1334 |
+
if self.config.pad_token_id is None:
|
1335 |
+
raise ValueError("The PAD token should be defined for generation")
|
1336 |
+
|
1337 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1338 |
+
dummy_token = torch.full(
|
1339 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1340 |
+
)
|
1341 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1342 |
+
|
1343 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1344 |
+
|
1345 |
+
|
1346 |
+
@add_start_docstrings(
|
1347 |
+
"""Ernie Model with a `next sentence prediction (classification)` head on top.""",
|
1348 |
+
ERNIE_START_DOCSTRING,
|
1349 |
+
)
|
1350 |
+
class ErnieForNextSentencePrediction(ErniePreTrainedModel):
|
1351 |
+
# Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie
|
1352 |
+
def __init__(self, config):
|
1353 |
+
super().__init__(config)
|
1354 |
+
|
1355 |
+
self.ernie = ErnieModel(config)
|
1356 |
+
self.cls = ErnieOnlyNSPHead(config)
|
1357 |
+
|
1358 |
+
# Initialize weights and apply final processing
|
1359 |
+
self.post_init()
|
1360 |
+
|
1361 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1362 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1363 |
+
def forward(
|
1364 |
+
self,
|
1365 |
+
input_ids: Optional[torch.Tensor] = None,
|
1366 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1367 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1368 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1369 |
+
position_ids: Optional[torch.Tensor] = None,
|
1370 |
+
head_mask: Optional[torch.Tensor] = None,
|
1371 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1372 |
+
labels: Optional[torch.Tensor] = None,
|
1373 |
+
output_attentions: Optional[bool] = None,
|
1374 |
+
output_hidden_states: Optional[bool] = None,
|
1375 |
+
return_dict: Optional[bool] = None,
|
1376 |
+
**kwargs,
|
1377 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
1378 |
+
r"""
|
1379 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1380 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1381 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1382 |
+
|
1383 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1384 |
+
- 1 indicates sequence B is a random sequence.
|
1385 |
+
|
1386 |
+
Returns:
|
1387 |
+
|
1388 |
+
Example:
|
1389 |
+
|
1390 |
+
```python
|
1391 |
+
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
|
1392 |
+
>>> import torch
|
1393 |
+
|
1394 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
1395 |
+
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
1396 |
+
|
1397 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1398 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1399 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1400 |
+
|
1401 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1402 |
+
>>> logits = outputs.logits
|
1403 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1404 |
+
```
|
1405 |
+
"""
|
1406 |
+
|
1407 |
+
if "next_sentence_label" in kwargs:
|
1408 |
+
warnings.warn(
|
1409 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1410 |
+
" `labels` instead.",
|
1411 |
+
FutureWarning,
|
1412 |
+
)
|
1413 |
+
labels = kwargs.pop("next_sentence_label")
|
1414 |
+
|
1415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1416 |
+
|
1417 |
+
outputs = self.ernie(
|
1418 |
+
input_ids,
|
1419 |
+
attention_mask=attention_mask,
|
1420 |
+
token_type_ids=token_type_ids,
|
1421 |
+
task_type_ids=task_type_ids,
|
1422 |
+
position_ids=position_ids,
|
1423 |
+
head_mask=head_mask,
|
1424 |
+
inputs_embeds=inputs_embeds,
|
1425 |
+
output_attentions=output_attentions,
|
1426 |
+
output_hidden_states=output_hidden_states,
|
1427 |
+
return_dict=return_dict,
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
pooled_output = outputs[1]
|
1431 |
+
|
1432 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1433 |
+
|
1434 |
+
next_sentence_loss = None
|
1435 |
+
if labels is not None:
|
1436 |
+
loss_fct = CrossEntropyLoss()
|
1437 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1438 |
+
|
1439 |
+
if not return_dict:
|
1440 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1441 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1442 |
+
|
1443 |
+
return NextSentencePredictorOutput(
|
1444 |
+
loss=next_sentence_loss,
|
1445 |
+
logits=seq_relationship_scores,
|
1446 |
+
hidden_states=outputs.hidden_states,
|
1447 |
+
attentions=outputs.attentions,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
|
1451 |
+
@add_start_docstrings(
|
1452 |
+
"""
|
1453 |
+
Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1454 |
+
output) e.g. for GLUE tasks.
|
1455 |
+
""",
|
1456 |
+
ERNIE_START_DOCSTRING,
|
1457 |
+
)
|
1458 |
+
class ErnieForSequenceClassification(ErniePreTrainedModel):
|
1459 |
+
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie
|
1460 |
+
def __init__(self, config):
|
1461 |
+
super().__init__(config)
|
1462 |
+
self.num_labels = config.num_labels
|
1463 |
+
self.config = config
|
1464 |
+
|
1465 |
+
self.ernie = ErnieModel(config)
|
1466 |
+
classifier_dropout = (
|
1467 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1468 |
+
)
|
1469 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1470 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1471 |
+
|
1472 |
+
# Initialize weights and apply final processing
|
1473 |
+
self.post_init()
|
1474 |
+
|
1475 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1476 |
+
def forward(
|
1477 |
+
self,
|
1478 |
+
input_ids: Optional[torch.Tensor] = None,
|
1479 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1480 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1481 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1482 |
+
position_ids: Optional[torch.Tensor] = None,
|
1483 |
+
head_mask: Optional[torch.Tensor] = None,
|
1484 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1485 |
+
labels: Optional[torch.Tensor] = None,
|
1486 |
+
output_attentions: Optional[bool] = None,
|
1487 |
+
output_hidden_states: Optional[bool] = None,
|
1488 |
+
return_dict: Optional[bool] = None,
|
1489 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1490 |
+
r"""
|
1491 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1492 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1493 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1494 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1495 |
+
"""
|
1496 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1497 |
+
|
1498 |
+
outputs = self.ernie(
|
1499 |
+
input_ids,
|
1500 |
+
attention_mask=attention_mask,
|
1501 |
+
token_type_ids=token_type_ids,
|
1502 |
+
task_type_ids=task_type_ids,
|
1503 |
+
position_ids=position_ids,
|
1504 |
+
head_mask=head_mask,
|
1505 |
+
inputs_embeds=inputs_embeds,
|
1506 |
+
output_attentions=output_attentions,
|
1507 |
+
output_hidden_states=output_hidden_states,
|
1508 |
+
return_dict=return_dict,
|
1509 |
+
)
|
1510 |
+
|
1511 |
+
pooled_output = outputs[1]
|
1512 |
+
|
1513 |
+
pooled_output = self.dropout(pooled_output)
|
1514 |
+
logits = self.classifier(pooled_output)
|
1515 |
+
|
1516 |
+
loss = None
|
1517 |
+
if labels is not None:
|
1518 |
+
if self.config.problem_type is None:
|
1519 |
+
if self.num_labels == 1:
|
1520 |
+
self.config.problem_type = "regression"
|
1521 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1522 |
+
self.config.problem_type = "single_label_classification"
|
1523 |
+
else:
|
1524 |
+
self.config.problem_type = "multi_label_classification"
|
1525 |
+
|
1526 |
+
if self.config.problem_type == "regression":
|
1527 |
+
loss_fct = MSELoss()
|
1528 |
+
if self.num_labels == 1:
|
1529 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1530 |
+
else:
|
1531 |
+
loss = loss_fct(logits, labels)
|
1532 |
+
elif self.config.problem_type == "single_label_classification":
|
1533 |
+
loss_fct = CrossEntropyLoss()
|
1534 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1535 |
+
elif self.config.problem_type == "multi_label_classification":
|
1536 |
+
loss_fct = BCEWithLogitsLoss()
|
1537 |
+
loss = loss_fct(logits, labels)
|
1538 |
+
if not return_dict:
|
1539 |
+
output = (logits,) + outputs[2:]
|
1540 |
+
return ((loss,) + output) if loss is not None else output
|
1541 |
+
|
1542 |
+
return SequenceClassifierOutput(
|
1543 |
+
loss=loss,
|
1544 |
+
logits=logits,
|
1545 |
+
hidden_states=outputs.hidden_states,
|
1546 |
+
attentions=outputs.attentions,
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
|
1550 |
+
@add_start_docstrings(
|
1551 |
+
"""
|
1552 |
+
Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1553 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1554 |
+
""",
|
1555 |
+
ERNIE_START_DOCSTRING,
|
1556 |
+
)
|
1557 |
+
class ErnieForMultipleChoice(ErniePreTrainedModel):
|
1558 |
+
# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie
|
1559 |
+
def __init__(self, config):
|
1560 |
+
super().__init__(config)
|
1561 |
+
|
1562 |
+
self.ernie = ErnieModel(config)
|
1563 |
+
classifier_dropout = (
|
1564 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1565 |
+
)
|
1566 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1567 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1568 |
+
|
1569 |
+
# Initialize weights and apply final processing
|
1570 |
+
self.post_init()
|
1571 |
+
|
1572 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1573 |
+
@add_code_sample_docstrings(
|
1574 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1575 |
+
output_type=MultipleChoiceModelOutput,
|
1576 |
+
config_class=_CONFIG_FOR_DOC,
|
1577 |
+
)
|
1578 |
+
def forward(
|
1579 |
+
self,
|
1580 |
+
input_ids: Optional[torch.Tensor] = None,
|
1581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1582 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1583 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1584 |
+
position_ids: Optional[torch.Tensor] = None,
|
1585 |
+
head_mask: Optional[torch.Tensor] = None,
|
1586 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1587 |
+
labels: Optional[torch.Tensor] = None,
|
1588 |
+
output_attentions: Optional[bool] = None,
|
1589 |
+
output_hidden_states: Optional[bool] = None,
|
1590 |
+
return_dict: Optional[bool] = None,
|
1591 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1592 |
+
r"""
|
1593 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1594 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1595 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1596 |
+
`input_ids` above)
|
1597 |
+
"""
|
1598 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1599 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1600 |
+
|
1601 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1602 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1603 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1604 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1605 |
+
inputs_embeds = (
|
1606 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1607 |
+
if inputs_embeds is not None
|
1608 |
+
else None
|
1609 |
+
)
|
1610 |
+
|
1611 |
+
outputs = self.ernie(
|
1612 |
+
input_ids,
|
1613 |
+
attention_mask=attention_mask,
|
1614 |
+
token_type_ids=token_type_ids,
|
1615 |
+
task_type_ids=task_type_ids,
|
1616 |
+
position_ids=position_ids,
|
1617 |
+
head_mask=head_mask,
|
1618 |
+
inputs_embeds=inputs_embeds,
|
1619 |
+
output_attentions=output_attentions,
|
1620 |
+
output_hidden_states=output_hidden_states,
|
1621 |
+
return_dict=return_dict,
|
1622 |
+
)
|
1623 |
+
|
1624 |
+
pooled_output = outputs[1]
|
1625 |
+
|
1626 |
+
pooled_output = self.dropout(pooled_output)
|
1627 |
+
logits = self.classifier(pooled_output)
|
1628 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1629 |
+
|
1630 |
+
loss = None
|
1631 |
+
if labels is not None:
|
1632 |
+
loss_fct = CrossEntropyLoss()
|
1633 |
+
loss = loss_fct(reshaped_logits, labels)
|
1634 |
+
|
1635 |
+
if not return_dict:
|
1636 |
+
output = (reshaped_logits,) + outputs[2:]
|
1637 |
+
return ((loss,) + output) if loss is not None else output
|
1638 |
+
|
1639 |
+
return MultipleChoiceModelOutput(
|
1640 |
+
loss=loss,
|
1641 |
+
logits=reshaped_logits,
|
1642 |
+
hidden_states=outputs.hidden_states,
|
1643 |
+
attentions=outputs.attentions,
|
1644 |
+
)
|
1645 |
+
|
1646 |
+
|
1647 |
+
@add_start_docstrings(
|
1648 |
+
"""
|
1649 |
+
Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1650 |
+
Named-Entity-Recognition (NER) tasks.
|
1651 |
+
""",
|
1652 |
+
ERNIE_START_DOCSTRING,
|
1653 |
+
)
|
1654 |
+
class ErnieForTokenClassification(ErniePreTrainedModel):
|
1655 |
+
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie
|
1656 |
+
def __init__(self, config):
|
1657 |
+
super().__init__(config)
|
1658 |
+
self.num_labels = config.num_labels
|
1659 |
+
|
1660 |
+
self.ernie = ErnieModel(config, add_pooling_layer=False)
|
1661 |
+
classifier_dropout = (
|
1662 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1663 |
+
)
|
1664 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1665 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1666 |
+
|
1667 |
+
# Initialize weights and apply final processing
|
1668 |
+
self.post_init()
|
1669 |
+
|
1670 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1671 |
+
def forward(
|
1672 |
+
self,
|
1673 |
+
input_ids: Optional[torch.Tensor] = None,
|
1674 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1675 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1676 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1677 |
+
position_ids: Optional[torch.Tensor] = None,
|
1678 |
+
head_mask: Optional[torch.Tensor] = None,
|
1679 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1680 |
+
labels: Optional[torch.Tensor] = None,
|
1681 |
+
output_attentions: Optional[bool] = None,
|
1682 |
+
output_hidden_states: Optional[bool] = None,
|
1683 |
+
return_dict: Optional[bool] = None,
|
1684 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1685 |
+
r"""
|
1686 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1687 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1688 |
+
"""
|
1689 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1690 |
+
|
1691 |
+
outputs = self.ernie(
|
1692 |
+
input_ids,
|
1693 |
+
attention_mask=attention_mask,
|
1694 |
+
token_type_ids=token_type_ids,
|
1695 |
+
task_type_ids=task_type_ids,
|
1696 |
+
position_ids=position_ids,
|
1697 |
+
head_mask=head_mask,
|
1698 |
+
inputs_embeds=inputs_embeds,
|
1699 |
+
output_attentions=output_attentions,
|
1700 |
+
output_hidden_states=output_hidden_states,
|
1701 |
+
return_dict=return_dict,
|
1702 |
+
)
|
1703 |
+
|
1704 |
+
sequence_output = outputs[0]
|
1705 |
+
|
1706 |
+
sequence_output = self.dropout(sequence_output)
|
1707 |
+
logits = self.classifier(sequence_output)
|
1708 |
+
|
1709 |
+
loss = None
|
1710 |
+
if labels is not None:
|
1711 |
+
loss_fct = CrossEntropyLoss()
|
1712 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1713 |
+
|
1714 |
+
if not return_dict:
|
1715 |
+
output = (logits,) + outputs[2:]
|
1716 |
+
return ((loss,) + output) if loss is not None else output
|
1717 |
+
|
1718 |
+
return TokenClassifierOutput(
|
1719 |
+
loss=loss,
|
1720 |
+
logits=logits,
|
1721 |
+
hidden_states=outputs.hidden_states,
|
1722 |
+
attentions=outputs.attentions,
|
1723 |
+
)
|
1724 |
+
|
1725 |
+
|
1726 |
+
@add_start_docstrings(
|
1727 |
+
"""
|
1728 |
+
Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1729 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1730 |
+
""",
|
1731 |
+
ERNIE_START_DOCSTRING,
|
1732 |
+
)
|
1733 |
+
class ErnieForQuestionAnswering(ErniePreTrainedModel):
|
1734 |
+
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie
|
1735 |
+
def __init__(self, config):
|
1736 |
+
super().__init__(config)
|
1737 |
+
self.num_labels = config.num_labels
|
1738 |
+
|
1739 |
+
self.ernie = ErnieModel(config, add_pooling_layer=False)
|
1740 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1741 |
+
|
1742 |
+
# Initialize weights and apply final processing
|
1743 |
+
self.post_init()
|
1744 |
+
|
1745 |
+
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1746 |
+
def forward(
|
1747 |
+
self,
|
1748 |
+
input_ids: Optional[torch.Tensor] = None,
|
1749 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1750 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1751 |
+
task_type_ids: Optional[torch.Tensor] = None,
|
1752 |
+
position_ids: Optional[torch.Tensor] = None,
|
1753 |
+
head_mask: Optional[torch.Tensor] = None,
|
1754 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1755 |
+
start_positions: Optional[torch.Tensor] = None,
|
1756 |
+
end_positions: Optional[torch.Tensor] = None,
|
1757 |
+
output_attentions: Optional[bool] = None,
|
1758 |
+
output_hidden_states: Optional[bool] = None,
|
1759 |
+
return_dict: Optional[bool] = None,
|
1760 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1761 |
+
r"""
|
1762 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1763 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1764 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1765 |
+
are not taken into account for computing the loss.
|
1766 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1767 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1768 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1769 |
+
are not taken into account for computing the loss.
|
1770 |
+
"""
|
1771 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1772 |
+
|
1773 |
+
outputs = self.ernie(
|
1774 |
+
input_ids,
|
1775 |
+
attention_mask=attention_mask,
|
1776 |
+
token_type_ids=token_type_ids,
|
1777 |
+
task_type_ids=task_type_ids,
|
1778 |
+
position_ids=position_ids,
|
1779 |
+
head_mask=head_mask,
|
1780 |
+
inputs_embeds=inputs_embeds,
|
1781 |
+
output_attentions=output_attentions,
|
1782 |
+
output_hidden_states=output_hidden_states,
|
1783 |
+
return_dict=return_dict,
|
1784 |
+
)
|
1785 |
+
|
1786 |
+
sequence_output = outputs[0]
|
1787 |
+
|
1788 |
+
logits = self.qa_outputs(sequence_output)
|
1789 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1790 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1791 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1792 |
+
|
1793 |
+
total_loss = None
|
1794 |
+
if start_positions is not None and end_positions is not None:
|
1795 |
+
# If we are on multi-GPU, split add a dimension
|
1796 |
+
if len(start_positions.size()) > 1:
|
1797 |
+
start_positions = start_positions.squeeze(-1)
|
1798 |
+
if len(end_positions.size()) > 1:
|
1799 |
+
end_positions = end_positions.squeeze(-1)
|
1800 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1801 |
+
ignored_index = start_logits.size(1)
|
1802 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1803 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1804 |
+
|
1805 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1806 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1807 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1808 |
+
total_loss = (start_loss + end_loss) / 2
|
1809 |
+
|
1810 |
+
if not return_dict:
|
1811 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1812 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1813 |
+
|
1814 |
+
return QuestionAnsweringModelOutput(
|
1815 |
+
loss=total_loss,
|
1816 |
+
start_logits=start_logits,
|
1817 |
+
end_logits=end_logits,
|
1818 |
+
hidden_states=outputs.hidden_states,
|
1819 |
+
attentions=outputs.attentions,
|
1820 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/configuration_mgp_str.cpython-310.pyc
ADDED
Binary file (5.03 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/modeling_mgp_str.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mgp_str/processing_mgp_str.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Processor class for MGP-STR."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from transformers import AutoTokenizer
|
20 |
+
from transformers.utils import is_torch_available
|
21 |
+
from transformers.utils.generic import ExplicitEnum
|
22 |
+
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
|
25 |
+
|
26 |
+
if is_torch_available():
|
27 |
+
import torch
|
28 |
+
|
29 |
+
|
30 |
+
class DecodeType(ExplicitEnum):
|
31 |
+
CHARACTER = "char"
|
32 |
+
BPE = "bpe"
|
33 |
+
WORDPIECE = "wp"
|
34 |
+
|
35 |
+
|
36 |
+
SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
|
37 |
+
|
38 |
+
|
39 |
+
class MgpstrProcessor(ProcessorMixin):
|
40 |
+
r"""
|
41 |
+
Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single
|
42 |
+
|
43 |
+
[`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the
|
44 |
+
[`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
image_processor (`ViTImageProcessor`, *optional*):
|
48 |
+
An instance of `ViTImageProcessor`. The image processor is a required input.
|
49 |
+
tokenizer ([`MgpstrTokenizer`], *optional*):
|
50 |
+
The tokenizer is a required input.
|
51 |
+
"""
|
52 |
+
|
53 |
+
attributes = ["image_processor", "char_tokenizer"]
|
54 |
+
image_processor_class = "ViTImageProcessor"
|
55 |
+
char_tokenizer_class = "MgpstrTokenizer"
|
56 |
+
|
57 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
58 |
+
feature_extractor = None
|
59 |
+
if "feature_extractor" in kwargs:
|
60 |
+
warnings.warn(
|
61 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
62 |
+
" instead.",
|
63 |
+
FutureWarning,
|
64 |
+
)
|
65 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
66 |
+
|
67 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
68 |
+
if image_processor is None:
|
69 |
+
raise ValueError("You need to specify an `image_processor`.")
|
70 |
+
if tokenizer is None:
|
71 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
72 |
+
|
73 |
+
self.char_tokenizer = tokenizer
|
74 |
+
self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
75 |
+
self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
76 |
+
|
77 |
+
super().__init__(image_processor, tokenizer)
|
78 |
+
|
79 |
+
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
80 |
+
"""
|
81 |
+
When used in normal mode, this method forwards all its arguments to ViTImageProcessor's
|
82 |
+
[`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs`
|
83 |
+
arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please
|
84 |
+
refer to the doctsring of the above methods for more information.
|
85 |
+
"""
|
86 |
+
if images is None and text is None:
|
87 |
+
raise ValueError("You need to specify either an `images` or `text` input to process.")
|
88 |
+
|
89 |
+
if images is not None:
|
90 |
+
inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
91 |
+
if text is not None:
|
92 |
+
encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs)
|
93 |
+
|
94 |
+
if text is None:
|
95 |
+
return inputs
|
96 |
+
elif images is None:
|
97 |
+
return encodings
|
98 |
+
else:
|
99 |
+
inputs["labels"] = encodings["input_ids"]
|
100 |
+
return inputs
|
101 |
+
|
102 |
+
def batch_decode(self, sequences):
|
103 |
+
"""
|
104 |
+
Convert a list of lists of token ids into a list of strings by calling decode.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
sequences (`torch.Tensor`):
|
108 |
+
List of tokenized input ids.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
`Dict[str, any]`: Dictionary of all the outputs of the decoded results.
|
112 |
+
generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores
|
113 |
+
(`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list
|
114 |
+
of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds
|
115 |
+
(`List[str]`): The list of wp decoded sentences.
|
116 |
+
|
117 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
118 |
+
refer to the docstring of this method for more information.
|
119 |
+
"""
|
120 |
+
char_preds, bpe_preds, wp_preds = sequences
|
121 |
+
batch_size = char_preds.size(0)
|
122 |
+
|
123 |
+
char_strs, char_scores = self._decode_helper(char_preds, "char")
|
124 |
+
bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe")
|
125 |
+
wp_strs, wp_scores = self._decode_helper(wp_preds, "wp")
|
126 |
+
|
127 |
+
final_strs = []
|
128 |
+
final_scores = []
|
129 |
+
for i in range(batch_size):
|
130 |
+
scores = [char_scores[i], bpe_scores[i], wp_scores[i]]
|
131 |
+
strs = [char_strs[i], bpe_strs[i], wp_strs[i]]
|
132 |
+
max_score_index = scores.index(max(scores))
|
133 |
+
final_strs.append(strs[max_score_index])
|
134 |
+
final_scores.append(scores[max_score_index])
|
135 |
+
|
136 |
+
out = {}
|
137 |
+
out["generated_text"] = final_strs
|
138 |
+
out["scores"] = final_scores
|
139 |
+
out["char_preds"] = char_strs
|
140 |
+
out["bpe_preds"] = bpe_strs
|
141 |
+
out["wp_preds"] = wp_strs
|
142 |
+
return out
|
143 |
+
|
144 |
+
def _decode_helper(self, pred_logits, format):
|
145 |
+
"""
|
146 |
+
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
pred_logits (`torch.Tensor`):
|
150 |
+
List of model prediction logits.
|
151 |
+
format (`Union[DecoderType, str]`):
|
152 |
+
Type of model prediction. Must be one of ['char', 'bpe', 'wp'].
|
153 |
+
Returns:
|
154 |
+
`tuple`:
|
155 |
+
dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence
|
156 |
+
score of model prediction.
|
157 |
+
"""
|
158 |
+
if format == DecodeType.CHARACTER:
|
159 |
+
decoder = self.char_decode
|
160 |
+
eos_token = 1
|
161 |
+
eos_str = "[s]"
|
162 |
+
elif format == DecodeType.BPE:
|
163 |
+
decoder = self.bpe_decode
|
164 |
+
eos_token = 2
|
165 |
+
eos_str = "#"
|
166 |
+
elif format == DecodeType.WORDPIECE:
|
167 |
+
decoder = self.wp_decode
|
168 |
+
eos_token = 102
|
169 |
+
eos_str = "[SEP]"
|
170 |
+
else:
|
171 |
+
raise ValueError(f"Format {format} is not supported.")
|
172 |
+
|
173 |
+
dec_strs, conf_scores = [], []
|
174 |
+
batch_size = pred_logits.size(0)
|
175 |
+
batch_max_length = pred_logits.size(1)
|
176 |
+
_, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True)
|
177 |
+
preds_index = preds_index.view(-1, batch_max_length)[:, 1:]
|
178 |
+
preds_str = decoder(preds_index)
|
179 |
+
preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2)
|
180 |
+
preds_max_prob = preds_max_prob[:, 1:]
|
181 |
+
|
182 |
+
for index in range(batch_size):
|
183 |
+
pred_eos = preds_str[index].find(eos_str)
|
184 |
+
pred = preds_str[index][:pred_eos]
|
185 |
+
pred_index = preds_index[index].cpu().tolist()
|
186 |
+
pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1
|
187 |
+
pred_max_prob = preds_max_prob[index][: pred_eos_index + 1]
|
188 |
+
confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
|
189 |
+
dec_strs.append(pred)
|
190 |
+
conf_scores.append(confidence_score)
|
191 |
+
|
192 |
+
return dec_strs, conf_scores
|
193 |
+
|
194 |
+
def char_decode(self, sequences):
|
195 |
+
"""
|
196 |
+
Convert a list of lists of char token ids into a list of strings by calling char tokenizer.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
sequences (`torch.Tensor`):
|
200 |
+
List of tokenized input ids.
|
201 |
+
Returns:
|
202 |
+
`List[str]`: The list of char decoded sentences.
|
203 |
+
"""
|
204 |
+
decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)]
|
205 |
+
return decode_strs
|
206 |
+
|
207 |
+
def bpe_decode(self, sequences):
|
208 |
+
"""
|
209 |
+
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
sequences (`torch.Tensor`):
|
213 |
+
List of tokenized input ids.
|
214 |
+
Returns:
|
215 |
+
`List[str]`: The list of bpe decoded sentences.
|
216 |
+
"""
|
217 |
+
return self.bpe_tokenizer.batch_decode(sequences)
|
218 |
+
|
219 |
+
def wp_decode(self, sequences):
|
220 |
+
"""
|
221 |
+
Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
sequences (`torch.Tensor`):
|
225 |
+
List of tokenized input ids.
|
226 |
+
Returns:
|
227 |
+
`List[str]`: The list of wp decoded sentences.
|
228 |
+
"""
|
229 |
+
decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)]
|
230 |
+
return decode_strs
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_recurrent_gemma": ["RecurrentGemmaConfig"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_recurrent_gemma"] = [
|
35 |
+
"RecurrentGemmaForCausalLM",
|
36 |
+
"RecurrentGemmaModel",
|
37 |
+
"RecurrentGemmaPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_recurrent_gemma import RecurrentGemmaConfig
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
from .modeling_recurrent_gemma import (
|
51 |
+
RecurrentGemmaForCausalLM,
|
52 |
+
RecurrentGemmaModel,
|
53 |
+
RecurrentGemmaPreTrainedModel,
|
54 |
+
)
|
55 |
+
|
56 |
+
else:
|
57 |
+
import sys
|
58 |
+
|
59 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (868 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc
ADDED
Binary file (6.71 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc
ADDED
Binary file (5.66 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc
ADDED
Binary file (31.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" RecurrentGemma model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class RecurrentGemmaConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`RecurrentGemmaModel`]. It is used to instantiate a RecurrentGemma
|
27 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
28 |
+
defaults will yield a similar configuration to that of the RecurrentGemma-7B.
|
29 |
+
|
30 |
+
e.g. [google/recurrentgemma-2b](https://huggingface.co/google/recurrentgemma-2b)
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
num_hidden_layers (`int`, *optional*, defaults to 26):
|
38 |
+
The number of hidden layers in the model.
|
39 |
+
vocab_size (`int`, *optional*, defaults to 256000):
|
40 |
+
Vocabulary size of the RecurrentGemma model. Defines the number of
|
41 |
+
different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`RecurrentGemmaModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 7680):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 10):
|
48 |
+
The number of heads for the attention block and the number of
|
49 |
+
heads/blocks for the block-diagonal layers used in the RG-LRU gates.
|
50 |
+
This number must divide `hidden_size` and `lru_width`.
|
51 |
+
lru_width (`int` or `None`, *optional*):
|
52 |
+
Dimension of the hidden representations of the RG-LRU. If `None`
|
53 |
+
this will be set to `hidden_size`.
|
54 |
+
Whether to scale the output of the embeddings by `sqrt(hidden_size)`.
|
55 |
+
attention_window_size (`int`, *optional*, defaults to 2048):
|
56 |
+
The size of the attention window used in the attention block.
|
57 |
+
conv1d_width (`int`, *optional*, defaults to 4):
|
58 |
+
The kernel size of conv1d layers used in the recurrent blocks.
|
59 |
+
logits_soft_cap (`float`, *optional*, defaults to 30.0):
|
60 |
+
The value at which the logits should be soft-capped to after the transformer and LM-head computation in the Causal LM architecture.
|
61 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
62 |
+
The epsilon used by the rms normalization layers.
|
63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether the model should return the last key/values
|
65 |
+
attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
68 |
+
Padding token id.
|
69 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
70 |
+
End of stream token id.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 2):
|
72 |
+
Beginning of stream token id.
|
73 |
+
hidden_activation (``str` or `function``, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
74 |
+
The hidden activation used in the recurrent block as well as the MLP layer of the decoder layers.
|
75 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
76 |
+
The partial rotary factor used in the initialization of the rotary embeddings.
|
77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
78 |
+
The base period of the RoPE embeddings.
|
79 |
+
block_types (`List[str]`, *optional*, defaults to `('recurrent', 'recurrent', 'attention')`):
|
80 |
+
List of aleternating blocks that will be repeated to initialize the `temporal_block` layer.
|
81 |
+
attention_dropout (`float`, *optional*, defaults to 0.0): dropout value to use after the attention softmax.
|
82 |
+
num_key_value_heads (`16`, *optional*, defaults to 16): Number of key value heads to use GQA.
|
83 |
+
attention_bias (`bool`, *optional*, defaults to `False`): whether or not the linear q,k,v of the Attention layer should have bias
|
84 |
+
w_init_variance_scale (`float`, *optional*, defaults to 0.01): weight initialization variance.
|
85 |
+
```python
|
86 |
+
>>> from transformers import RecurrentGemmaModel, RecurrentGemmaConfig
|
87 |
+
|
88 |
+
>>> # Initializing a RecurrentGemma recurrentgemma-2b style configuration
|
89 |
+
>>> configuration = RecurrentGemmaConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model from the recurrentgemma-2b style configuration
|
92 |
+
>>> model = RecurrentGemmaModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "recurrent_gemma"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
num_hidden_layers=26,
|
103 |
+
vocab_size=256000,
|
104 |
+
hidden_size=2560,
|
105 |
+
intermediate_size=3 * 2560,
|
106 |
+
num_attention_heads=10,
|
107 |
+
lru_width=None,
|
108 |
+
attention_window_size=2048,
|
109 |
+
conv1d_width=4,
|
110 |
+
logits_soft_cap=30.0,
|
111 |
+
rms_norm_eps=1e-6,
|
112 |
+
use_cache=True,
|
113 |
+
pad_token_id=0,
|
114 |
+
eos_token_id=1,
|
115 |
+
bos_token_id=2,
|
116 |
+
hidden_activation="gelu_pytorch_tanh",
|
117 |
+
partial_rotary_factor=0.5,
|
118 |
+
rope_theta=10000.0,
|
119 |
+
block_types=("recurrent", "recurrent", "attention"),
|
120 |
+
attention_dropout=0.0,
|
121 |
+
num_key_value_heads=None,
|
122 |
+
attention_bias=False,
|
123 |
+
w_init_variance_scale=0.01,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.vocab_size = vocab_size
|
128 |
+
self.hidden_size = hidden_size
|
129 |
+
self.intermediate_size = intermediate_size
|
130 |
+
self.num_attention_heads = num_attention_heads
|
131 |
+
self.lru_width = lru_width if lru_width is not None else hidden_size
|
132 |
+
self.attention_window_size = attention_window_size
|
133 |
+
self.conv1d_width = conv1d_width
|
134 |
+
self.logits_soft_cap = logits_soft_cap
|
135 |
+
self.rms_norm_eps = rms_norm_eps
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.partial_rotary_factor = partial_rotary_factor
|
139 |
+
self.block_types = list(block_types)
|
140 |
+
self.hidden_activation = hidden_activation
|
141 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
142 |
+
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
|
143 |
+
if self.num_key_value_heads > self.num_attention_heads:
|
144 |
+
raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
self.attention_bias = attention_bias
|
147 |
+
self.w_init_variance_scale = w_init_variance_scale
|
148 |
+
self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
|
149 |
+
super().__init__(
|
150 |
+
pad_token_id=pad_token_id,
|
151 |
+
bos_token_id=bos_token_id,
|
152 |
+
eos_token_id=eos_token_id,
|
153 |
+
**kwargs,
|
154 |
+
)
|
155 |
+
|
156 |
+
@property
|
157 |
+
def layers_block_type(self):
|
158 |
+
return (self.block_types * 100)[: self.num_hidden_layers]
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import os
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from accelerate import init_empty_weights
|
20 |
+
|
21 |
+
from transformers import GemmaTokenizer, RecurrentGemmaConfig, RecurrentGemmaForCausalLM
|
22 |
+
|
23 |
+
|
24 |
+
try:
|
25 |
+
from transformers import GemmaTokenizerFast
|
26 |
+
except ImportError as e:
|
27 |
+
warnings.warn(e)
|
28 |
+
warnings.warn(
|
29 |
+
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
30 |
+
)
|
31 |
+
GemmaTokenizerFast = None
|
32 |
+
|
33 |
+
import regex as re
|
34 |
+
|
35 |
+
|
36 |
+
"""
|
37 |
+
Sample usage:
|
38 |
+
|
39 |
+
```
|
40 |
+
python src/transformers/models/gemma/convert_gemma_weights_to_hf.py \
|
41 |
+
--input_dir /path/to/downloaded/gemma/weights --model_size 7B --output_dir /output/path
|
42 |
+
```
|
43 |
+
|
44 |
+
Thereafter, models can be loaded via:
|
45 |
+
|
46 |
+
```py
|
47 |
+
from transformers import GemmaForCausalLM, GemmaTokenizerFast
|
48 |
+
|
49 |
+
model = GemmaForCausalLM.from_pretrained("/output/path")
|
50 |
+
tokenizer = GemmaTokenizerFast.from_pretrained("/output/path")
|
51 |
+
```
|
52 |
+
|
53 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
54 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
55 |
+
"""
|
56 |
+
|
57 |
+
gemma_2b_config = RecurrentGemmaConfig(
|
58 |
+
num_attention_heads=10,
|
59 |
+
num_key_value_heads=1,
|
60 |
+
hidden_size=2560,
|
61 |
+
intermediate_size=15360,
|
62 |
+
vocab_size=256000,
|
63 |
+
num_hidden_layers=26,
|
64 |
+
)
|
65 |
+
|
66 |
+
gemma_7b_config = RecurrentGemmaConfig()
|
67 |
+
|
68 |
+
CONFIG_MAPPING = {"2B": gemma_2b_config, "7B": gemma_7b_config}
|
69 |
+
LAYER_NAME_MAPPING = {"embedder.weight": "model.embed_tokens.weight"}
|
70 |
+
|
71 |
+
|
72 |
+
def write_model(save_path, input_base_path, config, safe_serialization=True, push_to_hub=False, dtype=torch.float32):
|
73 |
+
print(f"Fetching all parameters from the checkpoint at '{input_base_path}'")
|
74 |
+
model_state_dict = torch.load(input_base_path, map_location="cpu")
|
75 |
+
|
76 |
+
REPLACEMENT = {
|
77 |
+
"blocks.": "layers.",
|
78 |
+
".ffw_down.b": ".down_proj.b",
|
79 |
+
".ffw_down.w": ".down_proj.w",
|
80 |
+
".ffw_up.b": ".up_proj.bias",
|
81 |
+
".ffw_up.w": ".up_proj.weight",
|
82 |
+
"recurrent_block": "temporal_block",
|
83 |
+
"attention_block": "temporal_block",
|
84 |
+
"temporal_block.proj_final": "temporal_block.out_proj",
|
85 |
+
"norm.scale": "norm.weight",
|
86 |
+
".proj_k": ".k_proj",
|
87 |
+
".proj_q": ".q_proj",
|
88 |
+
".proj_v": ".v_proj",
|
89 |
+
".proj_final": ".o_proj",
|
90 |
+
"embedder.input_embedding": "embed_tokens.weight",
|
91 |
+
"conv_1d.w": "conv_1d.weight",
|
92 |
+
"conv_1d.b": "conv_1d.bias",
|
93 |
+
"input_gate.w": "input_gate.weight",
|
94 |
+
"input_gate.b": "input_gate.bias",
|
95 |
+
"a_param": "recurrent_param",
|
96 |
+
"a_gate.b": "recurrent_gate.bias",
|
97 |
+
"a_gate.w": "recurrent_gate.weight",
|
98 |
+
}
|
99 |
+
|
100 |
+
state_dict = {}
|
101 |
+
for k, v in model_state_dict.items():
|
102 |
+
k = "model." + k
|
103 |
+
pattern = re.compile("|".join(map(re.escape, REPLACEMENT.keys())))
|
104 |
+
key = pattern.sub(lambda match: REPLACEMENT[match.group(0)], k)
|
105 |
+
if "conv_1d.weight" in key:
|
106 |
+
v = v[:, None, :].transpose(0, 2)
|
107 |
+
if "up_proj.weight" in key:
|
108 |
+
state_dict[key.replace("up_proj", "gate_proj")] = v[0].T.contiguous()
|
109 |
+
v = v[1].T.contiguous()
|
110 |
+
if "up_proj.bias" in key:
|
111 |
+
state_dict[key.replace("up_proj", "gate_proj")] = v[0, 0, 0].clone()
|
112 |
+
v = v[1, 0, 0].contiguous()
|
113 |
+
if "recurrent_gate.bias" in key:
|
114 |
+
state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
|
115 |
+
elif "recurrent_gate.weight" in key:
|
116 |
+
state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
|
117 |
+
elif "input_gate.b" in key:
|
118 |
+
state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
|
119 |
+
elif "input_gate.w" in key:
|
120 |
+
state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
|
121 |
+
elif "embed_tokens" in key:
|
122 |
+
state_dict[key] = v[: config.vocab_size, :].contiguous().clone()
|
123 |
+
state_dict["lm_head.weight"] = v[: config.vocab_size, :].contiguous().clone()
|
124 |
+
else:
|
125 |
+
state_dict[key] = v.contiguous()
|
126 |
+
|
127 |
+
torch.set_default_dtype(dtype)
|
128 |
+
|
129 |
+
print("Loading the checkpoint in a Gemma model.")
|
130 |
+
with init_empty_weights():
|
131 |
+
model = RecurrentGemmaForCausalLM(config)
|
132 |
+
model.load_state_dict(state_dict, assign=True, strict=True)
|
133 |
+
|
134 |
+
model.config.torch_dtype = torch.float32
|
135 |
+
del model.config._name_or_path
|
136 |
+
print("Saving in the Transformers format.")
|
137 |
+
|
138 |
+
if push_to_hub:
|
139 |
+
print(f"pushing the model to {save_path}")
|
140 |
+
else:
|
141 |
+
model.save_pretrained(save_path, safe_serialization=safe_serialization)
|
142 |
+
|
143 |
+
|
144 |
+
def write_tokenizer(input_tokenizer_path, save_path, push_to_hub=False):
|
145 |
+
# Initialize the tokenizer based on the `spm` model
|
146 |
+
tokenizer_class = GemmaTokenizer if GemmaTokenizerFast is None else GemmaTokenizerFast
|
147 |
+
print(f"Saving a {tokenizer_class.__name__} to {save_path}.")
|
148 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
149 |
+
if push_to_hub:
|
150 |
+
tokenizer.push_to_hub(save_path)
|
151 |
+
else:
|
152 |
+
tokenizer.save_pretrained(save_path)
|
153 |
+
|
154 |
+
|
155 |
+
def main():
|
156 |
+
parser = argparse.ArgumentParser()
|
157 |
+
parser.add_argument(
|
158 |
+
"--input_checkpoint",
|
159 |
+
help="Absolute path to the target Gemma weights.",
|
160 |
+
default="/home/arthur/transformers_recurrentgemma/google/recurrent-gemma-2b-it/ToBeDeleted/2b-it.pt",
|
161 |
+
)
|
162 |
+
parser.add_argument(
|
163 |
+
"--tokenizer_checkpoint",
|
164 |
+
help="Location of Gemma tokenizer model",
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--model_size",
|
168 |
+
default="2B",
|
169 |
+
choices=["2B", "7B", "tokenizer_only"],
|
170 |
+
help="'f' models correspond to the finetuned versions, and are specific to the Gemma2 official release. For more details on Gemma2, checkout the original repo: https://huggingface.co/google/gemma-7b",
|
171 |
+
)
|
172 |
+
parser.add_argument(
|
173 |
+
"--output_dir",
|
174 |
+
default="google/recurrent-gemma-2b-it-hf",
|
175 |
+
help="Location to write HF model and tokenizer",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--pickle_serialization",
|
179 |
+
help="Whether or not to save using `safetensors`.",
|
180 |
+
action="store_true",
|
181 |
+
default=False,
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--convert_tokenizer",
|
185 |
+
help="Whether or not to convert the tokenizer as well.",
|
186 |
+
action="store_true",
|
187 |
+
default=False,
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--push_to_hub",
|
191 |
+
help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
|
192 |
+
action="store_true",
|
193 |
+
default=False,
|
194 |
+
)
|
195 |
+
parser.add_argument(
|
196 |
+
"--dtype",
|
197 |
+
default="float32",
|
198 |
+
help="Target dtype of the converted model",
|
199 |
+
)
|
200 |
+
args = parser.parse_args()
|
201 |
+
|
202 |
+
if args.convert_tokenizer:
|
203 |
+
if args.tokenizer_checkpoint is None:
|
204 |
+
raise ValueError("Path to the tokenizer is required when passing --convert_tokenizer")
|
205 |
+
|
206 |
+
spm_path = os.path.join(args.tokenizer_checkpoint)
|
207 |
+
write_tokenizer(spm_path, args.output_dir, args.push_to_hub)
|
208 |
+
|
209 |
+
config = CONFIG_MAPPING[args.model_size]
|
210 |
+
dtype = getattr(torch, args.dtype)
|
211 |
+
write_model(
|
212 |
+
config=config,
|
213 |
+
input_base_path=args.input_checkpoint,
|
214 |
+
save_path=args.output_dir,
|
215 |
+
safe_serialization=not args.pickle_serialization,
|
216 |
+
push_to_hub=args.push_to_hub,
|
217 |
+
dtype=dtype,
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
main()
|
venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py
ADDED
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch RecurrentGemma model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Dict, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
28 |
+
from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
31 |
+
from ...utils import (
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
replace_return_docstrings,
|
36 |
+
)
|
37 |
+
from .configuration_recurrent_gemma import RecurrentGemmaConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
_CONFIG_FOR_DOC = "RecurrentGemmaConfig"
|
42 |
+
_MAX_SQRT_GRADIENT = 1000.0
|
43 |
+
|
44 |
+
|
45 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma
|
46 |
+
class RecurrentGemmaRMSNorm(nn.Module):
|
47 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
48 |
+
super().__init__()
|
49 |
+
self.eps = eps
|
50 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
51 |
+
|
52 |
+
def _norm(self, x):
|
53 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
output = self._norm(x.float())
|
57 |
+
# Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16)
|
58 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
59 |
+
output = output * (1.0 + self.weight.float())
|
60 |
+
return output.type_as(x)
|
61 |
+
|
62 |
+
|
63 |
+
ALL_LAYERNORM_LAYERS.append(RecurrentGemmaRMSNorm)
|
64 |
+
|
65 |
+
|
66 |
+
class RecurrentGemmaRotaryEmbedding(nn.Module):
|
67 |
+
def __init__(self, dim, base=10000, device=None):
|
68 |
+
super().__init__()
|
69 |
+
self.dim = dim
|
70 |
+
self.base = base
|
71 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding.forward with Gemma->RecurrentGemma
|
75 |
+
def forward(self, x, position_ids, seq_len=None):
|
76 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
77 |
+
if self.inv_freq is None:
|
78 |
+
self.inv_freq = 1.0 / (
|
79 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
80 |
+
)
|
81 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
82 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
83 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
84 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
85 |
+
device_type = x.device.type
|
86 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
87 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
88 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
89 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
90 |
+
cos = emb.cos()
|
91 |
+
sin = emb.sin()
|
92 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
96 |
+
def rotate_half(x):
|
97 |
+
"""Rotates half the hidden dims of the input."""
|
98 |
+
x1 = x[..., : x.shape[-1] // 2]
|
99 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
100 |
+
return torch.cat((-x2, x1), dim=-1)
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
104 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
105 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
q (`torch.Tensor`): The query tensor.
|
109 |
+
k (`torch.Tensor`): The key tensor.
|
110 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
111 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
112 |
+
position_ids (`torch.Tensor`, *optional*):
|
113 |
+
Deprecated and unused.
|
114 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
115 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
116 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
117 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
118 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
119 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
120 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
121 |
+
Returns:
|
122 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
123 |
+
"""
|
124 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
125 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
126 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
127 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
128 |
+
return q_embed, k_embed
|
129 |
+
|
130 |
+
|
131 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
132 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
133 |
+
"""
|
134 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
135 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
136 |
+
"""
|
137 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
138 |
+
if n_rep == 1:
|
139 |
+
return hidden_states
|
140 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
141 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
142 |
+
|
143 |
+
|
144 |
+
class RecurrentGemmaSdpaAttention(nn.Module):
|
145 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
146 |
+
|
147 |
+
def __init__(self, config: RecurrentGemmaConfig):
|
148 |
+
super().__init__()
|
149 |
+
self.config = config
|
150 |
+
self.attention_dropout = config.attention_dropout
|
151 |
+
self.hidden_size = config.hidden_size
|
152 |
+
self.num_attention_heads = config.num_attention_heads
|
153 |
+
self.head_dim = config.head_dim
|
154 |
+
self.num_key_value_heads = config.num_key_value_heads
|
155 |
+
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
|
156 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
157 |
+
|
158 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias)
|
159 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
160 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
161 |
+
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True)
|
162 |
+
self.rotary_emb = RecurrentGemmaRotaryEmbedding(
|
163 |
+
int(self.partial_rotary_factor * self.head_dim),
|
164 |
+
base=config.rope_theta,
|
165 |
+
)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
hidden_states: torch.Tensor,
|
170 |
+
position_ids: Optional[torch.LongTensor] = None,
|
171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
172 |
+
cache_position: Optional[torch.LongTensor] = None,
|
173 |
+
use_cache: bool = False,
|
174 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
175 |
+
bsz, q_len, _ = hidden_states.size()
|
176 |
+
|
177 |
+
query_states = self.q_proj(hidden_states)
|
178 |
+
key_states = self.k_proj(hidden_states)
|
179 |
+
value_states = self.v_proj(hidden_states)
|
180 |
+
|
181 |
+
query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
|
182 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
183 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
184 |
+
|
185 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
186 |
+
|
187 |
+
# Partial rotary embedding
|
188 |
+
query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1)
|
189 |
+
key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1)
|
190 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
191 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
192 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
193 |
+
|
194 |
+
if use_cache and hasattr(self, "key_states"):
|
195 |
+
cache_kwargs = {"cache_position": cache_position}
|
196 |
+
key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs)
|
197 |
+
|
198 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
199 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
200 |
+
|
201 |
+
causal_mask = attention_mask
|
202 |
+
if attention_mask is not None:
|
203 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
204 |
+
|
205 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
206 |
+
query_states.contiguous(),
|
207 |
+
key_states.contiguous(),
|
208 |
+
value_states.contiguous(),
|
209 |
+
attn_mask=causal_mask, # pretty much a must for sliding window backend!
|
210 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
211 |
+
scale=self.head_dim**-0.5,
|
212 |
+
)
|
213 |
+
|
214 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
215 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
216 |
+
attn_output = self.o_proj(attn_output)
|
217 |
+
return attn_output
|
218 |
+
|
219 |
+
def _setup_cache(self, batch_size, device, dtype=None):
|
220 |
+
if dtype is None and self.config.torch_dtype is not None:
|
221 |
+
dtype = self.config.torch_dtype
|
222 |
+
dtype = dtype if dtype is not None else torch.float32
|
223 |
+
cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim)
|
224 |
+
self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device)
|
225 |
+
self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device)
|
226 |
+
|
227 |
+
@torch.no_grad()
|
228 |
+
def _update_cache(self, key_states, value_states, **cache_kwargs):
|
229 |
+
"""
|
230 |
+
torch.compile compatible sliding window.
|
231 |
+
Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`.
|
232 |
+
The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`:
|
233 |
+
|
234 |
+
indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size
|
235 |
+
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
236 |
+
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
237 |
+
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
|
238 |
+
55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
|
239 |
+
|
240 |
+
We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`)
|
241 |
+
"""
|
242 |
+
cache_position = cache_kwargs.get("cache_position")
|
243 |
+
if cache_position.shape[0] > self.config.attention_window_size:
|
244 |
+
# int indexing -> device sync? in compile, use tensor
|
245 |
+
k_out = key_states[:, :, -self.config.attention_window_size :, :]
|
246 |
+
v_out = value_states[:, :, -self.config.attention_window_size :, :]
|
247 |
+
else:
|
248 |
+
slicing = torch.ones(
|
249 |
+
self.config.attention_window_size, dtype=torch.long, device=value_states.device
|
250 |
+
).cumsum(0)
|
251 |
+
cache_position = cache_position.clamp(0, self.config.attention_window_size - 1)
|
252 |
+
to_shift = cache_position >= self.config.attention_window_size - 1
|
253 |
+
indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size
|
254 |
+
|
255 |
+
k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device)
|
256 |
+
k_out = k_out[:, :, indices]
|
257 |
+
v_out = v_out[:, :, indices]
|
258 |
+
|
259 |
+
k_out[:, :, cache_position] = key_states
|
260 |
+
v_out[:, :, cache_position] = value_states
|
261 |
+
|
262 |
+
self.key_states, self.value_states = k_out, v_out
|
263 |
+
return k_out, v_out
|
264 |
+
|
265 |
+
|
266 |
+
class SqrtBoundDerivative(torch.autograd.Function):
|
267 |
+
"""Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`."""
|
268 |
+
|
269 |
+
@staticmethod
|
270 |
+
def forward(ctx, x: torch.Tensor) -> torch.Tensor:
|
271 |
+
"""The forward pass, which is a normal `sqrt`."""
|
272 |
+
ctx.save_for_backward(x)
|
273 |
+
return torch.sqrt(x)
|
274 |
+
|
275 |
+
@staticmethod
|
276 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
277 |
+
"""The backward pass, which clips the `sqrt` gradient."""
|
278 |
+
(x,) = ctx.saved_tensors
|
279 |
+
clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2))
|
280 |
+
return grad_output / torch.sqrt(clipped_x_times_4)
|
281 |
+
|
282 |
+
|
283 |
+
class RecurrentGemmaRglru(nn.Module):
|
284 |
+
"""A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
|
285 |
+
|
286 |
+
def __init__(self, config):
|
287 |
+
super().__init__()
|
288 |
+
self.num_attention_heads = config.num_attention_heads
|
289 |
+
self.block_width = config.lru_width // self.num_attention_heads
|
290 |
+
|
291 |
+
self.recurrent_param = nn.Parameter(torch.empty([config.lru_width]))
|
292 |
+
self.input_gate_weight = nn.Parameter(
|
293 |
+
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
|
294 |
+
)
|
295 |
+
self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
|
296 |
+
|
297 |
+
self.recurrent_gate_weight = nn.Parameter(
|
298 |
+
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
|
299 |
+
)
|
300 |
+
self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
|
301 |
+
self.recurrent_states = None
|
302 |
+
|
303 |
+
def forward(
|
304 |
+
self,
|
305 |
+
activations: torch.Tensor,
|
306 |
+
position_ids: torch.Tensor,
|
307 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
308 |
+
batch_size, seq_len, lru_width = activations.shape
|
309 |
+
reset = position_ids[:, :, None] == 0
|
310 |
+
|
311 |
+
reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width)
|
312 |
+
reshape_act = reshape_act.permute(1, 0, 2)
|
313 |
+
|
314 |
+
res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight)
|
315 |
+
input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
|
316 |
+
|
317 |
+
res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight)
|
318 |
+
recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
|
319 |
+
|
320 |
+
# Compute the parameter `A` of the recurrence.
|
321 |
+
log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param)
|
322 |
+
recurrent_gate = torch.exp(log_recurrent_gate)
|
323 |
+
a_square = torch.exp(2 * log_recurrent_gate)
|
324 |
+
|
325 |
+
# Gate the input.
|
326 |
+
gated_inputs = activations * input_gate
|
327 |
+
|
328 |
+
# Apply gamma normalization to the input. We need to clip the derivatives of
|
329 |
+
# `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying
|
330 |
+
multiplier = 1
|
331 |
+
tracing = isinstance(activations, torch.fx.Proxy) or (
|
332 |
+
hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()
|
333 |
+
)
|
334 |
+
if not torch.jit.is_tracing() and not tracing:
|
335 |
+
multiplier = SqrtBoundDerivative.apply(1 - a_square)
|
336 |
+
multiplier = reset + ~reset * multiplier
|
337 |
+
normalized_x = gated_inputs * multiplier.type(activations.dtype)
|
338 |
+
|
339 |
+
hidden_states, recurrent_states = self._rnn_scan(
|
340 |
+
hidden_states=normalized_x,
|
341 |
+
recurrent_gate=recurrent_gate,
|
342 |
+
reset=reset,
|
343 |
+
recurrent_states=self.recurrent_states,
|
344 |
+
)
|
345 |
+
self.recurrent_states = recurrent_states
|
346 |
+
return hidden_states
|
347 |
+
|
348 |
+
# TODO refactor
|
349 |
+
def _rnn_scan(
|
350 |
+
self,
|
351 |
+
hidden_states: torch.Tensor,
|
352 |
+
recurrent_gate: torch.Tensor,
|
353 |
+
reset: torch.Tensor,
|
354 |
+
recurrent_states: Union[torch.Tensor, None],
|
355 |
+
acc_dtype: torch.dtype = torch.float32,
|
356 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
357 |
+
"""Runs the recurrence of a linear RNN.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
hidden_states: The input sequence.
|
361 |
+
recurrent_gate: The diagonal of the recurrence matrix `A`.
|
362 |
+
reset: Indicator of document boundaries, e.g. when to reset the hidden state
|
363 |
+
of the RNN.
|
364 |
+
recurrent_states: The initial hidden state.
|
365 |
+
acc_dtype: The data type for the accumulation.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
The output of the linear recurrence.
|
369 |
+
"""
|
370 |
+
# Multiply `a` by the reset.
|
371 |
+
recurrent_gate = recurrent_gate * ~reset
|
372 |
+
|
373 |
+
if hidden_states.shape[1] == 1:
|
374 |
+
# Using scan in sampling mode.
|
375 |
+
if recurrent_states is None: # same here, when decoding you always have cache
|
376 |
+
return hidden_states, hidden_states[:, 0].type(acc_dtype)
|
377 |
+
|
378 |
+
else:
|
379 |
+
contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to(
|
380 |
+
recurrent_gate.device
|
381 |
+
)
|
382 |
+
contextualized_states += hidden_states.type(acc_dtype)
|
383 |
+
return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1]
|
384 |
+
|
385 |
+
else:
|
386 |
+
# Using scan in linear mode.
|
387 |
+
if recurrent_states is None:
|
388 |
+
recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device)
|
389 |
+
|
390 |
+
contextualized_states = torch.zeros_like(hidden_states)
|
391 |
+
for t in range(hidden_states.shape[1]):
|
392 |
+
recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device)
|
393 |
+
recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype)
|
394 |
+
contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype)
|
395 |
+
|
396 |
+
return contextualized_states, recurrent_states
|
397 |
+
|
398 |
+
|
399 |
+
class RecurrentGemmaRecurrentBlock(nn.Module):
|
400 |
+
"""Griffin and Hawk's recurrent block."""
|
401 |
+
|
402 |
+
def __init__(self, config):
|
403 |
+
super().__init__()
|
404 |
+
self.lru_width = config.lru_width
|
405 |
+
self.hidden_size = config.hidden_size
|
406 |
+
self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
|
407 |
+
self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
|
408 |
+
self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size)
|
409 |
+
self.conv1d_width = config.conv1d_width
|
410 |
+
self.conv_1d = nn.Conv1d(
|
411 |
+
config.lru_width,
|
412 |
+
config.lru_width,
|
413 |
+
kernel_size=config.conv1d_width,
|
414 |
+
groups=config.lru_width,
|
415 |
+
padding=config.conv1d_width - 1,
|
416 |
+
)
|
417 |
+
self.rg_lru = RecurrentGemmaRglru(config)
|
418 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
419 |
+
|
420 |
+
self.conv1d_state = None
|
421 |
+
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
input_states: torch.Tensor,
|
425 |
+
position_ids: torch.Tensor,
|
426 |
+
attention_mask: torch.Tensor,
|
427 |
+
cache_position: torch.Tensor,
|
428 |
+
use_cache: bool = True,
|
429 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
430 |
+
_, seq_len, _ = input_states.shape
|
431 |
+
|
432 |
+
y_branch = self.linear_y(input_states)
|
433 |
+
y_branch = self.act_fn(y_branch)
|
434 |
+
|
435 |
+
x_branch = self.linear_x(input_states)
|
436 |
+
x_branch = x_branch.transpose(1, 2)
|
437 |
+
|
438 |
+
if use_cache:
|
439 |
+
if cache_position.shape[0] != 1: # prefill
|
440 |
+
self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0))
|
441 |
+
x_branch = self.conv_1d(x_branch)[..., :seq_len]
|
442 |
+
else: # decoding
|
443 |
+
conv_state = torch.cat((self.conv1d_state, x_branch), -1)
|
444 |
+
x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias
|
445 |
+
x_branch = x_branch.unsqueeze(-1)
|
446 |
+
self.conv1d_state = conv_state[:, :, 1:]
|
447 |
+
else:
|
448 |
+
x_branch = self.conv_1d(x_branch)[..., :seq_len]
|
449 |
+
|
450 |
+
x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids)
|
451 |
+
|
452 |
+
hidden_states = x_branch * y_branch
|
453 |
+
hidden_states = self.linear_out(hidden_states)
|
454 |
+
return hidden_states
|
455 |
+
|
456 |
+
def _setup_cache(self, batch, device, dtype):
|
457 |
+
# recurrent_states always computed in full precision
|
458 |
+
self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32)
|
459 |
+
self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype)
|
460 |
+
|
461 |
+
|
462 |
+
TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention}
|
463 |
+
|
464 |
+
|
465 |
+
class RecurrentGemmaMlp(nn.Module):
|
466 |
+
def __init__(self, config):
|
467 |
+
super().__init__()
|
468 |
+
self.config = config
|
469 |
+
self.hidden_size = config.hidden_size
|
470 |
+
self.intermediate_size = config.intermediate_size // 2
|
471 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
472 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
473 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
|
474 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
475 |
+
|
476 |
+
def forward(self, hidden_states):
|
477 |
+
gate = self.act_fn(self.gate_proj(hidden_states))
|
478 |
+
return self.down_proj(gate * self.up_proj(hidden_states))
|
479 |
+
|
480 |
+
|
481 |
+
class RecurrentGemmaDecoderLayer(nn.Module):
|
482 |
+
"""Griffin and Hawk's residual block."""
|
483 |
+
|
484 |
+
def __init__(self, config, layer_idx):
|
485 |
+
super().__init__()
|
486 |
+
self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
487 |
+
self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config)
|
488 |
+
self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
489 |
+
self.mlp_block = RecurrentGemmaMlp(config)
|
490 |
+
|
491 |
+
def forward(
|
492 |
+
self,
|
493 |
+
activations: torch.Tensor,
|
494 |
+
position_ids: torch.Tensor,
|
495 |
+
attention_mask: torch.Tensor,
|
496 |
+
cache_position: torch.Tensor = None,
|
497 |
+
use_cache: bool = None,
|
498 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
499 |
+
raw_activations = activations
|
500 |
+
inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences
|
501 |
+
|
502 |
+
hidden_states = self.temporal_block(
|
503 |
+
inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache
|
504 |
+
)
|
505 |
+
|
506 |
+
residual = hidden_states + raw_activations
|
507 |
+
|
508 |
+
hidden_states = self.channel_pre_norm(residual)
|
509 |
+
hidden_states = self.mlp_block(hidden_states)
|
510 |
+
|
511 |
+
hidden_states = hidden_states + residual
|
512 |
+
return hidden_states
|
513 |
+
|
514 |
+
|
515 |
+
RECURRENTGEMMA_START_DOCSTRING = r"""
|
516 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
517 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
518 |
+
etc.)
|
519 |
+
|
520 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
521 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
522 |
+
and behavior.
|
523 |
+
|
524 |
+
Parameters:
|
525 |
+
config ([`RecurrentGemmaConfig`]):
|
526 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
527 |
+
load the weights associated with the model, only the configuration. Check out the
|
528 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
529 |
+
"""
|
530 |
+
|
531 |
+
|
532 |
+
@add_start_docstrings(
|
533 |
+
"The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
|
534 |
+
RECURRENTGEMMA_START_DOCSTRING,
|
535 |
+
)
|
536 |
+
class RecurrentGemmaPreTrainedModel(PreTrainedModel):
|
537 |
+
config_class = RecurrentGemmaConfig
|
538 |
+
base_model_prefix = "model"
|
539 |
+
supports_gradient_checkpointing = True
|
540 |
+
_no_split_modules = ["RecurrentGemmaDecoderLayer"]
|
541 |
+
_skip_keys_device_placement = ["cache"]
|
542 |
+
_supports_flash_attn_2 = False
|
543 |
+
_supports_sdpa = False # we can't compare with eager for now
|
544 |
+
_supports_cache_class = True
|
545 |
+
|
546 |
+
def _init_weights(self, module):
|
547 |
+
std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width)
|
548 |
+
if isinstance(module, nn.Conv1d):
|
549 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
550 |
+
torch.nn.init.zeros_(module.bias)
|
551 |
+
elif isinstance(module, RecurrentGemmaSdpaAttention):
|
552 |
+
torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
553 |
+
torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
554 |
+
torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
555 |
+
|
556 |
+
std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size)
|
557 |
+
torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std)
|
558 |
+
elif isinstance(module, RecurrentGemmaRecurrentBlock):
|
559 |
+
torch.nn.init.zeros_(module.linear_x.bias)
|
560 |
+
torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
561 |
+
|
562 |
+
torch.nn.init.zeros_(module.linear_y.bias)
|
563 |
+
torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
564 |
+
|
565 |
+
std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width)
|
566 |
+
torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std)
|
567 |
+
torch.nn.init.zeros_(module.linear_out.bias)
|
568 |
+
elif isinstance(module, RecurrentGemmaRglru):
|
569 |
+
std = math.sqrt(
|
570 |
+
self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads)
|
571 |
+
)
|
572 |
+
torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std)
|
573 |
+
torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std)
|
574 |
+
torch.nn.init.zeros_(module.input_gate_bias)
|
575 |
+
torch.nn.init.zeros_(module.recurrent_gate_bias)
|
576 |
+
|
577 |
+
module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8)
|
578 |
+
module.recurrent_param.data.log_().mul_(0.5)
|
579 |
+
module.recurrent_param.data.neg_().exp_().sub_(1.0).log_()
|
580 |
+
elif isinstance(module, nn.Linear):
|
581 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
582 |
+
if getattr(module, "bias", None) is not None:
|
583 |
+
torch.nn.init.zeros_(module.bias)
|
584 |
+
|
585 |
+
def _setup_cache(self, config, batch, device, dtype):
|
586 |
+
layers = getattr(self, "model", self).layers
|
587 |
+
for layer in layers:
|
588 |
+
layer.temporal_block._setup_cache(batch, device, dtype)
|
589 |
+
|
590 |
+
def reset_cache(self, batch, device, dtype):
|
591 |
+
pass
|
592 |
+
|
593 |
+
|
594 |
+
RECURRENTGEMMA_INPUTS_DOCSTRING = r"""
|
595 |
+
Args:
|
596 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
597 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
598 |
+
it.
|
599 |
+
|
600 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
601 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
602 |
+
|
603 |
+
[What are input IDs?](../glossary#input-ids)
|
604 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
605 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
606 |
+
|
607 |
+
- 1 for tokens that are **not masked**,
|
608 |
+
- 0 for tokens that are **masked**.
|
609 |
+
|
610 |
+
[What are attention masks?](../glossary#attention-mask)
|
611 |
+
|
612 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
613 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
614 |
+
|
615 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
616 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
617 |
+
config.n_positions - 1]`.
|
618 |
+
|
619 |
+
[What are position IDs?](../glossary#position-ids)
|
620 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
621 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
622 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
623 |
+
model's internal embedding lookup matrix.
|
624 |
+
use_cache (`bool`, *optional*):
|
625 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
626 |
+
`past_key_values`).
|
627 |
+
output_hidden_states (`bool`, *optional*):
|
628 |
+
Whether or not to return the hidden states of all See `hidden_states` under returned tensors for
|
629 |
+
more detail.
|
630 |
+
return_dict (`bool`, *optional*):
|
631 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
632 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
633 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
634 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
635 |
+
the complete sequence length.
|
636 |
+
"""
|
637 |
+
|
638 |
+
|
639 |
+
@add_start_docstrings(
|
640 |
+
"The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
|
641 |
+
RECURRENTGEMMA_START_DOCSTRING,
|
642 |
+
)
|
643 |
+
class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel):
|
644 |
+
"""
|
645 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RecurrentGemmaDecoderLayer`]
|
646 |
+
|
647 |
+
Args:
|
648 |
+
config: RecurrentGemmaConfig
|
649 |
+
"""
|
650 |
+
|
651 |
+
def __init__(self, config: RecurrentGemmaConfig):
|
652 |
+
super().__init__(config)
|
653 |
+
self.padding_idx = config.pad_token_id
|
654 |
+
self.vocab_size = config.vocab_size
|
655 |
+
|
656 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
657 |
+
self.layers = nn.ModuleList(
|
658 |
+
[RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
659 |
+
)
|
660 |
+
self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
661 |
+
self.gradient_checkpointing = False
|
662 |
+
|
663 |
+
self.register_buffer(
|
664 |
+
"normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False
|
665 |
+
)
|
666 |
+
# Initialize weights and apply final processing
|
667 |
+
self.post_init()
|
668 |
+
|
669 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings
|
670 |
+
def get_input_embeddings(self):
|
671 |
+
return self.embed_tokens
|
672 |
+
|
673 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings
|
674 |
+
def set_input_embeddings(self, value):
|
675 |
+
self.embed_tokens = value
|
676 |
+
|
677 |
+
@add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
|
678 |
+
def forward(
|
679 |
+
self,
|
680 |
+
input_ids: torch.LongTensor = None,
|
681 |
+
position_ids: Optional[torch.LongTensor] = None,
|
682 |
+
attention_mask: Optional[torch.Tensor] = None,
|
683 |
+
cache_position: Optional[torch.LongTensor] = None,
|
684 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
685 |
+
use_cache: Optional[bool] = None,
|
686 |
+
output_hidden_states: Optional[bool] = None,
|
687 |
+
return_dict: Optional[bool] = None,
|
688 |
+
**kwargs,
|
689 |
+
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
|
690 |
+
output_hidden_states = (
|
691 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
692 |
+
)
|
693 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
694 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
695 |
+
|
696 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
697 |
+
raise ValueError(
|
698 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
699 |
+
)
|
700 |
+
|
701 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
702 |
+
logger.warning_once(
|
703 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
704 |
+
)
|
705 |
+
use_cache = False
|
706 |
+
|
707 |
+
if inputs_embeds is None:
|
708 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
709 |
+
|
710 |
+
hidden_states = inputs_embeds
|
711 |
+
|
712 |
+
if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`?
|
713 |
+
self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype)
|
714 |
+
|
715 |
+
if cache_position is None:
|
716 |
+
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
|
717 |
+
if position_ids is None:
|
718 |
+
position_ids = cache_position.unsqueeze(0)
|
719 |
+
|
720 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
721 |
+
|
722 |
+
hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype)
|
723 |
+
|
724 |
+
all_hidden_states = () if output_hidden_states else None
|
725 |
+
for i, residual_block in enumerate(self.layers):
|
726 |
+
if output_hidden_states:
|
727 |
+
all_hidden_states += (hidden_states,)
|
728 |
+
if self.gradient_checkpointing and self.training:
|
729 |
+
hidden_states = self._gradient_checkpointing_func(
|
730 |
+
residual_block.__call__, hidden_states, position_ids, causal_mask, cache_position, use_cache
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache)
|
734 |
+
|
735 |
+
hidden_states = self.final_norm(hidden_states)
|
736 |
+
|
737 |
+
# add hidden states from the last decoder layer
|
738 |
+
if output_hidden_states:
|
739 |
+
all_hidden_states += (hidden_states,)
|
740 |
+
|
741 |
+
if not return_dict:
|
742 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
743 |
+
|
744 |
+
return BaseModelOutputWithNoAttention(
|
745 |
+
last_hidden_state=hidden_states,
|
746 |
+
hidden_states=all_hidden_states,
|
747 |
+
)
|
748 |
+
|
749 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
750 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
751 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
752 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
753 |
+
# Ignore copy
|
754 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
755 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
756 |
+
min_dtype = torch.finfo(dtype).min
|
757 |
+
sequence_length = input_tensor.shape[1]
|
758 |
+
target_length = max(self.config.attention_window_size, sequence_length)
|
759 |
+
|
760 |
+
diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
761 |
+
causal_mask = diagonal
|
762 |
+
if sequence_length != 1:
|
763 |
+
causal_mask = torch.triu(diagonal, diagonal=-1)
|
764 |
+
|
765 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
766 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
767 |
+
if attention_mask is not None:
|
768 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
769 |
+
if attention_mask.dim() == 2:
|
770 |
+
mask_length = attention_mask.shape[-1]
|
771 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
772 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
773 |
+
|
774 |
+
if attention_mask is not None and attention_mask.device.type == "cuda":
|
775 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
776 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
777 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
778 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
779 |
+
|
780 |
+
return causal_mask
|
781 |
+
|
782 |
+
|
783 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma
|
784 |
+
class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel):
|
785 |
+
_tied_weights_keys = ["lm_head.weight"]
|
786 |
+
|
787 |
+
def __init__(self, config):
|
788 |
+
super().__init__(config)
|
789 |
+
self.model = RecurrentGemmaModel(config)
|
790 |
+
self.vocab_size = config.vocab_size
|
791 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
792 |
+
|
793 |
+
# Initialize weights and apply final processing
|
794 |
+
self.post_init()
|
795 |
+
|
796 |
+
def get_input_embeddings(self):
|
797 |
+
return self.model.embed_tokens
|
798 |
+
|
799 |
+
def set_input_embeddings(self, value):
|
800 |
+
self.model.embed_tokens = value
|
801 |
+
|
802 |
+
def get_output_embeddings(self):
|
803 |
+
return self.lm_head
|
804 |
+
|
805 |
+
def set_output_embeddings(self, new_embeddings):
|
806 |
+
self.lm_head = new_embeddings
|
807 |
+
|
808 |
+
def set_decoder(self, decoder):
|
809 |
+
self.model = decoder
|
810 |
+
|
811 |
+
def get_decoder(self):
|
812 |
+
return self.model
|
813 |
+
|
814 |
+
# Ignore copy
|
815 |
+
@add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
|
816 |
+
@replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
|
817 |
+
def forward(
|
818 |
+
self,
|
819 |
+
input_ids: Optional[torch.LongTensor] = None,
|
820 |
+
cache_position: Optional[torch.LongTensor] = None,
|
821 |
+
attention_mask: Optional[torch.Tensor] = None,
|
822 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
823 |
+
labels: Optional[torch.LongTensor] = None,
|
824 |
+
output_hidden_states: Optional[bool] = None,
|
825 |
+
return_dict: Optional[bool] = None,
|
826 |
+
use_cache: Optional[bool] = None,
|
827 |
+
**kwargs, # for now we need this for generation
|
828 |
+
) -> Union[Tuple, CausalLMOutput]:
|
829 |
+
r"""
|
830 |
+
Args:
|
831 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
832 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
833 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
834 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
835 |
+
|
836 |
+
Returns:
|
837 |
+
|
838 |
+
Example:
|
839 |
+
|
840 |
+
```python
|
841 |
+
>>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM
|
842 |
+
|
843 |
+
>>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b")
|
844 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b")
|
845 |
+
|
846 |
+
>>> prompt = "What is your favorite condiment?"
|
847 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
848 |
+
|
849 |
+
>>> # Generate
|
850 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
851 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
852 |
+
"What is your favorite condiment?"
|
853 |
+
```"""
|
854 |
+
output_hidden_states = (
|
855 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
856 |
+
)
|
857 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
858 |
+
output_hidden_states = True
|
859 |
+
outputs = self.model(
|
860 |
+
input_ids=input_ids,
|
861 |
+
cache_position=cache_position,
|
862 |
+
attention_mask=attention_mask,
|
863 |
+
inputs_embeds=inputs_embeds,
|
864 |
+
use_cache=use_cache,
|
865 |
+
output_hidden_states=output_hidden_states,
|
866 |
+
return_dict=return_dict,
|
867 |
+
)
|
868 |
+
|
869 |
+
hidden_states = outputs[0]
|
870 |
+
logits = self.lm_head(hidden_states)
|
871 |
+
|
872 |
+
# Soft-cap the logits TODO remove if always done.
|
873 |
+
# if self.config.logits_soft_cap is not None:
|
874 |
+
cap = self.config.logits_soft_cap
|
875 |
+
logits = nn.functional.tanh(logits / cap) * cap
|
876 |
+
|
877 |
+
logits = logits.float()
|
878 |
+
loss = None
|
879 |
+
if labels is not None:
|
880 |
+
# Shift so that tokens < n predict n
|
881 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
882 |
+
shift_labels = labels[..., 1:].contiguous()
|
883 |
+
# Flatten the tokens
|
884 |
+
loss_fct = CrossEntropyLoss()
|
885 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
886 |
+
shift_labels = shift_labels.view(-1)
|
887 |
+
# Enable model parallelism
|
888 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
889 |
+
loss = loss_fct(shift_logits, shift_labels)
|
890 |
+
|
891 |
+
if not return_dict:
|
892 |
+
output = (logits,) + outputs[1:]
|
893 |
+
return (loss,) + output if loss is not None else output
|
894 |
+
|
895 |
+
return CausalLMOutput(
|
896 |
+
loss=loss,
|
897 |
+
logits=logits,
|
898 |
+
hidden_states=outputs.hidden_states,
|
899 |
+
)
|
900 |
+
|
901 |
+
# Ignore copy
|
902 |
+
def prepare_inputs_for_generation(
|
903 |
+
self, input_ids, attention_mask=None, inputs_embeds=None, cache_position=None, use_cache=None, **kwargs
|
904 |
+
):
|
905 |
+
position_ids = kwargs.get("position_ids", None)
|
906 |
+
if attention_mask is not None and position_ids is None:
|
907 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
908 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
909 |
+
|
910 |
+
attention_mask = attention_mask[:, -self.config.attention_window_size :]
|
911 |
+
|
912 |
+
past_length = cache_position[0]
|
913 |
+
if past_length > 0:
|
914 |
+
position_ids = position_ids[:, past_length:]
|
915 |
+
|
916 |
+
if inputs_embeds is not None:
|
917 |
+
model_inputs = {"inputs_embeds": inputs_embeds[:, past_length:]}
|
918 |
+
else:
|
919 |
+
model_inputs = {"input_ids": input_ids[:, past_length:].contiguous()}
|
920 |
+
|
921 |
+
if cache_position is not None:
|
922 |
+
cache_position = cache_position[-position_ids.shape[1] :]
|
923 |
+
|
924 |
+
model_inputs.update(
|
925 |
+
{
|
926 |
+
"position_ids": position_ids,
|
927 |
+
"attention_mask": attention_mask,
|
928 |
+
"cache_position": cache_position,
|
929 |
+
"use_cache": use_cache,
|
930 |
+
}
|
931 |
+
)
|
932 |
+
return model_inputs
|
933 |
+
|
934 |
+
# Ignore copy
|
935 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
936 |
+
for layer in self.layers:
|
937 |
+
if hasattr(layer.temporal_block, "key_states"):
|
938 |
+
k_state = layer.temporal_block.key_states
|
939 |
+
v_state = layer.temporal_block.value_states
|
940 |
+
k_state = k_state.index_select(0, beam_idx.to(k_state.device))
|
941 |
+
v_state = v_state.index_select(0, beam_idx.to(v_state.device))
|
942 |
+
return None
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__init__.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_sentencepiece_available,
|
20 |
+
is_tokenizers_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_seamless_m4t": ["SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP", "SeamlessM4TConfig"],
|
27 |
+
"feature_extraction_seamless_m4t": ["SeamlessM4TFeatureExtractor"],
|
28 |
+
"processing_seamless_m4t": ["SeamlessM4TProcessor"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_seamless_m4t"] = ["SeamlessM4TTokenizer"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tokenizers_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["tokenization_seamless_m4t_fast"] = ["SeamlessM4TTokenizerFast"]
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
_import_structure["modeling_seamless_m4t"] = [
|
54 |
+
"SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST",
|
55 |
+
"SeamlessM4TForTextToSpeech",
|
56 |
+
"SeamlessM4TForSpeechToSpeech",
|
57 |
+
"SeamlessM4TForTextToText",
|
58 |
+
"SeamlessM4TForSpeechToText",
|
59 |
+
"SeamlessM4TModel",
|
60 |
+
"SeamlessM4TPreTrainedModel",
|
61 |
+
"SeamlessM4TCodeHifiGan",
|
62 |
+
"SeamlessM4THifiGan",
|
63 |
+
"SeamlessM4TTextToUnitForConditionalGeneration",
|
64 |
+
"SeamlessM4TTextToUnitModel",
|
65 |
+
]
|
66 |
+
|
67 |
+
if TYPE_CHECKING:
|
68 |
+
from .configuration_seamless_m4t import SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP, SeamlessM4TConfig
|
69 |
+
from .feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
|
70 |
+
from .processing_seamless_m4t import SeamlessM4TProcessor
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_sentencepiece_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .tokenization_seamless_m4t import SeamlessM4TTokenizer
|
79 |
+
|
80 |
+
try:
|
81 |
+
if not is_tokenizers_available():
|
82 |
+
raise OptionalDependencyNotAvailable()
|
83 |
+
except OptionalDependencyNotAvailable:
|
84 |
+
pass
|
85 |
+
else:
|
86 |
+
from .tokenization_seamless_m4t_fast import SeamlessM4TTokenizerFast
|
87 |
+
|
88 |
+
try:
|
89 |
+
if not is_torch_available():
|
90 |
+
raise OptionalDependencyNotAvailable()
|
91 |
+
except OptionalDependencyNotAvailable:
|
92 |
+
pass
|
93 |
+
else:
|
94 |
+
from .modeling_seamless_m4t import (
|
95 |
+
SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST,
|
96 |
+
SeamlessM4TCodeHifiGan,
|
97 |
+
SeamlessM4TForSpeechToSpeech,
|
98 |
+
SeamlessM4TForSpeechToText,
|
99 |
+
SeamlessM4TForTextToSpeech,
|
100 |
+
SeamlessM4TForTextToText,
|
101 |
+
SeamlessM4THifiGan,
|
102 |
+
SeamlessM4TModel,
|
103 |
+
SeamlessM4TPreTrainedModel,
|
104 |
+
SeamlessM4TTextToUnitForConditionalGeneration,
|
105 |
+
SeamlessM4TTextToUnitModel,
|
106 |
+
)
|
107 |
+
|
108 |
+
else:
|
109 |
+
import sys
|
110 |
+
|
111 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/configuration_seamless_m4t.cpython-310.pyc
ADDED
Binary file (19.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/feature_extraction_seamless_m4t.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/modeling_seamless_m4t.cpython-310.pyc
ADDED
Binary file (124 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/processing_seamless_m4t.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t_fast.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/configuration_seamless_m4t.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" SeamlessM4T model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class SeamlessM4TConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`~SeamlessM4TModel`]. It is used to instantiate an
|
30 |
+
SeamlessM4T model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the SeamlessM4T
|
32 |
+
["facebook/hf-seamless-m4t-medium"](https://huggingface.co/"facebook/hf-seamless-m4t-medium") architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 256102):
|
40 |
+
Vocabulary size of the SeamlessM4T model. Defines the number of different tokens that can be represented by
|
41 |
+
the `inputs_ids` passed when calling [`~SeamlessM4TModel`], [`~SeamlessM4TForTextToSpeech`] or
|
42 |
+
[`~SeamlessM4TForTextToText`].
|
43 |
+
t2u_vocab_size (`int`, *optional*, defaults to 10082):
|
44 |
+
Unit vocabulary size of the SeamlessM4T model. Defines the number of different unit tokens that can be
|
45 |
+
represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4TModel`],
|
46 |
+
[`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
|
47 |
+
|
48 |
+
> Parameters shared across sub-models
|
49 |
+
|
50 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
51 |
+
Dimensionality of the "intermediate" layers in the architecture.
|
52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
54 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
55 |
+
The epsilon used by the layer normalization layers.
|
56 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
59 |
+
The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set
|
60 |
+
this to something large just in case (e.g., 512 or 1024 or 2048).
|
61 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether the model is used as an encoder/decoder or not.
|
63 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.05):
|
64 |
+
The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
65 |
+
for more details.
|
66 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.05):
|
67 |
+
The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
68 |
+
for more details.
|
69 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
70 |
+
The non-linear activation function (function or string) in the decoder and feed-forward layers. If string,
|
71 |
+
`"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
|
72 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
73 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler.
|
74 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
75 |
+
The dropout probability for all attention layers.
|
76 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
77 |
+
The dropout probability for all activation layers in the model.
|
78 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
79 |
+
Scale embeddings by diving by sqrt(d_model).
|
80 |
+
|
81 |
+
> Text encoder and text decoder specific parameters
|
82 |
+
|
83 |
+
encoder_layers (`int`, *optional*, defaults to 24):
|
84 |
+
Number of hidden layers in the Transformer text encoder.
|
85 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 8192):
|
86 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder.
|
87 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
88 |
+
Number of attention heads for each attention layer in the Transformer text encoder.
|
89 |
+
decoder_layers (`int`, *optional*, defaults to 24):
|
90 |
+
Number of hidden layers in the Transformer text decoder.
|
91 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 8192):
|
92 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder.
|
93 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
94 |
+
Number of attention heads for each attention layer in the Transformer text decoder.
|
95 |
+
decoder_start_token_id (`int`, *optional*, defaults to 3):
|
96 |
+
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
|
97 |
+
applied in the text decoder.
|
98 |
+
max_new_tokens (`int`, *optional*, defaults to 256):
|
99 |
+
The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt.
|
100 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
101 |
+
The id of the _padding_ text token. Only applied to the text-decoder model.
|
102 |
+
bos_token_id (`int`, *optional*, defaults to 2):
|
103 |
+
The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model.
|
104 |
+
eos_token_id (`int`, *optional*, defaults to 3):
|
105 |
+
The id of the _end-of-stream_ text token. Only applied to the text-decoder model.
|
106 |
+
|
107 |
+
> Speech encoder specific parameters
|
108 |
+
|
109 |
+
speech_encoder_layers (`int`, *optional*, defaults to 24):
|
110 |
+
Number of hidden layers in the Transformer speech encoder.
|
111 |
+
speech_encoder_attention_heads (`int`, *optional*, defaults to 16):
|
112 |
+
Number of attention heads for each attention layer in the Transformer speech encoder.
|
113 |
+
speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096):
|
114 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder.
|
115 |
+
speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
|
116 |
+
The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`,
|
117 |
+
`"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
|
118 |
+
speech_encoder_dropout (`float`, *optional*, defaults to 0.0):
|
119 |
+
The dropout probability for all layers in the speech encoder.
|
120 |
+
add_adapter (`bool`, *optional*, defaults to `True`):
|
121 |
+
Add an adapter layer on top of the speech encoder.
|
122 |
+
speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1):
|
123 |
+
The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see
|
124 |
+
https://arxiv.org/abs/1909.11556) for more details.
|
125 |
+
feature_projection_input_dim (`int`, *optional*, defaults to 160):
|
126 |
+
Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing
|
127 |
+
input audios with [`SeamlessM4TFeatureExtractor`].
|
128 |
+
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
|
129 |
+
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
|
130 |
+
embeddings layer of the speech encoder.
|
131 |
+
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
|
132 |
+
Number of groups of 1D convolutional positional embeddings layer of the speech encoder.
|
133 |
+
adaptor_kernel_size (`int`, *optional*, defaults to 8):
|
134 |
+
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
135 |
+
adaptor_stride (`int`, *optional*, defaults to 8):
|
136 |
+
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
137 |
+
adaptor_dropout (`float`, *optional*, defaults to 0.1):
|
138 |
+
The dropout probability for all layers in the speech adapter.
|
139 |
+
num_adapter_layers (`int`, *optional*, defaults to 1):
|
140 |
+
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
|
141 |
+
True`.
|
142 |
+
position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
|
143 |
+
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
|
144 |
+
`None` no relative position embedding is applied. Only applied to the speech encoder.
|
145 |
+
rotary_embedding_base (`int`, *optional*, defaults to 10000):
|
146 |
+
If `"rotary"` position embeddings are used, defines the size of the embedding base. Only applied to the
|
147 |
+
speech encoder.
|
148 |
+
max_source_positions (`int`, *optional*, defaults to 4096):
|
149 |
+
if `"relative"` position embeddings are used, defines the maximum source input positions. Only applied to
|
150 |
+
the speech encoder.
|
151 |
+
conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
|
152 |
+
Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder.
|
153 |
+
|
154 |
+
> Text-To-Unit (t2u) model specific parameters
|
155 |
+
|
156 |
+
t2u_bos_token_id (`int`, *optional*, defaults to 0):
|
157 |
+
The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
|
158 |
+
t2u_pad_token_id (`int`, *optional*, defaults to 1):
|
159 |
+
The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model.
|
160 |
+
t2u_eos_token_id (`int`, *optional*, defaults to 2):
|
161 |
+
The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
|
162 |
+
t2u_decoder_start_token_id (`int`, *optional*, defaults to 2):
|
163 |
+
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
|
164 |
+
applied to the text-to-unit seq2seq model.
|
165 |
+
t2u_max_new_tokens (`int`, *optional*, defaults to 1024):
|
166 |
+
The maximum numbers of unit tokens to generate, ignoring the number of tokens in the prompt. Only applied
|
167 |
+
to the text-to-unit seq2seq model.
|
168 |
+
t2u_encoder_layers (`int`, *optional*, defaults to 6):
|
169 |
+
Number of hidden layers in the Transformer text-to-unit encoder.
|
170 |
+
t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192):
|
171 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder.
|
172 |
+
t2u_encoder_attention_heads (`int`, *optional*, defaults to 16):
|
173 |
+
Number of attention heads for each attention layer in the Transformer text-to-unit encoder.
|
174 |
+
t2u_decoder_layers (`int`, *optional*, defaults to 6):
|
175 |
+
Number of hidden layers in the Transformer text-to-unit decoder.
|
176 |
+
t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192):
|
177 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder.
|
178 |
+
t2u_decoder_attention_heads (`int`, *optional*, defaults to 16):
|
179 |
+
Number of attention heads for each attention layer in the Transformer text-to-unit decoder.
|
180 |
+
t2u_max_position_embeddings (`int`, *optional*, defaults to 2048):
|
181 |
+
The maximum sequence length that this model text-to-unit component might ever be used with. Typically set
|
182 |
+
this to something large just in case (e.g., 512 or 1024 or 2048).
|
183 |
+
|
184 |
+
> Hifi-Gan Vocoder specific parameters
|
185 |
+
|
186 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
187 |
+
The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
|
188 |
+
upsample_initial_channel (`int`, *optional*, defaults to 512):
|
189 |
+
The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only.
|
190 |
+
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`):
|
191 |
+
A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network.
|
192 |
+
The length of *upsample_rates* defines the number of convolutional layers and has to match the length of
|
193 |
+
*upsample_kernel_sizes*. Applies to the vocoder only.
|
194 |
+
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`):
|
195 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling
|
196 |
+
network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match
|
197 |
+
the length of *upsample_rates*. Applies to the vocoder only.
|
198 |
+
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
|
199 |
+
A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive
|
200 |
+
field fusion (MRF) module. Applies to the vocoder only.
|
201 |
+
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
|
202 |
+
A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in
|
203 |
+
the multi-receptive field fusion (MRF) module. Applies to the vocoder only.
|
204 |
+
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
|
205 |
+
The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder
|
206 |
+
only.
|
207 |
+
unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000):
|
208 |
+
Vocabulary size of the SeamlessM4T vocoder. Defines the number of different unit tokens that can be
|
209 |
+
represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4TModel`],
|
210 |
+
[`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
|
211 |
+
unit_embed_dim (`int`, *optional*, defaults to 1280):
|
212 |
+
The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only.
|
213 |
+
lang_embed_dim (`int`, *optional*, defaults to 256):
|
214 |
+
The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only.
|
215 |
+
spkr_embed_dim (`int`, *optional*, defaults to 256):
|
216 |
+
The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only.
|
217 |
+
vocoder_num_langs (`int`, *optional*, defaults to 36):
|
218 |
+
Number of langs supported by the vocoder. Might be different from `t2u_num_langs`.
|
219 |
+
vocoder_num_spkrs (`int`, *optional*, defaults to 200):
|
220 |
+
Number of speakers supported by the vocoder.
|
221 |
+
variance_predictor_kernel_size (`int`, *optional*, defaults to 3):
|
222 |
+
Kernel size of the duration predictor. Applies to the vocoder only.
|
223 |
+
var_pred_dropout (`float`, *optional*, defaults to 0.5):
|
224 |
+
The dropout probability of the duration predictor. Applies to the vocoder only.
|
225 |
+
vocoder_offset (`int`, *optional*, defaults to 4):
|
226 |
+
Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only.
|
227 |
+
|
228 |
+
```python
|
229 |
+
>>> from transformers import SeamlessM4TModel, SeamlessM4TConfig
|
230 |
+
|
231 |
+
>>> # Initializing a SeamlessM4T "facebook/hf-seamless-m4t-medium" style configuration
|
232 |
+
>>> configuration = SeamlessM4TConfig()
|
233 |
+
|
234 |
+
>>> # Initializing a model from the "facebook/hf-seamless-m4t-medium" style configuration
|
235 |
+
>>> model = SeamlessM4TModel(configuration)
|
236 |
+
|
237 |
+
>>> # Accessing the model configuration
|
238 |
+
>>> configuration = model.config
|
239 |
+
```"""
|
240 |
+
|
241 |
+
model_type = "seamless_m4t"
|
242 |
+
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
vocab_size=256102,
|
246 |
+
t2u_vocab_size=10082,
|
247 |
+
# shared config
|
248 |
+
hidden_size=1024,
|
249 |
+
initializer_range=0.02,
|
250 |
+
layer_norm_eps=1e-5,
|
251 |
+
use_cache=True,
|
252 |
+
max_position_embeddings=1024,
|
253 |
+
is_encoder_decoder=True,
|
254 |
+
encoder_layerdrop=0.05,
|
255 |
+
decoder_layerdrop=0.05,
|
256 |
+
activation_function="relu",
|
257 |
+
dropout=0.1,
|
258 |
+
attention_dropout=0.1,
|
259 |
+
activation_dropout=0.0,
|
260 |
+
scale_embedding=True,
|
261 |
+
# text encoder|decoder
|
262 |
+
encoder_layers=24,
|
263 |
+
encoder_ffn_dim=8192,
|
264 |
+
encoder_attention_heads=16,
|
265 |
+
decoder_layers=24,
|
266 |
+
decoder_ffn_dim=8192,
|
267 |
+
decoder_attention_heads=16,
|
268 |
+
decoder_start_token_id=3,
|
269 |
+
max_new_tokens=256,
|
270 |
+
pad_token_id=0,
|
271 |
+
bos_token_id=2,
|
272 |
+
eos_token_id=3,
|
273 |
+
# speech_encoder
|
274 |
+
speech_encoder_layers=24,
|
275 |
+
speech_encoder_attention_heads=16,
|
276 |
+
speech_encoder_intermediate_size=4096,
|
277 |
+
speech_encoder_hidden_act="swish",
|
278 |
+
speech_encoder_dropout=0.0,
|
279 |
+
add_adapter=True,
|
280 |
+
speech_encoder_layerdrop=0.1,
|
281 |
+
feature_projection_input_dim=160,
|
282 |
+
num_conv_pos_embeddings=128,
|
283 |
+
num_conv_pos_embedding_groups=16,
|
284 |
+
adaptor_kernel_size=8,
|
285 |
+
adaptor_stride=8,
|
286 |
+
adaptor_dropout=0.1,
|
287 |
+
num_adapter_layers=1,
|
288 |
+
position_embeddings_type="relative",
|
289 |
+
rotary_embedding_base=10000,
|
290 |
+
max_source_positions=4096,
|
291 |
+
conv_depthwise_kernel_size=31,
|
292 |
+
# t2u config
|
293 |
+
t2u_bos_token_id=0,
|
294 |
+
t2u_pad_token_id=1,
|
295 |
+
t2u_eos_token_id=2,
|
296 |
+
t2u_decoder_start_token_id=2,
|
297 |
+
t2u_max_new_tokens=1024,
|
298 |
+
t2u_encoder_layers=6,
|
299 |
+
t2u_encoder_ffn_dim=8192,
|
300 |
+
t2u_encoder_attention_heads=16,
|
301 |
+
t2u_decoder_layers=6,
|
302 |
+
t2u_decoder_ffn_dim=8192,
|
303 |
+
t2u_decoder_attention_heads=16,
|
304 |
+
t2u_max_position_embeddings=2048,
|
305 |
+
# hifi-gan vocoder config
|
306 |
+
sampling_rate=16000,
|
307 |
+
upsample_initial_channel=512,
|
308 |
+
upsample_rates=[5, 4, 4, 2, 2],
|
309 |
+
upsample_kernel_sizes=[11, 8, 8, 4, 4],
|
310 |
+
resblock_kernel_sizes=[3, 7, 11],
|
311 |
+
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
312 |
+
leaky_relu_slope=0.1,
|
313 |
+
# specific to Code Hifi-Gan
|
314 |
+
unit_hifi_gan_vocab_size=10000,
|
315 |
+
unit_embed_dim=1280,
|
316 |
+
lang_embed_dim=256,
|
317 |
+
spkr_embed_dim=256,
|
318 |
+
vocoder_num_langs=36,
|
319 |
+
vocoder_num_spkrs=200,
|
320 |
+
variance_predictor_kernel_size=3,
|
321 |
+
var_pred_dropout=0.5,
|
322 |
+
vocoder_offset=4,
|
323 |
+
**kwargs,
|
324 |
+
):
|
325 |
+
# overall_config
|
326 |
+
self.vocab_size = vocab_size
|
327 |
+
self.t2u_vocab_size = t2u_vocab_size
|
328 |
+
self.hidden_size = hidden_size
|
329 |
+
self.initializer_range = initializer_range
|
330 |
+
self.layer_norm_eps = layer_norm_eps
|
331 |
+
self.max_position_embeddings = max_position_embeddings
|
332 |
+
self.use_cache = use_cache
|
333 |
+
self.max_new_tokens = max_new_tokens
|
334 |
+
self.encoder_layerdrop = encoder_layerdrop
|
335 |
+
self.decoder_layerdrop = decoder_layerdrop
|
336 |
+
self.activation_function = activation_function
|
337 |
+
self.dropout = dropout
|
338 |
+
self.attention_dropout = attention_dropout
|
339 |
+
self.activation_dropout = activation_dropout
|
340 |
+
self.scale_embedding = scale_embedding
|
341 |
+
# for proper config init
|
342 |
+
self.num_attention_heads = decoder_attention_heads
|
343 |
+
self.num_hidden_layers = decoder_layers
|
344 |
+
|
345 |
+
# text|unit encoder|decoder
|
346 |
+
self.encoder_layers = encoder_layers
|
347 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
348 |
+
self.encoder_attention_heads = encoder_attention_heads
|
349 |
+
self.decoder_layers = decoder_layers
|
350 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
351 |
+
self.decoder_attention_heads = decoder_attention_heads
|
352 |
+
|
353 |
+
# speech_encoder
|
354 |
+
self.speech_encoder_layers = speech_encoder_layers
|
355 |
+
self.speech_encoder_hidden_act = speech_encoder_hidden_act
|
356 |
+
self.speech_encoder_dropout = speech_encoder_dropout
|
357 |
+
self.speech_encoder_attention_heads = speech_encoder_attention_heads
|
358 |
+
self.speech_encoder_layerdrop = speech_encoder_layerdrop
|
359 |
+
self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
|
360 |
+
self.feature_projection_input_dim = feature_projection_input_dim
|
361 |
+
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
362 |
+
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
363 |
+
self.adaptor_kernel_size = adaptor_kernel_size
|
364 |
+
self.adaptor_stride = adaptor_stride
|
365 |
+
self.adaptor_dropout = adaptor_dropout
|
366 |
+
self.num_adapter_layers = num_adapter_layers
|
367 |
+
self.position_embeddings_type = position_embeddings_type
|
368 |
+
self.rotary_embedding_base = rotary_embedding_base
|
369 |
+
self.max_source_positions = max_source_positions
|
370 |
+
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
|
371 |
+
self.add_adapter = add_adapter
|
372 |
+
|
373 |
+
# t2u config
|
374 |
+
self.t2u_bos_token_id = t2u_bos_token_id
|
375 |
+
self.t2u_pad_token_id = t2u_pad_token_id
|
376 |
+
self.t2u_eos_token_id = t2u_eos_token_id
|
377 |
+
self.t2u_decoder_start_token_id = t2u_decoder_start_token_id
|
378 |
+
self.t2u_max_new_tokens = t2u_max_new_tokens
|
379 |
+
self.t2u_encoder_layers = t2u_encoder_layers
|
380 |
+
self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim
|
381 |
+
self.t2u_encoder_attention_heads = t2u_encoder_attention_heads
|
382 |
+
self.t2u_decoder_layers = t2u_decoder_layers
|
383 |
+
self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim
|
384 |
+
self.t2u_decoder_attention_heads = t2u_decoder_attention_heads
|
385 |
+
self.t2u_max_position_embeddings = t2u_max_position_embeddings
|
386 |
+
|
387 |
+
# hifi-gan vocoder config
|
388 |
+
# original parameters specific to Hifi-Gan
|
389 |
+
self.sampling_rate = sampling_rate
|
390 |
+
self.upsample_initial_channel = upsample_initial_channel
|
391 |
+
self.upsample_rates = upsample_rates
|
392 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
393 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
394 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
395 |
+
self.leaky_relu_slope = leaky_relu_slope
|
396 |
+
|
397 |
+
# specific to Code Hifi-Gan
|
398 |
+
self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size
|
399 |
+
self.unit_embed_dim = unit_embed_dim
|
400 |
+
self.lang_embed_dim = lang_embed_dim
|
401 |
+
self.spkr_embed_dim = spkr_embed_dim
|
402 |
+
self.vocoder_num_langs = vocoder_num_langs
|
403 |
+
self.vocoder_num_spkrs = vocoder_num_spkrs
|
404 |
+
self.variance_predictor_kernel_size = variance_predictor_kernel_size
|
405 |
+
self.var_pred_dropout = var_pred_dropout
|
406 |
+
self.vocoder_offset = vocoder_offset
|
407 |
+
|
408 |
+
super().__init__(
|
409 |
+
pad_token_id=pad_token_id,
|
410 |
+
bos_token_id=bos_token_id,
|
411 |
+
eos_token_id=eos_token_id,
|
412 |
+
decoder_start_token_id=decoder_start_token_id,
|
413 |
+
is_encoder_decoder=is_encoder_decoder,
|
414 |
+
max_position_embeddings=max_position_embeddings,
|
415 |
+
**kwargs,
|
416 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Converting Meta SeamlessM4T checkpoints from seamless_communication to HF."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from accelerate.utils.modeling import find_tied_parameters
|
24 |
+
from seamless_communication.models.inference.translator import Translator
|
25 |
+
|
26 |
+
from transformers import (
|
27 |
+
SeamlessM4TConfig,
|
28 |
+
SeamlessM4TFeatureExtractor,
|
29 |
+
SeamlessM4TModel,
|
30 |
+
SeamlessM4TProcessor,
|
31 |
+
SeamlessM4TTokenizer,
|
32 |
+
)
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ] # fmt: skip
|
37 |
+
VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",] # fmt: skip
|
38 |
+
MEDIUM_SUPPORTED_LANGUAGES = ["ace","ace_Latn","acm","acq","aeb","afr","ajp","aka","amh","apc","arb","ars","ary","arz","asm","ast","awa","ayr","azb","azj","bak","bam","ban","bel","bem","ben","bho","bjn","bjn_Latn","bod","bos","bug","bul","cat","ceb","ces","cjk","ckb","crh","cym","dan","deu","dik","dyu","dzo","ell","eng","epo","est","eus","ewe","fao","pes","fij","fin","fon","fra","fur","fuv","gla","gle","glg","grn","guj","hat","hau","heb","hin","hne","hrv","hun","hye","ibo","ilo","ind","isl","ita","jav","jpn","kab","kac","kam","kan","kas","kas_Deva","kat","knc","knc_Latn","kaz","kbp","kea","khm","kik","kin","kir","kmb","kon","kor","kmr","lao","lvs","lij","lim","lin","lit","lmo","ltg","ltz","lua","lug","luo","lus","mag","mai","mal","mar","min","mkd","plt","mlt","mni","khk","mos","mri","zsm","mya","nld","nno","nob","npi","nso","nus","nya","oci","gaz","ory","pag","pan","pap","pol","por","prs","pbt","quy","ron","run","rus","sag","san","sat","scn","shn","sin","slk","slv","smo","sna","snd","som","sot","spa","als","srd","srp","ssw","sun","swe","swh","szl","tam","tat","tel","tgk","tgl","tha","tir","taq","taq_Tfng","tpi","tsn","tso","tuk","tum","tur","twi","tzm","uig","ukr","umb","urd","uzn","vec","vie","war","wol","xho","ydd","yor","yue","cmn","cmn_Hant","zul",] # fmt: skip
|
39 |
+
LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",] # fmt: skip
|
40 |
+
|
41 |
+
|
42 |
+
def assert_param_count(model_1, model_2):
|
43 |
+
count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
|
44 |
+
count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
|
45 |
+
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
|
46 |
+
|
47 |
+
|
48 |
+
def param_count(model):
|
49 |
+
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
|
50 |
+
|
51 |
+
|
52 |
+
def _grab_best_device(use_gpu=True):
|
53 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
54 |
+
device = "cuda"
|
55 |
+
else:
|
56 |
+
device = "cpu"
|
57 |
+
return torch.device(device)
|
58 |
+
|
59 |
+
|
60 |
+
logging.set_verbosity_info()
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
vocoder_convert_list = [
|
64 |
+
("ups", "hifi_gan.upsampler"),
|
65 |
+
("conv_pre", "hifi_gan.conv_pre"),
|
66 |
+
("resblocks", "hifi_gan.resblocks"),
|
67 |
+
("conv_post", "hifi_gan.conv_post"),
|
68 |
+
("lang", "language_embedding"),
|
69 |
+
("spkr", "speaker_embedding"),
|
70 |
+
("dict.", "unit_embedding."),
|
71 |
+
("dur_predictor.conv1.0", "dur_predictor.conv1"),
|
72 |
+
("dur_predictor.conv2.0", "dur_predictor.conv2"),
|
73 |
+
]
|
74 |
+
|
75 |
+
# order is important
|
76 |
+
wav2vec_convert_list = [
|
77 |
+
("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
|
78 |
+
("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
|
79 |
+
("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
|
80 |
+
("speech_encoder.inner.layers", "encoder.layers"),
|
81 |
+
("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
|
82 |
+
("speech_encoder.adaptor_layers", "adapter.layers"),
|
83 |
+
("inner_proj", "intermediate_dense"),
|
84 |
+
("self_attn.output_proj", "self_attn.linear_out"),
|
85 |
+
("output_proj", "output_dense"),
|
86 |
+
("self_attn.k_proj", "self_attn.linear_k"),
|
87 |
+
("self_attn.v_proj", "self_attn.linear_v"),
|
88 |
+
("self_attn.q_proj", "self_attn.linear_q"),
|
89 |
+
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
|
90 |
+
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
|
91 |
+
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
|
92 |
+
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
|
93 |
+
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
|
94 |
+
("conv.depthwise_conv", "conv_module.depthwise_conv"),
|
95 |
+
("conv.batch_norm", "conv_module.batch_norm"),
|
96 |
+
("conv_layer_norm", "conv_module.layer_norm"),
|
97 |
+
("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
|
98 |
+
("speech_encoder.proj2", "intermediate_ffn.output_dense"),
|
99 |
+
("speech_encoder.layer_norm", "inner_layer_norm"),
|
100 |
+
]
|
101 |
+
|
102 |
+
t2u_convert_list = [
|
103 |
+
("t2u_model.final_proj", "lm_head"),
|
104 |
+
("t2u_model.", "model."),
|
105 |
+
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
|
106 |
+
("encoder_decoder_attn", "cross_attention"),
|
107 |
+
("linear_k", "k_proj"),
|
108 |
+
("linear_v", "v_proj"),
|
109 |
+
("linear_q", "q_proj"),
|
110 |
+
("ffn.inner_proj", "ffn.fc1"),
|
111 |
+
("ffn.output_proj", "ffn.fc2"),
|
112 |
+
("output_proj", "out_proj"),
|
113 |
+
("decoder_frontend.embed", "decoder.embed_tokens"),
|
114 |
+
]
|
115 |
+
|
116 |
+
text_convert_list = [
|
117 |
+
("text_encoder.", ""),
|
118 |
+
("text_decoder.", ""),
|
119 |
+
("text_encoder_frontend.embed", "embed_tokens"),
|
120 |
+
("text_decoder_frontend.embed", "embed_tokens"),
|
121 |
+
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
|
122 |
+
("encoder_decoder_attn", "cross_attention"),
|
123 |
+
("linear_k", "k_proj"),
|
124 |
+
("linear_v", "v_proj"),
|
125 |
+
("linear_q", "q_proj"),
|
126 |
+
("ffn.inner_proj", "ffn.fc1"),
|
127 |
+
("ffn.output_proj", "ffn.fc2"),
|
128 |
+
("output_proj", "out_proj"),
|
129 |
+
("final_proj", "lm_head"),
|
130 |
+
]
|
131 |
+
|
132 |
+
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
|
133 |
+
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
|
134 |
+
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
|
135 |
+
|
136 |
+
|
137 |
+
def _load_hf_config(model_type="medium"):
|
138 |
+
if model_type == "medium":
|
139 |
+
kwargs = {
|
140 |
+
"vocab_size": 256206,
|
141 |
+
"t2u_vocab_size": 10082,
|
142 |
+
"hidden_size": 1024,
|
143 |
+
"max_position_embeddings": 4096,
|
144 |
+
"encoder_layers": 12,
|
145 |
+
"decoder_layers": 12,
|
146 |
+
"encoder_ffn_dim": 4096,
|
147 |
+
"decoder_ffn_dim": 4096,
|
148 |
+
"t2u_encoder_layers": 4,
|
149 |
+
"t2u_decoder_layers": 4,
|
150 |
+
"speech_encoder_layers": 12,
|
151 |
+
}
|
152 |
+
return SeamlessM4TConfig(**kwargs)
|
153 |
+
else:
|
154 |
+
return SeamlessM4TConfig()
|
155 |
+
|
156 |
+
|
157 |
+
def _convert_model(
|
158 |
+
original_model,
|
159 |
+
hf_model,
|
160 |
+
convert_list,
|
161 |
+
device,
|
162 |
+
unwanted_prefix="model.",
|
163 |
+
filter_state_dict="speech",
|
164 |
+
exclude_state_dict=None,
|
165 |
+
):
|
166 |
+
state_dict = original_model.state_dict()
|
167 |
+
|
168 |
+
# filter func
|
169 |
+
if isinstance(filter_state_dict, str):
|
170 |
+
|
171 |
+
def filter_func(x):
|
172 |
+
return filter_state_dict in x[0]
|
173 |
+
|
174 |
+
else:
|
175 |
+
|
176 |
+
def filter_func(item):
|
177 |
+
if exclude_state_dict is not None and exclude_state_dict in item[0]:
|
178 |
+
return False
|
179 |
+
for filter_el in filter_state_dict:
|
180 |
+
if filter_el in item[0]:
|
181 |
+
return True
|
182 |
+
|
183 |
+
return False
|
184 |
+
|
185 |
+
state_dict = dict(filter(filter_func, state_dict.items()))
|
186 |
+
|
187 |
+
for k, v in list(state_dict.items()):
|
188 |
+
new_k = k[len(unwanted_prefix) :]
|
189 |
+
for old_layer_name, new_layer_name in convert_list:
|
190 |
+
if old_layer_name in new_k:
|
191 |
+
new_k = new_k.replace(old_layer_name, new_layer_name)
|
192 |
+
|
193 |
+
# must do it by hand
|
194 |
+
if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
|
195 |
+
new_k = new_k.replace("layer_norm", "final_layer_norm")
|
196 |
+
|
197 |
+
state_dict[new_k] = state_dict.pop(k)
|
198 |
+
|
199 |
+
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
|
200 |
+
extra_keys = set(extra_keys)
|
201 |
+
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
|
202 |
+
missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
|
203 |
+
if len(extra_keys) != 0:
|
204 |
+
raise ValueError(f"extra keys found: {extra_keys}")
|
205 |
+
if len(missing_keys) != 0:
|
206 |
+
raise ValueError(f"missing keys: {missing_keys}")
|
207 |
+
hf_model.load_state_dict(state_dict, strict=False)
|
208 |
+
n_params = param_count(hf_model)
|
209 |
+
|
210 |
+
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
211 |
+
|
212 |
+
hf_model.eval()
|
213 |
+
hf_model.to(device)
|
214 |
+
del state_dict
|
215 |
+
|
216 |
+
return hf_model
|
217 |
+
|
218 |
+
|
219 |
+
def load_model(save_dir, model_type, repo_id):
|
220 |
+
"""
|
221 |
+
Meta SeamlessM4T is made of 8 main components:
|
222 |
+
- speech_encoder (#1) and speech_encoder_frontend (#2)
|
223 |
+
- t2u_model (#3)
|
224 |
+
- text_encoder (#4) and text_encoder_frontend (#5)
|
225 |
+
- text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
|
226 |
+
- final_proj (#7)
|
227 |
+
- vocoder (#8)
|
228 |
+
"""
|
229 |
+
device = _grab_best_device()
|
230 |
+
if model_type == "medium":
|
231 |
+
name = "seamlessM4T_medium"
|
232 |
+
else:
|
233 |
+
name = "seamlessM4T_large"
|
234 |
+
|
235 |
+
original_model = Translator(name, "vocoder_36langs", device, torch.float32)
|
236 |
+
|
237 |
+
######### TOKENIZER
|
238 |
+
|
239 |
+
langs = MEDIUM_SUPPORTED_LANGUAGES if model_type == "medium" else LARGE_SUPPORTED_LANGUAGES
|
240 |
+
langs = [f"__{lang}__" for lang in langs]
|
241 |
+
vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
|
242 |
+
|
243 |
+
save_dir = os.path.join(save_dir, name)
|
244 |
+
Path(save_dir).mkdir(exist_ok=True)
|
245 |
+
|
246 |
+
tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
|
247 |
+
|
248 |
+
sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
|
249 |
+
|
250 |
+
tokenizer.save_pretrained(save_dir)
|
251 |
+
tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
|
252 |
+
|
253 |
+
if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
|
254 |
+
raise ValueError(
|
255 |
+
f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
|
256 |
+
)
|
257 |
+
|
258 |
+
####### get language to ids dict
|
259 |
+
text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
|
260 |
+
# offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
|
261 |
+
t2u_lang_code_to_id = {
|
262 |
+
code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
|
263 |
+
for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
|
264 |
+
}
|
265 |
+
vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
|
266 |
+
|
267 |
+
######### FE
|
268 |
+
|
269 |
+
fe = SeamlessM4TFeatureExtractor(language_code=langs)
|
270 |
+
|
271 |
+
fe.save_pretrained(save_dir)
|
272 |
+
fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
|
273 |
+
|
274 |
+
processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
|
275 |
+
processor.save_pretrained(save_dir)
|
276 |
+
processor.push_to_hub(repo_id=repo_id, create_pr=True)
|
277 |
+
|
278 |
+
processor = SeamlessM4TProcessor.from_pretrained(save_dir)
|
279 |
+
|
280 |
+
######## Model
|
281 |
+
|
282 |
+
# init model
|
283 |
+
hf_config = _load_hf_config(model_type)
|
284 |
+
hf_model = SeamlessM4TModel(hf_config)
|
285 |
+
|
286 |
+
hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
|
287 |
+
hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
|
288 |
+
hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
|
289 |
+
|
290 |
+
# -1. take care of vocoder
|
291 |
+
# similarly to speech T5 must apply and remove weight norm
|
292 |
+
hf_model.vocoder.apply_weight_norm()
|
293 |
+
hf_model.vocoder = _convert_model(
|
294 |
+
original_model,
|
295 |
+
hf_model.vocoder,
|
296 |
+
vocoder_convert_list,
|
297 |
+
device,
|
298 |
+
unwanted_prefix="vocoder.code_generator.",
|
299 |
+
filter_state_dict="vocoder",
|
300 |
+
)
|
301 |
+
hf_model.vocoder.remove_weight_norm()
|
302 |
+
|
303 |
+
# 1. take care of speech encoder
|
304 |
+
wav2vec = hf_model.speech_encoder
|
305 |
+
hf_model.speech_encoder = _convert_model(
|
306 |
+
original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
|
307 |
+
)
|
308 |
+
|
309 |
+
# 2. take care of t2u
|
310 |
+
|
311 |
+
hf_model.t2u_model = _convert_model(
|
312 |
+
original_model,
|
313 |
+
hf_model.t2u_model,
|
314 |
+
t2u_convert_list,
|
315 |
+
device,
|
316 |
+
unwanted_prefix="model.",
|
317 |
+
filter_state_dict="t2u_model",
|
318 |
+
)
|
319 |
+
|
320 |
+
# 3. take care of text encoder
|
321 |
+
hf_model.text_encoder = _convert_model(
|
322 |
+
original_model,
|
323 |
+
hf_model.text_encoder,
|
324 |
+
text_convert_list,
|
325 |
+
device,
|
326 |
+
unwanted_prefix="model.",
|
327 |
+
filter_state_dict=["model.text_encoder"],
|
328 |
+
exclude_state_dict="t2u_model",
|
329 |
+
)
|
330 |
+
|
331 |
+
# 4. take care of text decoder
|
332 |
+
hf_model.text_decoder = _convert_model(
|
333 |
+
original_model,
|
334 |
+
hf_model.text_decoder,
|
335 |
+
text_convert_list,
|
336 |
+
device,
|
337 |
+
unwanted_prefix="model.",
|
338 |
+
filter_state_dict=["model.text_decoder"],
|
339 |
+
exclude_state_dict="t2u_model",
|
340 |
+
)
|
341 |
+
|
342 |
+
# 5. take care of final proj
|
343 |
+
hf_model.lm_head = _convert_model(
|
344 |
+
original_model,
|
345 |
+
hf_model.lm_head,
|
346 |
+
[("final_proj.", "")],
|
347 |
+
device,
|
348 |
+
unwanted_prefix="model.",
|
349 |
+
filter_state_dict=["model.final_proj"],
|
350 |
+
exclude_state_dict="t2u_model",
|
351 |
+
)
|
352 |
+
|
353 |
+
# sanity check
|
354 |
+
print(find_tied_parameters(hf_model))
|
355 |
+
|
356 |
+
count_1 = param_count(hf_model)
|
357 |
+
count_2 = param_count(original_model)
|
358 |
+
|
359 |
+
print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
|
360 |
+
print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
|
361 |
+
|
362 |
+
del original_model
|
363 |
+
|
364 |
+
hf_model.generation_config._from_model_config = False
|
365 |
+
hf_model.save_pretrained(save_dir)
|
366 |
+
hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
|
367 |
+
hf_model = SeamlessM4TModel.from_pretrained(save_dir)
|
368 |
+
|
369 |
+
|
370 |
+
if __name__ == "__main__":
|
371 |
+
parser = argparse.ArgumentParser()
|
372 |
+
# Required parameters
|
373 |
+
|
374 |
+
parser.add_argument(
|
375 |
+
"--model_type",
|
376 |
+
default="medium",
|
377 |
+
type=str,
|
378 |
+
help="Model type.",
|
379 |
+
)
|
380 |
+
|
381 |
+
parser.add_argument(
|
382 |
+
"--save_dir",
|
383 |
+
default="/home/ubuntu/weights",
|
384 |
+
type=str,
|
385 |
+
help="Path to the output PyTorch model.",
|
386 |
+
)
|
387 |
+
|
388 |
+
parser.add_argument(
|
389 |
+
"--repo_id",
|
390 |
+
default="facebook/hf-seamless-m4t-medium",
|
391 |
+
type=str,
|
392 |
+
help="Repo ID.",
|
393 |
+
)
|
394 |
+
|
395 |
+
args = parser.parse_args()
|
396 |
+
|
397 |
+
load_model(args.save_dir, args.model_type, args.repo_id)
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for SeamlessM4T
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...utils import is_torch_available
|
24 |
+
|
25 |
+
|
26 |
+
if is_torch_available():
|
27 |
+
import torch
|
28 |
+
|
29 |
+
from ...audio_utils import mel_filter_bank, spectrogram, window_function
|
30 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
31 |
+
from ...feature_extraction_utils import BatchFeature
|
32 |
+
from ...utils import PaddingStrategy, TensorType, logging
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor):
|
39 |
+
r"""
|
40 |
+
Constructs a SeamlessM4T feature extractor.
|
41 |
+
|
42 |
+
This feature extractor inherits from [`SequenceFeatureExtractor`] which contains most of the main methods. Users
|
43 |
+
should refer to this superclass for more information regarding those methods.
|
44 |
+
|
45 |
+
This class extracts mel-filter bank features from raw speech.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
feature_size (`int`, *optional*, defaults to 80):
|
49 |
+
The feature dimension of the extracted features.
|
50 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
51 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
52 |
+
num_mel_bins (`int`, *optional*, defaults to 80):
|
53 |
+
Number of Mel-frequency bins.
|
54 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
55 |
+
The value that is used to fill the padding vectors.
|
56 |
+
stride (`int`, *optional*, defaults to 2):
|
57 |
+
Stride used to reshape audios from shape (batch_size,num_frames,num_mel_bins) to
|
58 |
+
(batch_size,num_frames//stride,num_mel_bins*stride).
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_input_names = ["input_features", "attention_mask"]
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
feature_size=80,
|
66 |
+
sampling_rate=16000,
|
67 |
+
num_mel_bins=80,
|
68 |
+
padding_value=0.0,
|
69 |
+
stride=2,
|
70 |
+
**kwargs,
|
71 |
+
):
|
72 |
+
self.num_mel_bins = num_mel_bins
|
73 |
+
self.return_attention_mask = True
|
74 |
+
self.stride = stride
|
75 |
+
|
76 |
+
mel_filters = mel_filter_bank(
|
77 |
+
num_frequency_bins=256,
|
78 |
+
num_mel_filters=self.num_mel_bins,
|
79 |
+
min_frequency=20,
|
80 |
+
max_frequency=sampling_rate // 2,
|
81 |
+
sampling_rate=sampling_rate,
|
82 |
+
norm=None,
|
83 |
+
mel_scale="kaldi",
|
84 |
+
triangularize_in_mel_space=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
|
88 |
+
self.window = window_function(400, "povey", periodic=False)
|
89 |
+
|
90 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
|
94 |
+
def zero_mean_unit_var_norm(
|
95 |
+
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
|
96 |
+
) -> List[np.ndarray]:
|
97 |
+
"""
|
98 |
+
Every array in the list is normalized to have zero mean and unit variance
|
99 |
+
"""
|
100 |
+
if attention_mask is not None:
|
101 |
+
attention_mask = np.array(attention_mask, np.int32)
|
102 |
+
normed_input_values = []
|
103 |
+
|
104 |
+
for vector, length in zip(input_values, attention_mask.sum(-1)):
|
105 |
+
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
|
106 |
+
if length < normed_slice.shape[0]:
|
107 |
+
normed_slice[length:] = padding_value
|
108 |
+
|
109 |
+
normed_input_values.append(normed_slice)
|
110 |
+
else:
|
111 |
+
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
|
112 |
+
|
113 |
+
return normed_input_values
|
114 |
+
|
115 |
+
def _extract_fbank_features(
|
116 |
+
self,
|
117 |
+
waveform: np.ndarray,
|
118 |
+
) -> np.ndarray:
|
119 |
+
"""
|
120 |
+
Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
|
121 |
+
and hence the waveform should not be normalized before feature extraction.
|
122 |
+
"""
|
123 |
+
# by default, it extracts the left channel if stereo
|
124 |
+
if len(waveform.shape) == 2:
|
125 |
+
waveform = waveform[0]
|
126 |
+
|
127 |
+
waveform = np.squeeze(waveform) * (2**15) # Kaldi compliance: 16-bit signed integers
|
128 |
+
features = spectrogram(
|
129 |
+
waveform,
|
130 |
+
self.window,
|
131 |
+
frame_length=400,
|
132 |
+
hop_length=160,
|
133 |
+
fft_length=512,
|
134 |
+
power=2.0,
|
135 |
+
center=False,
|
136 |
+
preemphasis=0.97,
|
137 |
+
mel_filters=self.mel_filters,
|
138 |
+
log_mel="log",
|
139 |
+
mel_floor=1.192092955078125e-07,
|
140 |
+
remove_dc_offset=True,
|
141 |
+
).T
|
142 |
+
return features
|
143 |
+
|
144 |
+
def __call__(
|
145 |
+
self,
|
146 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
147 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
148 |
+
pad_to_multiple_of: Optional[int] = 2,
|
149 |
+
max_length: Optional[int] = None,
|
150 |
+
truncation: bool = False,
|
151 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
152 |
+
sampling_rate: Optional[int] = None,
|
153 |
+
return_attention_mask: Optional[bool] = None,
|
154 |
+
do_normalize_per_mel_bins: Optional[bool] = True,
|
155 |
+
**kwargs,
|
156 |
+
) -> BatchFeature:
|
157 |
+
"""
|
158 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
159 |
+
|
160 |
+
Args:
|
161 |
+
raw_speech (`np.ndarray`, `torch.Tensor`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`,
|
162 |
+
`List[List[float]]`, `List[List[List[float]]]`):
|
163 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array,
|
164 |
+
a torch tensor, a list of float values, a list of numpy arrays, a list of torch tensors,
|
165 |
+
a list of list of float values or a list of a list of list of float values.
|
166 |
+
If `raw_speech` is a one-dimensional `np.ndarray`, `torch.Tensor` or a `List[float]`, `raw_speech` is
|
167 |
+
considered a single-channel, single-sample sound. In all other cases, the first dimension of
|
168 |
+
`raw_speech`, whether from an `np.ndarray`, a `torch.Tensor` or a `List[...]`,
|
169 |
+
corresponds to the number of samples in the batch, and the number of channels
|
170 |
+
(i.e. mono or stereo character) is derived from the other dimensions
|
171 |
+
(1D -> single-channel waveform batches; 2D-> stereo-channel waveform batches).
|
172 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
173 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
174 |
+
index) among:
|
175 |
+
|
176 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
177 |
+
sequence if provided).
|
178 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
179 |
+
acceptable input length for the model if that argument is not provided.
|
180 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
181 |
+
lengths).
|
182 |
+
pad_to_multiple_of (`int`, *optional*, defaults to 2):
|
183 |
+
If set will pad the sequence to a multiple of the provided value.
|
184 |
+
|
185 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
186 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
187 |
+
max_length (`int`, *optional*):
|
188 |
+
Maximum length of the returned list and optionally padding length (see above).
|
189 |
+
truncation (`bool`):
|
190 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
191 |
+
return_attention_mask (`bool`, *optional*):
|
192 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
193 |
+
to the specific feature_extractor's default.
|
194 |
+
|
195 |
+
[What are attention masks?](../glossary#attention-mask)
|
196 |
+
|
197 |
+
<Tip>
|
198 |
+
|
199 |
+
For SeamlessM4T models, `attention_mask` should always be passed for batched inference, to avoid subtle
|
200 |
+
bugs.
|
201 |
+
|
202 |
+
</Tip>
|
203 |
+
|
204 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
205 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
206 |
+
|
207 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
208 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
209 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
210 |
+
sampling_rate (`int`, *optional*):
|
211 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
212 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
213 |
+
do_normalize_per_mel_bins (`bool`, *optional*, defaults to `True`):
|
214 |
+
Whether or not to zero-mean unit-variance normalize the input per mel-channel.
|
215 |
+
kwargs (*optional*):
|
216 |
+
Remaining dictionary of keyword arguments that will be passed to the tokenizer or the feature
|
217 |
+
extractor.
|
218 |
+
"""
|
219 |
+
if sampling_rate is not None:
|
220 |
+
if sampling_rate != self.sampling_rate:
|
221 |
+
raise ValueError(
|
222 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
223 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
224 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
logger.warning(
|
228 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
229 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
230 |
+
)
|
231 |
+
|
232 |
+
return_attention_mask = (
|
233 |
+
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
|
234 |
+
)
|
235 |
+
|
236 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
237 |
+
if is_batched_numpy and len(raw_speech.shape) > 3:
|
238 |
+
raise ValueError(f"Only mono-channel or stereo-channel audio is supported for input to {self}")
|
239 |
+
|
240 |
+
acceptable_types = (
|
241 |
+
(torch.Tensor, np.ndarray, tuple, list) if is_torch_available() else (np.ndarray, tuple, list)
|
242 |
+
)
|
243 |
+
is_batched = is_batched_numpy or (
|
244 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], acceptable_types))
|
245 |
+
)
|
246 |
+
|
247 |
+
if is_batched:
|
248 |
+
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
|
249 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
250 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
251 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
252 |
+
raw_speech = raw_speech.astype(np.float32)
|
253 |
+
|
254 |
+
# always return batch
|
255 |
+
if not is_batched:
|
256 |
+
raw_speech = [raw_speech]
|
257 |
+
|
258 |
+
# extract fbank features
|
259 |
+
features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
|
260 |
+
|
261 |
+
if do_normalize_per_mel_bins:
|
262 |
+
# torch defaults to ddof=1, and numpy defaults to ddof=0
|
263 |
+
features = [
|
264 |
+
(x - np.expand_dims(x.mean(0), 0)) / np.sqrt(np.expand_dims(x.var(0, ddof=1), 0) + 1e-7)
|
265 |
+
for x in features
|
266 |
+
]
|
267 |
+
|
268 |
+
# convert into correct format for padding
|
269 |
+
encoded_inputs = BatchFeature({"input_features": features})
|
270 |
+
|
271 |
+
padded_inputs = self.pad(
|
272 |
+
encoded_inputs,
|
273 |
+
padding=padding,
|
274 |
+
max_length=max_length,
|
275 |
+
truncation=truncation,
|
276 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
277 |
+
return_attention_mask=True,
|
278 |
+
return_tensors="np",
|
279 |
+
)
|
280 |
+
|
281 |
+
# SeamlessM4T needs to process extracted features
|
282 |
+
input_features = padded_inputs.get("input_features")
|
283 |
+
attention_mask = padded_inputs.pop("attention_mask")
|
284 |
+
|
285 |
+
batch_size, num_frames, num_channels = input_features.shape
|
286 |
+
|
287 |
+
remainder = num_frames % self.stride
|
288 |
+
if remainder != 0:
|
289 |
+
input_features = input_features[:, :num_frames, :]
|
290 |
+
attention_mask = attention_mask[:, :num_frames]
|
291 |
+
|
292 |
+
input_features = np.reshape(
|
293 |
+
input_features, (batch_size, num_frames // self.stride, num_channels * self.stride)
|
294 |
+
)
|
295 |
+
|
296 |
+
indices = np.arange(0, num_frames)
|
297 |
+
attention_mask = attention_mask[:, indices % self.stride == 1]
|
298 |
+
|
299 |
+
padded_inputs["input_features"] = input_features
|
300 |
+
if return_attention_mask:
|
301 |
+
padded_inputs["attention_mask"] = attention_mask
|
302 |
+
|
303 |
+
if return_tensors is not None:
|
304 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
305 |
+
|
306 |
+
return padded_inputs
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/modeling_seamless_m4t.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/processing_seamless_m4t.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Audio/Text processor class for SeamlessM4T
|
17 |
+
"""
|
18 |
+
|
19 |
+
from ...processing_utils import ProcessorMixin
|
20 |
+
|
21 |
+
|
22 |
+
class SeamlessM4TProcessor(ProcessorMixin):
|
23 |
+
r"""
|
24 |
+
Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a
|
25 |
+
single processor.
|
26 |
+
|
27 |
+
[`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and
|
28 |
+
[`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for
|
29 |
+
more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
feature_extractor ([`SeamlessM4TFeatureExtractor`]):
|
33 |
+
The audio processor is a required input.
|
34 |
+
tokenizer ([`SeamlessM4TTokenizerFast`]):
|
35 |
+
The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
feature_extractor_class = "SeamlessM4TFeatureExtractor"
|
39 |
+
tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast")
|
40 |
+
|
41 |
+
def __init__(self, feature_extractor, tokenizer):
|
42 |
+
super().__init__(feature_extractor, tokenizer)
|
43 |
+
|
44 |
+
def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs):
|
45 |
+
"""
|
46 |
+
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
|
47 |
+
and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not
|
48 |
+
`None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
|
49 |
+
SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer
|
50 |
+
to the doctsring of the above two methods for more information.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
54 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
55 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
56 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
57 |
+
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
58 |
+
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
|
59 |
+
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
|
60 |
+
and T the sample length of the audio.
|
61 |
+
src_lang (`str`, *optional*):
|
62 |
+
The language code of the input texts/audios. If not specified, the last `src_lang` specified will be
|
63 |
+
used.
|
64 |
+
tgt_lang (`str`, *optional*):
|
65 |
+
The code of the target language. If not specified, the last `tgt_lang` specified will be used.
|
66 |
+
kwargs (*optional*):
|
67 |
+
Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
|
68 |
+
tokenizer.
|
69 |
+
Returns:
|
70 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
71 |
+
|
72 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
73 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
74 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
75 |
+
`None`).
|
76 |
+
- **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`.
|
77 |
+
"""
|
78 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
79 |
+
|
80 |
+
if text is None and audios is None:
|
81 |
+
raise ValueError("You have to specify either text or audios. Both cannot be none.")
|
82 |
+
elif text is not None and audios is not None:
|
83 |
+
raise ValueError(
|
84 |
+
"Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another."
|
85 |
+
)
|
86 |
+
elif text is not None:
|
87 |
+
if tgt_lang is not None:
|
88 |
+
self.tokenizer.tgt_lang = tgt_lang
|
89 |
+
if src_lang is not None:
|
90 |
+
self.tokenizer.src_lang = src_lang
|
91 |
+
encoding = self.tokenizer(text, **kwargs)
|
92 |
+
|
93 |
+
return encoding
|
94 |
+
|
95 |
+
else:
|
96 |
+
encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs)
|
97 |
+
return encoding
|
98 |
+
|
99 |
+
def batch_decode(self, *args, **kwargs):
|
100 |
+
"""
|
101 |
+
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
|
102 |
+
Please refer to the docstring of this method for more information.
|
103 |
+
"""
|
104 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
105 |
+
|
106 |
+
def decode(self, *args, **kwargs):
|
107 |
+
"""
|
108 |
+
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
|
109 |
+
refer to the docstring of this method for more information.
|
110 |
+
"""
|
111 |
+
return self.tokenizer.decode(*args, **kwargs)
|
112 |
+
|
113 |
+
@property
|
114 |
+
def model_input_names(self):
|
115 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
116 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
117 |
+
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for SeamlessM4T."""
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import sentencepiece as spm
|
21 |
+
|
22 |
+
from ...convert_slow_tokenizer import import_protobuf
|
23 |
+
from ...tokenization_utils import (
|
24 |
+
BatchEncoding,
|
25 |
+
PreTokenizedInput,
|
26 |
+
PreTrainedTokenizer,
|
27 |
+
TextInput,
|
28 |
+
)
|
29 |
+
from ...tokenization_utils_base import AddedToken
|
30 |
+
from ...utils import PaddingStrategy, logging
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
SPIECE_UNDERLINE = "▁"
|
37 |
+
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
40 |
+
|
41 |
+
|
42 |
+
class SeamlessM4TTokenizer(PreTrainedTokenizer):
|
43 |
+
"""
|
44 |
+
Construct a SeamlessM4T tokenizer.
|
45 |
+
|
46 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
47 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
48 |
+
|
49 |
+
The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language
|
50 |
+
code> <tokens> <eos>` for target language documents.
|
51 |
+
|
52 |
+
Examples:
|
53 |
+
|
54 |
+
```python
|
55 |
+
>>> from transformers import SeamlessM4TTokenizer
|
56 |
+
|
57 |
+
>>> tokenizer = SeamlessM4TTokenizer.from_pretrained(
|
58 |
+
... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
|
59 |
+
... )
|
60 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
61 |
+
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
|
62 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
|
63 |
+
```
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vocab_file (`str`):
|
67 |
+
Path to the vocabulary file.
|
68 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
69 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
70 |
+
|
71 |
+
<Tip>
|
72 |
+
|
73 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
74 |
+
sequence. The token used is the `cls_token`.
|
75 |
+
|
76 |
+
</Tip>
|
77 |
+
|
78 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
79 |
+
The end of sequence token.
|
80 |
+
|
81 |
+
<Tip>
|
82 |
+
|
83 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
84 |
+
The token used is the `sep_token`.
|
85 |
+
|
86 |
+
</Tip>
|
87 |
+
|
88 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
89 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
90 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
91 |
+
token of a sequence built with special tokens.
|
92 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
93 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
94 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
95 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
96 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
97 |
+
token instead.
|
98 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
99 |
+
The token used for padding, for example when batching sequences of different lengths.
|
100 |
+
tokenizer_file (`str`, *optional*):
|
101 |
+
The path to a tokenizer file to use instead of the vocab file.
|
102 |
+
src_lang (`str`, *optional*, defaults to `"eng"`):
|
103 |
+
The language to use as source language for translation.
|
104 |
+
tgt_lang (`str`, *optional*, defaults to `"fra"`):
|
105 |
+
The language to use as target language for translation.
|
106 |
+
sp_model_kwargs (`Dict[str, Any]`, *optional*):
|
107 |
+
Additional keyword arguments to pass to the model initialization.
|
108 |
+
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
|
109 |
+
A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be
|
110 |
+
supported by the tokenizer.
|
111 |
+
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
112 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
113 |
+
other word.
|
114 |
+
"""
|
115 |
+
|
116 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
117 |
+
model_input_names = ["input_ids", "attention_mask"]
|
118 |
+
|
119 |
+
prefix_tokens: List[int] = []
|
120 |
+
suffix_tokens: List[int] = []
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
vocab_file,
|
125 |
+
bos_token="<s>",
|
126 |
+
eos_token="</s>",
|
127 |
+
sep_token="</s>",
|
128 |
+
cls_token="<s>",
|
129 |
+
unk_token="<unk>",
|
130 |
+
pad_token="<pad>",
|
131 |
+
tokenizer_file=None,
|
132 |
+
src_lang="eng",
|
133 |
+
tgt_lang="fra",
|
134 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
135 |
+
additional_special_tokens=None,
|
136 |
+
add_prefix_space=True,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
140 |
+
# Add this unused argument to keep some important Copied from statements
|
141 |
+
self.legacy = False
|
142 |
+
self.vocab_file = vocab_file
|
143 |
+
|
144 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
145 |
+
|
146 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
147 |
+
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
|
148 |
+
# spm | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a'
|
149 |
+
# fairseq | '<pad>' | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s'
|
150 |
+
|
151 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
152 |
+
self._added_tokens_decoder = {
|
153 |
+
0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
|
154 |
+
1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
|
155 |
+
2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token,
|
156 |
+
3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token,
|
157 |
+
}
|
158 |
+
|
159 |
+
# The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
160 |
+
self.fairseq_offset = 1
|
161 |
+
|
162 |
+
self.sp_model_size = len(self.sp_model)
|
163 |
+
|
164 |
+
self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
|
165 |
+
self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
|
166 |
+
self.add_prefix_space = add_prefix_space
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
bos_token=bos_token,
|
170 |
+
eos_token=eos_token,
|
171 |
+
unk_token=unk_token,
|
172 |
+
sep_token=sep_token,
|
173 |
+
cls_token=cls_token,
|
174 |
+
pad_token=pad_token,
|
175 |
+
tokenizer_file=tokenizer_file,
|
176 |
+
src_lang=src_lang,
|
177 |
+
tgt_lang=tgt_lang,
|
178 |
+
additional_special_tokens=additional_special_tokens,
|
179 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
180 |
+
add_prefix_space=add_prefix_space,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
|
184 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
185 |
+
self.set_tgt_lang_special_tokens(self._tgt_lang)
|
186 |
+
|
187 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__
|
188 |
+
def __getstate__(self):
|
189 |
+
state = self.__dict__.copy()
|
190 |
+
state["sp_model"] = None
|
191 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
192 |
+
return state
|
193 |
+
|
194 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__
|
195 |
+
def __setstate__(self, d):
|
196 |
+
self.__dict__ = d
|
197 |
+
|
198 |
+
# for backward compatibility
|
199 |
+
if not hasattr(self, "sp_model_kwargs"):
|
200 |
+
self.sp_model_kwargs = {}
|
201 |
+
|
202 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
203 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
204 |
+
|
205 |
+
@property
|
206 |
+
def vocab_size(self):
|
207 |
+
return len(self.sp_model)
|
208 |
+
|
209 |
+
def __call__(
|
210 |
+
self,
|
211 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
212 |
+
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
213 |
+
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
214 |
+
text_pair_target: Optional[
|
215 |
+
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
216 |
+
] = None,
|
217 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
218 |
+
pad_to_multiple_of: Optional[int] = 2,
|
219 |
+
src_lang: Optional[str] = None,
|
220 |
+
tgt_lang: Optional[str] = None,
|
221 |
+
**kwargs,
|
222 |
+
):
|
223 |
+
"""
|
224 |
+
Args:
|
225 |
+
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
226 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
227 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
228 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
229 |
+
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
230 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
231 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
232 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
233 |
+
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
234 |
+
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
235 |
+
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
236 |
+
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
237 |
+
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
238 |
+
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
239 |
+
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
240 |
+
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
241 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
242 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
243 |
+
index) among:
|
244 |
+
|
245 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
246 |
+
sequence if provided).
|
247 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
248 |
+
acceptable input length for the model if that argument is not provided.
|
249 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
250 |
+
lengths).
|
251 |
+
pad_to_multiple_of (`int`, *optional*):
|
252 |
+
If set will pad the sequence to a multiple of the provided value.
|
253 |
+
|
254 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
255 |
+
`>= 7.5` (Volta).
|
256 |
+
src_lang (`str`, *optional*):
|
257 |
+
A string representing the source language. If not specified, the last `src_lang` specified (either
|
258 |
+
during initialization or when calling this tokenizer) will be used.
|
259 |
+
tgt_lang (`str`, *optional*):
|
260 |
+
A string representing the target language. If not specified, the last `tgt_lang` specified (either
|
261 |
+
during initialization or when calling this tokenizer) will be used.
|
262 |
+
kwargs (*optional*):
|
263 |
+
Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`].
|
264 |
+
"""
|
265 |
+
if src_lang is not None:
|
266 |
+
self.src_lang = src_lang
|
267 |
+
if tgt_lang is not None:
|
268 |
+
self.tgt_lang = tgt_lang
|
269 |
+
|
270 |
+
output = super().__call__(
|
271 |
+
text=text,
|
272 |
+
text_pair=text_pair,
|
273 |
+
text_target=text_target,
|
274 |
+
text_pair_target=text_pair_target,
|
275 |
+
padding=padding,
|
276 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
277 |
+
**kwargs,
|
278 |
+
)
|
279 |
+
|
280 |
+
return BatchEncoding(output, tensor_type=kwargs.get("return_tensors"))
|
281 |
+
|
282 |
+
@property
|
283 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
|
284 |
+
def src_lang(self) -> str:
|
285 |
+
return self._src_lang
|
286 |
+
|
287 |
+
@src_lang.setter
|
288 |
+
def src_lang(self, new_src_lang: str) -> None:
|
289 |
+
if "__" not in new_src_lang:
|
290 |
+
self._src_lang = f"__{new_src_lang}__"
|
291 |
+
else:
|
292 |
+
self._src_lang = new_src_lang
|
293 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
294 |
+
|
295 |
+
@property
|
296 |
+
def tgt_lang(self) -> str:
|
297 |
+
return self._tgt_lang
|
298 |
+
|
299 |
+
@tgt_lang.setter
|
300 |
+
def tgt_lang(self, new_tgt_lang: str) -> None:
|
301 |
+
if "__" not in new_tgt_lang:
|
302 |
+
self._tgt_lang = f"__{new_tgt_lang}__"
|
303 |
+
else:
|
304 |
+
self._tgt_lang = new_tgt_lang
|
305 |
+
self.set_tgt_lang_special_tokens(self._tgt_lang)
|
306 |
+
|
307 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask
|
308 |
+
def get_special_tokens_mask(
|
309 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
310 |
+
) -> List[int]:
|
311 |
+
"""
|
312 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
313 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
token_ids_0 (`List[int]`):
|
317 |
+
List of IDs.
|
318 |
+
token_ids_1 (`List[int]`, *optional*):
|
319 |
+
Optional second list of IDs for sequence pairs.
|
320 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
321 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
325 |
+
"""
|
326 |
+
|
327 |
+
if already_has_special_tokens:
|
328 |
+
return super().get_special_tokens_mask(
|
329 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
330 |
+
)
|
331 |
+
|
332 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
333 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
334 |
+
if token_ids_1 is None:
|
335 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
336 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
337 |
+
|
338 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens
|
339 |
+
def build_inputs_with_special_tokens(
|
340 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
341 |
+
) -> List[int]:
|
342 |
+
"""
|
343 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
344 |
+
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
|
345 |
+
|
346 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
347 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
348 |
+
|
349 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
350 |
+
separator.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
token_ids_0 (`List[int]`):
|
354 |
+
List of IDs to which the special tokens will be added.
|
355 |
+
token_ids_1 (`List[int]`, *optional*):
|
356 |
+
Optional second list of IDs for sequence pairs.
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
360 |
+
"""
|
361 |
+
if token_ids_1 is None:
|
362 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
363 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
364 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
365 |
+
|
366 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences
|
367 |
+
def create_token_type_ids_from_sequences(
|
368 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
369 |
+
) -> List[int]:
|
370 |
+
"""
|
371 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
|
372 |
+
make use of token type ids, therefore a list of zeros is returned.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
token_ids_0 (`List[int]`):
|
376 |
+
List of IDs.
|
377 |
+
token_ids_1 (`List[int]`, *optional*):
|
378 |
+
Optional second list of IDs for sequence pairs.
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
`List[int]`: List of zeros.
|
382 |
+
|
383 |
+
"""
|
384 |
+
|
385 |
+
sep = [self.sep_token_id]
|
386 |
+
cls = [self.cls_token_id]
|
387 |
+
|
388 |
+
if token_ids_1 is None:
|
389 |
+
return len(cls + token_ids_0 + sep) * [0]
|
390 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
391 |
+
|
392 |
+
def _build_translation_inputs(
|
393 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
394 |
+
):
|
395 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
396 |
+
if src_lang is None or tgt_lang is None:
|
397 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.")
|
398 |
+
self.src_lang = src_lang
|
399 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
400 |
+
if "__" not in tgt_lang:
|
401 |
+
tgt_lang = f"__{tgt_lang}__"
|
402 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
403 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
404 |
+
return inputs
|
405 |
+
|
406 |
+
def get_vocab(self):
|
407 |
+
vocab = {
|
408 |
+
self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset)
|
409 |
+
}
|
410 |
+
vocab.update(self.added_tokens_encoder)
|
411 |
+
return vocab
|
412 |
+
|
413 |
+
@property
|
414 |
+
def unk_token_length(self):
|
415 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
416 |
+
|
417 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
418 |
+
def get_spm_processor(self, from_slow=False):
|
419 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
420 |
+
if self.legacy or from_slow: # no dependency on protobuf
|
421 |
+
tokenizer.Load(self.vocab_file)
|
422 |
+
return tokenizer
|
423 |
+
|
424 |
+
with open(self.vocab_file, "rb") as f:
|
425 |
+
sp_model = f.read()
|
426 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
427 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
428 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
429 |
+
normalizer_spec.add_dummy_prefix = False
|
430 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
431 |
+
sp_model = model.SerializeToString()
|
432 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
433 |
+
return tokenizer
|
434 |
+
|
435 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
436 |
+
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
437 |
+
"""
|
438 |
+
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
439 |
+
first token is special.
|
440 |
+
"""
|
441 |
+
if self.legacy or len(text) == 0:
|
442 |
+
return super().tokenize(text, **kwargs)
|
443 |
+
|
444 |
+
text = text.replace(SPIECE_UNDERLINE, " ")
|
445 |
+
if self.add_prefix_space:
|
446 |
+
text = SPIECE_UNDERLINE + text
|
447 |
+
|
448 |
+
tokens = super().tokenize(text, **kwargs)
|
449 |
+
|
450 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
451 |
+
tokens = tokens[1:]
|
452 |
+
return tokens
|
453 |
+
|
454 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
455 |
+
def _tokenize(self, text, **kwargs):
|
456 |
+
"""
|
457 |
+
Returns a tokenized string.
|
458 |
+
|
459 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
460 |
+
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
461 |
+
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
462 |
+
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
463 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
464 |
+
"""
|
465 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
466 |
+
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
467 |
+
return tokens
|
468 |
+
|
469 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
470 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
471 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
472 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
473 |
+
|
474 |
+
def _convert_token_to_id(self, token):
|
475 |
+
"""Converts a token (str) in an id using the vocab."""
|
476 |
+
spm_id = self.sp_model.PieceToId(token)
|
477 |
+
|
478 |
+
# Need to return unknown token if the SP model returned 0
|
479 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
480 |
+
|
481 |
+
def _convert_id_to_token(self, index):
|
482 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
483 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
484 |
+
|
485 |
+
def convert_tokens_to_string(self, tokens):
|
486 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
487 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
488 |
+
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
489 |
+
tokens[0] = tokens[0][1:]
|
490 |
+
|
491 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
492 |
+
return out_string
|
493 |
+
|
494 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary
|
495 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
496 |
+
if not os.path.isdir(save_directory):
|
497 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
498 |
+
return
|
499 |
+
out_vocab_file = os.path.join(
|
500 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
501 |
+
)
|
502 |
+
|
503 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
504 |
+
copyfile(self.vocab_file, out_vocab_file)
|
505 |
+
elif not os.path.isfile(self.vocab_file):
|
506 |
+
with open(out_vocab_file, "wb") as fi:
|
507 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
508 |
+
fi.write(content_spiece_model)
|
509 |
+
|
510 |
+
return (out_vocab_file,)
|
511 |
+
|
512 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra
|
513 |
+
def prepare_seq2seq_batch(
|
514 |
+
self,
|
515 |
+
src_texts: List[str],
|
516 |
+
src_lang: str = "eng",
|
517 |
+
tgt_texts: Optional[List[str]] = None,
|
518 |
+
tgt_lang: str = "fra",
|
519 |
+
**kwargs,
|
520 |
+
) -> BatchEncoding:
|
521 |
+
self.src_lang = src_lang
|
522 |
+
self.tgt_lang = tgt_lang
|
523 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
524 |
+
|
525 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode
|
526 |
+
def _switch_to_input_mode(self):
|
527 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
528 |
+
|
529 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode
|
530 |
+
def _switch_to_target_mode(self):
|
531 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
532 |
+
|
533 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
534 |
+
"""Reset the special tokens to the source lang setting.
|
535 |
+
Prefix=[src_lang_code], suffix = [eos]
|
536 |
+
"""
|
537 |
+
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
538 |
+
self.init_kwargs["src_lang"] = src_lang
|
539 |
+
|
540 |
+
if self.cur_lang_code == self.unk_token_id:
|
541 |
+
logger.warning_once(
|
542 |
+
f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
|
543 |
+
)
|
544 |
+
|
545 |
+
self.prefix_tokens = [self.cur_lang_code]
|
546 |
+
self.suffix_tokens = [self.eos_token_id]
|
547 |
+
|
548 |
+
# https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116
|
549 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
550 |
+
"""Reset the special tokens to the target lang setting.
|
551 |
+
Prefix=[eos, tgt_lang_code] and suffix=[eos].
|
552 |
+
"""
|
553 |
+
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
554 |
+
self.init_kwargs["tgt_lang"] = lang
|
555 |
+
|
556 |
+
if self.cur_lang_code == self.unk_token_id:
|
557 |
+
logger.warning_once(
|
558 |
+
f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
|
559 |
+
)
|
560 |
+
|
561 |
+
self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
|
562 |
+
self.suffix_tokens = [self.eos_token_id]
|
venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Fast Tokenization class for SeamlessM4T."""
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
from tokenizers import processors
|
21 |
+
|
22 |
+
from ...tokenization_utils import (
|
23 |
+
BatchEncoding,
|
24 |
+
PreTokenizedInput,
|
25 |
+
TextInput,
|
26 |
+
)
|
27 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
28 |
+
from ...utils import PaddingStrategy, is_sentencepiece_available, logging
|
29 |
+
|
30 |
+
|
31 |
+
if is_sentencepiece_available():
|
32 |
+
from .tokenization_seamless_m4t import SeamlessM4TTokenizer
|
33 |
+
else:
|
34 |
+
SeamlessM4TTokenizer = None
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
39 |
+
|
40 |
+
|
41 |
+
class SeamlessM4TTokenizerFast(PreTrainedTokenizerFast):
|
42 |
+
"""
|
43 |
+
Construct a "fast" SeamlessM4T tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
44 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
45 |
+
|
46 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
47 |
+
refer to this superclass for more information regarding those methods.
|
48 |
+
|
49 |
+
The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language
|
50 |
+
code> <tokens> <eos>` for target language documents.
|
51 |
+
|
52 |
+
Examples:
|
53 |
+
|
54 |
+
```python
|
55 |
+
>>> from transformers import SeamlessM4TTokenizerFast
|
56 |
+
|
57 |
+
>>> tokenizer = SeamlessM4TTokenizerFast.from_pretrained(
|
58 |
+
... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
|
59 |
+
... )
|
60 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
61 |
+
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
|
62 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
|
63 |
+
```
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vocab_file (`str`, *optional*):
|
67 |
+
Path to the vocabulary file.
|
68 |
+
tokenizer_file (`str`, *optional*):
|
69 |
+
The path to a tokenizer file to use instead of the vocab file.
|
70 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
71 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
72 |
+
|
73 |
+
<Tip>
|
74 |
+
|
75 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
76 |
+
sequence. The token used is the `cls_token`.
|
77 |
+
|
78 |
+
</Tip>
|
79 |
+
|
80 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
81 |
+
The end of sequence token.
|
82 |
+
|
83 |
+
<Tip>
|
84 |
+
|
85 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
86 |
+
The token used is the `sep_token`.
|
87 |
+
|
88 |
+
</Tip>
|
89 |
+
|
90 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
91 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
92 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
93 |
+
token of a sequence built with special tokens.
|
94 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
95 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
96 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
97 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
98 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
99 |
+
token instead.
|
100 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
101 |
+
The token used for padding, for example when batching sequences of different lengths.
|
102 |
+
src_lang (`str`, *optional*, defaults to `"eng"`):
|
103 |
+
The language to use as source language for translation.
|
104 |
+
tgt_lang (`str`, *optional*, defaults to `"fra"`):
|
105 |
+
The language to use as target language for translation.
|
106 |
+
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
|
107 |
+
A tuple or a list of additional special tokens.
|
108 |
+
"""
|
109 |
+
|
110 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
111 |
+
slow_tokenizer_class = SeamlessM4TTokenizer
|
112 |
+
model_input_names = ["input_ids", "attention_mask"]
|
113 |
+
|
114 |
+
prefix_tokens: List[int] = []
|
115 |
+
suffix_tokens: List[int] = []
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_file=None,
|
120 |
+
tokenizer_file=None,
|
121 |
+
bos_token="<s>",
|
122 |
+
eos_token="</s>",
|
123 |
+
sep_token="</s>",
|
124 |
+
cls_token="<s>",
|
125 |
+
unk_token="<unk>",
|
126 |
+
pad_token="<pad>",
|
127 |
+
src_lang="eng",
|
128 |
+
tgt_lang="fra",
|
129 |
+
additional_special_tokens=None,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__(
|
133 |
+
vocab_file=vocab_file,
|
134 |
+
tokenizer_file=tokenizer_file,
|
135 |
+
bos_token=bos_token,
|
136 |
+
eos_token=eos_token,
|
137 |
+
sep_token=sep_token,
|
138 |
+
cls_token=cls_token,
|
139 |
+
unk_token=unk_token,
|
140 |
+
pad_token=pad_token,
|
141 |
+
src_lang=src_lang,
|
142 |
+
tgt_lang=tgt_lang,
|
143 |
+
additional_special_tokens=additional_special_tokens,
|
144 |
+
**kwargs,
|
145 |
+
)
|
146 |
+
|
147 |
+
self.vocab_file = vocab_file
|
148 |
+
self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
|
149 |
+
self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
|
150 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
151 |
+
self.set_tgt_lang_special_tokens(self._tgt_lang)
|
152 |
+
|
153 |
+
@property
|
154 |
+
def can_save_slow_tokenizer(self) -> bool:
|
155 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
156 |
+
|
157 |
+
@property
|
158 |
+
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
|
159 |
+
def src_lang(self) -> str:
|
160 |
+
return self._src_lang
|
161 |
+
|
162 |
+
@src_lang.setter
|
163 |
+
def src_lang(self, new_src_lang: str) -> None:
|
164 |
+
if "__" not in new_src_lang:
|
165 |
+
self._src_lang = f"__{new_src_lang}__"
|
166 |
+
else:
|
167 |
+
self._src_lang = new_src_lang
|
168 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
169 |
+
|
170 |
+
@property
|
171 |
+
def tgt_lang(self) -> str:
|
172 |
+
return self._tgt_lang
|
173 |
+
|
174 |
+
@tgt_lang.setter
|
175 |
+
def tgt_lang(self, new_tgt_lang: str) -> None:
|
176 |
+
if "__" not in new_tgt_lang:
|
177 |
+
self._tgt_lang = f"__{new_tgt_lang}__"
|
178 |
+
else:
|
179 |
+
self._tgt_lang = new_tgt_lang
|
180 |
+
self.set_tgt_lang_special_tokens(self._tgt_lang)
|
181 |
+
|
182 |
+
def build_inputs_with_special_tokens(
|
183 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
184 |
+
) -> List[int]:
|
185 |
+
"""
|
186 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
187 |
+
adding special tokens. The special tokens depend on calling set_lang.
|
188 |
+
|
189 |
+
An SeamlessM4T sequence has the following format, where `X` represents the sequence:
|
190 |
+
|
191 |
+
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
192 |
+
- `decoder_input_ids`: (for decoder) `[eos, tgt_lang_code] X [eos]`
|
193 |
+
|
194 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
195 |
+
separator.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
token_ids_0 (`List[int]`):
|
199 |
+
List of IDs to which the special tokens will be added.
|
200 |
+
token_ids_1 (`List[int]`, *optional*):
|
201 |
+
Optional second list of IDs for sequence pairs.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
205 |
+
"""
|
206 |
+
if token_ids_1 is None:
|
207 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
208 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
209 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
210 |
+
|
211 |
+
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.create_token_type_ids_from_sequences
|
212 |
+
def create_token_type_ids_from_sequences(
|
213 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
214 |
+
) -> List[int]:
|
215 |
+
"""
|
216 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
|
217 |
+
make use of token type ids, therefore a list of zeros is returned.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
token_ids_0 (`List[int]`):
|
221 |
+
List of IDs.
|
222 |
+
token_ids_1 (`List[int]`, *optional*):
|
223 |
+
Optional second list of IDs for sequence pairs.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
`List[int]`: List of zeros.
|
227 |
+
|
228 |
+
"""
|
229 |
+
|
230 |
+
sep = [self.sep_token_id]
|
231 |
+
cls = [self.cls_token_id]
|
232 |
+
|
233 |
+
if token_ids_1 is None:
|
234 |
+
return len(cls + token_ids_0 + sep) * [0]
|
235 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
236 |
+
|
237 |
+
def _build_translation_inputs(
|
238 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
239 |
+
):
|
240 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
241 |
+
if src_lang is None or tgt_lang is None:
|
242 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
243 |
+
self.src_lang = src_lang
|
244 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
245 |
+
if "__" not in tgt_lang:
|
246 |
+
tgt_lang = f"__{tgt_lang}__"
|
247 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
248 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
249 |
+
return inputs
|
250 |
+
|
251 |
+
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.prepare_seq2seq_batch with "fra_Latn"->"fra", "eng_Latn"->"eng"
|
252 |
+
def prepare_seq2seq_batch(
|
253 |
+
self,
|
254 |
+
src_texts: List[str],
|
255 |
+
src_lang: str = "eng",
|
256 |
+
tgt_texts: Optional[List[str]] = None,
|
257 |
+
tgt_lang: str = "fra",
|
258 |
+
**kwargs,
|
259 |
+
) -> BatchEncoding:
|
260 |
+
self.src_lang = src_lang
|
261 |
+
self.tgt_lang = tgt_lang
|
262 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
263 |
+
|
264 |
+
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_input_mode
|
265 |
+
def _switch_to_input_mode(self):
|
266 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
267 |
+
|
268 |
+
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_target_mode
|
269 |
+
def _switch_to_target_mode(self):
|
270 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
271 |
+
|
272 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
273 |
+
"""Reset the special tokens to the source lang setting.
|
274 |
+
Prefix=[src_lang_code], suffix = [eos]
|
275 |
+
"""
|
276 |
+
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
277 |
+
|
278 |
+
if self.cur_lang_code == self.unk_token_id:
|
279 |
+
logger.warning_once(
|
280 |
+
f"`tgt_lang={src_lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
|
281 |
+
)
|
282 |
+
|
283 |
+
self.init_kwargs["src_lang"] = src_lang
|
284 |
+
|
285 |
+
self.prefix_tokens = [self.cur_lang_code]
|
286 |
+
self.suffix_tokens = [self.eos_token_id]
|
287 |
+
|
288 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
289 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
290 |
+
|
291 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
292 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
293 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
294 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
295 |
+
)
|
296 |
+
|
297 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
298 |
+
"""Reset the special tokens to the target lang setting.
|
299 |
+
Prefix=[eos, tgt_lang_code] and suffix=[eos].
|
300 |
+
"""
|
301 |
+
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
302 |
+
|
303 |
+
if self.cur_lang_code == self.unk_token_id:
|
304 |
+
logger.warning_once(
|
305 |
+
f"`tgt_lang={lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
|
306 |
+
)
|
307 |
+
|
308 |
+
self.init_kwargs["tgt_lang"] = lang
|
309 |
+
|
310 |
+
self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
|
311 |
+
self.suffix_tokens = [self.eos_token_id]
|
312 |
+
|
313 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
314 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
315 |
+
|
316 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
317 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
318 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
319 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
320 |
+
)
|
321 |
+
|
322 |
+
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.save_vocabulary
|
323 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
324 |
+
if not self.can_save_slow_tokenizer:
|
325 |
+
raise ValueError(
|
326 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
327 |
+
"tokenizer."
|
328 |
+
)
|
329 |
+
|
330 |
+
if not os.path.isdir(save_directory):
|
331 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
332 |
+
return
|
333 |
+
out_vocab_file = os.path.join(
|
334 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
335 |
+
)
|
336 |
+
|
337 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
338 |
+
copyfile(self.vocab_file, out_vocab_file)
|
339 |
+
|
340 |
+
return (out_vocab_file,)
|
341 |
+
|
342 |
+
@classmethod
|
343 |
+
def _from_pretrained(
|
344 |
+
cls,
|
345 |
+
resolved_vocab_files,
|
346 |
+
pretrained_model_name_or_path,
|
347 |
+
init_configuration,
|
348 |
+
*init_inputs,
|
349 |
+
token=None,
|
350 |
+
cache_dir=None,
|
351 |
+
local_files_only=False,
|
352 |
+
_commit_hash=None,
|
353 |
+
_is_local=False,
|
354 |
+
**kwargs,
|
355 |
+
):
|
356 |
+
tokenizer = super()._from_pretrained(
|
357 |
+
resolved_vocab_files,
|
358 |
+
pretrained_model_name_or_path,
|
359 |
+
init_configuration,
|
360 |
+
*init_inputs,
|
361 |
+
token=token,
|
362 |
+
cache_dir=cache_dir,
|
363 |
+
local_files_only=local_files_only,
|
364 |
+
_commit_hash=_commit_hash,
|
365 |
+
_is_local=_is_local,
|
366 |
+
**kwargs,
|
367 |
+
)
|
368 |
+
|
369 |
+
# ensure also set after from pretrained
|
370 |
+
tokenizer.set_src_lang_special_tokens(tokenizer._src_lang)
|
371 |
+
tokenizer.set_tgt_lang_special_tokens(tokenizer._tgt_lang)
|
372 |
+
|
373 |
+
return tokenizer
|
374 |
+
|
375 |
+
def __call__(
|
376 |
+
self,
|
377 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
378 |
+
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
379 |
+
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
380 |
+
text_pair_target: Optional[
|
381 |
+
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
382 |
+
] = None,
|
383 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
384 |
+
pad_to_multiple_of: Optional[int] = 2,
|
385 |
+
src_lang: Optional[str] = None,
|
386 |
+
tgt_lang: Optional[str] = None,
|
387 |
+
**kwargs,
|
388 |
+
):
|
389 |
+
"""
|
390 |
+
Args:
|
391 |
+
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
392 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
393 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
394 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
395 |
+
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
396 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
397 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
398 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
399 |
+
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
400 |
+
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
401 |
+
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
402 |
+
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
403 |
+
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
|
404 |
+
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
|
405 |
+
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
|
406 |
+
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
407 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
408 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
409 |
+
index) among:
|
410 |
+
|
411 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
412 |
+
sequence if provided).
|
413 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
414 |
+
acceptable input length for the model if that argument is not provided.
|
415 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
416 |
+
lengths).
|
417 |
+
pad_to_multiple_of (`int`, *optional*):
|
418 |
+
If set will pad the sequence to a multiple of the provided value.
|
419 |
+
|
420 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
421 |
+
`>= 7.5` (Volta).
|
422 |
+
src_lang (`str`, *optional*):
|
423 |
+
A string representing the source language. If not specified, the last `src_lang` specified (either
|
424 |
+
during initialization or when calling this tokenizer) will be used.
|
425 |
+
tgt_lang (`str`, *optional*):
|
426 |
+
A string representing the target language. If not specified, the last `tgt_lang` specified (either
|
427 |
+
during initialization or when calling this tokenizer) will be used.
|
428 |
+
kwargs (*optional*):
|
429 |
+
Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizerFast.__call__`].
|
430 |
+
"""
|
431 |
+
if src_lang is not None:
|
432 |
+
self.src_lang = src_lang
|
433 |
+
if tgt_lang is not None:
|
434 |
+
self.tgt_lang = tgt_lang
|
435 |
+
|
436 |
+
output = super().__call__(
|
437 |
+
text=text,
|
438 |
+
text_pair=text_pair,
|
439 |
+
text_target=text_target,
|
440 |
+
text_pair_target=text_pair_target,
|
441 |
+
padding=padding,
|
442 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
443 |
+
**kwargs,
|
444 |
+
)
|
445 |
+
|
446 |
+
return output
|
venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/configuration_vilt.cpython-310.pyc
ADDED
Binary file (6.03 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/convert_vilt_original_to_pytorch.cpython-310.pyc
ADDED
Binary file (8.54 kB). View file
|
|