|
""" |
|
|
|
Module for the SDM class. |
|
|
|
""" |
|
|
|
from operator import add, neg, pos, sub, mul |
|
from collections import defaultdict |
|
|
|
from sympy.utilities.iterables import _strongly_connected_components |
|
|
|
from .exceptions import DMBadInputError, DMDomainError, DMShapeError |
|
|
|
from .ddm import DDM |
|
from .lll import ddm_lll, ddm_lll_transform |
|
from sympy.polys.domains import QQ |
|
|
|
|
|
class SDM(dict): |
|
r"""Sparse matrix based on polys domain elements |
|
|
|
This is a dict subclass and is a wrapper for a dict of dicts that supports |
|
basic matrix arithmetic +, -, *, **. |
|
|
|
|
|
In order to create a new :py:class:`~.SDM`, a dict |
|
of dicts mapping non-zero elements to their |
|
corresponding row and column in the matrix is needed. |
|
|
|
We also need to specify the shape and :py:class:`~.Domain` |
|
of our :py:class:`~.SDM` object. |
|
|
|
We declare a 2x2 :py:class:`~.SDM` matrix belonging |
|
to QQ domain as shown below. |
|
The 2x2 Matrix in the example is |
|
|
|
.. math:: |
|
A = \left[\begin{array}{ccc} |
|
0 & \frac{1}{2} \\ |
|
0 & 0 \end{array} \right] |
|
|
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> elemsdict = {0:{1:QQ(1, 2)}} |
|
>>> A = SDM(elemsdict, (2, 2), QQ) |
|
>>> A |
|
{0: {1: 1/2}} |
|
|
|
We can manipulate :py:class:`~.SDM` the same way |
|
as a Matrix class |
|
|
|
>>> from sympy import ZZ |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) |
|
>>> A + B |
|
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}} |
|
|
|
Multiplication |
|
|
|
>>> A*B |
|
{0: {1: 8}, 1: {0: 3}} |
|
>>> A*ZZ(2) |
|
{0: {1: 4}, 1: {0: 2}} |
|
|
|
""" |
|
|
|
fmt = 'sparse' |
|
|
|
def __init__(self, elemsdict, shape, domain): |
|
super().__init__(elemsdict) |
|
self.shape = self.rows, self.cols = m, n = shape |
|
self.domain = domain |
|
|
|
if not all(0 <= r < m for r in self): |
|
raise DMBadInputError("Row out of range") |
|
if not all(0 <= c < n for row in self.values() for c in row): |
|
raise DMBadInputError("Column out of range") |
|
|
|
def getitem(self, i, j): |
|
try: |
|
return self[i][j] |
|
except KeyError: |
|
m, n = self.shape |
|
if -m <= i < m and -n <= j < n: |
|
try: |
|
return self[i % m][j % n] |
|
except KeyError: |
|
return self.domain.zero |
|
else: |
|
raise IndexError("index out of range") |
|
|
|
def setitem(self, i, j, value): |
|
m, n = self.shape |
|
if not (-m <= i < m and -n <= j < n): |
|
raise IndexError("index out of range") |
|
i, j = i % m, j % n |
|
if value: |
|
try: |
|
self[i][j] = value |
|
except KeyError: |
|
self[i] = {j: value} |
|
else: |
|
rowi = self.get(i, None) |
|
if rowi is not None: |
|
try: |
|
del rowi[j] |
|
except KeyError: |
|
pass |
|
else: |
|
if not rowi: |
|
del self[i] |
|
|
|
def extract_slice(self, slice1, slice2): |
|
m, n = self.shape |
|
ri = range(m)[slice1] |
|
ci = range(n)[slice2] |
|
|
|
sdm = {} |
|
for i, row in self.items(): |
|
if i in ri: |
|
row = {ci.index(j): e for j, e in row.items() if j in ci} |
|
if row: |
|
sdm[ri.index(i)] = row |
|
|
|
return self.new(sdm, (len(ri), len(ci)), self.domain) |
|
|
|
def extract(self, rows, cols): |
|
if not (self and rows and cols): |
|
return self.zeros((len(rows), len(cols)), self.domain) |
|
|
|
m, n = self.shape |
|
if not (-m <= min(rows) <= max(rows) < m): |
|
raise IndexError('Row index out of range') |
|
if not (-n <= min(cols) <= max(cols) < n): |
|
raise IndexError('Column index out of range') |
|
|
|
|
|
|
|
rowmap = defaultdict(list) |
|
colmap = defaultdict(list) |
|
for i2, i1 in enumerate(rows): |
|
rowmap[i1 % m].append(i2) |
|
for j2, j1 in enumerate(cols): |
|
colmap[j1 % n].append(j2) |
|
|
|
|
|
rowset = set(rowmap) |
|
colset = set(colmap) |
|
|
|
sdm1 = self |
|
sdm2 = {} |
|
for i1 in rowset & set(sdm1): |
|
row1 = sdm1[i1] |
|
row2 = {} |
|
for j1 in colset & set(row1): |
|
row1_j1 = row1[j1] |
|
for j2 in colmap[j1]: |
|
row2[j2] = row1_j1 |
|
if row2: |
|
for i2 in rowmap[i1]: |
|
sdm2[i2] = row2.copy() |
|
|
|
return self.new(sdm2, (len(rows), len(cols)), self.domain) |
|
|
|
def __str__(self): |
|
rowsstr = [] |
|
for i, row in self.items(): |
|
elemsstr = ', '.join('%s: %s' % (j, elem) for j, elem in row.items()) |
|
rowsstr.append('%s: {%s}' % (i, elemsstr)) |
|
return '{%s}' % ', '.join(rowsstr) |
|
|
|
def __repr__(self): |
|
cls = type(self).__name__ |
|
rows = dict.__repr__(self) |
|
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) |
|
|
|
@classmethod |
|
def new(cls, sdm, shape, domain): |
|
""" |
|
|
|
Parameters |
|
========== |
|
|
|
sdm: A dict of dicts for non-zero elements in SDM |
|
shape: tuple representing dimension of SDM |
|
domain: Represents :py:class:`~.Domain` of SDM |
|
|
|
Returns |
|
======= |
|
|
|
An :py:class:`~.SDM` object |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> elemsdict = {0:{1: QQ(2)}} |
|
>>> A = SDM.new(elemsdict, (2, 2), QQ) |
|
>>> A |
|
{0: {1: 2}} |
|
|
|
""" |
|
return cls(sdm, shape, domain) |
|
|
|
def copy(A): |
|
""" |
|
Returns the copy of a :py:class:`~.SDM` object |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> elemsdict = {0:{1:QQ(2)}, 1:{}} |
|
>>> A = SDM(elemsdict, (2, 2), QQ) |
|
>>> B = A.copy() |
|
>>> B |
|
{0: {1: 2}, 1: {}} |
|
|
|
""" |
|
Ac = {i: Ai.copy() for i, Ai in A.items()} |
|
return A.new(Ac, A.shape, A.domain) |
|
|
|
@classmethod |
|
def from_list(cls, ddm, shape, domain): |
|
""" |
|
|
|
Parameters |
|
========== |
|
|
|
ddm: |
|
list of lists containing domain elements |
|
shape: |
|
Dimensions of :py:class:`~.SDM` matrix |
|
domain: |
|
Represents :py:class:`~.Domain` of :py:class:`~.SDM` object |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.SDM` containing elements of ddm |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]] |
|
>>> A = SDM.from_list(ddm, (2, 2), QQ) |
|
>>> A |
|
{0: {0: 1/2}, 1: {1: 3/4}} |
|
|
|
""" |
|
|
|
m, n = shape |
|
if not (len(ddm) == m and all(len(row) == n for row in ddm)): |
|
raise DMBadInputError("Inconsistent row-list/shape") |
|
getrow = lambda i: {j:ddm[i][j] for j in range(n) if ddm[i][j]} |
|
irows = ((i, getrow(i)) for i in range(m)) |
|
sdm = {i: row for i, row in irows if row} |
|
return cls(sdm, shape, domain) |
|
|
|
@classmethod |
|
def from_ddm(cls, ddm): |
|
""" |
|
converts object of :py:class:`~.DDM` to |
|
:py:class:`~.SDM` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.ddm import DDM |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> ddm = DDM( [[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ) |
|
>>> A = SDM.from_ddm(ddm) |
|
>>> A |
|
{0: {0: 1/2}, 1: {1: 3/4}} |
|
|
|
""" |
|
return cls.from_list(ddm, ddm.shape, ddm.domain) |
|
|
|
def to_list(M): |
|
""" |
|
|
|
Converts a :py:class:`~.SDM` object to a list |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> elemsdict = {0:{1:QQ(2)}, 1:{}} |
|
>>> A = SDM(elemsdict, (2, 2), QQ) |
|
>>> A.to_list() |
|
[[0, 2], [0, 0]] |
|
|
|
""" |
|
m, n = M.shape |
|
zero = M.domain.zero |
|
ddm = [[zero] * n for _ in range(m)] |
|
for i, row in M.items(): |
|
for j, e in row.items(): |
|
ddm[i][j] = e |
|
return ddm |
|
|
|
def to_list_flat(M): |
|
m, n = M.shape |
|
zero = M.domain.zero |
|
flat = [zero] * (m * n) |
|
for i, row in M.items(): |
|
for j, e in row.items(): |
|
flat[i*n + j] = e |
|
return flat |
|
|
|
def to_dok(M): |
|
return {(i, j): e for i, row in M.items() for j, e in row.items()} |
|
|
|
def to_ddm(M): |
|
""" |
|
Convert a :py:class:`~.SDM` object to a :py:class:`~.DDM` object |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) |
|
>>> A.to_ddm() |
|
[[0, 2], [0, 0]] |
|
|
|
""" |
|
return DDM(M.to_list(), M.shape, M.domain) |
|
|
|
def to_sdm(M): |
|
return M |
|
|
|
@classmethod |
|
def zeros(cls, shape, domain): |
|
r""" |
|
|
|
Returns a :py:class:`~.SDM` of size shape, |
|
belonging to the specified domain |
|
|
|
In the example below we declare a matrix A where, |
|
|
|
.. math:: |
|
A := \left[\begin{array}{ccc} |
|
0 & 0 & 0 \\ |
|
0 & 0 & 0 \end{array} \right] |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> A = SDM.zeros((2, 3), QQ) |
|
>>> A |
|
{} |
|
|
|
""" |
|
return cls({}, shape, domain) |
|
|
|
@classmethod |
|
def ones(cls, shape, domain): |
|
one = domain.one |
|
m, n = shape |
|
row = dict(zip(range(n), [one]*n)) |
|
sdm = {i: row.copy() for i in range(m)} |
|
return cls(sdm, shape, domain) |
|
|
|
@classmethod |
|
def eye(cls, shape, domain): |
|
""" |
|
|
|
Returns a identity :py:class:`~.SDM` matrix of dimensions |
|
size x size, belonging to the specified domain |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> I = SDM.eye((2, 2), QQ) |
|
>>> I |
|
{0: {0: 1}, 1: {1: 1}} |
|
|
|
""" |
|
rows, cols = shape |
|
one = domain.one |
|
sdm = {i: {i: one} for i in range(min(rows, cols))} |
|
return cls(sdm, shape, domain) |
|
|
|
@classmethod |
|
def diag(cls, diagonal, domain, shape): |
|
sdm = {i: {i: v} for i, v in enumerate(diagonal) if v} |
|
return cls(sdm, shape, domain) |
|
|
|
def transpose(M): |
|
""" |
|
|
|
Returns the transpose of a :py:class:`~.SDM` matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy import QQ |
|
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) |
|
>>> A.transpose() |
|
{1: {0: 2}} |
|
|
|
""" |
|
MT = sdm_transpose(M) |
|
return M.new(MT, M.shape[::-1], M.domain) |
|
|
|
def __add__(A, B): |
|
if not isinstance(B, SDM): |
|
return NotImplemented |
|
return A.add(B) |
|
|
|
def __sub__(A, B): |
|
if not isinstance(B, SDM): |
|
return NotImplemented |
|
return A.sub(B) |
|
|
|
def __neg__(A): |
|
return A.neg() |
|
|
|
def __mul__(A, B): |
|
"""A * B""" |
|
if isinstance(B, SDM): |
|
return A.matmul(B) |
|
elif B in A.domain: |
|
return A.mul(B) |
|
else: |
|
return NotImplemented |
|
|
|
def __rmul__(a, b): |
|
if b in a.domain: |
|
return a.rmul(b) |
|
else: |
|
return NotImplemented |
|
|
|
def matmul(A, B): |
|
""" |
|
Performs matrix multiplication of two SDM matrices |
|
|
|
Parameters |
|
========== |
|
|
|
A, B: SDM to multiply |
|
|
|
Returns |
|
======= |
|
|
|
SDM |
|
SDM after multiplication |
|
|
|
Raises |
|
====== |
|
|
|
DomainError |
|
If domain of A does not match |
|
with that of B |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}, 1:{0:ZZ(4)}}, (2, 2), ZZ) |
|
>>> A.matmul(B) |
|
{0: {0: 8}, 1: {0: 2, 1: 3}} |
|
|
|
""" |
|
if A.domain != B.domain: |
|
raise DMDomainError |
|
m, n = A.shape |
|
n2, o = B.shape |
|
if n != n2: |
|
raise DMShapeError |
|
C = sdm_matmul(A, B, A.domain, m, o) |
|
return A.new(C, (m, o), A.domain) |
|
|
|
def mul(A, b): |
|
""" |
|
Multiplies each element of A with a scalar b |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> A.mul(ZZ(3)) |
|
{0: {1: 6}, 1: {0: 3}} |
|
|
|
""" |
|
Csdm = unop_dict(A, lambda aij: aij*b) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def rmul(A, b): |
|
Csdm = unop_dict(A, lambda aij: b*aij) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def mul_elementwise(A, B): |
|
if A.domain != B.domain: |
|
raise DMDomainError |
|
if A.shape != B.shape: |
|
raise DMShapeError |
|
zero = A.domain.zero |
|
fzero = lambda e: zero |
|
Csdm = binop_dict(A, B, mul, fzero, fzero) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def add(A, B): |
|
""" |
|
|
|
Adds two :py:class:`~.SDM` matrices |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) |
|
>>> A.add(B) |
|
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}} |
|
|
|
""" |
|
|
|
Csdm = binop_dict(A, B, add, pos, pos) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def sub(A, B): |
|
""" |
|
|
|
Subtracts two :py:class:`~.SDM` matrices |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) |
|
>>> A.sub(B) |
|
{0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}} |
|
|
|
""" |
|
Csdm = binop_dict(A, B, sub, pos, neg) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def neg(A): |
|
""" |
|
|
|
Returns the negative of a :py:class:`~.SDM` matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> A.neg() |
|
{0: {1: -2}, 1: {0: -1}} |
|
|
|
""" |
|
Csdm = unop_dict(A, neg) |
|
return A.new(Csdm, A.shape, A.domain) |
|
|
|
def convert_to(A, K): |
|
""" |
|
|
|
Converts the :py:class:`~.Domain` of a :py:class:`~.SDM` matrix to K |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ, QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) |
|
>>> A.convert_to(QQ) |
|
{0: {1: 2}, 1: {0: 1}} |
|
|
|
""" |
|
Kold = A.domain |
|
if K == Kold: |
|
return A.copy() |
|
Ak = unop_dict(A, lambda e: K.convert_from(e, Kold)) |
|
return A.new(Ak, A.shape, K) |
|
|
|
def scc(A): |
|
"""Strongly connected components of a square matrix *A*. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0: ZZ(2)}, 1:{1:ZZ(1)}}, (2, 2), ZZ) |
|
>>> A.scc() |
|
[[0], [1]] |
|
|
|
See also |
|
======== |
|
|
|
sympy.polys.matrices.domainmatrix.DomainMatrix.scc |
|
""" |
|
rows, cols = A.shape |
|
assert rows == cols |
|
V = range(rows) |
|
Emap = {v: list(A.get(v, [])) for v in V} |
|
return _strongly_connected_components(V, Emap) |
|
|
|
def rref(A): |
|
""" |
|
|
|
Returns reduced-row echelon form and list of pivots for the :py:class:`~.SDM` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> A.rref() |
|
({0: {0: 1, 1: 2}}, [0]) |
|
|
|
""" |
|
B, pivots, _ = sdm_irref(A) |
|
return A.new(B, A.shape, A.domain), pivots |
|
|
|
def inv(A): |
|
""" |
|
|
|
Returns inverse of a matrix A |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> A.inv() |
|
{0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}} |
|
|
|
""" |
|
return A.from_ddm(A.to_ddm().inv()) |
|
|
|
def det(A): |
|
""" |
|
Returns determinant of A |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> A.det() |
|
-2 |
|
|
|
""" |
|
return A.to_ddm().det() |
|
|
|
def lu(A): |
|
""" |
|
|
|
Returns LU decomposition for a matrix A |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> A.lu() |
|
({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, []) |
|
|
|
""" |
|
L, U, swaps = A.to_ddm().lu() |
|
return A.from_ddm(L), A.from_ddm(U), swaps |
|
|
|
def lu_solve(A, b): |
|
""" |
|
|
|
Uses LU decomposition to solve Ax = b, |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ) |
|
>>> A.lu_solve(b) |
|
{1: {0: 1/2}} |
|
|
|
""" |
|
return A.from_ddm(A.to_ddm().lu_solve(b.to_ddm())) |
|
|
|
def nullspace(A): |
|
""" |
|
|
|
Returns nullspace for a :py:class:`~.SDM` matrix A |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ) |
|
>>> A.nullspace() |
|
({0: {0: -2, 1: 1}}, [1]) |
|
|
|
""" |
|
ncols = A.shape[1] |
|
one = A.domain.one |
|
B, pivots, nzcols = sdm_irref(A) |
|
K, nonpivots = sdm_nullspace_from_rref(B, one, ncols, pivots, nzcols) |
|
K = dict(enumerate(K)) |
|
shape = (len(K), ncols) |
|
return A.new(K, shape, A.domain), nonpivots |
|
|
|
def particular(A): |
|
ncols = A.shape[1] |
|
B, pivots, nzcols = sdm_irref(A) |
|
P = sdm_particular_from_rref(B, ncols, pivots) |
|
rep = {0:P} if P else {} |
|
return A.new(rep, (1, ncols-1), A.domain) |
|
|
|
def hstack(A, *B): |
|
"""Horizontally stacks :py:class:`~.SDM` matrices. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
|
|
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) |
|
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) |
|
>>> A.hstack(B) |
|
{0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}} |
|
|
|
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) |
|
>>> A.hstack(B, C) |
|
{0: {0: 1, 1: 2, 2: 5, 3: 6, 4: 9, 5: 10}, 1: {0: 3, 1: 4, 2: 7, 3: 8, 4: 11, 5: 12}} |
|
""" |
|
Anew = dict(A.copy()) |
|
rows, cols = A.shape |
|
domain = A.domain |
|
|
|
for Bk in B: |
|
Bkrows, Bkcols = Bk.shape |
|
assert Bkrows == rows |
|
assert Bk.domain == domain |
|
|
|
for i, Bki in Bk.items(): |
|
Ai = Anew.get(i, None) |
|
if Ai is None: |
|
Anew[i] = Ai = {} |
|
for j, Bkij in Bki.items(): |
|
Ai[j + cols] = Bkij |
|
cols += Bkcols |
|
|
|
return A.new(Anew, (rows, cols), A.domain) |
|
|
|
def vstack(A, *B): |
|
"""Vertically stacks :py:class:`~.SDM` matrices. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
|
|
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) |
|
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) |
|
>>> A.vstack(B) |
|
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}} |
|
|
|
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) |
|
>>> A.vstack(B, C) |
|
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}, 4: {0: 9, 1: 10}, 5: {0: 11, 1: 12}} |
|
""" |
|
Anew = dict(A.copy()) |
|
rows, cols = A.shape |
|
domain = A.domain |
|
|
|
for Bk in B: |
|
Bkrows, Bkcols = Bk.shape |
|
assert Bkcols == cols |
|
assert Bk.domain == domain |
|
|
|
for i, Bki in Bk.items(): |
|
Anew[i + rows] = Bki |
|
rows += Bkrows |
|
|
|
return A.new(Anew, (rows, cols), A.domain) |
|
|
|
def applyfunc(self, func, domain): |
|
sdm = {i: {j: func(e) for j, e in row.items()} for i, row in self.items()} |
|
return self.new(sdm, self.shape, domain) |
|
|
|
def charpoly(A): |
|
""" |
|
Returns the coefficients of the characteristic polynomial |
|
of the :py:class:`~.SDM` matrix. These elements will be domain elements. |
|
The domain of the elements will be same as domain of the :py:class:`~.SDM`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import QQ, Symbol |
|
>>> from sympy.polys.matrices.sdm import SDM |
|
>>> from sympy.polys import Poly |
|
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) |
|
>>> A.charpoly() |
|
[1, -5, -2] |
|
|
|
We can create a polynomial using the |
|
coefficients using :py:class:`~.Poly` |
|
|
|
>>> x = Symbol('x') |
|
>>> p = Poly(A.charpoly(), x, domain=A.domain) |
|
>>> p |
|
Poly(x**2 - 5*x - 2, x, domain='QQ') |
|
|
|
""" |
|
return A.to_ddm().charpoly() |
|
|
|
def is_zero_matrix(self): |
|
""" |
|
Says whether this matrix has all zero entries. |
|
""" |
|
return not self |
|
|
|
def is_upper(self): |
|
""" |
|
Says whether this matrix is upper-triangular. True can be returned |
|
even if the matrix is not square. |
|
""" |
|
return all(i <= j for i, row in self.items() for j in row) |
|
|
|
def is_lower(self): |
|
""" |
|
Says whether this matrix is lower-triangular. True can be returned |
|
even if the matrix is not square. |
|
""" |
|
return all(i >= j for i, row in self.items() for j in row) |
|
|
|
def lll(A, delta=QQ(3, 4)): |
|
return A.from_ddm(ddm_lll(A.to_ddm(), delta=delta)) |
|
|
|
def lll_transform(A, delta=QQ(3, 4)): |
|
reduced, transform = ddm_lll_transform(A.to_ddm(), delta=delta) |
|
return A.from_ddm(reduced), A.from_ddm(transform) |
|
|
|
|
|
def binop_dict(A, B, fab, fa, fb): |
|
Anz, Bnz = set(A), set(B) |
|
C = {} |
|
|
|
for i in Anz & Bnz: |
|
Ai, Bi = A[i], B[i] |
|
Ci = {} |
|
Anzi, Bnzi = set(Ai), set(Bi) |
|
for j in Anzi & Bnzi: |
|
Cij = fab(Ai[j], Bi[j]) |
|
if Cij: |
|
Ci[j] = Cij |
|
for j in Anzi - Bnzi: |
|
Cij = fa(Ai[j]) |
|
if Cij: |
|
Ci[j] = Cij |
|
for j in Bnzi - Anzi: |
|
Cij = fb(Bi[j]) |
|
if Cij: |
|
Ci[j] = Cij |
|
if Ci: |
|
C[i] = Ci |
|
|
|
for i in Anz - Bnz: |
|
Ai = A[i] |
|
Ci = {} |
|
for j, Aij in Ai.items(): |
|
Cij = fa(Aij) |
|
if Cij: |
|
Ci[j] = Cij |
|
if Ci: |
|
C[i] = Ci |
|
|
|
for i in Bnz - Anz: |
|
Bi = B[i] |
|
Ci = {} |
|
for j, Bij in Bi.items(): |
|
Cij = fb(Bij) |
|
if Cij: |
|
Ci[j] = Cij |
|
if Ci: |
|
C[i] = Ci |
|
|
|
return C |
|
|
|
|
|
def unop_dict(A, f): |
|
B = {} |
|
for i, Ai in A.items(): |
|
Bi = {} |
|
for j, Aij in Ai.items(): |
|
Bij = f(Aij) |
|
if Bij: |
|
Bi[j] = Bij |
|
if Bi: |
|
B[i] = Bi |
|
return B |
|
|
|
|
|
def sdm_transpose(M): |
|
MT = {} |
|
for i, Mi in M.items(): |
|
for j, Mij in Mi.items(): |
|
try: |
|
MT[j][i] = Mij |
|
except KeyError: |
|
MT[j] = {i: Mij} |
|
return MT |
|
|
|
|
|
def sdm_matmul(A, B, K, m, o): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if K.is_EXRAW: |
|
return sdm_matmul_exraw(A, B, K, m, o) |
|
|
|
C = {} |
|
B_knz = set(B) |
|
for i, Ai in A.items(): |
|
Ci = {} |
|
Ai_knz = set(Ai) |
|
for k in Ai_knz & B_knz: |
|
Aik = Ai[k] |
|
for j, Bkj in B[k].items(): |
|
Cij = Ci.get(j, None) |
|
if Cij is not None: |
|
Cij = Cij + Aik * Bkj |
|
if Cij: |
|
Ci[j] = Cij |
|
else: |
|
Ci.pop(j) |
|
else: |
|
Cij = Aik * Bkj |
|
if Cij: |
|
Ci[j] = Cij |
|
if Ci: |
|
C[i] = Ci |
|
return C |
|
|
|
|
|
def sdm_matmul_exraw(A, B, K, m, o): |
|
|
|
|
|
|
|
|
|
|
|
|
|
zero = K.zero |
|
C = {} |
|
B_knz = set(B) |
|
for i, Ai in A.items(): |
|
Ci_list = defaultdict(list) |
|
Ai_knz = set(Ai) |
|
|
|
|
|
for k in Ai_knz & B_knz: |
|
Aik = Ai[k] |
|
if zero * Aik == zero: |
|
|
|
for j, Bkj in B[k].items(): |
|
Ci_list[j].append(Aik * Bkj) |
|
else: |
|
for j in range(o): |
|
Ci_list[j].append(Aik * B[k].get(j, zero)) |
|
|
|
|
|
for k in Ai_knz - B_knz: |
|
zAik = zero * Ai[k] |
|
if zAik != zero: |
|
for j in range(o): |
|
Ci_list[j].append(zAik) |
|
|
|
|
|
Ci = {} |
|
for j, Cij_list in Ci_list.items(): |
|
Cij = K.sum(Cij_list) |
|
if Cij: |
|
Ci[j] = Cij |
|
if Ci: |
|
C[i] = Ci |
|
|
|
|
|
for k, Bk in B.items(): |
|
for j, Bkj in Bk.items(): |
|
if zero * Bkj != zero: |
|
for i in range(m): |
|
Aik = A.get(i, {}).get(k, zero) |
|
|
|
if Aik == zero: |
|
Ci = C.get(i, {}) |
|
Cij = Ci.get(j, zero) + Aik * Bkj |
|
if Cij != zero: |
|
Ci[j] = Cij |
|
else: |
|
|
|
|
|
raise RuntimeError |
|
C[i] = Ci |
|
|
|
return C |
|
|
|
|
|
def sdm_irref(A): |
|
"""RREF and pivots of a sparse matrix *A*. |
|
|
|
Compute the reduced row echelon form (RREF) of the matrix *A* and return a |
|
list of the pivot columns. This routine does not work in place and leaves |
|
the original matrix *A* unmodified. |
|
|
|
Examples |
|
======== |
|
|
|
This routine works with a dict of dicts sparse representation of a matrix: |
|
|
|
>>> from sympy import QQ |
|
>>> from sympy.polys.matrices.sdm import sdm_irref |
|
>>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}} |
|
>>> Arref, pivots, _ = sdm_irref(A) |
|
>>> Arref |
|
{0: {0: 1}, 1: {1: 1}} |
|
>>> pivots |
|
[0, 1] |
|
|
|
The analogous calculation with :py:class:`~.Matrix` would be |
|
|
|
>>> from sympy import Matrix |
|
>>> M = Matrix([[1, 2], [3, 4]]) |
|
>>> Mrref, pivots = M.rref() |
|
>>> Mrref |
|
Matrix([ |
|
[1, 0], |
|
[0, 1]]) |
|
>>> pivots |
|
(0, 1) |
|
|
|
Notes |
|
===== |
|
|
|
The cost of this algorithm is determined purely by the nonzero elements of |
|
the matrix. No part of the cost of any step in this algorithm depends on |
|
the number of rows or columns in the matrix. No step depends even on the |
|
number of nonzero rows apart from the primary loop over those rows. The |
|
implementation is much faster than ddm_rref for sparse matrices. In fact |
|
at the time of writing it is also (slightly) faster than the dense |
|
implementation even if the input is a fully dense matrix so it seems to be |
|
faster in all cases. |
|
|
|
The elements of the matrix should support exact division with ``/``. For |
|
example elements of any domain that is a field (e.g. ``QQ``) should be |
|
fine. No attempt is made to handle inexact arithmetic. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Arows = sorted((Ai.copy() for Ai in A.values()), key=min) |
|
|
|
|
|
|
|
|
|
|
|
pivot_row_map = {} |
|
|
|
|
|
reduced_pivots = set() |
|
|
|
|
|
nonreduced_pivots = set() |
|
|
|
|
|
|
|
nonzero_columns = defaultdict(set) |
|
|
|
while Arows: |
|
|
|
Ai = Arows.pop() |
|
|
|
|
|
Ai = {j: Aij for j, Aij in Ai.items() if j not in reduced_pivots} |
|
|
|
|
|
for j in nonreduced_pivots & set(Ai): |
|
Aj = pivot_row_map[j] |
|
Aij = Ai[j] |
|
Ainz = set(Ai) |
|
Ajnz = set(Aj) |
|
for k in Ajnz - Ainz: |
|
Ai[k] = - Aij * Aj[k] |
|
Ai.pop(j) |
|
Ainz.remove(j) |
|
for k in Ajnz & Ainz: |
|
Aik = Ai[k] - Aij * Aj[k] |
|
if Aik: |
|
Ai[k] = Aik |
|
else: |
|
Ai.pop(k) |
|
|
|
|
|
|
|
if not Ai: |
|
continue |
|
|
|
|
|
j = min(Ai) |
|
Aij = Ai[j] |
|
pivot_row_map[j] = Ai |
|
Ainz = set(Ai) |
|
|
|
|
|
|
|
|
|
|
|
Aijinv = Aij**-1 |
|
for l in Ai: |
|
Ai[l] *= Aijinv |
|
|
|
|
|
for k in nonzero_columns.pop(j, ()): |
|
Ak = pivot_row_map[k] |
|
Akj = Ak[j] |
|
Aknz = set(Ak) |
|
for l in Ainz - Aknz: |
|
Ak[l] = - Akj * Ai[l] |
|
nonzero_columns[l].add(k) |
|
Ak.pop(j) |
|
Aknz.remove(j) |
|
for l in Ainz & Aknz: |
|
Akl = Ak[l] - Akj * Ai[l] |
|
if Akl: |
|
Ak[l] = Akl |
|
else: |
|
|
|
Ak.pop(l) |
|
if l != j: |
|
nonzero_columns[l].remove(k) |
|
if len(Ak) == 1: |
|
reduced_pivots.add(k) |
|
nonreduced_pivots.remove(k) |
|
|
|
if len(Ai) == 1: |
|
reduced_pivots.add(j) |
|
else: |
|
nonreduced_pivots.add(j) |
|
for l in Ai: |
|
if l != j: |
|
nonzero_columns[l].add(j) |
|
|
|
|
|
pivots = sorted(reduced_pivots | nonreduced_pivots) |
|
pivot2row = {p: n for n, p in enumerate(pivots)} |
|
nonzero_columns = {c: {pivot2row[p] for p in s} for c, s in nonzero_columns.items()} |
|
rows = [pivot_row_map[i] for i in pivots] |
|
rref = dict(enumerate(rows)) |
|
return rref, pivots, nonzero_columns |
|
|
|
|
|
def sdm_nullspace_from_rref(A, one, ncols, pivots, nonzero_cols): |
|
"""Get nullspace from A which is in RREF""" |
|
nonpivots = sorted(set(range(ncols)) - set(pivots)) |
|
|
|
K = [] |
|
for j in nonpivots: |
|
Kj = {j:one} |
|
for i in nonzero_cols.get(j, ()): |
|
Kj[pivots[i]] = -A[i][j] |
|
K.append(Kj) |
|
|
|
return K, nonpivots |
|
|
|
|
|
def sdm_particular_from_rref(A, ncols, pivots): |
|
"""Get a particular solution from A which is in RREF""" |
|
P = {} |
|
for i, j in enumerate(pivots): |
|
Ain = A[i].get(ncols-1, None) |
|
if Ain is not None: |
|
P[j] = Ain / A[i][j] |
|
return P |
|
|