peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/api
/unboxing.py
from typing import List, Tuple | |
from torchgen.api import cpp | |
from torchgen.api.types import Binding, CppSignatureGroup, CType | |
from torchgen.model import ( | |
Argument, | |
BaseTy, | |
BaseType, | |
ListType, | |
NativeFunction, | |
OptionalType, | |
Type, | |
) | |
# This file generates the code for unboxing wrappers, i.e., the glue logic to unbox a boxed operator and convert the | |
# ivalues from stack to correct arguments to the unboxed kernel, based on corresponding JIT schema. This codegen is | |
# an alternative way to generate unboxing wrappers similar to the existing C++ metaprogramming approach but gets the | |
# job done statically. These generated unboxing wrappers will be useful under the scenario where we need to register | |
# a fixed set of operators known at compile time and thus can save some time in runtime initialization phase. | |
# | |
# Here's an example on how the codegen works: | |
# | |
# - Function Schema (source of truth) | |
# | |
# aten::empty.names(int[] size, *, Dimname[]? names, | |
# ScalarType? dtype=None, Layout? layout=None, | |
# Device? device=None, bool? pin_memory=None, | |
# MemoryFormat? memory_format=None) -> Tensor | |
# - Argument Conversion | |
# Generates C++ code to convert an ivalue (from stack) to its underlying C++ type. | |
# - int[] size | |
# ```cpp | |
# const c10::List<c10::IValue> size_list_in = (std::move(peek(stack, 0, 7))).toList(); | |
# | |
# std::vector<int64_t> size_vec; | |
# for (c10::IValue size_elem: size_list_in) { | |
# int64_t size_base = size_elem.to<int64_t>(); | |
# size_vec.push_back(size_base); | |
# } | |
# at::ArrayRef<int64_t> size_list_out(size_vec); | |
# ~~~~~~~~~~~~~ <-- The converted argument from ivalues in the stack. | |
# Will be passed to unboxed kernel. | |
# ``` | |
# - Dimname[]? names | |
# ```cpp | |
# c10::optional<c10::IValue> names_opt = (std::move(peek(stack, 1, 7))).toOptional<c10::IValue>(); | |
# c10::optional<at::ArrayRef<at::Dimname>> names_opt_out; | |
# if (names_opt.has_value()) { | |
# ~~~~~~~~~~~ <-- Unwrapping optional shell | |
# const c10::IValue names_opt_in = names_opt.value(); | |
# const c10::List<c10::IValue> names_list_in = names_opt_in.toList(); | |
# | |
# std::vector<at::Dimname> names_vec; | |
# for (c10::IValue names_elem: names_list_in) { | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~ <-- Unrolling list, then convert elements one by one. | |
# at::Dimname names_base = names_elem.to<at::Dimname>(); | |
# names_vec.push_back(names_base); | |
# } | |
# at::ArrayRef<at::Dimname> names_list_out(names_vec); | |
# | |
# names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(names_list_out); | |
# } else { | |
# names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(); | |
# } | |
# ``` | |
# - ScalarType? dtype (similarly for the rest of the arguments) | |
# ```cpp | |
# c10::optional<c10::IValue> dtype_opt = (std::move(peek(stack, 2, 7))).toOptional<c10::IValue>(); | |
# c10::optional<at::ScalarType> dtype_opt_out; | |
# if (dtype_opt.has_value()) { | |
# const c10::IValue dtype_opt_in = dtype_opt.value(); | |
# at::ScalarType dtype_base = dtype_opt_in.to<at::ScalarType>(); | |
# ~~~~~~~~~~~~~~~~~~~~ <-- For base types, convert ivalue to it | |
# directly using ".to<T>()" API. | |
# dtype_opt_out = c10::optional<at::ScalarType>(dtype_base); | |
# } else { | |
# dtype_opt_out = c10::optional<at::ScalarType>(); | |
# } | |
# ``` | |
# | |
# - Unboxed Kernel Call | |
# ```cpp | |
# auto result_ = torch::empty( | |
# size_list_out, | |
# names_opt_out, | |
# options, | |
# memory_format_opt_out | |
# ); | |
# ``` | |
# | |
# - Push Result Back to Stack | |
# ```cpp | |
# drop(stack, 7); | |
# pack(stack, std::move(result_)); | |
# ``` | |
connector = "\n\t" | |
# Return unboxing function name for a NativeFunction | |
def name(f: NativeFunction) -> str: | |
return f.func.name.unambiguous_name() | |
# Convert all the arguments in a NativeFunction to C++ code | |
def convert_arguments(f: NativeFunction) -> Tuple[List[Binding], List[str]]: | |
# we need the 'self' argument so method needs to be False | |
args = ( | |
CppSignatureGroup.from_native_function(f, method=False) | |
.most_faithful_signature() | |
.arguments() | |
) | |
code_list = [ | |
f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));" | |
for i in range(len(args)) | |
] + [""] | |
binding_list = [] | |
for arg in args: | |
# expecting only Argument | |
if not isinstance(arg.argument, Argument): | |
raise Exception( | |
f"Unexpected argument type, expecting `Argument` but got {arg}" | |
) | |
argument: Argument = arg.argument | |
unboxed_name, _, code, decl = argumenttype_ivalue_convert( | |
argument.type, | |
argument.name, | |
mutable=argument.is_write, | |
) | |
code_list.extend(decl) | |
code_list.extend(code) | |
binding_list.append(arg.with_name(unboxed_name)) | |
return binding_list, code_list | |
# Takes in the type, name and mutability corresponding to an argument, and generates a tuple of: | |
# (1) the C++ code necessary to unbox the argument | |
# (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType | |
def argumenttype_ivalue_convert( | |
t: Type, arg_name: str, *, mutable: bool = False | |
) -> Tuple[str, CType, List[str], List[str]]: | |
# Unboxing is for mobile, which doesn't care about SymInts | |
ctype = cpp.argumenttype_type( | |
t=t, mutable=mutable, binds=arg_name, symint=False | |
).type | |
if isinstance(t, BaseType): | |
out_name = f"{arg_name}_base" | |
code, decl = _gen_code_base_type( | |
arg_name=arg_name, out_name=out_name, ctype=ctype | |
) | |
elif isinstance(t, OptionalType): | |
out_name = f"{arg_name}_opt_out" | |
code, decl = _gen_code_optional_type( | |
arg_name=arg_name, | |
out_name=out_name, | |
t=t, | |
ctype=ctype, | |
) | |
elif isinstance(t, ListType): | |
out_name = f"{arg_name}_list_out" | |
code, decl = _gen_code_list_type( | |
arg_name=arg_name, | |
out_name=out_name, | |
t=t, | |
ctype=ctype, | |
) | |
else: | |
raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}") | |
return out_name, ctype, code, decl | |
def _gen_code_base_type( | |
arg_name: str, out_name: str, ctype: CType | |
) -> Tuple[List[str], List[str]]: | |
return [ | |
f"{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();" | |
], [] | |
def _gen_code_optional_type( | |
arg_name: str, out_name: str, t: OptionalType, ctype: CType | |
) -> Tuple[List[str], List[str]]: | |
in_name = f"{arg_name}_opt_in" | |
res_name, _, res_code, decl = argumenttype_ivalue_convert(t.elem, in_name) | |
return ( | |
f""" | |
c10::optional<c10::IValue> {arg_name}_opt = {arg_name}.toOptional<c10::IValue>(); | |
{ctype.cpp_type(strip_ref=True)} {out_name}; | |
if ({arg_name}_opt.has_value()) {{ | |
const c10::IValue {in_name} = {arg_name}_opt.value(); | |
{connector.join(res_code)} | |
{out_name} = {ctype.cpp_type(strip_ref=True)}({res_name}); | |
}} else {{ | |
{out_name} = {ctype.cpp_type(strip_ref=True)}(); | |
}} | |
""".split( | |
"\n" | |
), | |
decl, | |
) | |
def _gen_code_list_type( | |
arg_name: str, out_name: str, t: ListType, ctype: CType | |
) -> Tuple[List[str], List[str]]: | |
in_name = f"{arg_name}_list_in" | |
elem_name = f"{arg_name}_elem" | |
code = [f"const c10::List<c10::IValue> {in_name} = {arg_name}.toList();"] | |
res_name, res_ctype, res_code, decl = argumenttype_ivalue_convert(t.elem, elem_name) | |
# handle list type with size, e.g., bool[4] | |
if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool and t.size: | |
code.extend( | |
f""" | |
{ctype.cpp_type(strip_ref=True)} {out_name} = as_array<{res_ctype.cpp_type(strip_ref=True)}, {t.size}>({in_name}); | |
""".split( | |
"\n" | |
) | |
) | |
# we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>> | |
elif isinstance(t.elem, OptionalType): | |
code.extend( | |
f""" | |
{ctype.cpp_type(strip_ref=True)} {out_name}; | |
for (c10::IValue {elem_name}: {in_name}) {{ | |
{connector.join(res_code)} | |
{out_name}.push_back({res_name}); | |
}} | |
""".split( | |
"\n" | |
) | |
) | |
else: | |
# use ArrayRef as default. | |
vec_name = arg_name + "_vec" | |
# need to bring vector instantiation out of scope so that ArrayRef has valid data | |
decl.append(f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};") | |
code.extend( | |
f""" | |
for (c10::IValue {elem_name}: {in_name}) {{ | |
{connector.join(res_code)} | |
{vec_name}.push_back({res_name}); | |
}} | |
{ctype.cpp_type(strip_ref=True)} {out_name}({vec_name}); | |
""".split( | |
"\n" | |
) | |
) | |
return code, decl | |