applied-ai-018's picture
Add files using upload-large-folder tool
4ba564c verified
raw
history blame
68.7 kB
from __future__ import annotations # remove after python 3.11
from functools import wraps
from typing import List, Optional, Sequence, Tuple, TypeVar
from .._C.libtriton.triton import ir
from ..common.build import is_hip
from . import core as tl
T = TypeVar('T')
# TODO: redundant code -- remove after 3P backend refactor
def _is_cuda(target):
from ..compiler.compiler import CudaTargetDescriptor
return isinstance(target, CudaTargetDescriptor)
# Create custom exception that prints message "hello"
class IncompatibleTypeErrorImpl(Exception):
def __init__(self, type_a, type_b):
self.type_a = type_a
self.type_b = type_b
self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__()
super(IncompatibleTypeErrorImpl, self).__init__(self.message)
# ===----------------------------------------------------------------------===##
# Programming Model
# ===----------------------------------------------------------------------===##
def program_id(axis: int, builder: ir.builder) -> tl.tensor:
if axis not in (0, 1, 2):
raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}")
return tl.tensor(builder.create_get_program_id(axis), tl.int32)
def num_programs(axis: int, builder: ir.builder) -> tl.tensor:
if axis not in (0, 1, 2):
raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}")
return tl.tensor(builder.create_get_num_programs(axis), tl.int32)
# ===----------------------------------------------------------------------===//
# Implicit Casting Utilities
# ===----------------------------------------------------------------------===//
def integer_promote_impl(a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype:
a_rank = a_ty.int_bitwidth
b_rank = b_ty.int_bitwidth
a_sn = a_ty.int_signedness
b_sn = b_ty.int_signedness
# Rules for signedness taken from "Usual arithmetic conversions" on
# https://en.cppreference.com/w/c/language/conversion.
if a_sn == b_sn:
return a_ty if a_rank > b_rank else b_ty
elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return a_ty if a_rank >= b_rank else b_ty
elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return b_ty if b_rank >= a_rank else a_ty
assert False
def computation_type_impl(a_ty: tl.dtype, b_ty: tl.dtype, div_or_mod: bool) -> tl.dtype:
# 1) if one operand is double, the other is implicitly
# converted to double
if a_ty.is_fp64() or b_ty.is_fp64():
return tl.float64
# 2) if one operand is float, the other is implicitly
# converted to float
if a_ty.is_fp32() or b_ty.is_fp32():
return tl.float32
# 3 ) if one operand is half, the other is implicitly converted to half
# unless we're doing / or %, which do not exist natively in PTX for fp16.
# Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp
if a_ty.is_fp16() or b_ty.is_fp16():
if div_or_mod:
return tl.float32
else:
return tl.float16
# 4) return bf16 only if both operands are of bf16
if a_ty.is_bf16() or b_ty.is_bf16():
if div_or_mod:
return tl.float32
if a_ty.is_bf16() and b_ty.is_bf16():
return tl.bfloat16
return tl.float32
if not a_ty.is_int() or not b_ty.is_int():
assert False
# 5 ) both operands are integer and undergo
# integer promotion
if div_or_mod and a_ty.int_signedness != b_ty.int_signedness:
raise ValueError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() +
" because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
return integer_promote_impl(a_ty, b_ty)
# ===----------------------------------------------------------------------===//
# Binary Operators
# ===----------------------------------------------------------------------===//
def check_ptr_type_impl(type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None:
if type_a.is_ptr():
if not allow_ptr_a:
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + U* with T != U
if type_b.is_ptr() and (type_a != type_b):
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + float
if type_b.is_floating():
raise IncompatibleTypeErrorImpl(type_a, type_b)
def binary_op_type_checking_impl(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder, allow_lhs_ptr=False,
allow_rhs_ptr=False, arithmetic_check=True,
div_or_mod=False) -> Tuple[tl.tensor, tl.tensor]:
# implicit broadcasting
lhs, rhs = broadcast_impl_value(lhs, rhs, builder)
# implicit typecasting
lhs_sca_ty = lhs.type.scalar
rhs_sca_ty = rhs.type.scalar
check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr)
check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr)
if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr():
ret_sca_ty = computation_type_impl(lhs_sca_ty, rhs_sca_ty, div_or_mod)
lhs = cast(lhs, ret_sca_ty, builder)
rhs = cast(rhs, ret_sca_ty, builder)
return lhs, rhs
def add(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr():
raise ValueError("cannot add pointers together")
# offset + ptr
# ptr + offset
if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr():
input, other = other, input
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr():
return tl.tensor(builder.create_addptr(input.handle, other.handle), input.type)
# float + float
elif input_scalar_ty.is_floating():
return tl.tensor(builder.create_fadd(input.handle, other.handle), input.type)
# int + int
elif input_scalar_ty.is_int():
return tl.tensor(builder.create_add(input.handle, other.handle), input.type)
assert False
def sub(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, True, False)
scalar_ty = input.type.scalar
# ptr - offset
if scalar_ty.is_ptr():
return tl.tensor(builder.create_addptr(input.handle, minus(other, builder).handle), input.type)
# float - float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fsub(input.handle, other.handle), input.type)
# int - int
elif scalar_ty.is_int():
return tl.tensor(builder.create_sub(input.handle, other.handle), input.type)
assert False
def mul(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float * float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fmul(input.handle, other.handle), input.type)
# * int
elif scalar_ty.is_int():
return tl.tensor(builder.create_mul(input.handle, other.handle), input.type)
assert False
def truediv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float / int
if input_scalar_ty.is_floating() and other_scalar_ty.is_int():
other = cast(other, input_scalar_ty, builder)
# int / float
elif input_scalar_ty.is_int() and other_scalar_ty.is_floating():
input = cast(input, other_scalar_ty, builder)
# int / int (cast to tl.float32)
elif input_scalar_ty.is_int() and other_scalar_ty.is_int():
input = cast(input, tl.float32, builder)
other = cast(other, tl.float32, builder)
# float / float (cast to the highest exponent type)
elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating():
if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width:
other = cast(other, input_scalar_ty, builder)
else:
input = cast(input, other_scalar_ty, builder)
# unreachable
else:
assert False
return tl.tensor(builder.create_fdiv(input.handle, other.handle), input.type)
def floordiv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_int() and other_scalar_ty.is_int():
ret_ty = integer_promote_impl(input_scalar_ty, other_scalar_ty)
input = cast(input, ret_ty, builder)
other = cast(other, ret_ty, builder)
if ret_ty.is_int_signed():
return tl.tensor(builder.create_sdiv(input.handle, other.handle), input.type)
else:
return tl.tensor(builder.create_udiv(input.handle, other.handle), input.type)
assert False
def fdiv(input: tl.tensor, other: tl.tensor, ieee_rounding: bool, builder: ir.builder) -> tl.tensor:
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating():
raise ValueError("both operands of fdiv must have floating scalar type")
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True)
ret = builder.create_fdiv(input.handle, other.handle)
return tl.tensor(ret, input.type)
def mod(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float % float
if scalar_ty.is_floating():
# input - input.div(other, rounding_mode="floor") * other
ret = sub(input, mul(floor(fdiv(input, other, False, builder), builder), other, builder), builder)
return ret
# % int
elif scalar_ty.is_int():
if scalar_ty.int_signedness != other_scalar_ty.int_signedness:
raise ValueError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " "
"because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_srem(input.handle, other.handle), input.type)
else:
return tl.tensor(builder.create_urem(input.handle, other.handle), input.type)
assert False
##############
# bitwise ops
##############
def bitwise_op_type_checking_impl(input: tl.tensor, other: tl.tensor,
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False)
input_sca_ty = input.type.scalar
other_sca_ty = other.type.scalar
if not input_sca_ty.is_int() or not other_sca_ty.is_int():
raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty)
ret_sca_ty = integer_promote_impl(input_sca_ty, other_sca_ty)
if ret_sca_ty != input_sca_ty:
input = cast(input, ret_sca_ty, builder)
if ret_sca_ty != other_sca_ty:
other = cast(other, ret_sca_ty, builder)
return input, other
def and_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_and(input.handle, other.handle), input.type)
def or_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_or(input.handle, other.handle), input.type)
def xor_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_xor(input.handle, other.handle), input.type)
def logical_and(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
if not other.type.is_int1():
other = bitcast(other, tl.dtype("int1"), builder)
return and_(input, other, builder)
def logical_or(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
if not other.type.is_int1():
other = bitcast(other, tl.dtype("int1"), builder)
return or_(input, other, builder)
def not_(input: tl.tensor, builder: ir.builder):
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
return invert(input, builder)
def lshr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_lshr(input.handle, other.handle), input.type)
def ashr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_ashr(input.handle, other.handle), input.type)
def shl(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_shl(input.handle, other.handle), input.type)
# ===----------------------------------------------------------------------===//
# Unary Operators
# ===----------------------------------------------------------------------===//
def plus(input: tl.tensor) -> tl.tensor:
return input
def minus(input: tl.tensor, builder: ir.builder) -> tl.tensor:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr():
raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")")
_0 = tl.tensor(builder.get_null_value(input_sca_ty.to_ir(builder)), input_sca_ty)
return sub(_0, input, builder)
def invert(input: tl.tensor, builder: tl.tensor) -> tl.tensor:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
_1 = tl.tensor(builder.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty)
return xor_(input, _1, builder)
# ===----------------------------------------------------------------------===//
# Comparison Operators
# ===----------------------------------------------------------------------===//
def _bool_like(v: tl.tensor) -> tl.block_type:
if not v.type.is_block():
return tl.int1
shape = v.type.shape
return tl.block_type(tl.int1, shape)
def greater_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float > float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOGT(input.handle, other.handle), _bool_like(input))
# > int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSGT(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpUGT(input.handle, other.handle), _bool_like(input))
assert False
def greater_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float >= float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOGE(input.handle, other.handle), _bool_like(input))
# >= int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSGE(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpUGE(input.handle, other.handle), _bool_like(input))
assert False
def less_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOLT(input.handle, other.handle), _bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSLT(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpULT(input.handle, other.handle), _bool_like(input))
assert False
def less_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOLE(input.handle, other.handle), _bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSLE(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpULE(input.handle, other.handle), _bool_like(input))
assert False
def equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOEQ(input.handle, other.handle), _bool_like(input))
# == int
elif scalar_ty.is_int():
return tl.tensor(builder.create_icmpEQ(input.handle, other.handle), _bool_like(input))
assert False
def not_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpUNE(input.handle, other.handle), _bool_like(input))
# == int
elif scalar_ty.is_int():
return tl.tensor(builder.create_icmpNE(input.handle, other.handle), _bool_like(input))
assert False
# ===----------------------------------------------------------------------===//
# Block Creation
# ===----------------------------------------------------------------------===//
def arange(start: int, end: int, builder: ir.builder) -> tl.tensor:
if not isinstance(start, int) or not isinstance(end, int):
raise ValueError("arange's arguments must be of type tl.constexpr")
is_start_int64 = bool(start >> 32)
is_end_int64 = bool(end >> 32)
if is_start_int64 or is_end_int64:
raise ValueError("arange must fit in int32")
if end <= start:
raise ValueError("arange's end argument must be greater than the start argument")
shape = [end - start]
ret_ty = tl.block_type(tl.int32, shape)
return tl.tensor(builder.create_make_range(start, end), ret_ty)
def full(shape: List[int], value, dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
if isinstance(value, tl.tensor):
assert value.numel.value == 1, "only accepts size-1 tensor"
value = cast(value, dtype, builder)
else:
# scalar
if dtype is None:
raise ValueError("dtype must be specified when value is not a tensor")
if value == 0:
value = builder.get_null_value(dtype.to_ir(builder))
else:
get_value_fn = getattr(builder, f"get_{dtype.name}")
value = get_value_fn(value)
value = tl.tensor(value, dtype)
return splat(value, shape, builder)
# ===----------------------------------------------------------------------===//
# Shape Manipulation
# ===----------------------------------------------------------------------===//
def splat(value: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
assert not value.type.is_block(), "Cannot splat a block tensor"
if len(shape) == 0:
return value
ret_ty = tl.block_type(value.dtype, shape)
return tl.tensor(builder.create_splat(value.handle, shape), ret_ty)
def view(input: tl.tensor, dst_shape: List[int], builder: ir.builder) -> tl.tensor:
numel = 1
for s in dst_shape:
numel *= s
if input.type.numel != numel:
raise ValueError("cannot view block of different shape")
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_reshape(input.handle, dst_shape, True), ret_ty)
def reshape(input: tl.tensor, dst_shape: List[int], builder: ir.builder) -> tl.tensor:
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_reshape(input.handle, dst_shape, False), ret_ty)
def expand_dims(input: tl.tensor, axis: int, builder: ir.builder) -> tl.tensor:
dst_shape = [tl._constexpr_to_value(x) for x in input.shape]
dst_shape.insert(axis, 1)
if not input.type.is_block():
return splat(input, shape=dst_shape, builder=builder)
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_expand_dims(input.handle, axis), ret_ty)
def cat(lhs: tl.tensor, rhs: tl.tensor, can_reorder: bool, builder: ir.builder) -> tl.tensor:
assert can_reorder, "current implementation of `cat` always may reorder elements"
assert len(lhs.shape) == 1
ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]])
return tl.tensor(builder.create_cat(lhs.handle, rhs.handle), ret_type)
def trans(input: tl.tensor, builder: ir.builder) -> tl.tensor:
if len(input.shape) != 2:
raise ValueError("Only 2D tensors can be transposed")
ret_type = tl.block_type(input.type.scalar, [input.shape[1], input.shape[0]])
return tl.tensor(builder.create_trans(input.handle), ret_type)
def broadcast_impl_shape(input: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
if not input.type.is_block():
ret_ty = tl.block_type(input.type, shape)
return tl.tensor(builder.create_splat(input.handle, shape), ret_ty)
src_shape = input.type.get_block_shapes()
if len(src_shape) != len(shape):
raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}")
if shape == src_shape:
return input
for i, item in enumerate(src_shape):
if shape[i] != item and item != 1:
raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
f" must match the existing size ({item}) at non-singleton dimension"
f" {i}: {src_shape}, {shape}")
ret_ty = tl.block_type(input.type.scalar, shape)
return tl.tensor(builder.create_broadcast(input.handle, shape), ret_ty)
def broadcast_impl_value(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder) -> tl.tensor:
lhs_ty = lhs.type
rhs_ty = rhs.type
# make_shape_compatible(block, scalar)
if lhs_ty.is_block() and not rhs_ty.is_block():
rhs_ty = tl.block_type(rhs_ty.scalar, lhs_ty.shape)
rhs = tl.tensor(builder.create_splat(rhs.handle, lhs_ty.get_block_shapes()), rhs_ty)
# make_shape_compatible(scalar, block)
elif not lhs_ty.is_block() and rhs_ty.is_block():
lhs_ty = tl.block_type(lhs_ty.scalar, rhs_ty.shape)
lhs = tl.tensor(builder.create_splat(lhs.handle, rhs_ty.get_block_shapes()), lhs_ty)
# make_shape_compatible(block, block)
elif lhs_ty.is_block() and rhs_ty.is_block():
lhs_shape = lhs_ty.get_block_shapes()
rhs_shape = rhs_ty.get_block_shapes()
if len(lhs_shape) < len(rhs_shape):
# Add new axes to lhs
for dim in range(len(lhs_shape), len(rhs_shape)):
lhs = tl.tensor(builder.create_expand_dims(lhs.handle, 0),
tl.block_type(lhs_ty.scalar, [1] + lhs_shape))
lhs_ty = lhs.type
lhs_shape = lhs_ty.get_block_shapes()
elif len(rhs_shape) < len(lhs_shape):
# Add new axes to rhs
for dim in range(len(rhs_shape), len(lhs_shape)):
rhs = tl.tensor(builder.create_expand_dims(rhs.handle, 0),
tl.block_type(rhs_ty.scalar, [1] + rhs_shape))
rhs_ty = rhs.type
rhs_shape = rhs_ty.get_block_shapes()
assert len(rhs_shape) == len(lhs_shape)
ret_shape = []
for i, left in enumerate(lhs_shape):
right = rhs_shape[i]
if left == 1:
ret_shape.append(right)
elif right == 1:
ret_shape.append(left)
elif left == right:
ret_shape.append(left)
else:
raise ValueError("Cannot make_shape_compatible: incompatible dimensions "
"at index " + str(i) + ": " + str(left) + " and " + str(right))
if lhs_shape != ret_shape:
ret_ty = tl.block_type(lhs_ty.scalar, ret_shape)
lhs = tl.tensor(builder.create_broadcast(lhs.handle, ret_shape), ret_ty)
if rhs_shape != ret_shape:
ret_ty = tl.block_type(rhs_ty.scalar, ret_shape)
rhs = tl.tensor(builder.create_broadcast(rhs.handle, ret_shape), ret_ty)
# (scalar, scalar) => returns original blocks
return lhs, rhs
#######
# cast
#######
def bitcast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor:
src_ty = input.type
if src_ty.is_block():
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
if src_ty == dst_ty:
return input
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr():
return cast(input, dst_ty, builder)
# Bitcast
src_bits = src_sca_ty.primitive_bitwidth
dst_bits = dst_sca_ty.primitive_bitwidth
if src_bits != dst_bits:
raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to "
"data-type of size " + str(dst_bits))
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
def cast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor:
src_ty = input.type
if isinstance(dst_ty, tl.constexpr):
dst_ty = dst_ty.value
if src_ty.is_block():
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
if src_ty == dst_ty:
return input
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if _is_cuda(builder.target) and builder.target.capability < 89 and \
(src_sca_ty.is_fp8e4nv() or dst_sca_ty.is_fp8e4nv()):
assert False, "fp8e4nv data type is not supported on CUDA arch < 89"
# Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64
if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \
(src_sca_ty.is_floating() and dst_sca_ty.is_fp8()):
return tl.tensor(builder.create_fp_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
# bf16 <=> (not fp32)
if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \
(src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()):
return cast(cast(input, tl.float32, builder), dst_sca_ty, builder)
# Standard floating types' casting: truncation
# fp64 => fp32, fp16, bf16
# fp32 => fp16, bf16
truncate_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth
if truncate_fp:
return tl.tensor(builder.create_fp_trunc(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Standard floating types' casting: extension
# fp32 => fp64
# fp16 => fp32, fp64
# bf16 => fp32, fp64
ext_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth
if ext_fp:
return tl.tensor(builder.create_fp_ext(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting between integer types
if src_sca_ty.is_int() and dst_sca_ty.is_int() and \
(src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness):
sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool()
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(builder)
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
return not_equal(input, _0, builder)
else:
return tl.tensor(builder.create_int_cast(input.handle, dst_ty.to_ir(builder), sign_extend), dst_ty)
# Casting standard floating types to integer types
if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int():
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(builder)
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
return not_equal(input, _0, builder)
elif dst_sca_ty.is_int_signed():
return tl.tensor(builder.create_fp_to_si(input.handle, dst_ty.to_ir(builder)), dst_ty)
else:
return tl.tensor(builder.create_fp_to_ui(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting integer types to standard floating types
if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating():
if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed():
return tl.tensor(builder.create_ui_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
else:
return tl.tensor(builder.create_si_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting pointer types to integer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
bitwidth = dst_sca_ty.int_bitwidth
if bitwidth == 64:
return tl.tensor(builder.create_ptr_to_int(input.handle, dst_ty.to_ir(builder)), dst_ty)
if bitwidth == 1:
return not_equal(cast(input, tl.int64, builder), tl.tensor(builder.get_int64(0), tl.int64), builder)
# Casting integer types to pointer types
if src_sca_ty.is_int() and dst_sca_ty.is_ptr():
return tl.tensor(builder.create_int_to_ptr(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting pointer types to pointer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr():
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
assert False, f'cannot cast {input} to {dst_ty}'
# ===----------------------------------------------------------------------===//
# Memory Operators
# ===----------------------------------------------------------------------===//
def _str_to_load_cache_modifier(cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".ca":
cache = ir.CACHE_MODIFIER.CA
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_store_cache_modifier(cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".wb":
cache = ir.CACHE_MODIFIER.WB
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
elif cache_modifier == ".cs":
cache = ir.CACHE_MODIFIER.CS
elif cache_modifier == ".wt":
cache = ir.CACHE_MODIFIER.WT
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_eviction_policy(eviction_policy):
eviction = ir.EVICTION_POLICY.NORMAL # default
if eviction_policy:
if eviction_policy == "evict_last":
eviction = ir.EVICTION_POLICY.EVICT_LAST
elif eviction_policy == "evict_first":
eviction = ir.EVICTION_POLICY.EVICT_FIRST
else:
raise ValueError(f"Eviction policy {eviction_policy} not supported")
return eviction
def _str_to_padding_option(padding_option):
padding = None # default
if padding_option:
if padding_option == "zero":
padding = ir.PADDING_OPTION.PAD_ZERO
elif padding_option == "nan":
padding = ir.PADDING_OPTION.PAD_NAN
else:
raise ValueError(f"Padding option {padding_option} not supported")
return padding
def _str_to_sem(sem_option):
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
if sem_option:
if sem_option == "acquire":
sem = ir.MEM_SEMANTIC.ACQUIRE
elif sem_option == "release":
sem = ir.MEM_SEMANTIC.RELEASE
elif sem_option == "acq_rel":
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
elif sem_option == "relaxed":
sem = ir.MEM_SEMANTIC.RELAXED
else:
raise ValueError(f"Memory semantic {sem_option} not supported")
return sem
def _str_to_scope(scope_option):
scope = ir.MEM_SYNC_SCOPE.GPU
if scope_option:
if scope_option == "gpu":
scope = ir.MEM_SYNC_SCOPE.GPU
elif scope_option == "cta":
scope = ir.MEM_SYNC_SCOPE.CTA
elif scope_option == "sys":
scope = ir.MEM_SYNC_SCOPE.SYSTEM
else:
raise ValueError(f"Memory semantic {scope_option} not supported")
return scope
def _canonicalize_boundary_check(boundary_check, block_shape):
if boundary_check:
if not hasattr(boundary_check, "__iter__"):
boundary_check = [boundary_check]
boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check]
for dim in boundary_check:
assert isinstance(dim, int) and 0 <= dim < len(block_shape)
assert len(boundary_check) > 0
assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`"
return sorted(boundary_check)
return tuple()
def _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
# Load by a block pointer: `pointer_type<block_type<>>`
# Block pointer can not have `mask` and `other` arguments
if mask or other:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
raise ValueError("Padding option `nan` is not supported for integer block pointers")
# `dst_ty` is de-referenced type of the pointer type
dst_ty = ptr.type.element_ty
# Check `boundary_check` argument
boundary_check = _canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes())
# Build IR
return tl.tensor(
builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile), dst_ty)
def _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`")
# Check `mask`, `other`, `boundary_check`, and `padding` arguments
if not mask and other:
raise ValueError("`other` cannot be provided without `mask`")
if padding or boundary_check:
raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of"
"pointers or loading a scalar. Because the compiler does not know the boundary; please "
"use block pointers (defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `mask` and `other`
if not ptr.type.is_block():
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
if other and other.type.is_block():
raise ValueError("Other argument cannot be block type if pointer argument is not a block")
# Make `mask` and `other` into the same shape as `ptr`
if ptr.type.is_block():
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
if other:
other = broadcast_impl_shape(other, ptr.type.get_block_shapes(), builder)
# Get `pointer_type<elt_ty>` and `elt_ty`
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if elt_ty == tl.int1:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = cast(ptr, ptr_ty, builder)
# Cast `other` into `ele_ty` type
if other:
other = cast(other, elt_ty, builder)
# Create loaded result type `dst_ty`
if ptr.type.is_block():
shape = ptr.type.get_block_shapes()
dst_ty = tl.block_type(elt_ty, shape)
else:
# Load by de-referencing the pointer of scalar
dst_ty = elt_ty
# Build IR
if not mask:
return tl.tensor(builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty)
else:
return tl.tensor(
builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache, eviction,
is_volatile), dst_ty)
def load(ptr: tl.tensor, mask: Optional[tl.tensor], other: Optional[tl.tensor], boundary_check, padding_option: str,
cache_modifier: str, eviction_policy: str, is_volatile: bool, builder: ir.builder) -> tl.tensor:
# Cache, eviction and padding options
cache = _str_to_load_cache_modifier(cache_modifier)
eviction = _str_to_eviction_policy(eviction_policy)
padding = _str_to_padding_option(padding_option)
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Load by a block pointer: `pointer_type<block_type<>>`
return _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
else:
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
def _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder):
# Store by a block pointer: `pointer_type<block_type<>>`
# Block pointers can not have the `mask` argument
if mask:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
# Check same shape and element type
block_shape = ptr.type.element_ty.get_block_shapes()
if not val.type.is_block():
val = broadcast_impl_shape(val, block_shape, builder)
assert val.type.is_block(), "Value argument must be block type or a scalar"
assert block_shape == val.type.get_block_shapes(
), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch"
assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch"
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
# Check `boundary_check` argument
boundary_check = _canonicalize_boundary_check(boundary_check, block_shape)
# Build IR
return tl.tensor(builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction),
tl.void)
def _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder):
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`")
# Check `boundary_check` argument
if boundary_check:
raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a "
"scalar. Because the compiler does not know the boundary; please use block pointers "
"(defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `val` and `mask`
if not ptr.type.is_block():
if val.type.is_block():
raise ValueError("Value argument cannot be block type if pointer argument is not a block")
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
# Make `mask` and `val` into the same shape as `ptr`
if ptr.type.is_block():
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if elt_ty == tl.int1:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = cast(ptr, ptr_ty, builder)
# Cast to target data type
val = cast(val, elt_ty, builder)
# Build IR
if not mask:
return tl.tensor(builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void)
if not mask.type.scalar.is_bool():
raise ValueError("Mask must have boolean scalar type")
return tl.tensor(builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction), tl.void)
def store(ptr: tl.tensor, val: tl.tensor, mask: Optional[tl.tensor], boundary_check, cache_modifier: str,
eviction_policy: str, builder: ir.builder) -> tl.tensor:
# Cache and eviction options
cache = _str_to_store_cache_modifier(cache_modifier)
eviction = _str_to_eviction_policy(eviction_policy)
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Store by a block pointer: `pointer_type<block_type<>>`
return _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder)
else:
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder)
#########
# atomic
#########
def atomic_cas(ptr: tl.tensor, cmp: tl.tensor, val: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
element_ty = ptr.type.scalar.element_ty
if element_ty.primitive_bitwidth not in [16, 32, 64]:
raise ValueError("atomic_cas only supports elements with width {16, 32, 64}")
return tl.tensor(builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type)
def atom_red_typechecking_impl(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, op: str,
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor, tl.tensor]:
if not ptr.type.scalar.is_ptr():
raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__())
element_ty = ptr.type.scalar.element_ty
if element_ty is tl.float16 and op != 'add':
raise ValueError("atomic_" + op + " does not support fp16")
if element_ty in [tl.int1, tl.int8, tl.int16, tl.bfloat16]:
raise ValueError("atomic_" + op + " does not support " + str(element_ty))
if ptr.type.is_block():
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
if val:
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
val = cast(val, ptr.type.scalar.element_ty, builder)
if not mask:
mask_ir = builder.get_int1(True)
mask_ty = tl.int1
if ptr.type.is_block():
mask_ir = builder.create_splat(mask_ir, ptr.type.get_block_shapes())
mask_ty = tl.block_type(tl.int1, ptr.type.get_block_shapes())
mask = tl.tensor(mask_ir, mask_ty)
return ptr, val, mask
def atomic_max(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'max', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_max for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
else:
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
# for float
# return atomic_smax(i_ptr, i_val) if val >= 0
# return atomic_umin(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_max not supported for dtype {sca_ty}")
itype = tl.int32 if sca_ty == tl.float32 else tl.float64
zero = full([], 0.0, sca_ty, builder)
i_val = bitcast(val, itype, builder)
i_ptr = bitcast(ptr, tl.pointer_type(itype, 1), builder)
pos = greater_equal(val, zero, builder)
neg = less_than(val, zero, builder)
pos_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle,
and_(mask, pos, builder).handle, sem, scope), i_val.type)
neg_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, i_ptr.handle, i_val.handle,
and_(mask, neg, builder).handle, sem, scope), i_val.type)
ret = where(pos, pos_ret, neg_ret, builder)
return bitcast(ret, sca_ty, builder)
def atomic_min(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'min', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_min for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
else:
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
# for float
# return atomic_smin(i_ptr, i_val) if val >= 0
# return atomic_umax(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_min not supported for dtype {sca_ty}")
itype = tl.int32 if sca_ty == tl.float32 else tl.float64
zero = full([], 0.0, sca_ty, builder)
i_val = bitcast(val, itype, builder)
i_ptr = bitcast(ptr, tl.pointer_type(itype, 1), builder)
pos = greater_equal(val, zero, builder)
neg = less_than(val, zero, builder)
pos_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle,
and_(mask, pos, builder).handle, sem, scope), i_val.type)
neg_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, i_ptr.handle, i_val.handle,
and_(mask, neg, builder).handle, sem, scope), i_val.type)
ret = where(pos, pos_ret, neg_ret, builder)
return bitcast(ret, sca_ty, builder)
def atomic_add(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'add', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD
return tl.tensor(builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
def atomic_and(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'and', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_or(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'or', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_xor(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xor', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_xchg(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str,
builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xchg', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
# ===----------------------------------------------------------------------===//
# Linear Algebra
# ===----------------------------------------------------------------------===//
def gpu_has_mfma() -> bool:
if not is_hip():
return False
return True # mfma supported in ['gfx908', 'gfx90a']
def mfma_supported(M, N, K, allow_tf32, ret_scalar_ty) -> bool:
if not gpu_has_mfma():
return False
# TODO: Add check for configurations and types.
return True
def dot(lhs: tl.tensor, rhs: tl.tensor, acc: tl.tensor, allow_tf32: bool, max_num_imprecise_acc: int,
out_dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
def assert_dtypes_valid(lhs_dtype, rhs_dtype, target):
# Checks for non-cuda archs
if not _is_cuda(target):
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
return
# Checks for cuda arch
if target.capability < 90:
assert not lhs_dtype.is_fp8e4nv() and not rhs_dtype.is_fp8e4nv(
), "Dot op does not support fp8e4nv on CUDA arch < 90"
if lhs_dtype.is_fp8() and rhs_dtype.is_fp8():
return
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
else:
assert not lhs_dtype.is_fp8e4b15() and not rhs_dtype.is_fp8e4b15(
), "Dot op does not support fp8e4b15 on CUDA arch >= 90"
assert not lhs_dtype.is_fp8e4b15x4() and not rhs_dtype.is_fp8e4b15x4(
), "Dot op does not support fp8e4b15x4 on CUDA arch >= 90"
if lhs_dtype.is_int() or rhs_dtype.is_int():
assert lhs_dtype == rhs_dtype, f"Both operands must be same type. First operand ({lhs_dtype}) and second operand ({rhs_dtype})"
assert lhs_dtype.is_int8() or lhs_dtype.is_uint8(
), f"Both operands must be either int8 or uint8. Operand type ({lhs_dtype})"
elif lhs_dtype.is_fp8() or rhs_dtype.is_fp8():
assert lhs_dtype.is_fp8e4nv() or lhs_dtype.is_fp8e5(
), f"Only supports fp8e4nv or fp8e5. First operand ({lhs_dtype})"
assert rhs_dtype.is_fp8e4nv() or rhs_dtype.is_fp8e5(
), f"Only supports fp8e4nv or fp8e5. Second operand ({rhs_dtype})"
else:
assert lhs_dtype.is_fp16() or lhs_dtype.is_bf16() or lhs_dtype.is_fp32() or lhs_dtype.is_int1(
), f"Unsupported dtype {lhs_dtype}"
assert rhs_dtype.is_fp16() or rhs_dtype.is_bf16() or rhs_dtype.is_fp32() or rhs_dtype.is_int1(
), f"Unsupported dtype {rhs_dtype}"
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
assert lhs.type.is_block() and rhs.type.is_block()
assert_dtypes_valid(lhs.dtype, rhs.dtype, builder.target)
assert len(lhs.shape) == 2, f"First input shape ({lhs.shape}) is not two dimensional!"
assert len(rhs.shape) == 2, f"Second input shape ({rhs.shape}) is not two dimensional!"
assert lhs.shape[1].value == rhs.shape[
0].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[1].value}) must be equal to first index of second shape ({rhs.shape[0].value})"
assert lhs.shape[0].value >= 16 and lhs.shape[1].value >= 16 \
and rhs.shape[1].value >= 16, \
f"All values in both first input shape ({lhs.shape}) and second input shape ({rhs.shape}) must be >= 16!"
if lhs.type.scalar.is_int():
assert lhs.type.scalar == tl.int8, "only int8 supported!"
# TODO: This is CUDA specific, check if ROCm has the same limitation
assert lhs.shape[1].value >= 32, "small blocks not supported!"
_0 = builder.get_int32(0)
ret_scalar_ty = tl.int32
elif out_dtype.is_bf16():
raise ValueError(
"out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`")
elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16():
_0 = builder.get_fp32(0)
ret_scalar_ty = tl.float32
else:
_0 = builder.get_fp16(0) if out_dtype.is_fp16() else builder.get_fp32(0)
ret_scalar_ty = out_dtype
M = lhs.type.shape[0]
N = rhs.type.shape[1]
# Cast operands of types f16 and i8 for configurations where FMA only supported.
if is_hip() and not mfma_supported(M, N, lhs.type.shape[1], allow_tf32, ret_scalar_ty):
ret_cast_scalar_ty = tl.float32 if lhs.type.scalar.is_int() else ret_scalar_ty
lhs = cast(lhs, ret_cast_scalar_ty, builder)
rhs = cast(rhs, ret_cast_scalar_ty, builder)
if ret_cast_scalar_ty == tl.float16:
_0 = builder.create_splat(builder.get_fp16(0), [M, N])
else:
_0 = builder.create_splat(builder.get_fp32(0), [M, N])
ret_ty = tl.block_type(ret_cast_scalar_ty, [M, N])
ret = tl.tensor(builder.create_dot(lhs.handle, rhs.handle, _0, allow_tf32), ret_ty)
return cast(ret, ret_scalar_ty, builder)
if is_hip() and mfma_supported(M, N, lhs.type.shape[1], allow_tf32,
ret_scalar_ty) and ret_scalar_ty.primitive_bitwidth < 32:
if lhs.type.scalar.is_int():
ret_dot_scalar_ty = tl.int32
_0 = builder.create_splat(builder.get_int32(0), [M, N])
else:
ret_dot_scalar_ty = tl.float32
_0 = builder.create_splat(builder.get_fp32(0), [M, N])
ret_ty = tl.block_type(ret_dot_scalar_ty, [M, N])
ret = tl.tensor(builder.create_dot(lhs.handle, rhs.handle, _0, allow_tf32), ret_ty)
return cast(ret, ret_scalar_ty, builder)
ret_ty = tl.block_type(ret_scalar_ty, [M, N])
if acc is None:
acc_handle = builder.create_splat(_0, [M, N])
else:
acc_handle = acc.handle
assert acc.type == ret_ty
# max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90
if not (_is_cuda(builder.target) and builder.target.capability == 90 and lhs.dtype.is_fp8() and rhs.dtype.is_fp8()
and ret_scalar_ty.is_fp32()):
max_num_imprecise_acc = 0
if max_num_imprecise_acc is None:
max_num_imprecise_acc = 2**30
return tl.tensor(builder.create_dot(lhs.handle, rhs.handle, acc_handle, allow_tf32, max_num_imprecise_acc), ret_ty)
# ===----------------------------------------------------------------------===//
# Indexing
# ===----------------------------------------------------------------------===//
def where(condition: tl.tensor, x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
condition = cast(condition, tl.int1, builder)
if condition.type.is_block():
condition, x = broadcast_impl_value(condition, x, builder)
x, y = broadcast_impl_value(x, y, builder)
condition, x = broadcast_impl_value(condition, x, builder)
x, y = binary_op_type_checking_impl(x, y, builder, True, True)
if not condition.type.is_block():
condition, _ = broadcast_impl_value(condition, x, builder)
ret_ty = x.type
return tl.tensor(builder.create_select(condition.handle, x.handle, y.handle), ret_ty)
# ===----------------------------------------------------------------------===//
# Reduction
# ===----------------------------------------------------------------------===
def reduction(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, builder: ir.builder) -> Tuple[tl.tensor, ...]:
if axis is None:
new_inputs = []
for i in range(len(inputs)):
new_shape = [inputs[i].numel.value]
new_inputs.append(view(inputs[i], new_shape, builder))
inputs = tuple(new_inputs)
axis = 0
# get result shape
shape = inputs[0].type.shape
ret_shape = [s for i, s in enumerate(shape) if i != axis]
for t in inputs:
assert t.type.shape == shape
def wrap_tensor(x, scalar_ty):
if ret_shape:
res_ty = tl.block_type(scalar_ty, ret_shape)
else:
# 0d-tensor -> scalar
res_ty = scalar_ty
return tl.tensor(x, res_ty)
reduce_op = builder.create_reduce([t.handle for t in inputs], axis)
region_builder_fn(reduce_op)
reduce_op.verify()
return tuple(wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Associative Scan
# ===----------------------------------------------------------------------===
def associative_scan(inputs: Sequence[tl.tensor], axis: int, region_builder_fn,
builder: ir.builder) -> Tuple[tl.tensor, ...]:
if len(inputs) != 1:
raise ValueError("Current implementation only support single tensor input")
shape = inputs[0].type.shape
def wrap_tensor(x, scalar_ty):
res_ty = tl.block_type(scalar_ty, shape)
return tl.tensor(x, res_ty)
scan_op = builder.create_scan([t.handle for t in inputs], axis)
region_builder_fn(scan_op)
scan_op.verify()
return tuple(wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Math
# ===----------------------------------------------------------------------===
def _check_dtype(dtypes: List[str]) -> T:
"""
We're following libdevice's convention to check accepted data types for math functions.
It is not a good practice to support all data types as accelerators/GPUs don't support
many float16 and bfloat16 math operations.
We should let the users know that they are using and invoke explicit cast to convert
the data type to the supported one.
"""
def wrapper(fn):
@wraps(fn)
def check(*args, **kwargs):
# concatenate args and kwargs
all_args = list(args) + list(kwargs.values())
for arg in [a for a in all_args if isinstance(a, tl.tensor)]:
if arg.type.scalar.name not in dtypes:
raise ValueError(f"Expected dtype {dtypes} but got {arg.type.scalar.name}")
return fn(*args, **kwargs)
return check
return wrapper
def umulhi(x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
x, y = binary_op_type_checking_impl(x, y, builder)
# FIXME(Keren): not portable, should be fixed
from . import math
return math.mulhi(x, y, _builder=builder)
@_check_dtype(dtypes=["fp32", "fp64"])
def floor(x: tl.tensor, builder: ir.builder) -> tl.tensor:
# FIXME(Keren): not portable, should be fixed
from . import math
return math.floor(x, _builder=builder)
@_check_dtype(dtypes=["fp32", "fp64"])
def exp(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_exp(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def log(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_log(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def cos(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_cos(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def sin(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_sin(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def sqrt(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_sqrt(x.handle), x.type)
def abs(x: tl.tensor, builder: ir.builder) -> tl.tensor:
dtype = x.dtype
if dtype.is_floating():
return tl.tensor(builder.create_fabs(x.handle), x.type)
elif dtype.is_int_signed():
return tl.tensor(builder.create_iabs(x.handle), x.type)
elif dtype.is_int_unsigned():
return x # no-op
else:
assert False, f"Unexpected dtype {dtype}"
##
def multiple_of(x: tl.tensor, values: List[int]) -> tl.tensor:
if max(1, len(x.shape)) != len(values):
raise ValueError("Shape of input to multiple_of does not match the length of values")
x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context()))
return x
def max_contiguous(x: tl.tensor, values: List[int]) -> tl.tensor:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_contiguous does not match the length of values")
x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context()))
return x
def max_constancy(x: tl.tensor, values: List[int]) -> tl.tensor:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_constancy does not match the length of values")
x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context()))
return x
def debug_barrier(builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_barrier(), tl.void)
def device_print(prefix: str, args: List[tl.tensor], builder: ir.builder) -> tl.tensor:
# It makes sense visually for prefix to end in ": "; make it so. Also,
# non-empty prefixes should start with " ".
if not prefix.endswith(" ") and args:
prefix += " "
if not prefix.endswith(": ") and args:
prefix = prefix[:-1] + ": "
if len(prefix) > 2 and not prefix.startswith(" "):
prefix = " " + prefix
new_args = []
for arg in args:
new_args.append(arg.handle)
return tl.tensor(builder.create_print(prefix, new_args), tl.void)
def device_assert(cond: tl.tensor, msg: str, file_name: str, func_name, lineno: int, builder: ir.builder) -> tl.tensor:
cond_ty = cond.type
if not cond_ty.is_block():
cond_ty = tl.block_type(cond_ty.scalar, (1, ))
cond = tl.tensor(builder.create_splat(cond.handle, (1, )), cond_ty)
return tl.tensor(builder.create_assert(cond.handle, msg, file_name, func_name, lineno), tl.void)
def _convert_elem_to_ir_value(builder, elem, require_i64):
if isinstance(elem, int):
elem = tl.constexpr(elem)
if isinstance(elem, tl.constexpr):
return builder.get_int64(elem.value) if require_i64 else builder.get_int32(elem.value)
elif isinstance(elem, tl.tensor):
assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets"
assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets"
if elem.dtype != tl.int64 and require_i64:
return builder.create_int_cast(elem.handle, builder.get_int64_ty(), elem.dtype.is_int_signed())
elif elem.dtype != tl.int32:
return builder.create_int_cast(elem.handle, builder.get_int32_ty(), elem.dtype.is_int_signed())
return elem.handle
assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}"
def _convert_to_ir_values(builder, list_like, require_i64=True):
if hasattr(list_like, "__iter__"):
return [_convert_elem_to_ir_value(builder, elem, require_i64) for elem in list_like]
return [_convert_elem_to_ir_value(builder, list_like, require_i64)]
def make_block_ptr(base: tl.tensor, shape, strides, offsets, block_shape, order, builder: ir.builder) -> tl.tensor:
# Convert dynamic arguments to IR values
# NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t`
shape = _convert_to_ir_values(builder, shape)
strides = _convert_to_ir_values(builder, strides)
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
# Check `base` type
if not base.type.is_ptr() or base.type.element_ty.is_block():
raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)")
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if base.type.element_ty == tl.int1:
base = cast(base, tl.pointer_type(tl.int8, base.type.address_space), builder)
# Check whether `block_shape` is static
if not hasattr(block_shape, "__iter__"):
block_shape = [block_shape]
block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape]
assert all([isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape]), \
"Expected a list of constant integers (`int32_t` range) in `block_shape`"
# Check `order`
if not hasattr(order, "__iter__"):
order = [order]
order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order]
assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order"
# Must have same length
assert all([len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]]), \
"Expected shape/strides/offsets/block_shape to have the same length"
# Build value, the type is:
# `pointer_type<blocked<shape, element_type>>` in Python
# `tt.ptr<tensor<shape, element_type>>` in MLIR
handle = builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order)
return tl.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape)))
def advance(base: tl.tensor, offsets, builder: ir.builder) -> tl.tensor:
# Convert dynamic offsets to IR values
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
# Advanced block pointer type is the same as before
return tl.tensor(builder.create_advance(base.handle, offsets), base.type)