applied-ai-018's picture
Add files using upload-large-folder tool
4ba564c verified
raw
history blame
22.7 kB
#include "cuda.h"
#include <dlfcn.h>
#include <stdbool.h>
#define PY_SSIZE_T_CLEAN
#include <Python.h>
// Raises a Python exception and returns false if code is not CUDA_SUCCESS.
static bool gpuAssert(CUresult code, const char *file, int line) {
if (code == CUDA_SUCCESS)
return true;
const char *prefix = "Triton Error [CUDA]: ";
const char *str;
cuGetErrorString(code, &str);
char err[1024] = {0};
strcat(err, prefix);
strcat(err, str);
PyGILState_STATE gil_state;
gil_state = PyGILState_Ensure();
PyErr_SetString(PyExc_RuntimeError, err);
PyGILState_Release(gil_state);
return false;
}
// To be used only *outside* a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL(ans) \
do { \
if (!gpuAssert((ans), __FILE__, __LINE__)) \
return NULL; \
} while (0)
// To be used inside a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(ans) \
do { \
if (!gpuAssert((ans), __FILE__, __LINE__)) { \
PyEval_RestoreThread(_save); \
return NULL; \
} \
} while (0)
#define ADD_ENUM_ITEM(value) \
do { \
PyObject *py_value = PyLong_FromLong(value); \
PyDict_SetItemString(enum_dict, #value, py_value); \
} while (0)
#define ADD_ENUM_ITEM_0()
#define ADD_ENUM_ITEM_1(v1) ADD_ENUM_ITEM(v1)
#define ADD_ENUM_ITEM_2(v1, v2) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2);
#define ADD_ENUM_ITEM_3(v1, v2, v3) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2); \
ADD_ENUM_ITEM(v3);
#define ADD_ENUM_ITEM_4(v1, v2, v3, v4) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2); \
ADD_ENUM_ITEM(v3); \
ADD_ENUM_ITEM(v4);
#define ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5) \
ADD_ENUM_ITEM_2(v1, v2); \
ADD_ENUM_ITEM_3(v3, v4, v5);
#define ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6) \
ADD_ENUM_ITEM_2(v1, v2); \
ADD_ENUM_ITEM_4(v3, v4, v5, v6);
#define ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7) \
ADD_ENUM_ITEM_3(v1, v2, v3); \
ADD_ENUM_ITEM_4(v4, v5, v6, v7);
#define ADD_ENUM_ITEM_8(v1, v2, v3, v4, v5, v6, v7, v8) \
ADD_ENUM_ITEM_4(v1, v2, v3, v4); \
ADD_ENUM_ITEM_4(v5, v6, v7, v8);
#define ADD_ENUM_ITEM_9(v1, v2, v3, v4, v5, v6, v7, v8, v9) \
ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5); \
ADD_ENUM_ITEM_4(v6, v7, v8, v9);
#define ADD_ENUM_ITEM_10(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) \
ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5); \
ADD_ENUM_ITEM_5(v6, v7, v8, v9, v10);
#define ADD_ENUM_ITEM_11(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11) \
ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6); \
ADD_ENUM_ITEM_5(v7, v8, v9, v10, v11);
#define ADD_ENUM_ITEM_12(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) \
ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6); \
ADD_ENUM_ITEM_6(v7, v8, v9, v10, v11, v12);
#define ADD_ENUM_ITEM_13(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, \
v13) \
ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7); \
ADD_ENUM_ITEM_6(v8, v9, v10, v11, v12, v13);
#define ADD_ENUM_ITEM_14(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, \
v13, v14) \
ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7); \
ADD_ENUM_ITEM_7(v8, v9, v10, v11, v12, v13, v14);
#define DISPATCH_ARGS_N(_14, _13, _12, _11, _10, _9, _8, _7, _6, _5, _4, _3, \
_2, _1, N, ...) \
ADD_ENUM_ITEM_##N
#define DISPATCH_ARGS(...) \
DISPATCH_ARGS_N(__VA_ARGS__, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, \
0) \
(__VA_ARGS__)
#define ADD_ENUM_TO_MODULE(module, enum_name, ...) \
do { \
PyObject *enum_dict = PyDict_New(); \
DISPATCH_ARGS(__VA_ARGS__) \
if (enum_dict != NULL) { \
PyObject_SetAttrString(module, #enum_name, enum_dict); \
} \
} while (0)
static void defineEnums(PyObject *self) {
ADD_ENUM_TO_MODULE(
self, CUtensorMapDataType, CU_TENSOR_MAP_DATA_TYPE_UINT8,
CU_TENSOR_MAP_DATA_TYPE_UINT16, CU_TENSOR_MAP_DATA_TYPE_UINT32,
CU_TENSOR_MAP_DATA_TYPE_INT32, CU_TENSOR_MAP_DATA_TYPE_UINT64,
CU_TENSOR_MAP_DATA_TYPE_INT64, CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32, CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16, CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32, CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ);
ADD_ENUM_TO_MODULE(self, CUtensorMapInterleave, CU_TENSOR_MAP_INTERLEAVE_NONE,
CU_TENSOR_MAP_INTERLEAVE_16B,
CU_TENSOR_MAP_INTERLEAVE_32B);
ADD_ENUM_TO_MODULE(self, CUtensorMapSwizzle, CU_TENSOR_MAP_SWIZZLE_NONE,
CU_TENSOR_MAP_SWIZZLE_32B, CU_TENSOR_MAP_SWIZZLE_64B,
CU_TENSOR_MAP_SWIZZLE_128B);
ADD_ENUM_TO_MODULE(
self, CUtensorMapL2promotion, CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_L2_PROMOTION_L2_64B, CU_TENSOR_MAP_L2_PROMOTION_L2_128B,
CU_TENSOR_MAP_L2_PROMOTION_L2_256B);
ADD_ENUM_TO_MODULE(self, CUtensorMapFloatOOBfill,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMA);
}
typedef struct {
PyObject_HEAD cuuint32_t value;
} PyCUuint32;
typedef struct {
PyObject_HEAD cuuint64_t value;
} PyCUuint64;
#define DEFINE_CUUINT_CONSTRUCTOR(NAME, TYPE, FORMAT, VALUE_TYPE) \
static PyObject *Py##NAME##_New(PyTypeObject *type, PyObject *args, \
PyObject *kwds) { \
Py##NAME *self; \
VALUE_TYPE value; \
if (!PyArg_ParseTuple(args, FORMAT, &value)) \
return NULL; \
self = (Py##NAME *)type->tp_alloc(type, 0); \
if (self != NULL) { \
self->value = (TYPE)value; \
} \
return (PyObject *)self; \
}
DEFINE_CUUINT_CONSTRUCTOR(CUuint32, cuuint32_t, "l", long)
DEFINE_CUUINT_CONSTRUCTOR(CUuint64, cuuint64_t, "L", long long)
static PyTypeObject PyCUuint32_Type = {
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint32_t",
.tp_basicsize = sizeof(PyCUuint32),
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyCUuint32_New,
};
static PyTypeObject PyCUuint64_Type = {
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint64_t",
.tp_basicsize = sizeof(PyCUuint64),
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyCUuint64_New,
};
static void defineTypes(PyObject *self) {
if (PyType_Ready(&PyCUuint32_Type) < 0) {
PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint32_t type");
return;
}
Py_INCREF(&PyCUuint32_Type);
if (PyModule_AddObject(self, "cuuint32_t", (PyObject *)&PyCUuint32_Type) <
0) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to add cuuint32_t type to module");
return;
}
if (PyType_Ready(&PyCUuint64_Type) < 0) {
PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint64_t type");
return;
}
Py_INCREF(&PyCUuint64_Type);
if (PyModule_AddObject(self, "cuuint64_t", (PyObject *)&PyCUuint64_Type) <
0) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to add cuuint64_t type to module");
return;
}
}
static PyObject *getDeviceProperties(PyObject *self, PyObject *args) {
int device_id;
if (!PyArg_ParseTuple(args, "i", &device_id))
return NULL;
// Get device handle
CUdevice device;
cuDeviceGet(&device, device_id);
// create a struct to hold device properties
int max_shared_mem;
int multiprocessor_count;
int sm_clock_rate;
int mem_clock_rate;
int mem_bus_width;
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&max_shared_mem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&multiprocessor_count, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&sm_clock_rate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&mem_clock_rate, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&mem_bus_width, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, device));
return Py_BuildValue("{s:i, s:i, s:i, s:i, s:i}", "max_shared_mem",
max_shared_mem, "multiprocessor_count",
multiprocessor_count, "sm_clock_rate", sm_clock_rate,
"mem_clock_rate", mem_clock_rate, "mem_bus_width",
mem_bus_width);
}
static PyObject *loadBinary(PyObject *self, PyObject *args) {
const char *name;
const char *data;
Py_ssize_t data_size;
int shared;
int device;
if (!PyArg_ParseTuple(args, "ss#ii", &name, &data, &data_size, &shared,
&device)) {
return NULL;
}
CUfunction fun;
CUmodule mod;
int32_t n_regs = 0;
int32_t n_spills = 0;
// create driver handles
CUcontext pctx = 0;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxGetCurrent(&pctx));
if (!pctx) {
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuDevicePrimaryCtxRetain(&pctx, device));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxSetCurrent(pctx));
}
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuModuleLoadData(&mod, data));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuModuleGetFunction(&fun, mod, name));
// get allocated registers and spilled registers from the function
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncGetAttribute(&n_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, fun));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun));
n_spills /= 4;
// set dynamic shared memory if necessary
int shared_optin;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
&shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
if (shared > 49152 && shared_optin > 49152) {
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED));
int shared_total, shared_static;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
&shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR,
device));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncGetAttribute(
&shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncSetAttribute(fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
shared_optin - shared_static));
}
Py_END_ALLOW_THREADS;
if (PyErr_Occurred()) {
return NULL;
}
return Py_BuildValue("(KKii)", (uint64_t)mod, (uint64_t)fun, n_regs,
n_spills);
}
static PyObject *memAlloc(PyObject *self, PyObject *args) {
size_t bytesize;
CUdeviceptr dptr;
CUresult result;
if (!PyArg_ParseTuple(args, "K", &bytesize)) {
return NULL; // Error parsing arguments
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemAlloc(&dptr, bytesize));
Py_END_ALLOW_THREADS;
return PyLong_FromUnsignedLongLong((unsigned long long)dptr);
}
static PyObject *memcpyHtoD(PyObject *self, PyObject *args) {
unsigned long long dstDevicePtr, srcHostPtr;
size_t byteCount;
CUdeviceptr dstDevice;
const void *srcHost;
CUresult result;
if (!PyArg_ParseTuple(args, "KKK", &dstDevicePtr, &srcHostPtr, &byteCount)) {
return NULL; // Error parsing arguments
}
dstDevice = (CUdeviceptr)dstDevicePtr;
srcHost = (const void *)srcHostPtr;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuMemcpyHtoD(dstDevice, srcHost, byteCount));
Py_END_ALLOW_THREADS;
Py_RETURN_NONE;
}
static PyObject *memFree(PyObject *self, PyObject *args) {
CUdeviceptr dptr;
if (!PyArg_ParseTuple(args, "K", &dptr)) {
return NULL; // Error parsing arguments
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemFree(dptr));
Py_END_ALLOW_THREADS;
Py_RETURN_NONE;
}
// Helper function to convert a Python list to a cuuint64_t array
static cuuint64_t *list_to_cuuint64_array(PyObject *listObj) {
Py_ssize_t len = PyList_Size(listObj);
cuuint64_t *array = (cuuint64_t *)malloc(len * sizeof(cuuint64_t));
for (Py_ssize_t i = 0; i < len; i++) {
PyObject *item = PyList_GetItem(listObj, i);
array[i] = (cuuint64_t)PyLong_AsUnsignedLongLong(item);
}
return array;
}
// Helper function to convert a Python list to a cuuint32_t array
static cuuint32_t *list_to_cuuint32_array(PyObject *listObj) {
Py_ssize_t len = PyList_Size(listObj);
cuuint32_t *array = (cuuint32_t *)malloc(len * sizeof(cuuint32_t));
for (Py_ssize_t i = 0; i < len; i++) {
PyObject *item = PyList_GetItem(listObj, i);
array[i] = (cuuint32_t)PyLong_AsUnsignedLong(item);
}
return array;
}
typedef CUresult (*cuTensorMapEncodeTiled_t)(
CUtensorMap *tensorMap, CUtensorMapDataType tensorDataType,
cuuint32_t tensorRank, void *globalAddress, const cuuint64_t *globalDim,
const cuuint64_t *globalStrides, const cuuint32_t *boxDim,
const cuuint32_t *elementStrides, CUtensorMapInterleave interleave,
CUtensorMapSwizzle swizzle, CUtensorMapL2promotion l2Promotion,
CUtensorMapFloatOOBfill oobFill);
typedef CUresult (*cuOccupancyMaxActiveClusters_t)(
int *numClusters, CUfunction func, const CUlaunchConfig *config);
#define defineGetFunctionHandle(name, symbolName) \
static symbolName##_t name() { \
/* Open the shared library */ \
void *libHandle = dlopen("libcuda.so", RTLD_LAZY); \
if (!libHandle) { \
PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so"); \
return NULL; \
} \
/* Clear any existing error */ \
dlerror(); \
symbolName##_t funcHandle = (symbolName##_t)dlsym(libHandle, #symbolName); \
/* Check for errors */ \
const char *err = dlerror(); \
if (err) { \
PyErr_SetString(PyExc_RuntimeError, \
"Failed to retrieve " #symbolName " from libcuda.so"); \
dlclose(libHandle); \
return NULL; \
} \
return funcHandle; \
}
defineGetFunctionHandle(getCuTensorMapEncodeTiledHandle,
cuTensorMapEncodeTiled);
defineGetFunctionHandle(getCuOccupancyMaxActiveClustersHandle,
cuOccupancyMaxActiveClusters);
static PyObject *tensorMapEncodeTiled(PyObject *self, PyObject *args) {
CUtensorMap *tensorMap = (CUtensorMap *)malloc(sizeof(CUtensorMap));
CUtensorMapDataType tensorDataType;
cuuint32_t tensorRank;
void *globalAddress;
PyObject *globalDimObj, *globalStridesObj, *boxDimObj, *elementStridesObj;
CUtensorMapInterleave interleave;
CUtensorMapSwizzle swizzle;
CUtensorMapL2promotion l2Promotion;
CUtensorMapFloatOOBfill oobFill;
// Parse arguments
if (!PyArg_ParseTuple(args, "iiKO!O!O!O!iiii", &tensorDataType, &tensorRank,
&globalAddress, &PyList_Type, &globalDimObj,
&PyList_Type, &globalStridesObj, &PyList_Type,
&boxDimObj, &PyList_Type, &elementStridesObj,
&interleave, &swizzle, &l2Promotion, &oobFill)) {
return NULL; // Error parsing arguments
}
// Convert Python lists to C arrays
cuuint64_t *globalDim = list_to_cuuint64_array(globalDimObj);
cuuint64_t *globalStrides = list_to_cuuint64_array(globalStridesObj);
cuuint32_t *boxDim = list_to_cuuint32_array(boxDimObj);
cuuint32_t *elementStrides = list_to_cuuint32_array(elementStridesObj);
static cuTensorMapEncodeTiled_t cuTensorMapEncodeTiledHandle = NULL;
if (cuTensorMapEncodeTiledHandle == NULL) {
cuTensorMapEncodeTiledHandle = getCuTensorMapEncodeTiledHandle();
}
// Call the function
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuTensorMapEncodeTiledHandle(
tensorMap, tensorDataType, tensorRank, globalAddress, globalDim,
globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion,
oobFill));
Py_END_ALLOW_THREADS;
// Clean up
free(globalDim);
free(globalStrides);
free(boxDim);
free(elementStrides);
// Return the tensor map as a normal pointer
return PyLong_FromUnsignedLongLong((unsigned long long)tensorMap);
}
static PyObject *occupancyMaxActiveClusters(PyObject *self, PyObject *args) {
int clusterDimX = -1, clusterDimY = -1, clusterDimZ = -1,
maxActiveClusters = -1;
int shared = 0;
CUfunction func;
if (!PyArg_ParseTuple(args, "Kiiii", &func, &shared, &clusterDimX,
&clusterDimY, &clusterDimZ)) {
return NULL;
}
// Let each SM have one block
int maxActiveBlocks = 1;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
func, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared));
Py_END_ALLOW_THREADS;
CUlaunchAttribute launchAttr[1];
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
launchAttr[0].value.clusterDim.x = clusterDimX;
launchAttr[0].value.clusterDim.y = clusterDimY;
launchAttr[0].value.clusterDim.z = clusterDimZ;
CUlaunchConfig config;
config.gridDimX = clusterDimX;
config.gridDimY = maxActiveBlocks * clusterDimY;
config.gridDimZ = clusterDimZ;
config.blockDimX = 128;
config.blockDimY = 1;
config.blockDimZ = 1;
config.sharedMemBytes = shared;
config.hStream = 0;
config.numAttrs = 1;
config.attrs = launchAttr;
static cuOccupancyMaxActiveClusters_t cuOccupancyMaxActiveClusters = NULL;
if (cuOccupancyMaxActiveClusters == NULL) {
cuOccupancyMaxActiveClusters = getCuOccupancyMaxActiveClustersHandle();
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
func, CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuOccupancyMaxActiveClusters(&maxActiveClusters, func, &config));
Py_END_ALLOW_THREADS;
return PyLong_FromLong(maxActiveClusters);
}
static PyMethodDef ModuleMethods[] = {
{"load_binary", loadBinary, METH_VARARGS,
"Load provided cubin into CUDA driver"},
{"get_device_properties", getDeviceProperties, METH_VARARGS,
"Get the properties for a given device"},
{"cuMemAlloc", memAlloc, METH_VARARGS},
{"cuMemcpyHtoD", memcpyHtoD, METH_VARARGS},
{"cuMemFree", memFree, METH_VARARGS},
{"cuTensorMapEncodeTiled", tensorMapEncodeTiled, METH_VARARGS,
"Python interface for cuTensorMapEncodeTiled function"},
{"cuOccupancyMaxActiveClusters", occupancyMaxActiveClusters, METH_VARARGS,
"Python interface for cuOccupancyMaxActiveClusters function"},
{NULL, NULL, 0, NULL} // sentinel
};
static struct PyModuleDef ModuleDef = {PyModuleDef_HEAD_INIT, "cuda_utils",
NULL, // documentation
-1, // size
ModuleMethods};
PyMODINIT_FUNC PyInit_cuda_utils(void) {
PyObject *m = PyModule_Create(&ModuleDef);
if (m == NULL) {
return NULL;
}
defineEnums(m);
defineTypes(m);
PyModule_AddFunctions(m, ModuleMethods);
return m;
}