applied-ai-018's picture
Add files using upload-large-folder tool
4ba564c verified
raw
history blame
21.6 kB
import inspect
import numpy as np
import triton
import triton.language as tl
from .._C.libtriton.triton import interpreter as _interpreter
# TODO: duplicate
def str_to_ty(name):
language = tl
if name[0] == "*":
ty = str_to_ty(name[1:])
return language.pointer_type(ty)
tys = {
"fp8e4nv": language.float8e4nv,
"fp8e5": language.float8e5,
"fp8e4b15": language.float8e4b15,
"fp8e4b15x4": language.float8e4b15x4,
"fp16": language.float16,
"bf16": language.bfloat16,
"fp32": language.float32,
"fp64": language.float64,
"i1": language.int1,
"i8": language.int8,
"i16": language.int16,
"i32": language.int32,
"i64": language.int64,
"u8": language.uint8,
"u16": language.uint16,
"u32": language.uint32,
"u64": language.uint64,
"B": language.int1,
}
return tys[name]
class TensorHandle:
def __init__(self, data, dtype):
self.data = data
self.dtype = dtype
def __bool__(self):
return bool(self.data.all())
class BlockPointerHandle:
def __init__(self, base, shape, strides, offsets, tensor_shape, order):
self.base = base
self.shape = shape
self.strides = strides
self.offsets = offsets
self.tensor_shape = tensor_shape
self.order = order
def materialize_pointers(self, boundary_check):
dtype_tt = self.base.dtype.element_ty
n_bytes = dtype_tt.primitive_bitwidth // 8
tensor_shape = self.tensor_shape
ptrs = np.broadcast_to(self.base.data, self.tensor_shape)
masks = np.ones(self.tensor_shape, dtype=bool)
for dim in range(len(tensor_shape)):
bcast_dims = [1] * len(tensor_shape)
bcast_dims[dim] = tensor_shape[dim]
off = (self.offsets[dim].data + np.arange(tensor_shape[dim])).reshape(bcast_dims)
ptrs = ptrs + (n_bytes * off * self.strides[dim].data).astype(np.uint64)
if dim in boundary_check:
masks = np.logical_and(masks, off < self.shape[dim].data)
ptrs = TensorHandle(ptrs, self.base.dtype)
return ptrs, masks
def wrap_ret(compute_ret_ty):
def wrapper(fn):
def wrapped(*args, **kwargs):
ret = fn(*args, **kwargs)
return TensorHandle(ret.data, compute_ret_ty(*args, **kwargs))
return wrapped
return wrapper
class Builder:
def __init__(self) -> None:
self.arch = None
# pass
def set_grid_idx(self, x, y, z):
assert x < self.grid_dim[0]
assert y < self.grid_dim[1]
assert z < self.grid_dim[2]
self.grid_idx = (x, y, z)
def set_grid_dim(self, nx, ny, nz):
self.grid_dim = (nx, ny, nz)
def np_dtype(self, tt_dtype):
if isinstance(tt_dtype, tl.pointer_type):
return np.dtype(np.uint64)
np_types = {
tl.float16: np.dtype(np.float16),
tl.float32: np.dtype(np.float32),
tl.float64: np.dtype(np.float64),
tl.int8: np.dtype(np.int8),
tl.uint8: np.dtype(np.uint8),
tl.int16: np.dtype(np.int16),
tl.uint16: np.dtype(np.uint16),
tl.int32: np.dtype(np.int32),
tl.uint32: np.dtype(np.uint32),
tl.int64: np.dtype(np.int64),
tl.uint64: np.dtype(np.uint64),
}
return np_types[tt_dtype]
# constants
def get_half_ty(self):
return tl.float16
def get_float_ty(self):
return tl.float32
def get_int64_ty(self):
return tl.int64
def get_ptr_ty(self, elt_ty, addr_space):
return tl.pointer_type(elt_ty, addr_space)
def get_block_ty(self, dtype, shape):
return tl.tensor(shape, dtype)
def get_int32(self, value):
return TensorHandle(np.array([value], dtype=np.int32), tl.int32)
def get_int64(self, value):
return TensorHandle(np.array([value], dtype=np.int64), tl.int64)
def get_fp16(self, value):
return TensorHandle(np.array([value], dtype=np.float16), tl.float16)
def get_fp32(self, value):
return TensorHandle(np.array([value], dtype=np.float32), tl.float32)
def get_null_value(self, type):
return TensorHandle(np.array([0], dtype=self.np_dtype(type)), type)
# programming model
def create_get_program_id(self, axis):
assert self.grid_idx is not None
return TensorHandle(np.array([self.grid_idx[axis]], dtype=np.int32), tl.int32)
def create_get_num_programs(self, axis):
return TensorHandle(np.array([self.grid_dim[axis]], dtype=np.int32), tl.int32)
# memory ops
def create_load(self, ptr, _0, _1, is_volatile):
mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
other = None
return self.create_masked_load(ptr, mask, other, _0, _1, is_volatile)
def create_store(self, ptr, val, _0, _1):
mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
return self.create_masked_store(ptr, val, mask, None, None)
def create_masked_load(self, ptrs, mask, other, cache_modifier, eviction_policy, is_volatile):
dtype_tt = ptrs.dtype.element_ty
dtype_np = self.np_dtype(dtype_tt)
if other is None:
other = TensorHandle(np.ones_like(ptrs.data, dtype=dtype_np), dtype_tt)
ret = _interpreter.load(ptrs.data, mask.data, other.data, dtype_np)
return TensorHandle(ret, dtype_tt)
def create_masked_store(self, ptrs, value, mask, cache_modifier, eviction_policy):
return _interpreter.store(ptrs.data, value.data, mask.data)
# casting ops
def cast_impl(self, src, dst_type):
if isinstance(dst_type, tl.tensor):
dst_type = dst_type.dtype
return TensorHandle(src.data.astype(self.np_dtype(dst_type)), dst_type)
create_si_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_ui_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_to_si = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_to_ui = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_ext = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_trunc = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_int_cast = lambda self, src, dst_type, is_signed: self.cast_impl(src, dst_type)
def create_fp_to_fp(self, src, dst_type):
assert "float8 not NotImplemented yet"
def create_bitcast(self, src, dst_type):
return TensorHandle(src.data.view(self.np_dtype(dst_type)), dst_type)
# binary operators
def binary_op(self, lhs, rhs, op):
return TensorHandle(op(lhs.data, rhs.data), lhs.dtype)
create_fadd = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
create_fmul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
create_fdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.divide)
create_frem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_fsub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
create_mul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
create_sdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
create_udiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
create_srem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_urem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_add = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
create_sub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
create_shl = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.left_shift)
create_lshr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
create_ashr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
create_minsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_minui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_minf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_maxsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_maxui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_maxf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_icmpSLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_icmpSLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_icmpSGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_icmpSGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_icmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_icmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_icmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_icmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_icmpEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_icmpNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_fcmpOLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_fcmpOGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_fcmpOLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_fcmpOGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_fcmpOEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_fcmpONE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_fcmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_fcmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_fcmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_fcmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_fcmpUEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_fcmpUNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_and = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_and)
create_xor = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_xor)
create_or = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_or)
# ternary functions
def ternary_op(self, lhs, rhs, other, op):
return TensorHandle(op(lhs.data, rhs.data, other.data), other.dtype)
create_select = lambda self, cond, lhs, rhs: self.ternary_op(cond, lhs, rhs, np.where)
# unary functions
def unary_op(self, arg, op):
return TensorHandle(op(arg.data), arg.dtype)
create_exp = lambda self, arg: self.unary_op(arg, np.exp)
create_cos = lambda self, arg: self.unary_op(arg, np.cos)
create_sin = lambda self, arg: self.unary_op(arg, np.sin)
create_log = lambda self, arg: self.unary_op(arg, np.log)
create_sqrt = lambda self, arg: self.unary_op(arg, np.sqrt)
create_fabs = lambda self, arg: self.unary_op(arg, np.abs)
create_iabs = lambda self, arg: self.unary_op(arg, np.abs)
# tensor operators
create_dot = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.dot)
create_reshape = lambda self, arg, shape, allowReorder: TensorHandle(arg.data.reshape(shape), arg.dtype)
create_trans = lambda self, arg: self.unary_op(arg, np.transpose)
def create_dot(self, a, b, d, allow_tf32, maxNumImpreciseAcc):
return TensorHandle(np.dot(a.data, b.data) + d.data, a.dtype)
def create_make_range(self, start, stop):
return TensorHandle(np.arange(start, stop, dtype=np.int32), tl.int32)
# pointer arithmetic
def create_addptr(self, ptr, offset):
dtype_tt = ptr.dtype.element_ty
return TensorHandle(ptr.data + (dtype_tt.primitive_bitwidth // 8) * offset.data.astype(np.uint64), ptr.dtype)
def create_tensor_pointer_load(self, ptr, boundary_check, padding_option, cache_modifier, eviction_policy,
is_volatile):
ptrs, masks = ptr.materialize_pointers(boundary_check)
assert padding_option is None
other = None
return self.create_masked_load(ptrs, masks, other, cache_modifier, eviction_policy, is_volatile)
def create_tensor_pointer_store(self, ptr, value, boundary_check, cache_modifier, eviction_policy):
ptrs, masks = ptr.materialize_pointers(boundary_check)
return self.create_masked_store(ptrs, value, masks, cache_modifier, eviction_policy)
def create_expand_dims(self, arg, axis):
return TensorHandle(np.expand_dims(arg.data, axis), arg.dtype)
def create_broadcast(self, arg, shape):
return TensorHandle(np.broadcast_to(arg.data, shape), arg.dtype)
def create_int_to_ptr(self, val, dst_ty):
return TensorHandle(val.data.astype(np.uint64), dst_ty)
# def create_cat(self, lhs, rhs):
# pass
# def create_broadcast(self, arg, shape):
# pass
def create_splat(self, arg, shape):
return TensorHandle(np.full(shape, arg.data[0], dtype=self.np_dtype(arg.dtype)), arg.dtype)
# def create_atomic_cas(self, ptr, cmp, val, sem):
# pass
# def create_atomic_rmw(self, rmwOp, ptr, val, mask, sem):
# pass
# def create_extern_elementwise(self, libName, libPath, symbol, argList, retType, isPure):
# pass
# def create_reduce(self, operands, axis):
# pass
# def create_reduce_ret(self, args):
# pass
# def create_scan(self, operands, axis):
# pass
# def create_scan_ret(self, args):
# pass
# def create_ptr_to_int(self, val, type):
# pass
# def create_int_to_ptr(self, val, type):
# pass
# def create_inline_asm(self, inlineAsm, constraints, values, type, isPure, pack):
# pass
# def create_print(self, prefix, values):
# pass
# def create_assert(self, condition, message, fileName, funcName, lineNo):
# pass
# def create_undef(self, type):
# pass
# def create_barrier(self):
# pass
def create_make_block_ptr(self, base, shape, strides, offsets, tensor_shape, order):
return BlockPointerHandle(base, shape, strides, np.array(offsets), tensor_shape, order)
def create_advance(self, ptr, offsets):
assert len(ptr.offsets) == len(offsets)
ret = BlockPointerHandle(ptr.base, ptr.shape, ptr.strides, ptr.offsets, ptr.tensor_shape, ptr.order)
for i in range(len(offsets)):
ret.offsets[i].data += offsets[i].data
return ret
def patch_attr(obj, name, member, builder):
new_member = lambda *args, member=member, **kwargs: (member(*args, **
{k: v
for k, v in kwargs.items()
if k != "_builder"}, _builder=builder))
setattr(obj, name, new_member)
def _patch_lang_tensor(tensor, builder):
for name, member in inspect.getmembers(tensor):
if tl.core.is_builtin(member):
patch_attr(tensor, name, member, builder)
tensor.__index__ = lambda self: int(self.handle.data)
tensor.__bool__ = lambda self: True
tensor.__str__ = lambda self: str(self.handle.data)
tensor.__getitem__ = lambda self, slices: self.handle.data.__getitem__(slices)
def _patch_lang_core(lang, builder):
for name, member in inspect.getmembers(lang):
if tl.core.is_builtin(member):
patch_attr(lang, name, member, builder)
# reduce is better off with a separate patch due to how
# the builder currently interfaces with custom functions
def _new_reduce(input, axis, combine_fn):
fn = combine_fn.fn.__name__
mapping = {
"maximum": np.max,
"_sum_combine": np.sum,
}
ret = mapping[fn](input.handle.data, axis=axis)
ret_type = tl.block_type(input.dtype, ret.shape)
return tl.core.tensor(TensorHandle(ret, input.dtype), ret_type)
lang.reduce = _new_reduce
def _patch_lang_math(lang, builder):
math = lang.math
mapping = {
"abs": "abs",
"acos": "arccos",
"asin": "arcsin",
"exp2": "exp2",
"log2": "log2",
"max": "maximum",
}
def make_numpy(name):
def impl(*args, **kwargs):
ret_type = args[0].type # TODO: incorrect
ret_dtype = args[0].dtype # TODO: incorrect
args = [arg.handle.data for arg in args]
kwargs = {k: v.handle.data for k, v in kwargs.items()}
ret = getattr(np, mapping[name])(*args, **kwargs)
ret = tl.core.tensor(TensorHandle(ret, ret_dtype), ret_type)
return ret
return impl
def make_fallback(name):
def fallback(*args, **kwargs):
raise NotImplementedError(f"""
{name} not supported in interpreter mode: no known numpy implementation.
If you think that {name} in fact does have a numpy implementation, please add it
to the mapping in python/triton/interpreter/new_interpreter.py:_patch_lang_math.
""")
return fallback
for name, member in inspect.getmembers(math):
if name in mapping:
setattr(math, name, make_numpy(name))
else:
setattr(math, name, make_fallback(name))
# TODO: wrap everything in triton tensors
def _implicit_cvt(arg):
if isinstance(arg, int):
ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
handle = TensorHandle(np.array([arg], dtype=np.int32), ty)
return tl.tensor(handle, ty)
if hasattr(arg, "data_ptr"):
ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
handle = TensorHandle(np.array([arg.data_ptr()], dtype=np.uint64), ty)
return tl.tensor(handle, ty)
return arg
def _unwrap(tensor):
if isinstance(tensor, triton.TensorWrapper):
return tensor.base
return tensor
builder = Builder()
RESERVED_KWS = ["num_warps", "num_stages", "num_ctas", "enable_warp_specialization", "enable_fp_fusion"]
class GridExecutor:
def __init__(self, fn, arg_names, grid):
from .jit import _normalize_ty # TODO: modularize
self.fn = fn
self.arg_names = arg_names
self.grid = grid
__annotations__ = {name: _normalize_ty(ty) for name, ty in fn.__annotations__.items()}
self.constexprs = [name for name in arg_names if __annotations__.get(name) == "constexpr"]
def _patch_lang(self, builder):
lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
assert len(lang) == 1, "triton.language must be visible from within jit'd function"
_patch_lang_tensor(getattr(lang[0], "tensor"), builder)
_patch_lang_core(lang[0], builder)
_patch_lang_math(lang[0], builder)
def __call__(self, *args_dev, **kwargs):
args_hst = [_unwrap(arg).cpu() if hasattr(arg, "data_ptr") else arg for arg in args_dev]
# removes reserved keywords from kwargs
kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS}
# remaps core language functions to interpreted ones
self._patch_lang(builder)
# we need to copy arguments to the host for the interpreter
# implicitly convert tensor arguments to their base pointers
args = inspect.getcallargs(self.fn, *args_hst, **kwargs)
args = {name: arg if name in self.constexprs else _implicit_cvt(arg) for name, arg in args.items()}
# iterate through grid
grid = self.grid(args) if callable(self.grid) else self.grid
assert len(grid) <= 3
grid = grid + (1, ) * (3 - len(grid))
builder.set_grid_dim(*grid)
for x in range(grid[0]):
for y in range(grid[1]):
for z in range(grid[2]):
builder.set_grid_idx(x, y, z)
self.fn(**args)
# copy arguments back to propagate side-effects
for arg_dev, arg_hst in zip(args_dev, args_hst):
if hasattr(arg_dev, "data_ptr"):
_unwrap(arg_dev).copy_(arg_hst.to(arg_dev.device))
class InterpretedFunction:
def _patch_lang(self, builder):
lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
assert len(lang) == 1, "triton.language must be visible from within jit'd function"
_patch_lang_tensor(getattr(lang[0], "tensor"), builder)
_patch_lang_core(lang[0], builder)
def __init__(self, fn) -> None:
self.fn = fn
def run(*args, **kwargs):
grid = kwargs["grid"]
kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS + ["grid"]}
return GridExecutor(self.fn, self.arg_names, grid)(*args, **kwargs)
self.run = run
signature = inspect.signature(fn)
self.arg_names = [v.name for v in signature.parameters.values()]
def __getitem__(self, grid):
return GridExecutor(self.fn, self.arg_names, grid)
def __call__(self, *args, **kwargs):
self._patch_lang(builder)
return self.fn(*args, **kwargs)