|
import os |
|
import sys |
|
from collections import defaultdict |
|
from typing import Any, Dict, List, Optional, Set, Tuple, Union |
|
|
|
import torch |
|
|
|
from safetensors import deserialize, safe_open, serialize, serialize_file |
|
|
|
|
|
def storage_ptr(tensor: torch.Tensor) -> int: |
|
try: |
|
return tensor.untyped_storage().data_ptr() |
|
except Exception: |
|
|
|
try: |
|
return tensor.storage().data_ptr() |
|
except NotImplementedError: |
|
|
|
return 0 |
|
|
|
|
|
def _end_ptr(tensor: torch.Tensor) -> int: |
|
if tensor.nelement(): |
|
stop = tensor.view(-1)[-1].data_ptr() + _SIZE[tensor.dtype] |
|
else: |
|
stop = tensor.data_ptr() |
|
return stop |
|
|
|
|
|
def storage_size(tensor: torch.Tensor) -> int: |
|
try: |
|
return tensor.untyped_storage().nbytes() |
|
except AttributeError: |
|
|
|
try: |
|
return tensor.storage().size() * _SIZE[tensor.dtype] |
|
except NotImplementedError: |
|
|
|
|
|
return tensor.nelement() * _SIZE[tensor.dtype] |
|
|
|
|
|
def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]: |
|
filtered_tensors = [] |
|
for shared in tensors: |
|
if len(shared) < 2: |
|
filtered_tensors.append(shared) |
|
continue |
|
|
|
areas = [] |
|
for name in shared: |
|
tensor = state_dict[name] |
|
areas.append((tensor.data_ptr(), _end_ptr(tensor), name)) |
|
areas.sort() |
|
|
|
_, last_stop, last_name = areas[0] |
|
filtered_tensors.append({last_name}) |
|
for start, stop, name in areas[1:]: |
|
if start >= last_stop: |
|
filtered_tensors.append({name}) |
|
else: |
|
filtered_tensors[-1].add(name) |
|
last_stop = stop |
|
|
|
return filtered_tensors |
|
|
|
|
|
def _find_shared_tensors(state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]: |
|
tensors = defaultdict(set) |
|
for k, v in state_dict.items(): |
|
if v.device != torch.device("meta") and storage_ptr(v) != 0 and storage_size(v) != 0: |
|
|
|
tensors[(v.device, storage_ptr(v), storage_size(v))].add(k) |
|
tensors = list(sorted(tensors.values())) |
|
tensors = _filter_shared_not_shared(tensors, state_dict) |
|
return tensors |
|
|
|
|
|
def _is_complete(tensor: torch.Tensor) -> bool: |
|
return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _SIZE[tensor.dtype] == storage_size(tensor) |
|
|
|
|
|
def _remove_duplicate_names( |
|
state_dict: Dict[str, torch.Tensor], |
|
*, |
|
preferred_names: Optional[List[str]] = None, |
|
discard_names: Optional[List[str]] = None, |
|
) -> Dict[str, List[str]]: |
|
if preferred_names is None: |
|
preferred_names = [] |
|
preferred_names = set(preferred_names) |
|
if discard_names is None: |
|
discard_names = [] |
|
discard_names = set(discard_names) |
|
|
|
shareds = _find_shared_tensors(state_dict) |
|
to_remove = defaultdict(list) |
|
for shared in shareds: |
|
complete_names = set([name for name in shared if _is_complete(state_dict[name])]) |
|
if not complete_names: |
|
raise RuntimeError( |
|
"Error while trying to find names to remove to save state dict, but found no suitable name to keep" |
|
f" for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model" |
|
" since you could be storing much more memory than needed. Please refer to" |
|
" https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an" |
|
" issue." |
|
) |
|
|
|
keep_name = sorted(list(complete_names))[0] |
|
|
|
|
|
|
|
|
|
|
|
preferred = complete_names.difference(discard_names) |
|
if preferred: |
|
keep_name = sorted(list(preferred))[0] |
|
|
|
if preferred_names: |
|
preferred = preferred_names.intersection(complete_names) |
|
if preferred: |
|
keep_name = sorted(list(preferred))[0] |
|
for name in sorted(shared): |
|
if name != keep_name: |
|
to_remove[keep_name].append(name) |
|
return to_remove |
|
|
|
|
|
def save_model( |
|
model: torch.nn.Module, filename: str, metadata: Optional[Dict[str, str]] = None, force_contiguous: bool = True |
|
): |
|
""" |
|
Saves a given torch model to specified filename. |
|
This method exists specifically to avoid tensor sharing issues which are |
|
not allowed in `safetensors`. [More information on tensor sharing](../torch_shared_tensors) |
|
|
|
Args: |
|
model (`torch.nn.Module`): |
|
The model to save on disk. |
|
filename (`str`): |
|
The filename location to save the file |
|
metadata (`Dict[str, str]`, *optional*): |
|
Extra information to save along with the file. |
|
Some metadata will be added for each dropped tensors. |
|
This information will not be enough to recover the entire |
|
shared structure but might help understanding things |
|
force_contiguous (`boolean`, *optional*, defaults to True): |
|
Forcing the state_dict to be saved as contiguous tensors. |
|
This has no effect on the correctness of the model, but it |
|
could potentially change performance if the layout of the tensor |
|
was chosen specifically for that reason. |
|
""" |
|
state_dict = model.state_dict() |
|
to_removes = _remove_duplicate_names(state_dict) |
|
|
|
for kept_name, to_remove_group in to_removes.items(): |
|
for to_remove in to_remove_group: |
|
if metadata is None: |
|
metadata = {} |
|
|
|
if to_remove not in metadata: |
|
|
|
metadata[to_remove] = kept_name |
|
del state_dict[to_remove] |
|
if force_contiguous: |
|
state_dict = {k: v.contiguous() for k, v in state_dict.items()} |
|
try: |
|
save_file(state_dict, filename, metadata=metadata) |
|
except ValueError as e: |
|
msg = str(e) |
|
msg += " Or use save_model(..., force_contiguous=True), read the docs for potential caveats." |
|
raise ValueError(msg) |
|
|
|
|
|
def load_model(model: torch.nn.Module, filename: Union[str, os.PathLike], strict=True) -> Tuple[List[str], List[str]]: |
|
""" |
|
Loads a given filename onto a torch model. |
|
This method exists specifically to avoid tensor sharing issues which are |
|
not allowed in `safetensors`. [More information on tensor sharing](../torch_shared_tensors) |
|
|
|
Args: |
|
model (`torch.nn.Module`): |
|
The model to load onto. |
|
filename (`str`, or `os.PathLike`): |
|
The filename location to load the file from. |
|
strict (`bool`, *optional*, defaults to True): |
|
Wether to fail if you're missing keys or having unexpected ones |
|
When false, the function simply returns missing and unexpected names. |
|
|
|
Returns: |
|
`(missing, unexpected): (List[str], List[str])` |
|
`missing` are names in the model which were not modified during loading |
|
`unexpected` are names that are on the file, but weren't used during |
|
the load. |
|
""" |
|
state_dict = load_file(filename) |
|
model_state_dict = model.state_dict() |
|
to_removes = _remove_duplicate_names(model_state_dict, preferred_names=state_dict.keys()) |
|
missing, unexpected = model.load_state_dict(state_dict, strict=False) |
|
missing = set(missing) |
|
for to_remove_group in to_removes.values(): |
|
for to_remove in to_remove_group: |
|
if to_remove not in missing: |
|
unexpected.append(to_remove) |
|
else: |
|
missing.remove(to_remove) |
|
if strict and (missing or unexpected): |
|
missing_keys = ", ".join([f'"{k}"' for k in sorted(missing)]) |
|
unexpected_keys = ", ".join([f'"{k}"' for k in sorted(unexpected)]) |
|
error = f"Error(s) in loading state_dict for {model.__class__.__name__}:" |
|
if missing: |
|
error += f"\n Missing key(s) in state_dict: {missing_keys}" |
|
if unexpected: |
|
error += f"\n Unexpected key(s) in state_dict: {unexpected_keys}" |
|
raise RuntimeError(error) |
|
return missing, unexpected |
|
|
|
|
|
def save(tensors: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes: |
|
""" |
|
Saves a dictionary of tensors into raw bytes in safetensors format. |
|
|
|
Args: |
|
tensors (`Dict[str, torch.Tensor]`): |
|
The incoming tensors. Tensors need to be contiguous and dense. |
|
metadata (`Dict[str, str]`, *optional*, defaults to `None`): |
|
Optional text only metadata you might want to save in your header. |
|
For instance it can be useful to specify more about the underlying |
|
tensors. This is purely informative and does not affect tensor loading. |
|
|
|
Returns: |
|
`bytes`: The raw bytes representing the format |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.torch import save |
|
import torch |
|
|
|
tensors = {"embedding": torch.zeros((512, 1024)), "attention": torch.zeros((256, 256))} |
|
byte_data = save(tensors) |
|
``` |
|
""" |
|
serialized = serialize(_flatten(tensors), metadata=metadata) |
|
result = bytes(serialized) |
|
return result |
|
|
|
|
|
def save_file( |
|
tensors: Dict[str, torch.Tensor], |
|
filename: Union[str, os.PathLike], |
|
metadata: Optional[Dict[str, str]] = None, |
|
): |
|
""" |
|
Saves a dictionary of tensors into raw bytes in safetensors format. |
|
|
|
Args: |
|
tensors (`Dict[str, torch.Tensor]`): |
|
The incoming tensors. Tensors need to be contiguous and dense. |
|
filename (`str`, or `os.PathLike`)): |
|
The filename we're saving into. |
|
metadata (`Dict[str, str]`, *optional*, defaults to `None`): |
|
Optional text only metadata you might want to save in your header. |
|
For instance it can be useful to specify more about the underlying |
|
tensors. This is purely informative and does not affect tensor loading. |
|
|
|
Returns: |
|
`None` |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.torch import save_file |
|
import torch |
|
|
|
tensors = {"embedding": torch.zeros((512, 1024)), "attention": torch.zeros((256, 256))} |
|
save_file(tensors, "model.safetensors") |
|
``` |
|
""" |
|
serialize_file(_flatten(tensors), filename, metadata=metadata) |
|
|
|
|
|
def load_file(filename: Union[str, os.PathLike], device="cpu") -> Dict[str, torch.Tensor]: |
|
""" |
|
Loads a safetensors file into torch format. |
|
|
|
Args: |
|
filename (`str`, or `os.PathLike`): |
|
The name of the file which contains the tensors |
|
device (`Dict[str, any]`, *optional*, defaults to `cpu`): |
|
The device where the tensors need to be located after load. |
|
available options are all regular torch device locations |
|
|
|
Returns: |
|
`Dict[str, torch.Tensor]`: dictionary that contains name as key, value as `torch.Tensor` |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.torch import load_file |
|
|
|
file_path = "./my_folder/bert.safetensors" |
|
loaded = load_file(file_path) |
|
``` |
|
""" |
|
result = {} |
|
with safe_open(filename, framework="pt", device=device) as f: |
|
for k in f.keys(): |
|
result[k] = f.get_tensor(k) |
|
return result |
|
|
|
|
|
def load(data: bytes) -> Dict[str, torch.Tensor]: |
|
""" |
|
Loads a safetensors file into torch format from pure bytes. |
|
|
|
Args: |
|
data (`bytes`): |
|
The content of a safetensors file |
|
|
|
Returns: |
|
`Dict[str, torch.Tensor]`: dictionary that contains name as key, value as `torch.Tensor` on cpu |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.torch import load |
|
|
|
file_path = "./my_folder/bert.safetensors" |
|
with open(file_path, "rb") as f: |
|
data = f.read() |
|
|
|
loaded = load(data) |
|
``` |
|
""" |
|
flat = deserialize(data) |
|
return _view2torch(flat) |
|
|
|
|
|
_float8_e4m3fn = getattr(torch, "float8_e4m3fn", None) |
|
_float8_e5m2 = getattr(torch, "float8_e5m2", None) |
|
|
|
_SIZE = { |
|
torch.int64: 8, |
|
torch.float32: 4, |
|
torch.int32: 4, |
|
torch.bfloat16: 2, |
|
torch.float16: 2, |
|
torch.int16: 2, |
|
torch.uint8: 1, |
|
torch.int8: 1, |
|
torch.bool: 1, |
|
torch.float64: 8, |
|
_float8_e4m3fn: 1, |
|
_float8_e5m2: 1, |
|
} |
|
|
|
_TYPES = { |
|
"F64": torch.float64, |
|
"F32": torch.float32, |
|
"F16": torch.float16, |
|
"BF16": torch.bfloat16, |
|
"I64": torch.int64, |
|
|
|
"I32": torch.int32, |
|
|
|
"I16": torch.int16, |
|
|
|
"I8": torch.int8, |
|
"U8": torch.uint8, |
|
"BOOL": torch.bool, |
|
"F8_E4M3": _float8_e4m3fn, |
|
"F8_E5M2": _float8_e5m2, |
|
} |
|
|
|
|
|
def _getdtype(dtype_str: str) -> torch.dtype: |
|
return _TYPES[dtype_str] |
|
|
|
|
|
def _view2torch(safeview) -> Dict[str, torch.Tensor]: |
|
result = {} |
|
for k, v in safeview: |
|
dtype = _getdtype(v["dtype"]) |
|
arr = torch.frombuffer(v["data"], dtype=dtype).reshape(v["shape"]) |
|
if sys.byteorder == "big": |
|
arr = torch.from_numpy(arr.numpy().byteswap(inplace=False)) |
|
result[k] = arr |
|
|
|
return result |
|
|
|
|
|
def _tobytes(tensor: torch.Tensor, name: str) -> bytes: |
|
if tensor.layout != torch.strided: |
|
raise ValueError( |
|
f"You are trying to save a sparse tensor: `{name}` which this library does not support." |
|
" You can make it a dense tensor before saving with `.to_dense()` but be aware this might" |
|
" make a much larger file than needed." |
|
) |
|
|
|
if not tensor.is_contiguous(): |
|
raise ValueError( |
|
f"You are trying to save a non contiguous tensor: `{name}` which is not allowed. It either means you" |
|
" are trying to save tensors which are reference of each other in which case it's recommended to save" |
|
" only the full tensors, and reslice at load time, or simply call `.contiguous()` on your tensor to" |
|
" pack it before saving." |
|
) |
|
if tensor.device.type != "cpu": |
|
|
|
tensor = tensor.to("cpu") |
|
|
|
import ctypes |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
length = int(np.prod(tensor.shape).item()) |
|
bytes_per_item = _SIZE[tensor.dtype] |
|
|
|
total_bytes = length * bytes_per_item |
|
|
|
ptr = tensor.data_ptr() |
|
if ptr == 0: |
|
return b"" |
|
newptr = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_ubyte)) |
|
data = np.ctypeslib.as_array(newptr, (total_bytes,)) |
|
if sys.byteorder == "big": |
|
NPDTYPES = { |
|
torch.int64: np.int64, |
|
torch.float32: np.float32, |
|
torch.int32: np.int32, |
|
|
|
torch.bfloat16: np.float16, |
|
torch.float16: np.float16, |
|
torch.int16: np.int16, |
|
torch.uint8: np.uint8, |
|
torch.int8: np.int8, |
|
torch.bool: bool, |
|
torch.float64: np.float64, |
|
|
|
_float8_e4m3fn: np.uint8, |
|
_float8_e5m2: np.uint8, |
|
} |
|
npdtype = NPDTYPES[tensor.dtype] |
|
|
|
data = data.view(npdtype).byteswap(inplace=False) |
|
return data.tobytes() |
|
|
|
|
|
def _flatten(tensors: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, Any]]: |
|
if not isinstance(tensors, dict): |
|
raise ValueError(f"Expected a dict of [str, torch.Tensor] but received {type(tensors)}") |
|
|
|
invalid_tensors = [] |
|
for k, v in tensors.items(): |
|
if not isinstance(v, torch.Tensor): |
|
raise ValueError(f"Key `{k}` is invalid, expected torch.Tensor but received {type(v)}") |
|
|
|
if v.layout != torch.strided: |
|
invalid_tensors.append(k) |
|
if invalid_tensors: |
|
raise ValueError( |
|
f"You are trying to save a sparse tensors: `{invalid_tensors}` which this library does not support." |
|
" You can make it a dense tensor before saving with `.to_dense()` but be aware this might" |
|
" make a much larger file than needed." |
|
) |
|
|
|
shared_pointers = _find_shared_tensors(tensors) |
|
failing = [] |
|
for names in shared_pointers: |
|
if len(names) > 1: |
|
failing.append(names) |
|
|
|
if failing: |
|
raise RuntimeError( |
|
f""" |
|
Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again: {failing}. |
|
A potential way to correctly save your model is to use `save_model`. |
|
More information at https://huggingface.co/docs/safetensors/torch_shared_tensors |
|
""" |
|
) |
|
|
|
return { |
|
k: { |
|
"dtype": str(v.dtype).split(".")[-1], |
|
"shape": v.shape, |
|
"data": _tobytes(v, k), |
|
} |
|
for k, v in tensors.items() |
|
} |
|
|