peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/matrices
/domainmatrix.py
""" | |
Module for the DomainMatrix class. | |
A DomainMatrix represents a matrix with elements that are in a particular | |
Domain. Each DomainMatrix internally wraps a DDM which is used for the | |
lower-level operations. The idea is that the DomainMatrix class provides the | |
convenience routines for converting between Expr and the poly domains as well | |
as unifying matrices with different domains. | |
""" | |
from functools import reduce | |
from typing import Union as tUnion, Tuple as tTuple | |
from sympy.core.sympify import _sympify | |
from ..domains import Domain | |
from ..constructor import construct_domain | |
from .exceptions import (DMNonSquareMatrixError, DMShapeError, | |
DMDomainError, DMFormatError, DMBadInputError, | |
DMNotAField) | |
from .ddm import DDM | |
from .sdm import SDM | |
from .domainscalar import DomainScalar | |
from sympy.polys.domains import ZZ, EXRAW, QQ | |
def DM(rows, domain): | |
"""Convenient alias for DomainMatrix.from_list | |
Examples | |
======= | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DM | |
>>> DM([[1, 2], [3, 4]], ZZ) | |
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) | |
See also | |
======= | |
DomainMatrix.from_list | |
""" | |
return DomainMatrix.from_list(rows, domain) | |
class DomainMatrix: | |
r""" | |
Associate Matrix with :py:class:`~.Domain` | |
Explanation | |
=========== | |
DomainMatrix uses :py:class:`~.Domain` for its internal representation | |
which makes it faster than the SymPy Matrix class (currently) for many | |
common operations, but this advantage makes it not entirely compatible | |
with Matrix. DomainMatrix are analogous to numpy arrays with "dtype". | |
In the DomainMatrix, each element has a domain such as :ref:`ZZ` | |
or :ref:`QQ(a)`. | |
Examples | |
======== | |
Creating a DomainMatrix from the existing Matrix class: | |
>>> from sympy import Matrix | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> Matrix1 = Matrix([ | |
... [1, 2], | |
... [3, 4]]) | |
>>> A = DomainMatrix.from_Matrix(Matrix1) | |
>>> A | |
DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ) | |
Directly forming a DomainMatrix: | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A | |
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) | |
See Also | |
======== | |
DDM | |
SDM | |
Domain | |
Poly | |
""" | |
rep: tUnion[SDM, DDM] | |
shape: tTuple[int, int] | |
domain: Domain | |
def __new__(cls, rows, shape, domain, *, fmt=None): | |
""" | |
Creates a :py:class:`~.DomainMatrix`. | |
Parameters | |
========== | |
rows : Represents elements of DomainMatrix as list of lists | |
shape : Represents dimension of DomainMatrix | |
domain : Represents :py:class:`~.Domain` of DomainMatrix | |
Raises | |
====== | |
TypeError | |
If any of rows, shape and domain are not provided | |
""" | |
if isinstance(rows, (DDM, SDM)): | |
raise TypeError("Use from_rep to initialise from SDM/DDM") | |
elif isinstance(rows, list): | |
rep = DDM(rows, shape, domain) | |
elif isinstance(rows, dict): | |
rep = SDM(rows, shape, domain) | |
else: | |
msg = "Input should be list-of-lists or dict-of-dicts" | |
raise TypeError(msg) | |
if fmt is not None: | |
if fmt == 'sparse': | |
rep = rep.to_sdm() | |
elif fmt == 'dense': | |
rep = rep.to_ddm() | |
else: | |
raise ValueError("fmt should be 'sparse' or 'dense'") | |
return cls.from_rep(rep) | |
def __getnewargs__(self): | |
rep = self.rep | |
if isinstance(rep, DDM): | |
arg = list(rep) | |
elif isinstance(rep, SDM): | |
arg = dict(rep) | |
else: | |
raise RuntimeError # pragma: no cover | |
return arg, self.shape, self.domain | |
def __getitem__(self, key): | |
i, j = key | |
m, n = self.shape | |
if not (isinstance(i, slice) or isinstance(j, slice)): | |
return DomainScalar(self.rep.getitem(i, j), self.domain) | |
if not isinstance(i, slice): | |
if not -m <= i < m: | |
raise IndexError("Row index out of range") | |
i = i % m | |
i = slice(i, i+1) | |
if not isinstance(j, slice): | |
if not -n <= j < n: | |
raise IndexError("Column index out of range") | |
j = j % n | |
j = slice(j, j+1) | |
return self.from_rep(self.rep.extract_slice(i, j)) | |
def getitem_sympy(self, i, j): | |
return self.domain.to_sympy(self.rep.getitem(i, j)) | |
def extract(self, rowslist, colslist): | |
return self.from_rep(self.rep.extract(rowslist, colslist)) | |
def __setitem__(self, key, value): | |
i, j = key | |
if not self.domain.of_type(value): | |
raise TypeError | |
if isinstance(i, int) and isinstance(j, int): | |
self.rep.setitem(i, j, value) | |
else: | |
raise NotImplementedError | |
def from_rep(cls, rep): | |
"""Create a new DomainMatrix efficiently from DDM/SDM. | |
Examples | |
======== | |
Create a :py:class:`~.DomainMatrix` with an dense internal | |
representation as :py:class:`~.DDM`: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.polys.matrices.ddm import DDM | |
>>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> dM = DomainMatrix.from_rep(drep) | |
>>> dM | |
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) | |
Create a :py:class:`~.DomainMatrix` with a sparse internal | |
representation as :py:class:`~.SDM`: | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.polys.matrices.sdm import SDM | |
>>> from sympy import ZZ | |
>>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ) | |
>>> dM = DomainMatrix.from_rep(drep) | |
>>> dM | |
DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ) | |
Parameters | |
========== | |
rep: SDM or DDM | |
The internal sparse or dense representation of the matrix. | |
Returns | |
======= | |
DomainMatrix | |
A :py:class:`~.DomainMatrix` wrapping *rep*. | |
Notes | |
===== | |
This takes ownership of rep as its internal representation. If rep is | |
being mutated elsewhere then a copy should be provided to | |
``from_rep``. Only minimal verification or checking is done on *rep* | |
as this is supposed to be an efficient internal routine. | |
""" | |
if not isinstance(rep, (DDM, SDM)): | |
raise TypeError("rep should be of type DDM or SDM") | |
self = super().__new__(cls) | |
self.rep = rep | |
self.shape = rep.shape | |
self.domain = rep.domain | |
return self | |
def from_list(cls, rows, domain): | |
r""" | |
Convert a list of lists into a DomainMatrix | |
Parameters | |
========== | |
rows: list of lists | |
Each element of the inner lists should be either the single arg, | |
or tuple of args, that would be passed to the domain constructor | |
in order to form an element of the domain. See examples. | |
Returns | |
======= | |
DomainMatrix containing elements defined in rows | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import FF, QQ, ZZ | |
>>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ) | |
>>> A | |
DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ) | |
>>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7)) | |
>>> B | |
DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7)) | |
>>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) | |
>>> C | |
DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ) | |
See Also | |
======== | |
from_list_sympy | |
""" | |
nrows = len(rows) | |
ncols = 0 if not nrows else len(rows[0]) | |
conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e) | |
domain_rows = [[conv(e) for e in row] for row in rows] | |
return DomainMatrix(domain_rows, (nrows, ncols), domain) | |
def from_list_sympy(cls, nrows, ncols, rows, **kwargs): | |
r""" | |
Convert a list of lists of Expr into a DomainMatrix using construct_domain | |
Parameters | |
========== | |
nrows: number of rows | |
ncols: number of columns | |
rows: list of lists | |
Returns | |
======= | |
DomainMatrix containing elements of rows | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.abc import x, y, z | |
>>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]]) | |
>>> A | |
DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z]) | |
See Also | |
======== | |
sympy.polys.constructor.construct_domain, from_dict_sympy | |
""" | |
assert len(rows) == nrows | |
assert all(len(row) == ncols for row in rows) | |
items_sympy = [_sympify(item) for row in rows for item in row] | |
domain, items_domain = cls.get_domain(items_sympy, **kwargs) | |
domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)] | |
return DomainMatrix(domain_rows, (nrows, ncols), domain) | |
def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs): | |
""" | |
Parameters | |
========== | |
nrows: number of rows | |
ncols: number of cols | |
elemsdict: dict of dicts containing non-zero elements of the DomainMatrix | |
Returns | |
======= | |
DomainMatrix containing elements of elemsdict | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.abc import x,y,z | |
>>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}} | |
>>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict) | |
>>> A | |
DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z]) | |
See Also | |
======== | |
from_list_sympy | |
""" | |
if not all(0 <= r < nrows for r in elemsdict): | |
raise DMBadInputError("Row out of range") | |
if not all(0 <= c < ncols for row in elemsdict.values() for c in row): | |
raise DMBadInputError("Column out of range") | |
items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()] | |
domain, items_domain = cls.get_domain(items_sympy, **kwargs) | |
idx = 0 | |
items_dict = {} | |
for i, row in elemsdict.items(): | |
items_dict[i] = {} | |
for j in row: | |
items_dict[i][j] = items_domain[idx] | |
idx += 1 | |
return DomainMatrix(items_dict, (nrows, ncols), domain) | |
def from_Matrix(cls, M, fmt='sparse',**kwargs): | |
r""" | |
Convert Matrix to DomainMatrix | |
Parameters | |
========== | |
M: Matrix | |
Returns | |
======= | |
Returns DomainMatrix with identical elements as M | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> M = Matrix([ | |
... [1.0, 3.4], | |
... [2.4, 1]]) | |
>>> A = DomainMatrix.from_Matrix(M) | |
>>> A | |
DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR) | |
We can keep internal representation as ddm using fmt='dense' | |
>>> from sympy import Matrix, QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense') | |
>>> A.rep | |
[[1/2, 3/4], [0, 0]] | |
See Also | |
======== | |
Matrix | |
""" | |
if fmt == 'dense': | |
return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs) | |
return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs) | |
def get_domain(cls, items_sympy, **kwargs): | |
K, items_K = construct_domain(items_sympy, **kwargs) | |
return K, items_K | |
def copy(self): | |
return self.from_rep(self.rep.copy()) | |
def convert_to(self, K): | |
r""" | |
Change the domain of DomainMatrix to desired domain or field | |
Parameters | |
========== | |
K : Represents the desired domain or field. | |
Alternatively, ``None`` may be passed, in which case this method | |
just returns a copy of this DomainMatrix. | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix with the desired domain or field | |
Examples | |
======== | |
>>> from sympy import ZZ, ZZ_I | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.convert_to(ZZ_I) | |
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I) | |
""" | |
if K is None: | |
return self.copy() | |
return self.from_rep(self.rep.convert_to(K)) | |
def to_sympy(self): | |
return self.convert_to(EXRAW) | |
def to_field(self): | |
r""" | |
Returns a DomainMatrix with the appropriate field | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix with the appropriate field | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.to_field() | |
DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ) | |
""" | |
K = self.domain.get_field() | |
return self.convert_to(K) | |
def to_sparse(self): | |
""" | |
Return a sparse DomainMatrix representation of *self*. | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import QQ | |
>>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) | |
>>> A.rep | |
[[1, 0], [0, 2]] | |
>>> B = A.to_sparse() | |
>>> B.rep | |
{0: {0: 1}, 1: {1: 2}} | |
""" | |
if self.rep.fmt == 'sparse': | |
return self | |
return self.from_rep(SDM.from_ddm(self.rep)) | |
def to_dense(self): | |
""" | |
Return a dense DomainMatrix representation of *self*. | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import QQ | |
>>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) | |
>>> A.rep | |
{0: {0: 1}, 1: {1: 2}} | |
>>> B = A.to_dense() | |
>>> B.rep | |
[[1, 0], [0, 2]] | |
""" | |
if self.rep.fmt == 'dense': | |
return self | |
return self.from_rep(SDM.to_ddm(self.rep)) | |
def _unify_domain(cls, *matrices): | |
"""Convert matrices to a common domain""" | |
domains = {matrix.domain for matrix in matrices} | |
if len(domains) == 1: | |
return matrices | |
domain = reduce(lambda x, y: x.unify(y), domains) | |
return tuple(matrix.convert_to(domain) for matrix in matrices) | |
def _unify_fmt(cls, *matrices, fmt=None): | |
"""Convert matrices to the same format. | |
If all matrices have the same format, then return unmodified. | |
Otherwise convert both to the preferred format given as *fmt* which | |
should be 'dense' or 'sparse'. | |
""" | |
formats = {matrix.rep.fmt for matrix in matrices} | |
if len(formats) == 1: | |
return matrices | |
if fmt == 'sparse': | |
return tuple(matrix.to_sparse() for matrix in matrices) | |
elif fmt == 'dense': | |
return tuple(matrix.to_dense() for matrix in matrices) | |
else: | |
raise ValueError("fmt should be 'sparse' or 'dense'") | |
def unify(self, *others, fmt=None): | |
""" | |
Unifies the domains and the format of self and other | |
matrices. | |
Parameters | |
========== | |
others : DomainMatrix | |
fmt: string 'dense', 'sparse' or `None` (default) | |
The preferred format to convert to if self and other are not | |
already in the same format. If `None` or not specified then no | |
conversion if performed. | |
Returns | |
======= | |
Tuple[DomainMatrix] | |
Matrices with unified domain and format | |
Examples | |
======== | |
Unify the domain of DomainMatrix that have different domains: | |
>>> from sympy import ZZ, QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) | |
>>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ) | |
>>> Aq, Bq = A.unify(B) | |
>>> Aq | |
DomainMatrix([[1, 2]], (1, 2), QQ) | |
>>> Bq | |
DomainMatrix([[1/2, 2]], (1, 2), QQ) | |
Unify the format (dense or sparse): | |
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) | |
>>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ) | |
>>> B.rep | |
{0: {0: 1}} | |
>>> A2, B2 = A.unify(B, fmt='dense') | |
>>> B2.rep | |
[[1, 0], [0, 0]] | |
See Also | |
======== | |
convert_to, to_dense, to_sparse | |
""" | |
matrices = (self,) + others | |
matrices = DomainMatrix._unify_domain(*matrices) | |
if fmt is not None: | |
matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt) | |
return matrices | |
def to_Matrix(self): | |
r""" | |
Convert DomainMatrix to Matrix | |
Returns | |
======= | |
Matrix | |
MutableDenseMatrix for the DomainMatrix | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.to_Matrix() | |
Matrix([ | |
[1, 2], | |
[3, 4]]) | |
See Also | |
======== | |
from_Matrix | |
""" | |
from sympy.matrices.dense import MutableDenseMatrix | |
elemlist = self.rep.to_list() | |
elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row] | |
return MutableDenseMatrix(*self.shape, elements_sympy) | |
def to_list(self): | |
return self.rep.to_list() | |
def to_list_flat(self): | |
return self.rep.to_list_flat() | |
def to_dok(self): | |
return self.rep.to_dok() | |
def __repr__(self): | |
return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain) | |
def transpose(self): | |
"""Matrix transpose of ``self``""" | |
return self.from_rep(self.rep.transpose()) | |
def flat(self): | |
rows, cols = self.shape | |
return [self[i,j].element for i in range(rows) for j in range(cols)] | |
def is_zero_matrix(self): | |
return self.rep.is_zero_matrix() | |
def is_upper(self): | |
""" | |
Says whether this matrix is upper-triangular. True can be returned | |
even if the matrix is not square. | |
""" | |
return self.rep.is_upper() | |
def is_lower(self): | |
""" | |
Says whether this matrix is lower-triangular. True can be returned | |
even if the matrix is not square. | |
""" | |
return self.rep.is_lower() | |
def is_square(self): | |
return self.shape[0] == self.shape[1] | |
def rank(self): | |
rref, pivots = self.rref() | |
return len(pivots) | |
def hstack(A, *B): | |
r"""Horizontally stack the given matrices. | |
Parameters | |
========== | |
B: DomainMatrix | |
Matrices to stack horizontally. | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix by stacking horizontally. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) | |
>>> A.hstack(B) | |
DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ) | |
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) | |
>>> A.hstack(B, C) | |
DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ) | |
See Also | |
======== | |
unify | |
""" | |
A, *B = A.unify(*B, fmt='dense') | |
return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B))) | |
def vstack(A, *B): | |
r"""Vertically stack the given matrices. | |
Parameters | |
========== | |
B: DomainMatrix | |
Matrices to stack vertically. | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix by stacking vertically. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) | |
>>> A.vstack(B) | |
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ) | |
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) | |
>>> A.vstack(B, C) | |
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ) | |
See Also | |
======== | |
unify | |
""" | |
A, *B = A.unify(*B, fmt='dense') | |
return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B))) | |
def applyfunc(self, func, domain=None): | |
if domain is None: | |
domain = self.domain | |
return self.from_rep(self.rep.applyfunc(func, domain)) | |
def __add__(A, B): | |
if not isinstance(B, DomainMatrix): | |
return NotImplemented | |
A, B = A.unify(B, fmt='dense') | |
return A.add(B) | |
def __sub__(A, B): | |
if not isinstance(B, DomainMatrix): | |
return NotImplemented | |
A, B = A.unify(B, fmt='dense') | |
return A.sub(B) | |
def __neg__(A): | |
return A.neg() | |
def __mul__(A, B): | |
"""A * B""" | |
if isinstance(B, DomainMatrix): | |
A, B = A.unify(B, fmt='dense') | |
return A.matmul(B) | |
elif B in A.domain: | |
return A.scalarmul(B) | |
elif isinstance(B, DomainScalar): | |
A, B = A.unify(B) | |
return A.scalarmul(B.element) | |
else: | |
return NotImplemented | |
def __rmul__(A, B): | |
if B in A.domain: | |
return A.rscalarmul(B) | |
elif isinstance(B, DomainScalar): | |
A, B = A.unify(B) | |
return A.rscalarmul(B.element) | |
else: | |
return NotImplemented | |
def __pow__(A, n): | |
"""A ** n""" | |
if not isinstance(n, int): | |
return NotImplemented | |
return A.pow(n) | |
def _check(a, op, b, ashape, bshape): | |
if a.domain != b.domain: | |
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) | |
raise DMDomainError(msg) | |
if ashape != bshape: | |
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) | |
raise DMShapeError(msg) | |
if a.rep.fmt != b.rep.fmt: | |
msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt) | |
raise DMFormatError(msg) | |
def add(A, B): | |
r""" | |
Adds two DomainMatrix matrices of the same Domain | |
Parameters | |
========== | |
A, B: DomainMatrix | |
matrices to add | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after Addition | |
Raises | |
====== | |
DMShapeError | |
If the dimensions of the two DomainMatrix are not equal | |
ValueError | |
If the domain of the two DomainMatrix are not same | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([ | |
... [ZZ(4), ZZ(3)], | |
... [ZZ(2), ZZ(1)]], (2, 2), ZZ) | |
>>> A.add(B) | |
DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ) | |
See Also | |
======== | |
sub, matmul | |
""" | |
A._check('+', B, A.shape, B.shape) | |
return A.from_rep(A.rep.add(B.rep)) | |
def sub(A, B): | |
r""" | |
Subtracts two DomainMatrix matrices of the same Domain | |
Parameters | |
========== | |
A, B: DomainMatrix | |
matrices to subtract | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after Subtraction | |
Raises | |
====== | |
DMShapeError | |
If the dimensions of the two DomainMatrix are not equal | |
ValueError | |
If the domain of the two DomainMatrix are not same | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([ | |
... [ZZ(4), ZZ(3)], | |
... [ZZ(2), ZZ(1)]], (2, 2), ZZ) | |
>>> A.sub(B) | |
DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ) | |
See Also | |
======== | |
add, matmul | |
""" | |
A._check('-', B, A.shape, B.shape) | |
return A.from_rep(A.rep.sub(B.rep)) | |
def neg(A): | |
r""" | |
Returns the negative of DomainMatrix | |
Parameters | |
========== | |
A : Represents a DomainMatrix | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after Negation | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.neg() | |
DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ) | |
""" | |
return A.from_rep(A.rep.neg()) | |
def mul(A, b): | |
r""" | |
Performs term by term multiplication for the second DomainMatrix | |
w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are | |
list of DomainMatrix matrices created after term by term multiplication. | |
Parameters | |
========== | |
A, B: DomainMatrix | |
matrices to multiply term-wise | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after term by term multiplication | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([ | |
... [ZZ(1), ZZ(1)], | |
... [ZZ(0), ZZ(1)]], (2, 2), ZZ) | |
>>> A.mul(B) | |
DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ), | |
DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)], | |
[DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ), | |
DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ) | |
See Also | |
======== | |
matmul | |
""" | |
return A.from_rep(A.rep.mul(b)) | |
def rmul(A, b): | |
return A.from_rep(A.rep.rmul(b)) | |
def matmul(A, B): | |
r""" | |
Performs matrix multiplication of two DomainMatrix matrices | |
Parameters | |
========== | |
A, B: DomainMatrix | |
to multiply | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after multiplication | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([ | |
... [ZZ(1), ZZ(1)], | |
... [ZZ(0), ZZ(1)]], (2, 2), ZZ) | |
>>> A.matmul(B) | |
DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ) | |
See Also | |
======== | |
mul, pow, add, sub | |
""" | |
A._check('*', B, A.shape[1], B.shape[0]) | |
return A.from_rep(A.rep.matmul(B.rep)) | |
def _scalarmul(A, lamda, reverse): | |
if lamda == A.domain.zero: | |
return DomainMatrix.zeros(A.shape, A.domain) | |
elif lamda == A.domain.one: | |
return A.copy() | |
elif reverse: | |
return A.rmul(lamda) | |
else: | |
return A.mul(lamda) | |
def scalarmul(A, lamda): | |
return A._scalarmul(lamda, reverse=False) | |
def rscalarmul(A, lamda): | |
return A._scalarmul(lamda, reverse=True) | |
def mul_elementwise(A, B): | |
assert A.domain == B.domain | |
return A.from_rep(A.rep.mul_elementwise(B.rep)) | |
def __truediv__(A, lamda): | |
""" Method for Scalar Division""" | |
if isinstance(lamda, int) or ZZ.of_type(lamda): | |
lamda = DomainScalar(ZZ(lamda), ZZ) | |
if not isinstance(lamda, DomainScalar): | |
return NotImplemented | |
A, lamda = A.to_field().unify(lamda) | |
if lamda.element == lamda.domain.zero: | |
raise ZeroDivisionError | |
if lamda.element == lamda.domain.one: | |
return A.to_field() | |
return A.mul(1 / lamda.element) | |
def pow(A, n): | |
r""" | |
Computes A**n | |
Parameters | |
========== | |
A : DomainMatrix | |
n : exponent for A | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix on computing A**n | |
Raises | |
====== | |
NotImplementedError | |
if n is negative. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(1)], | |
... [ZZ(0), ZZ(1)]], (2, 2), ZZ) | |
>>> A.pow(2) | |
DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ) | |
See Also | |
======== | |
matmul | |
""" | |
nrows, ncols = A.shape | |
if nrows != ncols: | |
raise DMNonSquareMatrixError('Power of a nonsquare matrix') | |
if n < 0: | |
raise NotImplementedError('Negative powers') | |
elif n == 0: | |
return A.eye(nrows, A.domain) | |
elif n == 1: | |
return A | |
elif n % 2 == 1: | |
return A * A**(n - 1) | |
else: | |
sqrtAn = A ** (n // 2) | |
return sqrtAn * sqrtAn | |
def scc(self): | |
"""Compute the strongly connected components of a DomainMatrix | |
Explanation | |
=========== | |
A square matrix can be considered as the adjacency matrix for a | |
directed graph where the row and column indices are the vertices. In | |
this graph if there is an edge from vertex ``i`` to vertex ``j`` if | |
``M[i, j]`` is nonzero. This routine computes the strongly connected | |
components of that graph which are subsets of the rows and columns that | |
are connected by some nonzero element of the matrix. The strongly | |
connected components are useful because many operations such as the | |
determinant can be computed by working with the submatrices | |
corresponding to each component. | |
Examples | |
======== | |
Find the strongly connected components of a matrix: | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)], | |
... [ZZ(0), ZZ(3), ZZ(0)], | |
... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ) | |
>>> M.scc() | |
[[1], [0, 2]] | |
Compute the determinant from the components: | |
>>> MM = M.to_Matrix() | |
>>> MM | |
Matrix([ | |
[1, 0, 2], | |
[0, 3, 0], | |
[4, 6, 5]]) | |
>>> MM[[1], [1]] | |
Matrix([[3]]) | |
>>> MM[[0, 2], [0, 2]] | |
Matrix([ | |
[1, 2], | |
[4, 5]]) | |
>>> MM.det() | |
-9 | |
>>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det() | |
-9 | |
The components are given in reverse topological order and represent a | |
permutation of the rows and columns that will bring the matrix into | |
block lower-triangular form: | |
>>> MM[[1, 0, 2], [1, 0, 2]] | |
Matrix([ | |
[3, 0, 0], | |
[0, 1, 2], | |
[6, 4, 5]]) | |
Returns | |
======= | |
List of lists of integers | |
Each list represents a strongly connected component. | |
See also | |
======== | |
sympy.matrices.matrices.MatrixBase.strongly_connected_components | |
sympy.utilities.iterables.strongly_connected_components | |
""" | |
rows, cols = self.shape | |
assert rows == cols | |
return self.rep.scc() | |
def rref(self): | |
r""" | |
Returns reduced-row echelon form and list of pivots for the DomainMatrix | |
Returns | |
======= | |
(DomainMatrix, list) | |
reduced-row echelon form and list of pivots for the DomainMatrix | |
Raises | |
====== | |
ValueError | |
If the domain of DomainMatrix not a Field | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(2), QQ(-1), QQ(0)], | |
... [QQ(-1), QQ(2), QQ(-1)], | |
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) | |
>>> rref_matrix, rref_pivots = A.rref() | |
>>> rref_matrix | |
DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) | |
>>> rref_pivots | |
(0, 1, 2) | |
See Also | |
======== | |
convert_to, lu | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
rref_ddm, pivots = self.rep.rref() | |
return self.from_rep(rref_ddm), tuple(pivots) | |
def columnspace(self): | |
r""" | |
Returns the columnspace for the DomainMatrix | |
Returns | |
======= | |
DomainMatrix | |
The columns of this matrix form a basis for the columnspace. | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(1), QQ(-1)], | |
... [QQ(2), QQ(-2)]], (2, 2), QQ) | |
>>> A.columnspace() | |
DomainMatrix([[1], [2]], (2, 1), QQ) | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
rref, pivots = self.rref() | |
rows, cols = self.shape | |
return self.extract(range(rows), pivots) | |
def rowspace(self): | |
r""" | |
Returns the rowspace for the DomainMatrix | |
Returns | |
======= | |
DomainMatrix | |
The rows of this matrix form a basis for the rowspace. | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(1), QQ(-1)], | |
... [QQ(2), QQ(-2)]], (2, 2), QQ) | |
>>> A.rowspace() | |
DomainMatrix([[1, -1]], (1, 2), QQ) | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
rref, pivots = self.rref() | |
rows, cols = self.shape | |
return self.extract(range(len(pivots)), range(cols)) | |
def nullspace(self): | |
r""" | |
Returns the nullspace for the DomainMatrix | |
Returns | |
======= | |
DomainMatrix | |
The rows of this matrix form a basis for the nullspace. | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(1), QQ(-1)], | |
... [QQ(2), QQ(-2)]], (2, 2), QQ) | |
>>> A.nullspace() | |
DomainMatrix([[1, 1]], (1, 2), QQ) | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
return self.from_rep(self.rep.nullspace()[0]) | |
def inv(self): | |
r""" | |
Finds the inverse of the DomainMatrix if exists | |
Returns | |
======= | |
DomainMatrix | |
DomainMatrix after inverse | |
Raises | |
====== | |
ValueError | |
If the domain of DomainMatrix not a Field | |
DMNonSquareMatrixError | |
If the DomainMatrix is not a not Square DomainMatrix | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(2), QQ(-1), QQ(0)], | |
... [QQ(-1), QQ(2), QQ(-1)], | |
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) | |
>>> A.inv() | |
DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ) | |
See Also | |
======== | |
neg | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
m, n = self.shape | |
if m != n: | |
raise DMNonSquareMatrixError | |
inv = self.rep.inv() | |
return self.from_rep(inv) | |
def det(self): | |
r""" | |
Returns the determinant of a Square DomainMatrix | |
Returns | |
======= | |
S.Complexes | |
determinant of Square DomainMatrix | |
Raises | |
====== | |
ValueError | |
If the domain of DomainMatrix not a Field | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.det() | |
-2 | |
""" | |
m, n = self.shape | |
if m != n: | |
raise DMNonSquareMatrixError | |
return self.rep.det() | |
def lu(self): | |
r""" | |
Returns Lower and Upper decomposition of the DomainMatrix | |
Returns | |
======= | |
(L, U, exchange) | |
L, U are Lower and Upper decomposition of the DomainMatrix, | |
exchange is the list of indices of rows exchanged in the decomposition. | |
Raises | |
====== | |
ValueError | |
If the domain of DomainMatrix not a Field | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(1), QQ(-1)], | |
... [QQ(2), QQ(-2)]], (2, 2), QQ) | |
>>> A.lu() | |
(DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), []) | |
See Also | |
======== | |
lu_solve | |
""" | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
L, U, swaps = self.rep.lu() | |
return self.from_rep(L), self.from_rep(U), swaps | |
def lu_solve(self, rhs): | |
r""" | |
Solver for DomainMatrix x in the A*x = B | |
Parameters | |
========== | |
rhs : DomainMatrix B | |
Returns | |
======= | |
DomainMatrix | |
x in A*x = B | |
Raises | |
====== | |
DMShapeError | |
If the DomainMatrix A and rhs have different number of rows | |
ValueError | |
If the domain of DomainMatrix A not a Field | |
Examples | |
======== | |
>>> from sympy import QQ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [QQ(1), QQ(2)], | |
... [QQ(3), QQ(4)]], (2, 2), QQ) | |
>>> B = DomainMatrix([ | |
... [QQ(1), QQ(1)], | |
... [QQ(0), QQ(1)]], (2, 2), QQ) | |
>>> A.lu_solve(B) | |
DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ) | |
See Also | |
======== | |
lu | |
""" | |
if self.shape[0] != rhs.shape[0]: | |
raise DMShapeError("Shape") | |
if not self.domain.is_Field: | |
raise DMNotAField('Not a field') | |
sol = self.rep.lu_solve(rhs.rep) | |
return self.from_rep(sol) | |
def _solve(A, b): | |
# XXX: Not sure about this method or its signature. It is just created | |
# because it is needed by the holonomic module. | |
if A.shape[0] != b.shape[0]: | |
raise DMShapeError("Shape") | |
if A.domain != b.domain or not A.domain.is_Field: | |
raise DMNotAField('Not a field') | |
Aaug = A.hstack(b) | |
Arref, pivots = Aaug.rref() | |
particular = Arref.from_rep(Arref.rep.particular()) | |
nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace() | |
nullspace = Arref.from_rep(nullspace_rep) | |
return particular, nullspace | |
def charpoly(self): | |
r""" | |
Returns the coefficients of the characteristic polynomial | |
of the DomainMatrix. These elements will be domain elements. | |
The domain of the elements will be same as domain of the DomainMatrix. | |
Returns | |
======= | |
list | |
coefficients of the characteristic polynomial | |
Raises | |
====== | |
DMNonSquareMatrixError | |
If the DomainMatrix is not a not Square DomainMatrix | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> A.charpoly() | |
[1, -5, -2] | |
""" | |
m, n = self.shape | |
if m != n: | |
raise DMNonSquareMatrixError("not square") | |
return self.rep.charpoly() | |
def eye(cls, shape, domain): | |
r""" | |
Return identity matrix of size n | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import QQ | |
>>> DomainMatrix.eye(3, QQ) | |
DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ) | |
""" | |
if isinstance(shape, int): | |
shape = (shape, shape) | |
return cls.from_rep(SDM.eye(shape, domain)) | |
def diag(cls, diagonal, domain, shape=None): | |
r""" | |
Return diagonal matrix with entries from ``diagonal``. | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import ZZ | |
>>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ) | |
DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ) | |
""" | |
if shape is None: | |
N = len(diagonal) | |
shape = (N, N) | |
return cls.from_rep(SDM.diag(diagonal, domain, shape)) | |
def zeros(cls, shape, domain, *, fmt='sparse'): | |
"""Returns a zero DomainMatrix of size shape, belonging to the specified domain | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import QQ | |
>>> DomainMatrix.zeros((2, 3), QQ) | |
DomainMatrix({}, (2, 3), QQ) | |
""" | |
return cls.from_rep(SDM.zeros(shape, domain)) | |
def ones(cls, shape, domain): | |
"""Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain | |
Examples | |
======== | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy import QQ | |
>>> DomainMatrix.ones((2,3), QQ) | |
DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ) | |
""" | |
return cls.from_rep(DDM.ones(shape, domain)) | |
def __eq__(A, B): | |
r""" | |
Checks for two DomainMatrix matrices to be equal or not | |
Parameters | |
========== | |
A, B: DomainMatrix | |
to check equality | |
Returns | |
======= | |
Boolean | |
True for equal, else False | |
Raises | |
====== | |
NotImplementedError | |
If B is not a DomainMatrix | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> A = DomainMatrix([ | |
... [ZZ(1), ZZ(2)], | |
... [ZZ(3), ZZ(4)]], (2, 2), ZZ) | |
>>> B = DomainMatrix([ | |
... [ZZ(1), ZZ(1)], | |
... [ZZ(0), ZZ(1)]], (2, 2), ZZ) | |
>>> A.__eq__(A) | |
True | |
>>> A.__eq__(B) | |
False | |
""" | |
if not isinstance(A, type(B)): | |
return NotImplemented | |
return A.domain == B.domain and A.rep == B.rep | |
def unify_eq(A, B): | |
if A.shape != B.shape: | |
return False | |
if A.domain != B.domain: | |
A, B = A.unify(B) | |
return A == B | |
def lll(A, delta=QQ(3, 4)): | |
""" | |
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. | |
See [1]_ and [2]_. | |
Parameters | |
========== | |
delta : QQ, optional | |
The Lovász parameter. Must be in the interval (0.25, 1), with larger | |
values producing a more reduced basis. The default is 0.75 for | |
historical reasons. | |
Returns | |
======= | |
The reduced basis as a DomainMatrix over ZZ. | |
Throws | |
====== | |
DMValueError: if delta is not in the range (0.25, 1) | |
DMShapeError: if the matrix is not of shape (m, n) with m <= n | |
DMDomainError: if the matrix domain is not ZZ | |
DMRankError: if the matrix contains linearly dependent rows | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ, QQ | |
>>> from sympy.polys.matrices import DM | |
>>> x = DM([[1, 0, 0, 0, -20160], | |
... [0, 1, 0, 0, 33768], | |
... [0, 0, 1, 0, 39578], | |
... [0, 0, 0, 1, 47757]], ZZ) | |
>>> y = DM([[10, -3, -2, 8, -4], | |
... [3, -9, 8, 1, -11], | |
... [-3, 13, -9, -3, -9], | |
... [-12, -7, -11, 9, -1]], ZZ) | |
>>> assert x.lll(delta=QQ(5, 6)) == y | |
Notes | |
===== | |
The implementation is derived from the Maple code given in Figures 4.3 | |
and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating | |
state updates as they are required. | |
See also | |
======== | |
lll_transform | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm | |
.. [2] https://web.archive.org/web/20221029115428/https://web.cs.elte.hu/~lovasz/scans/lll.pdf | |
.. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications" | |
""" | |
return DomainMatrix.from_rep(A.rep.lll(delta=delta)) | |
def lll_transform(A, delta=QQ(3, 4)): | |
""" | |
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm | |
and returns the reduced basis and transformation matrix. | |
Explanation | |
=========== | |
Parameters, algorithm and basis are the same as for :meth:`lll` except that | |
the return value is a tuple `(B, T)` with `B` the reduced basis and | |
`T` a transformation matrix. The original basis `A` is transformed to | |
`B` with `T*A == B`. If only `B` is needed then :meth:`lll` should be | |
used as it is a little faster. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ, QQ | |
>>> from sympy.polys.matrices import DM | |
>>> X = DM([[1, 0, 0, 0, -20160], | |
... [0, 1, 0, 0, 33768], | |
... [0, 0, 1, 0, 39578], | |
... [0, 0, 0, 1, 47757]], ZZ) | |
>>> B, T = X.lll_transform(delta=QQ(5, 6)) | |
>>> T * X == B | |
True | |
See also | |
======== | |
lll | |
""" | |
reduced, transform = A.rep.lll_transform(delta=delta) | |
return DomainMatrix.from_rep(reduced), DomainMatrix.from_rep(transform) | |