peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/api
/python.py
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Sequence, Set, Tuple, Union | |
from torchgen.api import cpp | |
from torchgen.api.types import Binding, CppSignature, CppSignatureGroup | |
from torchgen.gen import pythonify_default | |
from torchgen.model import ( | |
Argument, | |
BaseTy, | |
BaseType, | |
FunctionSchema, | |
ListType, | |
NativeFunction, | |
OptionalType, | |
Return, | |
Type, | |
Variant, | |
) | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# Data Models | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# [Notes] python binding codegen | |
# | |
# The Python binding codegen produces code that takes the input list of | |
# PyObjects, finds the matching ATen C++ function using PythonArgParser, | |
# converts the PyObjects into C++ types and calls the ATen C++ function: | |
# | |
# +--------+ parsing +------------------------+ binding +-----------------------+ | |
# | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch | | |
# +--------+ +------------------------+ +-----------------------+ | |
# | |
# The following examples demonstrate the data models the Python binding | |
# codegen needs to deal with and the tasks it needs to accomplish. It | |
# helps understand the purpose of the new data types we introduced below. | |
# | |
# - Function Schema (source of truth) | |
# | |
# aten::empty.names(int[] size, *, Dimname[]? names, | |
# ScalarType? dtype=None, Layout? layout=None, | |
# Device? device=None, bool? pin_memory=None, | |
# MemoryFormat? memory_format=None) -> Tensor | |
# | |
# - Python Signature | |
# | |
# It's used to generate input schema string for PythonArgParser. | |
# Note: TensorOptions fields are reordered and the additional | |
# 'requires_grad' field is added: | |
# | |
# empty(IntArrayRef size, *, DimnameList? names, | |
# MemoryFormat? memory_format=None, ScalarType dtype=None, | |
# Layout layout=torch.strided, Device device=None, | |
# bool pin_memory=False, bool requires_grad=False) | |
# | |
# - C++ Signature | |
# | |
# It's used to generate C++ lambda formals & dispatch call. | |
# Note: the scattered TensorOptions fields are packed into 'options'. | |
# | |
# auto dispatch_empty = | |
# [](IntArrayRef size, c10::optional<DimnameList> names, | |
# const TensorOptions & options, | |
# c10::optional<MemoryFormat> memory_format) -> Tensor { | |
# pybind11::gil_scoped_release no_gil; | |
# return torch::empty(size, names, options, memory_format); | |
# }; | |
# | |
# - Binding between Python Arguments and C++ Arguments | |
# | |
# Given a set of Python Arguments in scope, we need produce the | |
# binding expressions that translate the Python API into C++ API: | |
# | |
# Python Args Cpp Args Binding Exprs | |
# ----------------------------------------------------------------- | |
# 0: size size '_r.intlist(0)' | |
# 1: names names 'names' [special init] | |
# 2: memory_format -------+ | |
# 3: dtype -----+-|--> options 'options' [special packing] | |
# 4: layout / | | |
# 5: device / +--> memory_format '_r.memoryformatOptional(2)' | |
# 6: pin_memory / | |
# 7: requires_grad -+ | |
# | |
# So the full dispatch expression would look like: | |
# | |
# dispatch_empty(_r.intlist(0), names, options, | |
# _r.memoryformatOptional(2)) | |
# | |
# Where does 'names' come from? It involves special local init: | |
# | |
# auto __names = _r.toDimnameListOptional(1); | |
# c10::optional<DimnameList> names = | |
# __names ? c10::make_optional(DimnameList(__names.value())) | |
# : c10::nullopt; | |
# | |
# Where does 'options' come from? It involves special local init | |
# for TensorOptions. Note that Python side has the additional | |
# 'requires_grad' field: | |
# | |
# const auto options = TensorOptions() | |
# .dtype(_r.scalartype(3)) | |
# .device(_r.device(5)) | |
# .layout(_r.layoutOptional(4)) | |
# .requires_grad(_r.toBool(7)) | |
# .pinned_memory(_r.toBool(6)); | |
# | |
# In some other cases one Python Argument can map to multiple C++ | |
# Arguments. For example: | |
# | |
# aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False) | |
# -> (Tensor values, Tensor indices) | |
# | |
# Python Args Cpp Args Binding Exprs | |
# --------------------------------------------------------------------- | |
# +----> max 'out[0]' | |
# /-----> max_values 'out[1] | |
# 0: input / self '_r.tensor(0)' | |
# 1: dim / dim '_r.dimname(1)' | |
# 2: keepdim / keepdim '_r.toBool(2)' | |
# 3: out -----+ [local init] out '_r.tensorlist_n<2>(3)' | |
# | |
# As demonstrated above, the binding can involve reordering, | |
# packing, unpacking and special local inits. | |
# | |
# | |
# Let's look at a concrete example: | |
# | |
# static PythonArgParser parser({ | |
# "abs(Tensor input, *, Tensor out=None)", | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
# ^ | |
# +--- Python Schema, represented by PythonSignature and PythonArgument | |
# | |
# }, /*traceable=*/true); | |
# | |
# ParsedArgs<2> parsed_args; | |
# auto _r = parser.parse(nullptr, args, kwargs, parsed_args); | |
# | |
# ... | |
# | |
# if (_r.isNone(1)) { | |
# ~~~~~~~~~~~~ <--- Scattered PythonArgParser output (arg name = 'out') | |
# represented by PythonArgParserOutputExpr | |
# | |
# // aten::abs(Tensor self) -> Tensor | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
# ^ | |
# +--- NativeFunction schema, base version | |
# | |
# auto dispatch_abs = [](const Tensor & self) -> Tensor { | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
# ^ | |
# +--- dispatch_lambda_args / dispatch_lambda_return_str | |
# generated from NativeFunction / CppSignature | |
# (deprecated PythonSignature is special) | |
# arguments are represented by DispatchLambdaArgument | |
# | |
# pybind11::gil_scoped_release no_gil; | |
# return self.abs(); | |
# ~~~~~~~~~~~ <--- cpp_dispatch_target / cpp_dispatch_exprs | |
# generated from NativeFunction / CppSignature | |
# }; | |
# return wrap(dispatch_abs(_r.tensor(0))); | |
# ~~~~~~~~~~~~~ | |
# ^ | |
# +--- dispatch_lambda_exprs | |
# binding PythonArgParserOutputExpr (python args) | |
# and DispatchLambdaArgument (c++ args) | |
# | |
# } else { | |
# // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
# ^ | |
# +--- NativeFunction schema, out-variant | |
# | |
# auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor { | |
# pybind11::gil_scoped_release no_gil; | |
# return at::abs_out(out, self); | |
# }; | |
# return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0))); | |
# } | |
# | |
# | |
# [Notes] python interface codegen | |
# The python dataclasses below are used used to generate both python binding code | |
# and pyi type hint signatures. | |
# In theory these two should look very similar, but there are number of differences | |
# in how pyi signatures vs. python_arg_parser signatures are generated. | |
# These differences have been encapsulated in signature_str() vs. signature_str_pyi() | |
# to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments. | |
# For examples, only pyi signatures include return types. | |
class PythonReturns: | |
returns: Tuple[Return, ...] | |
class PythonArgument: | |
name: str | |
type: Type | |
default: Optional[str] | |
# Used to generate the default init expr for some PythonArgParser outputs, e.g.: | |
# | |
# _r.layoutWithDefault(3, layout_from_backend(self.options().backend()))) | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
# ^ | |
# +--- default_init str | |
default_init: Optional[str] | |
# Compute argument formal for python argument parsing. | |
# Needs to be consistent with torch/csrc/utils/python_arg_parser.h. | |
def argument_str(self, *, method: bool = False, symint: bool = True) -> str: | |
type_str = ( | |
argument_type_str(self.type, symint=symint) | |
.replace("const ", "") | |
.replace(" &", "") | |
) | |
name = self.name | |
# s/self/input/ outside method bindings | |
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just | |
# for the parse string | |
if name == "self" and type_str in ["Tensor", "Number"] and not method: | |
name = "input" | |
# add default | |
if self.default is not None: | |
default = { | |
"nullptr": "None", | |
"c10::nullopt": "None", | |
"{}": "None", | |
}.get(self.default, self.default) | |
return f"{type_str} {name}={default}" | |
else: | |
return f"{type_str} {name}" | |
def argument_str_pyi( | |
self, *, method: bool = False, deprecated: bool = False | |
) -> str: | |
type_str = argument_type_str_pyi(self.type) | |
name = self.name | |
# s/self/input/ outside method bindings | |
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just | |
# for the parse string | |
if name == "self" and type_str == "Tensor" and not method and not deprecated: | |
name = "input" | |
if name == "from": # from is a Python keyword... | |
name += "_" | |
# pyi merges the _out and functional variants into the same signature, with an optional out arg | |
if name == "out" and type_str == "Tensor" and not deprecated: | |
type_str = "Optional[" + type_str + "]" | |
# pyi deprecated signatures don't get defaults for their out arg | |
treat_as_no_default = ( | |
deprecated | |
and isinstance(self, PythonOutArgument) | |
and self.default == "None" | |
) | |
# add default | |
if self.default is not None and not treat_as_no_default: | |
if ( | |
isinstance(self.type, ListType) | |
and self.type.elem == BaseType(BaseTy.int) | |
and self.default.startswith("{") | |
and self.default.endswith("}") | |
): | |
default = "(" + self.default[1:-1] + ")" | |
else: | |
default = { | |
"nullptr": "None", | |
"c10::nullopt": "None", | |
"{}": "None", | |
"MemoryFormat::Contiguous": "contiguous_format", | |
"QScheme::PER_TENSOR_AFFINE": "per_tensor_affine", | |
}.get(self.default, self.default) | |
return f"{name}: {type_str} = {default}" | |
else: | |
return f"{name}: {type_str}" | |
class PythonOutArgument(PythonArgument): | |
# In Python signature multiple output fields are packed into one 'out' argument. | |
# When binding to C++, it's first binded to a local 'out' variable: | |
# 'auto out = _r.tensorlist_n<2>(2);', | |
# then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc. | |
# TODO: maybe don't need keep scattered out fields for python signature? | |
outputs: Tuple[PythonArgument, ...] | |
def from_outputs( | |
outputs: Tuple[PythonArgument, ...] | |
) -> Optional["PythonOutArgument"]: | |
if not outputs: | |
return None | |
size = len(outputs) | |
if size == 1: | |
return PythonOutArgument( | |
name=outputs[0].name, | |
type=outputs[0].type, | |
default="None", | |
default_init=None, | |
outputs=outputs, | |
) | |
elif size > 1: | |
if any(not a.type.is_tensor_like() for a in outputs): | |
raise RuntimeError(f"Unsupported output type: {outputs}") | |
return PythonOutArgument( | |
name="out", | |
# TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None? | |
type=ListType(BaseType(BaseTy.Tensor), size), | |
default="None", | |
default_init=None, | |
outputs=outputs, | |
) | |
raise AssertionError(r"Unexpected PythonOutArgument size") | |
class PythonSignature: | |
# Base operator name, without inplace/outplace suffix. | |
name: str | |
# Positional arguments. | |
# TODO: create a dedicated SelfArgument type for 'self'? | |
input_args: Tuple[PythonArgument, ...] | |
# Keyword arguments excluding the 'out' argument and scattered kwargs belonging | |
# to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc). | |
input_kwargs: Tuple[PythonArgument, ...] | |
output_args: Optional[PythonOutArgument] | |
# Return types, which are only used by pyi | |
returns: PythonReturns | |
# These are scattered kwargs arguments belonging to TensorOptions. | |
# When binding to C++, they are packed into a TensorOptions object 'options'. | |
# It's possible that the C++ signature doesn't take TensorOptions object (e.g. | |
# for out variant), in which case they will be used as scattered fields without | |
# being packed into 'options'. | |
# TODO: maybe create a PythonTensorOptionsArgument? | |
tensor_options_args: Tuple[PythonArgument, ...] | |
# method or function signature? | |
method: bool | |
def deprecated(self) -> bool: | |
return False | |
def arguments( | |
self, *, skip_outputs: bool = False, skip_tensor_options: bool = False | |
) -> Tuple[Union[PythonArgument, PythonOutArgument], ...]: | |
result: List[Union[PythonArgument, PythonOutArgument]] = [] | |
result.extend(self.input_args) | |
result.extend(self.input_kwargs) | |
if self.output_args is not None and not skip_outputs: | |
result.append(self.output_args) | |
if not skip_tensor_options: | |
result.extend(self.tensor_options_args) | |
return tuple(result) | |
def arguments_count(self) -> int: | |
return len(self.arguments()) | |
def output_idx(self) -> int: | |
return len(self.input_args) + len(self.input_kwargs) | |
# [old codegen] Compute the Python function signature for argument parsing, | |
# as specified in torch/csrc/utils/python_arg_parser.h. WARNING: | |
# this is NOT the same type signature as specified by PEP 484 | |
# as understood by mypy; our format was independently developed | |
# and has some quirks to make it more suitable specifically | |
# for error parsing. | |
# | |
# For a translation to mypy-valid type signatures, see | |
# signature_str_pyi(). | |
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str: | |
args = self.arguments(skip_outputs=skip_outputs) | |
schema_formals: List[str] = [ | |
a.argument_str(method=self.method, symint=symint) for a in args | |
] | |
positional_argc = len(self.input_args) | |
if len(schema_formals) > positional_argc: | |
schema_formals.insert(positional_argc, "*") | |
return f'{self.name}({", ".join(schema_formals)})' | |
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str: | |
args = self.arguments(skip_outputs=skip_outputs) | |
schema_formals: List[str] = [ | |
a.argument_str_pyi(method=self.method) for a in args | |
] | |
positional_argc = len(self.input_args) | |
if len(schema_formals) > positional_argc: | |
schema_formals.insert(positional_argc, "*") | |
# only pyi signatures include returns | |
returns_str = returns_str_pyi(self) | |
# pyi also includes self (with no typing/defaults) for methods | |
if self.method: | |
schema_formals.insert(0, "self") | |
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...' | |
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]: | |
# only pyi uses vararg signatures | |
args = self.arguments(skip_outputs=skip_outputs) | |
schema_formals: List[str] = [ | |
a.argument_str_pyi(method=self.method) for a in args | |
] | |
# vararg only applies to pyi signatures. vararg variants are not generated for all signatures | |
num_args = self.arguments_count() | |
num_positionalargs = len(self.input_args) | |
have_vararg_version = False | |
if num_args > 0: | |
vararg_type = args[0].type | |
if ( | |
isinstance(vararg_type, ListType) | |
and str(vararg_type.elem) in ["int", "SymInt"] | |
and num_positionalargs == 1 | |
): | |
have_vararg_version = True | |
if not have_vararg_version: | |
return None | |
# Below are the major changes in vararg vs. regular pyi signatures | |
# vararg signatures also omit the asterix | |
schema_formals[0] = "*" + args[0].name + ": _int" | |
returns_str = returns_str_pyi(self) | |
# pyi also includes self (with no typing/defaults) for methods | |
if self.method: | |
schema_formals.insert(0, "self") | |
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...' | |
# The deprecated python signature involves some special logic, so create a | |
# dedicated data model to store these extra properties. | |
class PythonSignatureDeprecated(PythonSignature): | |
# Schema for the deprecated function | |
deprecated_schema: FunctionSchema | |
# The deprecated signature might miss some arguments that the corresponding | |
# C++ signature expects. We need store the constant default values to pass in. | |
# For example: | |
# [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2) | |
# [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor | |
# [func call]: self.addmm(mat1, mat2, beta, 1) | |
# We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case. | |
deprecated_args_exprs: Tuple[str, ...] | |
def deprecated(self) -> bool: | |
return True | |
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str: | |
return ( | |
PythonSignature.signature_str( | |
self, skip_outputs=skip_outputs, symint=symint | |
) | |
+ "|deprecated" | |
) | |
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str: | |
args = self.arguments(skip_outputs=skip_outputs) | |
schema_formals: List[str] = [ | |
a.argument_str_pyi(method=self.method, deprecated=True) for a in args | |
] | |
positional_argc = len(self.input_args) | |
if len(schema_formals) > positional_argc: | |
schema_formals.insert(positional_argc, "*") | |
returns_str = returns_str_pyi(self) | |
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...' | |
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]: | |
# the codegen doesn't include vararg variants for deprecated signatures | |
return None | |
# This struct is used to hold the PythonSignature and its corresponding | |
# NativeFunction BEFORE grouping base and out-variant functions. | |
# Why not store NativeFunction in PythonSignature or construct PythonSignature | |
# from NativeFunction? Because they are not 1-1 mapped. | |
# One native function could have both deprecated and non-deprecated python | |
# signatures - NativeFunction doesn't contain information to construct the | |
# deprecated python signature. | |
# One python signature is used to handle both the base and the out-variant | |
# function - see 'PythonSignatureGroup'. | |
class PythonSignatureNativeFunctionPair: | |
signature: PythonSignature | |
function: NativeFunction | |
# We merge pairs of functions with signatures that are equivalent mod | |
# output arguments, and use a single entry in the python_arg_parser sig | |
# list for both (output arguments become optional). | |
class PythonSignatureGroup: | |
# The signature used for Python argument parsing. The outplace signature | |
# is preferred if exists, because it can be used to parse inputs for both | |
# the out-place variant and the base version (with output omitted). | |
signature: PythonSignature | |
# The regular ATen declaration (e.g. conv2d) | |
base: NativeFunction | |
# The out variant (e.g. conv2d_out) | |
outplace: Optional[NativeFunction] | |
def from_pairs( | |
cls, | |
functional: PythonSignatureNativeFunctionPair, | |
out: Optional[PythonSignatureNativeFunctionPair], | |
) -> "PythonSignatureGroup": | |
if out is None: | |
return PythonSignatureGroup( | |
signature=functional.signature, | |
base=functional.function, | |
outplace=None, | |
) | |
# prefer the signature with optional out=... arguments because it's the | |
# superset that can be used to parse input for both base and outplace. | |
signature_kwargs = out.signature.__dict__.copy() | |
# Out overloads in C++ don't have TensorOptions arguments, | |
# so take these from the functional variant | |
signature_kwargs[ | |
"tensor_options_args" | |
] = functional.signature.tensor_options_args | |
return PythonSignatureGroup( | |
signature=type(out.signature)(**signature_kwargs), | |
base=functional.function, | |
outplace=out.function, | |
) | |
# C++ function dispatch is wrapped in a lambda function. The lambda function | |
# has almost the same signature as the C++ function, only with some small | |
# variants - see details below. | |
# This data model is used to represent arguments of the lambda function | |
# signature. | |
class DispatchLambdaArgument: | |
name: str | |
type_str: str | |
is_out_arg: bool | |
# To pass PyObjects arguments to C++ function (via the lambda wrapper), | |
# we need first convert PyObjects into simple C++ objects. This work | |
# is done by PythonArgParser. | |
# This data model is used to represent the output of PythonArgParser. | |
# It has 1-1 mapping with PythonArgument in PythonSignature. | |
class PythonArgParserOutputExpr: | |
# argument name | |
name: str | |
# RHS expression to reference PythonArgParser output. | |
expr: str | |
# In some special cases we need create different expr, e.g.: | |
# '_r.isNone(1)' instead of '_r.tensor(1)'. | |
index: int | |
# The python argument it maps to. | |
argument: PythonArgument | |
def is_none_expr(self) -> str: | |
return f"_r.isNone({self.index})" | |
# To pass PythonArgParser output to the lambda wrapper, we need bind | |
# PythonArgParserOutputExpr to DispatchLambdaArgument. | |
# They are not always 1-1 mapped, e.g. scattered TensorOptions fields | |
# need be packed into a TensorOptions object, which is the argument | |
# that the lambda function wrapper takes. | |
class DispatchLambdaArgumentExprs: | |
# The exprs that provide the binding for lambda arguments, e.g.: | |
# | |
# 'self' -> '_r.tensor(0)' | |
# 'min' -> 'out[0]' / 'min_indices' -> 'out[1]' | |
# 'options' -> 'options' | |
# | |
# It has 1-1 mapping with DispatchLambdaArgument. | |
exprs: Sequence[str] | |
# Special local inits, which might introduce new variables that | |
# the 'exprs' above reference, e.g.: | |
# | |
# 'auto out = _r.tensorlist_n<2>(2);' | |
# | |
inits: Sequence[str] | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# Helper Functions | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature: | |
return CppSignatureGroup.from_native_function(f, method=method).signature | |
def has_tensor_options(f: NativeFunction) -> bool: | |
return f.func.arguments.tensor_options is not None | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# Python Signature | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# 'simple_type' was introduced by the old codegen, which is slightly | |
# different from the python schema type, e.g.: doesn't have '?' suffix | |
# for optional Tensor/TensorList; doesn't have '[size]' suffix for list type. | |
def argument_type_str( | |
t: Type, *, simple_type: bool = False, symint: bool = True | |
) -> str: | |
if isinstance(t, BaseType): | |
if t.name == BaseTy.Tensor: | |
return "Tensor" | |
elif t.name == BaseTy.int: | |
return "int64_t" | |
elif t.name == BaseTy.float: | |
return "double" | |
elif t.name == BaseTy.str: | |
return "c10::string_view" | |
elif t.name in [ | |
BaseTy.bool, | |
BaseTy.QScheme, | |
BaseTy.Scalar, | |
BaseTy.ScalarType, | |
BaseTy.Generator, | |
BaseTy.Storage, | |
BaseTy.Layout, | |
BaseTy.Device, | |
BaseTy.DeviceIndex, | |
BaseTy.MemoryFormat, | |
BaseTy.Dimname, | |
BaseTy.Stream, | |
BaseTy.ConstQuantizerPtr, | |
BaseTy.SymInt, | |
]: | |
# These python schema type names line up with their function schema names | |
return t.name.name | |
elif isinstance(t, OptionalType): | |
if str(t.elem) == "Tensor": | |
# Is it desired to keep '?' for simple_type with new style dispatcher? | |
return "Tensor?" | |
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint) | |
return f"{elem}?" | |
elif isinstance(t, ListType): | |
size = t.size if not simple_type else None | |
if str(t.elem) == "bool": | |
assert t.size is not None | |
return f"::std::array<bool,{t.size}>" | |
elif str(t.elem) == "int": | |
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef" | |
elif str(t.elem) == "SymInt": | |
if symint: | |
return ( | |
f"SymIntArrayRef[{size}]" if size is not None else "SymIntArrayRef" | |
) | |
else: | |
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef" | |
elif str(t.elem) == "Tensor": | |
return f"TensorList[{size}]" if size is not None else "TensorList" | |
elif str(t.elem) == "Scalar": | |
return f"ScalarList[{size}]" if size is not None else "ScalarList" | |
elif str(t.elem) == "Tensor?": | |
if simple_type: | |
return "c10::List<c10::optional<Tensor>>" | |
else: | |
return "const c10::List<c10::optional<Tensor>> &" | |
elif str(t.elem) == "Dimname": | |
return f"DimnameList[{size}]" if size is not None else "DimnameList" | |
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint) | |
return f"ArrayRef<{elem}>" | |
raise RuntimeError(f"unrecognized type {repr(t)}") | |
def argument_type_size(t: Type) -> Optional[int]: | |
l = t.is_list_like() | |
if l is not None and str(l.elem) != "bool": | |
return l.size | |
else: | |
return None | |
def argument(a: Argument) -> PythonArgument: | |
return PythonArgument( | |
name=a.name, | |
type=a.type, | |
# TODO: directly translate a.default to python default | |
default=str( | |
pythonify_default(cpp.default_expr(a.default, a.type, symint=False)) | |
) | |
if a.default is not None | |
else None, | |
default_init=None, | |
) | |
# Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen | |
def signature( | |
f: NativeFunction, *, method: bool = False, pyi: bool = False | |
) -> PythonSignature: | |
return signature_from_schema( | |
f.func, category_override=f.category_override, method=method, pyi=pyi | |
) | |
def signature_from_schema( | |
func: FunctionSchema, | |
*, | |
category_override: Optional[str], | |
method: bool = False, | |
pyi: bool = False, | |
) -> PythonSignature: | |
args: List[Argument] = [] | |
args.extend(func.arguments.pre_self_positional) | |
# Skip SelfArgument if this is method. | |
if not method and func.arguments.self_arg is not None: | |
args.append(func.arguments.self_arg.argument) | |
args.extend(func.arguments.post_self_positional) | |
args.extend(func.arguments.pre_tensor_options_kwarg_only) | |
# Skip TensorOptionsArguments. Python side TensorOptions | |
# arguments are created based on different rules - see below. | |
args.extend(func.arguments.post_tensor_options_kwarg_only) | |
args.extend(func.arguments.out) | |
input_arg_set = {a.name for a in func.arguments.flat_positional} | |
kwarg_only_set = {a.name for a in func.arguments.flat_kwarg_only} | |
out_arg_set = {a.name for a in func.arguments.out} | |
input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args))) | |
input_kwargs = tuple( | |
map(argument, filter(lambda a: a.name in kwarg_only_set, args)) | |
) | |
outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args))) | |
# Reintroduce the scattered fields of TensorOptions for Python. | |
# Compared to the cpp counterpart, the python arguments have new property | |
# (default_init) and a new argument 'requires_grad', which require some | |
# special handlings. | |
# [old codegen] TODO: because these aren't guaranteed to be 100% faithful | |
# to the original versions in the yaml, this recreation is a potential | |
# source of drift between eager and JIT. Pull this logic out to a shared place. | |
has_tensor_input_arg = any( | |
a.type.is_tensor_like() for a in func.arguments.flat_non_out | |
) | |
if any(a.name == "requires_grad" for a in func.schema_order_arguments()): | |
raise ValueError( | |
"argument named requires_grad is reserved, should not explicitly add it in the schema" | |
) | |
# [old codegen] this probably won't work if one of the returns is not a tensor, | |
# but it will produce a compile-time error that is obvious. | |
has_tensor_return = any(r.type.is_tensor_like() for r in func.returns) | |
name: str = cpp.name(func) | |
is_factory_function = category_override == "factory" or ( | |
has_tensor_return and not has_tensor_input_arg | |
) | |
is_like_or_new_function = ( | |
category_override in ("new", "like") | |
or name.startswith("new_") | |
or name.endswith("_like") | |
) | |
tensor_options_args: List[PythonArgument] = [] | |
if is_factory_function or is_like_or_new_function: | |
def topt_default_init(name: str) -> Optional[str]: | |
topt_args = func.arguments.tensor_options | |
if topt_args is None: | |
return None | |
a = getattr(topt_args, name) | |
if a.default is None or a.default == "None": | |
return None | |
return cpp.default_expr(a.default, a.type, symint=False) | |
tensor_options_args.append( | |
PythonArgument( | |
name="dtype", | |
type=OptionalType(BaseType(BaseTy.ScalarType)), | |
default="None", | |
default_init=( | |
None if is_like_or_new_function else topt_default_init("dtype") | |
), | |
) | |
) | |
tensor_options_args.append( | |
PythonArgument( | |
name="layout", | |
type=OptionalType(BaseType(BaseTy.Layout)), | |
default="None", | |
default_init=( | |
None if is_like_or_new_function else topt_default_init("layout") | |
), | |
) | |
) | |
tensor_options_args.append( | |
PythonArgument( | |
name="device", | |
type=OptionalType(BaseType(BaseTy.Device)), | |
default="None", | |
default_init=( | |
None | |
if is_like_or_new_function | |
else ( | |
topt_default_init("device") | |
or "torch::tensors::get_default_device()" | |
) | |
), | |
) | |
) | |
tensor_options_args.append( | |
PythonArgument( | |
name="pin_memory", | |
type=OptionalType(BaseType(BaseTy.bool)), | |
default="False", | |
default_init=None, | |
) | |
) | |
tensor_options_args.append( | |
PythonArgument( | |
name="requires_grad", | |
type=OptionalType(BaseType(BaseTy.bool)), | |
default="False", | |
default_init=None, | |
) | |
) | |
returns = PythonReturns(returns=func.returns) | |
return PythonSignature( | |
name=str(func.name.name), | |
input_args=input_args, | |
input_kwargs=input_kwargs, | |
output_args=PythonOutArgument.from_outputs(outputs), | |
tensor_options_args=tuple(tensor_options_args), | |
returns=returns, | |
method=method, | |
) | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# Python Interface | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
def namedtuple_fieldnames(returns: Tuple[Return, ...]) -> List[str]: | |
if len(returns) <= 1 or all(r.name is None for r in returns): | |
return [] | |
else: | |
if any(r.name is None for r in returns): | |
# When building on Windows, `PyStructSequence_UnnamedField` could not be | |
# resolved by the linker for some reason, which cause error in building: | |
# | |
# python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol | |
# PyStructSequence_UnnamedField | |
# | |
# Thus, at this point in time, we do not support unnamed | |
# fields in namedtuple; you must either name all fields, | |
# or none of them. | |
raise ValueError("Unnamed field is not supported by codegen") | |
return [str(r.name) for r in returns] | |
def argument_type_str_pyi(t: Type) -> str: | |
add_optional = False | |
if isinstance(t, OptionalType): | |
t = t.elem | |
add_optional = True | |
if isinstance(t, BaseType): | |
if t.name in [BaseTy.int, BaseTy.DeviceIndex]: | |
ret = "_int" | |
if t.name == BaseTy.SymInt: | |
ret = "Union[_int, SymInt]" | |
elif t.name == BaseTy.float: | |
ret = "_float" | |
elif t.name == BaseTy.str: | |
ret = "str" | |
elif t.name == BaseTy.Scalar: | |
ret = "Union[Number, _complex]" | |
elif t.name == BaseTy.ScalarType: | |
ret = "_dtype" | |
elif t.name == BaseTy.bool: | |
ret = "_bool" | |
elif t.name == BaseTy.QScheme: | |
ret = "_qscheme" | |
elif t.name == BaseTy.Layout: | |
ret = "_layout" | |
elif t.name == BaseTy.Device: | |
ret = "Optional[DeviceLikeType]" | |
elif t.name == BaseTy.MemoryFormat: | |
ret = "memory_format" | |
elif t.name == BaseTy.Dimname: | |
ret = "Union[str, ellipsis, None]" | |
elif t.name == BaseTy.Storage: | |
ret = "Union[Storage, UntypedStorage]" | |
elif t.name in [BaseTy.Tensor, BaseTy.Generator, BaseTy.Stream]: | |
# These python schema type names line up with their function schema names | |
ret = t.name.name | |
elif isinstance(t, ListType): | |
if str(t.elem) == "int": | |
ret = "Union[_int, _size]" if t.size is not None else "_size" | |
elif t.is_tensor_like(): | |
# TODO: this doesn't seem right... | |
# Tensor?[] currently translates to Optional[Union[Tuple[Tensor, ...], List[Tensor]]] | |
# It should probably translate to Union[Tuple[Optional[Tensor], ...], List[Optional[Tensor]]] | |
if isinstance(t.elem, OptionalType): | |
add_optional = True | |
ret = ( | |
"Union[Tensor, Tuple[Tensor, ...], List[Tensor]]" | |
if t.size is not None | |
else "Union[Tuple[Tensor, ...], List[Tensor]]" | |
) | |
elif str(t.elem) == "float": | |
ret = "Sequence[_float]" | |
elif str(t.elem) == "SymInt" and t.size is not None: | |
elem = argument_type_str_pyi(t.elem) | |
ret = f"Union[{elem}, Sequence[{elem}]]" | |
else: | |
elem = argument_type_str_pyi(t.elem) | |
ret = f"Sequence[{elem}]" | |
else: | |
raise RuntimeError(f"unrecognized type {repr(t)}") | |
if add_optional: | |
ret = "Optional[" + ret + "]" | |
return ret | |
def return_type_str_pyi(t: Type) -> str: | |
# Where arguments are open to accepting Union, return types should return | |
# concrete types | |
if isinstance(t, OptionalType): | |
inner = return_type_str_pyi(t.elem) | |
return f"Optional[{inner}]" | |
if isinstance(t, BaseType): | |
if t.name == BaseTy.Device: | |
return "_device" | |
elif t.name == BaseTy.Dimname: | |
ret = "Optional[str]" | |
else: | |
return argument_type_str_pyi(t) | |
if isinstance(t, ListType): | |
inner = return_type_str_pyi(t.elem) | |
return f"List[{inner}]" | |
return argument_type_str_pyi(t) | |
def returns_named_tuple_pyi(signature: PythonSignature) -> Optional[Tuple[str, str]]: | |
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns] | |
namedtuple_name = signature.name | |
field_names = namedtuple_fieldnames(signature.returns.returns) | |
if field_names: | |
namedtuple_def_lines = [f"class {namedtuple_name}(NamedTuple):"] | |
namedtuple_def_lines.extend( | |
f" {name}: {typ}" for name, typ in zip(field_names, python_returns) | |
) | |
namedtuple_def_lines.append("") # add an extra newline | |
namedtuple_def = "\n".join(namedtuple_def_lines) | |
# Example: | |
# namedtuple_def = ( | |
# "class max(NamedTuple):\n" | |
# " values: Tensor\n" | |
# " indices: Tensor\n" | |
# ) | |
return namedtuple_name, namedtuple_def | |
return None | |
def returns_str_pyi(signature: PythonSignature) -> str: | |
field_names = namedtuple_fieldnames(signature.returns.returns) | |
if field_names: | |
return f"torch.return_types.{signature.name}" | |
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns] | |
if len(python_returns) > 1: | |
return "Tuple[" + ", ".join(python_returns) + "]" | |
if len(python_returns) == 1: | |
return python_returns[0] | |
return "None" | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# C++ Function Dispatch | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# This section provides APIs to generate the code that does C++ function | |
# dispatch. The C++ function call is wrapped by a lambda function. | |
# For example: | |
# | |
# // aten::selu_(Tensor(a!) self) -> Tensor(a!) | |
# auto dispatch_selu_ = [](Tensor self) -> Tensor { | |
# pybind11::gil_scoped_release no_gil; | |
# return at::selu_(self); | |
# }; | |
# | |
# The lambda function's signature follows the C++ signature in common | |
# cases, e.g.: | |
# | |
# // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor | |
# [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor | |
# | |
# For out variant the 'out' argument's type is changed from 'Tensor &' | |
# to 'Tensor'. It's because when calling the lambda it passes in the | |
# PythonArgParser output '_r.tensor(3)', which is stack allocated object | |
# and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'. | |
# | |
# // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) | |
# [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor | |
# | |
# For multi-output case it can keep using reference type because the | |
# PythonArgParser output has been unpacked to local variables, e.g.: | |
# | |
# // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, | |
# // Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) | |
# [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor> | |
# | |
# For deprecated python signature, it should follow deprecated python arg order. | |
# TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary? | |
def dispatch_lambda_args( | |
ps: PythonSignature, f: NativeFunction, symint: bool = True | |
) -> Tuple[DispatchLambdaArgument, ...]: | |
if isinstance(ps, PythonSignatureDeprecated): | |
schema = ps.deprecated_schema | |
else: | |
schema = f.func | |
# Start with cpp arguments - dispatch lambda signature always include 'self' | |
cpp_args = cpp.arguments( | |
arguments=schema.arguments, | |
faithful=False, | |
symint=symint, | |
method=False, | |
cpp_no_default_args=f.cpp_no_default_args, | |
) | |
out_args: Set[str] = {a.name for a in schema.arguments.out} | |
# Convert from cpp argument to lambda argument | |
def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument: | |
type_str = cpp_arg.type | |
is_out_arg = cpp_arg.name in out_args | |
if ps.method and cpp_arg.name == "self": | |
# For method's 'self', we can use 'const Tensor &' and simply ignore mutability! | |
type_str = "const at::Tensor &" | |
else: | |
# For other cases we need prevent dangling refs to temps (unless it's | |
# unpacked scattered output) | |
# The reason is explained in the comments above and in 'dispatch_lambda_return_str()'. | |
# TODO: avoid this special handling? | |
ensure_temp_safe = len(out_args) <= 1 or not is_out_arg | |
if ensure_temp_safe: | |
type_str = { | |
"at::Tensor &": "at::Tensor", | |
}.get(type_str, type_str) | |
return DispatchLambdaArgument( | |
name=cpp_arg.name, | |
type_str=type_str, | |
is_out_arg=is_out_arg, | |
) | |
return tuple(map(dispatch_lambda_arg, cpp_args)) | |
# [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean | |
# it's enough to just extend the list here. Before you do this, make sure | |
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h. | |
SUPPORTED_RETURN_TYPES = { | |
"at::Tensor", | |
"::std::tuple<at::Tensor,at::Tensor>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,int64_t>", | |
"::std::tuple<at::Tensor,at::Tensor,double,int64_t>", | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t>", | |
"::std::tuple<at::Tensor,at::Tensor,double,at::Tensor,int64_t>", | |
"::std::tuple<double,int64_t>", | |
"::std::tuple<at::Tensor,::std::vector<at::Tensor>>", | |
"::std::vector<at::Tensor>", | |
# Needed for flash attention forw/backward | |
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor>", | |
"at::Scalar", | |
"bool", | |
"int64_t", | |
"void*", | |
"void", | |
"at::QScheme", | |
"double", | |
"at::IntArrayRef", | |
"at::ScalarType", | |
"at::Stream", | |
} | |
def dispatch_lambda_return_str(f: NativeFunction) -> str: | |
# [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &') | |
# because the dispatch lambdas take mutable arguments *by value*, not | |
# by reference. If you then return a reference to such an argument, you | |
# will now have a pointer to a dangling stack entry. Not good. | |
# | |
# You want: | |
# | |
# auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); }; | |
# ^^^^^^ | |
# | |
# *not* | |
# | |
# auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); }; | |
# ^^^^^^^ | |
# | |
# (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing | |
# codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a | |
# mutable reference to temporary. Maybe we could assign it to a | |
# variable itself.) | |
returns_without_annotation = tuple( | |
Return(r.name, r.type, None) for r in f.func.returns | |
) | |
return_str = cpp.returns_type(returns_without_annotation, symint=True).cpp_type() | |
if return_str not in SUPPORTED_RETURN_TYPES: | |
raise RuntimeError(f"{f.func.name} returns unsupported type {return_str}") | |
return return_str | |
def cpp_dispatch_target(f: NativeFunction) -> str: | |
symint = f.func.has_symint() | |
name = cpp.name(f.func, symint_overload=symint) | |
if Variant.method in f.variants: | |
return f"self.{name}" | |
if Variant.function in f.variants: | |
if has_tensor_options(f) or f.func.name.name.base.endswith("_like"): | |
namespace = "torch" | |
else: | |
namespace = "at" | |
return f"{namespace}::{name}" | |
raise RuntimeError(f"could not dispatch, neither function nor method: {f.func}") | |
def cpp_dispatch_exprs( | |
f: NativeFunction, | |
*, | |
python_signature: Optional[PythonSignature] = None, | |
) -> Tuple[str, ...]: | |
cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments() | |
exprs: Tuple[str, ...] = tuple() | |
if not isinstance(python_signature, PythonSignatureDeprecated): | |
# By default the exprs are consistent with the C++ signature. | |
exprs = tuple(a.name for a in cpp_args) | |
else: | |
# For deprecated python signature we may need fill in some constants. | |
exprs = tuple( | |
filter( | |
lambda n: n != "out" or f.func.is_out_fn(), | |
python_signature.deprecated_args_exprs, | |
) | |
) | |
if Variant.method in f.variants: | |
exprs = tuple(filter("self".__ne__, exprs)) | |
return exprs | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# | |
# Python / C++ Args Binding | |
# | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
# We explicitly enumerate the PythonArgParser unpacking methods for all | |
# supported types. This might be more verbose than necessary, partially | |
# because of the irregularity of unpacking method naming, partially | |
# because we want to mimic the old codegen behavior - to reject | |
# unexpected and/or unsupported cases which the old codegen rejects. | |
# For certain cases it is intentionally more restrictive than necessary, | |
# e.g.: it doesn't accepts doublelist with definite size. | |
def arg_parser_unpack_method( | |
t: Type, default: Optional[str], default_init: Optional[str], *, symint: bool = True | |
) -> str: | |
has_default_init = default_init is not None | |
if has_default_init and str(t) not in ( | |
"ScalarType?", | |
"ScalarType", | |
"Device", | |
"Device?", | |
"Layout", | |
"Layout?", | |
"bool", | |
"bool?", | |
): | |
raise RuntimeError(f"type '{t}' does not supported unpacking with default") | |
if isinstance(t, BaseType): | |
if t.name in [ | |
BaseTy.Tensor, | |
BaseTy.Stream, | |
BaseTy.Storage, | |
BaseTy.Scalar, | |
BaseTy.Dimname, | |
]: | |
# These unpack methods line up with their schema names | |
return t.name.name.lower() | |
elif t.name == BaseTy.ScalarType: | |
return "scalartypeWithDefault" if has_default_init else "scalartype" | |
elif t.name == BaseTy.Device: | |
return "deviceWithDefault" if has_default_init else "device" | |
elif t.name == BaseTy.DeviceIndex: | |
return "toInt64" | |
elif t.name == BaseTy.int: | |
return "toInt64" | |
elif t.name == BaseTy.SymInt: | |
return "toSymInt" if symint else "toInt64" | |
elif t.name == BaseTy.bool: | |
return "toBoolWithDefault" if has_default_init else "toBool" | |
elif t.name == BaseTy.float: | |
return "toDouble" | |
elif t.name == BaseTy.str: | |
return "stringView" | |
elif t.name == BaseTy.Layout: | |
return "layoutWithDefault" if has_default_init else "layout" | |
elif t.name == BaseTy.MemoryFormat: | |
return "memoryformat" | |
elif isinstance(t, OptionalType): | |
if str(t.elem) == "Tensor": | |
return "optionalTensor" | |
elif str(t.elem) == "Generator": | |
return "generator" | |
elif str(t.elem) == "Dimname[]": | |
return "toDimnameListOptional" | |
elif not has_default_init and default in (None, "None", "c10::nullopt"): | |
# If default is None: append 'Optional' to elem's unpacking method | |
return ( | |
arg_parser_unpack_method(t.elem, None, None, symint=symint) + "Optional" | |
) | |
else: | |
# Otherwise, load as underlying type with default | |
return arg_parser_unpack_method( | |
t.elem, default, default_init, symint=symint | |
) | |
elif isinstance(t, ListType): | |
if str(t.elem) == "Tensor": | |
# accept and use definite size | |
return f"tensorlist_n<{t.size}>" if t.size is not None else "tensorlist" | |
elif str(t.elem) == "Tensor?": | |
return "list_of_optional_tensors" | |
elif str(t.elem) == "Dimname": | |
# accept definite size | |
return "dimnamelist" | |
elif str(t.elem) == "int": | |
# accept definite size | |
return "intlist" | |
elif str(t.elem) == "float": | |
return "doublelist" | |
elif str(t.elem) == "SymInt": | |
# accept definite size | |
return "symintlist" if symint else "intlist" | |
elif str(t.elem) == "Scalar": | |
return "scalarlist" | |
raise RuntimeError(f"type '{t}' is not supported by PythonArgParser") | |
# Return RHS expression for python argument using PythonArgParser output. | |
# e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)' | |
def arg_parser_output_expr( | |
arg_index: int, a: PythonArgument, *, symint: bool = True | |
) -> PythonArgParserOutputExpr: | |
has_default = a.default_init is not None | |
unpack_method = arg_parser_unpack_method( | |
t=a.type, default=a.default, default_init=a.default_init, symint=symint | |
) | |
default = f", {a.default_init}" if has_default else "" | |
expr = f"_r.{unpack_method}({arg_index}{default})" | |
return PythonArgParserOutputExpr( | |
name=a.name, | |
expr=expr, | |
index=arg_index, | |
argument=a, | |
) | |
# Returns a map with key = arg_name and value = PythonArgParserOutputExpr. | |
def arg_parser_output_exprs( | |
ps: PythonSignature, f: NativeFunction, *, symint: bool = True | |
) -> Dict[str, PythonArgParserOutputExpr]: | |
return { | |
e.name: e | |
for i, a in enumerate(ps.arguments()) | |
for e in (arg_parser_output_expr(i, a, symint=symint),) | |
} | |
# argument name to type for scattered tensor options fields | |
TENSOR_OPTIONS_FIELDS = { | |
"dtype": "ScalarType?", | |
"device": "Device?", | |
"layout": "Layout?", | |
"pin_memory": "bool?", | |
"requires_grad": "bool?", | |
} | |
# bind arg parser outputs (python args) with dispatch lambda arguments (c++ args). | |
def dispatch_lambda_exprs( | |
ps: PythonSignature, f: NativeFunction, *, symint: bool = True | |
) -> DispatchLambdaArgumentExprs: | |
# This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing | |
# 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser | |
# outputs. | |
arg_parser_outputs = arg_parser_output_exprs(ps, f, symint=symint) | |
lambda_args = dispatch_lambda_args(ps, f, symint=symint) | |
inits: List[str] = [] | |
lambda_args_exprs: Dict[str, str] = {} | |
has_toptions = has_tensor_options(f) | |
# 1. special inits/unpacking to provide binding exprs for lambda arguments. | |
for a in ps.arguments(skip_tensor_options=True): | |
name = a.name | |
arg_parser_expr = arg_parser_outputs[a.name].expr | |
if has_toptions and name == "self": | |
# TODO: why this needs to be special case? | |
inits.extend( | |
[ | |
f"auto self = {arg_parser_expr};", | |
] | |
) | |
lambda_args_exprs[name] = name | |
elif ( | |
isinstance(a, PythonOutArgument) | |
and len(a.outputs) > 1 | |
and f.func.is_out_fn() | |
): | |
inits.extend( | |
[ | |
f"auto out = {arg_parser_expr};", | |
] | |
) | |
for i, out_arg in enumerate(a.outputs): | |
lambda_args_exprs[out_arg.name] = f"out[{i}]" | |
elif str(a.type) == "Dimname[]?": | |
# [old codegen] | |
# TODO: make this part of something more general, or get rid of it. | |
# optional<ArrayRef<T>> are special. The PythonArgParser returns an | |
# optional<vector<T>>, which cannot be implicitly converted to | |
# optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap. | |
inits.extend( | |
[ | |
f"auto __{name} = {arg_parser_expr};", | |
f"c10::optional<DimnameList> {name} = __{name} ? c10::make_optional(DimnameList(__{name}.value())) : c10::nullopt;", # noqa: B950 | |
] | |
) | |
lambda_args_exprs[name] = name | |
else: | |
# default case - directly using PythonArgParser output expr | |
lambda_args_exprs[name] = arg_parser_expr | |
# method's self is passed directly to python binding, rather than parsed | |
if ps.method: | |
lambda_args_exprs["self"] = "self" | |
# 2. special packing/checking for TensorOptions. | |
tensor_options_args_names = [a.name for a in ps.tensor_options_args] | |
if has_toptions: | |
if f.func.is_out_fn(): | |
raise RuntimeError(f"{f.func}: tensor options with output arg") | |
for a in ps.tensor_options_args: | |
if a.name not in TENSOR_OPTIONS_FIELDS: | |
raise RuntimeError( | |
f"{f.func}: unrecognized tensor options field '{a.name}' in python binding arguments" | |
) | |
if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name): | |
raise RuntimeError( | |
f"{f.func}: unrecognized type '{str(a.type)}' for tensor options field '{a.name}'" | |
) | |
if not all( | |
a in tensor_options_args_names for a in TENSOR_OPTIONS_FIELDS.keys() | |
): | |
raise RuntimeError( | |
f"{f.func}: incomplete tensor options args: {tensor_options_args_names}" | |
) | |
inits.append( | |
f"""\ | |
const auto options = TensorOptions() | |
.dtype({arg_parser_outputs['dtype'].expr}) | |
.device({arg_parser_outputs['device'].expr}) | |
.layout({arg_parser_outputs['layout'].expr}) | |
.requires_grad({arg_parser_outputs['requires_grad'].expr}) | |
.pinned_memory({arg_parser_outputs['pin_memory'].expr}); | |
torch::utils::maybe_initialize_cuda(options); | |
""" | |
) | |
lambda_args_exprs["options"] = "options" | |
# 3. special case - access scattered TensorOptions fields without packing | |
# TODO: maybe move to the generator side as it's not related to binding. | |
if not has_toptions and tensor_options_args_names: | |
if "dtype" in tensor_options_args_names: | |
# we're an output-arg variant, check these args against output tensor | |
if not f.func.is_out_fn(): | |
raise RuntimeError( | |
f"{f.func}: dtype in tensor_options_args without output arg" | |
) | |
if not all(a in tensor_options_args_names for a in ("layout", "device")): | |
raise RuntimeError( | |
f"{f.func}: incomplete tensor options for output check" | |
) | |
inits.append( | |
f"""\ | |
check_out_type_matches({arg_parser_outputs['out'].expr}, {arg_parser_outputs['dtype'].expr}, | |
{arg_parser_outputs['dtype'].is_none_expr}, {arg_parser_outputs['layout'].expr}, | |
{arg_parser_outputs['device'].expr}, {arg_parser_outputs['device'].is_none_expr}); | |
""" | |
) | |
# we'll set requires_grad on outgoing tensor | |
if "requires_grad" not in tensor_options_args_names: | |
raise RuntimeError( | |
f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]' | |
) | |
return DispatchLambdaArgumentExprs( | |
exprs=tuple(lambda_args_exprs[a.name] for a in lambda_args), | |
inits=inits, | |
) | |