applied-ai-018's picture
Add files using upload-large-folder tool
c9cfa33 verified
# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from numbers import Number
from typing import Any, Callable, Dict, List, Optional, Union
# Lint as: python3
from datasets import Dataset, load_dataset
from evaluate.evaluator.utils import choose_split
try:
from scipy.stats import bootstrap
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
try:
import transformers
from transformers import Pipeline, pipeline
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
from time import perf_counter
from typing_extensions import Literal
from ..loading import load
from ..module import EvaluationModule
from ..utils.logging import get_logger
from .utils import DatasetColumn
logger = get_logger(__name__)
EVALUTOR_COMPUTE_START_DOCSTRING = r"""
Compute the metric for a given pipeline and dataset combination.
Args:
model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`):
If the argument in not specified, we initialize the default pipeline for the task (in this case
`text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or
is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the
argument specifies a pre-initialized pipeline.
data (`str` or `Dataset`, defaults to `None`):
Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset
name, and load it. Otherwise we assume it represents a pre-loaded dataset.
subset (`str`, defaults to `None`):
Defines which dataset subset to load. If `None` is passed the default subset is loaded.
split (`str`, defaults to `None`):
Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function.
metric (`str` or `EvaluationModule`, defaults to `None`):
Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and
load it. Otherwise we assume it represents a pre-loaded metric.
tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`):
Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for
which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore
this argument.
strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"):
specifies the evaluation strategy. Possible values are:
- `"simple"` - we evaluate the metric and return the scores.
- `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each
of the returned metric keys, using `scipy`'s `bootstrap` method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html.
confidence_level (`float`, defaults to `0.95`):
The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen.
n_resamples (`int`, defaults to `9999`):
The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen.
device (`int`, defaults to `None`):
Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive
integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and
CUDA:0 used if available, CPU otherwise.
random_state (`int`, *optional*, defaults to `None`):
The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for
debugging.
"""
EVALUATOR_COMPUTE_RETURN_DOCSTRING = r"""
Return:
A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the
`"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict`
containing the score, the confidence interval and the standard error calculated for each metric key.
"""
class Evaluator(ABC):
"""
The [`Evaluator`] class is the class from which all evaluators inherit. Refer to this class for methods shared across
different evaluators.
Base class implementing evaluator operations.
"""
PIPELINE_KWARGS = {}
METRIC_KWARGS = {}
def __init__(self, task: str, default_metric_name: str = None):
if not TRANSFORMERS_AVAILABLE:
raise ImportError(
"If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[evaluator]`."
)
if not SCIPY_AVAILABLE:
raise ImportError(
"If you want to use the `Evaluator` you need `scipy>=1.7.1`. Run `pip install evaluate[evaluator]`."
)
self.task = task
self.default_metric_name = default_metric_name
@staticmethod
def _compute_confidence_interval(
metric,
metric_inputs,
metric_keys: List[str],
confidence_level: float = 0.95,
n_resamples: int = 9999,
random_state: Optional[int] = None,
) -> Dict[str, Any]:
"""
A utility function enabling the confidence interval calculation for metrics computed
by the evaluator based on `scipy`'s `bootstrap` method.
"""
# bootstrap only works with functions that use args and no kwargs
def build_args_metric(metric, key, **kwargs):
def args_metric(*args):
return metric.compute(**{k: v for k, v in zip(kwargs.keys(), args)})[key]
return args_metric
bootstrap_dict = {}
for key in metric_keys:
bs = bootstrap(
data=list(metric_inputs.values()),
statistic=build_args_metric(metric, key, **metric_inputs),
paired=True,
vectorized=False,
confidence_level=confidence_level,
n_resamples=n_resamples,
random_state=random_state,
)
bootstrap_dict[key] = {
"confidence_interval": (bs.confidence_interval.low, bs.confidence_interval.high),
"standard_error": bs.standard_error,
}
return bootstrap_dict
@staticmethod
def _compute_time_perf(start_time: float, end_time: float, num_samples: int) -> Dict[str, Any]:
"""
A utility function computing time performance metrics:
- `total_time_in_seconds` - pipeline inference runtime for the evaluation data in seconds,
- `samples_per_second` - pipeline throughput in the number of samples per second.
- `latency_in_seconds` - pipeline inference runtime for the evaluation data in seconds per sample,
"""
latency = end_time - start_time
throughput = num_samples / latency
latency_sample = 1.0 / throughput
return {
"total_time_in_seconds": latency,
"samples_per_second": throughput,
"latency_in_seconds": latency_sample,
}
@staticmethod
def _infer_device() -> int:
"""Helper function to check if GPU or CPU is available for inference."""
# try infer with torch first
try:
import torch
if torch.cuda.is_available():
device = 0 # first GPU
else:
device = -1 # CPU
except ImportError:
# if not available try TF
try:
import tensorflow as tf
if len(tf.config.list_physical_devices("GPU")) > 0:
device = 0 # first GPU
else:
device = -1 # CPU
except ImportError:
device = -1
if device == -1:
logger.info("No GPU found. The default device for pipeline inference is set to CPU.")
else:
logger.info("GPU found. The default device for pipeline inference is set to GPU (CUDA:0).")
return device
@abstractmethod
def predictions_processor(self, *args, **kwargs):
"""
A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric.
"""
raise NotImplementedError()
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: int = None,
random_state: Optional[int] = None,
input_column: str = "text",
label_column: str = "label",
label_mapping: Optional[Dict[str, Number]] = None,
) -> Dict[str, float]:
result = {}
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
# Prepare inputs
data = self.load_data(data=data, subset=subset, split=split)
metric_inputs, pipe_inputs = self.prepare_data(data=data, input_column=input_column, label_column=label_column)
pipe = self.prepare_pipeline(
model_or_pipeline=model_or_pipeline,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
)
metric = self.prepare_metric(metric)
# Compute predictions
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
predictions = self.predictions_processor(predictions, label_mapping)
metric_inputs.update(predictions)
# Compute metrics from references and predictions
metric_results = self.compute_metric(
metric=metric,
metric_inputs=metric_inputs,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
random_state=random_state,
)
# TODO: To clarify why `wer` and `cer` return float
# even though metric.compute contract says that it
# returns Optional[dict].
if type(metric_results) == float:
metric_results = {metric.name: metric_results}
result.update(metric_results)
result.update(perf_results)
return result
@staticmethod
def check_for_mismatch_in_device_setup(device, model_or_pipeline):
if device is not None and device != -1 and isinstance(model_or_pipeline, Pipeline):
if model_or_pipeline.device.type == "cpu":
raise ValueError(
"The value of the `device` kwarg passed to `compute` suggests that this pipe should be run on an "
"accelerator, but the pipe was instantiated on CPU. Pass `device` to the pipeline during "
"initialization to use an accelerator, or pass `device=None` to `compute`. "
)
elif device != model_or_pipeline.device.index:
raise ValueError(
f"This pipeline was instantiated on device {model_or_pipeline.device.index} but device={device} was passed to `compute`."
)
def check_required_columns(self, data: Union[str, Dataset], columns_names: Dict[str, str]):
"""
Ensure the columns required for the evaluation are present in the dataset.
Args:
data (`str` or [`Dataset`]):
Specifies the dataset we will run evaluation on.
columns_names (`List[str]`):
List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method,
while the values are the column names to check.
Example:
```py
>>> from datasets import load_dataset
>>> from evaluate import evaluator
>>> data = load_dataset("rotten_tomatoes', split="train")
>>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"})
```
"""
for input_name, column_name in columns_names.items():
if column_name not in data.column_names:
raise ValueError(
f"Invalid `{input_name}` {column_name} specified. The dataset contains the following columns: {data.column_names}."
)
@staticmethod
def get_dataset_split(data, subset=None, split=None):
"""
Infers which split to use if `None` is given.
Args:
data (`str`):
Name of dataset.
subset (`str`):
Name of config for datasets with multiple configurations (e.g. 'glue/cola').
split (`str`, defaults to `None`):
Split to use.
Returns:
`split`: `str` containing which split to use
Example:
```py
>>> from evaluate import evaluator
>>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes")
WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST
'test'
```
"""
if split is None:
split = choose_split(data, subset)
logger.warning(f"Dataset split not defined! Automatically evaluating with split: {split.upper()}")
return split
def load_data(self, data: Union[str, Dataset], subset: str = None, split: str = None):
"""
Load dataset with given subset and split.
Args:
data ([`Dataset`] or `str`, defaults to `None`):
Specifies the dataset we will run evaluation on. If it is of
type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset.
subset (`str`, defaults to `None`):
Specifies dataset subset to be passed to `name` in `load_dataset`. To be
used with datasets with several configurations (e.g. glue/sst2).
split (`str`, defaults to `None`):
User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`).
If not defined and data is a `str` type, will automatically select the best one via `choose_split()`.
Returns:
data ([`Dataset`]): Loaded dataset which will be used for evaluation.
Example:
```py
>>> from evaluate import evaluator
>>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train")
Dataset({
features: ['text', 'label'],
num_rows: 8530
})
```
"""
if isinstance(data, str):
split = self.get_dataset_split(data, subset, split)
data = load_dataset(data, name=subset, split=split)
return data
elif isinstance(data, Dataset):
if split is not None or subset is not None:
logger.warning("`data` is a preloaded Dataset! Ignoring `subset` and `split`.")
return data
else:
raise ValueError(
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
)
def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs):
"""
Prepare data.
Args:
data ([`Dataset`]):
Specifies the dataset we will run evaluation on.
input_column (`str`, defaults to `"text"`):
The name of the column containing the text feature in the dataset specified by `data`.
second_input_column(`str`, *optional*):
The name of the column containing the second text feature if there is one. Otherwise, set to `None`.
label_column (`str`, defaults to `"label"`):
The name of the column containing the labels in the dataset specified by `data`.
Returns:
`dict`: metric inputs.
`list`: pipeline inputs.
Example:
```py
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train")
>>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label")
```
"""
self.check_required_columns(data, {"input_column": input_column, "label_column": label_column})
return {"references": data[label_column]}, DatasetColumn(data, input_column)
def prepare_pipeline(
self,
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
device: int = None,
):
"""
Prepare pipeline.
Args:
model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`):
If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or
is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the
argument specifies a pre-initialized pipeline.
preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`):
Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for
which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore
this argument.
Returns:
The initialized pipeline.
Example:
```py
>>> from evaluate import evaluator
>>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased")
```
"""
if device is None:
device = self._infer_device()
if (
isinstance(model_or_pipeline, str)
or isinstance(model_or_pipeline, transformers.PreTrainedModel)
or isinstance(model_or_pipeline, transformers.TFPreTrainedModel)
):
pipe = pipeline(
self.task,
model=model_or_pipeline,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
device=device,
)
else:
if model_or_pipeline is None:
pipe = pipeline(self.task, device=device)
else:
pipe = model_or_pipeline
if tokenizer is not None and feature_extractor is not None:
logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).")
if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")):
raise ValueError(
f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task."
)
return pipe
def prepare_metric(self, metric: Union[str, EvaluationModule]):
"""
Prepare metric.
Args:
metric (`str` or [`EvaluationModule`], defaults to `None`):
Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and
load it. Otherwise we assume it represents a pre-loaded metric.
Returns:
The loaded metric.
Example:
```py
>>> from evaluate import evaluator
>>> evaluator("text-classification").prepare_metric("accuracy")
```
"""
# Prepare metric.
if metric is None:
if self.default_metric_name is None:
raise ValueError(
"`Evaluator` doesn't specify a default metric. Please specify a valid `metric` argument."
)
metric = load(self.default_metric_name)
elif isinstance(metric, str):
metric = load(metric)
return metric
def call_pipeline(self, pipe, *args, **kwargs):
start_time = perf_counter()
pipe_output = pipe(*args, **kwargs, **self.PIPELINE_KWARGS)
end_time = perf_counter()
return pipe_output, self._compute_time_perf(start_time, end_time, len(pipe_output))
def compute_metric(
self,
metric: EvaluationModule,
metric_inputs: Dict,
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
random_state: Optional[int] = None,
):
"""Compute and return metrics."""
result = metric.compute(**metric_inputs, **self.METRIC_KWARGS)
if strategy == "bootstrap":
metric_keys = result.keys()
bootstrap_dict = self._compute_confidence_interval(
metric,
metric_inputs,
metric_keys,
confidence_level,
n_resamples,
random_state,
)
for key in metric_keys:
bootstrap_dict[key]["score"] = result[key]
return bootstrap_dict
return result