peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/build
/lib
/lm_eval
/models
/optimum_lm.py
from importlib.util import find_spec | |
from pathlib import Path | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.huggingface import HFLM | |
class OptimumLM(HFLM): | |
""" | |
Optimum Intel provides a simple interface to optimize Transformer models and convert them to \ | |
OpenVINO™ Intermediate Representation (IR) format to accelerate end-to-end pipelines on \ | |
Intel® architectures using OpenVINO™ runtime. | |
""" | |
def __init__( | |
self, | |
device="cpu", | |
**kwargs, | |
) -> None: | |
if "backend" in kwargs: | |
# optimum currently only supports causal models | |
assert ( | |
kwargs["backend"] == "causal" | |
), "Currently, only OVModelForCausalLM is supported." | |
self.openvino_device = device | |
super().__init__( | |
device=self.openvino_device, | |
backend=kwargs.pop("backend", "causal"), | |
**kwargs, | |
) | |
def _create_model( | |
self, | |
pretrained: str, | |
revision="main", | |
dtype="auto", | |
trust_remote_code=False, | |
**kwargs, | |
) -> None: | |
if not find_spec("optimum"): | |
raise Exception( | |
"package `optimum` is not installed. Please install it via `pip install optimum[openvino]`" | |
) | |
else: | |
from optimum.intel.openvino import OVModelForCausalLM | |
model_kwargs = kwargs if kwargs else {} | |
model_file = Path(pretrained) / "openvino_model.xml" | |
if model_file.exists(): | |
export = False | |
else: | |
export = True | |
kwargs["ov_config"] = { | |
"PERFORMANCE_HINT": "LATENCY", | |
"NUM_STREAMS": "1", | |
"CACHE_DIR": "", | |
} | |
self._model = OVModelForCausalLM.from_pretrained( | |
pretrained, | |
revision=revision, | |
trust_remote_code=trust_remote_code, | |
export=export, | |
device=self.openvino_device.upper(), | |
**model_kwargs, | |
) | |