|
import ast |
|
import os |
|
from typing import Dict |
|
|
|
from lm_eval import utils |
|
from lm_eval.utils import eval_logger |
|
|
|
|
|
|
|
|
|
|
|
|
|
PROMPT_REGISTRY: Dict[str, Dict[str, str]] = { |
|
"qa-basic": { |
|
"question-newline-answer": "Question: {{question}}\nAnswer:", |
|
"q-newline-a": "Q: {{question}}\nA:", |
|
}, |
|
} |
|
|
|
|
|
def get_prompt(prompt_id: str, dataset_name: str = None, subset_name: str = None): |
|
|
|
category_name, prompt_name = prompt_id.split(":") |
|
if subset_name is None: |
|
dataset_full_name = dataset_name |
|
else: |
|
dataset_full_name = f"{dataset_name}-{subset_name}" |
|
eval_logger.info(f"Loading prompt from {category_name} for {dataset_full_name}") |
|
if category_name == "promptsource": |
|
try: |
|
from promptsource.templates import DatasetTemplates |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Tried to load a Promptsource template, but promptsource is not installed ", |
|
"please install promptsource via pip install lm-eval[promptsource] or pip install -e .[promptsource]", |
|
) |
|
try: |
|
if subset_name is None: |
|
prompts = DatasetTemplates(dataset_name=dataset_name) |
|
else: |
|
prompts = DatasetTemplates( |
|
dataset_name=dataset_name, subset_name=subset_name |
|
) |
|
except Exception: |
|
raise ValueError(f"{dataset_name} and {subset_name} not found") |
|
if prompt_name in prompts.all_template_names: |
|
return prompts[prompt_name] |
|
else: |
|
raise ValueError( |
|
f"{prompt_name} not in prompt list {prompts.all_template_names}" |
|
) |
|
elif ".yaml" in category_name: |
|
import yaml |
|
|
|
with open(category_name, "rb") as file: |
|
prompt_yaml_file = yaml.full_load(file) |
|
|
|
prompt_string = prompt_yaml_file["prompts"][prompt_name] |
|
return PromptString(prompt_string) |
|
else: |
|
try: |
|
return PROMPT_REGISTRY[category_name][prompt_name] |
|
except Exception: |
|
raise ValueError( |
|
f"expected only a single `:` as separator between \ |
|
prompt category and name, but got `{prompt_id}` instead" |
|
) |
|
|
|
|
|
def load_prompt_list( |
|
use_prompt: str, dataset_name=None, subset_name=None, yaml_path=None, **kwargs |
|
): |
|
category_name, prompt_name = use_prompt.split(":") |
|
|
|
if category_name == "promptsource": |
|
from promptsource.templates import DatasetTemplates |
|
|
|
if subset_name is None: |
|
prompts = DatasetTemplates(dataset_name=dataset_name) |
|
else: |
|
prompts = DatasetTemplates( |
|
dataset_name=dataset_name, subset_name=subset_name |
|
) |
|
|
|
prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names) |
|
|
|
elif ".yaml" in category_name: |
|
import yaml |
|
|
|
if yaml_path is not None: |
|
category_name = os.path.realpath(os.path.join(yaml_path, category_name)) |
|
|
|
with open(category_name, "rb") as file: |
|
prompt_yaml_file = yaml.full_load(file) |
|
|
|
prompt_list = utils.pattern_match( |
|
prompt_name, prompt_yaml_file["prompts"].keys() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return [":".join([category_name, prompt]) for prompt in prompt_list] |
|
|
|
|
|
class PromptString: |
|
def __init__(self, prompt_string): |
|
self.prompt_string = prompt_string |
|
|
|
def apply(self, doc): |
|
doc_to_text = self.prompt_string["doc_to_text"] |
|
doc_to_target = self.prompt_string["doc_to_target"] |
|
|
|
|
|
if "doc_to_choice" in self.prompt_string: |
|
raise Exception("Not yet implemented to accept doc_to_choice") |
|
|
|
text_string = utils.apply_template(doc_to_text, doc) |
|
target_string = utils.apply_template(doc_to_target, doc) |
|
|
|
return [text_string, target_string] |
|
|