# import lm_eval.base as base | |
from typing import List | |
import pytest | |
# import lm_eval.models as models | |
import lm_eval.api as api | |
import lm_eval.evaluator as evaluator | |
from lm_eval import tasks | |
# TODO: more fine grained unit tests rather than this big honking integration | |
# test once we break evaluator into smaller, more manageable pieces | |
def test_evaluator(task_name: List[str], limit: int, model: str, model_args: str): | |
task_name = task_name | |
limit = 10 | |
e1 = evaluator.simple_evaluate( | |
model=model, | |
tasks=task_name, | |
limit=limit, | |
model_args=model_args, | |
) | |
assert e1 is not None | |
lm = api.registry.get_model(model).create_from_arg_string( | |
model_args, | |
{ | |
"batch_size": None, | |
"max_batch_size": None, | |
"device": None, | |
}, | |
) | |
task_manager = tasks.TaskManager() | |
task_dict = tasks.get_task_dict(task_name, task_manager) | |
e2 = evaluator.evaluate( | |
lm=lm, | |
task_dict=task_dict, | |
limit=limit, | |
) | |
assert e2 is not None | |
# check that caching is working | |
def r(x): | |
return x["results"]["arc_easy"] | |
assert all( | |
x == y | |
for x, y in zip([y for _, y in r(e1).items()], [y for _, y in r(e2).items()]) | |
) | |