Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_logging/__init__.py +15 -0
- env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_logging/_internal.py +826 -0
- env-llmeval/lib/python3.10/site-packages/torch/_logging/_registrations.py +110 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/_numeric_suite.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/_numeric_suite_fx.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/n_shadows_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/ns_types.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/qconfig_multi_mapping.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__init__.py +48 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_memory_profiler.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_pattern_matcher.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/itt.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/profiler.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/python_tracer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/_memory_profiler.py +1201 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/_pattern_matcher.py +662 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/_utils.py +373 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/itt.py +78 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/profiler.py +754 -0
- env-llmeval/lib/python3.10/site-packages/torch/profiler/python_tracer.py +20 -0
- env-llmeval/lib/python3.10/site-packages/torch/special/__init__.py +1283 -0
- env-llmeval/lib/python3.10/site-packages/torch/special/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/__init__.py +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_comparison.py +1572 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_creation.py +253 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/autocast_test_lists.py +367 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/autograd_function_db.py +630 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/check_kernel_launches.py +163 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_cuda.py +247 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py +1513 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_dist_composable.py +109 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py +1255 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_dtype.py +131 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py +1219 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_jit.py +321 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_methods_invocations.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_pruning.py +384 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_quantized.py +225 -0
- env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_subclass.py +219 -0
env-llmeval/lib/python3.10/site-packages/torch/_logging/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Top level logging module for torch logging
|
2 |
+
# Design doc: https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#
|
3 |
+
# Simple setup for onboarding (see above doc for more detail):
|
4 |
+
# 1. register any top-level log qualified name for your module in torch._logging._registrations (see there for examples)
|
5 |
+
# 2. register any artifacts (<artifact_name> below) in torch._logging._registrations
|
6 |
+
# a. call getArtifactLogger(__name__, <artifact_name>) at your logging site instead of the standard logger to log your artifact
|
7 |
+
import torch._logging._registrations
|
8 |
+
from ._internal import (
|
9 |
+
_init_logs,
|
10 |
+
DEFAULT_LOGGING,
|
11 |
+
getArtifactLogger,
|
12 |
+
LazyString,
|
13 |
+
set_logs,
|
14 |
+
warning_once,
|
15 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (393 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc
ADDED
Binary file (24.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc
ADDED
Binary file (3.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_logging/_internal.py
ADDED
@@ -0,0 +1,826 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import itertools
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from importlib import __import__
|
8 |
+
from typing import Dict, List, Optional, Set, Union
|
9 |
+
from weakref import WeakSet
|
10 |
+
|
11 |
+
log = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
DEFAULT_LOG_LEVEL = logging.WARNING
|
14 |
+
LOG_ENV_VAR = "TORCH_LOGS"
|
15 |
+
LOG_FORMAT_ENV_VAR = "TORCH_LOGS_FORMAT"
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class LogRegistry:
|
20 |
+
# shorthand name to log qualified name
|
21 |
+
# Note: this only contains loggers registered
|
22 |
+
# from register_log
|
23 |
+
# e.g. "dynamo" -> "torch._dynamo"
|
24 |
+
log_alias_to_log_qnames: Dict[str, List[str]] = field(default_factory=dict)
|
25 |
+
|
26 |
+
# artifact logger qualified names,
|
27 |
+
# this is populated lazily, as calls to getArtifactLogger
|
28 |
+
# currently formatted as <module>.__<artifact_name>
|
29 |
+
# e.g. "torch._dynamo.convert_frame.__guards"
|
30 |
+
artifact_log_qnames: Set[str] = field(default_factory=set)
|
31 |
+
|
32 |
+
# child logs of registered logs if specified via open
|
33 |
+
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
|
34 |
+
# these need to be tracked so their levels can be reset properly
|
35 |
+
# e.g. "torch._dynamo.output_graph"
|
36 |
+
child_log_qnames: Set[str] = field(default_factory=set)
|
37 |
+
|
38 |
+
# artifact names, populated by register_artifact
|
39 |
+
# e.g. "guards"
|
40 |
+
artifact_names: Set[str] = field(default_factory=set)
|
41 |
+
|
42 |
+
# Artifacts that should be visible by default in the error message
|
43 |
+
visible_artifacts: Set[str] = field(default_factory=set)
|
44 |
+
|
45 |
+
# A short description of each artifact
|
46 |
+
artifact_descriptions: Dict[str, str] = field(default_factory=dict)
|
47 |
+
|
48 |
+
# artifacts which are not displayed unless explicitly named in the
|
49 |
+
# settings. Ex. output_code is NOT displayed even if the inductor
|
50 |
+
# log level is set to DEBUG. It must be explicitly named in the settings
|
51 |
+
off_by_default_artifact_names: Set[str] = field(default_factory=set)
|
52 |
+
|
53 |
+
# logging format string for artifacts
|
54 |
+
artifact_log_formatters: Dict[str, logging.Formatter] = field(default_factory=dict)
|
55 |
+
|
56 |
+
def is_artifact(self, name):
|
57 |
+
return name in self.artifact_names
|
58 |
+
|
59 |
+
def is_log(self, alias):
|
60 |
+
return alias in self.log_alias_to_log_qnames
|
61 |
+
|
62 |
+
# register a log with an alias
|
63 |
+
def register_log(self, alias, log_qnames: Union[str, List[str]]):
|
64 |
+
if isinstance(log_qnames, str):
|
65 |
+
log_qnames = [log_qnames]
|
66 |
+
self.log_alias_to_log_qnames[alias] = log_qnames
|
67 |
+
|
68 |
+
# register an artifact name
|
69 |
+
def register_artifact_name(
|
70 |
+
self, name, description, visible, off_by_default, log_format
|
71 |
+
):
|
72 |
+
self.artifact_names.add(name)
|
73 |
+
if visible:
|
74 |
+
self.visible_artifacts.add(name)
|
75 |
+
self.artifact_descriptions[name] = description
|
76 |
+
|
77 |
+
# if off by default, don't enable it
|
78 |
+
# when log_name's log_level is set to DEBUG
|
79 |
+
if off_by_default:
|
80 |
+
self.off_by_default_artifact_names.add(name)
|
81 |
+
|
82 |
+
if log_format is not None:
|
83 |
+
self.artifact_log_formatters[name] = logging.Formatter(log_format)
|
84 |
+
|
85 |
+
# register the qualified name of an artifact log
|
86 |
+
# this is needed to know which logs need to be reset
|
87 |
+
# whenever the log_state is changed
|
88 |
+
def register_artifact_log(self, artifact_log_qname):
|
89 |
+
self.artifact_log_qnames.add(artifact_log_qname)
|
90 |
+
|
91 |
+
def register_child_log(self, log_qname):
|
92 |
+
self.child_log_qnames.add(log_qname)
|
93 |
+
|
94 |
+
# flattens all the qnames together (TODO: consider memoizing?)
|
95 |
+
def get_log_qnames(self) -> Set[str]:
|
96 |
+
return {
|
97 |
+
qname
|
98 |
+
for qnames in self.log_alias_to_log_qnames.values()
|
99 |
+
for qname in qnames
|
100 |
+
}
|
101 |
+
|
102 |
+
def get_artifact_log_qnames(self):
|
103 |
+
return set(self.artifact_log_qnames)
|
104 |
+
|
105 |
+
def get_child_log_qnames(self):
|
106 |
+
return set(self.child_log_qnames)
|
107 |
+
|
108 |
+
def is_off_by_default(self, artifact_qname):
|
109 |
+
return artifact_qname in self.off_by_default_artifact_names
|
110 |
+
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class LogState:
|
114 |
+
# qualified log names -> currently set log level
|
115 |
+
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
|
116 |
+
|
117 |
+
# the set of currently enabled artifacts
|
118 |
+
artifact_names: Set[str] = field(default_factory=set)
|
119 |
+
|
120 |
+
def enable_artifact(self, artifact_name):
|
121 |
+
self.artifact_names.add(artifact_name)
|
122 |
+
|
123 |
+
def is_artifact_enabled(self, name):
|
124 |
+
return name in self.artifact_names
|
125 |
+
|
126 |
+
def enable_log(self, log_qnames, log_level):
|
127 |
+
if isinstance(log_qnames, str):
|
128 |
+
log_qnames = [log_qnames]
|
129 |
+
for log_qname in log_qnames:
|
130 |
+
self.log_qname_to_level[log_qname] = log_level
|
131 |
+
|
132 |
+
def get_log_level_pairs(self):
|
133 |
+
"""Returns all qualified module names for which the user requested
|
134 |
+
explicit logging settings.
|
135 |
+
|
136 |
+
.. warning:
|
137 |
+
|
138 |
+
This function used to return all loggers, regardless of whether
|
139 |
+
or not the user specified them or not; it now only returns logs
|
140 |
+
which were explicitly mentioned by the user (and torch, which
|
141 |
+
always is implicitly requested when we initialize our logging
|
142 |
+
subsystem.)
|
143 |
+
"""
|
144 |
+
return self.log_qname_to_level.items()
|
145 |
+
|
146 |
+
def clear(self):
|
147 |
+
self.log_qname_to_level.clear()
|
148 |
+
self.artifact_names.clear()
|
149 |
+
|
150 |
+
|
151 |
+
log_registry = LogRegistry()
|
152 |
+
log_state = LogState()
|
153 |
+
|
154 |
+
# sample usage: torch._logging.set_logs(**torch._logging.DEFAULT_LOGGING)
|
155 |
+
DEFAULT_LOGGING = {
|
156 |
+
"dynamo": logging.INFO,
|
157 |
+
"graph_code": True,
|
158 |
+
"aot": logging.INFO,
|
159 |
+
"graph_breaks": True,
|
160 |
+
"recompiles": True,
|
161 |
+
"dynamic": logging.INFO,
|
162 |
+
"guards": True,
|
163 |
+
"trace_source": True,
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
def set_logs(
|
168 |
+
*,
|
169 |
+
all: Optional[int] = None,
|
170 |
+
dynamo: Optional[int] = None,
|
171 |
+
aot: Optional[int] = None,
|
172 |
+
dynamic: Optional[int] = None,
|
173 |
+
inductor: Optional[int] = None,
|
174 |
+
distributed: Optional[int] = None,
|
175 |
+
onnx: Optional[int] = None,
|
176 |
+
bytecode: bool = False,
|
177 |
+
aot_graphs: bool = False,
|
178 |
+
aot_joint_graph: bool = False,
|
179 |
+
ddp_graphs: bool = False,
|
180 |
+
graph: bool = False,
|
181 |
+
graph_code: bool = False,
|
182 |
+
graph_breaks: bool = False,
|
183 |
+
graph_sizes: bool = False,
|
184 |
+
guards: bool = False,
|
185 |
+
recompiles: bool = False,
|
186 |
+
recompiles_verbose: bool = False,
|
187 |
+
trace_source: bool = False,
|
188 |
+
trace_call: bool = False,
|
189 |
+
output_code: bool = False,
|
190 |
+
schedule: bool = False,
|
191 |
+
perf_hints: bool = False,
|
192 |
+
post_grad_graphs: bool = False,
|
193 |
+
onnx_diagnostics: bool = False,
|
194 |
+
fusion: bool = False,
|
195 |
+
overlap: bool = False,
|
196 |
+
modules: Optional[Dict[str, Union[int, bool]]] = None,
|
197 |
+
):
|
198 |
+
"""
|
199 |
+
Sets the log level for individual components and toggles individual log
|
200 |
+
artifact types.
|
201 |
+
|
202 |
+
.. warning:: This feature is a prototype and may have compatibility
|
203 |
+
breaking changes in the future.
|
204 |
+
|
205 |
+
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
|
206 |
+
over this function, so if it was set, this function does nothing.
|
207 |
+
|
208 |
+
A component is a set of related features in PyTorch. All of the log
|
209 |
+
messages emitted from a given component have their own log levels. If the
|
210 |
+
log level of a particular message has priority greater than or equal to its
|
211 |
+
component's log level setting, it is emitted. Otherwise, it is supressed.
|
212 |
+
This allows you to, for instance, silence large groups of log messages that
|
213 |
+
are not relevant to you and increase verbosity of logs for components that
|
214 |
+
are relevant. The expected log level values, ordered from highest to lowest
|
215 |
+
priority, are:
|
216 |
+
|
217 |
+
* ``logging.CRITICAL``
|
218 |
+
* ``logging.ERROR``
|
219 |
+
* ``logging.WARNING``
|
220 |
+
* ``logging.INFO``
|
221 |
+
* ``logging.DEBUG``
|
222 |
+
* ``logging.NOTSET``
|
223 |
+
|
224 |
+
See documentation for the Python ``logging`` module for more information on
|
225 |
+
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
|
226 |
+
|
227 |
+
An artifact is a particular type of log message. Each artifact is assigned
|
228 |
+
to a parent component. A component can emit many different kinds of
|
229 |
+
artifacts. In general, an artifact is emitted if either its corresponding
|
230 |
+
setting in the argument list below is turned on or if its parent component
|
231 |
+
is set to a log level less than or equal to the log level of the artifact.
|
232 |
+
|
233 |
+
Keyword args:
|
234 |
+
all (:class:`Optional[int]`):
|
235 |
+
The default log level for all components. Default: ``logging.WARN``
|
236 |
+
|
237 |
+
dynamo (:class:`Optional[int]`):
|
238 |
+
The log level for the TorchDynamo component. Default: ``logging.WARN``
|
239 |
+
|
240 |
+
aot (:class:`Optional[int]`):
|
241 |
+
The log level for the AOTAutograd component. Default: ``logging.WARN``
|
242 |
+
|
243 |
+
inductor (:class:`Optional[int]`):
|
244 |
+
The log level for the TorchInductor component. Default: ``logging.WARN``
|
245 |
+
|
246 |
+
dynamic (:class:`Optional[int]`):
|
247 |
+
The log level for dynamic shapes. Default: ``logging.WARN``
|
248 |
+
|
249 |
+
distributed (:class:`Optional[int]`):
|
250 |
+
Whether to log communication operations and other debug info from pytorch distributed components.
|
251 |
+
Default: ``logging.WARN``
|
252 |
+
|
253 |
+
onnx (:class:`Optional[int]`):
|
254 |
+
The log level for the ONNX exporter component. Default: ``logging.WARN``
|
255 |
+
|
256 |
+
bytecode (:class:`bool`):
|
257 |
+
Whether to emit the original and generated bytecode from TorchDynamo.
|
258 |
+
Default: ``False``
|
259 |
+
|
260 |
+
aot_graphs (:class:`bool`):
|
261 |
+
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
|
262 |
+
|
263 |
+
aot_joint_graph (:class:`bool`):
|
264 |
+
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
|
265 |
+
|
266 |
+
ddp_graphs (:class:`bool`):
|
267 |
+
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
|
268 |
+
|
269 |
+
graph (:class:`bool`):
|
270 |
+
Whether to emit the graph captured by TorchDynamo in tabular format.
|
271 |
+
Default: ``False``
|
272 |
+
|
273 |
+
graph_code (:class:`bool`):
|
274 |
+
Whether to emit the python source of the graph captured by TorchDynamo.
|
275 |
+
Default: ``False``
|
276 |
+
|
277 |
+
graph_breaks (:class:`bool`):
|
278 |
+
Whether to emit the graph breaks encountered by TorchDynamo.
|
279 |
+
Default: ``False``
|
280 |
+
|
281 |
+
graph_sizes (:class:`bool`):
|
282 |
+
Whether to emit tensor sizes of the graph captured by TorchDynamo.
|
283 |
+
Default: ``False``
|
284 |
+
|
285 |
+
guards (:class:`bool`):
|
286 |
+
Whether to emit the guards generated by TorchDynamo for each compiled
|
287 |
+
function. Default: ``False``
|
288 |
+
|
289 |
+
recompiles (:class:`bool`):
|
290 |
+
Whether to emit a guard failure reason and message every time
|
291 |
+
TorchDynamo recompiles a function. Default: ``False``
|
292 |
+
|
293 |
+
recompiles_verbose (:class:`bool`):
|
294 |
+
Whether to emit all guard failure reasons when TorchDynamo recompiles
|
295 |
+
a function, even those that are not actually run. Default: ``False``
|
296 |
+
|
297 |
+
trace_source (:class:`bool`):
|
298 |
+
Whether to emit when TorchDynamo begins tracing a new line. Default: ``False``
|
299 |
+
|
300 |
+
trace_call (:class:`bool`):
|
301 |
+
Whether to emit detailed line location when TorchDynamo creates an FX node
|
302 |
+
corresponding to function call. Python 3.11+ only. Default: ``False``
|
303 |
+
|
304 |
+
output_code (:class:`bool`):
|
305 |
+
Whether to emit the TorchInductor output code. Default: ``False``
|
306 |
+
|
307 |
+
schedule (:class:`bool`):
|
308 |
+
Whether to emit the TorchInductor schedule. Default: ``False``
|
309 |
+
|
310 |
+
perf_hints (:class:`bool`):
|
311 |
+
Whether to emit the TorchInductor perf hints. Default: ``False``
|
312 |
+
|
313 |
+
post_grad_graphs (:class:`bool`):
|
314 |
+
Whether to emit the graphs generated by after post grad passes. Default: ``False``
|
315 |
+
|
316 |
+
onnx_diagnostics (:class:`bool`):
|
317 |
+
Whether to emit the ONNX exporter diagnostics in logging. Default: ``False``
|
318 |
+
|
319 |
+
fusion (:class:`bool`):
|
320 |
+
Whether to emit detailed Inductor fusion decisions. Default: ``False``
|
321 |
+
|
322 |
+
overlap (:class:`bool`):
|
323 |
+
Whether to emit detailed Inductor compute/comm overlap decisions. Default: ``False``
|
324 |
+
|
325 |
+
modules (dict):
|
326 |
+
This argument provides an alternate way to specify the above log
|
327 |
+
component and artifact settings, in the format of a keyword args
|
328 |
+
dictionary given as a single argument. There are two cases
|
329 |
+
where this is useful (1) if a new log component or artifact has
|
330 |
+
been registered but a keyword argument for it has not been added
|
331 |
+
to this function and (2) if the log level for an unregistered module
|
332 |
+
needs to be set. This can be done by providing the fully-qualified module
|
333 |
+
name as the key, with the log level as the value. Default: ``None``
|
334 |
+
|
335 |
+
|
336 |
+
Example::
|
337 |
+
|
338 |
+
>>> # xdoctest: +SKIP
|
339 |
+
>>> import logging
|
340 |
+
|
341 |
+
# The following changes the "dynamo" component to emit DEBUG-level
|
342 |
+
# logs, and to emit "graph_code" artifacts.
|
343 |
+
|
344 |
+
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
|
345 |
+
|
346 |
+
# The following enables the logs for a different module
|
347 |
+
|
348 |
+
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
|
349 |
+
"""
|
350 |
+
# ignore if env var is set
|
351 |
+
if LOG_ENV_VAR in os.environ:
|
352 |
+
log.warning(
|
353 |
+
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
|
354 |
+
)
|
355 |
+
return
|
356 |
+
|
357 |
+
log_state.clear()
|
358 |
+
|
359 |
+
modules = modules or {}
|
360 |
+
|
361 |
+
def _set_logs(**kwargs):
|
362 |
+
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
|
363 |
+
if val is None:
|
364 |
+
continue
|
365 |
+
|
366 |
+
if log_registry.is_artifact(alias):
|
367 |
+
if not isinstance(val, bool):
|
368 |
+
raise ValueError(
|
369 |
+
f"Expected bool to enable artifact {alias}, received {val}"
|
370 |
+
)
|
371 |
+
|
372 |
+
if val:
|
373 |
+
log_state.enable_artifact(alias)
|
374 |
+
elif log_registry.is_log(alias) or alias in log_registry.child_log_qnames:
|
375 |
+
if val not in logging._levelToName:
|
376 |
+
raise ValueError(
|
377 |
+
f"Unrecognized log level for log {alias}: {val}, valid level values "
|
378 |
+
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
379 |
+
)
|
380 |
+
|
381 |
+
log_state.enable_log(
|
382 |
+
log_registry.log_alias_to_log_qnames.get(alias, alias), val
|
383 |
+
)
|
384 |
+
else:
|
385 |
+
raise ValueError(
|
386 |
+
f"Unrecognized log or artifact name passed to set_logs: {alias}"
|
387 |
+
)
|
388 |
+
|
389 |
+
_init_logs()
|
390 |
+
|
391 |
+
_set_logs(
|
392 |
+
torch=all,
|
393 |
+
dynamo=dynamo,
|
394 |
+
aot=aot,
|
395 |
+
inductor=inductor,
|
396 |
+
dynamic=dynamic,
|
397 |
+
bytecode=bytecode,
|
398 |
+
aot_graphs=aot_graphs,
|
399 |
+
aot_joint_graph=aot_joint_graph,
|
400 |
+
ddp_graphs=ddp_graphs,
|
401 |
+
distributed=distributed,
|
402 |
+
graph=graph,
|
403 |
+
graph_code=graph_code,
|
404 |
+
graph_breaks=graph_breaks,
|
405 |
+
graph_sizes=graph_sizes,
|
406 |
+
guards=guards,
|
407 |
+
recompiles=recompiles,
|
408 |
+
recompiles_verbose=recompiles_verbose,
|
409 |
+
trace_source=trace_source,
|
410 |
+
trace_call=trace_call,
|
411 |
+
output_code=output_code,
|
412 |
+
schedule=schedule,
|
413 |
+
perf_hints=perf_hints,
|
414 |
+
post_grad_graphs=post_grad_graphs,
|
415 |
+
onnx=onnx,
|
416 |
+
onnx_diagnostics=onnx_diagnostics,
|
417 |
+
fusion=fusion,
|
418 |
+
overlap=overlap,
|
419 |
+
)
|
420 |
+
|
421 |
+
|
422 |
+
def get_loggers():
|
423 |
+
"""
|
424 |
+
Returns: a list of all registered loggers
|
425 |
+
"""
|
426 |
+
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
|
427 |
+
|
428 |
+
|
429 |
+
def register_log(setting_name, log_name):
|
430 |
+
"""
|
431 |
+
Enables a log to be controlled by the env var and user API with the setting_name
|
432 |
+
Args:
|
433 |
+
setting_name: the shorthand name used in the env var and user API
|
434 |
+
log_name: the log name that the setting_name is associated with
|
435 |
+
"""
|
436 |
+
log_registry.register_log(setting_name, log_name)
|
437 |
+
|
438 |
+
|
439 |
+
def register_artifact(
|
440 |
+
setting_name, description, visible=False, off_by_default=False, log_format=None
|
441 |
+
):
|
442 |
+
"""
|
443 |
+
Enables an artifact to be controlled by the env var and user API with name
|
444 |
+
Args:
|
445 |
+
setting_name: the shorthand name used in the env var and user API
|
446 |
+
description: A description of what this outputs
|
447 |
+
visible: Whether it gets suggested to users by default
|
448 |
+
off_by_default: whether this artifact should be logged when the ancestor loggers
|
449 |
+
are enabled at level DEBUG
|
450 |
+
"""
|
451 |
+
log_registry.register_artifact_name(
|
452 |
+
setting_name, description, visible, off_by_default, log_format
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
def getArtifactLogger(module_qname, artifact_name):
|
457 |
+
if artifact_name not in log_registry.artifact_names:
|
458 |
+
raise ValueError(
|
459 |
+
f"Artifact name: {repr(artifact_name)} not registered,"
|
460 |
+
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
|
461 |
+
)
|
462 |
+
qname = module_qname + f".__{artifact_name}"
|
463 |
+
log = logging.getLogger(qname)
|
464 |
+
log.artifact_name = artifact_name # type: ignore[attr-defined]
|
465 |
+
log_registry.register_artifact_log(qname)
|
466 |
+
configure_artifact_log(log)
|
467 |
+
return log
|
468 |
+
|
469 |
+
|
470 |
+
INCR_VERBOSITY_CHAR = "+"
|
471 |
+
DECR_VERBOSITY_CHAR = "-"
|
472 |
+
VERBOSITY_REGEX = (
|
473 |
+
"("
|
474 |
+
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
|
475 |
+
+ "?)"
|
476 |
+
)
|
477 |
+
|
478 |
+
|
479 |
+
def configure_artifact_log(log):
|
480 |
+
# If the artifact is off by default, then it should only be logged when explicitly
|
481 |
+
# enabled; set propagate to False so that this artifact is not propagated
|
482 |
+
# to its ancestor logger
|
483 |
+
if log_registry.is_off_by_default(log.artifact_name):
|
484 |
+
log.propagate = False
|
485 |
+
|
486 |
+
# enable artifact logging when explicitly enabled
|
487 |
+
if log_state.is_artifact_enabled(log.artifact_name):
|
488 |
+
log.setLevel(logging.DEBUG)
|
489 |
+
log.propagate = True
|
490 |
+
|
491 |
+
|
492 |
+
# match a comma separated list of loggable names (whitespace allowed after commas)
|
493 |
+
def _gen_settings_regex():
|
494 |
+
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
|
495 |
+
|
496 |
+
|
497 |
+
def _validate_settings(settings):
|
498 |
+
return re.fullmatch(_gen_settings_regex(), settings) is not None
|
499 |
+
|
500 |
+
|
501 |
+
def help_message(verbose=False):
|
502 |
+
def pad_to(s, length=30):
|
503 |
+
assert len(s) <= length
|
504 |
+
return s + " " * (length - len(s))
|
505 |
+
|
506 |
+
if verbose:
|
507 |
+
printed_artifacts = log_registry.artifact_names
|
508 |
+
else:
|
509 |
+
printed_artifacts = log_registry.visible_artifacts
|
510 |
+
|
511 |
+
if verbose:
|
512 |
+
heading = "All registered names"
|
513 |
+
else:
|
514 |
+
heading = "Visible registered names (use TORCH_LOGS='+help' for full list)"
|
515 |
+
lines = (
|
516 |
+
["all"]
|
517 |
+
+ sorted(log_registry.log_alias_to_log_qnames.keys())
|
518 |
+
+ sorted(
|
519 |
+
[
|
520 |
+
f"{pad_to(name)}\t{log_registry.artifact_descriptions[name]}"
|
521 |
+
for name in printed_artifacts
|
522 |
+
]
|
523 |
+
)
|
524 |
+
)
|
525 |
+
setting_info = " " + "\n ".join(lines)
|
526 |
+
examples = """
|
527 |
+
Examples:
|
528 |
+
TORCH_LOGS="+dynamo,aot" will set the log level of TorchDynamo to
|
529 |
+
logging.DEBUG and AOT to logging.INFO
|
530 |
+
|
531 |
+
TORCH_LOGS="-dynamo,+inductor" will set the log level of TorchDynamo to
|
532 |
+
logging.ERROR and TorchInductor to logging.DEBUG
|
533 |
+
|
534 |
+
TORCH_LOGS="aot_graphs" will enable the aot_graphs artifact
|
535 |
+
|
536 |
+
TORCH_LOGS="+dynamo,schedule" will enable set the log level of TorchDynamo
|
537 |
+
to logging.DEBUG and enable the schedule artifact
|
538 |
+
|
539 |
+
TORCH_LOGS="+some.random.module,schedule" will set the log level of
|
540 |
+
some.random.module to logging.DEBUG and enable the schedule artifact
|
541 |
+
|
542 |
+
TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" or any provided format
|
543 |
+
string will set the output format
|
544 |
+
Valid keys are "levelname", "message", "pathname", "levelno", "lineno",
|
545 |
+
"filename" and "name".
|
546 |
+
""" # flake8: noqa: B950
|
547 |
+
msg = f"""
|
548 |
+
TORCH_LOGS Info
|
549 |
+
{examples}
|
550 |
+
|
551 |
+
{heading}
|
552 |
+
{setting_info}
|
553 |
+
"""
|
554 |
+
return msg
|
555 |
+
|
556 |
+
|
557 |
+
def _invalid_settings_err_msg(settings, verbose=False):
|
558 |
+
valid_settings = ", ".join(
|
559 |
+
["all"]
|
560 |
+
+ list(log_registry.log_alias_to_log_qnames.keys())
|
561 |
+
+ list(log_registry.artifact_names)
|
562 |
+
)
|
563 |
+
msg = f"""
|
564 |
+
Invalid log settings: {settings}, must be a comma separated list of fully
|
565 |
+
qualified module names, registered log names or registered artifact names.
|
566 |
+
For more info on various settings, try TORCH_LOGS="help"
|
567 |
+
Valid settings:
|
568 |
+
{valid_settings}
|
569 |
+
"""
|
570 |
+
return msg
|
571 |
+
|
572 |
+
|
573 |
+
@functools.lru_cache
|
574 |
+
def _parse_log_settings(settings):
|
575 |
+
if settings == "":
|
576 |
+
return dict()
|
577 |
+
|
578 |
+
if settings == "help":
|
579 |
+
raise ValueError(help_message(verbose=False))
|
580 |
+
elif settings == "+help":
|
581 |
+
raise ValueError(help_message(verbose=True))
|
582 |
+
if not _validate_settings(settings):
|
583 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
584 |
+
|
585 |
+
settings = re.sub(r"\s+", "", settings)
|
586 |
+
log_names = settings.split(",")
|
587 |
+
|
588 |
+
def get_name_level_pair(name):
|
589 |
+
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
|
590 |
+
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
|
591 |
+
|
592 |
+
if name[0] == INCR_VERBOSITY_CHAR:
|
593 |
+
level = logging.DEBUG
|
594 |
+
elif name[0] == DECR_VERBOSITY_CHAR:
|
595 |
+
level = logging.ERROR
|
596 |
+
else:
|
597 |
+
level = logging.INFO
|
598 |
+
|
599 |
+
return clean_name, level
|
600 |
+
|
601 |
+
log_state = LogState()
|
602 |
+
|
603 |
+
for name in log_names:
|
604 |
+
name, level = get_name_level_pair(name)
|
605 |
+
|
606 |
+
if name == "all":
|
607 |
+
name = "torch"
|
608 |
+
|
609 |
+
if log_registry.is_log(name):
|
610 |
+
assert level is not None
|
611 |
+
log_qnames = log_registry.log_alias_to_log_qnames[name]
|
612 |
+
log_state.enable_log(log_qnames, level)
|
613 |
+
elif log_registry.is_artifact(name):
|
614 |
+
log_state.enable_artifact(name)
|
615 |
+
elif _is_valid_module(name):
|
616 |
+
if not _has_registered_parent(name):
|
617 |
+
log_registry.register_log(name, name)
|
618 |
+
else:
|
619 |
+
log_registry.register_child_log(name)
|
620 |
+
log_state.enable_log(name, level)
|
621 |
+
else:
|
622 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
623 |
+
|
624 |
+
return log_state
|
625 |
+
|
626 |
+
|
627 |
+
def _is_valid_module(qname):
|
628 |
+
try:
|
629 |
+
__import__(qname)
|
630 |
+
return True
|
631 |
+
except ImportError:
|
632 |
+
return False
|
633 |
+
|
634 |
+
|
635 |
+
def _update_log_state_from_env():
|
636 |
+
global log_state
|
637 |
+
log_setting = os.environ.get(LOG_ENV_VAR, None)
|
638 |
+
if log_setting is not None:
|
639 |
+
log_state = _parse_log_settings(log_setting)
|
640 |
+
|
641 |
+
|
642 |
+
def _has_registered_parent(log_qname):
|
643 |
+
cur_log = logging.getLogger(log_qname)
|
644 |
+
|
645 |
+
registered_log_qnames = log_registry.get_log_qnames()
|
646 |
+
|
647 |
+
while cur_log.parent:
|
648 |
+
if cur_log.name in registered_log_qnames:
|
649 |
+
return True
|
650 |
+
cur_log = cur_log.parent
|
651 |
+
|
652 |
+
return False
|
653 |
+
|
654 |
+
|
655 |
+
# apply custom formats to artifacts when necessary
|
656 |
+
class TorchLogsFormatter(logging.Formatter):
|
657 |
+
def format(self, record):
|
658 |
+
artifact_name = getattr(logging.getLogger(record.name), "artifact_name", None)
|
659 |
+
if artifact_name is not None:
|
660 |
+
artifact_formatter = log_registry.artifact_log_formatters.get(
|
661 |
+
artifact_name, None
|
662 |
+
)
|
663 |
+
if artifact_formatter is not None:
|
664 |
+
return artifact_formatter.format(record)
|
665 |
+
|
666 |
+
record.message = record.getMessage()
|
667 |
+
record.asctime = self.formatTime(record, self.datefmt)
|
668 |
+
|
669 |
+
# exception handling - copied from logging.Formatter.format
|
670 |
+
s = record.message
|
671 |
+
if record.exc_info:
|
672 |
+
# Cache the traceback text to avoid converting it multiple times
|
673 |
+
# (it's constant anyway)
|
674 |
+
if not record.exc_text:
|
675 |
+
record.exc_text = self.formatException(record.exc_info)
|
676 |
+
if record.exc_text:
|
677 |
+
if s[-1:] != "\n":
|
678 |
+
s = s + "\n"
|
679 |
+
s = s + record.exc_text
|
680 |
+
if record.stack_info:
|
681 |
+
if s[-1:] != "\n":
|
682 |
+
s = s + "\n"
|
683 |
+
s = s + self.formatStack(record.stack_info)
|
684 |
+
|
685 |
+
lines = s.split("\n")
|
686 |
+
record.rankprefix = ""
|
687 |
+
if dist.is_available() and dist.is_initialized():
|
688 |
+
record.rankprefix = f"[rank{dist.get_rank()}]:"
|
689 |
+
|
690 |
+
record.traceid = ""
|
691 |
+
if (trace_id := torch._guards.CompileContext.current_trace_id()) is not None:
|
692 |
+
record.traceid = f" [{trace_id}]"
|
693 |
+
|
694 |
+
prefix = f"{record.rankprefix}[{record.asctime}]{record.traceid} {record.name}: [{record.levelname}]"
|
695 |
+
return "\n".join(f"{prefix} {l}" for l in lines)
|
696 |
+
|
697 |
+
|
698 |
+
def _default_formatter():
|
699 |
+
fmt = os.environ.get(LOG_FORMAT_ENV_VAR, None)
|
700 |
+
if fmt is None:
|
701 |
+
return TorchLogsFormatter()
|
702 |
+
else:
|
703 |
+
return logging.Formatter(fmt)
|
704 |
+
|
705 |
+
|
706 |
+
DEFAULT_FORMATTER = _default_formatter()
|
707 |
+
|
708 |
+
|
709 |
+
def _setup_handlers(create_handler_fn, log):
|
710 |
+
debug_handler = _track_handler(create_handler_fn())
|
711 |
+
debug_handler.setFormatter(DEFAULT_FORMATTER)
|
712 |
+
debug_handler.setLevel(logging.DEBUG)
|
713 |
+
log.addHandler(debug_handler)
|
714 |
+
|
715 |
+
|
716 |
+
handlers = WeakSet() # type: ignore[var-annotated]
|
717 |
+
|
718 |
+
|
719 |
+
# mark handlers that we've created
|
720 |
+
# so we don't modify user handlers
|
721 |
+
def _track_handler(handler):
|
722 |
+
handlers.add(handler)
|
723 |
+
return handler
|
724 |
+
|
725 |
+
|
726 |
+
def _is_torch_handler(handler):
|
727 |
+
return handler in handlers
|
728 |
+
|
729 |
+
|
730 |
+
# clears all torch handlers on specified loggers
|
731 |
+
def _clear_handlers(log):
|
732 |
+
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
|
733 |
+
for handler in to_remove:
|
734 |
+
log.removeHandler(handler)
|
735 |
+
|
736 |
+
|
737 |
+
def _reset_logs():
|
738 |
+
# reset all registered logs
|
739 |
+
for log_qname in log_registry.get_log_qnames():
|
740 |
+
log = logging.getLogger(log_qname)
|
741 |
+
log.setLevel(logging.WARNING)
|
742 |
+
log.propagate = False
|
743 |
+
_clear_handlers(log)
|
744 |
+
|
745 |
+
# reset all artifact and child logs
|
746 |
+
for artifact_log_qname in itertools.chain(
|
747 |
+
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
|
748 |
+
):
|
749 |
+
log = logging.getLogger(artifact_log_qname)
|
750 |
+
log.setLevel(logging.NOTSET)
|
751 |
+
log.propagate = True
|
752 |
+
|
753 |
+
|
754 |
+
def _get_log_state():
|
755 |
+
return log_state
|
756 |
+
|
757 |
+
|
758 |
+
def _set_log_state(state):
|
759 |
+
global log_state
|
760 |
+
log_state = state
|
761 |
+
|
762 |
+
|
763 |
+
def _init_logs(log_file_name=None):
|
764 |
+
_reset_logs()
|
765 |
+
_update_log_state_from_env()
|
766 |
+
|
767 |
+
# First, reset all known (registered) loggers to NOTSET, so that they
|
768 |
+
# respect their parent log level
|
769 |
+
for log_qname in log_registry.get_log_qnames():
|
770 |
+
# But not the top level torch level: this defaults to WARNING so
|
771 |
+
# that our log messages don't leak to the lower levels
|
772 |
+
if log_qname == "torch":
|
773 |
+
continue
|
774 |
+
log = logging.getLogger(log_qname)
|
775 |
+
log.setLevel(logging.NOTSET)
|
776 |
+
|
777 |
+
# Now, for all loggers which the user requested to have non-standard
|
778 |
+
# logging behavior, modify their log levels
|
779 |
+
for log_qname, level in log_state.get_log_level_pairs():
|
780 |
+
log = logging.getLogger(log_qname)
|
781 |
+
log.setLevel(level)
|
782 |
+
|
783 |
+
# Finally, setup handlers for all registered loggers
|
784 |
+
for log_qname in log_registry.get_log_qnames():
|
785 |
+
log = logging.getLogger(log_qname)
|
786 |
+
_setup_handlers(
|
787 |
+
logging.StreamHandler,
|
788 |
+
log,
|
789 |
+
)
|
790 |
+
|
791 |
+
if log_file_name is not None:
|
792 |
+
_setup_handlers(
|
793 |
+
lambda: logging.FileHandler(log_file_name),
|
794 |
+
log,
|
795 |
+
)
|
796 |
+
|
797 |
+
# configure artifact loggers, note: this must happen last
|
798 |
+
# since the levels of ancestor loggers are taken into account
|
799 |
+
for artifact_log_qname in log_registry.get_artifact_log_qnames():
|
800 |
+
log = logging.getLogger(artifact_log_qname)
|
801 |
+
configure_artifact_log(log)
|
802 |
+
|
803 |
+
|
804 |
+
@functools.lru_cache(None)
|
805 |
+
def warning_once(logger_obj, *args, **kwargs):
|
806 |
+
"""
|
807 |
+
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
|
808 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
809 |
+
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
810 |
+
another type of cache that includes the caller frame information in the hashing function.
|
811 |
+
"""
|
812 |
+
logger_obj.warning(*args, **kwargs)
|
813 |
+
|
814 |
+
|
815 |
+
class LazyString:
|
816 |
+
def __init__(self, func, *args, **kwargs):
|
817 |
+
self.func = func
|
818 |
+
self.args = args
|
819 |
+
self.kwargs = kwargs
|
820 |
+
|
821 |
+
def __str__(self):
|
822 |
+
return self.func(*self.args, **self.kwargs)
|
823 |
+
|
824 |
+
|
825 |
+
import torch._guards
|
826 |
+
import torch.distributed as dist
|
env-llmeval/lib/python3.10/site-packages/torch/_logging/_registrations.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: B950
|
2 |
+
from ._internal import register_artifact, register_log
|
3 |
+
|
4 |
+
DYNAMIC = ["torch.fx.experimental.symbolic_shapes", "torch.fx.experimental.sym_node"]
|
5 |
+
DISTRIBUTED = ["torch.distributed", "torch._dynamo.backends.distributed"]
|
6 |
+
|
7 |
+
register_log("dynamo", ["torch._dynamo", *DYNAMIC])
|
8 |
+
register_log("aot", ["torch._functorch.aot_autograd", "torch._functorch._aot_autograd"])
|
9 |
+
register_log("inductor", "torch._inductor")
|
10 |
+
register_log("dynamic", DYNAMIC)
|
11 |
+
register_log("torch", "torch")
|
12 |
+
register_log("distributed", DISTRIBUTED)
|
13 |
+
register_log("onnx", "torch.onnx")
|
14 |
+
|
15 |
+
register_artifact(
|
16 |
+
"guards",
|
17 |
+
"This prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.",
|
18 |
+
visible=True,
|
19 |
+
)
|
20 |
+
register_artifact("verbose_guards", "", off_by_default=True)
|
21 |
+
register_artifact(
|
22 |
+
"bytecode",
|
23 |
+
"Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.",
|
24 |
+
off_by_default=True,
|
25 |
+
)
|
26 |
+
register_artifact(
|
27 |
+
"graph",
|
28 |
+
"Prints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. ",
|
29 |
+
)
|
30 |
+
register_artifact("graph_code", "Like `graph`, but gives you the Python code instead.")
|
31 |
+
register_artifact(
|
32 |
+
"graph_sizes", "Prints the sizes of all FX nodes in the dynamo graph."
|
33 |
+
)
|
34 |
+
register_artifact(
|
35 |
+
"trace_source",
|
36 |
+
"As we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`",
|
37 |
+
)
|
38 |
+
register_artifact(
|
39 |
+
"trace_call",
|
40 |
+
"Like trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.",
|
41 |
+
)
|
42 |
+
register_artifact(
|
43 |
+
"aot_graphs",
|
44 |
+
"Prints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to Inductor",
|
45 |
+
visible=True,
|
46 |
+
)
|
47 |
+
register_artifact(
|
48 |
+
"aot_joint_graph",
|
49 |
+
"Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioning",
|
50 |
+
)
|
51 |
+
register_artifact(
|
52 |
+
"post_grad_graphs",
|
53 |
+
"Prints the FX graph generated by post grad passes. Useful to understand what's being given to Inductor after post grad passes",
|
54 |
+
)
|
55 |
+
register_artifact(
|
56 |
+
"compiled_autograd",
|
57 |
+
"Prints various logs in compiled_autograd, including but not limited to the graphs. Useful for debugging compiled_autograd.",
|
58 |
+
visible=True,
|
59 |
+
)
|
60 |
+
register_artifact(
|
61 |
+
"ddp_graphs",
|
62 |
+
"Only relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.",
|
63 |
+
)
|
64 |
+
register_artifact(
|
65 |
+
"recompiles",
|
66 |
+
"Prints the reason why we recompiled a graph. Very, very useful.",
|
67 |
+
visible=True,
|
68 |
+
)
|
69 |
+
register_artifact(
|
70 |
+
"recompiles_verbose",
|
71 |
+
"Prints all guard checks that fail during a recompilation. "
|
72 |
+
"At runtime, Dynamo will stop at the first failed check for each failing guard. "
|
73 |
+
"So not all logged failing checks are actually ran by Dynamo.",
|
74 |
+
visible=True,
|
75 |
+
off_by_default=True,
|
76 |
+
)
|
77 |
+
register_artifact(
|
78 |
+
"graph_breaks",
|
79 |
+
"Prints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performance",
|
80 |
+
visible=True,
|
81 |
+
)
|
82 |
+
register_artifact(
|
83 |
+
"not_implemented",
|
84 |
+
"Prints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch to",
|
85 |
+
)
|
86 |
+
register_artifact(
|
87 |
+
"output_code",
|
88 |
+
"Prints the code that Inductor generates (either Triton or C++)",
|
89 |
+
off_by_default=True,
|
90 |
+
visible=True,
|
91 |
+
)
|
92 |
+
register_artifact(
|
93 |
+
"schedule",
|
94 |
+
"Inductor scheduler information. Useful if working on Inductor fusion algo",
|
95 |
+
off_by_default=True,
|
96 |
+
)
|
97 |
+
register_artifact("perf_hints", "", off_by_default=True)
|
98 |
+
register_artifact("onnx_diagnostics", "", off_by_default=True)
|
99 |
+
register_artifact(
|
100 |
+
"fusion",
|
101 |
+
"Detailed Inductor fusion decisions. More detailed than 'schedule'",
|
102 |
+
off_by_default=True,
|
103 |
+
)
|
104 |
+
register_artifact(
|
105 |
+
"overlap",
|
106 |
+
"Detailed Inductor compute/comm overlap decisions",
|
107 |
+
off_by_default=True,
|
108 |
+
)
|
109 |
+
|
110 |
+
register_artifact("custom_format_test_artifact", "Testing only", log_format="")
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (176 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/_numeric_suite.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/__pycache__/_numeric_suite_fx.cpython-310.pyc
ADDED
Binary file (26.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (179 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/n_shadows_utils.cpython-310.pyc
ADDED
Binary file (24.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/ns_types.cpython-310.pyc
ADDED
Binary file (985 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/qconfig_multi_mapping.cpython-310.pyc
ADDED
Binary file (7.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/ao/ns/fx/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
PyTorch Profiler is a tool that allows the collection of performance metrics during training and inference.
|
3 |
+
Profiler's context manager API can be used to better understand what model operators are the most expensive,
|
4 |
+
examine their input shapes and stack traces, study device kernel activity and visualize the execution trace.
|
5 |
+
|
6 |
+
.. note::
|
7 |
+
An earlier version of the API in :mod:`torch.autograd` module is considered legacy and will be deprecated.
|
8 |
+
|
9 |
+
"""
|
10 |
+
import os
|
11 |
+
|
12 |
+
from torch._C._autograd import _supported_activities, DeviceType, kineto_available
|
13 |
+
from torch._C._profiler import _ExperimentalConfig, ProfilerActivity, RecordScope
|
14 |
+
from torch.autograd.profiler import KinetoStepTracker, record_function
|
15 |
+
from torch.optim.optimizer import register_optimizer_step_post_hook
|
16 |
+
|
17 |
+
from .profiler import (
|
18 |
+
_KinetoProfile,
|
19 |
+
ExecutionTraceObserver,
|
20 |
+
profile,
|
21 |
+
ProfilerAction,
|
22 |
+
schedule,
|
23 |
+
supported_activities,
|
24 |
+
tensorboard_trace_handler,
|
25 |
+
)
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
"profile",
|
29 |
+
"schedule",
|
30 |
+
"supported_activities",
|
31 |
+
"tensorboard_trace_handler",
|
32 |
+
"ProfilerAction",
|
33 |
+
"ProfilerActivity",
|
34 |
+
"kineto_available",
|
35 |
+
"DeviceType",
|
36 |
+
"record_function",
|
37 |
+
"ExecutionTraceObserver",
|
38 |
+
]
|
39 |
+
|
40 |
+
from . import itt
|
41 |
+
|
42 |
+
|
43 |
+
def _optimizer_post_hook(optimizer, args, kwargs):
|
44 |
+
KinetoStepTracker.increment_step("Optimizer")
|
45 |
+
|
46 |
+
|
47 |
+
if os.environ.get("KINETO_USE_DAEMON", None):
|
48 |
+
_ = register_optimizer_step_post_hook(_optimizer_post_hook)
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_memory_profiler.cpython-310.pyc
ADDED
Binary file (42.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_pattern_matcher.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/itt.cpython-310.pyc
ADDED
Binary file (2.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/profiler.cpython-310.pyc
ADDED
Binary file (26.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/__pycache__/python_tracer.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/_memory_profiler.py
ADDED
@@ -0,0 +1,1201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import dataclasses
|
3 |
+
import enum
|
4 |
+
import itertools as it
|
5 |
+
import logging
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
cast,
|
9 |
+
DefaultDict,
|
10 |
+
Dict,
|
11 |
+
Iterator,
|
12 |
+
List,
|
13 |
+
Optional,
|
14 |
+
Set,
|
15 |
+
Tuple,
|
16 |
+
Union,
|
17 |
+
)
|
18 |
+
|
19 |
+
from typing_extensions import Literal
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch._C import FunctionSchema
|
23 |
+
from torch._C._autograd import _ProfilerResult
|
24 |
+
from torch._C._profiler import (
|
25 |
+
_EventType,
|
26 |
+
_ExtraFields_Allocation,
|
27 |
+
_ExtraFields_TorchOp,
|
28 |
+
_ProfilerEvent,
|
29 |
+
_TensorMetadata,
|
30 |
+
RecordScope,
|
31 |
+
)
|
32 |
+
from torch._utils import _element_size
|
33 |
+
from torch.profiler import _utils
|
34 |
+
|
35 |
+
KeyAndID = Tuple["Key", int]
|
36 |
+
TensorAndID = Tuple["TensorKey", int]
|
37 |
+
|
38 |
+
log = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
class Category(enum.Enum):
|
42 |
+
INPUT = enum.auto()
|
43 |
+
TEMPORARY = enum.auto()
|
44 |
+
ACTIVATION = enum.auto()
|
45 |
+
GRADIENT = enum.auto()
|
46 |
+
AUTOGRAD_DETAIL = enum.auto()
|
47 |
+
PARAMETER = enum.auto()
|
48 |
+
OPTIMIZER_STATE = enum.auto()
|
49 |
+
|
50 |
+
|
51 |
+
_CATEGORY_TO_COLORS = {
|
52 |
+
Category.PARAMETER: "darkgreen",
|
53 |
+
Category.OPTIMIZER_STATE: "goldenrod",
|
54 |
+
Category.INPUT: "black",
|
55 |
+
Category.TEMPORARY: "mediumpurple",
|
56 |
+
Category.ACTIVATION: "red",
|
57 |
+
Category.GRADIENT: "mediumblue",
|
58 |
+
Category.AUTOGRAD_DETAIL: "royalblue",
|
59 |
+
None: "grey",
|
60 |
+
}
|
61 |
+
|
62 |
+
_CATEGORY_TO_INDEX = {c: i for i, c in enumerate(_CATEGORY_TO_COLORS)}
|
63 |
+
|
64 |
+
|
65 |
+
class Action(enum.Enum):
|
66 |
+
PREEXISTING = enum.auto()
|
67 |
+
CREATE = enum.auto()
|
68 |
+
INCREMENT_VERSION = enum.auto()
|
69 |
+
DESTROY = enum.auto()
|
70 |
+
|
71 |
+
|
72 |
+
_ACTION_TO_INDEX = {i: i.value for i in Action}
|
73 |
+
|
74 |
+
|
75 |
+
@dataclasses.dataclass(eq=True, unsafe_hash=False, frozen=True)
|
76 |
+
class Key:
|
77 |
+
device: torch.device
|
78 |
+
|
79 |
+
|
80 |
+
@dataclasses.dataclass
|
81 |
+
class _Storage:
|
82 |
+
"""Bundle storage pointer and id.
|
83 |
+
|
84 |
+
All profiling logic should use `allocation_id`, however it is useful to
|
85 |
+
print storage pointers for debugging and unit tests sometimes look up
|
86 |
+
values using the storage data pointer of a live Tensor."""
|
87 |
+
|
88 |
+
ptr: int
|
89 |
+
allocation_id: int
|
90 |
+
|
91 |
+
def __repr__(self) -> str:
|
92 |
+
return f"{hex(self.ptr):>18} ({self.allocation_id})"
|
93 |
+
|
94 |
+
def __eq__(self, other: object) -> bool:
|
95 |
+
return isinstance(other, _Storage) and self.allocation_id == other.allocation_id
|
96 |
+
|
97 |
+
def __hash__(self) -> int:
|
98 |
+
return hash(self.allocation_id)
|
99 |
+
|
100 |
+
|
101 |
+
@dataclasses.dataclass(eq=True, unsafe_hash=True, frozen=True)
|
102 |
+
class TensorKey(Key):
|
103 |
+
"""Hashable identifier for a storage which has been asigned an ID.
|
104 |
+
|
105 |
+
A detailed description of Tensor IDs and why they are needed is given in
|
106 |
+
`torch/csrc/profiler/collection.h` when `TensorID` is declared. To
|
107 |
+
summarize, multiple Storage buffers can map to the same logical Tensor.
|
108 |
+
This dataclass is used to refer to a concrete in-memory StorageImpl of
|
109 |
+
a Tensor.
|
110 |
+
"""
|
111 |
+
|
112 |
+
id: int
|
113 |
+
storage: _Storage
|
114 |
+
|
115 |
+
def __repr__(self) -> str:
|
116 |
+
return f"id={self.id}: {repr(self.storage):<24} ({self.device})"
|
117 |
+
|
118 |
+
def __lt__(self, other: "TensorKey") -> bool:
|
119 |
+
return self._as_sortable < other._as_sortable
|
120 |
+
|
121 |
+
@staticmethod
|
122 |
+
def _make(
|
123 |
+
tensor_id: Optional[int],
|
124 |
+
storage_ptr: Optional[int],
|
125 |
+
allocation_id: Optional[int],
|
126 |
+
device: torch.device,
|
127 |
+
) -> Optional["TensorKey"]:
|
128 |
+
if (
|
129 |
+
tensor_id is not None
|
130 |
+
and storage_ptr is not None
|
131 |
+
and allocation_id is not None
|
132 |
+
):
|
133 |
+
return TensorKey(device, tensor_id, _Storage(storage_ptr, allocation_id))
|
134 |
+
return None
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def from_allocation(cls, alloc: _ExtraFields_Allocation) -> Optional["TensorKey"]:
|
138 |
+
return cls._make(alloc.id, alloc.ptr, alloc.allocation_id, alloc.device)
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def from_tensor(cls, t: Optional[_TensorMetadata]) -> Optional["TensorKey"]:
|
142 |
+
if t is not None:
|
143 |
+
return cls._make(t.id, t.storage_data_ptr, t.allocation_id, t.device)
|
144 |
+
return None
|
145 |
+
|
146 |
+
@property
|
147 |
+
def _as_sortable(self) -> Tuple[int, int, str, int]:
|
148 |
+
return self.id, self.storage.allocation_id, self.device.type, self.device.index
|
149 |
+
|
150 |
+
|
151 |
+
def _extract_parameters_and_gradients(
|
152 |
+
node: _ProfilerEvent,
|
153 |
+
) -> Iterator[Tuple[Optional[TensorKey], Optional[TensorKey]]]:
|
154 |
+
children = node.children
|
155 |
+
|
156 |
+
# AccumulateGrad is used in the Autograd engine to handle gradient updates.
|
157 |
+
# There are two possible cases:
|
158 |
+
# 1) This is a newly created gradient Tensor. In that case there is nothing
|
159 |
+
# to accumulate, so autograd simply detaches the Tensor.
|
160 |
+
#
|
161 |
+
# 2) There is a preexisting gradient Tensor and we need to add the newly
|
162 |
+
# computed update. This is done with an in-place add (aten::add_) op.
|
163 |
+
# (The underscore suffix denotes "in-place".)
|
164 |
+
if (
|
165 |
+
node.typed[0] == _EventType.TorchOp
|
166 |
+
and node.typed[1].scope == RecordScope.BACKWARD_FUNCTION
|
167 |
+
# TODO(robieta): Move away from load bearing names
|
168 |
+
and node.name == "torch::autograd::AccumulateGrad"
|
169 |
+
and children
|
170 |
+
and children[0].typed[0] == _EventType.TorchOp
|
171 |
+
and children[0].name in ("aten::detach", "aten::add_")
|
172 |
+
and children[0].typed[1].inputs
|
173 |
+
and isinstance(children[0].typed[1].inputs[0], _TensorMetadata)
|
174 |
+
):
|
175 |
+
yield None, TensorKey.from_tensor(children[0].typed[1].inputs[0])
|
176 |
+
|
177 |
+
# We directly instrument `torch.nn.Module` and `torch.optim.Optimizer`
|
178 |
+
# NOTE: The values captured by the python tracer are cached; they can be
|
179 |
+
# used to build up labels but do not imply that a Tensor was live at
|
180 |
+
# a particular time.
|
181 |
+
elif node.typed[0] == _EventType.PyCall:
|
182 |
+
typed_fields = node.typed[1]
|
183 |
+
assert typed_fields.module is None or typed_fields.optimizer is None
|
184 |
+
if typed_fields.module is not None:
|
185 |
+
for _, p, p_grad in typed_fields.module.parameters:
|
186 |
+
yield TensorKey.from_tensor(p), TensorKey.from_tensor(p_grad)
|
187 |
+
|
188 |
+
if typed_fields.optimizer is not None:
|
189 |
+
for p, p_grad, _ in typed_fields.optimizer.parameters:
|
190 |
+
yield TensorKey.from_tensor(p), TensorKey.from_tensor(p_grad)
|
191 |
+
|
192 |
+
|
193 |
+
def extract_parameters(node: _ProfilerEvent) -> Iterator[TensorKey]:
|
194 |
+
for p, p_grad in _extract_parameters_and_gradients(node):
|
195 |
+
if p is not None:
|
196 |
+
yield p
|
197 |
+
|
198 |
+
|
199 |
+
def extract_gradients(
|
200 |
+
node: _ProfilerEvent,
|
201 |
+
) -> Iterator[Tuple[Optional[TensorKey], TensorKey]]:
|
202 |
+
for p, p_grad in _extract_parameters_and_gradients(node):
|
203 |
+
if p_grad is not None:
|
204 |
+
yield p, p_grad
|
205 |
+
|
206 |
+
|
207 |
+
def get_scopes(event: Optional[_ProfilerEvent]) -> Tuple[RecordScope, ...]:
|
208 |
+
scopes = []
|
209 |
+
while event:
|
210 |
+
if event.typed[0] == _EventType.TorchOp:
|
211 |
+
scopes.append(event.typed[1].scope)
|
212 |
+
event = event.parent
|
213 |
+
return tuple(scopes)
|
214 |
+
|
215 |
+
|
216 |
+
class SchemaMatcher:
|
217 |
+
"""Lookup operator schema based on profiled name.
|
218 |
+
|
219 |
+
When profiling we record the operator's name but not the schema. However
|
220 |
+
some analysis requires that information. Fortunately we can look up
|
221 |
+
registered schema from the recorded name. We do not, however, record the
|
222 |
+
overload and so we must compare the profiled arguments with all overloads
|
223 |
+
to determine viable matches.
|
224 |
+
|
225 |
+
Note: Once https://github.com/pytorch/pytorch/issues/78871 is completed
|
226 |
+
this code will be obsolete.
|
227 |
+
"""
|
228 |
+
|
229 |
+
@classmethod
|
230 |
+
def inputs_are_mutable(cls, t: _ExtraFields_TorchOp) -> Tuple[Optional[bool], ...]:
|
231 |
+
"""Determine which inputs may have mutated based on function schema.
|
232 |
+
|
233 |
+
Note that we don't need to resolve down to a single schema to perform
|
234 |
+
this analysis. An input is mutable if it is mutable in any overload. In
|
235 |
+
practice, however, it is overwhelmingly common to match a single
|
236 |
+
overload. If we cannot find any valid schema then we must be
|
237 |
+
conservative and assume all inputs are mutable.
|
238 |
+
"""
|
239 |
+
mutable: Optional[List[bool]] = None
|
240 |
+
for schema in cls.match_schemas(t):
|
241 |
+
mutable = mutable or [False for _ in schema.arguments]
|
242 |
+
for i, arg in enumerate(schema.arguments):
|
243 |
+
mutable[i] |= getattr(arg.alias_info, "is_write", False)
|
244 |
+
|
245 |
+
return tuple(mutable or (None for _ in t.inputs))
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def match_schemas(cls, t: _ExtraFields_TorchOp) -> Tuple[FunctionSchema, ...]:
|
249 |
+
signature = tuple(
|
250 |
+
# Tensor
|
251 |
+
TensorKey.from_tensor(i) if isinstance(i, _TensorMetadata)
|
252 |
+
#
|
253 |
+
# TensorList
|
254 |
+
else [TensorKey.from_tensor(j) for j in i] if isinstance(i, list)
|
255 |
+
#
|
256 |
+
# Scalar and uncaptured inputs.
|
257 |
+
else i
|
258 |
+
for i in t.inputs
|
259 |
+
)
|
260 |
+
|
261 |
+
def matches(schema) -> bool:
|
262 |
+
return len(schema.arguments) == len(signature) and all(
|
263 |
+
cls._types_match(observed, schema_arg.type)
|
264 |
+
for observed, schema_arg in zip(signature, schema.arguments)
|
265 |
+
)
|
266 |
+
|
267 |
+
return tuple(s for s in cls.lookup_schemas(t.name) or () if matches(s))
|
268 |
+
|
269 |
+
@classmethod
|
270 |
+
def _types_match(cls, observed, schema_type) -> bool:
|
271 |
+
if isinstance(schema_type, torch._C.OptionalType):
|
272 |
+
schema_type = schema_type.getElementType()
|
273 |
+
return observed is None or cls._types_match(observed, schema_type)
|
274 |
+
|
275 |
+
if isinstance(schema_type, torch._C.AnyType):
|
276 |
+
return True
|
277 |
+
|
278 |
+
if schema_type.isSubtypeOf(torch._C.ListType.ofTensors()):
|
279 |
+
return isinstance(observed, list) and all(
|
280 |
+
isinstance(i, TensorKey) for i in observed
|
281 |
+
)
|
282 |
+
|
283 |
+
type_map: Tuple[Tuple[Any, Union[type, Tuple[type, ...]]], ...] = (
|
284 |
+
(torch._C.TensorType, TensorKey),
|
285 |
+
(torch._C.NoneType, type(None)),
|
286 |
+
(torch._C.BoolType, bool),
|
287 |
+
(torch._C.IntType, int),
|
288 |
+
(torch._C.FloatType, float),
|
289 |
+
(torch._C.ComplexType, complex),
|
290 |
+
(torch._C.NumberType, (bool, int, float, complex)),
|
291 |
+
)
|
292 |
+
|
293 |
+
for jit_type, py_types in type_map:
|
294 |
+
if isinstance(schema_type, jit_type):
|
295 |
+
return isinstance(observed, py_types)
|
296 |
+
|
297 |
+
# Profiler only records a subset of possible argument types. If we
|
298 |
+
# reach this point then the schema must call for a type that profiler
|
299 |
+
# does not record. Thus, the schema can only be a match if `observed`
|
300 |
+
# is also None.
|
301 |
+
return observed is None
|
302 |
+
|
303 |
+
@staticmethod
|
304 |
+
def lookup_schemas(name: str) -> Optional[Tuple[FunctionSchema, ...]]:
|
305 |
+
# TODO(robieta):
|
306 |
+
# _jit_get_schemas_for_operator is quite expensive. (~100us / call)
|
307 |
+
# Consider adding `functools.lru_cache` if that becomes an issue.
|
308 |
+
|
309 |
+
try:
|
310 |
+
# Schema lookup will throw if `name` is malformed. (For example,
|
311 |
+
# schemas must be namespaced and schema lookup will fail if name
|
312 |
+
# does not include "::".) We simply catch the exception and return
|
313 |
+
# `None` to denote that `name` cannot be an operator name.
|
314 |
+
#
|
315 |
+
# Note that record_function annotations also go through this path,
|
316 |
+
# so it is expected that some names will not correspond to PyTorch
|
317 |
+
# operators.
|
318 |
+
if "::" not in name:
|
319 |
+
return None
|
320 |
+
return tuple(torch._C._jit_get_schemas_for_operator(name))
|
321 |
+
except RuntimeError:
|
322 |
+
return None
|
323 |
+
|
324 |
+
|
325 |
+
class OpTree:
|
326 |
+
def __init__(self, result: _ProfilerResult) -> None:
|
327 |
+
self._root_nodes = result.experimental_event_tree()
|
328 |
+
self._sorted_nodes = tuple(sorted(self.dfs(), key=lambda x: x.start_time_ns))
|
329 |
+
|
330 |
+
def dfs(self, *args, **kwargs) -> Iterator[_ProfilerEvent]:
|
331 |
+
yield from _utils.traverse_dfs(self._root_nodes, *args, **kwargs)
|
332 |
+
|
333 |
+
@property
|
334 |
+
def sorted_nodes(self) -> Tuple[_ProfilerEvent, ...]:
|
335 |
+
return self._sorted_nodes
|
336 |
+
|
337 |
+
|
338 |
+
class SizeMap:
|
339 |
+
def __init__(self, op_tree: OpTree) -> None:
|
340 |
+
self._values: Dict[TensorKey, int] = {}
|
341 |
+
|
342 |
+
for node in op_tree.sorted_nodes:
|
343 |
+
if node.typed[0] == _EventType.TorchOp:
|
344 |
+
for t in self._flat_tensor_inputs(node.typed[1]):
|
345 |
+
self._update_values(t)
|
346 |
+
|
347 |
+
elif node.typed[0] == _EventType.PyCall:
|
348 |
+
typed_fields = node.typed[1]
|
349 |
+
assert typed_fields.module is None or typed_fields.optimizer is None
|
350 |
+
if typed_fields.module is not None:
|
351 |
+
for _, p, p_grad in typed_fields.module.parameters:
|
352 |
+
self._update_values(p)
|
353 |
+
self._update_values(p_grad)
|
354 |
+
|
355 |
+
if typed_fields.optimizer is not None:
|
356 |
+
for p, p_grad, state in typed_fields.optimizer.parameters:
|
357 |
+
self._update_values(p)
|
358 |
+
self._update_values(p_grad)
|
359 |
+
for _, t in state:
|
360 |
+
self._update_values(t)
|
361 |
+
|
362 |
+
allocations: Dict[TensorKey, int] = {}
|
363 |
+
for node in op_tree.sorted_nodes:
|
364 |
+
if node.typed[0] == _EventType.Allocation:
|
365 |
+
alloc_fields = node.typed[1]
|
366 |
+
key = TensorKey.from_allocation(alloc_fields)
|
367 |
+
if key:
|
368 |
+
new_size = abs(alloc_fields.alloc_size)
|
369 |
+
prior_size = allocations.setdefault(key, new_size)
|
370 |
+
|
371 |
+
# It is possible to resize Storage in PyTorch, however we
|
372 |
+
# key on data pointer so most resizes will be treated as a
|
373 |
+
# change in storage. The one corner case that cannot be
|
374 |
+
# handled is `realloc` which successfully resizes the
|
375 |
+
# storage. At time of writing this is not done anywhere in
|
376 |
+
# the core PyTorch codebase.
|
377 |
+
if prior_size != new_size:
|
378 |
+
delta = f"{prior_size} vs. {new_size}"
|
379 |
+
log.warning("Mismatch between allocation and free: %s", delta)
|
380 |
+
|
381 |
+
self._values.update(allocations)
|
382 |
+
|
383 |
+
def _update_values(self, t: Optional[_TensorMetadata]) -> None:
|
384 |
+
key = TensorKey.from_tensor(t)
|
385 |
+
if key is not None and t is not None and t.layout == torch.strided:
|
386 |
+
# Scalars are represented as zero dim Tensors
|
387 |
+
n = max(i[0] * i[1] for i in zip(t.sizes or [1], t.strides or [1]))
|
388 |
+
|
389 |
+
num_bytes = n * _element_size(t.dtype)
|
390 |
+
assert num_bytes >= 0, f"{num_bytes}"
|
391 |
+
self._values[key] = max(self._values.get(key, 0), num_bytes)
|
392 |
+
|
393 |
+
@staticmethod
|
394 |
+
def _flat_tensor_inputs(op: _ExtraFields_TorchOp) -> Iterator[_TensorMetadata]:
|
395 |
+
for i in op.inputs:
|
396 |
+
if isinstance(i, _TensorMetadata):
|
397 |
+
yield i
|
398 |
+
elif isinstance(i, list):
|
399 |
+
yield from i
|
400 |
+
|
401 |
+
def __getitem__(self, key: TensorKey):
|
402 |
+
return self._values[key]
|
403 |
+
|
404 |
+
|
405 |
+
@dataclasses.dataclass()
|
406 |
+
class DataFlowEdge:
|
407 |
+
input_version: Optional[int] = None
|
408 |
+
mutated: Optional[bool] = False
|
409 |
+
|
410 |
+
@property
|
411 |
+
def is_allocation(self) -> bool:
|
412 |
+
return self.input_version is None
|
413 |
+
|
414 |
+
@property
|
415 |
+
def is_deletion(self) -> bool:
|
416 |
+
return self.mutated is None
|
417 |
+
|
418 |
+
|
419 |
+
class DataFlowNode:
|
420 |
+
def __init__(self, event: _ProfilerEvent, graph: "DataFlowGraph") -> None:
|
421 |
+
self._event = event
|
422 |
+
self._graph = graph
|
423 |
+
self._edges: Dict[TensorKey, DataFlowEdge] = self._determine_edges()
|
424 |
+
|
425 |
+
for key, edge in self._edges.items():
|
426 |
+
if edge.mutated and not edge.is_allocation:
|
427 |
+
self._graph.bump(key)
|
428 |
+
|
429 |
+
# Make sure the version bumping behavior matches what we expect.
|
430 |
+
versions = {k: (v, self._graph.lookup(k)) for k, v in self.outputs.items()}
|
431 |
+
assert all(i == j for i, j in versions.values()), f"{versions}, {self._edges}"
|
432 |
+
|
433 |
+
def _determine_edges(self) -> Dict[TensorKey, DataFlowEdge]:
|
434 |
+
subtree = tuple(_utils.traverse_dfs([self._event]))
|
435 |
+
|
436 |
+
# Start by populating edges from op inputs and outputs.
|
437 |
+
mutable_by_key: Dict[Optional[TensorKey], Set[Optional[bool]]] = {}
|
438 |
+
for op in (i.typed[1] for i in subtree if i.typed[0] == _EventType.TorchOp):
|
439 |
+
for op_input, mutable in zip(
|
440 |
+
op.inputs, SchemaMatcher.inputs_are_mutable(op)
|
441 |
+
):
|
442 |
+
# Tensor
|
443 |
+
if isinstance(op_input, _TensorMetadata):
|
444 |
+
key = TensorKey.from_tensor(op_input)
|
445 |
+
mutable_by_key.setdefault(key, set()).add(mutable)
|
446 |
+
|
447 |
+
# TensorList
|
448 |
+
elif isinstance(op_input, list):
|
449 |
+
for op_input_i in op_input:
|
450 |
+
key = TensorKey.from_tensor(op_input_i)
|
451 |
+
mutable_by_key.setdefault(key, set()).add(mutable)
|
452 |
+
|
453 |
+
edges: DefaultDict[Optional[TensorKey], DataFlowEdge]
|
454 |
+
edges = collections.defaultdict(DataFlowEdge)
|
455 |
+
for key, mutable_set in mutable_by_key.items():
|
456 |
+
if key is not None:
|
457 |
+
edges[key].input_version = self._graph.lookup(key) if key else -1
|
458 |
+
|
459 |
+
# We consider an op to be mutated if we encounter a schema where it
|
460 |
+
# is a mutable argument OR if it is ambiguous. (We never explicitly
|
461 |
+
# see it in any schema.)
|
462 |
+
mutated = (True in mutable_set) or (tuple(mutable_set) == (None,))
|
463 |
+
edges[key].mutated = mutated
|
464 |
+
|
465 |
+
# Then handle deletions. Note that deleting a Tensor implicitly adds
|
466 |
+
# it as an input edge.
|
467 |
+
for i in subtree:
|
468 |
+
if i.typed[0] == _EventType.Allocation and i.typed[1].alloc_size < 0:
|
469 |
+
key = TensorKey.from_allocation(i.typed[1])
|
470 |
+
edge = edges[key]
|
471 |
+
assert key is None or edge.mutated is not None, f"Double delete: {key}"
|
472 |
+
edge.mutated = None
|
473 |
+
edge.input_version = self._graph.lookup(key) if key else -1
|
474 |
+
|
475 |
+
# And finally handle allocations. This step must be last, because the
|
476 |
+
# previous two steps optimistically add input edges.
|
477 |
+
for i in subtree:
|
478 |
+
if i.typed[0] == _EventType.Allocation and i.typed[1].alloc_size > 0:
|
479 |
+
edges[TensorKey.from_allocation(i.typed[1])].input_version = None
|
480 |
+
|
481 |
+
# We don't need to sort the inputs, but it makes debugging and unit tests nicer.
|
482 |
+
return dict(sorted((k, v) for k, v in edges.items() if k is not None))
|
483 |
+
|
484 |
+
@property
|
485 |
+
def inputs(self) -> Dict[TensorKey, Tuple[bool, int]]:
|
486 |
+
return {
|
487 |
+
# MyPy can't see through `is_allocation` to know that
|
488 |
+
# `v.input_version` is not None.
|
489 |
+
k: (bool(v.mutated), cast(int, v.input_version))
|
490 |
+
for k, v in self._edges.items()
|
491 |
+
if not v.is_allocation
|
492 |
+
}
|
493 |
+
|
494 |
+
@property
|
495 |
+
def outputs(self) -> Dict[TensorKey, int]:
|
496 |
+
return {
|
497 |
+
k: 0 if v.input_version is None else v.input_version + 1
|
498 |
+
for k, v in self._edges.items()
|
499 |
+
if (v.is_allocation and not v.is_deletion) or v.mutated
|
500 |
+
}
|
501 |
+
|
502 |
+
@property
|
503 |
+
def intermediates(self) -> Tuple[TensorKey, ...]:
|
504 |
+
return tuple(
|
505 |
+
k for k, v in self._edges.items() if v.is_allocation and v.is_deletion
|
506 |
+
)
|
507 |
+
|
508 |
+
@property
|
509 |
+
def start_time(self) -> int:
|
510 |
+
return self._event.start_time_ns
|
511 |
+
|
512 |
+
|
513 |
+
class DataFlowGraph:
|
514 |
+
def __init__(self, op_tree: OpTree) -> None:
|
515 |
+
self._op_tree = op_tree
|
516 |
+
self._leaf_events = self._extract_leaf_events(op_tree)
|
517 |
+
self._active_version: Dict[TensorKey, Optional[int]] = {}
|
518 |
+
self._flow_nodes = [DataFlowNode(e, self) for e in self.leaf_events]
|
519 |
+
self._flow_nodes.sort(key=lambda x: x.start_time)
|
520 |
+
self.validate()
|
521 |
+
|
522 |
+
@property
|
523 |
+
def flow_nodes(self) -> Tuple[DataFlowNode, ...]:
|
524 |
+
return tuple(self._flow_nodes)
|
525 |
+
|
526 |
+
def validate(self):
|
527 |
+
# Check that each (Tensor, version) pair has a unique creation node
|
528 |
+
outputs: Set[Tuple[TensorKey, int]] = set()
|
529 |
+
for node in self.flow_nodes:
|
530 |
+
node_outputs = set(node.outputs.items())
|
531 |
+
duplicates = outputs & node_outputs
|
532 |
+
assert not duplicates, f"{node._event.name} {node._edges} {duplicates}"
|
533 |
+
outputs |= node_outputs
|
534 |
+
|
535 |
+
# And check that `self._nodes` forms a valid topologically sorted DAG.
|
536 |
+
tensor_versions: Dict[TensorKey, int] = {}
|
537 |
+
for node in self.flow_nodes:
|
538 |
+
for key, (_, version) in node.inputs.items():
|
539 |
+
expected = tensor_versions.get(key, 0)
|
540 |
+
assert expected == version, (expected, version)
|
541 |
+
|
542 |
+
for key, version in node.outputs.items():
|
543 |
+
prior_version = tensor_versions.get(key, version)
|
544 |
+
assert version >= prior_version, (version, prior_version)
|
545 |
+
tensor_versions[key] = version
|
546 |
+
|
547 |
+
@property
|
548 |
+
def leaf_events(self) -> Tuple[_ProfilerEvent, ...]:
|
549 |
+
return self._leaf_events
|
550 |
+
|
551 |
+
@staticmethod
|
552 |
+
def _extract_leaf_events(op_tree: OpTree) -> Tuple[_ProfilerEvent, ...]:
|
553 |
+
"""Partially traverse the op tree and extract top level ops.
|
554 |
+
|
555 |
+
Consider the following code:
|
556 |
+
```
|
557 |
+
with record_function("My annotation"):
|
558 |
+
x.zero_()
|
559 |
+
y.zero_()
|
560 |
+
```
|
561 |
+
|
562 |
+
The op tree (assuming no Autograd) will look like:
|
563 |
+
<Python context>
|
564 |
+
TorchOp: "My annotation"
|
565 |
+
TorchOp: zero_
|
566 |
+
TorchOp: fill_
|
567 |
+
TorchOp: zero_
|
568 |
+
TorchOp: fill_
|
569 |
+
|
570 |
+
The recursive structure of operator calls makes data flow unwieldy.
|
571 |
+
In order to simplify analysis we would like to select the highest level
|
572 |
+
ops to represent in the graph. In this case those are the `zero_` ops;
|
573 |
+
the fact that `fill_` is called is an implementation detail. We also
|
574 |
+
do not want to group everything under "My annotation" as this could
|
575 |
+
create overly coarse bundles and lose critical semantics.
|
576 |
+
|
577 |
+
To address this issue we walk over the graph and select the topmost
|
578 |
+
torch ops ** which match at least one operator schema **. These form
|
579 |
+
the leaves of the first pass through the op tree. (As well as any
|
580 |
+
allocations or frees which do are not part of a kernel.) These events
|
581 |
+
form the logical nodes in our data flow graph.
|
582 |
+
"""
|
583 |
+
|
584 |
+
leaf_events: List[_ProfilerEvent] = []
|
585 |
+
|
586 |
+
def leaf_op(e: _ProfilerEvent) -> bool:
|
587 |
+
return e.typed[0] == _EventType.TorchOp and (
|
588 |
+
e.typed[1].scope == RecordScope.BACKWARD_FUNCTION
|
589 |
+
or bool(SchemaMatcher.match_schemas(e.typed[1]))
|
590 |
+
)
|
591 |
+
|
592 |
+
def children_fn(e: _ProfilerEvent):
|
593 |
+
if leaf_op(e) or e.tag == _EventType.Allocation:
|
594 |
+
leaf_events.append(e)
|
595 |
+
return []
|
596 |
+
|
597 |
+
return e.children
|
598 |
+
|
599 |
+
for _ in op_tree.dfs(children_fn=children_fn):
|
600 |
+
pass
|
601 |
+
|
602 |
+
return tuple(sorted(leaf_events, key=lambda x: x.start_time_ns))
|
603 |
+
|
604 |
+
def lookup(self, key: TensorKey) -> int:
|
605 |
+
version = self._active_version.setdefault(key, 0)
|
606 |
+
assert version is not None
|
607 |
+
return version
|
608 |
+
|
609 |
+
def bump(self, key: TensorKey) -> None:
|
610 |
+
prior_version = self._active_version.get(key, None)
|
611 |
+
assert prior_version is not None
|
612 |
+
self._active_version[key] = prior_version + 1
|
613 |
+
|
614 |
+
def delete(self, key: TensorKey) -> None:
|
615 |
+
assert self._active_version.setdefault(key, 0) is not None
|
616 |
+
self._active_version[key] = None
|
617 |
+
|
618 |
+
|
619 |
+
@dataclasses.dataclass
|
620 |
+
class CategoryElement:
|
621 |
+
by_id: Optional[Category] = None
|
622 |
+
by_key: Dict[TensorKey, Category] = dataclasses.field(default_factory=dict)
|
623 |
+
by_version: Dict[TensorAndID, Category] = dataclasses.field(default_factory=dict)
|
624 |
+
|
625 |
+
# Used by unit tests to check internals. (And consequently by
|
626 |
+
# MemoryProfile.lookup) This should not be used in any other capacity.
|
627 |
+
_by_id_keyset: Set[TensorKey] = dataclasses.field(default_factory=set)
|
628 |
+
|
629 |
+
|
630 |
+
@dataclasses.dataclass
|
631 |
+
class CategoryDict:
|
632 |
+
_values: DefaultDict[int, CategoryElement] = dataclasses.field(
|
633 |
+
default_factory=lambda: collections.defaultdict(CategoryElement)
|
634 |
+
)
|
635 |
+
|
636 |
+
def set_by_id(self, key: TensorKey, category: Category) -> None:
|
637 |
+
self._values[key.id].by_id = category
|
638 |
+
self._values[key.id]._by_id_keyset.add(key)
|
639 |
+
|
640 |
+
def set_by_key(self, key: TensorKey, category: Category) -> None:
|
641 |
+
self._values[key.id].by_key[key] = category
|
642 |
+
|
643 |
+
def set_by_version(self, key: TensorKey, version: int, category: Category) -> None:
|
644 |
+
self._values[key.id].by_version[(key, version)] = category
|
645 |
+
|
646 |
+
def setdefault_by_version(
|
647 |
+
self, key: TensorKey, version: int, category: Category
|
648 |
+
) -> None:
|
649 |
+
self._values[key.id].by_version.setdefault((key, version), category)
|
650 |
+
|
651 |
+
def get(self, key: Key, version: int) -> Optional[Category]:
|
652 |
+
if isinstance(key, Key) and not isinstance(key, TensorKey):
|
653 |
+
return None
|
654 |
+
element = self._values[key.id]
|
655 |
+
return (
|
656 |
+
element.by_id
|
657 |
+
or element.by_key.get(key, None)
|
658 |
+
or element.by_version.get((key, version), None)
|
659 |
+
)
|
660 |
+
|
661 |
+
|
662 |
+
class MemoryProfile:
|
663 |
+
def __init__(self, result: _ProfilerResult) -> None:
|
664 |
+
self._op_tree = OpTree(result)
|
665 |
+
self._data_flow_graph = DataFlowGraph(self._op_tree)
|
666 |
+
self._size_map = SizeMap(self._op_tree)
|
667 |
+
self._categories = CategoryDict()
|
668 |
+
|
669 |
+
self._set_gradients_and_temporaries()
|
670 |
+
self._set_parameters_using_python_tracer()
|
671 |
+
self._set_inputs()
|
672 |
+
self._set_parameters_using_data_flow()
|
673 |
+
self._set_activations()
|
674 |
+
self._set_optimizer_state()
|
675 |
+
self._set_autograd_detail()
|
676 |
+
|
677 |
+
@property
|
678 |
+
def timeline(self) -> Tuple[Tuple[int, Action, KeyAndID, int], ...]:
|
679 |
+
output: List[Tuple[int, Action, KeyAndID, int]] = []
|
680 |
+
allocation_times: Dict[Tuple[TensorKey, bool], int] = {}
|
681 |
+
live_unknown: Dict[Tuple[int, torch.device], Literal[True]] = {}
|
682 |
+
for event in self._op_tree.dfs():
|
683 |
+
if event.typed[0] == _EventType.Allocation:
|
684 |
+
alloc_fields = event.typed[1]
|
685 |
+
alloc_size = alloc_fields.alloc_size
|
686 |
+
is_allocation = alloc_size > 0
|
687 |
+
t = event.start_time_ns
|
688 |
+
|
689 |
+
tkey = TensorKey.from_allocation(alloc_fields)
|
690 |
+
if tkey is not None:
|
691 |
+
allocation_times[(tkey, is_allocation)] = t
|
692 |
+
|
693 |
+
else:
|
694 |
+
key = Key(alloc_fields.device)
|
695 |
+
ptr_and_device = (alloc_fields.ptr, key.device)
|
696 |
+
if is_allocation:
|
697 |
+
if ptr_and_device in live_unknown:
|
698 |
+
output.append(
|
699 |
+
(t, Action.INCREMENT_VERSION, (key, 0), alloc_size)
|
700 |
+
)
|
701 |
+
else:
|
702 |
+
live_unknown[ptr_and_device] = True
|
703 |
+
output.append((t, Action.CREATE, (key, 0), alloc_size))
|
704 |
+
else:
|
705 |
+
output.append((t, Action.DESTROY, (key, 0), -alloc_size))
|
706 |
+
if not live_unknown.pop(ptr_and_device, False):
|
707 |
+
output.append(
|
708 |
+
(-1, Action.PREEXISTING, (key, 0), -alloc_size)
|
709 |
+
)
|
710 |
+
|
711 |
+
snapshot = self._category_snapshot()
|
712 |
+
last_version = dict(sorted(snapshot.keys()))
|
713 |
+
|
714 |
+
events: List[Tuple[int, Action, TensorAndID]] = [
|
715 |
+
(-1, Action.PREEXISTING, (key, version))
|
716 |
+
for key, version in snapshot.keys()
|
717 |
+
if (key, True) not in allocation_times and version == 0
|
718 |
+
]
|
719 |
+
|
720 |
+
for node in self._data_flow_graph.flow_nodes:
|
721 |
+
for key, edge in node._edges.items():
|
722 |
+
if edge.is_allocation:
|
723 |
+
t = allocation_times[(key, True)]
|
724 |
+
events.append((t, Action.CREATE, (key, 0)))
|
725 |
+
|
726 |
+
elif edge.mutated:
|
727 |
+
t = node._event.start_time_ns
|
728 |
+
version = edge.input_version
|
729 |
+
assert version is not None
|
730 |
+
events.append((t, Action.INCREMENT_VERSION, (key, version)))
|
731 |
+
|
732 |
+
if edge.is_deletion:
|
733 |
+
t = allocation_times[(key, False)]
|
734 |
+
events.append((t, Action.DESTROY, (key, last_version[key])))
|
735 |
+
|
736 |
+
output.extend(
|
737 |
+
(time, action, (key, version), self._size_map[key])
|
738 |
+
for time, action, (key, version) in events
|
739 |
+
)
|
740 |
+
|
741 |
+
output.sort(key=lambda x: (x[0], x[1].value))
|
742 |
+
return tuple(output)
|
743 |
+
|
744 |
+
def _is_gradient(self, *args, **kwargs) -> bool:
|
745 |
+
return self._categories.get(*args, **kwargs) == Category.GRADIENT
|
746 |
+
|
747 |
+
def _category_snapshot(self) -> Dict[TensorAndID, Optional[Category]]:
|
748 |
+
all_tensor_versions: Set[TensorAndID] = set()
|
749 |
+
|
750 |
+
for node in self._data_flow_graph.flow_nodes:
|
751 |
+
all_tensor_versions.update(((k, v) for k, (_, v) in node.inputs.items()))
|
752 |
+
all_tensor_versions.update((key, 0) for key in node.intermediates)
|
753 |
+
all_tensor_versions.update(node.outputs.items())
|
754 |
+
|
755 |
+
for i in self._categories._values.values():
|
756 |
+
all_tensor_versions.update((key, 0) for key in i._by_id_keyset)
|
757 |
+
|
758 |
+
return {
|
759 |
+
(key, version): self._categories.get(key, version)
|
760 |
+
for key, version in sorted(all_tensor_versions)
|
761 |
+
}
|
762 |
+
|
763 |
+
def _any_version_depends_on_gradient(self) -> Set[int]:
|
764 |
+
"""Extract IDs of Tensors which depend or will depend on a gradient.
|
765 |
+
|
766 |
+
Note that this weakened definition of "depends" requires us to loop
|
767 |
+
over the data flow graph multiple times because it allows dependency
|
768 |
+
information to flow backward through edges and removes the guarantee
|
769 |
+
that nodes are topologically sorted. (Or indeed, even that a valid
|
770 |
+
topological order exists.) Put another way, we have converted an
|
771 |
+
acyclic data flow graph into a cyclic graph and we are attempting to
|
772 |
+
partition cycles involving a gradient from the rest of the graph.
|
773 |
+
"""
|
774 |
+
depends_on_gradient: Set[int] = set()
|
775 |
+
while True:
|
776 |
+
start_size = len(depends_on_gradient)
|
777 |
+
for node in self._data_flow_graph.flow_nodes:
|
778 |
+
ids = tuple(
|
779 |
+
key.id
|
780 |
+
for key, (_, version) in node.inputs.items()
|
781 |
+
if self._categories.get(key, version)
|
782 |
+
in (Category.GRADIENT, Category.PARAMETER)
|
783 |
+
or key.id in depends_on_gradient
|
784 |
+
)
|
785 |
+
|
786 |
+
if ids:
|
787 |
+
depends_on_gradient.update(ids)
|
788 |
+
depends_on_gradient.update(key.id for key in node.outputs)
|
789 |
+
|
790 |
+
# We are guaranteed to exit because there is a finite set of
|
791 |
+
# TensorAndID pairs. In practice we do not expect to loop more than
|
792 |
+
# three times: once to identify the core parameter update loop,
|
793 |
+
# once to fold the first step into that loop, and a third time
|
794 |
+
# where no new elements are added.
|
795 |
+
if len(depends_on_gradient) == start_size:
|
796 |
+
return depends_on_gradient
|
797 |
+
|
798 |
+
def _set_gradients_and_temporaries(self) -> None:
|
799 |
+
"""Mark Tensors which are unambiguous and simple to reason about."""
|
800 |
+
|
801 |
+
# Gradients are straightforward to detect. We directly check the
|
802 |
+
# `.grad` property in the Python tracer, and we can detect any new
|
803 |
+
# gradient Tensors from `AccumulateGrad` ops.
|
804 |
+
for event in self._op_tree.dfs():
|
805 |
+
for _, p_grad in extract_gradients(event):
|
806 |
+
self._categories.set_by_id(p_grad, Category.GRADIENT)
|
807 |
+
|
808 |
+
# Similarly, temporary Tensors are easy to identify and are useful to
|
809 |
+
# flag since they can make memory use "spikier" than one would
|
810 |
+
# otherwise expect.
|
811 |
+
for node in self._data_flow_graph.flow_nodes:
|
812 |
+
for i in node.intermediates:
|
813 |
+
self._categories.set_by_key(i, Category.TEMPORARY)
|
814 |
+
|
815 |
+
def _set_parameters_using_python_tracer(self) -> None:
|
816 |
+
for event in self._op_tree.dfs():
|
817 |
+
for p in extract_parameters(event):
|
818 |
+
if p is not None:
|
819 |
+
self._categories.set_by_id(p, Category.PARAMETER)
|
820 |
+
|
821 |
+
def _set_inputs(self) -> None:
|
822 |
+
"""Mark inputs based on which Tensors are updated using gradients.
|
823 |
+
|
824 |
+
The process for differentiating between inputs and activations is more
|
825 |
+
involved. Most Tensors in a training loop depend on at least one
|
826 |
+
gradient: parameters depend on them through updates, and activations
|
827 |
+
and optimizer state depend on them transitively through parameters.
|
828 |
+
Critically, we do not need to know which Tensors are parameters to
|
829 |
+
apply this method; we can simply walk the data flow graph to build the
|
830 |
+
set of all values which depend on a gradient and then obtain the set
|
831 |
+
of inputs from the conjugate set.
|
832 |
+
|
833 |
+
There is, however, one hiccup. The first time we see a parameter is
|
834 |
+
generally on the forward pass of the first step. We know from
|
835 |
+
inspection of the data flow graph that v1 of that Tensor depends on
|
836 |
+
a gradient (provided we profile an optimizer step), but not v0. To
|
837 |
+
address this problem we weaken the definition of "depends on a
|
838 |
+
gradient" to "any version of this Tensor depends on a gradient",
|
839 |
+
which in turn strengthens the criteria for the input set enough to
|
840 |
+
filter the activations in the forward pass of the first step."""
|
841 |
+
|
842 |
+
# All of this analysis is predicated on using at least one training
|
843 |
+
# step (or parameters from the python tracer) to partition the graph.
|
844 |
+
# Absent that we cannot determine which Tensors are inputs and which
|
845 |
+
# ones are part of the model.
|
846 |
+
depends_on_gradient = self._any_version_depends_on_gradient()
|
847 |
+
|
848 |
+
# We only want to annotate Tensors which actually contribute to the
|
849 |
+
# model calculation.
|
850 |
+
produces_gradient: Set[TensorAndID] = set()
|
851 |
+
for node in reversed(self._data_flow_graph.flow_nodes):
|
852 |
+
tensors = {(key, version) for key, (_, version) in node.inputs.items()}
|
853 |
+
tensors |= node.outputs.items()
|
854 |
+
if any(
|
855 |
+
self._categories.get(*i) in (Category.GRADIENT, Category.PARAMETER)
|
856 |
+
or i in produces_gradient
|
857 |
+
for i in tensors
|
858 |
+
):
|
859 |
+
produces_gradient |= tensors
|
860 |
+
|
861 |
+
# Don't include Tensors created in the backward pass, as these are
|
862 |
+
# generally Autograd implementation details rather than proper inputs.
|
863 |
+
input_candidates = produces_gradient.copy()
|
864 |
+
for node in self._data_flow_graph.flow_nodes:
|
865 |
+
if RecordScope.BACKWARD_FUNCTION in get_scopes(node._event):
|
866 |
+
input_candidates -= set(node.outputs.items())
|
867 |
+
|
868 |
+
for key, version in input_candidates:
|
869 |
+
if key.id not in depends_on_gradient:
|
870 |
+
self._categories.setdefault_by_version(key, version, Category.INPUT)
|
871 |
+
|
872 |
+
def _set_parameters_using_data_flow(self) -> None:
|
873 |
+
"""Deduce which Tensors are parameters.
|
874 |
+
|
875 |
+
Consider the following code for the step of SGD with momentum
|
876 |
+
(nesterov=False), where `d_p` is the gradient of `param` and `buf` is
|
877 |
+
the momentum buffer.
|
878 |
+
```
|
879 |
+
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
880 |
+
d_p = buf
|
881 |
+
param.add_(d_p, alpha=-lr)
|
882 |
+
```
|
883 |
+
Both `param` and `buf` take a gradient and perform an in-place update.
|
884 |
+
|
885 |
+
The python tracer will inspect calls to `nn.Module.forward` and
|
886 |
+
`optim.Optimizer.step` to extract parameter and optimizer state
|
887 |
+
respectively (including parameters), so this is generally a non-issue.
|
888 |
+
|
889 |
+
However as a fallback we can also exploit several properties of
|
890 |
+
parameters to distinguish them from other model state.
|
891 |
+
|
892 |
+
First, they are directly used in the forward pass. (At this point we
|
893 |
+
haven't established which parts of the graph correspond to the forward
|
894 |
+
pass but we can deduce enough to suffice.) Some mutable state such as
|
895 |
+
batch norm moving averages also contribute to the forward pass, but
|
896 |
+
optimizer state does not.
|
897 |
+
|
898 |
+
Second, a parameter is by definition used to compute at least one
|
899 |
+
gradient and depends on at least one gradient.
|
900 |
+
"""
|
901 |
+
snapshot = self._category_snapshot()
|
902 |
+
|
903 |
+
# Determine which Tensors might be parameters based on forward pass
|
904 |
+
# data flow. Note this these are only candidates; we filter nodes that
|
905 |
+
# we know are part of the backward pass but that doesn't guarantee that
|
906 |
+
# they are part of the forward pass.
|
907 |
+
candidate_parameters: Set[TensorAndID] = set()
|
908 |
+
candidate_fwd_tensors: Set[TensorAndID] = {
|
909 |
+
i for i, category in snapshot.items() if category == Category.INPUT
|
910 |
+
}
|
911 |
+
|
912 |
+
for node in self._data_flow_graph.flow_nodes:
|
913 |
+
inputs = {(key, value) for key, (_, value) in node.inputs.items()}
|
914 |
+
if (
|
915 |
+
# Don't check nodes in the backward pass.
|
916 |
+
RecordScope.BACKWARD_FUNCTION not in get_scopes(node._event)
|
917 |
+
and not any(self._is_gradient(*i) for i in inputs)
|
918 |
+
and not any(self._is_gradient(*i) for i in node.outputs.items())
|
919 |
+
#
|
920 |
+
# and only check nodes which depend on an input.
|
921 |
+
and candidate_fwd_tensors.intersection(inputs)
|
922 |
+
):
|
923 |
+
candidate_fwd_tensors |= node.outputs.items()
|
924 |
+
candidate_parameters |= inputs.difference(candidate_fwd_tensors)
|
925 |
+
|
926 |
+
# Require that each parameter eventually contributes to the value of a gradient
|
927 |
+
used_for_gradient: Set[TensorAndID] = set()
|
928 |
+
for node in reversed(self._data_flow_graph.flow_nodes):
|
929 |
+
if any(
|
930 |
+
self._is_gradient(*i) or i in used_for_gradient
|
931 |
+
for i in node.outputs.items()
|
932 |
+
):
|
933 |
+
for key, (_, version) in node.inputs.items():
|
934 |
+
used_for_gradient.add((key, version))
|
935 |
+
candidate_parameters.intersection_update(used_for_gradient)
|
936 |
+
|
937 |
+
# and depends on a gradient.
|
938 |
+
parameter_keys = {key.id for key, _ in candidate_parameters}
|
939 |
+
parameter_keys &= self._any_version_depends_on_gradient()
|
940 |
+
|
941 |
+
for key, _ in snapshot.keys():
|
942 |
+
if key.id in parameter_keys:
|
943 |
+
self._categories.set_by_id(key, Category.PARAMETER)
|
944 |
+
|
945 |
+
def _set_activations(self) -> None:
|
946 |
+
"""Flood the graph to identify activations."""
|
947 |
+
|
948 |
+
required = {Category.INPUT, Category.ACTIVATION}
|
949 |
+
also_allowed = {Category.PARAMETER, Category.TEMPORARY}
|
950 |
+
for node in self._data_flow_graph.flow_nodes:
|
951 |
+
inputs = {(key, value) for key, (_, value) in node.inputs.items()}
|
952 |
+
input_categories = {self._categories.get(*i) for i in inputs}
|
953 |
+
|
954 |
+
if (
|
955 |
+
(input_categories & required)
|
956 |
+
and not (input_categories - (required | also_allowed))
|
957 |
+
#
|
958 |
+
# Stop filling when we reach the backward pass.
|
959 |
+
and RecordScope.BACKWARD_FUNCTION not in get_scopes(node._event)
|
960 |
+
):
|
961 |
+
for i in node.outputs.items():
|
962 |
+
self._categories.setdefault_by_version(*i, Category.ACTIVATION)
|
963 |
+
|
964 |
+
def _set_optimizer_state(self) -> None:
|
965 |
+
for event in self._op_tree.dfs():
|
966 |
+
if event.typed[0] == _EventType.PyCall and event.typed[1].optimizer:
|
967 |
+
parameters = event.typed[1].optimizer.parameters
|
968 |
+
for _, t in it.chain(*[state for _, _, state in parameters]):
|
969 |
+
key = TensorKey.from_tensor(t)
|
970 |
+
if key is not None:
|
971 |
+
self._categories.set_by_id(key, Category.OPTIMIZER_STATE)
|
972 |
+
|
973 |
+
def _set_autograd_detail(self):
|
974 |
+
prior = {None, Category.AUTOGRAD_DETAIL}
|
975 |
+
for node in self._data_flow_graph.flow_nodes:
|
976 |
+
if RecordScope.BACKWARD_FUNCTION in get_scopes(node._event):
|
977 |
+
for key, version in node.outputs.items():
|
978 |
+
if version == 0 or self._categories.get(key, version - 1) in prior:
|
979 |
+
self._categories.setdefault_by_version(
|
980 |
+
key, version, Category.AUTOGRAD_DETAIL
|
981 |
+
)
|
982 |
+
|
983 |
+
|
984 |
+
class MemoryProfileTimeline:
|
985 |
+
def __init__(self, memory_profile):
|
986 |
+
"""The minimum representation of the memory profile timeline
|
987 |
+
includes the memory timeline and categories. The timeline
|
988 |
+
consists of [timestamp, action, (TensorKey, version), numbytes]
|
989 |
+
elements, to denote any actions (pre-existing, create, destroy,
|
990 |
+
or increment_version) that occurred to a specific Tensor for a
|
991 |
+
chunk of memory. The categories help map each (TensorKey,
|
992 |
+
version) pair into a category."""
|
993 |
+
self.timeline = memory_profile.timeline
|
994 |
+
self.categories = memory_profile._categories
|
995 |
+
|
996 |
+
def _coalesce_timeline(self, device_str):
|
997 |
+
"""Convert the memory timeline and categories into a memory plot
|
998 |
+
consisting of timestamps and their respective sizes by category
|
999 |
+
for a given device.
|
1000 |
+
|
1001 |
+
Input: device
|
1002 |
+
Output: [timestamps, sizes by category]
|
1003 |
+
"""
|
1004 |
+
device = torch.device(device_str)
|
1005 |
+
times: List[int] = []
|
1006 |
+
sizes: List[List[int]] = []
|
1007 |
+
|
1008 |
+
def update(key, version, delta):
|
1009 |
+
category = (
|
1010 |
+
self.categories.get(key, version)
|
1011 |
+
if isinstance(key, TensorKey)
|
1012 |
+
else None
|
1013 |
+
)
|
1014 |
+
index = _CATEGORY_TO_INDEX[category] + 1
|
1015 |
+
sizes[-1][index] += int(delta)
|
1016 |
+
|
1017 |
+
t_min = -1
|
1018 |
+
for t, action, (key, version), numbytes in self.timeline:
|
1019 |
+
if key.device != device:
|
1020 |
+
continue
|
1021 |
+
|
1022 |
+
# Convert timestamps from ns to us, to match trace events.
|
1023 |
+
if t != -1:
|
1024 |
+
t = int(t / 1000)
|
1025 |
+
|
1026 |
+
# Save the smallest timestamp to populate pre-existing allocs.
|
1027 |
+
if t_min == -1 or (t < t_min and t > 0):
|
1028 |
+
t_min = t
|
1029 |
+
|
1030 |
+
# Handle timestep
|
1031 |
+
if len(times) == 0:
|
1032 |
+
times.append(t)
|
1033 |
+
sizes.append([0] + [0 for _ in _CATEGORY_TO_INDEX])
|
1034 |
+
|
1035 |
+
elif t != times[-1]:
|
1036 |
+
times.append(t)
|
1037 |
+
sizes.append(sizes[-1].copy())
|
1038 |
+
|
1039 |
+
# Handle memory and categories
|
1040 |
+
if action in (Action.PREEXISTING, Action.CREATE):
|
1041 |
+
update(key, version, numbytes)
|
1042 |
+
|
1043 |
+
elif action == Action.INCREMENT_VERSION:
|
1044 |
+
update(key, version, -numbytes)
|
1045 |
+
update(key, version + 1, numbytes)
|
1046 |
+
|
1047 |
+
elif action == Action.DESTROY:
|
1048 |
+
update(key, version, -numbytes)
|
1049 |
+
|
1050 |
+
else:
|
1051 |
+
raise ValueError(f"Unknown action: {action}")
|
1052 |
+
|
1053 |
+
times = [t_min if t < 0 else t for t in times]
|
1054 |
+
return times, sizes
|
1055 |
+
|
1056 |
+
def export_memory_timeline(self, path, device) -> None:
|
1057 |
+
"""Saves the memory timeline as [times, sizes by category]
|
1058 |
+
as a JSON formatted file to the given path for the given
|
1059 |
+
device."""
|
1060 |
+
times, sizes = self._coalesce_timeline(device)
|
1061 |
+
# TODO: Write a faster serialize (orjson not available in CI)
|
1062 |
+
import json
|
1063 |
+
|
1064 |
+
with open(path, "w") as f:
|
1065 |
+
json.dump([times, sizes], f)
|
1066 |
+
|
1067 |
+
def export_memory_timeline_raw(self, path, device_str) -> None:
|
1068 |
+
"""Saves the memory timeline as raw memory event tuples in the
|
1069 |
+
form of (timestamp, action, numbytes, category)
|
1070 |
+
as a JSON formatted file to the given path for the given
|
1071 |
+
device."""
|
1072 |
+
device = torch.device(device_str)
|
1073 |
+
raw_events: List[Tuple[int, int, int, int]] = []
|
1074 |
+
|
1075 |
+
def get_category_index(key, version):
|
1076 |
+
category = (
|
1077 |
+
self.categories.get(key, version)
|
1078 |
+
if isinstance(key, TensorKey)
|
1079 |
+
else None
|
1080 |
+
)
|
1081 |
+
return _CATEGORY_TO_INDEX[category]
|
1082 |
+
|
1083 |
+
for t, action, (key, version), numbytes in self.timeline:
|
1084 |
+
if key.device != device:
|
1085 |
+
continue
|
1086 |
+
|
1087 |
+
if action in (Action.PREEXISTING, Action.CREATE):
|
1088 |
+
raw_events.append(
|
1089 |
+
(
|
1090 |
+
t,
|
1091 |
+
_ACTION_TO_INDEX[action],
|
1092 |
+
numbytes,
|
1093 |
+
get_category_index(key, version),
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
elif action == Action.INCREMENT_VERSION:
|
1098 |
+
raw_events.append(
|
1099 |
+
(
|
1100 |
+
t,
|
1101 |
+
_ACTION_TO_INDEX[action],
|
1102 |
+
-numbytes,
|
1103 |
+
get_category_index(key, version),
|
1104 |
+
)
|
1105 |
+
)
|
1106 |
+
raw_events.append(
|
1107 |
+
(
|
1108 |
+
t,
|
1109 |
+
_ACTION_TO_INDEX[action],
|
1110 |
+
numbytes,
|
1111 |
+
get_category_index(key, version + 1),
|
1112 |
+
)
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
elif action == Action.DESTROY:
|
1116 |
+
raw_events.append(
|
1117 |
+
(
|
1118 |
+
t,
|
1119 |
+
_ACTION_TO_INDEX[action],
|
1120 |
+
-numbytes,
|
1121 |
+
get_category_index(key, version),
|
1122 |
+
)
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
else:
|
1126 |
+
raise ValueError(f"Unknown action: {action}")
|
1127 |
+
|
1128 |
+
import json
|
1129 |
+
|
1130 |
+
with open(path, "w") as f:
|
1131 |
+
json.dump(raw_events, f)
|
1132 |
+
|
1133 |
+
def export_memory_timeline_html(
|
1134 |
+
self, path, device, figsize=(20, 12), title=None
|
1135 |
+
) -> None:
|
1136 |
+
"""Exports the memory timeline as an HTML file which contains
|
1137 |
+
the memory timeline plot embedded as a PNG file."""
|
1138 |
+
# Check if user has matplotlib installed, return gracefully if not.
|
1139 |
+
import importlib.util
|
1140 |
+
|
1141 |
+
matplotlib_spec = importlib.util.find_spec("matplotlib")
|
1142 |
+
if matplotlib_spec is None:
|
1143 |
+
print(
|
1144 |
+
"export_memory_timeline_html failed because matplotlib was not found."
|
1145 |
+
)
|
1146 |
+
return
|
1147 |
+
|
1148 |
+
from base64 import b64encode
|
1149 |
+
from os import remove
|
1150 |
+
from tempfile import NamedTemporaryFile
|
1151 |
+
|
1152 |
+
import matplotlib.pyplot as plt
|
1153 |
+
import numpy as np
|
1154 |
+
|
1155 |
+
mt = self._coalesce_timeline(device)
|
1156 |
+
times, sizes = np.array(mt[0]), np.array(mt[1])
|
1157 |
+
# For this timeline, start at 0 to match Chrome traces.
|
1158 |
+
t_min = min(times)
|
1159 |
+
times -= t_min
|
1160 |
+
stacked = np.cumsum(sizes, axis=1) / 1024**3
|
1161 |
+
max_memory_allocated = torch.cuda.max_memory_allocated()
|
1162 |
+
max_memory_reserved = torch.cuda.max_memory_reserved()
|
1163 |
+
|
1164 |
+
# Plot memory timeline as stacked data
|
1165 |
+
fig = plt.figure(figsize=figsize, dpi=80)
|
1166 |
+
axes = fig.gca()
|
1167 |
+
for category, color in _CATEGORY_TO_COLORS.items():
|
1168 |
+
i = _CATEGORY_TO_INDEX[category]
|
1169 |
+
axes.fill_between(
|
1170 |
+
times / 1e3, stacked[:, i], stacked[:, i + 1], color=color, alpha=0.7
|
1171 |
+
)
|
1172 |
+
fig.legend(["Unknown" if i is None else i.name for i in _CATEGORY_TO_COLORS])
|
1173 |
+
# Usually training steps are in magnitude of ms.
|
1174 |
+
axes.set_xlabel("Time (ms)")
|
1175 |
+
axes.set_ylabel("Memory (GB)")
|
1176 |
+
title = "\n\n".join(
|
1177 |
+
([title] if title else [])
|
1178 |
+
+ [
|
1179 |
+
f"Max memory allocated: {max_memory_allocated/(10**9):.2f} GB \n"
|
1180 |
+
f"Max memory reserved: {max_memory_reserved/(10**9):.2f} GB"
|
1181 |
+
]
|
1182 |
+
)
|
1183 |
+
axes.set_title(title)
|
1184 |
+
|
1185 |
+
# Embed the memory timeline image into the HTML file
|
1186 |
+
tmpfile = NamedTemporaryFile("wb", suffix=".png", delete=False)
|
1187 |
+
tmpfile.close()
|
1188 |
+
fig.savefig(tmpfile.name, format="png")
|
1189 |
+
|
1190 |
+
with open(tmpfile.name, "rb") as tmp:
|
1191 |
+
encoded = b64encode(tmp.read()).decode("utf-8")
|
1192 |
+
html = f"""<html>
|
1193 |
+
<head><meta charset="utf-8" /><title>GPU Memory Timeline HTML</title></head>
|
1194 |
+
<body>
|
1195 |
+
<img src='data:image/png;base64,{encoded}'>
|
1196 |
+
</body>
|
1197 |
+
</html>"""
|
1198 |
+
|
1199 |
+
with open(path, "w") as f:
|
1200 |
+
f.write(html)
|
1201 |
+
remove(tmpfile.name)
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/_pattern_matcher.py
ADDED
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from typing import Dict, List, Optional, Set
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.benchmark as benchmark
|
9 |
+
from torch._C._profiler import (
|
10 |
+
_EventType,
|
11 |
+
_ExtraFields_PyCall,
|
12 |
+
_ExtraFields_PyCCall,
|
13 |
+
_ExtraFields_TorchOp,
|
14 |
+
_ProfilerEvent,
|
15 |
+
)
|
16 |
+
from torch.profiler import profile
|
17 |
+
from torch.profiler._utils import index_of_first_match, traverse_bfs, traverse_dfs
|
18 |
+
|
19 |
+
|
20 |
+
class Pattern:
|
21 |
+
"""
|
22 |
+
Base class for all patterns, subclass this class and implement match()
|
23 |
+
to define custom patterns.
|
24 |
+
|
25 |
+
In subclass, define description and skip property.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
29 |
+
self.prof = prof
|
30 |
+
self.should_benchmark = should_benchmark
|
31 |
+
self.name = "Please specify a name for pattern"
|
32 |
+
self.description = "Please specify a description for pattern"
|
33 |
+
self.url = ""
|
34 |
+
assert prof.profiler is not None and prof.profiler.kineto_results is not None
|
35 |
+
self.event_tree = prof.profiler.kineto_results.experimental_event_tree()
|
36 |
+
self.tid_root: Dict[int, List[_ProfilerEvent]] = {}
|
37 |
+
for event in self.event_tree:
|
38 |
+
self.tid_root.setdefault(event.start_tid, []).append(event)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def skip(self):
|
42 |
+
return False
|
43 |
+
|
44 |
+
def report(self, event: _ProfilerEvent):
|
45 |
+
msg = (
|
46 |
+
f"{self.description}\n[Source Code Location] {source_code_location(event)}"
|
47 |
+
)
|
48 |
+
return msg
|
49 |
+
|
50 |
+
def eventTreeTraversal(self):
|
51 |
+
"""
|
52 |
+
Traverse the event tree and yield all events.
|
53 |
+
Override this method in subclass to customize the traversal.
|
54 |
+
"""
|
55 |
+
yield from traverse_dfs(self.event_tree)
|
56 |
+
|
57 |
+
def summary(self, events: List[_ProfilerEvent]):
|
58 |
+
default_summary = f"{self.name}: {len(events)} events matched."
|
59 |
+
if self.should_benchmark:
|
60 |
+
# If benchmark summary is not empty, use it.
|
61 |
+
return (
|
62 |
+
self.benchmark_summary(events)
|
63 |
+
if hasattr(self, "benchmark") # type: ignore[attr-defined]
|
64 |
+
else default_summary
|
65 |
+
)
|
66 |
+
return default_summary
|
67 |
+
|
68 |
+
def benchmark_summary(self, events: List[_ProfilerEvent]):
|
69 |
+
def format_time(time_ns: int):
|
70 |
+
unit_lst = ["ns", "us", "ms"]
|
71 |
+
for unit in unit_lst:
|
72 |
+
if time_ns < 1000:
|
73 |
+
return f"{time_ns:.2f} {unit}"
|
74 |
+
time_ns //= 1000
|
75 |
+
return f"{time_ns:.2f} s"
|
76 |
+
|
77 |
+
assert hasattr(self, "benchmark"), "Please implement benchmark()"
|
78 |
+
shapes_factor_map = self.benchmark(events) # type: ignore[attr-defined]
|
79 |
+
original_time = sum(event.duration_time_ns for event in events)
|
80 |
+
new_time = sum(
|
81 |
+
shapes_factor_map[input_shapes(event)] * event.duration_time_ns
|
82 |
+
for event in events
|
83 |
+
)
|
84 |
+
return (
|
85 |
+
f"{self.name}: {len(events)} events matched. "
|
86 |
+
f"Total Estimated Speedup: {format_time(original_time - new_time)} ({round(original_time/new_time, 2)}X)"
|
87 |
+
)
|
88 |
+
|
89 |
+
def match(self, event: _ProfilerEvent):
|
90 |
+
"""
|
91 |
+
Return True if the event matches the pattern.
|
92 |
+
This method should be overriden in subclass.
|
93 |
+
"""
|
94 |
+
raise NotImplementedError
|
95 |
+
|
96 |
+
def matched_events(self):
|
97 |
+
if self.skip:
|
98 |
+
return []
|
99 |
+
matched_events = []
|
100 |
+
for event in self.eventTreeTraversal():
|
101 |
+
if self.match(event):
|
102 |
+
matched_events.append(event)
|
103 |
+
return matched_events
|
104 |
+
|
105 |
+
def root_of(self, event: _ProfilerEvent):
|
106 |
+
while event.parent:
|
107 |
+
event = event.parent
|
108 |
+
return event
|
109 |
+
|
110 |
+
def siblings_of(self, event: _ProfilerEvent):
|
111 |
+
if event.parent:
|
112 |
+
children = event.parent.children
|
113 |
+
else:
|
114 |
+
children = self.tid_root[event.start_tid]
|
115 |
+
index = children.index(event)
|
116 |
+
return children[:index], children[index + 1 :]
|
117 |
+
|
118 |
+
def next_of(self, event: _ProfilerEvent):
|
119 |
+
_, next_events = self.siblings_of(event)
|
120 |
+
return next_events[0] if next_events else None
|
121 |
+
|
122 |
+
def prev_of(self, event: _ProfilerEvent):
|
123 |
+
prev_events, _ = self.siblings_of(event)
|
124 |
+
return prev_events[-1] if prev_events else None
|
125 |
+
|
126 |
+
def go_up_until(self, event: _ProfilerEvent, predicate):
|
127 |
+
if not event:
|
128 |
+
return None
|
129 |
+
while event.parent and not predicate(event):
|
130 |
+
event = event.parent
|
131 |
+
return event
|
132 |
+
|
133 |
+
|
134 |
+
# Patterns
|
135 |
+
|
136 |
+
|
137 |
+
class NamePattern(Pattern):
|
138 |
+
def __init__(self, prof: profile, name: str, should_benchmark: bool = False):
|
139 |
+
super().__init__(prof, should_benchmark)
|
140 |
+
self.description = f"Matched Name Event: {name}"
|
141 |
+
self.name = name
|
142 |
+
|
143 |
+
def match(self, event: _ProfilerEvent):
|
144 |
+
return re.search(self.name, event.name) is not None
|
145 |
+
|
146 |
+
|
147 |
+
class ExtraCUDACopyPattern(Pattern):
|
148 |
+
"""
|
149 |
+
This pattern identifies if we creates a constant tensor on CPU and immediately moves it to GPU.
|
150 |
+
example: torch.zeros((100, 100)).to("cuda")
|
151 |
+
|
152 |
+
Pattern:
|
153 |
+
build-in method |build-in method
|
154 |
+
... | aten::to
|
155 |
+
aten::fill_/aten::zero_ | aten::_to_copy
|
156 |
+
|
157 |
+
Algorithm:
|
158 |
+
We start at node aten::to, go parent events' previous events,
|
159 |
+
and check if we have a aten::fill_/aten::zero_ as we keep going down the tree.
|
160 |
+
We always select the last child in the children list when we go down the tree.
|
161 |
+
If at any step we failed, it is not a match.
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
165 |
+
super().__init__(prof, should_benchmark)
|
166 |
+
self.name = "Extra CUDA Copy Pattern"
|
167 |
+
self.description = "Filled a CPU tensor and immediately moved it to GPU. Please initialize it on GPU."
|
168 |
+
self.url = "https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#create-tensors-directly-on-the-target-device"
|
169 |
+
self.init_ops = {
|
170 |
+
"aten::fill_",
|
171 |
+
"aten::zero_",
|
172 |
+
"aten::normal_",
|
173 |
+
"aten::uniform_",
|
174 |
+
}
|
175 |
+
|
176 |
+
@property
|
177 |
+
def skip(self):
|
178 |
+
return not self.prof.with_stack or not self.prof.record_shapes
|
179 |
+
|
180 |
+
def match(self, event):
|
181 |
+
# TODO: We should also check tensor identities
|
182 |
+
if event.name != "aten::to":
|
183 |
+
return False
|
184 |
+
to_event = event
|
185 |
+
if not event.children:
|
186 |
+
return False
|
187 |
+
event = event.children[-1]
|
188 |
+
if event.name != "aten::_to_copy":
|
189 |
+
return False
|
190 |
+
if not event.children:
|
191 |
+
return False
|
192 |
+
event = event.children[-1]
|
193 |
+
if event.name != "aten::copy_":
|
194 |
+
return False
|
195 |
+
# aten::copy_ should have the first 2 args dtype the same
|
196 |
+
dtypes = input_dtypes(event)
|
197 |
+
if len(dtypes) < 2:
|
198 |
+
return False
|
199 |
+
if dtypes[0] is None or dtypes[0] != dtypes[1]:
|
200 |
+
return False
|
201 |
+
event = to_event
|
202 |
+
# Up one level
|
203 |
+
event = event.parent
|
204 |
+
if event is None:
|
205 |
+
return False
|
206 |
+
# Check if we have a aten::fill_ in previous leaf
|
207 |
+
event = self.prev_of(event)
|
208 |
+
if event is None:
|
209 |
+
return False
|
210 |
+
while event.children:
|
211 |
+
event = event.children[-1]
|
212 |
+
# aten::zero_ is a special optimzation case where fill_ is not called
|
213 |
+
if event.name in self.init_ops:
|
214 |
+
return True
|
215 |
+
return event.name in self.init_ops
|
216 |
+
# TODO: Check if tensor is reused
|
217 |
+
|
218 |
+
def benchmark(self, events: List[_ProfilerEvent]):
|
219 |
+
shapes_factor_map = {input_shapes(event): 0.0 for event in events}
|
220 |
+
for shape in shapes_factor_map:
|
221 |
+
size = shape[0]
|
222 |
+
to_timer = benchmark.Timer(
|
223 |
+
stmt='torch.ones(size).to("cuda")', globals={"size": size}
|
224 |
+
)
|
225 |
+
de_timer = benchmark.Timer(
|
226 |
+
stmt='torch.ones(size, device="cuda")', globals={"size": size}
|
227 |
+
)
|
228 |
+
to_time = to_timer.timeit(10).mean
|
229 |
+
de_time = de_timer.timeit(10).mean
|
230 |
+
shapes_factor_map[shape] = de_time / to_time
|
231 |
+
return shapes_factor_map
|
232 |
+
|
233 |
+
|
234 |
+
class ForLoopIndexingPattern(Pattern):
|
235 |
+
"""
|
236 |
+
This pattern identifies if we use a for loop to index a tensor that
|
237 |
+
can be vectorized.
|
238 |
+
example:
|
239 |
+
tensor = torch.empty((100, 100))
|
240 |
+
for i in range(100):
|
241 |
+
tensor[i] = i
|
242 |
+
|
243 |
+
Pattern:
|
244 |
+
aten::select | ... | aten::select | ... (Repeat)
|
245 |
+
|
246 |
+
Algorithm:
|
247 |
+
We start at node aten::select, and we check if we can find this alternating patterns.
|
248 |
+
We also keep a dictionary to avoid duplicate match in the for loop.
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
252 |
+
super().__init__(prof, should_benchmark)
|
253 |
+
self.name = "For Loop Indexing Pattern"
|
254 |
+
self.description = "For loop indexing detected. Vectorization recommended."
|
255 |
+
self.visited: Set[int] = set()
|
256 |
+
|
257 |
+
def eventTreeTraversal(self):
|
258 |
+
"""
|
259 |
+
We need to use BFS traversal order to avoid duplicate match.
|
260 |
+
"""
|
261 |
+
yield from traverse_bfs(self.event_tree)
|
262 |
+
|
263 |
+
def match(self, event: _ProfilerEvent):
|
264 |
+
if event.name != "aten::select":
|
265 |
+
return False
|
266 |
+
if event.id in self.visited:
|
267 |
+
return False
|
268 |
+
repeat_count = 1
|
269 |
+
_, next = self.siblings_of(event)
|
270 |
+
if len(next) <= 1:
|
271 |
+
return False
|
272 |
+
|
273 |
+
# Custom event list matching
|
274 |
+
def same_ops(list1, list2):
|
275 |
+
if len(list1) != len(list2):
|
276 |
+
return False
|
277 |
+
for op1, op2 in zip(list1, list2):
|
278 |
+
if op1.name != op2.name:
|
279 |
+
return False
|
280 |
+
return True
|
281 |
+
|
282 |
+
# Record the ops between two aten::select
|
283 |
+
next_select_idx = index_of_first_match(next, lambda e: e.name == "aten::select")
|
284 |
+
if next_select_idx is None:
|
285 |
+
return False
|
286 |
+
indexing_ops = [event] + next[:next_select_idx]
|
287 |
+
next = next[len(indexing_ops) - 1 :]
|
288 |
+
for i in range(0, len(next), len(indexing_ops)):
|
289 |
+
if same_ops(indexing_ops, next[i : i + len(indexing_ops)]):
|
290 |
+
repeat_count += 1
|
291 |
+
self.visited.add(next[i].id)
|
292 |
+
else:
|
293 |
+
break
|
294 |
+
return repeat_count >= 10
|
295 |
+
|
296 |
+
|
297 |
+
class FP32MatMulPattern(Pattern):
|
298 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
299 |
+
super().__init__(prof, should_benchmark)
|
300 |
+
self.name = "FP32 MatMul Pattern"
|
301 |
+
self.description = (
|
302 |
+
"You are currently using GPU that supports TF32. "
|
303 |
+
"Please enable TF32 by setting 'torch.backends.cuda.matmul.allow_tf32 = True'"
|
304 |
+
)
|
305 |
+
self.url = "https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
306 |
+
|
307 |
+
@property
|
308 |
+
def skip(self):
|
309 |
+
if torch.version.hip is not None:
|
310 |
+
has_tf32 = False
|
311 |
+
else:
|
312 |
+
# Anything less than sm_80 is not Ampere which doesn't support TF32
|
313 |
+
has_tf32 = all(int(arch[3:]) >= 80 for arch in torch.cuda.get_arch_list())
|
314 |
+
return has_tf32 is False or super().skip or not self.prof.record_shapes
|
315 |
+
|
316 |
+
def match(self, event: _ProfilerEvent):
|
317 |
+
# If we saw this pattern once, we don't need to match it again
|
318 |
+
if event.tag != _EventType.TorchOp:
|
319 |
+
return False
|
320 |
+
assert isinstance(event.extra_fields, _ExtraFields_TorchOp)
|
321 |
+
if event.name == "aten::mm":
|
322 |
+
if event.extra_fields.allow_tf32_cublas is False:
|
323 |
+
return True
|
324 |
+
return False
|
325 |
+
|
326 |
+
def report(self, event: _ProfilerEvent):
|
327 |
+
return self.description
|
328 |
+
|
329 |
+
def benchmark(self, events: List[_ProfilerEvent]):
|
330 |
+
shapes_factor_map = {input_shapes(event): 0.0 for event in events}
|
331 |
+
for shape in shapes_factor_map:
|
332 |
+
matrixA = torch.randn(shape[0], device="cuda", dtype=torch.float32)
|
333 |
+
matrixB = torch.randn(shape[1], device="cuda", dtype=torch.float32)
|
334 |
+
fp32_timer = benchmark.Timer(
|
335 |
+
stmt="torch.mm(matrixA, matrixB)",
|
336 |
+
globals={"matrixA": matrixA, "matrixB": matrixB},
|
337 |
+
)
|
338 |
+
tf32_timer = benchmark.Timer(
|
339 |
+
stmt="torch.mm(matrixA, matrixB)",
|
340 |
+
setup="torch.backends.cuda.matmul.allow_tf32 = True",
|
341 |
+
globals={"matrixA": matrixA, "matrixB": matrixB},
|
342 |
+
)
|
343 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
344 |
+
fp32_time = fp32_timer.timeit(10).mean
|
345 |
+
tf32_time = tf32_timer.timeit(10).mean
|
346 |
+
shapes_factor_map[shape] = tf32_time / fp32_time
|
347 |
+
return shapes_factor_map
|
348 |
+
|
349 |
+
|
350 |
+
class OptimizerSingleTensorPattern(Pattern):
|
351 |
+
"""
|
352 |
+
This pattern identifies if we are using the single-tensor version of an optimizer.
|
353 |
+
example:
|
354 |
+
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
355 |
+
By adding foreach=True to enable multi-tensor optimizer, we can gain speedup when
|
356 |
+
the kernels are relatively small.
|
357 |
+
|
358 |
+
Pattern:
|
359 |
+
XXXXX: _single_tenser_<OPTIMIZER_NAME>
|
360 |
+
|
361 |
+
Algorithm:
|
362 |
+
String match
|
363 |
+
"""
|
364 |
+
|
365 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
366 |
+
super().__init__(prof, should_benchmark)
|
367 |
+
self.name = "Optimizer Single Tensor Pattern"
|
368 |
+
self.optimizers_with_foreach = ["adam", "sgd", "adamw"]
|
369 |
+
self.description = (
|
370 |
+
"Deteced optimizer running with single tensor implementation. "
|
371 |
+
"Please enable multi tensor implementation by passing 'foreach=True' into optimizer."
|
372 |
+
)
|
373 |
+
self.url = ""
|
374 |
+
|
375 |
+
def match(self, event: _ProfilerEvent):
|
376 |
+
for optimizer in self.optimizers_with_foreach:
|
377 |
+
if event.name.endswith(f"_single_tensor_{optimizer}"):
|
378 |
+
return True
|
379 |
+
return False
|
380 |
+
|
381 |
+
|
382 |
+
class SynchronizedDataLoaderPattern(Pattern):
|
383 |
+
"""
|
384 |
+
This pattern identifies if we are using num_workers=0 in DataLoader.
|
385 |
+
example:
|
386 |
+
torch.utils.data.DataLoader(dataset, batch_size=batch_size)
|
387 |
+
Add num_workers=N to the arguments. N depends on system configuration.
|
388 |
+
|
389 |
+
Pattern:
|
390 |
+
dataloader.py(...): __iter__
|
391 |
+
dataloader.py(...): _get_iterator
|
392 |
+
NOT dataloader.py(...): check_worker_number_rationality
|
393 |
+
|
394 |
+
Algorithm:
|
395 |
+
If we don't see check_worker_number_rationality call in the dataloader __iter__,
|
396 |
+
It is not an asynchronous dataloader.
|
397 |
+
|
398 |
+
"""
|
399 |
+
|
400 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
401 |
+
super().__init__(prof, should_benchmark)
|
402 |
+
self.name = "Synchronized DataLoader Pattern"
|
403 |
+
self.description = (
|
404 |
+
"Detected DataLoader running with synchronized implementation. "
|
405 |
+
"Please enable asynchronous dataloading by setting num_workers > 0 when initializing DataLoader."
|
406 |
+
)
|
407 |
+
self.url = (
|
408 |
+
"https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html"
|
409 |
+
"#enable-async-data-loading-and-augmentation"
|
410 |
+
)
|
411 |
+
|
412 |
+
def match(self, event: _ProfilerEvent):
|
413 |
+
def is_dataloader_function(name: str, function_name: str):
|
414 |
+
return name.startswith(
|
415 |
+
os.path.join("torch", "utils", "data", "dataloader.py")
|
416 |
+
) and name.endswith(function_name)
|
417 |
+
|
418 |
+
# TODO: fixme! Due to lifetime issues of the function name, this field might
|
419 |
+
# actually point to an already freed string when the even is a PyCall.
|
420 |
+
# Just silently skip this to unblock testing.
|
421 |
+
try:
|
422 |
+
event.name
|
423 |
+
except UnicodeDecodeError:
|
424 |
+
return False
|
425 |
+
|
426 |
+
if not is_dataloader_function(event.name, "__iter__"):
|
427 |
+
return False
|
428 |
+
if not event.children:
|
429 |
+
return False
|
430 |
+
event = event.children[0]
|
431 |
+
if not is_dataloader_function(event.name, "_get_iterator"):
|
432 |
+
return False
|
433 |
+
if not event.children:
|
434 |
+
return False
|
435 |
+
event = event.children[0]
|
436 |
+
return not is_dataloader_function(event.name, "check_worker_number_rationality")
|
437 |
+
# TODO: We should also check if the loader is bottleneck.
|
438 |
+
|
439 |
+
|
440 |
+
class GradNotSetToNonePattern(Pattern):
|
441 |
+
"""
|
442 |
+
This pattern identifies if we are not setting grad to None in zero_grad.
|
443 |
+
example:
|
444 |
+
optimizer.zero_grad()
|
445 |
+
By setting set_to_none=True, we can gain speedup
|
446 |
+
|
447 |
+
Pattern:
|
448 |
+
XXXXX: _zero_grad
|
449 |
+
NOT aten::zeros
|
450 |
+
aten::zero_
|
451 |
+
|
452 |
+
aten::zero_ is called on each parameter in the model.
|
453 |
+
We also want to make sure it is not called by aten::zeros.
|
454 |
+
|
455 |
+
Algorithm:
|
456 |
+
String match
|
457 |
+
"""
|
458 |
+
|
459 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
460 |
+
super().__init__(prof, should_benchmark)
|
461 |
+
self.name = "Gradient Set To Zero Instead of None Pattern"
|
462 |
+
self.description = (
|
463 |
+
"Detected gradient set to zero instead of None. "
|
464 |
+
"Please add 'set_to_none=True' when calling zero_grad()."
|
465 |
+
)
|
466 |
+
self.url = (
|
467 |
+
"https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html"
|
468 |
+
"#disable-gradient-calculation-for-validation-or-inference"
|
469 |
+
)
|
470 |
+
|
471 |
+
def match(self, event: _ProfilerEvent):
|
472 |
+
if not event.name.endswith(": zero_grad"):
|
473 |
+
return False
|
474 |
+
if not event.children:
|
475 |
+
return False
|
476 |
+
|
477 |
+
for sub_event in traverse_dfs(event.children):
|
478 |
+
if (
|
479 |
+
sub_event.name == "aten::zero_"
|
480 |
+
and sub_event.parent.name != "aten::zeros"
|
481 |
+
):
|
482 |
+
return True
|
483 |
+
# TODO: We should also check if the optimizer's numerical behavior will change.
|
484 |
+
return False
|
485 |
+
|
486 |
+
|
487 |
+
class Conv2dBiasFollowedByBatchNorm2dPattern(Pattern):
|
488 |
+
"""
|
489 |
+
This pattern identifies if we are enabling bias in Conv2d which is followed by BatchNorm2d.
|
490 |
+
Bias doesn't do anything when followed by batchnorm.
|
491 |
+
Pattern:
|
492 |
+
nn.Module: Conv2d | nn.Module: BatchNorm2d
|
493 |
+
...
|
494 |
+
aten::conv2d AND dtype of third argument is not null
|
495 |
+
The third argument is the bias
|
496 |
+
Algorithm:
|
497 |
+
String match
|
498 |
+
"""
|
499 |
+
|
500 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
501 |
+
super().__init__(prof, should_benchmark)
|
502 |
+
self.name = "Enabling Bias in Conv2d Followed By BatchNorm Pattern"
|
503 |
+
self.description = "Detected bias enabled in Conv2d that is followed by BatchNorm2d. Please set 'bias=False' in Conv2d."
|
504 |
+
self.url = (
|
505 |
+
"https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html"
|
506 |
+
"#disable-bias-for-convolutions-directly-followed-by-a-batch-norm"
|
507 |
+
)
|
508 |
+
|
509 |
+
@property
|
510 |
+
def skip(self):
|
511 |
+
return self.prof.record_shapes is False or super().skip
|
512 |
+
|
513 |
+
def match(self, event: _ProfilerEvent):
|
514 |
+
if event.name != "aten::conv2d":
|
515 |
+
return False
|
516 |
+
if len(input_dtypes(event)) < 3 or input_dtypes(event)[2] is None:
|
517 |
+
return False
|
518 |
+
# This means bias=True
|
519 |
+
event = self.go_up_until(
|
520 |
+
event, lambda e: e.name.startswith("nn.Module: Conv2d")
|
521 |
+
)
|
522 |
+
if not event:
|
523 |
+
return False
|
524 |
+
event = self.next_of(event)
|
525 |
+
if not event:
|
526 |
+
return False
|
527 |
+
return event.name.startswith("nn.Module: BatchNorm2d")
|
528 |
+
|
529 |
+
|
530 |
+
class MatMulDimInFP16Pattern(Pattern):
|
531 |
+
def __init__(self, prof: profile, should_benchmark: bool = False):
|
532 |
+
super().__init__(prof, should_benchmark)
|
533 |
+
self.name = "Matrix Multiplication Dimension Not Aligned Pattern"
|
534 |
+
self.description = "Detected matmul with dimension not aligned. Please use matmul with aligned dimension."
|
535 |
+
self.url = "https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#use-mixed-precision-and-amp"
|
536 |
+
|
537 |
+
@property
|
538 |
+
def skip(self):
|
539 |
+
return not self.prof.with_stack or not self.prof.record_shapes
|
540 |
+
|
541 |
+
def match(self, event: _ProfilerEvent):
|
542 |
+
def mutiple_of(shapes, multiple):
|
543 |
+
return all(dim % multiple == 0 for shape in shapes for dim in shape[-2:])
|
544 |
+
|
545 |
+
if event.name not in ("aten::mm", "aten::bmm", "aten::addmm"):
|
546 |
+
return False
|
547 |
+
if not input_dtypes(event):
|
548 |
+
return False
|
549 |
+
arg_dtype = input_dtypes(event)[0]
|
550 |
+
if arg_dtype in (torch.bfloat16, torch.half) and not mutiple_of(
|
551 |
+
input_shapes(event), 8
|
552 |
+
):
|
553 |
+
return True
|
554 |
+
return False
|
555 |
+
|
556 |
+
def benchmark(self, events: List[_ProfilerEvent]):
|
557 |
+
def closest_multiple(shapes, multiple):
|
558 |
+
return [multiple * math.ceil(shape / multiple) for shape in shapes]
|
559 |
+
|
560 |
+
shapes_factor_map = {input_shapes(event): 0.0 for event in events}
|
561 |
+
for shape in shapes_factor_map:
|
562 |
+
matrixA = torch.randn(shape[0], device="cuda", dtype=torch.float16)
|
563 |
+
matrixB = torch.randn(shape[1], device="cuda", dtype=torch.float16)
|
564 |
+
not_aligned_dim_timer = benchmark.Timer(
|
565 |
+
stmt="torch.mm(matrixA, matrixB)",
|
566 |
+
globals={"matrixA": matrixA, "matrixB": matrixB},
|
567 |
+
)
|
568 |
+
matrixA = torch.randn(
|
569 |
+
closest_multiple(shape[0], 8), device="cuda", dtype=torch.float16
|
570 |
+
)
|
571 |
+
matrixB = torch.randn(
|
572 |
+
closest_multiple(shape[1], 8), device="cuda", dtype=torch.float16
|
573 |
+
)
|
574 |
+
aligned_dim_timer = benchmark.Timer(
|
575 |
+
stmt="torch.mm(matrixA, matrixB)",
|
576 |
+
globals={"matrixA": matrixA, "matrixB": matrixB},
|
577 |
+
)
|
578 |
+
not_aligned_dim_time = not_aligned_dim_timer.timeit(10).mean
|
579 |
+
aligned_dim_time = aligned_dim_timer.timeit(10).mean
|
580 |
+
shapes_factor_map[shape] = aligned_dim_time / not_aligned_dim_time
|
581 |
+
return shapes_factor_map
|
582 |
+
|
583 |
+
|
584 |
+
def source_code_location(event: Optional[_ProfilerEvent]):
|
585 |
+
while event:
|
586 |
+
if event.tag == _EventType.PyCall or event.tag == _EventType.PyCCall:
|
587 |
+
assert isinstance(
|
588 |
+
event.extra_fields, (_ExtraFields_PyCall, _ExtraFields_PyCCall)
|
589 |
+
)
|
590 |
+
if not event.extra_fields.caller.file_name.startswith("torch" + os.sep):
|
591 |
+
return f"{event.extra_fields.caller.file_name}:{event.extra_fields.caller.line_number}"
|
592 |
+
event = event.parent
|
593 |
+
return "No source code location found"
|
594 |
+
|
595 |
+
|
596 |
+
def input_shapes(event: _ProfilerEvent):
|
597 |
+
assert isinstance(event.extra_fields, _ExtraFields_TorchOp)
|
598 |
+
return tuple(tuple(getattr(i, "sizes", ())) for i in event.extra_fields.inputs)
|
599 |
+
|
600 |
+
|
601 |
+
def input_dtypes(event: _ProfilerEvent):
|
602 |
+
assert isinstance(event.extra_fields, _ExtraFields_TorchOp)
|
603 |
+
return tuple(getattr(i, "dtype", None) for i in event.extra_fields.inputs)
|
604 |
+
|
605 |
+
|
606 |
+
def report_all_anti_patterns(
|
607 |
+
prof,
|
608 |
+
should_benchmark: bool = False,
|
609 |
+
print_enable: bool = True,
|
610 |
+
json_report_dir: Optional[str] = None,
|
611 |
+
):
|
612 |
+
report_dict: Dict = {}
|
613 |
+
anti_patterns = [
|
614 |
+
ExtraCUDACopyPattern(prof, should_benchmark),
|
615 |
+
# ForLoopIndexingPattern(prof, should_benchmark),
|
616 |
+
FP32MatMulPattern(prof, should_benchmark),
|
617 |
+
OptimizerSingleTensorPattern(prof, should_benchmark),
|
618 |
+
SynchronizedDataLoaderPattern(prof, should_benchmark),
|
619 |
+
GradNotSetToNonePattern(prof, should_benchmark),
|
620 |
+
Conv2dBiasFollowedByBatchNorm2dPattern(prof, should_benchmark),
|
621 |
+
MatMulDimInFP16Pattern(prof, should_benchmark),
|
622 |
+
]
|
623 |
+
reported = set()
|
624 |
+
summaries = []
|
625 |
+
message_list = [f"{'-'*40}TorchTidy Report{'-'*40}"]
|
626 |
+
message_list.append("Matched Events:")
|
627 |
+
|
628 |
+
for anti_pattern in anti_patterns:
|
629 |
+
matched_events = anti_pattern.matched_events()
|
630 |
+
if not matched_events:
|
631 |
+
continue
|
632 |
+
summaries.append(anti_pattern.summary(matched_events))
|
633 |
+
for event in matched_events:
|
634 |
+
report_msg = anti_pattern.report(event)
|
635 |
+
if report_msg not in reported:
|
636 |
+
message_list.append(report_msg)
|
637 |
+
reported.add(report_msg)
|
638 |
+
src_location, line_no = source_code_location(event).split(":")
|
639 |
+
report_dict.setdefault(src_location, []).append(
|
640 |
+
{
|
641 |
+
"line_number": int(line_no),
|
642 |
+
"name": anti_pattern.name,
|
643 |
+
"url": anti_pattern.url,
|
644 |
+
"message": anti_pattern.description,
|
645 |
+
}
|
646 |
+
)
|
647 |
+
|
648 |
+
if json_report_dir is not None:
|
649 |
+
json_report_path = os.path.join(json_report_dir, "torchtidy_report.json")
|
650 |
+
if os.path.exists(json_report_path):
|
651 |
+
with open(json_report_path) as f:
|
652 |
+
exisiting_report = json.load(f)
|
653 |
+
exisiting_report.update(report_dict)
|
654 |
+
report_dict = exisiting_report
|
655 |
+
with open(json_report_path, "w") as f:
|
656 |
+
json.dump(report_dict, f, indent=4)
|
657 |
+
|
658 |
+
message_list.append("Summary:")
|
659 |
+
message_list += summaries
|
660 |
+
message_list.append(f"{'-'*40}TorchTidy Report{'-'*40}")
|
661 |
+
if print_enable:
|
662 |
+
print("\n".join(message_list))
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/_utils.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import re
|
3 |
+
from collections import deque
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, List
|
6 |
+
|
7 |
+
from torch.autograd import _KinetoEvent
|
8 |
+
from torch.autograd.profiler import profile
|
9 |
+
|
10 |
+
from torch.profiler import DeviceType
|
11 |
+
|
12 |
+
|
13 |
+
def _traverse(tree, next_fn, children_fn=lambda x: x.children, reverse: bool = False):
|
14 |
+
order = reversed if reverse else lambda x: x
|
15 |
+
remaining = deque(order(tree))
|
16 |
+
while remaining:
|
17 |
+
curr_event = next_fn(remaining)
|
18 |
+
yield curr_event
|
19 |
+
for child_event in order(children_fn(curr_event)):
|
20 |
+
remaining.append(child_event)
|
21 |
+
|
22 |
+
|
23 |
+
traverse_dfs = functools.partial(_traverse, next_fn=lambda x: x.pop(), reverse=True)
|
24 |
+
traverse_bfs = functools.partial(
|
25 |
+
_traverse, next_fn=lambda x: x.popleft(), reverse=False
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class EventMetrics:
|
31 |
+
duration_time_ns: int = 0
|
32 |
+
self_time_ns: int = 0
|
33 |
+
idle_time_ns: int = 0
|
34 |
+
queue_depth: int = 0
|
35 |
+
|
36 |
+
@property
|
37 |
+
def fraction_idle_time(self):
|
38 |
+
if self.duration_time_ns == 0:
|
39 |
+
return 0.0
|
40 |
+
return self.idle_time_ns / self.duration_time_ns
|
41 |
+
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class Interval:
|
45 |
+
start: int
|
46 |
+
end: int
|
47 |
+
queue_depth: int = 0
|
48 |
+
|
49 |
+
|
50 |
+
class EventKey:
|
51 |
+
def __init__(self, event):
|
52 |
+
self.event = event
|
53 |
+
|
54 |
+
def __hash__(self):
|
55 |
+
return hash(self.event.id)
|
56 |
+
|
57 |
+
def __eq__(self, other):
|
58 |
+
return self.event.id == other.event.id
|
59 |
+
|
60 |
+
def __repr__(self):
|
61 |
+
return f"{self.event.name}"
|
62 |
+
|
63 |
+
def intervals_overlap(self, intervals: List[Interval]):
|
64 |
+
overlap_time = 0
|
65 |
+
intervals = sorted(intervals, key=lambda x: x.start)
|
66 |
+
|
67 |
+
if intervals:
|
68 |
+
overlap_start = max(self.event.start_time_ns, intervals[0].start)
|
69 |
+
overlap_end = min(self.event.end_time_ns, intervals[0].end)
|
70 |
+
|
71 |
+
if overlap_start < overlap_end:
|
72 |
+
overlap_time += overlap_end - overlap_start
|
73 |
+
|
74 |
+
i, j = 0, 1
|
75 |
+
while j < len(intervals):
|
76 |
+
prev_interval = intervals[i]
|
77 |
+
curr_interval = intervals[j]
|
78 |
+
j += 1
|
79 |
+
if prev_interval.end > curr_interval.start:
|
80 |
+
# Completely subsumed by previous interval
|
81 |
+
if prev_interval.end > curr_interval.end:
|
82 |
+
j += 1
|
83 |
+
continue
|
84 |
+
else:
|
85 |
+
curr_interval.start = prev_interval.end
|
86 |
+
i = j
|
87 |
+
|
88 |
+
overlap_start = max(self.event.start_time_ns, curr_interval.start)
|
89 |
+
overlap_end = min(self.event.end_time_ns, curr_interval.end)
|
90 |
+
if overlap_start < overlap_end:
|
91 |
+
overlap_time += overlap_end - overlap_start
|
92 |
+
|
93 |
+
return overlap_time
|
94 |
+
|
95 |
+
|
96 |
+
class BasicEvaluation:
|
97 |
+
def __init__(self, prof: profile):
|
98 |
+
self.profile = prof
|
99 |
+
self.metrics: Dict[EventKey, EventMetrics] = {}
|
100 |
+
self.compute_self_time()
|
101 |
+
self.event_keys = sorted(
|
102 |
+
(e for e in self.metrics.keys()), key=lambda x: x.event.start_time_ns
|
103 |
+
)
|
104 |
+
self.events = [e.event for e in self.event_keys]
|
105 |
+
self.cuda_events: List[_KinetoEvent] = []
|
106 |
+
self.queue_depth_list = self.compute_queue_depth()
|
107 |
+
self.compute_idle_time()
|
108 |
+
|
109 |
+
def compute_self_time(self):
|
110 |
+
"""
|
111 |
+
Computes event's self time(total time - time in child ops).
|
112 |
+
"""
|
113 |
+
assert self.profile.kineto_results is not None
|
114 |
+
stack = deque(self.profile.kineto_results.experimental_event_tree())
|
115 |
+
|
116 |
+
# standard iterating dfs
|
117 |
+
while stack:
|
118 |
+
curr_event = stack.pop()
|
119 |
+
self_time = curr_event.duration_time_ns
|
120 |
+
for child_event in curr_event.children:
|
121 |
+
self_time -= child_event.duration_time_ns
|
122 |
+
stack.append(child_event)
|
123 |
+
assert (
|
124 |
+
EventKey(curr_event) not in self.metrics
|
125 |
+
), f"Duplicate id: {curr_event.id}, {curr_event.name}"
|
126 |
+
self.metrics[EventKey(curr_event)] = EventMetrics(self_time_ns=self_time)
|
127 |
+
self.metrics[
|
128 |
+
EventKey(curr_event)
|
129 |
+
].duration_time_ns = curr_event.duration_time_ns
|
130 |
+
|
131 |
+
def compute_queue_depth(self):
|
132 |
+
"""
|
133 |
+
Computes queue_depth at each event. This will calculate the queue depth data for
|
134 |
+
All the events in the tree.
|
135 |
+
This will return a list of Interval of queue depth data of cuda launch and kernels.
|
136 |
+
"""
|
137 |
+
assert self.profile.kineto_results is not None
|
138 |
+
cuda_event_list = self.profile.kineto_results.events()
|
139 |
+
|
140 |
+
def is_cuda_launch_kernel(e):
|
141 |
+
# TODO: find a better way to identify cudaLaunchKernel
|
142 |
+
return e.name == "cudaLaunchKernel"
|
143 |
+
|
144 |
+
def is_cuda_kernel(e):
|
145 |
+
# TODO: find a better way to identify CUDA Kernel
|
146 |
+
return e.device_type() == DeviceType.CUDA and "mem" not in e.name.lower()
|
147 |
+
|
148 |
+
cuda_launch_events = sorted(
|
149 |
+
(e for e in cuda_event_list if is_cuda_launch_kernel(e)),
|
150 |
+
key=lambda x: x.start_us(),
|
151 |
+
)
|
152 |
+
cuda_kernel_events = sorted(
|
153 |
+
(e for e in cuda_event_list if is_cuda_kernel(e)),
|
154 |
+
key=lambda x: x.start_us(),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.cuda_events = sorted(
|
158 |
+
cuda_launch_events + cuda_kernel_events, key=lambda x: x.start_us()
|
159 |
+
)
|
160 |
+
|
161 |
+
kernel_mapping: Dict[_KinetoEvent, int] = {}
|
162 |
+
last_mapped_kernel = 0
|
163 |
+
for cuda_launch_event in cuda_launch_events:
|
164 |
+
index = index_of_first_match(
|
165 |
+
cuda_kernel_events,
|
166 |
+
lambda x: x.linked_correlation_id()
|
167 |
+
== cuda_launch_event.linked_correlation_id(),
|
168 |
+
start=last_mapped_kernel,
|
169 |
+
)
|
170 |
+
kernel_mapping[cuda_launch_event] = index
|
171 |
+
last_mapped_kernel = index if index is not None else last_mapped_kernel
|
172 |
+
|
173 |
+
current_kernel_index = 0
|
174 |
+
spawned_kernel_index = -1
|
175 |
+
|
176 |
+
all_events = cuda_launch_events + cuda_kernel_events + self.events
|
177 |
+
|
178 |
+
def new_old_event_comparator(event):
|
179 |
+
if hasattr(event, "start_us"):
|
180 |
+
return event.start_us() * 1000
|
181 |
+
if hasattr(event, "start_time_ns"):
|
182 |
+
return event.start_time_ns
|
183 |
+
raise Exception("Unknown Event Type")
|
184 |
+
|
185 |
+
queue_depth_list: List[Interval] = []
|
186 |
+
all_events.sort(key=new_old_event_comparator)
|
187 |
+
for event in all_events:
|
188 |
+
# Find latest cuda kernel event
|
189 |
+
if hasattr(event, "start_us"):
|
190 |
+
start_time = event.start_us() * 1000
|
191 |
+
end_time = (event.start_us() + event.duration_us()) * 1000
|
192 |
+
# Find current spawned cuda kernel event
|
193 |
+
if event in kernel_mapping and kernel_mapping[event] is not None:
|
194 |
+
spawned_kernel_index = kernel_mapping[event]
|
195 |
+
elif hasattr(event, "start_time_ns"):
|
196 |
+
start_time = event.start_time_ns # type: ignore[attr-defined]
|
197 |
+
end_time = event.end_time_ns # type: ignore[attr-defined]
|
198 |
+
|
199 |
+
while (
|
200 |
+
current_kernel_index < len(cuda_kernel_events)
|
201 |
+
and (cuda_kernel_events[current_kernel_index].start_us()) * 1000
|
202 |
+
<= start_time
|
203 |
+
):
|
204 |
+
current_kernel_index += 1
|
205 |
+
current_queue_depth = spawned_kernel_index - current_kernel_index + 1
|
206 |
+
current_queue_depth = max(current_queue_depth, 0)
|
207 |
+
|
208 |
+
if hasattr(event, "start_us"):
|
209 |
+
queue_depth_list.append(
|
210 |
+
Interval(start_time, end_time, current_queue_depth)
|
211 |
+
)
|
212 |
+
elif hasattr(event, "start_time_ns"):
|
213 |
+
self.metrics[EventKey(event)].queue_depth = current_queue_depth
|
214 |
+
|
215 |
+
return queue_depth_list
|
216 |
+
|
217 |
+
def compute_idle_time(self):
|
218 |
+
"""
|
219 |
+
Computes idle time of the profile.
|
220 |
+
"""
|
221 |
+
# Based on queue_depth_list, we can calculate idle time for all the events
|
222 |
+
idle = False
|
223 |
+
idle_start = 0
|
224 |
+
idle_intervals: List[Interval] = []
|
225 |
+
if self.queue_depth_list and self.events:
|
226 |
+
idle_intervals += [
|
227 |
+
Interval(self.events[0].start_time_ns, self.queue_depth_list[0].start),
|
228 |
+
Interval(self.queue_depth_list[-1].end, self.events[-1].end_time_ns),
|
229 |
+
]
|
230 |
+
|
231 |
+
for data_point in self.queue_depth_list:
|
232 |
+
if data_point.queue_depth == 0 and not idle:
|
233 |
+
idle_start = data_point.end
|
234 |
+
idle = True
|
235 |
+
if data_point.queue_depth > 0 and idle:
|
236 |
+
idle_intervals.append(Interval(idle_start, data_point.start))
|
237 |
+
idle = False
|
238 |
+
|
239 |
+
event_list = [e.event for e in self.metrics.keys()]
|
240 |
+
for event in event_list:
|
241 |
+
self.metrics[EventKey(event)].idle_time_ns = EventKey(
|
242 |
+
event
|
243 |
+
).intervals_overlap(idle_intervals)
|
244 |
+
|
245 |
+
def rank_events(self, length):
|
246 |
+
"""
|
247 |
+
Filter and Rank the events based on some heuristics:
|
248 |
+
1) Events that are in the falling phase of the queue depth.
|
249 |
+
2) Events that have a high idle_time, self_time difference.
|
250 |
+
|
251 |
+
Parameters:
|
252 |
+
length: The number of events to return.
|
253 |
+
"""
|
254 |
+
|
255 |
+
# Find the interval when qd is falling to 0
|
256 |
+
import torch
|
257 |
+
|
258 |
+
queue_depth_list = list(reversed(self.queue_depth_list))
|
259 |
+
qd_values = [e.queue_depth for e in queue_depth_list]
|
260 |
+
|
261 |
+
bottom_threashold = 0
|
262 |
+
top_threashold = 4
|
263 |
+
decrease_interval = []
|
264 |
+
i = 0
|
265 |
+
while i < len(qd_values):
|
266 |
+
if qd_values[i] > bottom_threashold:
|
267 |
+
i += 1
|
268 |
+
continue
|
269 |
+
for j in range(i + 1, len(qd_values)):
|
270 |
+
# Find next zero and if the max value between them exceeds
|
271 |
+
# the threshold, then we have a falling interval
|
272 |
+
next_minimum_idx = index_of_first_match(
|
273 |
+
qd_values, lambda x: x <= bottom_threashold, start=j
|
274 |
+
)
|
275 |
+
peak_idx = argmax(qd_values, start=j, end=next_minimum_idx)
|
276 |
+
|
277 |
+
# if is a valid peak, we add to list and continue
|
278 |
+
if peak_idx is not None and qd_values[peak_idx] >= top_threashold:
|
279 |
+
decrease_interval.append(
|
280 |
+
Interval(
|
281 |
+
queue_depth_list[peak_idx].start, queue_depth_list[i].start
|
282 |
+
)
|
283 |
+
)
|
284 |
+
i = next_minimum_idx if next_minimum_idx is not None else i
|
285 |
+
break
|
286 |
+
i += 1
|
287 |
+
# Filter out events that are not in the decrease interval
|
288 |
+
event_list = [
|
289 |
+
event
|
290 |
+
for event in self.metrics.keys()
|
291 |
+
if event.intervals_overlap(decrease_interval)
|
292 |
+
]
|
293 |
+
if event_list:
|
294 |
+
self_time = torch.tensor(
|
295 |
+
[self.metrics[event].self_time_ns for event in event_list],
|
296 |
+
dtype=torch.float32,
|
297 |
+
)
|
298 |
+
idle_time = torch.tensor(
|
299 |
+
[self.metrics[event].fraction_idle_time for event in event_list],
|
300 |
+
dtype=torch.float32,
|
301 |
+
)
|
302 |
+
normalized_gain = (idle_time - torch.mean(idle_time)) / torch.std(idle_time)
|
303 |
+
normalized_self = (self_time - torch.mean(self_time)) / torch.std(self_time)
|
304 |
+
heuristic_score_list = normalized_gain + 0.6 * normalized_self
|
305 |
+
|
306 |
+
# Sort events by heuristic
|
307 |
+
event_list = [
|
308 |
+
event
|
309 |
+
for _, event in sorted(
|
310 |
+
zip(heuristic_score_list, event_list),
|
311 |
+
key=lambda x: x[0],
|
312 |
+
reverse=True,
|
313 |
+
)
|
314 |
+
]
|
315 |
+
event_list = event_list[:length]
|
316 |
+
return event_list
|
317 |
+
|
318 |
+
def get_optimizable_events(self, length: int = 1, print_enable: bool = True):
|
319 |
+
event_list = self.rank_events(length)
|
320 |
+
if not print_enable:
|
321 |
+
return event_list
|
322 |
+
output = "Optimizable events:\n" if event_list else "No events to optimize\n"
|
323 |
+
|
324 |
+
output += "\n".join(
|
325 |
+
[
|
326 |
+
f"""{'-'*80}
|
327 |
+
Event: {event}
|
328 |
+
Source code location: {source_code_location(event.event)}
|
329 |
+
Percentage idle time: {self.metrics[event].fraction_idle_time * 100:.2f}%
|
330 |
+
{'-'*80}"""
|
331 |
+
for event in event_list
|
332 |
+
]
|
333 |
+
)
|
334 |
+
if print_enable:
|
335 |
+
print(output)
|
336 |
+
return event_list
|
337 |
+
|
338 |
+
|
339 |
+
def index_of_first_match(seq, predicate, start=0, end=None):
|
340 |
+
if end is None or end >= len(seq):
|
341 |
+
end = len(seq)
|
342 |
+
for i in range(start, end):
|
343 |
+
if predicate(seq[i]):
|
344 |
+
return i
|
345 |
+
return None
|
346 |
+
|
347 |
+
|
348 |
+
def argmax(seq, key=lambda x: x, start=0, end=None):
|
349 |
+
seq = seq[start:end]
|
350 |
+
if len(seq) == 0:
|
351 |
+
return None
|
352 |
+
return seq.index(max(seq, key=key)) + start
|
353 |
+
|
354 |
+
|
355 |
+
def source_code_location(event):
|
356 |
+
while event is not None:
|
357 |
+
match = re.search(r"\.py\(.*\)", event.name)
|
358 |
+
if match is None:
|
359 |
+
event = event.parent
|
360 |
+
continue
|
361 |
+
return event.name
|
362 |
+
return "No source code location found"
|
363 |
+
|
364 |
+
|
365 |
+
# Provide an OSS workaround for cudagraphs + CUPTI issue
|
366 |
+
# https://github.com/pytorch/pytorch/issues/75504
|
367 |
+
# TODO(dberard) - deprecate / remove workaround for CUDA >= 12, when
|
368 |
+
# we stop supporting older CUDA versions.
|
369 |
+
def _init_for_cuda_graphs():
|
370 |
+
from torch.autograd.profiler import profile
|
371 |
+
|
372 |
+
with profile():
|
373 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/itt.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
|
3 |
+
try:
|
4 |
+
from torch._C import _itt
|
5 |
+
except ImportError:
|
6 |
+
|
7 |
+
class _ITTStub:
|
8 |
+
@staticmethod
|
9 |
+
def _fail(*args, **kwargs):
|
10 |
+
raise RuntimeError(
|
11 |
+
"ITT functions not installed. Are you sure you have a ITT build?"
|
12 |
+
)
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def is_available():
|
16 |
+
return False
|
17 |
+
|
18 |
+
rangePush = _fail
|
19 |
+
rangePop = _fail
|
20 |
+
mark = _fail
|
21 |
+
|
22 |
+
_itt = _ITTStub() # type: ignore[assignment]
|
23 |
+
|
24 |
+
|
25 |
+
__all__ = ["is_available", "range_push", "range_pop", "mark", "range"]
|
26 |
+
|
27 |
+
|
28 |
+
def is_available():
|
29 |
+
"""
|
30 |
+
Check if ITT feature is available or not
|
31 |
+
"""
|
32 |
+
return _itt.is_available()
|
33 |
+
|
34 |
+
|
35 |
+
def range_push(msg):
|
36 |
+
"""
|
37 |
+
Pushes a range onto a stack of nested range span. Returns zero-based
|
38 |
+
depth of the range that is started.
|
39 |
+
|
40 |
+
Arguments:
|
41 |
+
msg (str): ASCII message to associate with range
|
42 |
+
"""
|
43 |
+
return _itt.rangePush(msg)
|
44 |
+
|
45 |
+
|
46 |
+
def range_pop():
|
47 |
+
"""
|
48 |
+
Pops a range off of a stack of nested range spans. Returns the
|
49 |
+
zero-based depth of the range that is ended.
|
50 |
+
"""
|
51 |
+
return _itt.rangePop()
|
52 |
+
|
53 |
+
|
54 |
+
def mark(msg):
|
55 |
+
"""
|
56 |
+
Describe an instantaneous event that occurred at some point.
|
57 |
+
|
58 |
+
Arguments:
|
59 |
+
msg (str): ASCII message to associate with the event.
|
60 |
+
"""
|
61 |
+
return _itt.mark(msg)
|
62 |
+
|
63 |
+
|
64 |
+
@contextmanager
|
65 |
+
def range(msg, *args, **kwargs):
|
66 |
+
"""
|
67 |
+
Context manager / decorator that pushes an ITT range at the beginning
|
68 |
+
of its scope, and pops it at the end. If extra arguments are given,
|
69 |
+
they are passed as arguments to msg.format().
|
70 |
+
|
71 |
+
Args:
|
72 |
+
msg (str): message to associate with the range
|
73 |
+
"""
|
74 |
+
range_push(msg.format(*args, **kwargs))
|
75 |
+
try:
|
76 |
+
yield
|
77 |
+
finally:
|
78 |
+
range_pop()
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/profiler.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from enum import Enum
|
6 |
+
from functools import partial
|
7 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
8 |
+
from warnings import warn
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.autograd.profiler as prof
|
12 |
+
from torch._C import _get_privateuse1_backend_name
|
13 |
+
from torch._C._profiler import (
|
14 |
+
_add_execution_trace_observer,
|
15 |
+
_disable_execution_trace_observer,
|
16 |
+
_enable_execution_trace_observer,
|
17 |
+
_ExperimentalConfig,
|
18 |
+
_remove_execution_trace_observer,
|
19 |
+
)
|
20 |
+
from torch.autograd import kineto_available, ProfilerActivity
|
21 |
+
from torch.profiler._memory_profiler import MemoryProfile, MemoryProfileTimeline
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"supported_activities",
|
26 |
+
"ProfilerAction",
|
27 |
+
"schedule",
|
28 |
+
"tensorboard_trace_handler",
|
29 |
+
"profile",
|
30 |
+
"ExecutionTraceObserver",
|
31 |
+
]
|
32 |
+
PROFILER_STEP_NAME = "ProfilerStep"
|
33 |
+
|
34 |
+
|
35 |
+
def supported_activities():
|
36 |
+
"""
|
37 |
+
Returns a set of supported profiler tracing activities.
|
38 |
+
|
39 |
+
Note: profiler uses CUPTI library to trace on-device CUDA kernels.
|
40 |
+
In case when CUDA is enabled but CUPTI is not available, passing
|
41 |
+
``ProfilerActivity.CUDA`` to profiler results in using the legacy CUDA
|
42 |
+
profiling code (same as in the legacy ``torch.autograd.profiler``).
|
43 |
+
This, in turn, results in including CUDA time in the profiler table output,
|
44 |
+
but not in the JSON trace.
|
45 |
+
"""
|
46 |
+
return torch.autograd._supported_activities()
|
47 |
+
|
48 |
+
|
49 |
+
class _KinetoProfile:
|
50 |
+
"""Low-level profiler wrap the autograd profile
|
51 |
+
|
52 |
+
Args:
|
53 |
+
activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values:
|
54 |
+
``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``.
|
55 |
+
Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA.
|
56 |
+
record_shapes (bool): save information about operator's input shapes.
|
57 |
+
profile_memory (bool): track tensor memory allocation/deallocation (see ``export_memory_timeline``
|
58 |
+
for more details).
|
59 |
+
with_stack (bool): record source information (file and line number) for the ops.
|
60 |
+
with_flops (bool): use formula to estimate the FLOPS of specific operators
|
61 |
+
(matrix multiplication and 2D convolution).
|
62 |
+
with_modules (bool): record module hierarchy (including function names)
|
63 |
+
corresponding to the callstack of the op. e.g. If module A's forward call's
|
64 |
+
module B's forward which contains an aten::add op,
|
65 |
+
then aten::add's module hierarchy is A.B
|
66 |
+
Note that this support exist, at the moment, only for TorchScript models
|
67 |
+
and not eager mode models.
|
68 |
+
|
69 |
+
experimental_config (_ExperimentalConfig) : A set of experimental options
|
70 |
+
used by profiler libraries like Kineto. Note, backward compatibility is not guaranteed.
|
71 |
+
|
72 |
+
.. note::
|
73 |
+
This API is experimental and subject to change in the future.
|
74 |
+
|
75 |
+
Enabling shape and stack tracing results in additional overhead.
|
76 |
+
When record_shapes=True is specified, profiler will temporarily hold references to the tensors;
|
77 |
+
that may further prevent certain optimizations that depend on the reference count and introduce
|
78 |
+
extra tensor copies.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
*,
|
84 |
+
activities: Optional[Iterable[ProfilerActivity]] = None,
|
85 |
+
record_shapes: bool = False,
|
86 |
+
profile_memory: bool = False,
|
87 |
+
with_stack: bool = False,
|
88 |
+
with_flops: bool = False,
|
89 |
+
with_modules: bool = False,
|
90 |
+
experimental_config: Optional[_ExperimentalConfig] = None,
|
91 |
+
):
|
92 |
+
self.activities = set(activities) if activities else supported_activities()
|
93 |
+
self.record_shapes = record_shapes
|
94 |
+
self.with_flops = with_flops
|
95 |
+
self.profile_memory = profile_memory
|
96 |
+
self.with_stack = with_stack
|
97 |
+
self.with_modules = with_modules
|
98 |
+
self.experimental_config = experimental_config
|
99 |
+
self.profiler: Optional[prof.profile] = None
|
100 |
+
self.mem_tl: Optional[MemoryProfileTimeline] = None
|
101 |
+
self.use_device = None
|
102 |
+
privateuse1_backend = _get_privateuse1_backend_name()
|
103 |
+
if privateuse1_backend != "privateuseone":
|
104 |
+
self.use_device = privateuse1_backend
|
105 |
+
|
106 |
+
def start(self):
|
107 |
+
self.prepare_trace()
|
108 |
+
self.start_trace()
|
109 |
+
|
110 |
+
def stop(self):
|
111 |
+
self.stop_trace()
|
112 |
+
|
113 |
+
def prepare_trace(self):
|
114 |
+
self.profiler = prof.profile(
|
115 |
+
use_cuda=(ProfilerActivity.CUDA in self.activities),
|
116 |
+
use_cpu=(ProfilerActivity.CPU in self.activities),
|
117 |
+
use_mtia=(ProfilerActivity.MTIA in self.activities),
|
118 |
+
use_device=None,
|
119 |
+
record_shapes=self.record_shapes,
|
120 |
+
with_flops=self.with_flops,
|
121 |
+
profile_memory=self.profile_memory,
|
122 |
+
with_stack=self.with_stack,
|
123 |
+
with_modules=self.with_modules,
|
124 |
+
use_kineto=True,
|
125 |
+
experimental_config=self.experimental_config,
|
126 |
+
)
|
127 |
+
self.profiler._prepare_trace()
|
128 |
+
|
129 |
+
def start_trace(self):
|
130 |
+
assert self.profiler is not None
|
131 |
+
self.profiler._start_trace()
|
132 |
+
|
133 |
+
if self.profile_memory:
|
134 |
+
self.add_metadata_json("profile_memory", "1")
|
135 |
+
if self.with_stack:
|
136 |
+
self.add_metadata_json("with_stack", "1")
|
137 |
+
if self.record_shapes:
|
138 |
+
self.add_metadata_json("record_shapes", "1")
|
139 |
+
if self.with_modules:
|
140 |
+
self.add_metadata_json("with_modules", "1")
|
141 |
+
if self.with_flops:
|
142 |
+
self.add_metadata_json("with_flops", "1")
|
143 |
+
|
144 |
+
if kineto_available():
|
145 |
+
dist_info = self._get_distributed_info()
|
146 |
+
if dist_info:
|
147 |
+
self.add_metadata_json("distributedInfo", json.dumps(dist_info))
|
148 |
+
|
149 |
+
if hasattr(torch, "_inductor"):
|
150 |
+
import torch._inductor.config as inductor_config
|
151 |
+
|
152 |
+
if inductor_config.triton.cudagraphs:
|
153 |
+
os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1"
|
154 |
+
self.add_metadata_json("DISABLE_CUPTI_LAZY_REINIT", "1")
|
155 |
+
# FIXME: CUDA Graph does not work well with CUPTI teardown.
|
156 |
+
# 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11)
|
157 |
+
# 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12)
|
158 |
+
# Workaround: turn off CUPTI teardown when using CUDA Graphs.
|
159 |
+
os.environ["TEARDOWN_CUPTI"] = "0"
|
160 |
+
|
161 |
+
def stop_trace(self):
|
162 |
+
assert self.profiler is not None
|
163 |
+
self.profiler.__exit__(None, None, None)
|
164 |
+
|
165 |
+
def export_chrome_trace(self, path: str):
|
166 |
+
"""
|
167 |
+
Exports the collected trace in Chrome JSON format.
|
168 |
+
"""
|
169 |
+
assert self.profiler
|
170 |
+
if path.endswith(".gz"):
|
171 |
+
fp = tempfile.NamedTemporaryFile("w+t", suffix=".json", delete=False)
|
172 |
+
fp.close()
|
173 |
+
retvalue = self.profiler.export_chrome_trace(fp.name)
|
174 |
+
with open(fp.name) as fin:
|
175 |
+
with gzip.open(path, "wt") as fout:
|
176 |
+
fout.writelines(fin)
|
177 |
+
os.remove(fp.name)
|
178 |
+
return retvalue
|
179 |
+
else:
|
180 |
+
return self.profiler.export_chrome_trace(path)
|
181 |
+
|
182 |
+
def export_stacks(self, path: str, metric: str = "self_cpu_time_total"):
|
183 |
+
"""Save stack traces in a file in a format suitable for visualization.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
path (str): save stacks file to this location;
|
187 |
+
metric (str): metric to use: "self_cpu_time_total" or "self_cuda_time_total"
|
188 |
+
|
189 |
+
.. note::
|
190 |
+
Example of using FlameGraph tool:
|
191 |
+
|
192 |
+
- git clone https://github.com/brendangregg/FlameGraph
|
193 |
+
- cd FlameGraph
|
194 |
+
- ./flamegraph.pl --title "CPU time" --countname "us." profiler.stacks > perf_viz.svg
|
195 |
+
"""
|
196 |
+
assert self.profiler
|
197 |
+
return self.profiler.export_stacks(path, metric)
|
198 |
+
|
199 |
+
def key_averages(
|
200 |
+
self, group_by_input_shape: bool = False, group_by_stack_n: int = 0
|
201 |
+
):
|
202 |
+
"""Averages events, grouping them by operator name and (optionally) input shapes and
|
203 |
+
stack.
|
204 |
+
|
205 |
+
.. note::
|
206 |
+
To use shape/stack functionality make sure to set record_shapes/with_stack
|
207 |
+
when creating profiler context manager.
|
208 |
+
"""
|
209 |
+
assert self.profiler
|
210 |
+
return self.profiler.key_averages(group_by_input_shape, group_by_stack_n)
|
211 |
+
|
212 |
+
def events(self):
|
213 |
+
"""
|
214 |
+
Returns the list of unaggregated profiler events,
|
215 |
+
to be used in the trace callback or after the profiling is finished
|
216 |
+
"""
|
217 |
+
assert self.profiler
|
218 |
+
return self.profiler.function_events
|
219 |
+
|
220 |
+
def add_metadata(self, key: str, value: str):
|
221 |
+
"""
|
222 |
+
Adds a user defined metadata with a string key and a string value
|
223 |
+
into the trace file
|
224 |
+
"""
|
225 |
+
wrapped_value = '"' + value.replace('"', '\\"') + '"'
|
226 |
+
torch.autograd._add_metadata_json(key, wrapped_value)
|
227 |
+
|
228 |
+
def add_metadata_json(self, key: str, value: str):
|
229 |
+
"""
|
230 |
+
Adds a user defined metadata with a string key and a valid json value
|
231 |
+
into the trace file
|
232 |
+
"""
|
233 |
+
torch.autograd._add_metadata_json(key, value)
|
234 |
+
|
235 |
+
def _get_distributed_info(self):
|
236 |
+
import torch.distributed as dist
|
237 |
+
|
238 |
+
if not dist.is_available() or not dist.is_initialized():
|
239 |
+
return None
|
240 |
+
|
241 |
+
return {
|
242 |
+
"backend": dist.get_backend(),
|
243 |
+
"rank": dist.get_rank(),
|
244 |
+
"world_size": dist.get_world_size(),
|
245 |
+
}
|
246 |
+
|
247 |
+
def _memory_profile(self) -> MemoryProfile:
|
248 |
+
required = ("record_shapes", "profile_memory", "with_stack")
|
249 |
+
missing = [f"{i}=True" for i in required if not getattr(self, i)]
|
250 |
+
if missing:
|
251 |
+
raise ValueError(f"{', '.join(missing)} required for memory profiling.")
|
252 |
+
|
253 |
+
assert self.profiler is not None and self.profiler.kineto_results is not None
|
254 |
+
return MemoryProfile(self.profiler.kineto_results)
|
255 |
+
|
256 |
+
def export_memory_timeline(self, path: str, device: Optional[str] = None) -> None:
|
257 |
+
"""Export memory event information from the profiler collected
|
258 |
+
tree for a given device, and export a timeline plot. There are 3
|
259 |
+
exportable files using ``export_memory_timeline``, each controlled by the
|
260 |
+
``path``'s suffix.
|
261 |
+
|
262 |
+
- For an HTML compatible plot, use the suffix ``.html``, and a memory timeline
|
263 |
+
plot will be embedded as a PNG file in the HTML file.
|
264 |
+
|
265 |
+
- For plot points consisting of ``[times, [sizes by category]]``, where
|
266 |
+
``times`` are timestamps and ``sizes`` are memory usage for each category.
|
267 |
+
The memory timeline plot will be saved a JSON (``.json``) or gzipped JSON
|
268 |
+
(``.json.gz``) depending on the suffix.
|
269 |
+
|
270 |
+
- For raw memory points, use the suffix ``.raw.json.gz``. Each raw memory
|
271 |
+
event will consist of ``(timestamp, action, numbytes, category)``, where
|
272 |
+
``action`` is one of ``[PREEXISTING, CREATE, INCREMENT_VERSION, DESTROY]``,
|
273 |
+
and ``category`` is one of the enums from
|
274 |
+
``torch.profiler._memory_profiler.Category``.
|
275 |
+
|
276 |
+
Output: Memory timeline written as gzipped JSON, JSON, or HTML.
|
277 |
+
"""
|
278 |
+
# Default to device 0, if unset. Fallback on cpu.
|
279 |
+
if device is None and self.use_device and self.use_device != "cuda":
|
280 |
+
device = self.use_device + ":0"
|
281 |
+
|
282 |
+
if device is None:
|
283 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
284 |
+
|
285 |
+
# Construct the memory timeline plot data
|
286 |
+
self.mem_tl = MemoryProfileTimeline(self._memory_profile())
|
287 |
+
|
288 |
+
# Depending on the file suffix, save the data as json.gz or json.
|
289 |
+
# For html, we can embed the image into an HTML file.
|
290 |
+
if path.endswith(".html"):
|
291 |
+
self.mem_tl.export_memory_timeline_html(path, device)
|
292 |
+
elif path.endswith(".gz"):
|
293 |
+
fp = tempfile.NamedTemporaryFile("w+t", suffix=".json", delete=False)
|
294 |
+
fp.close()
|
295 |
+
if path.endswith("raw.json.gz"):
|
296 |
+
self.mem_tl.export_memory_timeline_raw(fp.name, device)
|
297 |
+
else:
|
298 |
+
self.mem_tl.export_memory_timeline(fp.name, device)
|
299 |
+
with open(fp.name) as fin:
|
300 |
+
with gzip.open(path, "wt") as fout:
|
301 |
+
fout.writelines(fin)
|
302 |
+
os.remove(fp.name)
|
303 |
+
else:
|
304 |
+
self.mem_tl.export_memory_timeline(path, device)
|
305 |
+
|
306 |
+
|
307 |
+
class ProfilerAction(Enum):
|
308 |
+
"""
|
309 |
+
Profiler actions that can be taken at the specified intervals
|
310 |
+
"""
|
311 |
+
|
312 |
+
NONE = 0
|
313 |
+
WARMUP = 1
|
314 |
+
RECORD = 2
|
315 |
+
RECORD_AND_SAVE = 3
|
316 |
+
|
317 |
+
|
318 |
+
def schedule(
|
319 |
+
*, wait: int, warmup: int, active: int, repeat: int = 0, skip_first: int = 0
|
320 |
+
) -> Callable:
|
321 |
+
"""
|
322 |
+
Returns a callable that can be used as profiler ``schedule`` argument. The profiler will skip
|
323 |
+
the first ``skip_first`` steps, then wait for ``wait`` steps, then do the warmup for the next ``warmup`` steps,
|
324 |
+
then do the active recording for the next ``active`` steps and then repeat the cycle starting with ``wait`` steps.
|
325 |
+
The optional number of cycles is specified with the ``repeat`` parameter, the zero value means that
|
326 |
+
the cycles will continue until the profiling is finished.
|
327 |
+
"""
|
328 |
+
|
329 |
+
def schedule_fn(step: int) -> ProfilerAction:
|
330 |
+
assert step >= 0
|
331 |
+
if step < skip_first:
|
332 |
+
return ProfilerAction.NONE
|
333 |
+
else:
|
334 |
+
step -= skip_first
|
335 |
+
num_steps = wait + warmup + active
|
336 |
+
if repeat > 0 and step / num_steps >= repeat:
|
337 |
+
return ProfilerAction.NONE
|
338 |
+
mod_step = step % num_steps
|
339 |
+
if mod_step < wait:
|
340 |
+
return ProfilerAction.NONE
|
341 |
+
elif mod_step < wait + warmup:
|
342 |
+
return ProfilerAction.WARMUP
|
343 |
+
else:
|
344 |
+
return (
|
345 |
+
ProfilerAction.RECORD
|
346 |
+
if mod_step < num_steps - 1
|
347 |
+
else ProfilerAction.RECORD_AND_SAVE
|
348 |
+
)
|
349 |
+
|
350 |
+
assert (
|
351 |
+
wait >= 0 and warmup >= 0 and active > 0 and repeat >= 0 and skip_first >= 0
|
352 |
+
), "Invalid profiler schedule arguments"
|
353 |
+
if warmup == 0:
|
354 |
+
warn("Profiler won't be using warmup, this can skew profiler results")
|
355 |
+
return schedule_fn
|
356 |
+
|
357 |
+
|
358 |
+
def _default_schedule_fn(_: int) -> ProfilerAction:
|
359 |
+
"""
|
360 |
+
Default profiler behavior - immediately starts recording the events,
|
361 |
+
keeps doing it on every profiler step.
|
362 |
+
"""
|
363 |
+
return ProfilerAction.RECORD
|
364 |
+
|
365 |
+
|
366 |
+
def tensorboard_trace_handler(
|
367 |
+
dir_name: str, worker_name: Optional[str] = None, use_gzip: bool = False
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Outputs tracing files to directory of ``dir_name``, then that directory can be
|
371 |
+
directly delivered to tensorboard as logdir.
|
372 |
+
``worker_name`` should be unique for each worker in distributed scenario,
|
373 |
+
it will be set to '[hostname]_[pid]' by default.
|
374 |
+
"""
|
375 |
+
import os
|
376 |
+
import socket
|
377 |
+
import time
|
378 |
+
|
379 |
+
def handler_fn(prof) -> None:
|
380 |
+
nonlocal worker_name
|
381 |
+
if not os.path.isdir(dir_name):
|
382 |
+
try:
|
383 |
+
os.makedirs(dir_name, exist_ok=True)
|
384 |
+
except Exception as e:
|
385 |
+
raise RuntimeError("Can't create directory: " + dir_name) from e
|
386 |
+
if not worker_name:
|
387 |
+
worker_name = f"{socket.gethostname()}_{os.getpid()}"
|
388 |
+
# Use nanosecond here to avoid naming clash when exporting the trace
|
389 |
+
file_name = f"{worker_name}.{time.time_ns()}.pt.trace.json"
|
390 |
+
if use_gzip:
|
391 |
+
file_name = file_name + ".gz"
|
392 |
+
prof.export_chrome_trace(os.path.join(dir_name, file_name))
|
393 |
+
|
394 |
+
return handler_fn
|
395 |
+
|
396 |
+
|
397 |
+
class profile(_KinetoProfile):
|
398 |
+
"""Profiler context manager.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values:
|
402 |
+
``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``.
|
403 |
+
Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA.
|
404 |
+
schedule (Callable): callable that takes step (int) as a single parameter and returns
|
405 |
+
``ProfilerAction`` value that specifies the profiler action to perform at each step.
|
406 |
+
on_trace_ready (Callable): callable that is called at each step when ``schedule``
|
407 |
+
returns ``ProfilerAction.RECORD_AND_SAVE`` during the profiling.
|
408 |
+
record_shapes (bool): save information about operator's input shapes.
|
409 |
+
profile_memory (bool): track tensor memory allocation/deallocation.
|
410 |
+
with_stack (bool): record source information (file and line number) for the ops.
|
411 |
+
with_flops (bool): use formula to estimate the FLOPs (floating point operations) of specific operators
|
412 |
+
(matrix multiplication and 2D convolution).
|
413 |
+
with_modules (bool): record module hierarchy (including function names)
|
414 |
+
corresponding to the callstack of the op. e.g. If module A's forward call's
|
415 |
+
module B's forward which contains an aten::add op,
|
416 |
+
then aten::add's module hierarchy is A.B
|
417 |
+
Note that this support exist, at the moment, only for TorchScript models
|
418 |
+
and not eager mode models.
|
419 |
+
experimental_config (_ExperimentalConfig) : A set of experimental options
|
420 |
+
used for Kineto library features. Note, backward compatibility is not guaranteed.
|
421 |
+
|
422 |
+
use_cuda (bool):
|
423 |
+
.. deprecated:: 1.8.1
|
424 |
+
use ``activities`` instead.
|
425 |
+
|
426 |
+
.. note::
|
427 |
+
Use :func:`~torch.profiler.schedule` to generate the callable schedule.
|
428 |
+
Non-default schedules are useful when profiling long training jobs
|
429 |
+
and allow the user to obtain multiple traces at the different iterations
|
430 |
+
of the training process.
|
431 |
+
The default schedule simply records all the events continuously for the
|
432 |
+
duration of the context manager.
|
433 |
+
|
434 |
+
.. note::
|
435 |
+
Use :func:`~torch.profiler.tensorboard_trace_handler` to generate result files for TensorBoard:
|
436 |
+
|
437 |
+
``on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)``
|
438 |
+
|
439 |
+
After profiling, result files can be found in the specified directory. Use the command:
|
440 |
+
|
441 |
+
``tensorboard --logdir dir_name``
|
442 |
+
|
443 |
+
to see the results in TensorBoard.
|
444 |
+
For more information, see
|
445 |
+
`PyTorch Profiler TensorBoard Plugin <https://github.com/pytorch/kineto/tree/master/tb_plugin>`__
|
446 |
+
|
447 |
+
.. note::
|
448 |
+
Enabling shape and stack tracing results in additional overhead.
|
449 |
+
When record_shapes=True is specified, profiler will temporarily hold references to the tensors;
|
450 |
+
that may further prevent certain optimizations that depend on the reference count and introduce
|
451 |
+
extra tensor copies.
|
452 |
+
|
453 |
+
Examples:
|
454 |
+
|
455 |
+
.. code-block:: python
|
456 |
+
|
457 |
+
with torch.profiler.profile(
|
458 |
+
activities=[
|
459 |
+
torch.profiler.ProfilerActivity.CPU,
|
460 |
+
torch.profiler.ProfilerActivity.CUDA,
|
461 |
+
]
|
462 |
+
) as p:
|
463 |
+
code_to_profile()
|
464 |
+
print(p.key_averages().table(
|
465 |
+
sort_by="self_cuda_time_total", row_limit=-1))
|
466 |
+
|
467 |
+
Using the profiler's ``schedule``, ``on_trace_ready`` and ``step`` functions:
|
468 |
+
|
469 |
+
.. code-block:: python
|
470 |
+
|
471 |
+
# Non-default profiler schedule allows user to turn profiler on and off
|
472 |
+
# on different iterations of the training loop;
|
473 |
+
# trace_handler is called every time a new trace becomes available
|
474 |
+
def trace_handler(prof):
|
475 |
+
print(prof.key_averages().table(
|
476 |
+
sort_by="self_cuda_time_total", row_limit=-1))
|
477 |
+
# prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) + ".json")
|
478 |
+
|
479 |
+
with torch.profiler.profile(
|
480 |
+
activities=[
|
481 |
+
torch.profiler.ProfilerActivity.CPU,
|
482 |
+
torch.profiler.ProfilerActivity.CUDA,
|
483 |
+
],
|
484 |
+
|
485 |
+
# In this example with wait=1, warmup=1, active=2, repeat=1,
|
486 |
+
# profiler will skip the first step/iteration,
|
487 |
+
# start warming up on the second, record
|
488 |
+
# the third and the forth iterations,
|
489 |
+
# after which the trace will become available
|
490 |
+
# and on_trace_ready (when set) is called;
|
491 |
+
# the cycle repeats starting with the next step
|
492 |
+
|
493 |
+
schedule=torch.profiler.schedule(
|
494 |
+
wait=1,
|
495 |
+
warmup=1,
|
496 |
+
active=2,
|
497 |
+
repeat=1),
|
498 |
+
on_trace_ready=trace_handler
|
499 |
+
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')
|
500 |
+
# used when outputting for tensorboard
|
501 |
+
) as p:
|
502 |
+
for iter in range(N):
|
503 |
+
code_iteration_to_profile(iter)
|
504 |
+
# send a signal to the profiler that the next iteration has started
|
505 |
+
p.step()
|
506 |
+
"""
|
507 |
+
|
508 |
+
def __init__(
|
509 |
+
self,
|
510 |
+
*,
|
511 |
+
activities: Optional[Iterable[ProfilerActivity]] = None,
|
512 |
+
schedule: Optional[Callable[[int], ProfilerAction]] = None,
|
513 |
+
on_trace_ready: Optional[Callable[..., Any]] = None,
|
514 |
+
record_shapes: bool = False,
|
515 |
+
profile_memory: bool = False,
|
516 |
+
with_stack: bool = False,
|
517 |
+
with_flops: bool = False,
|
518 |
+
with_modules: bool = False,
|
519 |
+
experimental_config: Optional[_ExperimentalConfig] = None,
|
520 |
+
# deprecated:
|
521 |
+
use_cuda: Optional[bool] = None,
|
522 |
+
):
|
523 |
+
activities_set = set(activities) if activities else supported_activities()
|
524 |
+
if use_cuda is not None:
|
525 |
+
warn("use_cuda is deprecated, use activities argument instead")
|
526 |
+
if use_cuda:
|
527 |
+
activities_set.add(ProfilerActivity.CUDA)
|
528 |
+
elif ProfilerActivity.CUDA in activities_set:
|
529 |
+
activities_set.remove(ProfilerActivity.CUDA)
|
530 |
+
assert len(activities_set) > 0, "No valid profiler activities found"
|
531 |
+
|
532 |
+
super().__init__(
|
533 |
+
activities=activities,
|
534 |
+
record_shapes=record_shapes,
|
535 |
+
profile_memory=profile_memory,
|
536 |
+
with_stack=with_stack,
|
537 |
+
with_flops=with_flops,
|
538 |
+
with_modules=with_modules,
|
539 |
+
experimental_config=experimental_config,
|
540 |
+
)
|
541 |
+
|
542 |
+
if schedule:
|
543 |
+
self.schedule = schedule
|
544 |
+
# add step markers into the trace and table view
|
545 |
+
self.record_steps = True
|
546 |
+
else:
|
547 |
+
self.schedule = _default_schedule_fn
|
548 |
+
self.record_steps = False
|
549 |
+
self.on_trace_ready = on_trace_ready
|
550 |
+
self.step_num = 0
|
551 |
+
self.current_action = self.schedule(self.step_num)
|
552 |
+
self.step_rec_fn: Optional[prof.record_function] = None
|
553 |
+
|
554 |
+
self.action_map: Dict[
|
555 |
+
Tuple[ProfilerAction, Optional[ProfilerAction]], List[Any]
|
556 |
+
] = {
|
557 |
+
# key is (prev_action, current_action), value is action list corresponding to the state pair.
|
558 |
+
(ProfilerAction.NONE, ProfilerAction.NONE): [],
|
559 |
+
(ProfilerAction.NONE, ProfilerAction.WARMUP): [self.prepare_trace],
|
560 |
+
(ProfilerAction.NONE, ProfilerAction.RECORD): [
|
561 |
+
self.prepare_trace,
|
562 |
+
self.start_trace,
|
563 |
+
],
|
564 |
+
(ProfilerAction.NONE, ProfilerAction.RECORD_AND_SAVE): [
|
565 |
+
self.prepare_trace,
|
566 |
+
self.start_trace,
|
567 |
+
],
|
568 |
+
(ProfilerAction.WARMUP, ProfilerAction.NONE): [
|
569 |
+
partial(warn, "Incorrect schedule: WARMUP followed by NONE"),
|
570 |
+
self.start_trace,
|
571 |
+
self.stop_trace,
|
572 |
+
],
|
573 |
+
(ProfilerAction.WARMUP, ProfilerAction.WARMUP): [],
|
574 |
+
(ProfilerAction.WARMUP, ProfilerAction.RECORD): [self.start_trace],
|
575 |
+
(ProfilerAction.WARMUP, ProfilerAction.RECORD_AND_SAVE): [self.start_trace],
|
576 |
+
(ProfilerAction.RECORD, ProfilerAction.NONE): [
|
577 |
+
partial(warn, "Incorrect schedule: RECORD followed by NONE"),
|
578 |
+
self.stop_trace,
|
579 |
+
],
|
580 |
+
(ProfilerAction.RECORD, ProfilerAction.WARMUP): [
|
581 |
+
partial(warn, "Incorrect schedule: RECORD followed by WARMUP"),
|
582 |
+
self.stop_trace,
|
583 |
+
],
|
584 |
+
(ProfilerAction.RECORD, ProfilerAction.RECORD): [],
|
585 |
+
(ProfilerAction.RECORD, ProfilerAction.RECORD_AND_SAVE): [],
|
586 |
+
(ProfilerAction.RECORD_AND_SAVE, ProfilerAction.NONE): [
|
587 |
+
self.stop_trace,
|
588 |
+
self._trace_ready,
|
589 |
+
],
|
590 |
+
(ProfilerAction.RECORD_AND_SAVE, ProfilerAction.WARMUP): [
|
591 |
+
self.stop_trace,
|
592 |
+
self._trace_ready,
|
593 |
+
self.prepare_trace,
|
594 |
+
],
|
595 |
+
(ProfilerAction.RECORD_AND_SAVE, ProfilerAction.RECORD): [
|
596 |
+
self.stop_trace,
|
597 |
+
self._trace_ready,
|
598 |
+
self.prepare_trace,
|
599 |
+
self.start_trace,
|
600 |
+
],
|
601 |
+
(ProfilerAction.RECORD_AND_SAVE, ProfilerAction.RECORD_AND_SAVE): [
|
602 |
+
self.stop_trace,
|
603 |
+
self._trace_ready,
|
604 |
+
self.prepare_trace,
|
605 |
+
self.start_trace,
|
606 |
+
],
|
607 |
+
# used for exit action
|
608 |
+
(ProfilerAction.WARMUP, None): [self.start_trace, self.stop_trace],
|
609 |
+
(ProfilerAction.RECORD, None): [self.stop_trace, self._trace_ready],
|
610 |
+
(ProfilerAction.RECORD_AND_SAVE, None): [
|
611 |
+
self.stop_trace,
|
612 |
+
self._trace_ready,
|
613 |
+
],
|
614 |
+
}
|
615 |
+
# Start tracking increments to profiler step, this will be used
|
616 |
+
# by Kineto
|
617 |
+
prof.KinetoStepTracker.init_step_count(PROFILER_STEP_NAME)
|
618 |
+
|
619 |
+
def __enter__(self):
|
620 |
+
self.start()
|
621 |
+
return self
|
622 |
+
|
623 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
624 |
+
self.stop()
|
625 |
+
prof.KinetoStepTracker.erase_step_count(PROFILER_STEP_NAME)
|
626 |
+
|
627 |
+
def start(self):
|
628 |
+
self._transit_action(ProfilerAction.NONE, self.current_action)
|
629 |
+
if self.record_steps:
|
630 |
+
self.step_rec_fn = prof.record_function(
|
631 |
+
"ProfilerStep#" + str(self.step_num)
|
632 |
+
)
|
633 |
+
self.step_rec_fn.__enter__()
|
634 |
+
|
635 |
+
def stop(self):
|
636 |
+
if self.record_steps and self.step_rec_fn:
|
637 |
+
self.step_rec_fn.__exit__(None, None, None)
|
638 |
+
self._transit_action(self.current_action, None)
|
639 |
+
|
640 |
+
def step(self):
|
641 |
+
"""
|
642 |
+
Signals the profiler that the next profiling step has started.
|
643 |
+
"""
|
644 |
+
if self.record_steps and self.step_rec_fn:
|
645 |
+
self.step_rec_fn.__exit__(None, None, None)
|
646 |
+
prev_action = self.current_action
|
647 |
+
cur_step = self.step_num
|
648 |
+
self.step_num += 1
|
649 |
+
self.current_action = self.schedule(self.step_num)
|
650 |
+
|
651 |
+
self._transit_action(prev_action, self.current_action)
|
652 |
+
prof.KinetoStepTracker.increment_step(PROFILER_STEP_NAME)
|
653 |
+
|
654 |
+
if self.record_steps:
|
655 |
+
self.step_rec_fn = prof.record_function("ProfilerStep#" + str(cur_step))
|
656 |
+
self.step_rec_fn.__enter__()
|
657 |
+
|
658 |
+
def _trace_ready(self):
|
659 |
+
if self.on_trace_ready:
|
660 |
+
self.on_trace_ready(self)
|
661 |
+
|
662 |
+
def _transit_action(self, prev_action, current_action):
|
663 |
+
action_list = self.action_map.get((prev_action, current_action))
|
664 |
+
if action_list:
|
665 |
+
for action in action_list:
|
666 |
+
action()
|
667 |
+
|
668 |
+
|
669 |
+
class ExecutionTraceObserver:
|
670 |
+
"""Execution Trace Observer
|
671 |
+
|
672 |
+
Each process can have a single ExecutionTraceObserver instance. The observer
|
673 |
+
can be added to record function callbacks via calling register_callback()
|
674 |
+
explicitly. Without calling unregister_callback(), repeated calls to
|
675 |
+
register_callback() will not add additional observers to record function
|
676 |
+
callbacks. Once an ExecutionTraceObserver is created, the start() and stop()
|
677 |
+
methods control when the event data is recorded.
|
678 |
+
|
679 |
+
Deleting or calling unregister_callback() will remove the observer from the
|
680 |
+
record function callbacks, finalize the output file, and will stop
|
681 |
+
incurring any overheads.
|
682 |
+
"""
|
683 |
+
|
684 |
+
def __init__(self):
|
685 |
+
"""
|
686 |
+
Initializes the default states.
|
687 |
+
"""
|
688 |
+
self._registered = False
|
689 |
+
self._execution_trace_running = False
|
690 |
+
|
691 |
+
def __del__(self):
|
692 |
+
"""
|
693 |
+
Calls unregister_callback() to make sure to finalize outputs.
|
694 |
+
"""
|
695 |
+
self.unregister_callback()
|
696 |
+
|
697 |
+
def register_callback(self, output_file_path: str):
|
698 |
+
"""
|
699 |
+
Adds ET observer to record function callbacks. The data will be
|
700 |
+
written to output_file_path.
|
701 |
+
"""
|
702 |
+
if not self._registered:
|
703 |
+
self._output_file_path = output_file_path
|
704 |
+
self._registered = _add_execution_trace_observer(output_file_path)
|
705 |
+
|
706 |
+
def unregister_callback(self):
|
707 |
+
"""
|
708 |
+
Removes ET observer from record function callbacks.
|
709 |
+
"""
|
710 |
+
if self._registered:
|
711 |
+
self.stop()
|
712 |
+
_remove_execution_trace_observer()
|
713 |
+
self._registered = False
|
714 |
+
|
715 |
+
@property
|
716 |
+
def is_registered(self):
|
717 |
+
"""
|
718 |
+
Returns True if the execution trace observer is registered, otherwise False.
|
719 |
+
"""
|
720 |
+
return self._registered
|
721 |
+
|
722 |
+
def is_running(self):
|
723 |
+
"""
|
724 |
+
Returns True if the observer is running, otherwise False.
|
725 |
+
"""
|
726 |
+
return self._execution_trace_running
|
727 |
+
|
728 |
+
def start(self):
|
729 |
+
"""
|
730 |
+
Starts to capture.
|
731 |
+
"""
|
732 |
+
if self._registered and not self._execution_trace_running:
|
733 |
+
_enable_execution_trace_observer()
|
734 |
+
self._execution_trace_running = True
|
735 |
+
|
736 |
+
def stop(self):
|
737 |
+
"""
|
738 |
+
Stops to capture.
|
739 |
+
"""
|
740 |
+
if self._execution_trace_running:
|
741 |
+
_disable_execution_trace_observer()
|
742 |
+
self._execution_trace_running = False
|
743 |
+
|
744 |
+
def get_output_file_path(self) -> str:
|
745 |
+
"""
|
746 |
+
Returns the output file name.
|
747 |
+
"""
|
748 |
+
if self.is_registered:
|
749 |
+
return self._output_file_path
|
750 |
+
else:
|
751 |
+
raise RuntimeError(
|
752 |
+
"A callback to the ET profiler needs to be registered "
|
753 |
+
"first before getting the output file path"
|
754 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/profiler/python_tracer.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import site
|
3 |
+
import sys
|
4 |
+
import typing
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def _prefix_regex() -> typing.List[str]:
|
10 |
+
raw_paths = (
|
11 |
+
site.getsitepackages()
|
12 |
+
+ sys.path
|
13 |
+
+ [site.getuserbase()]
|
14 |
+
+ [site.getusersitepackages()]
|
15 |
+
+ [os.path.dirname(os.path.dirname(torch.__file__))]
|
16 |
+
)
|
17 |
+
|
18 |
+
path_prefixes = sorted({os.path.abspath(i) for i in raw_paths}, reverse=True)
|
19 |
+
assert all(isinstance(i, str) for i in path_prefixes)
|
20 |
+
return [i + os.sep for i in path_prefixes]
|
env-llmeval/lib/python3.10/site-packages/torch/special/__init__.py
ADDED
@@ -0,0 +1,1283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import _add_docstr, _special # type: ignore[attr-defined]
|
3 |
+
from torch._torch_docs import common_args, multi_dim_common
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'airy_ai',
|
7 |
+
'bessel_j0',
|
8 |
+
'bessel_j1',
|
9 |
+
'bessel_y0',
|
10 |
+
'bessel_y1',
|
11 |
+
'chebyshev_polynomial_t',
|
12 |
+
'chebyshev_polynomial_u',
|
13 |
+
'chebyshev_polynomial_v',
|
14 |
+
'chebyshev_polynomial_w',
|
15 |
+
'digamma',
|
16 |
+
'entr',
|
17 |
+
'erf',
|
18 |
+
'erfc',
|
19 |
+
'erfcx',
|
20 |
+
'erfinv',
|
21 |
+
'exp2',
|
22 |
+
'expit',
|
23 |
+
'expm1',
|
24 |
+
'gammainc',
|
25 |
+
'gammaincc',
|
26 |
+
'gammaln',
|
27 |
+
'hermite_polynomial_h',
|
28 |
+
'hermite_polynomial_he',
|
29 |
+
'i0',
|
30 |
+
'i0e',
|
31 |
+
'i1',
|
32 |
+
'i1e',
|
33 |
+
'laguerre_polynomial_l',
|
34 |
+
'legendre_polynomial_p',
|
35 |
+
'log1p',
|
36 |
+
'log_ndtr',
|
37 |
+
'log_softmax',
|
38 |
+
'logit',
|
39 |
+
'logsumexp',
|
40 |
+
'modified_bessel_i0',
|
41 |
+
'modified_bessel_i1',
|
42 |
+
'modified_bessel_k0',
|
43 |
+
'modified_bessel_k1',
|
44 |
+
'multigammaln',
|
45 |
+
'ndtr',
|
46 |
+
'ndtri',
|
47 |
+
'polygamma',
|
48 |
+
'psi',
|
49 |
+
'round',
|
50 |
+
'shifted_chebyshev_polynomial_t',
|
51 |
+
'shifted_chebyshev_polynomial_u',
|
52 |
+
'shifted_chebyshev_polynomial_v',
|
53 |
+
'shifted_chebyshev_polynomial_w',
|
54 |
+
'scaled_modified_bessel_k0',
|
55 |
+
'scaled_modified_bessel_k1',
|
56 |
+
'sinc',
|
57 |
+
'softmax',
|
58 |
+
'spherical_bessel_j0',
|
59 |
+
'xlog1py',
|
60 |
+
'xlogy',
|
61 |
+
'zeta',
|
62 |
+
]
|
63 |
+
|
64 |
+
Tensor = torch.Tensor
|
65 |
+
|
66 |
+
entr = _add_docstr(_special.special_entr,
|
67 |
+
r"""
|
68 |
+
entr(input, *, out=None) -> Tensor
|
69 |
+
Computes the entropy on :attr:`input` (as defined below), elementwise.
|
70 |
+
|
71 |
+
.. math::
|
72 |
+
\begin{align}
|
73 |
+
\text{entr(x)} = \begin{cases}
|
74 |
+
-x * \ln(x) & x > 0 \\
|
75 |
+
0 & x = 0.0 \\
|
76 |
+
-\infty & x < 0
|
77 |
+
\end{cases}
|
78 |
+
\end{align}
|
79 |
+
""" + """
|
80 |
+
|
81 |
+
Args:
|
82 |
+
input (Tensor): the input tensor.
|
83 |
+
|
84 |
+
Keyword args:
|
85 |
+
out (Tensor, optional): the output tensor.
|
86 |
+
|
87 |
+
Example::
|
88 |
+
>>> a = torch.arange(-0.5, 1, 0.5)
|
89 |
+
>>> a
|
90 |
+
tensor([-0.5000, 0.0000, 0.5000])
|
91 |
+
>>> torch.special.entr(a)
|
92 |
+
tensor([ -inf, 0.0000, 0.3466])
|
93 |
+
""")
|
94 |
+
|
95 |
+
psi = _add_docstr(_special.special_psi,
|
96 |
+
r"""
|
97 |
+
psi(input, *, out=None) -> Tensor
|
98 |
+
|
99 |
+
Alias for :func:`torch.special.digamma`.
|
100 |
+
""")
|
101 |
+
|
102 |
+
digamma = _add_docstr(_special.special_digamma,
|
103 |
+
r"""
|
104 |
+
digamma(input, *, out=None) -> Tensor
|
105 |
+
|
106 |
+
Computes the logarithmic derivative of the gamma function on `input`.
|
107 |
+
|
108 |
+
.. math::
|
109 |
+
\digamma(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)}
|
110 |
+
""" + r"""
|
111 |
+
Args:
|
112 |
+
input (Tensor): the tensor to compute the digamma function on
|
113 |
+
|
114 |
+
Keyword args:
|
115 |
+
{out}
|
116 |
+
|
117 |
+
.. note:: This function is similar to SciPy's `scipy.special.digamma`.
|
118 |
+
|
119 |
+
.. note:: From PyTorch 1.8 onwards, the digamma function returns `-Inf` for `0`.
|
120 |
+
Previously it returned `NaN` for `0`.
|
121 |
+
|
122 |
+
Example::
|
123 |
+
|
124 |
+
>>> a = torch.tensor([1, 0.5])
|
125 |
+
>>> torch.special.digamma(a)
|
126 |
+
tensor([-0.5772, -1.9635])
|
127 |
+
|
128 |
+
""".format(**common_args))
|
129 |
+
|
130 |
+
gammaln = _add_docstr(_special.special_gammaln,
|
131 |
+
r"""
|
132 |
+
gammaln(input, *, out=None) -> Tensor
|
133 |
+
|
134 |
+
Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`.
|
135 |
+
|
136 |
+
.. math::
|
137 |
+
\text{out}_{i} = \ln \Gamma(|\text{input}_{i}|)
|
138 |
+
""" + """
|
139 |
+
Args:
|
140 |
+
{input}
|
141 |
+
|
142 |
+
Keyword args:
|
143 |
+
{out}
|
144 |
+
|
145 |
+
Example::
|
146 |
+
|
147 |
+
>>> a = torch.arange(0.5, 2, 0.5)
|
148 |
+
>>> torch.special.gammaln(a)
|
149 |
+
tensor([ 0.5724, 0.0000, -0.1208])
|
150 |
+
|
151 |
+
""".format(**common_args))
|
152 |
+
|
153 |
+
polygamma = _add_docstr(_special.special_polygamma,
|
154 |
+
r"""
|
155 |
+
polygamma(n, input, *, out=None) -> Tensor
|
156 |
+
|
157 |
+
Computes the :math:`n^{th}` derivative of the digamma function on :attr:`input`.
|
158 |
+
:math:`n \geq 0` is called the order of the polygamma function.
|
159 |
+
|
160 |
+
.. math::
|
161 |
+
\psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x)
|
162 |
+
|
163 |
+
.. note::
|
164 |
+
This function is implemented only for nonnegative integers :math:`n \geq 0`.
|
165 |
+
""" + """
|
166 |
+
Args:
|
167 |
+
n (int): the order of the polygamma function
|
168 |
+
{input}
|
169 |
+
|
170 |
+
Keyword args:
|
171 |
+
{out}
|
172 |
+
|
173 |
+
Example::
|
174 |
+
>>> a = torch.tensor([1, 0.5])
|
175 |
+
>>> torch.special.polygamma(1, a)
|
176 |
+
tensor([1.64493, 4.9348])
|
177 |
+
>>> torch.special.polygamma(2, a)
|
178 |
+
tensor([ -2.4041, -16.8288])
|
179 |
+
>>> torch.special.polygamma(3, a)
|
180 |
+
tensor([ 6.4939, 97.4091])
|
181 |
+
>>> torch.special.polygamma(4, a)
|
182 |
+
tensor([ -24.8863, -771.4742])
|
183 |
+
""".format(**common_args))
|
184 |
+
|
185 |
+
erf = _add_docstr(_special.special_erf,
|
186 |
+
r"""
|
187 |
+
erf(input, *, out=None) -> Tensor
|
188 |
+
|
189 |
+
Computes the error function of :attr:`input`. The error function is defined as follows:
|
190 |
+
|
191 |
+
.. math::
|
192 |
+
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
|
193 |
+
""" + r"""
|
194 |
+
Args:
|
195 |
+
{input}
|
196 |
+
|
197 |
+
Keyword args:
|
198 |
+
{out}
|
199 |
+
|
200 |
+
Example::
|
201 |
+
|
202 |
+
>>> torch.special.erf(torch.tensor([0, -1., 10.]))
|
203 |
+
tensor([ 0.0000, -0.8427, 1.0000])
|
204 |
+
""".format(**common_args))
|
205 |
+
|
206 |
+
erfc = _add_docstr(_special.special_erfc,
|
207 |
+
r"""
|
208 |
+
erfc(input, *, out=None) -> Tensor
|
209 |
+
|
210 |
+
Computes the complementary error function of :attr:`input`.
|
211 |
+
The complementary error function is defined as follows:
|
212 |
+
|
213 |
+
.. math::
|
214 |
+
\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
|
215 |
+
""" + r"""
|
216 |
+
Args:
|
217 |
+
{input}
|
218 |
+
|
219 |
+
Keyword args:
|
220 |
+
{out}
|
221 |
+
|
222 |
+
Example::
|
223 |
+
|
224 |
+
>>> torch.special.erfc(torch.tensor([0, -1., 10.]))
|
225 |
+
tensor([ 1.0000, 1.8427, 0.0000])
|
226 |
+
""".format(**common_args))
|
227 |
+
|
228 |
+
erfcx = _add_docstr(_special.special_erfcx,
|
229 |
+
r"""
|
230 |
+
erfcx(input, *, out=None) -> Tensor
|
231 |
+
|
232 |
+
Computes the scaled complementary error function for each element of :attr:`input`.
|
233 |
+
The scaled complementary error function is defined as follows:
|
234 |
+
|
235 |
+
.. math::
|
236 |
+
\mathrm{erfcx}(x) = e^{x^2} \mathrm{erfc}(x)
|
237 |
+
""" + r"""
|
238 |
+
|
239 |
+
""" + r"""
|
240 |
+
Args:
|
241 |
+
{input}
|
242 |
+
|
243 |
+
Keyword args:
|
244 |
+
{out}
|
245 |
+
|
246 |
+
Example::
|
247 |
+
|
248 |
+
>>> torch.special.erfcx(torch.tensor([0, -1., 10.]))
|
249 |
+
tensor([ 1.0000, 5.0090, 0.0561])
|
250 |
+
""".format(**common_args))
|
251 |
+
|
252 |
+
erfinv = _add_docstr(_special.special_erfinv,
|
253 |
+
r"""
|
254 |
+
erfinv(input, *, out=None) -> Tensor
|
255 |
+
|
256 |
+
Computes the inverse error function of :attr:`input`.
|
257 |
+
The inverse error function is defined in the range :math:`(-1, 1)` as:
|
258 |
+
|
259 |
+
.. math::
|
260 |
+
\mathrm{erfinv}(\mathrm{erf}(x)) = x
|
261 |
+
""" + r"""
|
262 |
+
|
263 |
+
Args:
|
264 |
+
{input}
|
265 |
+
|
266 |
+
Keyword args:
|
267 |
+
{out}
|
268 |
+
|
269 |
+
Example::
|
270 |
+
|
271 |
+
>>> torch.special.erfinv(torch.tensor([0, 0.5, -1.]))
|
272 |
+
tensor([ 0.0000, 0.4769, -inf])
|
273 |
+
""".format(**common_args))
|
274 |
+
|
275 |
+
logit = _add_docstr(_special.special_logit,
|
276 |
+
r"""
|
277 |
+
logit(input, eps=None, *, out=None) -> Tensor
|
278 |
+
|
279 |
+
Returns a new tensor with the logit of the elements of :attr:`input`.
|
280 |
+
:attr:`input` is clamped to [eps, 1 - eps] when eps is not None.
|
281 |
+
When eps is None and :attr:`input` < 0 or :attr:`input` > 1, the function will yields NaN.
|
282 |
+
|
283 |
+
.. math::
|
284 |
+
\begin{align}
|
285 |
+
y_{i} &= \ln(\frac{z_{i}}{1 - z_{i}}) \\
|
286 |
+
z_{i} &= \begin{cases}
|
287 |
+
x_{i} & \text{if eps is None} \\
|
288 |
+
\text{eps} & \text{if } x_{i} < \text{eps} \\
|
289 |
+
x_{i} & \text{if } \text{eps} \leq x_{i} \leq 1 - \text{eps} \\
|
290 |
+
1 - \text{eps} & \text{if } x_{i} > 1 - \text{eps}
|
291 |
+
\end{cases}
|
292 |
+
\end{align}
|
293 |
+
""" + r"""
|
294 |
+
Args:
|
295 |
+
{input}
|
296 |
+
eps (float, optional): the epsilon for input clamp bound. Default: ``None``
|
297 |
+
|
298 |
+
Keyword args:
|
299 |
+
{out}
|
300 |
+
|
301 |
+
Example::
|
302 |
+
|
303 |
+
>>> a = torch.rand(5)
|
304 |
+
>>> a
|
305 |
+
tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516])
|
306 |
+
>>> torch.special.logit(a, eps=1e-6)
|
307 |
+
tensor([-0.9466, 2.6352, 0.6131, -1.7169, 0.6261])
|
308 |
+
""".format(**common_args))
|
309 |
+
|
310 |
+
logsumexp = _add_docstr(_special.special_logsumexp,
|
311 |
+
r"""
|
312 |
+
logsumexp(input, dim, keepdim=False, *, out=None)
|
313 |
+
|
314 |
+
Alias for :func:`torch.logsumexp`.
|
315 |
+
""".format(**multi_dim_common))
|
316 |
+
|
317 |
+
expit = _add_docstr(_special.special_expit,
|
318 |
+
r"""
|
319 |
+
expit(input, *, out=None) -> Tensor
|
320 |
+
|
321 |
+
Computes the expit (also known as the logistic sigmoid function) of the elements of :attr:`input`.
|
322 |
+
|
323 |
+
.. math::
|
324 |
+
\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}}
|
325 |
+
""" + r"""
|
326 |
+
Args:
|
327 |
+
{input}
|
328 |
+
|
329 |
+
Keyword args:
|
330 |
+
{out}
|
331 |
+
|
332 |
+
Example::
|
333 |
+
|
334 |
+
>>> t = torch.randn(4)
|
335 |
+
>>> t
|
336 |
+
tensor([ 0.9213, 1.0887, -0.8858, -1.7683])
|
337 |
+
>>> torch.special.expit(t)
|
338 |
+
tensor([ 0.7153, 0.7481, 0.2920, 0.1458])
|
339 |
+
""".format(**common_args))
|
340 |
+
|
341 |
+
exp2 = _add_docstr(_special.special_exp2,
|
342 |
+
r"""
|
343 |
+
exp2(input, *, out=None) -> Tensor
|
344 |
+
|
345 |
+
Computes the base two exponential function of :attr:`input`.
|
346 |
+
|
347 |
+
.. math::
|
348 |
+
y_{i} = 2^{x_{i}}
|
349 |
+
|
350 |
+
""" + r"""
|
351 |
+
Args:
|
352 |
+
{input}
|
353 |
+
|
354 |
+
Keyword args:
|
355 |
+
{out}
|
356 |
+
|
357 |
+
Example::
|
358 |
+
|
359 |
+
>>> torch.special.exp2(torch.tensor([0, math.log2(2.), 3, 4]))
|
360 |
+
tensor([ 1., 2., 8., 16.])
|
361 |
+
""".format(**common_args))
|
362 |
+
|
363 |
+
expm1 = _add_docstr(_special.special_expm1,
|
364 |
+
r"""
|
365 |
+
expm1(input, *, out=None) -> Tensor
|
366 |
+
|
367 |
+
Computes the exponential of the elements minus 1
|
368 |
+
of :attr:`input`.
|
369 |
+
|
370 |
+
.. math::
|
371 |
+
y_{i} = e^{x_{i}} - 1
|
372 |
+
|
373 |
+
.. note:: This function provides greater precision than exp(x) - 1 for small values of x.
|
374 |
+
|
375 |
+
""" + r"""
|
376 |
+
Args:
|
377 |
+
{input}
|
378 |
+
|
379 |
+
Keyword args:
|
380 |
+
{out}
|
381 |
+
|
382 |
+
Example::
|
383 |
+
|
384 |
+
>>> torch.special.expm1(torch.tensor([0, math.log(2.)]))
|
385 |
+
tensor([ 0., 1.])
|
386 |
+
""".format(**common_args))
|
387 |
+
|
388 |
+
xlog1py = _add_docstr(_special.special_xlog1py,
|
389 |
+
r"""
|
390 |
+
xlog1py(input, other, *, out=None) -> Tensor
|
391 |
+
|
392 |
+
Computes ``input * log1p(other)`` with the following cases.
|
393 |
+
|
394 |
+
.. math::
|
395 |
+
\text{out}_{i} = \begin{cases}
|
396 |
+
\text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\
|
397 |
+
0 & \text{if } \text{input}_{i} = 0.0 \text{ and } \text{other}_{i} != \text{NaN} \\
|
398 |
+
\text{input}_{i} * \text{log1p}(\text{other}_{i})& \text{otherwise}
|
399 |
+
\end{cases}
|
400 |
+
|
401 |
+
Similar to SciPy's `scipy.special.xlog1py`.
|
402 |
+
|
403 |
+
""" + r"""
|
404 |
+
|
405 |
+
Args:
|
406 |
+
input (Number or Tensor) : Multiplier
|
407 |
+
other (Number or Tensor) : Argument
|
408 |
+
|
409 |
+
.. note:: At least one of :attr:`input` or :attr:`other` must be a tensor.
|
410 |
+
|
411 |
+
Keyword args:
|
412 |
+
{out}
|
413 |
+
|
414 |
+
Example::
|
415 |
+
|
416 |
+
>>> x = torch.zeros(5,)
|
417 |
+
>>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')])
|
418 |
+
>>> torch.special.xlog1py(x, y)
|
419 |
+
tensor([0., 0., 0., 0., nan])
|
420 |
+
>>> x = torch.tensor([1, 2, 3])
|
421 |
+
>>> y = torch.tensor([3, 2, 1])
|
422 |
+
>>> torch.special.xlog1py(x, y)
|
423 |
+
tensor([1.3863, 2.1972, 2.0794])
|
424 |
+
>>> torch.special.xlog1py(x, 4)
|
425 |
+
tensor([1.6094, 3.2189, 4.8283])
|
426 |
+
>>> torch.special.xlog1py(2, y)
|
427 |
+
tensor([2.7726, 2.1972, 1.3863])
|
428 |
+
""".format(**common_args))
|
429 |
+
|
430 |
+
xlogy = _add_docstr(_special.special_xlogy,
|
431 |
+
r"""
|
432 |
+
xlogy(input, other, *, out=None) -> Tensor
|
433 |
+
|
434 |
+
Computes ``input * log(other)`` with the following cases.
|
435 |
+
|
436 |
+
.. math::
|
437 |
+
\text{out}_{i} = \begin{cases}
|
438 |
+
\text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\
|
439 |
+
0 & \text{if } \text{input}_{i} = 0.0 \\
|
440 |
+
\text{input}_{i} * \log{(\text{other}_{i})} & \text{otherwise}
|
441 |
+
\end{cases}
|
442 |
+
|
443 |
+
Similar to SciPy's `scipy.special.xlogy`.
|
444 |
+
|
445 |
+
""" + r"""
|
446 |
+
|
447 |
+
Args:
|
448 |
+
input (Number or Tensor) : Multiplier
|
449 |
+
other (Number or Tensor) : Argument
|
450 |
+
|
451 |
+
.. note:: At least one of :attr:`input` or :attr:`other` must be a tensor.
|
452 |
+
|
453 |
+
Keyword args:
|
454 |
+
{out}
|
455 |
+
|
456 |
+
Example::
|
457 |
+
|
458 |
+
>>> x = torch.zeros(5,)
|
459 |
+
>>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')])
|
460 |
+
>>> torch.special.xlogy(x, y)
|
461 |
+
tensor([0., 0., 0., 0., nan])
|
462 |
+
>>> x = torch.tensor([1, 2, 3])
|
463 |
+
>>> y = torch.tensor([3, 2, 1])
|
464 |
+
>>> torch.special.xlogy(x, y)
|
465 |
+
tensor([1.0986, 1.3863, 0.0000])
|
466 |
+
>>> torch.special.xlogy(x, 4)
|
467 |
+
tensor([1.3863, 2.7726, 4.1589])
|
468 |
+
>>> torch.special.xlogy(2, y)
|
469 |
+
tensor([2.1972, 1.3863, 0.0000])
|
470 |
+
""".format(**common_args))
|
471 |
+
|
472 |
+
i0 = _add_docstr(_special.special_i0,
|
473 |
+
r"""
|
474 |
+
i0(input, *, out=None) -> Tensor
|
475 |
+
|
476 |
+
Computes the zeroth order modified Bessel function of the first kind for each element of :attr:`input`.
|
477 |
+
|
478 |
+
.. math::
|
479 |
+
\text{out}_{i} = I_0(\text{input}_{i}) = \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2}
|
480 |
+
|
481 |
+
""" + r"""
|
482 |
+
Args:
|
483 |
+
input (Tensor): the input tensor
|
484 |
+
|
485 |
+
Keyword args:
|
486 |
+
{out}
|
487 |
+
|
488 |
+
Example::
|
489 |
+
|
490 |
+
>>> torch.i0(torch.arange(5, dtype=torch.float32))
|
491 |
+
tensor([ 1.0000, 1.2661, 2.2796, 4.8808, 11.3019])
|
492 |
+
|
493 |
+
""".format(**common_args))
|
494 |
+
|
495 |
+
i0e = _add_docstr(_special.special_i0e,
|
496 |
+
r"""
|
497 |
+
i0e(input, *, out=None) -> Tensor
|
498 |
+
Computes the exponentially scaled zeroth order modified Bessel function of the first kind (as defined below)
|
499 |
+
for each element of :attr:`input`.
|
500 |
+
|
501 |
+
.. math::
|
502 |
+
\text{out}_{i} = \exp(-|x|) * i0(x) = \exp(-|x|) * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2}
|
503 |
+
|
504 |
+
""" + r"""
|
505 |
+
Args:
|
506 |
+
{input}
|
507 |
+
|
508 |
+
Keyword args:
|
509 |
+
{out}
|
510 |
+
|
511 |
+
Example::
|
512 |
+
>>> torch.special.i0e(torch.arange(5, dtype=torch.float32))
|
513 |
+
tensor([1.0000, 0.4658, 0.3085, 0.2430, 0.2070])
|
514 |
+
""".format(**common_args))
|
515 |
+
|
516 |
+
i1 = _add_docstr(_special.special_i1,
|
517 |
+
r"""
|
518 |
+
i1(input, *, out=None) -> Tensor
|
519 |
+
Computes the first order modified Bessel function of the first kind (as defined below)
|
520 |
+
for each element of :attr:`input`.
|
521 |
+
|
522 |
+
.. math::
|
523 |
+
\text{out}_{i} = \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!}
|
524 |
+
|
525 |
+
""" + r"""
|
526 |
+
Args:
|
527 |
+
{input}
|
528 |
+
|
529 |
+
Keyword args:
|
530 |
+
{out}
|
531 |
+
|
532 |
+
Example::
|
533 |
+
>>> torch.special.i1(torch.arange(5, dtype=torch.float32))
|
534 |
+
tensor([0.0000, 0.5652, 1.5906, 3.9534, 9.7595])
|
535 |
+
""".format(**common_args))
|
536 |
+
|
537 |
+
i1e = _add_docstr(_special.special_i1e,
|
538 |
+
r"""
|
539 |
+
i1e(input, *, out=None) -> Tensor
|
540 |
+
Computes the exponentially scaled first order modified Bessel function of the first kind (as defined below)
|
541 |
+
for each element of :attr:`input`.
|
542 |
+
|
543 |
+
.. math::
|
544 |
+
\text{out}_{i} = \exp(-|x|) * i1(x) =
|
545 |
+
\exp(-|x|) * \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!}
|
546 |
+
|
547 |
+
""" + r"""
|
548 |
+
Args:
|
549 |
+
{input}
|
550 |
+
|
551 |
+
Keyword args:
|
552 |
+
{out}
|
553 |
+
|
554 |
+
Example::
|
555 |
+
>>> torch.special.i1e(torch.arange(5, dtype=torch.float32))
|
556 |
+
tensor([0.0000, 0.2079, 0.2153, 0.1968, 0.1788])
|
557 |
+
""".format(**common_args))
|
558 |
+
|
559 |
+
ndtr = _add_docstr(_special.special_ndtr,
|
560 |
+
r"""
|
561 |
+
ndtr(input, *, out=None) -> Tensor
|
562 |
+
Computes the area under the standard Gaussian probability density function,
|
563 |
+
integrated from minus infinity to :attr:`input`, elementwise.
|
564 |
+
|
565 |
+
.. math::
|
566 |
+
\text{ndtr}(x) = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt
|
567 |
+
|
568 |
+
""" + r"""
|
569 |
+
Args:
|
570 |
+
{input}
|
571 |
+
|
572 |
+
Keyword args:
|
573 |
+
{out}
|
574 |
+
|
575 |
+
Example::
|
576 |
+
>>> torch.special.ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3]))
|
577 |
+
tensor([0.0013, 0.0228, 0.1587, 0.5000, 0.8413, 0.9772, 0.9987])
|
578 |
+
""".format(**common_args))
|
579 |
+
|
580 |
+
ndtri = _add_docstr(_special.special_ndtri,
|
581 |
+
r"""
|
582 |
+
ndtri(input, *, out=None) -> Tensor
|
583 |
+
Computes the argument, x, for which the area under the Gaussian probability density function
|
584 |
+
(integrated from minus infinity to x) is equal to :attr:`input`, elementwise.
|
585 |
+
|
586 |
+
.. math::
|
587 |
+
\text{ndtri}(p) = \sqrt{2}\text{erf}^{-1}(2p - 1)
|
588 |
+
|
589 |
+
.. note::
|
590 |
+
Also known as quantile function for Normal Distribution.
|
591 |
+
|
592 |
+
""" + r"""
|
593 |
+
Args:
|
594 |
+
{input}
|
595 |
+
|
596 |
+
Keyword args:
|
597 |
+
{out}
|
598 |
+
|
599 |
+
Example::
|
600 |
+
>>> torch.special.ndtri(torch.tensor([0, 0.25, 0.5, 0.75, 1]))
|
601 |
+
tensor([ -inf, -0.6745, 0.0000, 0.6745, inf])
|
602 |
+
""".format(**common_args))
|
603 |
+
|
604 |
+
log_ndtr = _add_docstr(_special.special_log_ndtr,
|
605 |
+
r"""
|
606 |
+
log_ndtr(input, *, out=None) -> Tensor
|
607 |
+
Computes the log of the area under the standard Gaussian probability density function,
|
608 |
+
integrated from minus infinity to :attr:`input`, elementwise.
|
609 |
+
|
610 |
+
.. math::
|
611 |
+
\text{log\_ndtr}(x) = \log\left(\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt \right)
|
612 |
+
|
613 |
+
""" + r"""
|
614 |
+
Args:
|
615 |
+
{input}
|
616 |
+
|
617 |
+
Keyword args:
|
618 |
+
{out}
|
619 |
+
|
620 |
+
Example::
|
621 |
+
>>> torch.special.log_ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3]))
|
622 |
+
tensor([-6.6077 -3.7832 -1.841 -0.6931 -0.1728 -0.023 -0.0014])
|
623 |
+
""".format(**common_args))
|
624 |
+
|
625 |
+
log1p = _add_docstr(_special.special_log1p,
|
626 |
+
r"""
|
627 |
+
log1p(input, *, out=None) -> Tensor
|
628 |
+
|
629 |
+
Alias for :func:`torch.log1p`.
|
630 |
+
""")
|
631 |
+
|
632 |
+
sinc = _add_docstr(_special.special_sinc,
|
633 |
+
r"""
|
634 |
+
sinc(input, *, out=None) -> Tensor
|
635 |
+
|
636 |
+
Computes the normalized sinc of :attr:`input.`
|
637 |
+
|
638 |
+
.. math::
|
639 |
+
\text{out}_{i} =
|
640 |
+
\begin{cases}
|
641 |
+
1, & \text{if}\ \text{input}_{i}=0 \\
|
642 |
+
\sin(\pi \text{input}_{i}) / (\pi \text{input}_{i}), & \text{otherwise}
|
643 |
+
\end{cases}
|
644 |
+
""" + r"""
|
645 |
+
|
646 |
+
Args:
|
647 |
+
{input}
|
648 |
+
|
649 |
+
Keyword args:
|
650 |
+
{out}
|
651 |
+
|
652 |
+
Example::
|
653 |
+
>>> t = torch.randn(4)
|
654 |
+
>>> t
|
655 |
+
tensor([ 0.2252, -0.2948, 1.0267, -1.1566])
|
656 |
+
>>> torch.special.sinc(t)
|
657 |
+
tensor([ 0.9186, 0.8631, -0.0259, -0.1300])
|
658 |
+
""".format(**common_args))
|
659 |
+
|
660 |
+
round = _add_docstr(_special.special_round,
|
661 |
+
r"""
|
662 |
+
round(input, *, out=None) -> Tensor
|
663 |
+
|
664 |
+
Alias for :func:`torch.round`.
|
665 |
+
""")
|
666 |
+
|
667 |
+
softmax = _add_docstr(_special.special_softmax,
|
668 |
+
r"""
|
669 |
+
softmax(input, dim, *, dtype=None) -> Tensor
|
670 |
+
|
671 |
+
Computes the softmax function.
|
672 |
+
|
673 |
+
Softmax is defined as:
|
674 |
+
|
675 |
+
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`
|
676 |
+
|
677 |
+
It is applied to all slices along dim, and will re-scale them so that the elements
|
678 |
+
lie in the range `[0, 1]` and sum to 1.
|
679 |
+
|
680 |
+
Args:
|
681 |
+
input (Tensor): input
|
682 |
+
dim (int): A dimension along which softmax will be computed.
|
683 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
684 |
+
If specified, the input tensor is cast to :attr:`dtype` before the operation
|
685 |
+
is performed. This is useful for preventing data type overflows. Default: None.
|
686 |
+
|
687 |
+
Examples::
|
688 |
+
>>> t = torch.ones(2, 2)
|
689 |
+
>>> torch.special.softmax(t, 0)
|
690 |
+
tensor([[0.5000, 0.5000],
|
691 |
+
[0.5000, 0.5000]])
|
692 |
+
|
693 |
+
""")
|
694 |
+
|
695 |
+
log_softmax = _add_docstr(_special.special_log_softmax,
|
696 |
+
r"""
|
697 |
+
log_softmax(input, dim, *, dtype=None) -> Tensor
|
698 |
+
|
699 |
+
Computes softmax followed by a logarithm.
|
700 |
+
|
701 |
+
While mathematically equivalent to log(softmax(x)), doing these two
|
702 |
+
operations separately is slower and numerically unstable. This function
|
703 |
+
is computed as:
|
704 |
+
|
705 |
+
.. math::
|
706 |
+
\text{log\_softmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
707 |
+
""" + r"""
|
708 |
+
|
709 |
+
Args:
|
710 |
+
input (Tensor): input
|
711 |
+
dim (int): A dimension along which log_softmax will be computed.
|
712 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
713 |
+
If specified, the input tensor is cast to :attr:`dtype` before the operation
|
714 |
+
is performed. This is useful for preventing data type overflows. Default: None.
|
715 |
+
|
716 |
+
Example::
|
717 |
+
>>> t = torch.ones(2, 2)
|
718 |
+
>>> torch.special.log_softmax(t, 0)
|
719 |
+
tensor([[-0.6931, -0.6931],
|
720 |
+
[-0.6931, -0.6931]])
|
721 |
+
""")
|
722 |
+
|
723 |
+
zeta = _add_docstr(_special.special_zeta,
|
724 |
+
r"""
|
725 |
+
zeta(input, other, *, out=None) -> Tensor
|
726 |
+
|
727 |
+
Computes the Hurwitz zeta function, elementwise.
|
728 |
+
|
729 |
+
.. math::
|
730 |
+
\zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x}
|
731 |
+
|
732 |
+
""" + r"""
|
733 |
+
Args:
|
734 |
+
input (Tensor): the input tensor corresponding to `x`.
|
735 |
+
other (Tensor): the input tensor corresponding to `q`.
|
736 |
+
|
737 |
+
.. note::
|
738 |
+
The Riemann zeta function corresponds to the case when `q = 1`
|
739 |
+
|
740 |
+
Keyword args:
|
741 |
+
{out}
|
742 |
+
|
743 |
+
Example::
|
744 |
+
>>> x = torch.tensor([2., 4.])
|
745 |
+
>>> torch.special.zeta(x, 1)
|
746 |
+
tensor([1.6449, 1.0823])
|
747 |
+
>>> torch.special.zeta(x, torch.tensor([1., 2.]))
|
748 |
+
tensor([1.6449, 0.0823])
|
749 |
+
>>> torch.special.zeta(2, torch.tensor([1., 2.]))
|
750 |
+
tensor([1.6449, 0.6449])
|
751 |
+
""".format(**common_args))
|
752 |
+
|
753 |
+
multigammaln = _add_docstr(_special.special_multigammaln,
|
754 |
+
r"""
|
755 |
+
multigammaln(input, p, *, out=None) -> Tensor
|
756 |
+
|
757 |
+
Computes the `multivariate log-gamma function
|
758 |
+
<https://en.wikipedia.org/wiki/Multivariate_gamma_function>`_ with dimension
|
759 |
+
:math:`p` element-wise, given by
|
760 |
+
|
761 |
+
.. math::
|
762 |
+
\log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right)
|
763 |
+
|
764 |
+
where :math:`C = \log(\pi) \cdot \frac{p (p - 1)}{4}` and :math:`\Gamma(-)` is the Gamma function.
|
765 |
+
|
766 |
+
All elements must be greater than :math:`\frac{p - 1}{2}`, otherwise the behavior is undefiend.
|
767 |
+
""" + """
|
768 |
+
|
769 |
+
Args:
|
770 |
+
input (Tensor): the tensor to compute the multivariate log-gamma function
|
771 |
+
p (int): the number of dimensions
|
772 |
+
|
773 |
+
Keyword args:
|
774 |
+
{out}
|
775 |
+
|
776 |
+
Example::
|
777 |
+
|
778 |
+
>>> a = torch.empty(2, 3).uniform_(1, 2)
|
779 |
+
>>> a
|
780 |
+
tensor([[1.6835, 1.8474, 1.1929],
|
781 |
+
[1.0475, 1.7162, 1.4180]])
|
782 |
+
>>> torch.special.multigammaln(a, 2)
|
783 |
+
tensor([[0.3928, 0.4007, 0.7586],
|
784 |
+
[1.0311, 0.3901, 0.5049]])
|
785 |
+
""".format(**common_args))
|
786 |
+
|
787 |
+
gammainc = _add_docstr(_special.special_gammainc,
|
788 |
+
r"""
|
789 |
+
gammainc(input, other, *, out=None) -> Tensor
|
790 |
+
|
791 |
+
Computes the regularized lower incomplete gamma function:
|
792 |
+
|
793 |
+
.. math::
|
794 |
+
\text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_0^{\text{other}_i} t^{\text{input}_i-1} e^{-t} dt
|
795 |
+
|
796 |
+
where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive
|
797 |
+
and at least one is strictly positive.
|
798 |
+
If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`.
|
799 |
+
:math:`\Gamma(\cdot)` in the equation above is the gamma function,
|
800 |
+
|
801 |
+
.. math::
|
802 |
+
\Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt.
|
803 |
+
|
804 |
+
See :func:`torch.special.gammaincc` and :func:`torch.special.gammaln` for related functions.
|
805 |
+
|
806 |
+
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`
|
807 |
+
and float inputs.
|
808 |
+
|
809 |
+
.. note::
|
810 |
+
The backward pass with respect to :attr:`input` is not yet supported.
|
811 |
+
Please open an issue on PyTorch's Github to request it.
|
812 |
+
|
813 |
+
""" + r"""
|
814 |
+
Args:
|
815 |
+
input (Tensor): the first non-negative input tensor
|
816 |
+
other (Tensor): the second non-negative input tensor
|
817 |
+
|
818 |
+
Keyword args:
|
819 |
+
{out}
|
820 |
+
|
821 |
+
Example::
|
822 |
+
|
823 |
+
>>> a1 = torch.tensor([4.0])
|
824 |
+
>>> a2 = torch.tensor([3.0, 4.0, 5.0])
|
825 |
+
>>> a = torch.special.gammaincc(a1, a2)
|
826 |
+
tensor([0.3528, 0.5665, 0.7350])
|
827 |
+
tensor([0.3528, 0.5665, 0.7350])
|
828 |
+
>>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2)
|
829 |
+
tensor([1., 1., 1.])
|
830 |
+
|
831 |
+
""".format(**common_args))
|
832 |
+
|
833 |
+
gammaincc = _add_docstr(_special.special_gammaincc,
|
834 |
+
r"""
|
835 |
+
gammaincc(input, other, *, out=None) -> Tensor
|
836 |
+
|
837 |
+
Computes the regularized upper incomplete gamma function:
|
838 |
+
|
839 |
+
.. math::
|
840 |
+
\text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_{\text{other}_i}^{\infty} t^{\text{input}_i-1} e^{-t} dt
|
841 |
+
|
842 |
+
where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive
|
843 |
+
and at least one is strictly positive.
|
844 |
+
If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`.
|
845 |
+
:math:`\Gamma(\cdot)` in the equation above is the gamma function,
|
846 |
+
|
847 |
+
.. math::
|
848 |
+
\Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt.
|
849 |
+
|
850 |
+
See :func:`torch.special.gammainc` and :func:`torch.special.gammaln` for related functions.
|
851 |
+
|
852 |
+
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`
|
853 |
+
and float inputs.
|
854 |
+
|
855 |
+
.. note::
|
856 |
+
The backward pass with respect to :attr:`input` is not yet supported.
|
857 |
+
Please open an issue on PyTorch's Github to request it.
|
858 |
+
|
859 |
+
""" + r"""
|
860 |
+
Args:
|
861 |
+
input (Tensor): the first non-negative input tensor
|
862 |
+
other (Tensor): the second non-negative input tensor
|
863 |
+
|
864 |
+
Keyword args:
|
865 |
+
{out}
|
866 |
+
|
867 |
+
Example::
|
868 |
+
|
869 |
+
>>> a1 = torch.tensor([4.0])
|
870 |
+
>>> a2 = torch.tensor([3.0, 4.0, 5.0])
|
871 |
+
>>> a = torch.special.gammaincc(a1, a2)
|
872 |
+
tensor([0.6472, 0.4335, 0.2650])
|
873 |
+
>>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2)
|
874 |
+
tensor([1., 1., 1.])
|
875 |
+
|
876 |
+
""".format(**common_args))
|
877 |
+
|
878 |
+
airy_ai = _add_docstr(_special.special_airy_ai,
|
879 |
+
r"""
|
880 |
+
airy_ai(input, *, out=None) -> Tensor
|
881 |
+
|
882 |
+
Airy function :math:`\text{Ai}\left(\text{input}\right)`.
|
883 |
+
|
884 |
+
""" + r"""
|
885 |
+
Args:
|
886 |
+
{input}
|
887 |
+
|
888 |
+
Keyword args:
|
889 |
+
{out}
|
890 |
+
""".format(**common_args))
|
891 |
+
|
892 |
+
bessel_j0 = _add_docstr(_special.special_bessel_j0,
|
893 |
+
r"""
|
894 |
+
bessel_j0(input, *, out=None) -> Tensor
|
895 |
+
|
896 |
+
Bessel function of the first kind of order :math:`0`.
|
897 |
+
|
898 |
+
""" + r"""
|
899 |
+
Args:
|
900 |
+
{input}
|
901 |
+
|
902 |
+
Keyword args:
|
903 |
+
{out}
|
904 |
+
""".format(**common_args))
|
905 |
+
|
906 |
+
bessel_j1 = _add_docstr(_special.special_bessel_j1,
|
907 |
+
r"""
|
908 |
+
bessel_j1(input, *, out=None) -> Tensor
|
909 |
+
|
910 |
+
Bessel function of the first kind of order :math:`1`.
|
911 |
+
|
912 |
+
""" + r"""
|
913 |
+
Args:
|
914 |
+
{input}
|
915 |
+
|
916 |
+
Keyword args:
|
917 |
+
{out}
|
918 |
+
""".format(**common_args))
|
919 |
+
|
920 |
+
bessel_y0 = _add_docstr(_special.special_bessel_y0,
|
921 |
+
r"""
|
922 |
+
bessel_y0(input, *, out=None) -> Tensor
|
923 |
+
|
924 |
+
Bessel function of the second kind of order :math:`0`.
|
925 |
+
|
926 |
+
""" + r"""
|
927 |
+
Args:
|
928 |
+
{input}
|
929 |
+
|
930 |
+
Keyword args:
|
931 |
+
{out}
|
932 |
+
""".format(**common_args))
|
933 |
+
|
934 |
+
bessel_y1 = _add_docstr(_special.special_bessel_y1,
|
935 |
+
r"""
|
936 |
+
bessel_y1(input, *, out=None) -> Tensor
|
937 |
+
|
938 |
+
Bessel function of the second kind of order :math:`1`.
|
939 |
+
|
940 |
+
""" + r"""
|
941 |
+
Args:
|
942 |
+
{input}
|
943 |
+
|
944 |
+
Keyword args:
|
945 |
+
{out}
|
946 |
+
""".format(**common_args))
|
947 |
+
|
948 |
+
chebyshev_polynomial_t = _add_docstr(_special.special_chebyshev_polynomial_t,
|
949 |
+
r"""
|
950 |
+
chebyshev_polynomial_t(input, n, *, out=None) -> Tensor
|
951 |
+
|
952 |
+
Chebyshev polynomial of the first kind :math:`T_{n}(\text{input})`.
|
953 |
+
|
954 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}`
|
955 |
+
is returned. If :math:`n < 6` or :math:`|\text{input}| > 1` the recursion:
|
956 |
+
|
957 |
+
.. math::
|
958 |
+
T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input})
|
959 |
+
|
960 |
+
is evaluated. Otherwise, the explicit trigonometric formula:
|
961 |
+
|
962 |
+
.. math::
|
963 |
+
T_{n}(\text{input}) = \text{cos}(n \times \text{arccos}(x))
|
964 |
+
|
965 |
+
is evaluated.
|
966 |
+
|
967 |
+
""" + r"""
|
968 |
+
Args:
|
969 |
+
{input}
|
970 |
+
n (Tensor): Degree of the polynomial.
|
971 |
+
|
972 |
+
Keyword args:
|
973 |
+
{out}
|
974 |
+
""".format(**common_args))
|
975 |
+
|
976 |
+
chebyshev_polynomial_u = _add_docstr(_special.special_chebyshev_polynomial_u,
|
977 |
+
r"""
|
978 |
+
chebyshev_polynomial_t(input, n, *, out=None) -> Tensor
|
979 |
+
|
980 |
+
Chebyshev polynomial of the second kind :math:`U_{n}(\text{input})`.
|
981 |
+
|
982 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`,
|
983 |
+
:math:`2 \times \text{input}` is returned. If :math:`n < 6` or
|
984 |
+
:math:`|\text{input}| > 1`, the recursion:
|
985 |
+
|
986 |
+
.. math::
|
987 |
+
T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input})
|
988 |
+
|
989 |
+
is evaluated. Otherwise, the explicit trigonometric formula:
|
990 |
+
|
991 |
+
.. math::
|
992 |
+
\frac{\text{sin}((n + 1) \times \text{arccos}(\text{input}))}{\text{sin}(\text{arccos}(\text{input}))}
|
993 |
+
|
994 |
+
is evaluated.
|
995 |
+
|
996 |
+
""" + r"""
|
997 |
+
Args:
|
998 |
+
{input}
|
999 |
+
n (Tensor): Degree of the polynomial.
|
1000 |
+
|
1001 |
+
Keyword args:
|
1002 |
+
{out}
|
1003 |
+
""".format(**common_args))
|
1004 |
+
|
1005 |
+
chebyshev_polynomial_v = _add_docstr(_special.special_chebyshev_polynomial_v,
|
1006 |
+
r"""
|
1007 |
+
chebyshev_polynomial_v(input, n, *, out=None) -> Tensor
|
1008 |
+
|
1009 |
+
Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`.
|
1010 |
+
|
1011 |
+
""" + r"""
|
1012 |
+
Args:
|
1013 |
+
{input}
|
1014 |
+
n (Tensor): Degree of the polynomial.
|
1015 |
+
|
1016 |
+
Keyword args:
|
1017 |
+
{out}
|
1018 |
+
""".format(**common_args))
|
1019 |
+
|
1020 |
+
chebyshev_polynomial_w = _add_docstr(_special.special_chebyshev_polynomial_w,
|
1021 |
+
r"""
|
1022 |
+
chebyshev_polynomial_w(input, n, *, out=None) -> Tensor
|
1023 |
+
|
1024 |
+
Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`.
|
1025 |
+
|
1026 |
+
""" + r"""
|
1027 |
+
Args:
|
1028 |
+
{input}
|
1029 |
+
n (Tensor): Degree of the polynomial.
|
1030 |
+
|
1031 |
+
Keyword args:
|
1032 |
+
{out}
|
1033 |
+
""".format(**common_args))
|
1034 |
+
|
1035 |
+
hermite_polynomial_h = _add_docstr(_special.special_hermite_polynomial_h,
|
1036 |
+
r"""
|
1037 |
+
hermite_polynomial_h(input, n, *, out=None) -> Tensor
|
1038 |
+
|
1039 |
+
Physicist’s Hermite polynomial :math:`H_{n}(\text{input})`.
|
1040 |
+
|
1041 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}`
|
1042 |
+
is returned. Otherwise, the recursion:
|
1043 |
+
|
1044 |
+
.. math::
|
1045 |
+
H_{n + 1}(\text{input}) = 2 \times \text{input} \times H_{n}(\text{input}) - H_{n - 1}(\text{input})
|
1046 |
+
|
1047 |
+
is evaluated.
|
1048 |
+
|
1049 |
+
""" + r"""
|
1050 |
+
Args:
|
1051 |
+
{input}
|
1052 |
+
n (Tensor): Degree of the polynomial.
|
1053 |
+
|
1054 |
+
Keyword args:
|
1055 |
+
{out}
|
1056 |
+
""".format(**common_args))
|
1057 |
+
|
1058 |
+
hermite_polynomial_he = _add_docstr(_special.special_hermite_polynomial_he,
|
1059 |
+
r"""
|
1060 |
+
hermite_polynomial_he(input, n, *, out=None) -> Tensor
|
1061 |
+
|
1062 |
+
Probabilist’s Hermite polynomial :math:`He_{n}(\text{input})`.
|
1063 |
+
|
1064 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}`
|
1065 |
+
is returned. Otherwise, the recursion:
|
1066 |
+
|
1067 |
+
.. math::
|
1068 |
+
He_{n + 1}(\text{input}) = 2 \times \text{input} \times He_{n}(\text{input}) - He_{n - 1}(\text{input})
|
1069 |
+
|
1070 |
+
is evaluated.
|
1071 |
+
|
1072 |
+
""" + r"""
|
1073 |
+
Args:
|
1074 |
+
{input}
|
1075 |
+
n (Tensor): Degree of the polynomial.
|
1076 |
+
|
1077 |
+
Keyword args:
|
1078 |
+
{out}
|
1079 |
+
""".format(**common_args))
|
1080 |
+
|
1081 |
+
laguerre_polynomial_l = _add_docstr(_special.special_laguerre_polynomial_l,
|
1082 |
+
r"""
|
1083 |
+
laguerre_polynomial_l(input, n, *, out=None) -> Tensor
|
1084 |
+
|
1085 |
+
Laguerre polynomial :math:`L_{n}(\text{input})`.
|
1086 |
+
|
1087 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}`
|
1088 |
+
is returned. Otherwise, the recursion:
|
1089 |
+
|
1090 |
+
.. math::
|
1091 |
+
L_{n + 1}(\text{input}) = 2 \times \text{input} \times L_{n}(\text{input}) - L_{n - 1}(\text{input})
|
1092 |
+
|
1093 |
+
is evaluated.
|
1094 |
+
|
1095 |
+
""" + r"""
|
1096 |
+
Args:
|
1097 |
+
{input}
|
1098 |
+
n (Tensor): Degree of the polynomial.
|
1099 |
+
|
1100 |
+
Keyword args:
|
1101 |
+
{out}
|
1102 |
+
""".format(**common_args))
|
1103 |
+
|
1104 |
+
legendre_polynomial_p = _add_docstr(_special.special_legendre_polynomial_p,
|
1105 |
+
r"""
|
1106 |
+
legendre_polynomial_p(input, n, *, out=None) -> Tensor
|
1107 |
+
|
1108 |
+
Legendre polynomial :math:`P_{n}(\text{input})`.
|
1109 |
+
|
1110 |
+
If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}`
|
1111 |
+
is returned. Otherwise, the recursion:
|
1112 |
+
|
1113 |
+
.. math::
|
1114 |
+
P_{n + 1}(\text{input}) = 2 \times \text{input} \times P_{n}(\text{input}) - P_{n - 1}(\text{input})
|
1115 |
+
|
1116 |
+
is evaluated.
|
1117 |
+
|
1118 |
+
""" + r"""
|
1119 |
+
Args:
|
1120 |
+
{input}
|
1121 |
+
n (Tensor): Degree of the polynomial.
|
1122 |
+
|
1123 |
+
Keyword args:
|
1124 |
+
{out}
|
1125 |
+
""".format(**common_args))
|
1126 |
+
|
1127 |
+
modified_bessel_i0 = _add_docstr(_special.special_modified_bessel_i0,
|
1128 |
+
r"""
|
1129 |
+
modified_bessel_i0(input, *, out=None) -> Tensor
|
1130 |
+
|
1131 |
+
Modified Bessel function of the first kind of order :math:`0`.
|
1132 |
+
|
1133 |
+
""" + r"""
|
1134 |
+
Args:
|
1135 |
+
{input}
|
1136 |
+
|
1137 |
+
Keyword args:
|
1138 |
+
{out}
|
1139 |
+
""".format(**common_args))
|
1140 |
+
|
1141 |
+
modified_bessel_i1 = _add_docstr(_special.special_modified_bessel_i1,
|
1142 |
+
r"""
|
1143 |
+
modified_bessel_i1(input, *, out=None) -> Tensor
|
1144 |
+
|
1145 |
+
Modified Bessel function of the first kind of order :math:`1`.
|
1146 |
+
|
1147 |
+
""" + r"""
|
1148 |
+
Args:
|
1149 |
+
{input}
|
1150 |
+
|
1151 |
+
Keyword args:
|
1152 |
+
{out}
|
1153 |
+
""".format(**common_args))
|
1154 |
+
|
1155 |
+
modified_bessel_k0 = _add_docstr(_special.special_modified_bessel_k0,
|
1156 |
+
r"""
|
1157 |
+
modified_bessel_k0(input, *, out=None) -> Tensor
|
1158 |
+
|
1159 |
+
Modified Bessel function of the second kind of order :math:`0`.
|
1160 |
+
|
1161 |
+
""" + r"""
|
1162 |
+
Args:
|
1163 |
+
{input}
|
1164 |
+
|
1165 |
+
Keyword args:
|
1166 |
+
{out}
|
1167 |
+
""".format(**common_args))
|
1168 |
+
|
1169 |
+
modified_bessel_k1 = _add_docstr(_special.special_modified_bessel_k1,
|
1170 |
+
r"""
|
1171 |
+
modified_bessel_k1(input, *, out=None) -> Tensor
|
1172 |
+
|
1173 |
+
Modified Bessel function of the second kind of order :math:`1`.
|
1174 |
+
|
1175 |
+
""" + r"""
|
1176 |
+
Args:
|
1177 |
+
{input}
|
1178 |
+
|
1179 |
+
Keyword args:
|
1180 |
+
{out}
|
1181 |
+
""".format(**common_args))
|
1182 |
+
|
1183 |
+
scaled_modified_bessel_k0 = _add_docstr(_special.special_scaled_modified_bessel_k0,
|
1184 |
+
r"""
|
1185 |
+
scaled_modified_bessel_k0(input, *, out=None) -> Tensor
|
1186 |
+
|
1187 |
+
Scaled modified Bessel function of the second kind of order :math:`0`.
|
1188 |
+
|
1189 |
+
""" + r"""
|
1190 |
+
Args:
|
1191 |
+
{input}
|
1192 |
+
|
1193 |
+
Keyword args:
|
1194 |
+
{out}
|
1195 |
+
""".format(**common_args))
|
1196 |
+
|
1197 |
+
scaled_modified_bessel_k1 = _add_docstr(_special.special_scaled_modified_bessel_k1,
|
1198 |
+
r"""
|
1199 |
+
scaled_modified_bessel_k1(input, *, out=None) -> Tensor
|
1200 |
+
|
1201 |
+
Scaled modified Bessel function of the second kind of order :math:`1`.
|
1202 |
+
|
1203 |
+
""" + r"""
|
1204 |
+
Args:
|
1205 |
+
{input}
|
1206 |
+
|
1207 |
+
Keyword args:
|
1208 |
+
{out}
|
1209 |
+
""".format(**common_args))
|
1210 |
+
|
1211 |
+
shifted_chebyshev_polynomial_t = _add_docstr(_special.special_shifted_chebyshev_polynomial_t,
|
1212 |
+
r"""
|
1213 |
+
shifted_chebyshev_polynomial_t(input, n, *, out=None) -> Tensor
|
1214 |
+
|
1215 |
+
Chebyshev polynomial of the first kind :math:`T_{n}^{\ast}(\text{input})`.
|
1216 |
+
|
1217 |
+
""" + r"""
|
1218 |
+
Args:
|
1219 |
+
{input}
|
1220 |
+
n (Tensor): Degree of the polynomial.
|
1221 |
+
|
1222 |
+
Keyword args:
|
1223 |
+
{out}
|
1224 |
+
""".format(**common_args))
|
1225 |
+
|
1226 |
+
shifted_chebyshev_polynomial_u = _add_docstr(_special.special_shifted_chebyshev_polynomial_u,
|
1227 |
+
r"""
|
1228 |
+
shifted_chebyshev_polynomial_u(input, n, *, out=None) -> Tensor
|
1229 |
+
|
1230 |
+
Chebyshev polynomial of the second kind :math:`U_{n}^{\ast}(\text{input})`.
|
1231 |
+
|
1232 |
+
""" + r"""
|
1233 |
+
Args:
|
1234 |
+
{input}
|
1235 |
+
n (Tensor): Degree of the polynomial.
|
1236 |
+
|
1237 |
+
Keyword args:
|
1238 |
+
{out}
|
1239 |
+
""".format(**common_args))
|
1240 |
+
|
1241 |
+
shifted_chebyshev_polynomial_v = _add_docstr(_special.special_shifted_chebyshev_polynomial_v,
|
1242 |
+
r"""
|
1243 |
+
shifted_chebyshev_polynomial_v(input, n, *, out=None) -> Tensor
|
1244 |
+
|
1245 |
+
Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`.
|
1246 |
+
|
1247 |
+
""" + r"""
|
1248 |
+
Args:
|
1249 |
+
{input}
|
1250 |
+
n (Tensor): Degree of the polynomial.
|
1251 |
+
|
1252 |
+
Keyword args:
|
1253 |
+
{out}
|
1254 |
+
""".format(**common_args))
|
1255 |
+
|
1256 |
+
shifted_chebyshev_polynomial_w = _add_docstr(_special.special_shifted_chebyshev_polynomial_w,
|
1257 |
+
r"""
|
1258 |
+
shifted_chebyshev_polynomial_w(input, n, *, out=None) -> Tensor
|
1259 |
+
|
1260 |
+
Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`.
|
1261 |
+
|
1262 |
+
""" + r"""
|
1263 |
+
Args:
|
1264 |
+
{input}
|
1265 |
+
n (Tensor): Degree of the polynomial.
|
1266 |
+
|
1267 |
+
Keyword args:
|
1268 |
+
{out}
|
1269 |
+
""".format(**common_args))
|
1270 |
+
|
1271 |
+
spherical_bessel_j0 = _add_docstr(_special.special_spherical_bessel_j0,
|
1272 |
+
r"""
|
1273 |
+
spherical_bessel_j0(input, *, out=None) -> Tensor
|
1274 |
+
|
1275 |
+
Spherical Bessel function of the first kind of order :math:`0`.
|
1276 |
+
|
1277 |
+
""" + r"""
|
1278 |
+
Args:
|
1279 |
+
{input}
|
1280 |
+
|
1281 |
+
Keyword args:
|
1282 |
+
{out}
|
1283 |
+
""".format(**common_args))
|
env-llmeval/lib/python3.10/site-packages/torch/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/testing/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from torch._C import FileCheck as FileCheck
|
2 |
+
from ._comparison import assert_allclose, assert_close as assert_close
|
3 |
+
from ._creation import make_tensor as make_tensor
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_comparison.py
ADDED
@@ -0,0 +1,1572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import cmath
|
3 |
+
import collections.abc
|
4 |
+
import contextlib
|
5 |
+
import warnings
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Callable,
|
9 |
+
Collection,
|
10 |
+
Dict,
|
11 |
+
List,
|
12 |
+
NoReturn,
|
13 |
+
Optional,
|
14 |
+
Sequence,
|
15 |
+
Tuple,
|
16 |
+
Type,
|
17 |
+
Union,
|
18 |
+
)
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
try:
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
NUMPY_AVAILABLE = True
|
26 |
+
except ModuleNotFoundError:
|
27 |
+
NUMPY_AVAILABLE = False
|
28 |
+
|
29 |
+
|
30 |
+
class ErrorMeta(Exception):
|
31 |
+
"""Internal testing exception that makes that carries error metadata."""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self, type: Type[Exception], msg: str, *, id: Tuple[Any, ...] = ()
|
35 |
+
) -> None:
|
36 |
+
super().__init__(
|
37 |
+
"If you are a user and see this message during normal operation "
|
38 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
39 |
+
"If you are a developer and working on the comparison functions, please `raise ErrorMeta().to_error()` "
|
40 |
+
"for user facing errors."
|
41 |
+
)
|
42 |
+
self.type = type
|
43 |
+
self.msg = msg
|
44 |
+
self.id = id
|
45 |
+
|
46 |
+
def to_error(
|
47 |
+
self, msg: Optional[Union[str, Callable[[str], str]]] = None
|
48 |
+
) -> Exception:
|
49 |
+
if not isinstance(msg, str):
|
50 |
+
generated_msg = self.msg
|
51 |
+
if self.id:
|
52 |
+
generated_msg += f"\n\nThe failure occurred for item {''.join(str([item]) for item in self.id)}"
|
53 |
+
|
54 |
+
msg = msg(generated_msg) if callable(msg) else generated_msg
|
55 |
+
|
56 |
+
return self.type(msg)
|
57 |
+
|
58 |
+
|
59 |
+
# Some analysis of tolerance by logging tests from test_torch.py can be found in
|
60 |
+
# https://github.com/pytorch/pytorch/pull/32538.
|
61 |
+
# {dtype: (rtol, atol)}
|
62 |
+
_DTYPE_PRECISIONS = {
|
63 |
+
torch.float16: (0.001, 1e-5),
|
64 |
+
torch.bfloat16: (0.016, 1e-5),
|
65 |
+
torch.float32: (1.3e-6, 1e-5),
|
66 |
+
torch.float64: (1e-7, 1e-7),
|
67 |
+
torch.complex32: (0.001, 1e-5),
|
68 |
+
torch.complex64: (1.3e-6, 1e-5),
|
69 |
+
torch.complex128: (1e-7, 1e-7),
|
70 |
+
}
|
71 |
+
# The default tolerances of torch.float32 are used for quantized dtypes, because quantized tensors are compared in
|
72 |
+
# their dequantized and floating point representation. For more details see `TensorLikePair._compare_quantized_values`
|
73 |
+
_DTYPE_PRECISIONS.update(
|
74 |
+
{
|
75 |
+
dtype: _DTYPE_PRECISIONS[torch.float32]
|
76 |
+
for dtype in (
|
77 |
+
torch.quint8,
|
78 |
+
torch.quint2x4,
|
79 |
+
torch.quint4x2,
|
80 |
+
torch.qint8,
|
81 |
+
torch.qint32,
|
82 |
+
)
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
def default_tolerances(
|
88 |
+
*inputs: Union[torch.Tensor, torch.dtype],
|
89 |
+
dtype_precisions: Optional[Dict[torch.dtype, Tuple[float, float]]] = None,
|
90 |
+
) -> Tuple[float, float]:
|
91 |
+
"""Returns the default absolute and relative testing tolerances for a set of inputs based on the dtype.
|
92 |
+
|
93 |
+
See :func:`assert_close` for a table of the default tolerance for each dtype.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
(Tuple[float, float]): Loosest tolerances of all input dtypes.
|
97 |
+
"""
|
98 |
+
dtypes = []
|
99 |
+
for input in inputs:
|
100 |
+
if isinstance(input, torch.Tensor):
|
101 |
+
dtypes.append(input.dtype)
|
102 |
+
elif isinstance(input, torch.dtype):
|
103 |
+
dtypes.append(input)
|
104 |
+
else:
|
105 |
+
raise TypeError(
|
106 |
+
f"Expected a torch.Tensor or a torch.dtype, but got {type(input)} instead."
|
107 |
+
)
|
108 |
+
dtype_precisions = dtype_precisions or _DTYPE_PRECISIONS
|
109 |
+
rtols, atols = zip(*[dtype_precisions.get(dtype, (0.0, 0.0)) for dtype in dtypes])
|
110 |
+
return max(rtols), max(atols)
|
111 |
+
|
112 |
+
|
113 |
+
def get_tolerances(
|
114 |
+
*inputs: Union[torch.Tensor, torch.dtype],
|
115 |
+
rtol: Optional[float],
|
116 |
+
atol: Optional[float],
|
117 |
+
id: Tuple[Any, ...] = (),
|
118 |
+
) -> Tuple[float, float]:
|
119 |
+
"""Gets absolute and relative to be used for numeric comparisons.
|
120 |
+
|
121 |
+
If both ``rtol`` and ``atol`` are specified, this is a no-op. If both are not specified, the return value of
|
122 |
+
:func:`default_tolerances` is used.
|
123 |
+
|
124 |
+
Raises:
|
125 |
+
ErrorMeta: With :class:`ValueError`, if only ``rtol`` or ``atol`` is specified.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
(Tuple[float, float]): Valid absolute and relative tolerances.
|
129 |
+
"""
|
130 |
+
if (rtol is None) ^ (atol is None):
|
131 |
+
# We require both tolerance to be omitted or specified, because specifying only one might lead to surprising
|
132 |
+
# results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0.
|
133 |
+
raise ErrorMeta(
|
134 |
+
ValueError,
|
135 |
+
f"Both 'rtol' and 'atol' must be either specified or omitted, "
|
136 |
+
f"but got no {'rtol' if rtol is None else 'atol'}.",
|
137 |
+
id=id,
|
138 |
+
)
|
139 |
+
elif rtol is not None and atol is not None:
|
140 |
+
return rtol, atol
|
141 |
+
else:
|
142 |
+
return default_tolerances(*inputs)
|
143 |
+
|
144 |
+
|
145 |
+
def _make_mismatch_msg(
|
146 |
+
*,
|
147 |
+
default_identifier: str,
|
148 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
149 |
+
extra: Optional[str] = None,
|
150 |
+
abs_diff: float,
|
151 |
+
abs_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None,
|
152 |
+
atol: float,
|
153 |
+
rel_diff: float,
|
154 |
+
rel_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None,
|
155 |
+
rtol: float,
|
156 |
+
) -> str:
|
157 |
+
"""Makes a mismatch error message for numeric values.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
default_identifier (str): Default description of the compared values, e.g. "Tensor-likes".
|
161 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional identifier that overrides
|
162 |
+
``default_identifier``. Can be passed as callable in which case it will be called with
|
163 |
+
``default_identifier`` to create the description at runtime.
|
164 |
+
extra (Optional[str]): Extra information to be placed after the message header and the mismatch statistics.
|
165 |
+
abs_diff (float): Absolute difference.
|
166 |
+
abs_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the absolute difference.
|
167 |
+
atol (float): Allowed absolute tolerance. Will only be added to mismatch statistics if it or ``rtol`` are
|
168 |
+
``> 0``.
|
169 |
+
rel_diff (float): Relative difference.
|
170 |
+
rel_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the relative difference.
|
171 |
+
rtol (float): Allowed relative tolerance. Will only be added to mismatch statistics if it or ``atol`` are
|
172 |
+
``> 0``.
|
173 |
+
"""
|
174 |
+
equality = rtol == 0 and atol == 0
|
175 |
+
|
176 |
+
def make_diff_msg(
|
177 |
+
*,
|
178 |
+
type: str,
|
179 |
+
diff: float,
|
180 |
+
idx: Optional[Union[int, Tuple[int, ...]]],
|
181 |
+
tol: float,
|
182 |
+
) -> str:
|
183 |
+
if idx is None:
|
184 |
+
msg = f"{type.title()} difference: {diff}"
|
185 |
+
else:
|
186 |
+
msg = f"Greatest {type} difference: {diff} at index {idx}"
|
187 |
+
if not equality:
|
188 |
+
msg += f" (up to {tol} allowed)"
|
189 |
+
return msg + "\n"
|
190 |
+
|
191 |
+
if identifier is None:
|
192 |
+
identifier = default_identifier
|
193 |
+
elif callable(identifier):
|
194 |
+
identifier = identifier(default_identifier)
|
195 |
+
|
196 |
+
msg = f"{identifier} are not {'equal' if equality else 'close'}!\n\n"
|
197 |
+
|
198 |
+
if extra:
|
199 |
+
msg += f"{extra.strip()}\n"
|
200 |
+
|
201 |
+
msg += make_diff_msg(type="absolute", diff=abs_diff, idx=abs_diff_idx, tol=atol)
|
202 |
+
msg += make_diff_msg(type="relative", diff=rel_diff, idx=rel_diff_idx, tol=rtol)
|
203 |
+
|
204 |
+
return msg.strip()
|
205 |
+
|
206 |
+
|
207 |
+
def make_scalar_mismatch_msg(
|
208 |
+
actual: Union[bool, int, float, complex],
|
209 |
+
expected: Union[bool, int, float, complex],
|
210 |
+
*,
|
211 |
+
rtol: float,
|
212 |
+
atol: float,
|
213 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
214 |
+
) -> str:
|
215 |
+
"""Makes a mismatch error message for scalars.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
actual (Union[bool, int, float, complex]): Actual scalar.
|
219 |
+
expected (Union[bool, int, float, complex]): Expected scalar.
|
220 |
+
rtol (float): Relative tolerance.
|
221 |
+
atol (float): Absolute tolerance.
|
222 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the scalars. Can be passed
|
223 |
+
as callable in which case it will be called by the default value to create the description at runtime.
|
224 |
+
Defaults to "Scalars".
|
225 |
+
"""
|
226 |
+
abs_diff = abs(actual - expected)
|
227 |
+
rel_diff = float("inf") if expected == 0 else abs_diff / abs(expected)
|
228 |
+
return _make_mismatch_msg(
|
229 |
+
default_identifier="Scalars",
|
230 |
+
identifier=identifier,
|
231 |
+
extra=f"Expected {expected} but got {actual}.",
|
232 |
+
abs_diff=abs_diff,
|
233 |
+
atol=atol,
|
234 |
+
rel_diff=rel_diff,
|
235 |
+
rtol=rtol,
|
236 |
+
)
|
237 |
+
|
238 |
+
|
239 |
+
def make_tensor_mismatch_msg(
|
240 |
+
actual: torch.Tensor,
|
241 |
+
expected: torch.Tensor,
|
242 |
+
matches: torch.Tensor,
|
243 |
+
*,
|
244 |
+
rtol: float,
|
245 |
+
atol: float,
|
246 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
247 |
+
):
|
248 |
+
"""Makes a mismatch error message for tensors.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
actual (torch.Tensor): Actual tensor.
|
252 |
+
expected (torch.Tensor): Expected tensor.
|
253 |
+
matches (torch.Tensor): Boolean mask of the same shape as ``actual`` and ``expected`` that indicates the
|
254 |
+
location of matches.
|
255 |
+
rtol (float): Relative tolerance.
|
256 |
+
atol (float): Absolute tolerance.
|
257 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the tensors. Can be passed
|
258 |
+
as callable in which case it will be called by the default value to create the description at runtime.
|
259 |
+
Defaults to "Tensor-likes".
|
260 |
+
"""
|
261 |
+
|
262 |
+
def unravel_flat_index(flat_index: int) -> Tuple[int, ...]:
|
263 |
+
if not matches.shape:
|
264 |
+
return ()
|
265 |
+
|
266 |
+
inverse_index = []
|
267 |
+
for size in matches.shape[::-1]:
|
268 |
+
div, mod = divmod(flat_index, size)
|
269 |
+
flat_index = div
|
270 |
+
inverse_index.append(mod)
|
271 |
+
|
272 |
+
return tuple(inverse_index[::-1])
|
273 |
+
|
274 |
+
number_of_elements = matches.numel()
|
275 |
+
total_mismatches = number_of_elements - int(torch.sum(matches))
|
276 |
+
extra = (
|
277 |
+
f"Mismatched elements: {total_mismatches} / {number_of_elements} "
|
278 |
+
f"({total_mismatches / number_of_elements:.1%})"
|
279 |
+
)
|
280 |
+
|
281 |
+
actual_flat = actual.flatten()
|
282 |
+
expected_flat = expected.flatten()
|
283 |
+
matches_flat = matches.flatten()
|
284 |
+
|
285 |
+
if not actual.dtype.is_floating_point and not actual.dtype.is_complex:
|
286 |
+
# TODO: Instead of always upcasting to int64, it would be sufficient to cast to the next higher dtype to avoid
|
287 |
+
# overflow
|
288 |
+
actual_flat = actual_flat.to(torch.int64)
|
289 |
+
expected_flat = expected_flat.to(torch.int64)
|
290 |
+
|
291 |
+
abs_diff = torch.abs(actual_flat - expected_flat)
|
292 |
+
# Ensure that only mismatches are used for the max_abs_diff computation
|
293 |
+
abs_diff[matches_flat] = 0
|
294 |
+
max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0)
|
295 |
+
|
296 |
+
rel_diff = abs_diff / torch.abs(expected_flat)
|
297 |
+
# Ensure that only mismatches are used for the max_rel_diff computation
|
298 |
+
rel_diff[matches_flat] = 0
|
299 |
+
max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0)
|
300 |
+
return _make_mismatch_msg(
|
301 |
+
default_identifier="Tensor-likes",
|
302 |
+
identifier=identifier,
|
303 |
+
extra=extra,
|
304 |
+
abs_diff=max_abs_diff.item(),
|
305 |
+
abs_diff_idx=unravel_flat_index(int(max_abs_diff_flat_idx)),
|
306 |
+
atol=atol,
|
307 |
+
rel_diff=max_rel_diff.item(),
|
308 |
+
rel_diff_idx=unravel_flat_index(int(max_rel_diff_flat_idx)),
|
309 |
+
rtol=rtol,
|
310 |
+
)
|
311 |
+
|
312 |
+
|
313 |
+
class UnsupportedInputs(Exception): # noqa: B903
|
314 |
+
"""Exception to be raised during the construction of a :class:`Pair` in case it doesn't support the inputs."""
|
315 |
+
|
316 |
+
|
317 |
+
class Pair(abc.ABC):
|
318 |
+
"""ABC for all comparison pairs to be used in conjunction with :func:`assert_equal`.
|
319 |
+
|
320 |
+
Each subclass needs to overwrite :meth:`Pair.compare` that performs the actual comparison.
|
321 |
+
|
322 |
+
Each pair receives **all** options, so select the ones applicable for the subclass and forward the rest to the
|
323 |
+
super class. Raising an :class:`UnsupportedInputs` during constructions indicates that the pair is not able to
|
324 |
+
handle the inputs and the next pair type will be tried.
|
325 |
+
|
326 |
+
All other errors should be raised as :class:`ErrorMeta`. After the instantiation, :meth:`Pair._make_error_meta` can
|
327 |
+
be used to automatically handle overwriting the message with a user supplied one and id handling.
|
328 |
+
"""
|
329 |
+
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
actual: Any,
|
333 |
+
expected: Any,
|
334 |
+
*,
|
335 |
+
id: Tuple[Any, ...] = (),
|
336 |
+
**unknown_parameters: Any,
|
337 |
+
) -> None:
|
338 |
+
self.actual = actual
|
339 |
+
self.expected = expected
|
340 |
+
self.id = id
|
341 |
+
self._unknown_parameters = unknown_parameters
|
342 |
+
|
343 |
+
@staticmethod
|
344 |
+
def _inputs_not_supported() -> NoReturn:
|
345 |
+
raise UnsupportedInputs()
|
346 |
+
|
347 |
+
@staticmethod
|
348 |
+
def _check_inputs_isinstance(*inputs: Any, cls: Union[Type, Tuple[Type, ...]]):
|
349 |
+
"""Checks if all inputs are instances of a given class and raise :class:`UnsupportedInputs` otherwise."""
|
350 |
+
if not all(isinstance(input, cls) for input in inputs):
|
351 |
+
Pair._inputs_not_supported()
|
352 |
+
|
353 |
+
def _fail(
|
354 |
+
self, type: Type[Exception], msg: str, *, id: Tuple[Any, ...] = ()
|
355 |
+
) -> NoReturn:
|
356 |
+
"""Raises an :class:`ErrorMeta` from a given exception type and message and the stored id.
|
357 |
+
|
358 |
+
.. warning::
|
359 |
+
|
360 |
+
If you use this before the ``super().__init__(...)`` call in the constructor, you have to pass the ``id``
|
361 |
+
explicitly.
|
362 |
+
"""
|
363 |
+
raise ErrorMeta(type, msg, id=self.id if not id and hasattr(self, "id") else id)
|
364 |
+
|
365 |
+
@abc.abstractmethod
|
366 |
+
def compare(self) -> None:
|
367 |
+
"""Compares the inputs and raises an :class`ErrorMeta` in case they mismatch."""
|
368 |
+
|
369 |
+
def extra_repr(self) -> Sequence[Union[str, Tuple[str, Any]]]:
|
370 |
+
"""Returns extra information that will be included in the representation.
|
371 |
+
|
372 |
+
Should be overwritten by all subclasses that use additional options. The representation of the object will only
|
373 |
+
be surfaced in case we encounter an unexpected error and thus should help debug the issue. Can be a sequence of
|
374 |
+
key-value-pairs or attribute names.
|
375 |
+
"""
|
376 |
+
return []
|
377 |
+
|
378 |
+
def __repr__(self) -> str:
|
379 |
+
head = f"{type(self).__name__}("
|
380 |
+
tail = ")"
|
381 |
+
body = [
|
382 |
+
f" {name}={value!s},"
|
383 |
+
for name, value in [
|
384 |
+
("id", self.id),
|
385 |
+
("actual", self.actual),
|
386 |
+
("expected", self.expected),
|
387 |
+
*[
|
388 |
+
(extra, getattr(self, extra)) if isinstance(extra, str) else extra
|
389 |
+
for extra in self.extra_repr()
|
390 |
+
],
|
391 |
+
]
|
392 |
+
]
|
393 |
+
return "\n".join((head, *body, *tail))
|
394 |
+
|
395 |
+
|
396 |
+
class ObjectPair(Pair):
|
397 |
+
"""Pair for any type of inputs that will be compared with the `==` operator.
|
398 |
+
|
399 |
+
.. note::
|
400 |
+
|
401 |
+
Since this will instantiate for any kind of inputs, it should only be used as fallback after all other pairs
|
402 |
+
couldn't handle the inputs.
|
403 |
+
|
404 |
+
"""
|
405 |
+
|
406 |
+
def compare(self) -> None:
|
407 |
+
try:
|
408 |
+
equal = self.actual == self.expected
|
409 |
+
except Exception as error:
|
410 |
+
# We are not using `self._raise_error_meta` here since we need the exception chaining
|
411 |
+
raise ErrorMeta(
|
412 |
+
ValueError,
|
413 |
+
f"{self.actual} == {self.expected} failed with:\n{error}.",
|
414 |
+
id=self.id,
|
415 |
+
) from error
|
416 |
+
|
417 |
+
if not equal:
|
418 |
+
self._fail(AssertionError, f"{self.actual} != {self.expected}")
|
419 |
+
|
420 |
+
|
421 |
+
class NonePair(Pair):
|
422 |
+
"""Pair for ``None`` inputs."""
|
423 |
+
|
424 |
+
def __init__(self, actual: Any, expected: Any, **other_parameters: Any) -> None:
|
425 |
+
if not (actual is None or expected is None):
|
426 |
+
self._inputs_not_supported()
|
427 |
+
|
428 |
+
super().__init__(actual, expected, **other_parameters)
|
429 |
+
|
430 |
+
def compare(self) -> None:
|
431 |
+
if not (self.actual is None and self.expected is None):
|
432 |
+
self._fail(
|
433 |
+
AssertionError, f"None mismatch: {self.actual} is not {self.expected}"
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
class BooleanPair(Pair):
|
438 |
+
"""Pair for :class:`bool` inputs.
|
439 |
+
|
440 |
+
.. note::
|
441 |
+
|
442 |
+
If ``numpy`` is available, also handles :class:`numpy.bool_` inputs.
|
443 |
+
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(
|
447 |
+
self,
|
448 |
+
actual: Any,
|
449 |
+
expected: Any,
|
450 |
+
*,
|
451 |
+
id: Tuple[Any, ...],
|
452 |
+
**other_parameters: Any,
|
453 |
+
) -> None:
|
454 |
+
actual, expected = self._process_inputs(actual, expected, id=id)
|
455 |
+
super().__init__(actual, expected, **other_parameters)
|
456 |
+
|
457 |
+
@property
|
458 |
+
def _supported_types(self) -> Tuple[Type, ...]:
|
459 |
+
cls: List[Type] = [bool]
|
460 |
+
if NUMPY_AVAILABLE:
|
461 |
+
cls.append(np.bool_)
|
462 |
+
return tuple(cls)
|
463 |
+
|
464 |
+
def _process_inputs(
|
465 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...]
|
466 |
+
) -> Tuple[bool, bool]:
|
467 |
+
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
|
468 |
+
actual, expected = (
|
469 |
+
self._to_bool(bool_like, id=id) for bool_like in (actual, expected)
|
470 |
+
)
|
471 |
+
return actual, expected
|
472 |
+
|
473 |
+
def _to_bool(self, bool_like: Any, *, id: Tuple[Any, ...]) -> bool:
|
474 |
+
if isinstance(bool_like, bool):
|
475 |
+
return bool_like
|
476 |
+
elif isinstance(bool_like, np.bool_):
|
477 |
+
return bool_like.item()
|
478 |
+
else:
|
479 |
+
raise ErrorMeta(
|
480 |
+
TypeError, f"Unknown boolean type {type(bool_like)}.", id=id
|
481 |
+
)
|
482 |
+
|
483 |
+
def compare(self) -> None:
|
484 |
+
if self.actual is not self.expected:
|
485 |
+
self._fail(
|
486 |
+
AssertionError,
|
487 |
+
f"Booleans mismatch: {self.actual} is not {self.expected}",
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
class NumberPair(Pair):
|
492 |
+
"""Pair for Python number (:class:`int`, :class:`float`, and :class:`complex`) inputs.
|
493 |
+
|
494 |
+
.. note::
|
495 |
+
|
496 |
+
If ``numpy`` is available, also handles :class:`numpy.number` inputs.
|
497 |
+
|
498 |
+
Kwargs:
|
499 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
500 |
+
values based on the type are selected with the below table.
|
501 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
502 |
+
values based on the type are selected with the below table.
|
503 |
+
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
|
504 |
+
check_dtype (bool): If ``True``, the type of the inputs will be checked for equality. Defaults to ``False``.
|
505 |
+
|
506 |
+
The following table displays correspondence between Python number type and the ``torch.dtype``'s. See
|
507 |
+
:func:`assert_close` for the corresponding tolerances.
|
508 |
+
|
509 |
+
+------------------+-------------------------------+
|
510 |
+
| ``type`` | corresponding ``torch.dtype`` |
|
511 |
+
+==================+===============================+
|
512 |
+
| :class:`int` | :attr:`~torch.int64` |
|
513 |
+
+------------------+-------------------------------+
|
514 |
+
| :class:`float` | :attr:`~torch.float64` |
|
515 |
+
+------------------+-------------------------------+
|
516 |
+
| :class:`complex` | :attr:`~torch.complex64` |
|
517 |
+
+------------------+-------------------------------+
|
518 |
+
"""
|
519 |
+
|
520 |
+
_TYPE_TO_DTYPE = {
|
521 |
+
int: torch.int64,
|
522 |
+
float: torch.float64,
|
523 |
+
complex: torch.complex128,
|
524 |
+
}
|
525 |
+
_NUMBER_TYPES = tuple(_TYPE_TO_DTYPE.keys())
|
526 |
+
|
527 |
+
def __init__(
|
528 |
+
self,
|
529 |
+
actual: Any,
|
530 |
+
expected: Any,
|
531 |
+
*,
|
532 |
+
id: Tuple[Any, ...] = (),
|
533 |
+
rtol: Optional[float] = None,
|
534 |
+
atol: Optional[float] = None,
|
535 |
+
equal_nan: bool = False,
|
536 |
+
check_dtype: bool = False,
|
537 |
+
**other_parameters: Any,
|
538 |
+
) -> None:
|
539 |
+
actual, expected = self._process_inputs(actual, expected, id=id)
|
540 |
+
super().__init__(actual, expected, id=id, **other_parameters)
|
541 |
+
|
542 |
+
self.rtol, self.atol = get_tolerances(
|
543 |
+
*[self._TYPE_TO_DTYPE[type(input)] for input in (actual, expected)],
|
544 |
+
rtol=rtol,
|
545 |
+
atol=atol,
|
546 |
+
id=id,
|
547 |
+
)
|
548 |
+
self.equal_nan = equal_nan
|
549 |
+
self.check_dtype = check_dtype
|
550 |
+
|
551 |
+
@property
|
552 |
+
def _supported_types(self) -> Tuple[Type, ...]:
|
553 |
+
cls = list(self._NUMBER_TYPES)
|
554 |
+
if NUMPY_AVAILABLE:
|
555 |
+
cls.append(np.number)
|
556 |
+
return tuple(cls)
|
557 |
+
|
558 |
+
def _process_inputs(
|
559 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...]
|
560 |
+
) -> Tuple[Union[int, float, complex], Union[int, float, complex]]:
|
561 |
+
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
|
562 |
+
actual, expected = (
|
563 |
+
self._to_number(number_like, id=id) for number_like in (actual, expected)
|
564 |
+
)
|
565 |
+
return actual, expected
|
566 |
+
|
567 |
+
def _to_number(
|
568 |
+
self, number_like: Any, *, id: Tuple[Any, ...]
|
569 |
+
) -> Union[int, float, complex]:
|
570 |
+
if NUMPY_AVAILABLE and isinstance(number_like, np.number):
|
571 |
+
return number_like.item()
|
572 |
+
elif isinstance(number_like, self._NUMBER_TYPES):
|
573 |
+
return number_like # type: ignore[return-value]
|
574 |
+
else:
|
575 |
+
raise ErrorMeta(
|
576 |
+
TypeError, f"Unknown number type {type(number_like)}.", id=id
|
577 |
+
)
|
578 |
+
|
579 |
+
def compare(self) -> None:
|
580 |
+
if self.check_dtype and type(self.actual) is not type(self.expected):
|
581 |
+
self._fail(
|
582 |
+
AssertionError,
|
583 |
+
f"The (d)types do not match: {type(self.actual)} != {type(self.expected)}.",
|
584 |
+
)
|
585 |
+
|
586 |
+
if self.actual == self.expected:
|
587 |
+
return
|
588 |
+
|
589 |
+
if self.equal_nan and cmath.isnan(self.actual) and cmath.isnan(self.expected):
|
590 |
+
return
|
591 |
+
|
592 |
+
abs_diff = abs(self.actual - self.expected)
|
593 |
+
tolerance = self.atol + self.rtol * abs(self.expected)
|
594 |
+
|
595 |
+
if cmath.isfinite(abs_diff) and abs_diff <= tolerance:
|
596 |
+
return
|
597 |
+
|
598 |
+
self._fail(
|
599 |
+
AssertionError,
|
600 |
+
make_scalar_mismatch_msg(
|
601 |
+
self.actual, self.expected, rtol=self.rtol, atol=self.atol
|
602 |
+
),
|
603 |
+
)
|
604 |
+
|
605 |
+
def extra_repr(self) -> Sequence[str]:
|
606 |
+
return (
|
607 |
+
"rtol",
|
608 |
+
"atol",
|
609 |
+
"equal_nan",
|
610 |
+
"check_dtype",
|
611 |
+
)
|
612 |
+
|
613 |
+
|
614 |
+
class TensorLikePair(Pair):
|
615 |
+
"""Pair for :class:`torch.Tensor`-like inputs.
|
616 |
+
|
617 |
+
Kwargs:
|
618 |
+
allow_subclasses (bool):
|
619 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
620 |
+
values based on the type are selected. See :func:assert_close: for details.
|
621 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
622 |
+
values based on the type are selected. See :func:assert_close: for details.
|
623 |
+
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
|
624 |
+
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
|
625 |
+
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
|
626 |
+
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
|
627 |
+
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
|
628 |
+
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
|
629 |
+
:func:`torch.promote_types`) before being compared.
|
630 |
+
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
|
631 |
+
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
|
632 |
+
compared.
|
633 |
+
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
|
634 |
+
"""
|
635 |
+
|
636 |
+
def __init__(
|
637 |
+
self,
|
638 |
+
actual: Any,
|
639 |
+
expected: Any,
|
640 |
+
*,
|
641 |
+
id: Tuple[Any, ...] = (),
|
642 |
+
allow_subclasses: bool = True,
|
643 |
+
rtol: Optional[float] = None,
|
644 |
+
atol: Optional[float] = None,
|
645 |
+
equal_nan: bool = False,
|
646 |
+
check_device: bool = True,
|
647 |
+
check_dtype: bool = True,
|
648 |
+
check_layout: bool = True,
|
649 |
+
check_stride: bool = False,
|
650 |
+
**other_parameters: Any,
|
651 |
+
):
|
652 |
+
actual, expected = self._process_inputs(
|
653 |
+
actual, expected, id=id, allow_subclasses=allow_subclasses
|
654 |
+
)
|
655 |
+
super().__init__(actual, expected, id=id, **other_parameters)
|
656 |
+
|
657 |
+
self.rtol, self.atol = get_tolerances(
|
658 |
+
actual, expected, rtol=rtol, atol=atol, id=self.id
|
659 |
+
)
|
660 |
+
self.equal_nan = equal_nan
|
661 |
+
self.check_device = check_device
|
662 |
+
self.check_dtype = check_dtype
|
663 |
+
self.check_layout = check_layout
|
664 |
+
self.check_stride = check_stride
|
665 |
+
|
666 |
+
def _process_inputs(
|
667 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...], allow_subclasses: bool
|
668 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
669 |
+
directly_related = isinstance(actual, type(expected)) or isinstance(
|
670 |
+
expected, type(actual)
|
671 |
+
)
|
672 |
+
if not directly_related:
|
673 |
+
self._inputs_not_supported()
|
674 |
+
|
675 |
+
if not allow_subclasses and type(actual) is not type(expected):
|
676 |
+
self._inputs_not_supported()
|
677 |
+
|
678 |
+
actual, expected = (self._to_tensor(input) for input in (actual, expected))
|
679 |
+
for tensor in (actual, expected):
|
680 |
+
self._check_supported(tensor, id=id)
|
681 |
+
return actual, expected
|
682 |
+
|
683 |
+
def _to_tensor(self, tensor_like: Any) -> torch.Tensor:
|
684 |
+
if isinstance(tensor_like, torch.Tensor):
|
685 |
+
return tensor_like
|
686 |
+
|
687 |
+
try:
|
688 |
+
return torch.as_tensor(tensor_like)
|
689 |
+
except Exception:
|
690 |
+
self._inputs_not_supported()
|
691 |
+
|
692 |
+
def _check_supported(self, tensor: torch.Tensor, *, id: Tuple[Any, ...]) -> None:
|
693 |
+
if tensor.layout not in {
|
694 |
+
torch.strided,
|
695 |
+
torch.sparse_coo,
|
696 |
+
torch.sparse_csr,
|
697 |
+
torch.sparse_csc,
|
698 |
+
torch.sparse_bsr,
|
699 |
+
torch.sparse_bsc,
|
700 |
+
}:
|
701 |
+
raise ErrorMeta(
|
702 |
+
ValueError, f"Unsupported tensor layout {tensor.layout}", id=id
|
703 |
+
)
|
704 |
+
|
705 |
+
def compare(self) -> None:
|
706 |
+
actual, expected = self.actual, self.expected
|
707 |
+
|
708 |
+
self._compare_attributes(actual, expected)
|
709 |
+
if any(input.device.type == "meta" for input in (actual, expected)):
|
710 |
+
return
|
711 |
+
|
712 |
+
actual, expected = self._equalize_attributes(actual, expected)
|
713 |
+
self._compare_values(actual, expected)
|
714 |
+
|
715 |
+
def _compare_attributes(
|
716 |
+
self,
|
717 |
+
actual: torch.Tensor,
|
718 |
+
expected: torch.Tensor,
|
719 |
+
) -> None:
|
720 |
+
"""Checks if the attributes of two tensors match.
|
721 |
+
|
722 |
+
Always checks
|
723 |
+
|
724 |
+
- the :attr:`~torch.Tensor.shape`,
|
725 |
+
- whether both inputs are quantized or not,
|
726 |
+
- and if they use the same quantization scheme.
|
727 |
+
|
728 |
+
Checks for
|
729 |
+
|
730 |
+
- :attr:`~torch.Tensor.layout`,
|
731 |
+
- :meth:`~torch.Tensor.stride`,
|
732 |
+
- :attr:`~torch.Tensor.device`, and
|
733 |
+
- :attr:`~torch.Tensor.dtype`
|
734 |
+
|
735 |
+
are optional and can be disabled through the corresponding ``check_*`` flag during construction of the pair.
|
736 |
+
"""
|
737 |
+
|
738 |
+
def raise_mismatch_error(
|
739 |
+
attribute_name: str, actual_value: Any, expected_value: Any
|
740 |
+
) -> NoReturn:
|
741 |
+
self._fail(
|
742 |
+
AssertionError,
|
743 |
+
f"The values for attribute '{attribute_name}' do not match: {actual_value} != {expected_value}.",
|
744 |
+
)
|
745 |
+
|
746 |
+
if actual.shape != expected.shape:
|
747 |
+
raise_mismatch_error("shape", actual.shape, expected.shape)
|
748 |
+
|
749 |
+
if actual.is_quantized != expected.is_quantized:
|
750 |
+
raise_mismatch_error(
|
751 |
+
"is_quantized", actual.is_quantized, expected.is_quantized
|
752 |
+
)
|
753 |
+
elif actual.is_quantized and actual.qscheme() != expected.qscheme():
|
754 |
+
raise_mismatch_error("qscheme()", actual.qscheme(), expected.qscheme())
|
755 |
+
|
756 |
+
if actual.layout != expected.layout:
|
757 |
+
if self.check_layout:
|
758 |
+
raise_mismatch_error("layout", actual.layout, expected.layout)
|
759 |
+
elif (
|
760 |
+
actual.layout == torch.strided
|
761 |
+
and self.check_stride
|
762 |
+
and actual.stride() != expected.stride()
|
763 |
+
):
|
764 |
+
raise_mismatch_error("stride()", actual.stride(), expected.stride())
|
765 |
+
|
766 |
+
if self.check_device and actual.device != expected.device:
|
767 |
+
raise_mismatch_error("device", actual.device, expected.device)
|
768 |
+
|
769 |
+
if self.check_dtype and actual.dtype != expected.dtype:
|
770 |
+
raise_mismatch_error("dtype", actual.dtype, expected.dtype)
|
771 |
+
|
772 |
+
def _equalize_attributes(
|
773 |
+
self, actual: torch.Tensor, expected: torch.Tensor
|
774 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
775 |
+
"""Equalizes some attributes of two tensors for value comparison.
|
776 |
+
|
777 |
+
If ``actual`` and ``expected`` are ...
|
778 |
+
|
779 |
+
- ... not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory.
|
780 |
+
- ... not of the same ``dtype``, they are promoted to a common ``dtype`` (according to
|
781 |
+
:func:`torch.promote_types`).
|
782 |
+
- ... not of the same ``layout``, they are converted to strided tensors.
|
783 |
+
|
784 |
+
Args:
|
785 |
+
actual (Tensor): Actual tensor.
|
786 |
+
expected (Tensor): Expected tensor.
|
787 |
+
|
788 |
+
Returns:
|
789 |
+
(Tuple[Tensor, Tensor]): Equalized tensors.
|
790 |
+
"""
|
791 |
+
# The comparison logic uses operators currently not supported by the MPS backends.
|
792 |
+
# See https://github.com/pytorch/pytorch/issues/77144 for details.
|
793 |
+
# TODO: Remove this conversion as soon as all operations are supported natively by the MPS backend
|
794 |
+
if actual.is_mps or expected.is_mps: # type: ignore[attr-defined]
|
795 |
+
actual = actual.cpu()
|
796 |
+
expected = expected.cpu()
|
797 |
+
|
798 |
+
if actual.device != expected.device:
|
799 |
+
actual = actual.cpu()
|
800 |
+
expected = expected.cpu()
|
801 |
+
|
802 |
+
if actual.dtype != expected.dtype:
|
803 |
+
dtype = torch.promote_types(actual.dtype, expected.dtype)
|
804 |
+
actual = actual.to(dtype)
|
805 |
+
expected = expected.to(dtype)
|
806 |
+
|
807 |
+
if actual.layout != expected.layout:
|
808 |
+
# These checks are needed, since Tensor.to_dense() fails on tensors that are already strided
|
809 |
+
actual = actual.to_dense() if actual.layout != torch.strided else actual
|
810 |
+
expected = (
|
811 |
+
expected.to_dense() if expected.layout != torch.strided else expected
|
812 |
+
)
|
813 |
+
|
814 |
+
return actual, expected
|
815 |
+
|
816 |
+
def _compare_values(self, actual: torch.Tensor, expected: torch.Tensor) -> None:
|
817 |
+
if actual.is_quantized:
|
818 |
+
compare_fn = self._compare_quantized_values
|
819 |
+
elif actual.is_sparse:
|
820 |
+
compare_fn = self._compare_sparse_coo_values
|
821 |
+
elif actual.layout in {
|
822 |
+
torch.sparse_csr,
|
823 |
+
torch.sparse_csc,
|
824 |
+
torch.sparse_bsr,
|
825 |
+
torch.sparse_bsc,
|
826 |
+
}:
|
827 |
+
compare_fn = self._compare_sparse_compressed_values
|
828 |
+
else:
|
829 |
+
compare_fn = self._compare_regular_values_close
|
830 |
+
|
831 |
+
compare_fn(
|
832 |
+
actual, expected, rtol=self.rtol, atol=self.atol, equal_nan=self.equal_nan
|
833 |
+
)
|
834 |
+
|
835 |
+
def _compare_quantized_values(
|
836 |
+
self,
|
837 |
+
actual: torch.Tensor,
|
838 |
+
expected: torch.Tensor,
|
839 |
+
*,
|
840 |
+
rtol: float,
|
841 |
+
atol: float,
|
842 |
+
equal_nan: bool,
|
843 |
+
) -> None:
|
844 |
+
"""Compares quantized tensors by comparing the :meth:`~torch.Tensor.dequantize`'d variants for closeness.
|
845 |
+
|
846 |
+
.. note::
|
847 |
+
|
848 |
+
A detailed discussion about why only the dequantized variant is checked for closeness rather than checking
|
849 |
+
the individual quantization parameters for closeness and the integer representation for equality can be
|
850 |
+
found in https://github.com/pytorch/pytorch/issues/68548.
|
851 |
+
"""
|
852 |
+
return self._compare_regular_values_close(
|
853 |
+
actual.dequantize(),
|
854 |
+
expected.dequantize(),
|
855 |
+
rtol=rtol,
|
856 |
+
atol=atol,
|
857 |
+
equal_nan=equal_nan,
|
858 |
+
identifier=lambda default_identifier: f"Quantized {default_identifier.lower()}",
|
859 |
+
)
|
860 |
+
|
861 |
+
def _compare_sparse_coo_values(
|
862 |
+
self,
|
863 |
+
actual: torch.Tensor,
|
864 |
+
expected: torch.Tensor,
|
865 |
+
*,
|
866 |
+
rtol: float,
|
867 |
+
atol: float,
|
868 |
+
equal_nan: bool,
|
869 |
+
) -> None:
|
870 |
+
"""Compares sparse COO tensors by comparing
|
871 |
+
|
872 |
+
- the number of sparse dimensions,
|
873 |
+
- the number of non-zero elements (nnz) for equality,
|
874 |
+
- the indices for equality, and
|
875 |
+
- the values for closeness.
|
876 |
+
"""
|
877 |
+
if actual.sparse_dim() != expected.sparse_dim():
|
878 |
+
self._fail(
|
879 |
+
AssertionError,
|
880 |
+
(
|
881 |
+
f"The number of sparse dimensions in sparse COO tensors does not match: "
|
882 |
+
f"{actual.sparse_dim()} != {expected.sparse_dim()}"
|
883 |
+
),
|
884 |
+
)
|
885 |
+
|
886 |
+
if actual._nnz() != expected._nnz():
|
887 |
+
self._fail(
|
888 |
+
AssertionError,
|
889 |
+
(
|
890 |
+
f"The number of specified values in sparse COO tensors does not match: "
|
891 |
+
f"{actual._nnz()} != {expected._nnz()}"
|
892 |
+
),
|
893 |
+
)
|
894 |
+
|
895 |
+
self._compare_regular_values_equal(
|
896 |
+
actual._indices(),
|
897 |
+
expected._indices(),
|
898 |
+
identifier="Sparse COO indices",
|
899 |
+
)
|
900 |
+
self._compare_regular_values_close(
|
901 |
+
actual._values(),
|
902 |
+
expected._values(),
|
903 |
+
rtol=rtol,
|
904 |
+
atol=atol,
|
905 |
+
equal_nan=equal_nan,
|
906 |
+
identifier="Sparse COO values",
|
907 |
+
)
|
908 |
+
|
909 |
+
def _compare_sparse_compressed_values(
|
910 |
+
self,
|
911 |
+
actual: torch.Tensor,
|
912 |
+
expected: torch.Tensor,
|
913 |
+
*,
|
914 |
+
rtol: float,
|
915 |
+
atol: float,
|
916 |
+
equal_nan: bool,
|
917 |
+
) -> None:
|
918 |
+
"""Compares sparse compressed tensors by comparing
|
919 |
+
|
920 |
+
- the number of non-zero elements (nnz) for equality,
|
921 |
+
- the plain indices for equality,
|
922 |
+
- the compressed indices for equality, and
|
923 |
+
- the values for closeness.
|
924 |
+
"""
|
925 |
+
format_name, compressed_indices_method, plain_indices_method = {
|
926 |
+
torch.sparse_csr: (
|
927 |
+
"CSR",
|
928 |
+
torch.Tensor.crow_indices,
|
929 |
+
torch.Tensor.col_indices,
|
930 |
+
),
|
931 |
+
torch.sparse_csc: (
|
932 |
+
"CSC",
|
933 |
+
torch.Tensor.ccol_indices,
|
934 |
+
torch.Tensor.row_indices,
|
935 |
+
),
|
936 |
+
torch.sparse_bsr: (
|
937 |
+
"BSR",
|
938 |
+
torch.Tensor.crow_indices,
|
939 |
+
torch.Tensor.col_indices,
|
940 |
+
),
|
941 |
+
torch.sparse_bsc: (
|
942 |
+
"BSC",
|
943 |
+
torch.Tensor.ccol_indices,
|
944 |
+
torch.Tensor.row_indices,
|
945 |
+
),
|
946 |
+
}[actual.layout]
|
947 |
+
|
948 |
+
if actual._nnz() != expected._nnz():
|
949 |
+
self._fail(
|
950 |
+
AssertionError,
|
951 |
+
(
|
952 |
+
f"The number of specified values in sparse {format_name} tensors does not match: "
|
953 |
+
f"{actual._nnz()} != {expected._nnz()}"
|
954 |
+
),
|
955 |
+
)
|
956 |
+
|
957 |
+
# Compressed and plain indices in the CSR / CSC / BSR / BSC sparse formates can be `torch.int32` _or_
|
958 |
+
# `torch.int64`. While the same dtype is enforced for the compressed and plain indices of a single tensor, it
|
959 |
+
# can be different between two tensors. Thus, we need to convert them to the same dtype, or the comparison will
|
960 |
+
# fail.
|
961 |
+
actual_compressed_indices = compressed_indices_method(actual)
|
962 |
+
expected_compressed_indices = compressed_indices_method(expected)
|
963 |
+
indices_dtype = torch.promote_types(
|
964 |
+
actual_compressed_indices.dtype, expected_compressed_indices.dtype
|
965 |
+
)
|
966 |
+
|
967 |
+
self._compare_regular_values_equal(
|
968 |
+
actual_compressed_indices.to(indices_dtype),
|
969 |
+
expected_compressed_indices.to(indices_dtype),
|
970 |
+
identifier=f"Sparse {format_name} {compressed_indices_method.__name__}",
|
971 |
+
)
|
972 |
+
self._compare_regular_values_equal(
|
973 |
+
plain_indices_method(actual).to(indices_dtype),
|
974 |
+
plain_indices_method(expected).to(indices_dtype),
|
975 |
+
identifier=f"Sparse {format_name} {plain_indices_method.__name__}",
|
976 |
+
)
|
977 |
+
self._compare_regular_values_close(
|
978 |
+
actual.values(),
|
979 |
+
expected.values(),
|
980 |
+
rtol=rtol,
|
981 |
+
atol=atol,
|
982 |
+
equal_nan=equal_nan,
|
983 |
+
identifier=f"Sparse {format_name} values",
|
984 |
+
)
|
985 |
+
|
986 |
+
def _compare_regular_values_equal(
|
987 |
+
self,
|
988 |
+
actual: torch.Tensor,
|
989 |
+
expected: torch.Tensor,
|
990 |
+
*,
|
991 |
+
equal_nan: bool = False,
|
992 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
993 |
+
) -> None:
|
994 |
+
"""Checks if the values of two tensors are equal."""
|
995 |
+
self._compare_regular_values_close(
|
996 |
+
actual, expected, rtol=0, atol=0, equal_nan=equal_nan, identifier=identifier
|
997 |
+
)
|
998 |
+
|
999 |
+
def _compare_regular_values_close(
|
1000 |
+
self,
|
1001 |
+
actual: torch.Tensor,
|
1002 |
+
expected: torch.Tensor,
|
1003 |
+
*,
|
1004 |
+
rtol: float,
|
1005 |
+
atol: float,
|
1006 |
+
equal_nan: bool,
|
1007 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
1008 |
+
) -> None:
|
1009 |
+
"""Checks if the values of two tensors are close up to a desired tolerance."""
|
1010 |
+
matches = torch.isclose(
|
1011 |
+
actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan
|
1012 |
+
)
|
1013 |
+
if torch.all(matches):
|
1014 |
+
return
|
1015 |
+
|
1016 |
+
if actual.shape == torch.Size([]):
|
1017 |
+
msg = make_scalar_mismatch_msg(
|
1018 |
+
actual.item(),
|
1019 |
+
expected.item(),
|
1020 |
+
rtol=rtol,
|
1021 |
+
atol=atol,
|
1022 |
+
identifier=identifier,
|
1023 |
+
)
|
1024 |
+
else:
|
1025 |
+
msg = make_tensor_mismatch_msg(
|
1026 |
+
actual, expected, matches, rtol=rtol, atol=atol, identifier=identifier
|
1027 |
+
)
|
1028 |
+
self._fail(AssertionError, msg)
|
1029 |
+
|
1030 |
+
def extra_repr(self) -> Sequence[str]:
|
1031 |
+
return (
|
1032 |
+
"rtol",
|
1033 |
+
"atol",
|
1034 |
+
"equal_nan",
|
1035 |
+
"check_device",
|
1036 |
+
"check_dtype",
|
1037 |
+
"check_layout",
|
1038 |
+
"check_stride",
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
|
1042 |
+
def originate_pairs(
|
1043 |
+
actual: Any,
|
1044 |
+
expected: Any,
|
1045 |
+
*,
|
1046 |
+
pair_types: Sequence[Type[Pair]],
|
1047 |
+
sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,),
|
1048 |
+
mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,),
|
1049 |
+
id: Tuple[Any, ...] = (),
|
1050 |
+
**options: Any,
|
1051 |
+
) -> List[Pair]:
|
1052 |
+
"""Originates pairs from the individual inputs.
|
1053 |
+
|
1054 |
+
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
|
1055 |
+
:class:`~collections.abc.Mapping`'s. In this case the pairs are originated by recursing through them.
|
1056 |
+
|
1057 |
+
Args:
|
1058 |
+
actual (Any): Actual input.
|
1059 |
+
expected (Any): Expected input.
|
1060 |
+
pair_types (Sequence[Type[Pair]]): Sequence of pair types that will be tried to construct with the inputs.
|
1061 |
+
First successful pair will be used.
|
1062 |
+
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
|
1063 |
+
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
|
1064 |
+
id (Tuple[Any, ...]): Optional id of a pair that will be included in an error message.
|
1065 |
+
**options (Any): Options passed to each pair during construction.
|
1066 |
+
|
1067 |
+
Raises:
|
1068 |
+
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Sequence`'s, but their
|
1069 |
+
length does not match.
|
1070 |
+
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Mapping`'s, but their set of
|
1071 |
+
keys do not match.
|
1072 |
+
ErrorMeta: With :class`TypeError`, if no pair is able to handle the inputs.
|
1073 |
+
ErrorMeta: With any expected exception that happens during the construction of a pair.
|
1074 |
+
|
1075 |
+
Returns:
|
1076 |
+
(List[Pair]): Originated pairs.
|
1077 |
+
"""
|
1078 |
+
# We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop:
|
1079 |
+
# "a" == "a"[0][0]...
|
1080 |
+
if (
|
1081 |
+
isinstance(actual, sequence_types)
|
1082 |
+
and not isinstance(actual, str)
|
1083 |
+
and isinstance(expected, sequence_types)
|
1084 |
+
and not isinstance(expected, str)
|
1085 |
+
):
|
1086 |
+
actual_len = len(actual)
|
1087 |
+
expected_len = len(expected)
|
1088 |
+
if actual_len != expected_len:
|
1089 |
+
raise ErrorMeta(
|
1090 |
+
AssertionError,
|
1091 |
+
f"The length of the sequences mismatch: {actual_len} != {expected_len}",
|
1092 |
+
id=id,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
pairs = []
|
1096 |
+
for idx in range(actual_len):
|
1097 |
+
pairs.extend(
|
1098 |
+
originate_pairs(
|
1099 |
+
actual[idx],
|
1100 |
+
expected[idx],
|
1101 |
+
pair_types=pair_types,
|
1102 |
+
sequence_types=sequence_types,
|
1103 |
+
mapping_types=mapping_types,
|
1104 |
+
id=(*id, idx),
|
1105 |
+
**options,
|
1106 |
+
)
|
1107 |
+
)
|
1108 |
+
return pairs
|
1109 |
+
|
1110 |
+
elif isinstance(actual, mapping_types) and isinstance(expected, mapping_types):
|
1111 |
+
actual_keys = set(actual.keys())
|
1112 |
+
expected_keys = set(expected.keys())
|
1113 |
+
if actual_keys != expected_keys:
|
1114 |
+
missing_keys = expected_keys - actual_keys
|
1115 |
+
additional_keys = actual_keys - expected_keys
|
1116 |
+
raise ErrorMeta(
|
1117 |
+
AssertionError,
|
1118 |
+
(
|
1119 |
+
f"The keys of the mappings do not match:\n"
|
1120 |
+
f"Missing keys in the actual mapping: {sorted(missing_keys)}\n"
|
1121 |
+
f"Additional keys in the actual mapping: {sorted(additional_keys)}"
|
1122 |
+
),
|
1123 |
+
id=id,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
keys: Collection = actual_keys
|
1127 |
+
# Since the origination aborts after the first failure, we try to be deterministic
|
1128 |
+
with contextlib.suppress(Exception):
|
1129 |
+
keys = sorted(keys)
|
1130 |
+
|
1131 |
+
pairs = []
|
1132 |
+
for key in keys:
|
1133 |
+
pairs.extend(
|
1134 |
+
originate_pairs(
|
1135 |
+
actual[key],
|
1136 |
+
expected[key],
|
1137 |
+
pair_types=pair_types,
|
1138 |
+
sequence_types=sequence_types,
|
1139 |
+
mapping_types=mapping_types,
|
1140 |
+
id=(*id, key),
|
1141 |
+
**options,
|
1142 |
+
)
|
1143 |
+
)
|
1144 |
+
return pairs
|
1145 |
+
|
1146 |
+
else:
|
1147 |
+
for pair_type in pair_types:
|
1148 |
+
try:
|
1149 |
+
return [pair_type(actual, expected, id=id, **options)]
|
1150 |
+
# Raising an `UnsupportedInputs` during origination indicates that the pair type is not able to handle the
|
1151 |
+
# inputs. Thus, we try the next pair type.
|
1152 |
+
except UnsupportedInputs:
|
1153 |
+
continue
|
1154 |
+
# Raising an `ErrorMeta` during origination is the orderly way to abort and so we simply re-raise it. This
|
1155 |
+
# is only in a separate branch, because the one below would also except it.
|
1156 |
+
except ErrorMeta:
|
1157 |
+
raise
|
1158 |
+
# Raising any other exception during origination is unexpected and will give some extra information about
|
1159 |
+
# what happened. If applicable, the exception should be expected in the future.
|
1160 |
+
except Exception as error:
|
1161 |
+
raise RuntimeError(
|
1162 |
+
f"Originating a {pair_type.__name__}() at item {''.join(str([item]) for item in id)} with\n\n"
|
1163 |
+
f"{type(actual).__name__}(): {actual}\n\n"
|
1164 |
+
f"and\n\n"
|
1165 |
+
f"{type(expected).__name__}(): {expected}\n\n"
|
1166 |
+
f"resulted in the unexpected exception above. "
|
1167 |
+
f"If you are a user and see this message during normal operation "
|
1168 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
1169 |
+
"If you are a developer and working on the comparison functions, "
|
1170 |
+
"please except the previous error and raise an expressive `ErrorMeta` instead."
|
1171 |
+
) from error
|
1172 |
+
else:
|
1173 |
+
raise ErrorMeta(
|
1174 |
+
TypeError,
|
1175 |
+
f"No comparison pair was able to handle inputs of type {type(actual)} and {type(expected)}.",
|
1176 |
+
id=id,
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
|
1180 |
+
def not_close_error_metas(
|
1181 |
+
actual: Any,
|
1182 |
+
expected: Any,
|
1183 |
+
*,
|
1184 |
+
pair_types: Sequence[Type[Pair]] = (ObjectPair,),
|
1185 |
+
sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,),
|
1186 |
+
mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,),
|
1187 |
+
**options: Any,
|
1188 |
+
) -> List[ErrorMeta]:
|
1189 |
+
"""Asserts that inputs are equal.
|
1190 |
+
|
1191 |
+
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
|
1192 |
+
:class:`~collections.abc.Mapping`'s. In this case the comparison happens elementwise by recursing through them.
|
1193 |
+
|
1194 |
+
Args:
|
1195 |
+
actual (Any): Actual input.
|
1196 |
+
expected (Any): Expected input.
|
1197 |
+
pair_types (Sequence[Type[Pair]]): Sequence of :class:`Pair` types that will be tried to construct with the
|
1198 |
+
inputs. First successful pair will be used. Defaults to only using :class:`ObjectPair`.
|
1199 |
+
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
|
1200 |
+
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
|
1201 |
+
**options (Any): Options passed to each pair during construction.
|
1202 |
+
"""
|
1203 |
+
# Hide this function from `pytest`'s traceback
|
1204 |
+
__tracebackhide__ = True
|
1205 |
+
|
1206 |
+
try:
|
1207 |
+
pairs = originate_pairs(
|
1208 |
+
actual,
|
1209 |
+
expected,
|
1210 |
+
pair_types=pair_types,
|
1211 |
+
sequence_types=sequence_types,
|
1212 |
+
mapping_types=mapping_types,
|
1213 |
+
**options,
|
1214 |
+
)
|
1215 |
+
except ErrorMeta as error_meta:
|
1216 |
+
# Explicitly raising from None to hide the internal traceback
|
1217 |
+
raise error_meta.to_error() from None
|
1218 |
+
|
1219 |
+
error_metas: List[ErrorMeta] = []
|
1220 |
+
for pair in pairs:
|
1221 |
+
try:
|
1222 |
+
pair.compare()
|
1223 |
+
except ErrorMeta as error_meta:
|
1224 |
+
error_metas.append(error_meta)
|
1225 |
+
# Raising any exception besides `ErrorMeta` while comparing is unexpected and will give some extra information
|
1226 |
+
# about what happened. If applicable, the exception should be expected in the future.
|
1227 |
+
except Exception as error:
|
1228 |
+
raise RuntimeError(
|
1229 |
+
f"Comparing\n\n"
|
1230 |
+
f"{pair}\n\n"
|
1231 |
+
f"resulted in the unexpected exception above. "
|
1232 |
+
f"If you are a user and see this message during normal operation "
|
1233 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
1234 |
+
"If you are a developer and working on the comparison functions, "
|
1235 |
+
"please except the previous error and raise an expressive `ErrorMeta` instead."
|
1236 |
+
) from error
|
1237 |
+
|
1238 |
+
# [ErrorMeta Cycles]
|
1239 |
+
# ErrorMeta objects in this list capture
|
1240 |
+
# tracebacks that refer to the frame of this function.
|
1241 |
+
# The local variable `error_metas` refers to the error meta
|
1242 |
+
# objects, creating a reference cycle. Frames in the traceback
|
1243 |
+
# would not get freed until cycle collection, leaking cuda memory in tests.
|
1244 |
+
# We break the cycle by removing the reference to the error_meta objects
|
1245 |
+
# from this frame as it returns.
|
1246 |
+
error_metas = [error_metas]
|
1247 |
+
return error_metas.pop()
|
1248 |
+
|
1249 |
+
|
1250 |
+
def assert_close(
|
1251 |
+
actual: Any,
|
1252 |
+
expected: Any,
|
1253 |
+
*,
|
1254 |
+
allow_subclasses: bool = True,
|
1255 |
+
rtol: Optional[float] = None,
|
1256 |
+
atol: Optional[float] = None,
|
1257 |
+
equal_nan: bool = False,
|
1258 |
+
check_device: bool = True,
|
1259 |
+
check_dtype: bool = True,
|
1260 |
+
check_layout: bool = True,
|
1261 |
+
check_stride: bool = False,
|
1262 |
+
msg: Optional[Union[str, Callable[[str], str]]] = None,
|
1263 |
+
):
|
1264 |
+
r"""Asserts that ``actual`` and ``expected`` are close.
|
1265 |
+
|
1266 |
+
If ``actual`` and ``expected`` are strided, non-quantized, real-valued, and finite, they are considered close if
|
1267 |
+
|
1268 |
+
.. math::
|
1269 |
+
|
1270 |
+
\lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert
|
1271 |
+
|
1272 |
+
Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are
|
1273 |
+
only considered equal to each other if ``equal_nan`` is ``True``.
|
1274 |
+
|
1275 |
+
In addition, they are only considered close if they have the same
|
1276 |
+
|
1277 |
+
- :attr:`~torch.Tensor.device` (if ``check_device`` is ``True``),
|
1278 |
+
- ``dtype`` (if ``check_dtype`` is ``True``),
|
1279 |
+
- ``layout`` (if ``check_layout`` is ``True``), and
|
1280 |
+
- stride (if ``check_stride`` is ``True``).
|
1281 |
+
|
1282 |
+
If either ``actual`` or ``expected`` is a meta tensor, only the attribute checks will be performed.
|
1283 |
+
|
1284 |
+
If ``actual`` and ``expected`` are sparse (either having COO, CSR, CSC, BSR, or BSC layout), their strided members are
|
1285 |
+
checked individually. Indices, namely ``indices`` for COO, ``crow_indices`` and ``col_indices`` for CSR and BSR,
|
1286 |
+
or ``ccol_indices`` and ``row_indices`` for CSC and BSC layouts, respectively,
|
1287 |
+
are always checked for equality whereas the values are checked for closeness according to the definition above.
|
1288 |
+
|
1289 |
+
If ``actual`` and ``expected`` are quantized, they are considered close if they have the same
|
1290 |
+
:meth:`~torch.Tensor.qscheme` and the result of :meth:`~torch.Tensor.dequantize` is close according to the
|
1291 |
+
definition above.
|
1292 |
+
|
1293 |
+
``actual`` and ``expected`` can be :class:`~torch.Tensor`'s or any tensor-or-scalar-likes from which
|
1294 |
+
:class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. Except for Python scalars the input types
|
1295 |
+
have to be directly related. In addition, ``actual`` and ``expected`` can be :class:`~collections.abc.Sequence`'s
|
1296 |
+
or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all
|
1297 |
+
their elements are considered close according to the above definition.
|
1298 |
+
|
1299 |
+
.. note::
|
1300 |
+
|
1301 |
+
Python scalars are an exception to the type relation requirement, because their :func:`type`, i.e.
|
1302 |
+
:class:`int`, :class:`float`, and :class:`complex`, is equivalent to the ``dtype`` of a tensor-like. Thus,
|
1303 |
+
Python scalars of different types can be checked, but require ``check_dtype=False``.
|
1304 |
+
|
1305 |
+
Args:
|
1306 |
+
actual (Any): Actual input.
|
1307 |
+
expected (Any): Expected input.
|
1308 |
+
allow_subclasses (bool): If ``True`` (default) and except for Python scalars, inputs of directly related types
|
1309 |
+
are allowed. Otherwise type equality is required.
|
1310 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
1311 |
+
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
1312 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
1313 |
+
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
1314 |
+
equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal.
|
1315 |
+
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
|
1316 |
+
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
|
1317 |
+
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
|
1318 |
+
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
|
1319 |
+
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
|
1320 |
+
:func:`torch.promote_types`) before being compared.
|
1321 |
+
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
|
1322 |
+
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
|
1323 |
+
compared.
|
1324 |
+
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
|
1325 |
+
msg (Optional[Union[str, Callable[[str], str]]]): Optional error message to use in case a failure occurs during
|
1326 |
+
the comparison. Can also passed as callable in which case it will be called with the generated message and
|
1327 |
+
should return the new message.
|
1328 |
+
|
1329 |
+
Raises:
|
1330 |
+
ValueError: If no :class:`torch.Tensor` can be constructed from an input.
|
1331 |
+
ValueError: If only ``rtol`` or ``atol`` is specified.
|
1332 |
+
AssertionError: If corresponding inputs are not Python scalars and are not directly related.
|
1333 |
+
AssertionError: If ``allow_subclasses`` is ``False``, but corresponding inputs are not Python scalars and have
|
1334 |
+
different types.
|
1335 |
+
AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match.
|
1336 |
+
AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match.
|
1337 |
+
AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`.
|
1338 |
+
AssertionError: If ``check_layout`` is ``True``, but corresponding tensors do not have the same
|
1339 |
+
:attr:`~torch.Tensor.layout`.
|
1340 |
+
AssertionError: If only one of corresponding tensors is quantized.
|
1341 |
+
AssertionError: If corresponding tensors are quantized, but have different :meth:`~torch.Tensor.qscheme`'s.
|
1342 |
+
AssertionError: If ``check_device`` is ``True``, but corresponding tensors are not on the same
|
1343 |
+
:attr:`~torch.Tensor.device`.
|
1344 |
+
AssertionError: If ``check_dtype`` is ``True``, but corresponding tensors do not have the same ``dtype``.
|
1345 |
+
AssertionError: If ``check_stride`` is ``True``, but corresponding strided tensors do not have the same stride.
|
1346 |
+
AssertionError: If the values of corresponding tensors are not close according to the definition above.
|
1347 |
+
|
1348 |
+
The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. In case of mismatching
|
1349 |
+
``dtype``'s, the maximum of both tolerances is used.
|
1350 |
+
|
1351 |
+
+---------------------------+------------+----------+
|
1352 |
+
| ``dtype`` | ``rtol`` | ``atol`` |
|
1353 |
+
+===========================+============+==========+
|
1354 |
+
| :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` |
|
1355 |
+
+---------------------------+------------+----------+
|
1356 |
+
| :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` |
|
1357 |
+
+---------------------------+------------+----------+
|
1358 |
+
| :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` |
|
1359 |
+
+---------------------------+------------+----------+
|
1360 |
+
| :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` |
|
1361 |
+
+---------------------------+------------+----------+
|
1362 |
+
| :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` |
|
1363 |
+
+---------------------------+------------+----------+
|
1364 |
+
| :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` |
|
1365 |
+
+---------------------------+------------+----------+
|
1366 |
+
| :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` |
|
1367 |
+
+---------------------------+------------+----------+
|
1368 |
+
| :attr:`~torch.quint8` | ``1.3e-6`` | ``1e-5`` |
|
1369 |
+
+---------------------------+------------+----------+
|
1370 |
+
| :attr:`~torch.quint2x4` | ``1.3e-6`` | ``1e-5`` |
|
1371 |
+
+---------------------------+------------+----------+
|
1372 |
+
| :attr:`~torch.quint4x2` | ``1.3e-6`` | ``1e-5`` |
|
1373 |
+
+---------------------------+------------+----------+
|
1374 |
+
| :attr:`~torch.qint8` | ``1.3e-6`` | ``1e-5`` |
|
1375 |
+
+---------------------------+------------+----------+
|
1376 |
+
| :attr:`~torch.qint32` | ``1.3e-6`` | ``1e-5`` |
|
1377 |
+
+---------------------------+------------+----------+
|
1378 |
+
| other | ``0.0`` | ``0.0`` |
|
1379 |
+
+---------------------------+------------+----------+
|
1380 |
+
|
1381 |
+
.. note::
|
1382 |
+
|
1383 |
+
:func:`~torch.testing.assert_close` is highly configurable with strict default settings. Users are encouraged
|
1384 |
+
to :func:`~functools.partial` it to fit their use case. For example, if an equality check is needed, one might
|
1385 |
+
define an ``assert_equal`` that uses zero tolerances for every ``dtype`` by default:
|
1386 |
+
|
1387 |
+
>>> import functools
|
1388 |
+
>>> assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=0)
|
1389 |
+
>>> assert_equal(1e-9, 1e-10)
|
1390 |
+
Traceback (most recent call last):
|
1391 |
+
...
|
1392 |
+
AssertionError: Scalars are not equal!
|
1393 |
+
<BLANKLINE>
|
1394 |
+
Expected 1e-10 but got 1e-09.
|
1395 |
+
Absolute difference: 9.000000000000001e-10
|
1396 |
+
Relative difference: 9.0
|
1397 |
+
|
1398 |
+
Examples:
|
1399 |
+
>>> # tensor to tensor comparison
|
1400 |
+
>>> expected = torch.tensor([1e0, 1e-1, 1e-2])
|
1401 |
+
>>> actual = torch.acos(torch.cos(expected))
|
1402 |
+
>>> torch.testing.assert_close(actual, expected)
|
1403 |
+
|
1404 |
+
>>> # scalar to scalar comparison
|
1405 |
+
>>> import math
|
1406 |
+
>>> expected = math.sqrt(2.0)
|
1407 |
+
>>> actual = 2.0 / math.sqrt(2.0)
|
1408 |
+
>>> torch.testing.assert_close(actual, expected)
|
1409 |
+
|
1410 |
+
>>> # numpy array to numpy array comparison
|
1411 |
+
>>> import numpy as np
|
1412 |
+
>>> expected = np.array([1e0, 1e-1, 1e-2])
|
1413 |
+
>>> actual = np.arccos(np.cos(expected))
|
1414 |
+
>>> torch.testing.assert_close(actual, expected)
|
1415 |
+
|
1416 |
+
>>> # sequence to sequence comparison
|
1417 |
+
>>> import numpy as np
|
1418 |
+
>>> # The types of the sequences do not have to match. They only have to have the same
|
1419 |
+
>>> # length and their elements have to match.
|
1420 |
+
>>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)]
|
1421 |
+
>>> actual = tuple(expected)
|
1422 |
+
>>> torch.testing.assert_close(actual, expected)
|
1423 |
+
|
1424 |
+
>>> # mapping to mapping comparison
|
1425 |
+
>>> from collections import OrderedDict
|
1426 |
+
>>> import numpy as np
|
1427 |
+
>>> foo = torch.tensor(1.0)
|
1428 |
+
>>> bar = 2.0
|
1429 |
+
>>> baz = np.array(3.0)
|
1430 |
+
>>> # The types and a possible ordering of mappings do not have to match. They only
|
1431 |
+
>>> # have to have the same set of keys and their elements have to match.
|
1432 |
+
>>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)])
|
1433 |
+
>>> actual = {"baz": baz, "bar": bar, "foo": foo}
|
1434 |
+
>>> torch.testing.assert_close(actual, expected)
|
1435 |
+
|
1436 |
+
>>> expected = torch.tensor([1.0, 2.0, 3.0])
|
1437 |
+
>>> actual = expected.clone()
|
1438 |
+
>>> # By default, directly related instances can be compared
|
1439 |
+
>>> torch.testing.assert_close(torch.nn.Parameter(actual), expected)
|
1440 |
+
>>> # This check can be made more strict with allow_subclasses=False
|
1441 |
+
>>> torch.testing.assert_close(
|
1442 |
+
... torch.nn.Parameter(actual), expected, allow_subclasses=False
|
1443 |
+
... )
|
1444 |
+
Traceback (most recent call last):
|
1445 |
+
...
|
1446 |
+
TypeError: No comparison pair was able to handle inputs of type
|
1447 |
+
<class 'torch.nn.parameter.Parameter'> and <class 'torch.Tensor'>.
|
1448 |
+
>>> # If the inputs are not directly related, they are never considered close
|
1449 |
+
>>> torch.testing.assert_close(actual.numpy(), expected)
|
1450 |
+
Traceback (most recent call last):
|
1451 |
+
...
|
1452 |
+
TypeError: No comparison pair was able to handle inputs of type <class 'numpy.ndarray'>
|
1453 |
+
and <class 'torch.Tensor'>.
|
1454 |
+
>>> # Exceptions to these rules are Python scalars. They can be checked regardless of
|
1455 |
+
>>> # their type if check_dtype=False.
|
1456 |
+
>>> torch.testing.assert_close(1.0, 1, check_dtype=False)
|
1457 |
+
|
1458 |
+
>>> # NaN != NaN by default.
|
1459 |
+
>>> expected = torch.tensor(float("Nan"))
|
1460 |
+
>>> actual = expected.clone()
|
1461 |
+
>>> torch.testing.assert_close(actual, expected)
|
1462 |
+
Traceback (most recent call last):
|
1463 |
+
...
|
1464 |
+
AssertionError: Scalars are not close!
|
1465 |
+
<BLANKLINE>
|
1466 |
+
Expected nan but got nan.
|
1467 |
+
Absolute difference: nan (up to 1e-05 allowed)
|
1468 |
+
Relative difference: nan (up to 1.3e-06 allowed)
|
1469 |
+
>>> torch.testing.assert_close(actual, expected, equal_nan=True)
|
1470 |
+
|
1471 |
+
>>> expected = torch.tensor([1.0, 2.0, 3.0])
|
1472 |
+
>>> actual = torch.tensor([1.0, 4.0, 5.0])
|
1473 |
+
>>> # The default error message can be overwritten.
|
1474 |
+
>>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!")
|
1475 |
+
Traceback (most recent call last):
|
1476 |
+
...
|
1477 |
+
AssertionError: Argh, the tensors are not close!
|
1478 |
+
>>> # If msg is a callable, it can be used to augment the generated message with
|
1479 |
+
>>> # extra information
|
1480 |
+
>>> torch.testing.assert_close(
|
1481 |
+
... actual, expected, msg=lambda msg: f"Header\n\n{msg}\n\nFooter"
|
1482 |
+
... )
|
1483 |
+
Traceback (most recent call last):
|
1484 |
+
...
|
1485 |
+
AssertionError: Header
|
1486 |
+
<BLANKLINE>
|
1487 |
+
Tensor-likes are not close!
|
1488 |
+
<BLANKLINE>
|
1489 |
+
Mismatched elements: 2 / 3 (66.7%)
|
1490 |
+
Greatest absolute difference: 2.0 at index (1,) (up to 1e-05 allowed)
|
1491 |
+
Greatest relative difference: 1.0 at index (1,) (up to 1.3e-06 allowed)
|
1492 |
+
<BLANKLINE>
|
1493 |
+
Footer
|
1494 |
+
"""
|
1495 |
+
# Hide this function from `pytest`'s traceback
|
1496 |
+
__tracebackhide__ = True
|
1497 |
+
|
1498 |
+
error_metas = not_close_error_metas(
|
1499 |
+
actual,
|
1500 |
+
expected,
|
1501 |
+
pair_types=(
|
1502 |
+
NonePair,
|
1503 |
+
BooleanPair,
|
1504 |
+
NumberPair,
|
1505 |
+
TensorLikePair,
|
1506 |
+
),
|
1507 |
+
allow_subclasses=allow_subclasses,
|
1508 |
+
rtol=rtol,
|
1509 |
+
atol=atol,
|
1510 |
+
equal_nan=equal_nan,
|
1511 |
+
check_device=check_device,
|
1512 |
+
check_dtype=check_dtype,
|
1513 |
+
check_layout=check_layout,
|
1514 |
+
check_stride=check_stride,
|
1515 |
+
msg=msg,
|
1516 |
+
)
|
1517 |
+
|
1518 |
+
if error_metas:
|
1519 |
+
# TODO: compose all metas into one AssertionError
|
1520 |
+
raise error_metas[0].to_error(msg)
|
1521 |
+
|
1522 |
+
|
1523 |
+
def assert_allclose(
|
1524 |
+
actual: Any,
|
1525 |
+
expected: Any,
|
1526 |
+
rtol: Optional[float] = None,
|
1527 |
+
atol: Optional[float] = None,
|
1528 |
+
equal_nan: bool = True,
|
1529 |
+
msg: str = "",
|
1530 |
+
) -> None:
|
1531 |
+
"""
|
1532 |
+
.. warning::
|
1533 |
+
|
1534 |
+
:func:`torch.testing.assert_allclose` is deprecated since ``1.12`` and will be removed in a future release.
|
1535 |
+
Please use :func:`torch.testing.assert_close` instead. You can find detailed upgrade instructions
|
1536 |
+
`here <https://github.com/pytorch/pytorch/issues/61844>`_.
|
1537 |
+
"""
|
1538 |
+
warnings.warn(
|
1539 |
+
"`torch.testing.assert_allclose()` is deprecated since 1.12 and will be removed in a future release. "
|
1540 |
+
"Please use `torch.testing.assert_close()` instead. "
|
1541 |
+
"You can find detailed upgrade instructions in https://github.com/pytorch/pytorch/issues/61844.",
|
1542 |
+
FutureWarning,
|
1543 |
+
stacklevel=2,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
if not isinstance(actual, torch.Tensor):
|
1547 |
+
actual = torch.tensor(actual)
|
1548 |
+
if not isinstance(expected, torch.Tensor):
|
1549 |
+
expected = torch.tensor(expected, dtype=actual.dtype)
|
1550 |
+
|
1551 |
+
if rtol is None and atol is None:
|
1552 |
+
rtol, atol = default_tolerances(
|
1553 |
+
actual,
|
1554 |
+
expected,
|
1555 |
+
dtype_precisions={
|
1556 |
+
torch.float16: (1e-3, 1e-3),
|
1557 |
+
torch.float32: (1e-4, 1e-5),
|
1558 |
+
torch.float64: (1e-5, 1e-8),
|
1559 |
+
},
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
torch.testing.assert_close(
|
1563 |
+
actual,
|
1564 |
+
expected,
|
1565 |
+
rtol=rtol,
|
1566 |
+
atol=atol,
|
1567 |
+
equal_nan=equal_nan,
|
1568 |
+
check_device=True,
|
1569 |
+
check_dtype=False,
|
1570 |
+
check_stride=False,
|
1571 |
+
msg=msg or None,
|
1572 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_creation.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module contains tensor creation utilities.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import collections.abc
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import cast, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
_INTEGRAL_TYPES = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
|
13 |
+
_FLOATING_TYPES = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
|
14 |
+
_FLOATING_8BIT_TYPES = [torch.float8_e4m3fn, torch.float8_e5m2]
|
15 |
+
_COMPLEX_TYPES = [torch.complex32, torch.complex64, torch.complex128]
|
16 |
+
_BOOLEAN_OR_INTEGRAL_TYPES = [torch.bool, *_INTEGRAL_TYPES]
|
17 |
+
_FLOATING_OR_COMPLEX_TYPES = [*_FLOATING_TYPES, *_COMPLEX_TYPES]
|
18 |
+
|
19 |
+
|
20 |
+
def _uniform_random_(t: torch.Tensor, low: float, high: float) -> torch.Tensor:
|
21 |
+
# uniform_ requires to-from <= std::numeric_limits<scalar_t>::max()
|
22 |
+
# Work around this by scaling the range before and after the PRNG
|
23 |
+
if high - low >= torch.finfo(t.dtype).max:
|
24 |
+
return t.uniform_(low / 2, high / 2).mul_(2)
|
25 |
+
else:
|
26 |
+
return t.uniform_(low, high)
|
27 |
+
|
28 |
+
|
29 |
+
def make_tensor(
|
30 |
+
*shape: Union[int, torch.Size, List[int], Tuple[int, ...]],
|
31 |
+
dtype: torch.dtype,
|
32 |
+
device: Union[str, torch.device],
|
33 |
+
low: Optional[float] = None,
|
34 |
+
high: Optional[float] = None,
|
35 |
+
requires_grad: bool = False,
|
36 |
+
noncontiguous: bool = False,
|
37 |
+
exclude_zero: bool = False,
|
38 |
+
memory_format: Optional[torch.memory_format] = None,
|
39 |
+
) -> torch.Tensor:
|
40 |
+
r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
|
41 |
+
values uniformly drawn from ``[low, high)``.
|
42 |
+
|
43 |
+
If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
|
44 |
+
finite values then they are clamped to the lowest or highest representable finite value, respectively.
|
45 |
+
If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
|
46 |
+
which depend on :attr:`dtype`.
|
47 |
+
|
48 |
+
+---------------------------+------------+----------+
|
49 |
+
| ``dtype`` | ``low`` | ``high`` |
|
50 |
+
+===========================+============+==========+
|
51 |
+
| boolean type | ``0`` | ``2`` |
|
52 |
+
+---------------------------+------------+----------+
|
53 |
+
| unsigned integral type | ``0`` | ``10`` |
|
54 |
+
+---------------------------+------------+----------+
|
55 |
+
| signed integral types | ``-9`` | ``10`` |
|
56 |
+
+---------------------------+------------+----------+
|
57 |
+
| floating types | ``-9`` | ``9`` |
|
58 |
+
+---------------------------+------------+----------+
|
59 |
+
| complex types | ``-9`` | ``9`` |
|
60 |
+
+---------------------------+------------+----------+
|
61 |
+
|
62 |
+
Args:
|
63 |
+
shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
|
64 |
+
dtype (:class:`torch.dtype`): The data type of the returned tensor.
|
65 |
+
device (Union[str, torch.device]): The device of the returned tensor.
|
66 |
+
low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
|
67 |
+
clamped to the least representable finite value of the given dtype. When ``None`` (default),
|
68 |
+
this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
69 |
+
high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
|
70 |
+
clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
|
71 |
+
is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
72 |
+
|
73 |
+
.. deprecated:: 2.1
|
74 |
+
|
75 |
+
Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated
|
76 |
+
since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead.
|
77 |
+
|
78 |
+
requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
|
79 |
+
noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
|
80 |
+
ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``.
|
81 |
+
exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
|
82 |
+
depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
|
83 |
+
point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
|
84 |
+
:attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
|
85 |
+
whose real and imaginary parts are both the smallest positive normal number representable by the complex
|
86 |
+
type. Default ``False``.
|
87 |
+
memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive
|
88 |
+
with ``noncontiguous``.
|
89 |
+
|
90 |
+
Raises:
|
91 |
+
ValueError: If ``requires_grad=True`` is passed for integral `dtype`
|
92 |
+
ValueError: If ``low >= high``.
|
93 |
+
ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
|
94 |
+
ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed.
|
95 |
+
TypeError: If :attr:`dtype` isn't supported by this function.
|
96 |
+
|
97 |
+
Examples:
|
98 |
+
>>> # xdoctest: +SKIP
|
99 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
100 |
+
>>> from torch.testing import make_tensor
|
101 |
+
>>> # Creates a float tensor with values in [-1, 1)
|
102 |
+
>>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
|
103 |
+
>>> # xdoctest: +SKIP
|
104 |
+
tensor([ 0.1205, 0.2282, -0.6380])
|
105 |
+
>>> # Creates a bool tensor on CUDA
|
106 |
+
>>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
|
107 |
+
tensor([[False, False],
|
108 |
+
[False, True]], device='cuda:0')
|
109 |
+
"""
|
110 |
+
|
111 |
+
def modify_low_high(
|
112 |
+
low: Optional[float],
|
113 |
+
high: Optional[float],
|
114 |
+
*,
|
115 |
+
lowest_inclusive: float,
|
116 |
+
highest_exclusive: float,
|
117 |
+
default_low: float,
|
118 |
+
default_high: float,
|
119 |
+
) -> Tuple[float, float]:
|
120 |
+
"""
|
121 |
+
Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high)
|
122 |
+
if required.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def clamp(a: float, l: float, h: float) -> float:
|
126 |
+
return min(max(a, l), h)
|
127 |
+
|
128 |
+
low = low if low is not None else default_low
|
129 |
+
high = high if high is not None else default_high
|
130 |
+
|
131 |
+
if any(isinstance(value, float) and math.isnan(value) for value in [low, high]):
|
132 |
+
raise ValueError(
|
133 |
+
f"`low` and `high` cannot be NaN, but got {low=} and {high=}"
|
134 |
+
)
|
135 |
+
elif low == high and dtype in _FLOATING_OR_COMPLEX_TYPES:
|
136 |
+
warnings.warn(
|
137 |
+
"Passing `low==high` to `torch.testing.make_tensor` for floating or complex types "
|
138 |
+
"is deprecated since 2.1 and will be removed in 2.3. "
|
139 |
+
"Use torch.full(...) instead.",
|
140 |
+
FutureWarning,
|
141 |
+
)
|
142 |
+
elif low >= high:
|
143 |
+
raise ValueError(f"`low` must be less than `high`, but got {low} >= {high}")
|
144 |
+
elif high < lowest_inclusive or low >= highest_exclusive:
|
145 |
+
raise ValueError(
|
146 |
+
f"The value interval specified by `low` and `high` is [{low}, {high}), "
|
147 |
+
f"but {dtype} only supports [{lowest_inclusive}, {highest_exclusive})"
|
148 |
+
)
|
149 |
+
|
150 |
+
low = clamp(low, lowest_inclusive, highest_exclusive)
|
151 |
+
high = clamp(high, lowest_inclusive, highest_exclusive)
|
152 |
+
|
153 |
+
if dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
154 |
+
# 1. `low` is ceiled to avoid creating values smaller than `low` and thus outside the specified interval
|
155 |
+
# 2. Following the same reasoning as for 1., `high` should be floored. However, the higher bound of
|
156 |
+
# `torch.randint` is exclusive, and thus we need to ceil here as well.
|
157 |
+
return math.ceil(low), math.ceil(high)
|
158 |
+
|
159 |
+
return low, high
|
160 |
+
|
161 |
+
if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence):
|
162 |
+
shape = shape[0] # type: ignore[assignment]
|
163 |
+
shape = cast(Tuple[int, ...], tuple(shape))
|
164 |
+
|
165 |
+
if noncontiguous and memory_format is not None:
|
166 |
+
raise ValueError(
|
167 |
+
f"The parameters `noncontiguous` and `memory_format` are mutually exclusive, "
|
168 |
+
f"but got {noncontiguous=} and {memory_format=}"
|
169 |
+
)
|
170 |
+
|
171 |
+
if requires_grad and dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
172 |
+
raise ValueError(
|
173 |
+
f"`requires_grad=True` is not supported for boolean and integral dtypes, but got {dtype=}"
|
174 |
+
)
|
175 |
+
|
176 |
+
if dtype is torch.bool:
|
177 |
+
low, high = cast(
|
178 |
+
Tuple[int, int],
|
179 |
+
modify_low_high(
|
180 |
+
low,
|
181 |
+
high,
|
182 |
+
lowest_inclusive=0,
|
183 |
+
highest_exclusive=2,
|
184 |
+
default_low=0,
|
185 |
+
default_high=2,
|
186 |
+
),
|
187 |
+
)
|
188 |
+
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
189 |
+
elif dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
190 |
+
low, high = cast(
|
191 |
+
Tuple[int, int],
|
192 |
+
modify_low_high(
|
193 |
+
low,
|
194 |
+
high,
|
195 |
+
lowest_inclusive=torch.iinfo(dtype).min,
|
196 |
+
highest_exclusive=torch.iinfo(dtype).max
|
197 |
+
# In theory, `highest_exclusive` should always be the maximum value + 1. However, `torch.randint`
|
198 |
+
# internally converts the bounds to an int64 and would overflow. In other words: `torch.randint` cannot
|
199 |
+
# sample 2**63 - 1, i.e. the maximum value of `torch.int64` and we need to account for that here.
|
200 |
+
+ (1 if dtype is not torch.int64 else 0),
|
201 |
+
# This is incorrect for `torch.uint8`, but since we clamp to `lowest`, i.e. 0 for `torch.uint8`,
|
202 |
+
# _after_ we use the default value, we don't need to special case it here
|
203 |
+
default_low=-9,
|
204 |
+
default_high=10,
|
205 |
+
),
|
206 |
+
)
|
207 |
+
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
208 |
+
elif dtype in _FLOATING_OR_COMPLEX_TYPES:
|
209 |
+
low, high = modify_low_high(
|
210 |
+
low,
|
211 |
+
high,
|
212 |
+
lowest_inclusive=torch.finfo(dtype).min,
|
213 |
+
highest_exclusive=torch.finfo(dtype).max,
|
214 |
+
default_low=-9,
|
215 |
+
default_high=9,
|
216 |
+
)
|
217 |
+
result = torch.empty(shape, device=device, dtype=dtype)
|
218 |
+
_uniform_random_(
|
219 |
+
torch.view_as_real(result) if dtype in _COMPLEX_TYPES else result, low, high
|
220 |
+
)
|
221 |
+
elif dtype in _FLOATING_8BIT_TYPES:
|
222 |
+
low, high = modify_low_high(
|
223 |
+
low,
|
224 |
+
high,
|
225 |
+
lowest_inclusive=torch.finfo(dtype).min,
|
226 |
+
highest_exclusive=torch.finfo(dtype).max,
|
227 |
+
default_low=-9,
|
228 |
+
default_high=9,
|
229 |
+
)
|
230 |
+
result = torch.empty(shape, device=device, dtype=torch.float32)
|
231 |
+
_uniform_random_(result, low, high)
|
232 |
+
result = result.to(dtype)
|
233 |
+
else:
|
234 |
+
raise TypeError(
|
235 |
+
f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()."
|
236 |
+
" To request support, file an issue at: https://github.com/pytorch/pytorch/issues"
|
237 |
+
)
|
238 |
+
|
239 |
+
if noncontiguous and result.numel() > 1:
|
240 |
+
result = torch.repeat_interleave(result, 2, dim=-1)
|
241 |
+
result = result[..., ::2]
|
242 |
+
elif memory_format is not None:
|
243 |
+
result = result.clone(memory_format=memory_format)
|
244 |
+
|
245 |
+
if exclude_zero:
|
246 |
+
result[result == 0] = (
|
247 |
+
1 if dtype in _BOOLEAN_OR_INTEGRAL_TYPES else torch.finfo(dtype).tiny
|
248 |
+
)
|
249 |
+
|
250 |
+
if dtype in _FLOATING_OR_COMPLEX_TYPES:
|
251 |
+
result.requires_grad = requires_grad
|
252 |
+
|
253 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/autocast_test_lists.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.testing._internal.common_utils import TEST_WITH_ROCM
|
3 |
+
|
4 |
+
|
5 |
+
class AutocastTestLists:
|
6 |
+
def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
|
7 |
+
input = (torch.randn((n, n), device=dev, dtype=torch.float32),)
|
8 |
+
|
9 |
+
hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
|
10 |
+
torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
|
11 |
+
torch.randn((n, n), device=dev, dtype=torch.float32),)
|
12 |
+
|
13 |
+
weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32), # weight_ih
|
14 |
+
torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32), # weight_hh
|
15 |
+
torch.randn((num_chunks * n), device=dev, dtype=torch.float32), # bias_ih
|
16 |
+
torch.randn((num_chunks * n), device=dev, dtype=torch.float32)) # bias_hh
|
17 |
+
|
18 |
+
# returns args as a tuple
|
19 |
+
return input + hx + weights
|
20 |
+
|
21 |
+
# Supplies ops and arguments for test_autocast_* in test/test_cuda.py
|
22 |
+
def __init__(self, dev):
|
23 |
+
super().__init__()
|
24 |
+
n = 8
|
25 |
+
# Utility arguments, created as one-element tuples
|
26 |
+
pointwise0_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
|
27 |
+
pointwise1_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
|
28 |
+
pointwise2_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
|
29 |
+
mat0_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
|
30 |
+
mat1_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
|
31 |
+
mat2_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
|
32 |
+
|
33 |
+
dimsets = ((n, n, n), (n, n, n, n), (n, n, n, n, n))
|
34 |
+
conv_args_fp32 = [(torch.randn(dimset, dtype=torch.float32, device=dev),
|
35 |
+
torch.randn(dimset, dtype=torch.float32, device=dev))
|
36 |
+
for dimset in dimsets]
|
37 |
+
bias_fp32 = (torch.randn((n,), dtype=torch.float32, device=dev),)
|
38 |
+
element0_fp32 = (torch.randn(1, dtype=torch.float32, device=dev),)
|
39 |
+
pointwise0_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
|
40 |
+
pointwise1_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
|
41 |
+
mat0_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
42 |
+
mat1_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
43 |
+
mat2_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
44 |
+
mat3_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
45 |
+
|
46 |
+
# The lists below organize ops that autocast needs to test.
|
47 |
+
# self.list_name corresponds to test_autocast_list_name in test/test_cuda.py.
|
48 |
+
# Each op is associated with a tuple of valid arguments.
|
49 |
+
# In addition, cudnn conv ops are not supported on ROCm and hence will
|
50 |
+
# be skipped by passing TEST_WITH_ROCM flag to those ops in self.torch_fp16 list.
|
51 |
+
|
52 |
+
# Some ops implement built-in type promotion. These don't need autocasting,
|
53 |
+
# but autocasting relies on their promotion, so we include tests to double-check.
|
54 |
+
self.torch_expect_builtin_promote = [
|
55 |
+
("eq", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
56 |
+
("ge", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
57 |
+
("gt", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
58 |
+
("le", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
59 |
+
("lt", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
60 |
+
("ne", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
61 |
+
("add", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
62 |
+
("div", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
63 |
+
("mul", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
64 |
+
("cat", (pointwise0_fp16 + pointwise1_fp32,), torch.float32),
|
65 |
+
("equal", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
66 |
+
("stack", (pointwise0_fp16 + pointwise1_fp32,), torch.float32),
|
67 |
+
]
|
68 |
+
self.methods_expect_builtin_promote = [
|
69 |
+
("__eq__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
70 |
+
("__ge__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
71 |
+
("__gt__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
72 |
+
("__le__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
73 |
+
("__lt__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
74 |
+
("__ne__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
75 |
+
("__add__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
76 |
+
("__div__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
77 |
+
("__mul__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
78 |
+
]
|
79 |
+
|
80 |
+
# The remaining lists organize ops that autocast treats explicitly.
|
81 |
+
self.torch_fp16 = [
|
82 |
+
# deprecated _convolution
|
83 |
+
("_convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False,
|
84 |
+
(0, 0), 1, False, True, True)),
|
85 |
+
# the current _convolution
|
86 |
+
("_convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False,
|
87 |
+
(0, 0), 1, False, True, True, True)),
|
88 |
+
("conv1d", conv_args_fp32[0]),
|
89 |
+
("conv2d", conv_args_fp32[1]),
|
90 |
+
("conv3d", conv_args_fp32[2]),
|
91 |
+
("conv_tbc", conv_args_fp32[0] + bias_fp32),
|
92 |
+
("conv_transpose1d", conv_args_fp32[0]),
|
93 |
+
("conv_transpose2d", conv_args_fp32[1]),
|
94 |
+
("conv_transpose3d", conv_args_fp32[2]),
|
95 |
+
("convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False, (0, 0), 1)),
|
96 |
+
("cudnn_convolution", conv_args_fp32[1] + ((0, 0), (1, 1), (1, 1), 1, False, True, True), TEST_WITH_ROCM),
|
97 |
+
("cudnn_convolution_transpose", conv_args_fp32[1] + ((0, 0), (0, 0), (1, 1),
|
98 |
+
(1, 1), 1, False, True, True), TEST_WITH_ROCM),
|
99 |
+
("prelu", pointwise0_fp32 + element0_fp32),
|
100 |
+
("addmm", mat1_fp32 + mat2_fp32 + mat3_fp32),
|
101 |
+
("addmv", pointwise0_fp32 + mat2_fp32 + pointwise1_fp32),
|
102 |
+
("addr", mat0_fp32 + pointwise0_fp32 + pointwise1_fp32),
|
103 |
+
("matmul", mat0_fp32 + mat1_fp32),
|
104 |
+
("einsum", "bkhd,bqhd->bqkh", mat0_fp32 + mat1_fp32),
|
105 |
+
("mm", mat0_fp32 + mat1_fp32),
|
106 |
+
("mv", mat0_fp32 + pointwise0_fp32),
|
107 |
+
("chain_matmul", mat0_fp32 + mat1_fp32 + mat2_fp32),
|
108 |
+
("addbmm", mat0_fp32 + (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
109 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
110 |
+
("baddbmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
111 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
112 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
113 |
+
("bmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
114 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
115 |
+
# _thnn_fused_lstm_cell and _thnn_fused_gru_cell are not Python-exposed as far as I can tell.
|
116 |
+
# ("_thnn_fused_lstm_cell", mat0_fp32 + mat1_fp32 + mat2_fp32 + pointwise0_fp32 + pointwise1_fp32),
|
117 |
+
# ("_thnn_fused_gru_cell", mat0_fp32 + mat1_fp32 + mat2_fp32 + pointwise0_fp32 + pointwise1_fp32),
|
118 |
+
("lstm_cell", self._rnn_cell_args(n, num_chunks=4, is_lstm=True, dev=dev, dtype=torch.float32)),
|
119 |
+
("gru_cell", self._rnn_cell_args(n, num_chunks=3, is_lstm=False, dev=dev, dtype=torch.float32)),
|
120 |
+
("rnn_tanh_cell", self._rnn_cell_args(n, num_chunks=1, is_lstm=False, dev=dev, dtype=torch.float32)),
|
121 |
+
("rnn_relu_cell", self._rnn_cell_args(n, num_chunks=1, is_lstm=False, dev=dev, dtype=torch.float32)),
|
122 |
+
]
|
123 |
+
self.torch_fp32 = [
|
124 |
+
("acos", (pointwise0_fp16[0].clamp(-.9, 0.9),)),
|
125 |
+
("asin", (pointwise0_fp16[0].clamp(-.9, 0.9),)),
|
126 |
+
("cosh", pointwise0_fp16),
|
127 |
+
("erfinv", (pointwise0_fp16[0].clamp(-.9, .9),)),
|
128 |
+
("exp", pointwise0_fp16),
|
129 |
+
("expm1", pointwise0_fp16),
|
130 |
+
("log", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
|
131 |
+
("log10", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
|
132 |
+
("log2", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
|
133 |
+
("log1p", (pointwise0_fp16[0].clamp(-0.9, 100.0),)),
|
134 |
+
("reciprocal", pointwise0_fp16),
|
135 |
+
("rsqrt", (pointwise0_fp16[0].clamp(0.0, 100.0),)),
|
136 |
+
("sinh", pointwise0_fp16),
|
137 |
+
("tan", (pointwise0_fp16[0].clamp(-3.1 / 2, 3.1 / 2),)),
|
138 |
+
("pow", ((pointwise0_fp16[0] + 1.).clamp(0.0, 100.0),) + pointwise1_fp16),
|
139 |
+
("pow", ((pointwise0_fp16[0] + 1.).clamp(0.0, 100.0),) + (1.7,)),
|
140 |
+
# ("pow", (1.7,) + pointwise0_fp16), # This variant has a backend, but is not documented in the API.
|
141 |
+
("softmax", pointwise0_fp16 + (0,)),
|
142 |
+
("log_softmax", pointwise0_fp16 + (0,)),
|
143 |
+
("layer_norm", pointwise0_fp16 + ((pointwise0_fp16[0].numel(),),)),
|
144 |
+
("group_norm", mat0_fp16 + (1,)),
|
145 |
+
("norm", pointwise0_fp16),
|
146 |
+
("norm", pointwise0_fp16, {"dim": 0}),
|
147 |
+
# these need magma
|
148 |
+
# ("norm", mat0_fp16, {"p": "nuc"}),
|
149 |
+
# ("norm", mat0_fp16, {"p": "nuc", "dim": 0}),
|
150 |
+
("norm", pointwise0_fp16, {"p": 1}),
|
151 |
+
("norm", pointwise0_fp16, {"p": 1, "dim": 0}),
|
152 |
+
("cosine_similarity", mat0_fp16 + mat1_fp16),
|
153 |
+
("poisson_nll_loss", mat0_fp16 + mat1_fp16 + (True, False, 1.e-8, torch.nn._reduction.get_enum('mean'))),
|
154 |
+
("cosine_embedding_loss", (torch.tensor([[1, 2, 3]], device=dev, dtype=torch.float16),
|
155 |
+
torch.tensor([[1, 3, 4]], device=dev, dtype=torch.float16),
|
156 |
+
torch.tensor([1], device=dev, dtype=torch.int))),
|
157 |
+
("hinge_embedding_loss", mat0_fp16 + (torch.ones(n, device=dev, dtype=torch.int),)),
|
158 |
+
("kl_div", mat0_fp16 + (torch.rand((n, n), device=dev, dtype=torch.float16),)),
|
159 |
+
("margin_ranking_loss", mat0_fp16 + mat1_fp16 + (torch.ones((n,), device=dev, dtype=torch.float16),)),
|
160 |
+
("triplet_margin_loss", mat0_fp16 + mat1_fp16 + mat2_fp16),
|
161 |
+
("binary_cross_entropy_with_logits", mat0_fp16 + (torch.rand((n, n), device=dev, dtype=torch.float16),)),
|
162 |
+
("cumprod", pointwise0_fp16 + (0,)),
|
163 |
+
("cumsum", pointwise0_fp16 + (0,)),
|
164 |
+
("dist", pointwise0_fp16 + pointwise1_fp16),
|
165 |
+
("pdist", mat0_fp16),
|
166 |
+
("cdist", mat0_fp16 + mat1_fp16),
|
167 |
+
("prod", pointwise0_fp16),
|
168 |
+
("prod", pointwise0_fp16 + (0,)),
|
169 |
+
("renorm", mat0_fp16 + (2, 0, 1.0)),
|
170 |
+
("sum", pointwise0_fp16),
|
171 |
+
("sum", mat0_fp16 + (1,)),
|
172 |
+
("logsumexp", mat0_fp16 + (1,)),
|
173 |
+
]
|
174 |
+
self.torch_need_autocast_promote = [
|
175 |
+
("addcdiv", pointwise0_fp32 + pointwise1_fp16 + (pointwise2_fp16[0].clamp(0.1, 100),)),
|
176 |
+
("addcmul", pointwise0_fp32 + pointwise1_fp16 + pointwise2_fp16),
|
177 |
+
("atan2", pointwise0_fp32 + (pointwise1_fp16[0].clamp(0.1, 100),)),
|
178 |
+
("bilinear", (torch.randn((1, 2), dtype=torch.float16, device=dev),
|
179 |
+
torch.randn((1, 2), dtype=torch.float32, device=dev),
|
180 |
+
torch.randn((1, 2, 2), dtype=torch.float16, device=dev),
|
181 |
+
torch.randn((1,), dtype=torch.float32, device=dev))),
|
182 |
+
("cross", (torch.randn(3, dtype=torch.float32, device=dev),
|
183 |
+
torch.randn(3, dtype=torch.float16, device=dev))),
|
184 |
+
("dot", pointwise0_fp16 + pointwise1_fp32),
|
185 |
+
("grid_sampler", (torch.randn((2, 3, 33, 22), dtype=torch.float16, device=dev),
|
186 |
+
torch.randn((2, 22, 11, 2), dtype=torch.float32, device=dev),
|
187 |
+
0, 0, False)),
|
188 |
+
("index_put", pointwise0_fp32 + ((torch.tensor([1], device=dev, dtype=torch.long),),
|
189 |
+
torch.randn(1, device=dev, dtype=torch.float16))),
|
190 |
+
("index_put", pointwise0_fp16 + ((torch.tensor([1], device=dev, dtype=torch.long),),
|
191 |
+
torch.randn(1, device=dev, dtype=torch.float32))),
|
192 |
+
("tensordot", (torch.randn((2, 2, 2), dtype=torch.float32, device=dev),
|
193 |
+
torch.randn((2, 2, 2), dtype=torch.float16, device=dev))),
|
194 |
+
("scatter_add", (torch.zeros(2, 2, 2, dtype=torch.float32, device=dev),
|
195 |
+
0,
|
196 |
+
torch.randint(0, 2, (2, 2, 2), device=dev),
|
197 |
+
torch.randn((2, 2, 2), dtype=torch.float16, device=dev))),
|
198 |
+
("scatter_add", (torch.zeros(2, 2, 2, dtype=torch.float16, device=dev),
|
199 |
+
0,
|
200 |
+
torch.randint(0, 2, (2, 2, 2), device=dev),
|
201 |
+
torch.randn((2, 2, 2), dtype=torch.float32, device=dev))),
|
202 |
+
]
|
203 |
+
self.nn_fp16 = [
|
204 |
+
("linear", mat0_fp32 + mat1_fp32 + mat2_fp32),
|
205 |
+
]
|
206 |
+
self.nn_fp32 = [
|
207 |
+
("softplus", pointwise0_fp16),
|
208 |
+
("nll_loss", (torch.rand((n, n), device=dev, dtype=torch.float),
|
209 |
+
torch.zeros((n,), device=dev, dtype=torch.long))),
|
210 |
+
("nll_loss2d", (torch.rand((n, n, n, n), device=dev, dtype=torch.half),
|
211 |
+
torch.zeros((n, n, n), device=dev, dtype=torch.long))),
|
212 |
+
("l1_loss", mat0_fp16 + mat1_fp16),
|
213 |
+
("smooth_l1_loss", mat0_fp16 + mat1_fp16),
|
214 |
+
("mse_loss", mat0_fp16 + mat1_fp16),
|
215 |
+
("multilabel_margin_loss", mat0_fp16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
|
216 |
+
("soft_margin_loss", mat0_fp16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
|
217 |
+
("multi_margin_loss", mat0_fp16 + (torch.ones((n,), device=dev, dtype=torch.long),)),
|
218 |
+
]
|
219 |
+
self.linalg_fp16 = [
|
220 |
+
("linalg_vecdot", mat0_fp32 + mat0_fp32),
|
221 |
+
("linalg_multi_dot", (mat0_fp32 + mat1_fp32 + mat2_fp32,)),
|
222 |
+
]
|
223 |
+
self.methods_fp16 = [
|
224 |
+
("__matmul__", mat0_fp32 + mat1_fp32)
|
225 |
+
]
|
226 |
+
self.methods_fp32 = [
|
227 |
+
("__pow__", (torch.rand(n, device=dev, dtype=torch.float16), 1.5)),
|
228 |
+
]
|
229 |
+
self.banned = [
|
230 |
+
("binary_cross_entropy", (torch.rand((n, n), device=dev, dtype=torch.float32),
|
231 |
+
torch.rand((n, n), device=dev, dtype=torch.float32)), torch._C._nn),
|
232 |
+
]
|
233 |
+
|
234 |
+
class AutocastCPUTestLists:
|
235 |
+
# Supplies ops and arguments for test_autocast_* in test/test_cpu.py
|
236 |
+
def __init__(self, dev):
|
237 |
+
super().__init__()
|
238 |
+
n = 8
|
239 |
+
# Utility arguments, created as one-element tuples
|
240 |
+
pointwise0_bf16 = (torch.randn(n, dtype=torch.bfloat16, device=dev),)
|
241 |
+
pointwise1_bf16 = (torch.randn(n, dtype=torch.bfloat16, device=dev),)
|
242 |
+
pointwise2_bf16 = (torch.randn(n, dtype=torch.bfloat16, device=dev),)
|
243 |
+
mat0_bf16 = (torch.randn((n, n), dtype=torch.bfloat16, device=dev),)
|
244 |
+
mat1_bf16 = (torch.randn((n, n), dtype=torch.bfloat16, device=dev),)
|
245 |
+
mat2_bf16 = (torch.randn((n, n), dtype=torch.bfloat16, device=dev),)
|
246 |
+
|
247 |
+
pointwise0_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
|
248 |
+
pointwise1_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
|
249 |
+
|
250 |
+
dummy_dimsets = ((n,), (n, n), (n, n, n), (n, n, n, n), (n, n, n, n, n))
|
251 |
+
|
252 |
+
dummy_bf16 = [(torch.randn(dimset, dtype=torch.bfloat16, device=dev),)
|
253 |
+
for dimset in dummy_dimsets]
|
254 |
+
|
255 |
+
dimsets = ((n, n, n), (n, n, n, n), (n, n, n, n, n))
|
256 |
+
conv_args_bf16 = [(torch.randn(dimset, dtype=torch.bfloat16, device=dev),
|
257 |
+
torch.randn(dimset, dtype=torch.bfloat16, device=dev))
|
258 |
+
for dimset in dimsets]
|
259 |
+
conv_args_fp32 = [(torch.randn(dimset, dtype=torch.float32, device=dev),
|
260 |
+
torch.randn(dimset, dtype=torch.float32, device=dev))
|
261 |
+
for dimset in dimsets]
|
262 |
+
|
263 |
+
bias_fp32 = (torch.randn((n,), dtype=torch.float32, device=dev),)
|
264 |
+
element0_fp32 = (torch.randn(1, dtype=torch.float32, device=dev),)
|
265 |
+
pointwise0_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
|
266 |
+
pointwise1_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
|
267 |
+
mat0_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
268 |
+
mat1_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
269 |
+
mat2_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
270 |
+
mat3_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
|
271 |
+
|
272 |
+
dummy_fp32 = [(torch.randn(dimset, dtype=torch.float32, device=dev),)
|
273 |
+
for dimset in dummy_dimsets]
|
274 |
+
# The lists below organize ops that autocast needs to test.
|
275 |
+
# self.list_name corresponds to test_autocast_list_name in test/test_cpu.py.
|
276 |
+
# Each op is associated with a tuple of valid arguments.
|
277 |
+
|
278 |
+
# Some ops implement built-in type promotion. These don't need autocasting,
|
279 |
+
# but autocasting relies on their promotion, so we include tests to double-check.
|
280 |
+
self.torch_expect_builtin_promote = [
|
281 |
+
("eq", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
282 |
+
("ge", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
283 |
+
("gt", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
284 |
+
("le", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
285 |
+
("lt", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
286 |
+
("ne", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
287 |
+
("add", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
288 |
+
("div", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
289 |
+
("mul", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
290 |
+
]
|
291 |
+
|
292 |
+
self.methods_expect_builtin_promote = [
|
293 |
+
("__eq__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
294 |
+
("__ge__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
295 |
+
("__gt__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
296 |
+
("__le__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
297 |
+
("__lt__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
298 |
+
("__ne__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.bool),
|
299 |
+
("__add__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
300 |
+
("__div__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
301 |
+
("__mul__", pointwise0_fp32 + pointwise1_bf16, pointwise0_fp32 + pointwise1_fp16, torch.float32),
|
302 |
+
]
|
303 |
+
# The remaining lists organize ops that autocast treats explicitly.
|
304 |
+
self.torch_16 = [
|
305 |
+
("conv1d", conv_args_fp32[0]),
|
306 |
+
("conv2d", conv_args_fp32[1]),
|
307 |
+
("conv3d", conv_args_fp32[2]),
|
308 |
+
("bmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
309 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
310 |
+
("mm", mat0_fp32 + mat1_fp32),
|
311 |
+
("matmul", mat0_fp32 + mat1_fp32),
|
312 |
+
("baddbmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
313 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
314 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
315 |
+
("addmm", mat1_fp32 + mat2_fp32 + mat3_fp32),
|
316 |
+
("addbmm", mat0_fp32 + (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
317 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
|
318 |
+
("conv_tbc", (torch.randn((10, 7, 3), device=dev, dtype=torch.float32),
|
319 |
+
torch.randn((5, 3, 5), device=dev, dtype=torch.float32),
|
320 |
+
torch.randn(5, device=dev, dtype=torch.float32),
|
321 |
+
0)),
|
322 |
+
("conv_transpose1d", conv_args_fp32[0]),
|
323 |
+
("conv_transpose2d", conv_args_fp32[1]),
|
324 |
+
("conv_transpose3d", conv_args_fp32[2]),
|
325 |
+
("prelu", pointwise0_fp32 + element0_fp32),
|
326 |
+
("_native_multi_head_attention", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
327 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
328 |
+
torch.randn((n, n, n), device=dev, dtype=torch.float32),
|
329 |
+
n, 4, torch.randn((3 * n, n), device=dev, dtype=torch.float32),
|
330 |
+
torch.randn((3 * n), device=dev, dtype=torch.float32),
|
331 |
+
torch.randn((n, n), device=dev, dtype=torch.float32),
|
332 |
+
torch.randn((n), device=dev, dtype=torch.float32))),
|
333 |
+
]
|
334 |
+
self.torch_fp32 = [
|
335 |
+
("poisson_nll_loss", mat0_bf16 + mat1_bf16 + (True, False, 1.e-8, torch.nn._reduction.get_enum('mean'))),
|
336 |
+
("cosine_embedding_loss", (torch.tensor([[1, 2, 3]], device=dev, dtype=torch.bfloat16),
|
337 |
+
torch.tensor([[1, 3, 4]], device=dev, dtype=torch.bfloat16),
|
338 |
+
torch.tensor([1], device=dev, dtype=torch.int))),
|
339 |
+
("hinge_embedding_loss", mat0_bf16 + (torch.ones(n, device=dev, dtype=torch.int),)),
|
340 |
+
("margin_ranking_loss", mat0_bf16 + mat1_bf16 + (torch.ones((n,), device=dev, dtype=torch.bfloat16),)),
|
341 |
+
("triplet_margin_loss", mat0_bf16 + mat1_bf16 + mat2_bf16),
|
342 |
+
("binary_cross_entropy_with_logits", mat0_bf16 + (torch.rand((n, n), device=dev, dtype=torch.bfloat16),)),
|
343 |
+
]
|
344 |
+
self.nn_16 = [
|
345 |
+
("linear", mat0_fp32 + mat1_fp32, {}),
|
346 |
+
]
|
347 |
+
self.nn_fp32 = [
|
348 |
+
("avg_pool3d", dummy_bf16[3], {"kernel_size": (3, 3, 3), "stride": (1, 1, 1)}),
|
349 |
+
("binary_cross_entropy", (torch.rand((n, n), device=dev, dtype=torch.bfloat16),) +
|
350 |
+
(torch.rand((n, n), device=dev, dtype=torch.bfloat16),)),
|
351 |
+
("reflection_pad1d", dummy_bf16[2], {"padding": (3, 3)}),
|
352 |
+
("nll_loss", (torch.rand((n, n), device=dev, dtype=torch.bfloat16),
|
353 |
+
torch.zeros((n,), device=dev, dtype=torch.long))),
|
354 |
+
("nll_loss2d", (torch.rand((n, n, n, n), device=dev, dtype=torch.bfloat16),
|
355 |
+
torch.zeros((n, n, n), device=dev, dtype=torch.long))),
|
356 |
+
("l1_loss", mat0_bf16 + mat1_bf16),
|
357 |
+
("smooth_l1_loss", mat0_bf16 + mat1_bf16),
|
358 |
+
("mse_loss", mat0_bf16 + mat1_bf16),
|
359 |
+
("multilabel_margin_loss", mat0_bf16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
|
360 |
+
("soft_margin_loss", mat0_bf16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
|
361 |
+
("multi_margin_loss", mat0_bf16 + (torch.ones((n,), device=dev, dtype=torch.long),)),
|
362 |
+
("huber_loss", mat0_bf16 + mat1_bf16),
|
363 |
+
]
|
364 |
+
self.torch_need_autocast_promote = [
|
365 |
+
("cat", (pointwise0_bf16 + pointwise1_fp32,), (pointwise0_fp16 + pointwise1_fp32,)),
|
366 |
+
("stack", (pointwise0_bf16 + pointwise1_fp32,), (pointwise0_fp16 + pointwise1_fp32,)),
|
367 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/autograd_function_db.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from functools import partial
|
3 |
+
from torch.testing import make_tensor
|
4 |
+
from torch.testing._internal.opinfo.core import (
|
5 |
+
OpInfo,
|
6 |
+
SampleInput,
|
7 |
+
)
|
8 |
+
from torch.testing._internal.common_dtype import all_types_and
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Note: [autograd.Function db]
|
12 |
+
#
|
13 |
+
# This is a collection of autograd.Function test cases written as OpInfos
|
14 |
+
# so they can easily be consumed by OpInfo-based tests to check if a subsystem
|
15 |
+
# supports autograd.Function.
|
16 |
+
#
|
17 |
+
# Axes:
|
18 |
+
# - saves {output, input, intermediate, non-tensor}
|
19 |
+
# - {inputs, output} x {single tensor, tensors, arbitrary objects}
|
20 |
+
# - Uses {mark_dirty, mark_non_differentiable, once_differentiable}
|
21 |
+
|
22 |
+
|
23 |
+
def to_numpy(tensor):
|
24 |
+
return tensor.cpu().numpy()
|
25 |
+
|
26 |
+
|
27 |
+
class NumpyCube(torch.autograd.Function):
|
28 |
+
@staticmethod
|
29 |
+
def forward(input):
|
30 |
+
input_np = to_numpy(input)
|
31 |
+
dinput = torch.tensor(3 * input_np ** 2, device=input.device)
|
32 |
+
return torch.tensor(input_np ** 3, device=input.device), dinput
|
33 |
+
|
34 |
+
@staticmethod
|
35 |
+
def setup_context(ctx, inputs, output):
|
36 |
+
ctx.save_for_backward(inputs[0], output[1])
|
37 |
+
ctx.save_for_forward(inputs[0], output[1])
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def backward(ctx, grad_output, grad_saved):
|
41 |
+
input, dinput = ctx.saved_tensors
|
42 |
+
return NumpyMul.apply(grad_output, dinput) + 6 * NumpyMul.apply(grad_saved, input)
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def vmap(info, in_dims, input):
|
46 |
+
result = NumpyCube.apply(input)
|
47 |
+
return result, (in_dims[0], in_dims[0])
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def jvp(ctx, input_tangent):
|
51 |
+
input, dinput = ctx.saved_tensors
|
52 |
+
return NumpyMul.apply(input_tangent, dinput), 6 * NumpyMul.apply(input_tangent, input)
|
53 |
+
|
54 |
+
|
55 |
+
class CubeGenVmap(torch.autograd.Function):
|
56 |
+
generate_vmap_rule = True
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def forward(x):
|
60 |
+
return x ** 3, 3 * x ** 2
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def setup_context(ctx, inputs, outputs):
|
64 |
+
ctx.save_for_backward(inputs[0], outputs[1])
|
65 |
+
ctx.save_for_forward(inputs[0], outputs[1])
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def backward(ctx, grad_output, grad_saved):
|
69 |
+
input, dinput = ctx.saved_tensors
|
70 |
+
result = grad_output * dinput + 6 * dinput
|
71 |
+
return result
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def jvp(ctx, input_tangent):
|
75 |
+
input, dinput = ctx.saved_tensors
|
76 |
+
return MulGenVmap.apply(input_tangent, dinput), 6 * NumpyMul.apply(input_tangent, input)
|
77 |
+
|
78 |
+
|
79 |
+
def sample_inputs_numpy_cube(opinfo, device, dtype, requires_grad, **kwargs):
|
80 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
81 |
+
yield SampleInput(make_arg(1, low=0.8, high=2), args=())
|
82 |
+
|
83 |
+
|
84 |
+
class NumpyCubeNotComposable(torch.autograd.Function):
|
85 |
+
@staticmethod
|
86 |
+
def forward(input):
|
87 |
+
input_np = to_numpy(input)
|
88 |
+
return torch.tensor(input_np ** 3, device=input.device), input_np
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def setup_context(ctx, inputs, output):
|
92 |
+
_, input_np = output
|
93 |
+
ctx.input_np = input_np
|
94 |
+
ctx.device = inputs[0].device
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
@torch.autograd.function.once_differentiable
|
98 |
+
def backward(ctx, grad_output, grad_saved):
|
99 |
+
result_np = 3 * (ctx.input_np ** 2)
|
100 |
+
return torch.tensor(result_np, device=ctx.device)
|
101 |
+
|
102 |
+
|
103 |
+
class NumpyMul(torch.autograd.Function):
|
104 |
+
@staticmethod
|
105 |
+
def forward(x, y):
|
106 |
+
return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def setup_context(ctx, inputs, output):
|
110 |
+
ctx.save_for_backward(*inputs)
|
111 |
+
ctx.save_for_forward(*inputs)
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def backward(ctx, grad_output):
|
115 |
+
x, y = ctx.saved_tensors
|
116 |
+
gx = None
|
117 |
+
if ctx.needs_input_grad[0]:
|
118 |
+
gx = NumpyMul.apply(grad_output, y)
|
119 |
+
gy = None
|
120 |
+
if ctx.needs_input_grad[1]:
|
121 |
+
gy = NumpyMul.apply(grad_output, x)
|
122 |
+
return gx, gy
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def vmap(info, in_dims, x, y):
|
126 |
+
x_bdim, y_bdim = in_dims
|
127 |
+
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
|
128 |
+
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
|
129 |
+
result = NumpyMul.apply(x, y)
|
130 |
+
result = result.movedim(-1, 0)
|
131 |
+
return result, 0
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def jvp(ctx, x_tangent, y_tangent):
|
135 |
+
x, y = ctx.saved_tensors
|
136 |
+
return x_tangent * y + y_tangent * x
|
137 |
+
|
138 |
+
def sample_inputs_numpy_mul(opinfo, device, dtype, requires_grad, **kwargs):
|
139 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
140 |
+
# Broadcasting
|
141 |
+
yield SampleInput(make_arg(4, low=0.9, high=2), args=(make_arg(3, 4, low=0.9, high=2),))
|
142 |
+
|
143 |
+
|
144 |
+
class MulGenVmap(torch.autograd.Function):
|
145 |
+
generate_vmap_rule = True
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def forward(x, y):
|
149 |
+
return x * y
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def setup_context(ctx, inputs, outputs):
|
153 |
+
ctx.save_for_backward(*inputs)
|
154 |
+
ctx.save_for_forward(*inputs)
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def backward(ctx, grad_output):
|
158 |
+
x, y = ctx.saved_tensors
|
159 |
+
gx = None
|
160 |
+
if ctx.needs_input_grad[0]:
|
161 |
+
gx = MulGenVmap.apply(grad_output, y)
|
162 |
+
gy = None
|
163 |
+
if ctx.needs_input_grad[1]:
|
164 |
+
gy = MulGenVmap.apply(grad_output, x)
|
165 |
+
return gx, gy
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def jvp(ctx, x_tangent, y_tangent):
|
169 |
+
x, y = ctx.saved_tensors
|
170 |
+
return x_tangent * y + y_tangent * x
|
171 |
+
|
172 |
+
|
173 |
+
class NumpyExp_(torch.autograd.Function):
|
174 |
+
@staticmethod
|
175 |
+
def forward(x):
|
176 |
+
x_np = to_numpy(x)
|
177 |
+
np.exp(x_np, x_np)
|
178 |
+
return x
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def setup_context(ctx, inputs, output):
|
182 |
+
x, = inputs
|
183 |
+
ctx.mark_dirty(x)
|
184 |
+
ctx.save_for_backward(output)
|
185 |
+
ctx.save_for_forward(output)
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def backward(ctx, grad_output):
|
189 |
+
output, = ctx.saved_tensors
|
190 |
+
return NumpyMul.apply(grad_output, output)
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def vmap(info, in_dims, x):
|
194 |
+
NumpyExp_.apply(x)
|
195 |
+
return x, in_dims[0]
|
196 |
+
|
197 |
+
@staticmethod
|
198 |
+
def jvp(ctx, x_tangent):
|
199 |
+
# Doesn't call numpy operations because I didn't want to write NumpyMul_
|
200 |
+
output, = ctx.saved_tensors
|
201 |
+
x_tangent.mul_(output)
|
202 |
+
return x_tangent
|
203 |
+
|
204 |
+
class NumpySort(torch.autograd.Function):
|
205 |
+
@staticmethod
|
206 |
+
def forward(x, dim):
|
207 |
+
device = x.device
|
208 |
+
x = to_numpy(x)
|
209 |
+
ind = np.argsort(x, axis=dim)
|
210 |
+
ind_inv = np.argsort(ind, axis=dim)
|
211 |
+
result = np.take_along_axis(x, ind, axis=dim)
|
212 |
+
return (
|
213 |
+
torch.tensor(x, device=device),
|
214 |
+
torch.tensor(ind, device=device),
|
215 |
+
torch.tensor(ind_inv, device=device),
|
216 |
+
)
|
217 |
+
|
218 |
+
@staticmethod
|
219 |
+
def setup_context(ctx, inputs, output):
|
220 |
+
x, dim = inputs
|
221 |
+
_, ind, ind_inv = output
|
222 |
+
ctx.mark_non_differentiable(ind, ind_inv)
|
223 |
+
ctx.save_for_backward(ind, ind_inv)
|
224 |
+
ctx.save_for_forward(ind, ind_inv)
|
225 |
+
ctx.dim = dim
|
226 |
+
|
227 |
+
@staticmethod
|
228 |
+
def backward(ctx, grad_output, _0, _1):
|
229 |
+
ind, ind_inv = ctx.saved_tensors
|
230 |
+
return NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim), None
|
231 |
+
|
232 |
+
@staticmethod
|
233 |
+
def vmap(info, in_dims, x, dim):
|
234 |
+
x_bdim, _ = in_dims
|
235 |
+
x = x.movedim(x_bdim, 0)
|
236 |
+
# wrap dim
|
237 |
+
dim = dim if dim >= 0 else dim + x.dim() - 1
|
238 |
+
return NumpySort.apply(x, dim + 1), (0, 0, 0)
|
239 |
+
|
240 |
+
@staticmethod
|
241 |
+
def jvp(ctx, x_tangent, _):
|
242 |
+
ind, ind_inv = ctx.saved_tensors
|
243 |
+
return NumpyTake.apply(x_tangent, ind, ind_inv, ctx.dim), None, None
|
244 |
+
|
245 |
+
class SortGenVmap(torch.autograd.Function):
|
246 |
+
generate_vmap_rule = True
|
247 |
+
|
248 |
+
@staticmethod
|
249 |
+
def forward(x, dim):
|
250 |
+
device = x.device
|
251 |
+
ind = torch.argsort(x, dim=dim)
|
252 |
+
ind_inv = torch.argsort(ind, axis=dim)
|
253 |
+
result = torch.take_along_dim(x, ind, dim=dim)
|
254 |
+
return result, ind, ind_inv
|
255 |
+
|
256 |
+
@staticmethod
|
257 |
+
def setup_context(ctx, inputs, outputs):
|
258 |
+
x, dim = inputs
|
259 |
+
_, ind, ind_inv = outputs
|
260 |
+
ctx.mark_non_differentiable(ind, ind_inv)
|
261 |
+
ctx.save_for_backward(ind, ind_inv)
|
262 |
+
ctx.save_for_forward(ind, ind_inv)
|
263 |
+
ctx.dim = dim
|
264 |
+
|
265 |
+
@staticmethod
|
266 |
+
def backward(ctx, grad_output, _0, _1):
|
267 |
+
ind, ind_inv = ctx.saved_tensors
|
268 |
+
return TakeGenVmap.apply(grad_output, ind_inv, ind, ctx.dim), None
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def jvp(ctx, x_tangent, _):
|
272 |
+
ind, ind_inv = ctx.saved_tensors
|
273 |
+
return TakeGenVmap.apply(x_tangent, ind, ind_inv, ctx.dim), None, None
|
274 |
+
|
275 |
+
|
276 |
+
def sample_inputs_numpy_sort(opinfo, device, dtype, requires_grad, **kwargs):
|
277 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
278 |
+
yield SampleInput(make_arg(3, 5), args=(1,))
|
279 |
+
|
280 |
+
|
281 |
+
def sample_inputs_numpy_take(opinfo, device, dtype, requires_grad, **kwargs):
|
282 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
283 |
+
tensor = make_arg(3, 5)
|
284 |
+
dim = 1
|
285 |
+
_, ind, ind_inv = NumpySort.apply(tensor, 1)
|
286 |
+
yield SampleInput(tensor, args=(ind, ind_inv, dim))
|
287 |
+
|
288 |
+
|
289 |
+
class NumpyTake(torch.autograd.Function):
|
290 |
+
@staticmethod
|
291 |
+
def forward(x, ind, ind_inv, dim):
|
292 |
+
device = x.device
|
293 |
+
x = to_numpy(x)
|
294 |
+
ind = to_numpy(ind)
|
295 |
+
return torch.tensor(np.take_along_axis(x, ind, dim), device=device)
|
296 |
+
|
297 |
+
@staticmethod
|
298 |
+
def setup_context(ctx, inputs, output):
|
299 |
+
x, ind, ind_inv, dim = inputs
|
300 |
+
ctx.save_for_backward(ind, ind_inv)
|
301 |
+
ctx.save_for_forward(ind, ind_inv)
|
302 |
+
ctx.dim = dim
|
303 |
+
|
304 |
+
@staticmethod
|
305 |
+
def backward(ctx, grad_output):
|
306 |
+
ind, ind_inv = ctx.saved_tensors
|
307 |
+
result = NumpyTake.apply(grad_output, ind_inv, ind, ctx.dim)
|
308 |
+
return result, None, None, None
|
309 |
+
|
310 |
+
@staticmethod
|
311 |
+
def vmap(info, in_dims, x, ind, ind_inv, dim):
|
312 |
+
x_bdim, ind_bdim, ind_inv_bdim, _ = in_dims
|
313 |
+
|
314 |
+
# wrap dim
|
315 |
+
logical_dim = x.dim() if x_bdim is None else x_bdim - 1
|
316 |
+
dim = dim if dim >= 0 else dim + logical_dim
|
317 |
+
|
318 |
+
def expand_bdim(x, x_bdim):
|
319 |
+
if x_bdim is None:
|
320 |
+
return x.expand(info.batch_size, *x.shape)
|
321 |
+
return x.movedim(x_bdim, 0)
|
322 |
+
|
323 |
+
x = expand_bdim(x, x_bdim)
|
324 |
+
ind = expand_bdim(ind, ind_bdim)
|
325 |
+
ind_inv = expand_bdim(ind_inv, ind_inv_bdim)
|
326 |
+
|
327 |
+
return NumpyTake.apply(x, ind, ind_inv, dim + 1), 0
|
328 |
+
|
329 |
+
@staticmethod
|
330 |
+
def jvp(ctx, x_tangent, ind_tangent, ind_inv_tangent, _):
|
331 |
+
assert ind_tangent is None
|
332 |
+
assert ind_inv_tangent is None
|
333 |
+
ind, ind_inv = ctx.saved_tensors
|
334 |
+
return NumpyTake.apply(x_tangent, ind, ind_inv, ctx.dim)
|
335 |
+
|
336 |
+
class TakeGenVmap(torch.autograd.Function):
|
337 |
+
generate_vmap_rule = True
|
338 |
+
|
339 |
+
@staticmethod
|
340 |
+
def forward(x, ind, ind_inv, dim):
|
341 |
+
return torch.take_along_dim(x, ind, dim)
|
342 |
+
|
343 |
+
@staticmethod
|
344 |
+
def setup_context(ctx, inputs, outputs):
|
345 |
+
x, ind, ind_inv, dim = inputs
|
346 |
+
ctx.save_for_backward(ind, ind_inv)
|
347 |
+
ctx.save_for_forward(ind, ind_inv)
|
348 |
+
ctx.dim = dim
|
349 |
+
|
350 |
+
@staticmethod
|
351 |
+
def backward(ctx, grad_output):
|
352 |
+
ind, ind_inv = ctx.saved_tensors
|
353 |
+
result = TakeGenVmap.apply(grad_output, ind_inv, ind, ctx.dim)
|
354 |
+
return result, None, None, None
|
355 |
+
|
356 |
+
@staticmethod
|
357 |
+
def jvp(ctx, x_tangent, ind_tangent, ind_inv_tangent, _):
|
358 |
+
ind, ind_inv = ctx.saved_tensors
|
359 |
+
return TakeGenVmap.apply(x_tangent, ind, ind_inv, ctx.dim)
|
360 |
+
|
361 |
+
class Select(torch.autograd.Function):
|
362 |
+
@staticmethod
|
363 |
+
def forward(x, idx):
|
364 |
+
return x[idx]
|
365 |
+
|
366 |
+
@staticmethod
|
367 |
+
def setup_context(ctx, inputs, output):
|
368 |
+
x, idx = inputs
|
369 |
+
ctx.x_shape = x.shape
|
370 |
+
ctx.idx = idx
|
371 |
+
|
372 |
+
@staticmethod
|
373 |
+
def backward(ctx, grad_output):
|
374 |
+
result = grad_output.new_zeros(ctx.x_shape)
|
375 |
+
result[ctx.idx] = grad_output
|
376 |
+
return result, None
|
377 |
+
|
378 |
+
@staticmethod
|
379 |
+
def vmap(info, in_dims, x, idx):
|
380 |
+
x_bdim, _ = in_dims
|
381 |
+
x = x.movedim(x_bdim, 1)
|
382 |
+
return Select.apply(x, idx), 0
|
383 |
+
|
384 |
+
@staticmethod
|
385 |
+
def jvp(ctx, x_tangent, _):
|
386 |
+
return Select.apply(x_tangent, ctx.idx)
|
387 |
+
|
388 |
+
class SelectGenVmap(torch.autograd.Function):
|
389 |
+
generate_vmap_rule = True
|
390 |
+
|
391 |
+
@staticmethod
|
392 |
+
def forward(x, idx):
|
393 |
+
return x[idx]
|
394 |
+
|
395 |
+
@staticmethod
|
396 |
+
def setup_context(ctx, inputs, outputs):
|
397 |
+
x, idx = inputs
|
398 |
+
ctx.x_shape = x.shape
|
399 |
+
ctx.idx = idx
|
400 |
+
|
401 |
+
@staticmethod
|
402 |
+
def backward(ctx, grad_output):
|
403 |
+
result = grad_output.new_zeros(ctx.x_shape)
|
404 |
+
result[ctx.idx] = grad_output
|
405 |
+
return result, None
|
406 |
+
|
407 |
+
@staticmethod
|
408 |
+
def jvp(ctx, x_tangent, _):
|
409 |
+
return SelectGenVmap.apply(x_tangent, ctx.idx)
|
410 |
+
|
411 |
+
|
412 |
+
def sample_inputs_select(opinfo, device, dtype, requires_grad, **kwargs):
|
413 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
414 |
+
yield SampleInput(make_arg(3, 5), args=(2,))
|
415 |
+
|
416 |
+
class ScaleGradGenVmap(torch.autograd.Function):
|
417 |
+
generate_vmap_rule = True
|
418 |
+
scale = 3.14
|
419 |
+
|
420 |
+
@staticmethod
|
421 |
+
def forward(x):
|
422 |
+
return x.clone()
|
423 |
+
|
424 |
+
@staticmethod
|
425 |
+
def setup_context(ctx, inputs, outputs):
|
426 |
+
pass
|
427 |
+
|
428 |
+
@staticmethod
|
429 |
+
def backward(ctx, grad_output):
|
430 |
+
return grad_output * ScaleGradGenVmap.scale
|
431 |
+
|
432 |
+
@staticmethod
|
433 |
+
def jvp(ctx, x_tangent):
|
434 |
+
return x_tangent * ScaleGradGenVmap.scale
|
435 |
+
|
436 |
+
class ZeroGradientsGenVmap(torch.autograd.Function):
|
437 |
+
generate_vmap_rule = True
|
438 |
+
|
439 |
+
@staticmethod
|
440 |
+
def forward(x, y):
|
441 |
+
return x.clone(), y.clone()
|
442 |
+
|
443 |
+
@staticmethod
|
444 |
+
def setup_context(ctx, inputs, outputs):
|
445 |
+
pass
|
446 |
+
|
447 |
+
@staticmethod
|
448 |
+
def backward(ctx, gx, gy):
|
449 |
+
# Intentionally returning torch.zeros instead of zeros_like or new_zeros.
|
450 |
+
# Also intentionally not None.
|
451 |
+
return (
|
452 |
+
# Intentionally too-large gradient
|
453 |
+
torch.zeros(3, 4, *gx.shape, dtype=gx.dtype, device=gx.device),
|
454 |
+
torch.zeros(gy.shape, dtype=gy.dtype, device=gy.device),
|
455 |
+
)
|
456 |
+
|
457 |
+
@staticmethod
|
458 |
+
def jvp(ctx, gx, gy):
|
459 |
+
# Intentionally returning torch.zeros instead of zeros_like or new_zeros.
|
460 |
+
# Also intentionally not None.
|
461 |
+
return (
|
462 |
+
torch.zeros(gx.shape, dtype=gx.dtype, device=gx.device),
|
463 |
+
torch.zeros(gy.shape, dtype=gy.dtype, device=gy.device),
|
464 |
+
)
|
465 |
+
|
466 |
+
|
467 |
+
def sample_inputs_forward_default_args(opinfo, device, dtype, requires_grad, **kwargs):
|
468 |
+
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
469 |
+
yield SampleInput(make_arg(3, 5))
|
470 |
+
|
471 |
+
|
472 |
+
class ForwardHasDefaultArgs(torch.autograd.Function):
|
473 |
+
@staticmethod
|
474 |
+
def forward(x, idx=(2,)):
|
475 |
+
return x[idx]
|
476 |
+
|
477 |
+
@staticmethod
|
478 |
+
def setup_context(ctx, inputs, output):
|
479 |
+
x, idx = inputs
|
480 |
+
ctx.x_shape = x.shape
|
481 |
+
ctx.idx = idx
|
482 |
+
|
483 |
+
@staticmethod
|
484 |
+
def backward(ctx, grad_output):
|
485 |
+
result = grad_output.new_zeros(ctx.x_shape)
|
486 |
+
result[ctx.idx] = grad_output
|
487 |
+
return result, None
|
488 |
+
|
489 |
+
@staticmethod
|
490 |
+
def vmap(info, in_dims, x, idx):
|
491 |
+
x_bdim, _ = in_dims
|
492 |
+
x = x.movedim(x_bdim, 1)
|
493 |
+
return ForwardHasDefaultArgs.apply(x, idx), 0
|
494 |
+
|
495 |
+
@staticmethod
|
496 |
+
def jvp(ctx, x_tangent, _):
|
497 |
+
return ForwardHasDefaultArgs.apply(x_tangent, ctx.idx)
|
498 |
+
|
499 |
+
|
500 |
+
autograd_function_db = [
|
501 |
+
OpInfo(
|
502 |
+
'NumpyCubeAutogradFunction',
|
503 |
+
op=NumpyCube.apply,
|
504 |
+
supports_forward_ad=True,
|
505 |
+
supports_fwgrad_bwgrad=True,
|
506 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
507 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
508 |
+
supports_out=False,
|
509 |
+
),
|
510 |
+
OpInfo(
|
511 |
+
'NumpyExpMarkDirtyAutogradFunction',
|
512 |
+
op=lambda x: NumpyExp_.apply(x.clone()),
|
513 |
+
inplace_variant=NumpyExp_.apply,
|
514 |
+
supports_forward_ad=True,
|
515 |
+
supports_fwgrad_bwgrad=True,
|
516 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
517 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
518 |
+
supports_out=False,
|
519 |
+
),
|
520 |
+
OpInfo(
|
521 |
+
'NumpyMulAutogradFunction',
|
522 |
+
op=NumpyMul.apply,
|
523 |
+
supports_forward_ad=True,
|
524 |
+
supports_fwgrad_bwgrad=True,
|
525 |
+
sample_inputs_func=sample_inputs_numpy_mul,
|
526 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
527 |
+
supports_out=False,
|
528 |
+
),
|
529 |
+
OpInfo(
|
530 |
+
'NumpyCubeNotComposableAutogradFunction',
|
531 |
+
op=lambda x: NumpyCubeNotComposable.apply(x)[0],
|
532 |
+
supports_forward_ad=False,
|
533 |
+
supports_fwgrad_bwgrad=False,
|
534 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
535 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
536 |
+
supports_out=False,
|
537 |
+
),
|
538 |
+
OpInfo(
|
539 |
+
'NumpySortAutogradFunction',
|
540 |
+
op=NumpySort.apply,
|
541 |
+
supports_forward_ad=False,
|
542 |
+
supports_fwgrad_bwgrad=False,
|
543 |
+
sample_inputs_func=sample_inputs_numpy_sort,
|
544 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
545 |
+
supports_out=False,
|
546 |
+
gradcheck_wrapper=lambda y, ind: y,
|
547 |
+
),
|
548 |
+
OpInfo(
|
549 |
+
'NumpyTakeAutogradFunction',
|
550 |
+
op=NumpyTake.apply,
|
551 |
+
supports_forward_ad=False,
|
552 |
+
supports_fwgrad_bwgrad=False,
|
553 |
+
sample_inputs_func=sample_inputs_numpy_take,
|
554 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
555 |
+
supports_out=False,
|
556 |
+
),
|
557 |
+
OpInfo(
|
558 |
+
'SelectAutogradFunction',
|
559 |
+
op=Select.apply,
|
560 |
+
supports_forward_ad=True,
|
561 |
+
supports_fwgrad_bwgrad=True,
|
562 |
+
sample_inputs_func=sample_inputs_select,
|
563 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
564 |
+
supports_out=False,
|
565 |
+
),
|
566 |
+
OpInfo(
|
567 |
+
'CubeGenVmapAutogradFunction',
|
568 |
+
op=CubeGenVmap.apply,
|
569 |
+
supports_forward_ad=True,
|
570 |
+
supports_fwgrad_bwgrad=True,
|
571 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
572 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
573 |
+
supports_out=False,
|
574 |
+
),
|
575 |
+
OpInfo(
|
576 |
+
'MulGenVmapAutogradFunction',
|
577 |
+
op=MulGenVmap.apply,
|
578 |
+
supports_forward_ad=True,
|
579 |
+
supports_fwgrad_bwgrad=True,
|
580 |
+
sample_inputs_func=sample_inputs_numpy_mul,
|
581 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
582 |
+
supports_out=False,
|
583 |
+
),
|
584 |
+
OpInfo(
|
585 |
+
'SortGenVmapAutogradFunction',
|
586 |
+
op=SortGenVmap.apply,
|
587 |
+
supports_forward_ad=True,
|
588 |
+
supports_fwgrad_bwgrad=True,
|
589 |
+
sample_inputs_func=sample_inputs_numpy_sort,
|
590 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
591 |
+
supports_out=False,
|
592 |
+
gradcheck_wrapper=lambda y, ind: y,
|
593 |
+
),
|
594 |
+
OpInfo(
|
595 |
+
'SelectGenVmapAutogradFunction',
|
596 |
+
op=SelectGenVmap.apply,
|
597 |
+
supports_forward_ad=True,
|
598 |
+
supports_fwgrad_bwgrad=True,
|
599 |
+
sample_inputs_func=sample_inputs_select,
|
600 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
601 |
+
supports_out=False,
|
602 |
+
),
|
603 |
+
OpInfo(
|
604 |
+
'ScaleGradGenVmapAutogradFunction',
|
605 |
+
op=ScaleGradGenVmap.apply,
|
606 |
+
supports_forward_ad=True,
|
607 |
+
supports_fwgrad_bwgrad=True,
|
608 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
609 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
610 |
+
supports_out=False,
|
611 |
+
),
|
612 |
+
OpInfo(
|
613 |
+
'ZeroGradientsGenVmapAutogradFunction',
|
614 |
+
op=ZeroGradientsGenVmap.apply,
|
615 |
+
supports_forward_ad=True,
|
616 |
+
supports_fwgrad_bwgrad=True,
|
617 |
+
sample_inputs_func=sample_inputs_numpy_mul,
|
618 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
619 |
+
supports_out=False,
|
620 |
+
),
|
621 |
+
OpInfo(
|
622 |
+
'ForwardHasDefaultArgsAutogradFunction',
|
623 |
+
op=ForwardHasDefaultArgs.apply,
|
624 |
+
supports_forward_ad=True,
|
625 |
+
supports_fwgrad_bwgrad=True,
|
626 |
+
sample_inputs_func=sample_inputs_forward_default_args,
|
627 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
628 |
+
supports_out=False,
|
629 |
+
),
|
630 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/check_kernel_launches.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"check_code_for_cuda_kernel_launches",
|
8 |
+
"check_cuda_kernel_launches",
|
9 |
+
]
|
10 |
+
|
11 |
+
# FILES TO EXCLUDE (match is done with suffix using `endswith`)
|
12 |
+
# You wouldn't drive without a seatbelt, though, so why would you
|
13 |
+
# launch a kernel without some safety? Use this as a quick workaround
|
14 |
+
# for a problem with the checker, fix the checker, then de-exclude
|
15 |
+
# the files in question.
|
16 |
+
exclude_files: List[str] = []
|
17 |
+
|
18 |
+
# Without using a C++ AST we can't 100% detect kernel launches, so we
|
19 |
+
# model them as having the pattern "<<<parameters>>>(arguments);"
|
20 |
+
# We then require that `C10_CUDA_KERNEL_LAUNCH_CHECK` be
|
21 |
+
# the next statement.
|
22 |
+
#
|
23 |
+
# We model the next statement as ending at the next `}` or `;`.
|
24 |
+
# If we see `}` then a clause ended (bad) if we see a semi-colon then
|
25 |
+
# we expect the launch check just before it.
|
26 |
+
#
|
27 |
+
# Since the kernel launch can include lambda statements, it's important
|
28 |
+
# to find the correct end-paren of the kernel launch. Doing this with
|
29 |
+
# pure regex requires recursive regex, which aren't part of the Python
|
30 |
+
# standard library. To avoid an additional dependency, we build a prefix
|
31 |
+
# regex that finds the start of a kernel launch, use a paren-matching
|
32 |
+
# algorithm to find the end of the launch, and then another regex to
|
33 |
+
# determine if a launch check is present.
|
34 |
+
|
35 |
+
# Finds potential starts of kernel launches
|
36 |
+
kernel_launch_start = re.compile(
|
37 |
+
r"^.*<<<[^>]+>>>\s*\(", flags=re.MULTILINE
|
38 |
+
)
|
39 |
+
|
40 |
+
# This pattern should start at the character after the final paren of the
|
41 |
+
# kernel launch. It returns a match if the launch check is not the next statement
|
42 |
+
has_check = re.compile(
|
43 |
+
r"\s*;(?![^;}]*C10_CUDA_KERNEL_LAUNCH_CHECK\(\);)", flags=re.MULTILINE
|
44 |
+
)
|
45 |
+
|
46 |
+
def find_matching_paren(s: str, startpos: int) -> int:
|
47 |
+
"""Given a string "prefix (unknown number of characters) suffix"
|
48 |
+
and the position of the first `(` returns the index of the character
|
49 |
+
1 past the `)`, accounting for paren nesting
|
50 |
+
"""
|
51 |
+
opening = 0
|
52 |
+
for i, c in enumerate(s[startpos:]):
|
53 |
+
if c == '(':
|
54 |
+
opening += 1
|
55 |
+
elif c == ')':
|
56 |
+
opening -= 1
|
57 |
+
if opening == 0:
|
58 |
+
return startpos + i + 1
|
59 |
+
|
60 |
+
raise IndexError("Closing parens not found!")
|
61 |
+
|
62 |
+
|
63 |
+
def should_exclude_file(filename) -> bool:
|
64 |
+
for exclude_suffix in exclude_files:
|
65 |
+
if filename.endswith(exclude_suffix):
|
66 |
+
return True
|
67 |
+
return False
|
68 |
+
|
69 |
+
|
70 |
+
def check_code_for_cuda_kernel_launches(code, filename=None):
|
71 |
+
"""Checks code for CUDA kernel launches without cuda error checks.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
filename - Filename of file containing the code. Used only for display
|
75 |
+
purposes, so you can put anything here.
|
76 |
+
code - The code to check
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
The number of unsafe kernel launches in the code
|
80 |
+
"""
|
81 |
+
if filename is None:
|
82 |
+
filename = "##Python Function Call##"
|
83 |
+
|
84 |
+
# We break the code apart and put it back together to add
|
85 |
+
# helpful line numberings for identifying problem areas
|
86 |
+
code = enumerate(code.split("\n")) # Split by line breaks
|
87 |
+
code = [f"{lineno}: {linecode}" for lineno, linecode in code] # Number the lines
|
88 |
+
code = '\n'.join(code) # Put it back together
|
89 |
+
|
90 |
+
num_launches_without_checks = 0
|
91 |
+
for m in kernel_launch_start.finditer(code):
|
92 |
+
end_paren = find_matching_paren(code, m.end() - 1)
|
93 |
+
if has_check.match(code, end_paren):
|
94 |
+
num_launches_without_checks += 1
|
95 |
+
context = code[m.start():end_paren + 1]
|
96 |
+
print(f"Missing C10_CUDA_KERNEL_LAUNCH_CHECK in '{filename}'. Context:\n{context}", file=sys.stderr)
|
97 |
+
|
98 |
+
return num_launches_without_checks
|
99 |
+
|
100 |
+
|
101 |
+
def check_file(filename):
|
102 |
+
"""Checks a file for CUDA kernel launches without cuda error checks
|
103 |
+
|
104 |
+
Args:
|
105 |
+
filename - File to check
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
The number of unsafe kernel launches in the file
|
109 |
+
"""
|
110 |
+
if not (filename.endswith((".cu", ".cuh"))):
|
111 |
+
return 0
|
112 |
+
if should_exclude_file(filename):
|
113 |
+
return 0
|
114 |
+
with open(filename) as fo:
|
115 |
+
contents = fo.read()
|
116 |
+
unsafeCount = check_code_for_cuda_kernel_launches(contents, filename)
|
117 |
+
return unsafeCount
|
118 |
+
|
119 |
+
|
120 |
+
def check_cuda_kernel_launches():
|
121 |
+
"""Checks all pytorch code for CUDA kernel launches without cuda error checks
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
The number of unsafe kernel launches in the codebase
|
125 |
+
"""
|
126 |
+
torch_dir = os.path.dirname(os.path.realpath(__file__))
|
127 |
+
torch_dir = os.path.dirname(torch_dir) # Go up to parent torch
|
128 |
+
torch_dir = os.path.dirname(torch_dir) # Go up to parent caffe2
|
129 |
+
|
130 |
+
kernels_without_checks = 0
|
131 |
+
files_without_checks = []
|
132 |
+
for root, dirnames, filenames in os.walk(torch_dir):
|
133 |
+
# `$BASE/build` and `$BASE/torch/include` are generated
|
134 |
+
# so we don't want to flag their contents
|
135 |
+
if root == os.path.join(torch_dir, "build") or root == os.path.join(torch_dir, "torch/include"):
|
136 |
+
# Curtail search by modifying dirnames and filenames in place
|
137 |
+
# Yes, this is the way to do this, see `help(os.walk)`
|
138 |
+
dirnames[:] = []
|
139 |
+
continue
|
140 |
+
|
141 |
+
for x in filenames:
|
142 |
+
filename = os.path.join(root, x)
|
143 |
+
file_result = check_file(filename)
|
144 |
+
if file_result > 0:
|
145 |
+
kernels_without_checks += file_result
|
146 |
+
files_without_checks.append(filename)
|
147 |
+
|
148 |
+
if kernels_without_checks > 0:
|
149 |
+
count_str = f"Found {kernels_without_checks} instances in " \
|
150 |
+
f"{len(files_without_checks)} files where kernel " \
|
151 |
+
"launches didn't have checks."
|
152 |
+
print(count_str, file=sys.stderr)
|
153 |
+
print("Files without checks:", file=sys.stderr)
|
154 |
+
for x in files_without_checks:
|
155 |
+
print(f"\t{x}", file=sys.stderr)
|
156 |
+
print(count_str, file=sys.stderr)
|
157 |
+
|
158 |
+
return kernels_without_checks
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
unsafe_launches = check_cuda_kernel_launches()
|
163 |
+
sys.exit(0 if unsafe_launches == 0 else 1)
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_cuda.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""This file is allowed to initialize CUDA context when imported."""
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import torch
|
5 |
+
import torch.cuda
|
6 |
+
from torch.testing._internal.common_utils import LazyVal, TEST_NUMBA, TEST_WITH_ROCM, TEST_CUDA, IS_WINDOWS
|
7 |
+
import inspect
|
8 |
+
import contextlib
|
9 |
+
|
10 |
+
|
11 |
+
CUDA_ALREADY_INITIALIZED_ON_IMPORT = torch.cuda.is_initialized()
|
12 |
+
|
13 |
+
|
14 |
+
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
|
15 |
+
CUDA_DEVICE = torch.device("cuda:0") if TEST_CUDA else None
|
16 |
+
# note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN
|
17 |
+
if TEST_WITH_ROCM:
|
18 |
+
TEST_CUDNN = LazyVal(lambda: TEST_CUDA)
|
19 |
+
else:
|
20 |
+
TEST_CUDNN = LazyVal(lambda: TEST_CUDA and torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE)))
|
21 |
+
|
22 |
+
TEST_CUDNN_VERSION = LazyVal(lambda: torch.backends.cudnn.version() if TEST_CUDNN else 0)
|
23 |
+
|
24 |
+
SM53OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (5, 3))
|
25 |
+
SM60OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (6, 0))
|
26 |
+
SM70OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 0))
|
27 |
+
SM75OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 5))
|
28 |
+
SM80OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0))
|
29 |
+
SM90OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (9, 0))
|
30 |
+
|
31 |
+
PLATFORM_SUPPORTS_FLASH_ATTENTION: bool = LazyVal(lambda: TEST_CUDA and (not TEST_WITH_ROCM) and (not IS_WINDOWS) and SM80OrLater)
|
32 |
+
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION: bool = LazyVal(lambda: TEST_CUDA and not TEST_WITH_ROCM)
|
33 |
+
# This condition always evaluates to PLATFORM_SUPPORTS_MEM_EFF_ATTENTION but for logical clarity we keep it separate
|
34 |
+
PLATFORM_SUPPORTS_FUSED_ATTENTION: bool = LazyVal(lambda: PLATFORM_SUPPORTS_FLASH_ATTENTION or PLATFORM_SUPPORTS_MEM_EFF_ATTENTION)
|
35 |
+
|
36 |
+
PLATFORM_SUPPORTS_FUSED_SDPA: bool = TEST_CUDA and not TEST_WITH_ROCM
|
37 |
+
|
38 |
+
if TEST_NUMBA:
|
39 |
+
try:
|
40 |
+
import numba.cuda
|
41 |
+
TEST_NUMBA_CUDA = numba.cuda.is_available()
|
42 |
+
except Exception as e:
|
43 |
+
TEST_NUMBA_CUDA = False
|
44 |
+
TEST_NUMBA = False
|
45 |
+
else:
|
46 |
+
TEST_NUMBA_CUDA = False
|
47 |
+
|
48 |
+
# Used below in `initialize_cuda_context_rng` to ensure that CUDA context and
|
49 |
+
# RNG have been initialized.
|
50 |
+
__cuda_ctx_rng_initialized = False
|
51 |
+
|
52 |
+
|
53 |
+
# after this call, CUDA context and RNG must have been initialized on each GPU
|
54 |
+
def initialize_cuda_context_rng():
|
55 |
+
global __cuda_ctx_rng_initialized
|
56 |
+
assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng'
|
57 |
+
if not __cuda_ctx_rng_initialized:
|
58 |
+
# initialize cuda context and rng for memory tests
|
59 |
+
for i in range(torch.cuda.device_count()):
|
60 |
+
torch.randn(1, device=f"cuda:{i}")
|
61 |
+
__cuda_ctx_rng_initialized = True
|
62 |
+
|
63 |
+
|
64 |
+
# Test whether hardware TF32 math mode enabled. It is enabled only on:
|
65 |
+
# - CUDA >= 11
|
66 |
+
# - arch >= Ampere
|
67 |
+
def tf32_is_not_fp32():
|
68 |
+
if not torch.cuda.is_available() or torch.version.cuda is None:
|
69 |
+
return False
|
70 |
+
if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
|
71 |
+
return False
|
72 |
+
if int(torch.version.cuda.split('.')[0]) < 11:
|
73 |
+
return False
|
74 |
+
return True
|
75 |
+
|
76 |
+
|
77 |
+
@contextlib.contextmanager
|
78 |
+
def tf32_off():
|
79 |
+
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
80 |
+
try:
|
81 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
82 |
+
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
|
83 |
+
yield
|
84 |
+
finally:
|
85 |
+
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
86 |
+
|
87 |
+
|
88 |
+
@contextlib.contextmanager
|
89 |
+
def tf32_on(self, tf32_precision=1e-5):
|
90 |
+
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
91 |
+
old_precision = self.precision
|
92 |
+
try:
|
93 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
94 |
+
self.precision = tf32_precision
|
95 |
+
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
|
96 |
+
yield
|
97 |
+
finally:
|
98 |
+
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
99 |
+
self.precision = old_precision
|
100 |
+
|
101 |
+
|
102 |
+
# This is a wrapper that wraps a test to run this test twice, one with
|
103 |
+
# allow_tf32=True, another with allow_tf32=False. When running with
|
104 |
+
# allow_tf32=True, it will use reduced precision as specified by the
|
105 |
+
# argument. For example:
|
106 |
+
# @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
107 |
+
# @tf32_on_and_off(0.005)
|
108 |
+
# def test_matmul(self, device, dtype):
|
109 |
+
# a = ...; b = ...;
|
110 |
+
# c = torch.matmul(a, b)
|
111 |
+
# self.assertEqual(c, expected)
|
112 |
+
# In the above example, when testing torch.float32 and torch.complex64 on CUDA
|
113 |
+
# on a CUDA >= 11 build on an >=Ampere architecture, the matmul will be running at
|
114 |
+
# TF32 mode and TF32 mode off, and on TF32 mode, the assertEqual will use reduced
|
115 |
+
# precision to check values.
|
116 |
+
#
|
117 |
+
# This decorator can be used for function with or without device/dtype, such as
|
118 |
+
# @tf32_on_and_off(0.005)
|
119 |
+
# def test_my_op(self)
|
120 |
+
# @tf32_on_and_off(0.005)
|
121 |
+
# def test_my_op(self, device)
|
122 |
+
# @tf32_on_and_off(0.005)
|
123 |
+
# def test_my_op(self, device, dtype)
|
124 |
+
# @tf32_on_and_off(0.005)
|
125 |
+
# def test_my_op(self, dtype)
|
126 |
+
# if neither device nor dtype is specified, it will check if the system has ampere device
|
127 |
+
# if device is specified, it will check if device is cuda
|
128 |
+
# if dtype is specified, it will check if dtype is float32 or complex64
|
129 |
+
# tf32 and fp32 are different only when all the three checks pass
|
130 |
+
def tf32_on_and_off(tf32_precision=1e-5):
|
131 |
+
def with_tf32_disabled(self, function_call):
|
132 |
+
with tf32_off():
|
133 |
+
function_call()
|
134 |
+
|
135 |
+
def with_tf32_enabled(self, function_call):
|
136 |
+
with tf32_on(self, tf32_precision):
|
137 |
+
function_call()
|
138 |
+
|
139 |
+
def wrapper(f):
|
140 |
+
params = inspect.signature(f).parameters
|
141 |
+
arg_names = tuple(params.keys())
|
142 |
+
|
143 |
+
@functools.wraps(f)
|
144 |
+
def wrapped(*args, **kwargs):
|
145 |
+
for k, v in zip(arg_names, args):
|
146 |
+
kwargs[k] = v
|
147 |
+
cond = tf32_is_not_fp32()
|
148 |
+
if 'device' in kwargs:
|
149 |
+
cond = cond and (torch.device(kwargs['device']).type == 'cuda')
|
150 |
+
if 'dtype' in kwargs:
|
151 |
+
cond = cond and (kwargs['dtype'] in {torch.float32, torch.complex64})
|
152 |
+
if cond:
|
153 |
+
with_tf32_disabled(kwargs['self'], lambda: f(**kwargs))
|
154 |
+
with_tf32_enabled(kwargs['self'], lambda: f(**kwargs))
|
155 |
+
else:
|
156 |
+
f(**kwargs)
|
157 |
+
|
158 |
+
return wrapped
|
159 |
+
return wrapper
|
160 |
+
|
161 |
+
|
162 |
+
# This is a wrapper that wraps a test to run it with TF32 turned off.
|
163 |
+
# This wrapper is designed to be used when a test uses matmul or convolutions
|
164 |
+
# but the purpose of that test is not testing matmul or convolutions.
|
165 |
+
# Disabling TF32 will enforce torch.float tensors to be always computed
|
166 |
+
# at full precision.
|
167 |
+
def with_tf32_off(f):
|
168 |
+
@functools.wraps(f)
|
169 |
+
def wrapped(*args, **kwargs):
|
170 |
+
with tf32_off():
|
171 |
+
return f(*args, **kwargs)
|
172 |
+
|
173 |
+
return wrapped
|
174 |
+
|
175 |
+
def _get_magma_version():
|
176 |
+
if 'Magma' not in torch.__config__.show():
|
177 |
+
return (0, 0)
|
178 |
+
position = torch.__config__.show().find('Magma ')
|
179 |
+
version_str = torch.__config__.show()[position + len('Magma '):].split('\n')[0]
|
180 |
+
return tuple(int(x) for x in version_str.split("."))
|
181 |
+
|
182 |
+
def _get_torch_cuda_version():
|
183 |
+
if torch.version.cuda is None:
|
184 |
+
return (0, 0)
|
185 |
+
cuda_version = str(torch.version.cuda)
|
186 |
+
return tuple(int(x) for x in cuda_version.split("."))
|
187 |
+
|
188 |
+
def _get_torch_rocm_version():
|
189 |
+
if not TEST_WITH_ROCM:
|
190 |
+
return (0, 0)
|
191 |
+
rocm_version = str(torch.version.hip)
|
192 |
+
rocm_version = rocm_version.split("-")[0] # ignore git sha
|
193 |
+
return tuple(int(x) for x in rocm_version.split("."))
|
194 |
+
|
195 |
+
def _check_cusparse_generic_available():
|
196 |
+
return not TEST_WITH_ROCM
|
197 |
+
|
198 |
+
def _check_hipsparse_generic_available():
|
199 |
+
if not TEST_WITH_ROCM:
|
200 |
+
return False
|
201 |
+
|
202 |
+
rocm_version = str(torch.version.hip)
|
203 |
+
rocm_version = rocm_version.split("-")[0] # ignore git sha
|
204 |
+
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
|
205 |
+
return not (rocm_version_tuple is None or rocm_version_tuple < (5, 1))
|
206 |
+
|
207 |
+
|
208 |
+
TEST_CUSPARSE_GENERIC = _check_cusparse_generic_available()
|
209 |
+
TEST_HIPSPARSE_GENERIC = _check_hipsparse_generic_available()
|
210 |
+
|
211 |
+
# Shared by test_cuda.py and test_multigpu.py
|
212 |
+
def _create_scaling_models_optimizers(device="cuda", optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
213 |
+
# Create a module+optimizer that will use scaling, and a control module+optimizer
|
214 |
+
# that will not use scaling, against which the scaling-enabled module+optimizer can be compared.
|
215 |
+
mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
216 |
+
mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
217 |
+
with torch.no_grad():
|
218 |
+
for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
|
219 |
+
s.copy_(c)
|
220 |
+
|
221 |
+
kwargs = {"lr": 1.0}
|
222 |
+
if optimizer_kwargs is not None:
|
223 |
+
kwargs.update(optimizer_kwargs)
|
224 |
+
opt_control = optimizer_ctor(mod_control.parameters(), **kwargs)
|
225 |
+
opt_scaling = optimizer_ctor(mod_scaling.parameters(), **kwargs)
|
226 |
+
|
227 |
+
return mod_control, mod_scaling, opt_control, opt_scaling
|
228 |
+
|
229 |
+
|
230 |
+
def _create_scaling_case(device="cuda", dtype=torch.float, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
231 |
+
data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
232 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
233 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
234 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))]
|
235 |
+
|
236 |
+
loss_fn = torch.nn.MSELoss().cuda()
|
237 |
+
|
238 |
+
skip_iter = 2
|
239 |
+
|
240 |
+
return _create_scaling_models_optimizers(
|
241 |
+
device=device, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
|
242 |
+
) + (data, loss_fn, skip_iter)
|
243 |
+
|
244 |
+
|
245 |
+
# Importing this module should NOT eagerly initialize CUDA
|
246 |
+
if not CUDA_ALREADY_INITIALIZED_ON_IMPORT:
|
247 |
+
assert not torch.cuda.is_initialized()
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py
ADDED
@@ -0,0 +1,1513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import gc
|
3 |
+
import inspect
|
4 |
+
import runpy
|
5 |
+
import sys
|
6 |
+
import threading
|
7 |
+
from collections import namedtuple
|
8 |
+
from enum import Enum
|
9 |
+
from functools import wraps, partial
|
10 |
+
from typing import List, Any, ClassVar, Optional, Sequence, Tuple, Union, Dict, Set
|
11 |
+
import unittest
|
12 |
+
import os
|
13 |
+
import torch
|
14 |
+
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM, TEST_MKL, \
|
15 |
+
skipCUDANonDefaultStreamIf, TEST_WITH_ASAN, TEST_WITH_UBSAN, TEST_WITH_TSAN, \
|
16 |
+
IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, IS_WINDOWS, TEST_MPS, \
|
17 |
+
_TestParametrizer, compose_parametrize_fns, dtype_name, \
|
18 |
+
TEST_WITH_MIOPEN_SUGGEST_NHWC, NATIVE_DEVICES, skipIfTorchDynamo, \
|
19 |
+
get_tracked_input, clear_tracked_input, PRINT_REPRO_ON_FAILURE
|
20 |
+
from torch.testing._internal.common_cuda import _get_torch_cuda_version, \
|
21 |
+
TEST_CUSPARSE_GENERIC, TEST_HIPSPARSE_GENERIC, _get_torch_rocm_version
|
22 |
+
from torch.testing._internal.common_dtype import get_all_dtypes
|
23 |
+
|
24 |
+
try:
|
25 |
+
import psutil # type: ignore[import]
|
26 |
+
HAS_PSUTIL = True
|
27 |
+
except ImportError:
|
28 |
+
HAS_PSUTIL = False
|
29 |
+
|
30 |
+
# Note [Writing Test Templates]
|
31 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
32 |
+
#
|
33 |
+
# This note was written shortly after the PyTorch 1.9 release.
|
34 |
+
# If you notice it's out-of-date or think it could be improved then please
|
35 |
+
# file an issue.
|
36 |
+
#
|
37 |
+
# PyTorch has its own framework for instantiating test templates. That is, for
|
38 |
+
# taking test classes that look similar to unittest or pytest
|
39 |
+
# compatible test classes and optionally doing the following:
|
40 |
+
#
|
41 |
+
# - instantiating a version of the test class for each available device type
|
42 |
+
# (often the CPU, CUDA, and META device types)
|
43 |
+
# - further instantiating a version of each test that's always specialized
|
44 |
+
# on the test class's device type, and optionally specialized further
|
45 |
+
# on datatypes or operators
|
46 |
+
#
|
47 |
+
# This functionality is similar to pytest's parametrize functionality
|
48 |
+
# (see https://docs.pytest.org/en/6.2.x/parametrize.html), but with considerable
|
49 |
+
# additional logic that specializes the instantiated test classes for their
|
50 |
+
# device types (see CPUTestBase and CUDATestBase below), supports a variety
|
51 |
+
# of composable decorators that allow for test filtering and setting
|
52 |
+
# tolerances, and allows tests parametrized by operators to instantiate
|
53 |
+
# only the subset of device type x dtype that operator supports.
|
54 |
+
#
|
55 |
+
# This framework was built to make it easier to write tests that run on
|
56 |
+
# multiple device types, multiple datatypes (dtypes), and for multiple
|
57 |
+
# operators. It's also useful for controlling which tests are run. For example,
|
58 |
+
# only tests that use a CUDA device can be run on platforms with CUDA.
|
59 |
+
# Let's dive in with an example to get an idea for how it works:
|
60 |
+
#
|
61 |
+
# --------------------------------------------------------
|
62 |
+
# A template class (looks like a regular unittest TestCase)
|
63 |
+
# class TestClassFoo(TestCase):
|
64 |
+
#
|
65 |
+
# # A template test that can be specialized with a device
|
66 |
+
# # NOTE: this test case is not runnable by unittest or pytest because it
|
67 |
+
# # accepts an extra positional argument, "device", that they do not understand
|
68 |
+
# def test_bar(self, device):
|
69 |
+
# pass
|
70 |
+
#
|
71 |
+
# # Function that instantiates a template class and its tests
|
72 |
+
# instantiate_device_type_tests(TestCommon, globals())
|
73 |
+
# --------------------------------------------------------
|
74 |
+
#
|
75 |
+
# In the above code example we see a template class and a single test template
|
76 |
+
# that can be instantiated with a device. The function
|
77 |
+
# instantiate_device_type_tests(), called at file scope, instantiates
|
78 |
+
# new test classes, one per available device type, and new tests in those
|
79 |
+
# classes from these templates. It actually does this by removing
|
80 |
+
# the class TestClassFoo and replacing it with classes like TestClassFooCPU
|
81 |
+
# and TestClassFooCUDA, instantiated test classes that inherit from CPUTestBase
|
82 |
+
# and CUDATestBase respectively. Additional device types, like XLA,
|
83 |
+
# (see https://github.com/pytorch/xla) can further extend the set of
|
84 |
+
# instantiated test classes to create classes like TestClassFooXLA.
|
85 |
+
#
|
86 |
+
# The test template, test_bar(), is also instantiated. In this case the template
|
87 |
+
# is only specialized on a device, so (depending on the available device
|
88 |
+
# types) it might become test_bar_cpu() in TestClassFooCPU and test_bar_cuda()
|
89 |
+
# in TestClassFooCUDA. We can think of the instantiated test classes as
|
90 |
+
# looking like this:
|
91 |
+
#
|
92 |
+
# --------------------------------------------------------
|
93 |
+
# # An instantiated test class for the CPU device type
|
94 |
+
# class TestClassFooCPU(CPUTestBase):
|
95 |
+
#
|
96 |
+
# # An instantiated test that calls the template with the string representation
|
97 |
+
# # of a device from the test class's device type
|
98 |
+
# def test_bar_cpu(self):
|
99 |
+
# test_bar(self, 'cpu')
|
100 |
+
#
|
101 |
+
# # An instantiated test class for the CUDA device type
|
102 |
+
# class TestClassFooCUDA(CUDATestBase):
|
103 |
+
#
|
104 |
+
# # An instantiated test that calls the template with the string representation
|
105 |
+
# # of a device from the test class's device type
|
106 |
+
# def test_bar_cuda(self):
|
107 |
+
# test_bar(self, 'cuda:0')
|
108 |
+
# --------------------------------------------------------
|
109 |
+
#
|
110 |
+
# These instantiated test classes ARE discoverable and runnable by both
|
111 |
+
# unittest and pytest. One thing that may be confusing, however, is that
|
112 |
+
# attempting to run "test_bar" will not work, despite it appearing in the
|
113 |
+
# original template code. This is because "test_bar" is no longer discoverable
|
114 |
+
# after instantiate_device_type_tests() runs, as the above snippet shows.
|
115 |
+
# Instead "test_bar_cpu" and "test_bar_cuda" may be run directly, or both
|
116 |
+
# can be run with the option "-k test_bar".
|
117 |
+
#
|
118 |
+
# Removing the template class and adding the instantiated classes requires
|
119 |
+
# passing "globals()" to instantiate_device_type_tests(), because it
|
120 |
+
# edits the file's Python objects.
|
121 |
+
#
|
122 |
+
# As mentioned, tests can be additionally parametrized on dtypes or
|
123 |
+
# operators. Datatype parametrization uses the @dtypes decorator and
|
124 |
+
# require a test template like this:
|
125 |
+
#
|
126 |
+
# --------------------------------------------------------
|
127 |
+
# # A template test that can be specialized with a device and a datatype (dtype)
|
128 |
+
# @dtypes(torch.float32, torch.int64)
|
129 |
+
# def test_car(self, device, dtype)
|
130 |
+
# pass
|
131 |
+
# --------------------------------------------------------
|
132 |
+
#
|
133 |
+
# If the CPU and CUDA device types are available this test would be
|
134 |
+
# instantiated as 4 tests that cover the cross-product of the two dtypes
|
135 |
+
# and two device types:
|
136 |
+
#
|
137 |
+
# - test_car_cpu_float32
|
138 |
+
# - test_car_cpu_int64
|
139 |
+
# - test_car_cuda_float32
|
140 |
+
# - test_car_cuda_int64
|
141 |
+
#
|
142 |
+
# The dtype is passed as a torch.dtype object.
|
143 |
+
#
|
144 |
+
# Tests parametrized on operators (actually on OpInfos, more on that in a
|
145 |
+
# moment...) use the @ops decorator and require a test template like this:
|
146 |
+
# --------------------------------------------------------
|
147 |
+
# # A template test that can be specialized with a device, dtype, and OpInfo
|
148 |
+
# @ops(op_db)
|
149 |
+
# def test_car(self, device, dtype, op)
|
150 |
+
# pass
|
151 |
+
# --------------------------------------------------------
|
152 |
+
#
|
153 |
+
# See the documentation for the @ops decorator below for additional details
|
154 |
+
# on how to use it and see the note [OpInfos] in
|
155 |
+
# common_methods_invocations.py for more details on OpInfos.
|
156 |
+
#
|
157 |
+
# A test parametrized over the entire "op_db", which contains hundreds of
|
158 |
+
# OpInfos, will likely have hundreds or thousands of instantiations. The
|
159 |
+
# test will be instantiated on the cross-product of device types, operators,
|
160 |
+
# and the dtypes the operator supports on that device type. The instantiated
|
161 |
+
# tests will have names like:
|
162 |
+
#
|
163 |
+
# - test_car_add_cpu_float32
|
164 |
+
# - test_car_sub_cuda_int64
|
165 |
+
#
|
166 |
+
# The first instantiated test calls the original test_car() with the OpInfo
|
167 |
+
# for torch.add as its "op" argument, the string 'cpu' for its "device" argument,
|
168 |
+
# and the dtype torch.float32 for is "dtype" argument. The second instantiated
|
169 |
+
# test calls the test_car() with the OpInfo for torch.sub, a CUDA device string
|
170 |
+
# like 'cuda:0' or 'cuda:1' for its "device" argument, and the dtype
|
171 |
+
# torch.int64 for its "dtype argument."
|
172 |
+
#
|
173 |
+
# In addition to parametrizing over device, dtype, and ops via OpInfos, the
|
174 |
+
# @parametrize decorator is supported for arbitrary parametrizations:
|
175 |
+
# --------------------------------------------------------
|
176 |
+
# # A template test that can be specialized with a device, dtype, and value for x
|
177 |
+
# @parametrize("x", range(5))
|
178 |
+
# def test_car(self, device, dtype, x)
|
179 |
+
# pass
|
180 |
+
# --------------------------------------------------------
|
181 |
+
#
|
182 |
+
# See the documentation for @parametrize in common_utils.py for additional details
|
183 |
+
# on this. Note that the instantiate_device_type_tests() function will handle
|
184 |
+
# such parametrizations; there is no need to additionally call
|
185 |
+
# instantiate_parametrized_tests().
|
186 |
+
#
|
187 |
+
# Clever test filtering can be very useful when working with parametrized
|
188 |
+
# tests. "-k test_car" would run every instantiated variant of the test_car()
|
189 |
+
# test template, and "-k test_car_add" runs every variant instantiated with
|
190 |
+
# torch.add.
|
191 |
+
#
|
192 |
+
# It is important to use the passed device and dtype as appropriate. Use
|
193 |
+
# helper functions like make_tensor() that require explicitly specifying
|
194 |
+
# the device and dtype so they're not forgotten.
|
195 |
+
#
|
196 |
+
# Test templates can use a variety of composable decorators to specify
|
197 |
+
# additional options and requirements, some are listed here:
|
198 |
+
#
|
199 |
+
# - @deviceCountAtLeast(<minimum number of devices to run test with>)
|
200 |
+
# Passes a list of strings representing all available devices of
|
201 |
+
# the test class's device type as the test template's "device" argument.
|
202 |
+
# If there are fewer devices than the value passed to the decorator
|
203 |
+
# the test is skipped.
|
204 |
+
# - @dtypes(<list of tuples of dtypes>)
|
205 |
+
# In addition to accepting multiple dtypes, the @dtypes decorator
|
206 |
+
# can accept a sequence of tuple pairs of dtypes. The test template
|
207 |
+
# will be called with each tuple for its "dtype" argument.
|
208 |
+
# - @onlyNativeDeviceTypes
|
209 |
+
# Skips the test if the device is not a native device type (currently CPU, CUDA, Meta)
|
210 |
+
# - @onlyCPU
|
211 |
+
# Skips the test if the device is not a CPU device
|
212 |
+
# - @onlyCUDA
|
213 |
+
# Skips the test if the device is not a CUDA device
|
214 |
+
# - @onlyMPS
|
215 |
+
# Skips the test if the device is not a MPS device
|
216 |
+
# - @skipCPUIfNoLapack
|
217 |
+
# Skips the test if the device is a CPU device and LAPACK is not installed
|
218 |
+
# - @skipCPUIfNoMkl
|
219 |
+
# Skips the test if the device is a CPU device and MKL is not installed
|
220 |
+
# - @skipCUDAIfNoMagma
|
221 |
+
# Skips the test if the device is a CUDA device and MAGMA is not installed
|
222 |
+
# - @skipCUDAIfRocm
|
223 |
+
# Skips the test if the device is a CUDA device and ROCm is being used
|
224 |
+
|
225 |
+
|
226 |
+
# Note [Adding a Device Type]
|
227 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
228 |
+
#
|
229 |
+
# To add a device type:
|
230 |
+
#
|
231 |
+
# (1) Create a new "TestBase" extending DeviceTypeTestBase.
|
232 |
+
# See CPUTestBase and CUDATestBase below.
|
233 |
+
# (2) Define the "device_type" attribute of the base to be the
|
234 |
+
# appropriate string.
|
235 |
+
# (3) Add logic to this file that appends your base class to
|
236 |
+
# device_type_test_bases when your device type is available.
|
237 |
+
# (4) (Optional) Write setUpClass/tearDownClass class methods that
|
238 |
+
# instantiate dependencies (see MAGMA in CUDATestBase).
|
239 |
+
# (5) (Optional) Override the "instantiate_test" method for total
|
240 |
+
# control over how your class creates tests.
|
241 |
+
#
|
242 |
+
# setUpClass is called AFTER tests have been created and BEFORE and ONLY IF
|
243 |
+
# they are run. This makes it useful for initializing devices and dependencies.
|
244 |
+
|
245 |
+
|
246 |
+
# Note [Overriding methods in generic tests]
|
247 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
248 |
+
#
|
249 |
+
# Device generic tests look a lot like normal test classes, but they differ
|
250 |
+
# from ordinary classes in some important ways. In particular, overriding
|
251 |
+
# methods in generic tests doesn't work quite the way you expect.
|
252 |
+
#
|
253 |
+
# class TestFooDeviceType(TestCase):
|
254 |
+
# # Intention is to override
|
255 |
+
# def assertEqual(self, x, y):
|
256 |
+
# # This DOESN'T WORK!
|
257 |
+
# super().assertEqual(x, y)
|
258 |
+
#
|
259 |
+
# If you try to run this code, you'll get an error saying that TestFooDeviceType
|
260 |
+
# is not in scope. This is because after instantiating our classes, we delete
|
261 |
+
# it from the parent scope. Instead, you need to hardcode a direct invocation
|
262 |
+
# of the desired subclass call, e.g.,
|
263 |
+
#
|
264 |
+
# class TestFooDeviceType(TestCase):
|
265 |
+
# # Intention is to override
|
266 |
+
# def assertEqual(self, x, y):
|
267 |
+
# TestCase.assertEqual(x, y)
|
268 |
+
#
|
269 |
+
# However, a less error-prone way of customizing the behavior of TestCase
|
270 |
+
# is to either (1) add your functionality to TestCase and make it toggled
|
271 |
+
# by a class attribute, or (2) create your own subclass of TestCase, and
|
272 |
+
# then inherit from it for your generic test.
|
273 |
+
|
274 |
+
|
275 |
+
def _dtype_test_suffix(dtypes):
|
276 |
+
""" Returns the test suffix for a dtype, sequence of dtypes, or None. """
|
277 |
+
if isinstance(dtypes, (list, tuple)):
|
278 |
+
if len(dtypes) == 0:
|
279 |
+
return ''
|
280 |
+
return '_' + '_'.join(dtype_name(d) for d in dtypes)
|
281 |
+
elif dtypes:
|
282 |
+
return f'_{dtype_name(dtypes)}'
|
283 |
+
else:
|
284 |
+
return ''
|
285 |
+
|
286 |
+
|
287 |
+
def _update_param_kwargs(param_kwargs, name, value):
|
288 |
+
""" Adds a kwarg with the specified name and value to the param_kwargs dict. """
|
289 |
+
# Make name plural (e.g. devices / dtypes) if the value is composite.
|
290 |
+
plural_name = f'{name}s'
|
291 |
+
|
292 |
+
# Clear out old entries of the arg if any.
|
293 |
+
if name in param_kwargs:
|
294 |
+
del param_kwargs[name]
|
295 |
+
if plural_name in param_kwargs:
|
296 |
+
del param_kwargs[plural_name]
|
297 |
+
|
298 |
+
if isinstance(value, (list, tuple)):
|
299 |
+
param_kwargs[plural_name] = value
|
300 |
+
elif value is not None:
|
301 |
+
param_kwargs[name] = value
|
302 |
+
|
303 |
+
# Leave param_kwargs as-is when value is None.
|
304 |
+
|
305 |
+
|
306 |
+
class DeviceTypeTestBase(TestCase):
|
307 |
+
device_type: str = 'generic_device_type'
|
308 |
+
|
309 |
+
# Flag to disable test suite early due to unrecoverable error such as CUDA error.
|
310 |
+
_stop_test_suite = False
|
311 |
+
|
312 |
+
# Precision is a thread-local setting since it may be overridden per test
|
313 |
+
_tls = threading.local()
|
314 |
+
_tls.precision = TestCase._precision
|
315 |
+
_tls.rel_tol = TestCase._rel_tol
|
316 |
+
|
317 |
+
@property
|
318 |
+
def precision(self):
|
319 |
+
return self._tls.precision
|
320 |
+
|
321 |
+
@precision.setter
|
322 |
+
def precision(self, prec):
|
323 |
+
self._tls.precision = prec
|
324 |
+
|
325 |
+
@property
|
326 |
+
def rel_tol(self):
|
327 |
+
return self._tls.rel_tol
|
328 |
+
|
329 |
+
@rel_tol.setter
|
330 |
+
def rel_tol(self, prec):
|
331 |
+
self._tls.rel_tol = prec
|
332 |
+
|
333 |
+
# Returns a string representing the device that single device tests should use.
|
334 |
+
# Note: single device tests use this device exclusively.
|
335 |
+
@classmethod
|
336 |
+
def get_primary_device(cls):
|
337 |
+
return cls.device_type
|
338 |
+
|
339 |
+
@classmethod
|
340 |
+
def _init_and_get_primary_device(cls):
|
341 |
+
try:
|
342 |
+
return cls.get_primary_device()
|
343 |
+
except Exception:
|
344 |
+
# For CUDATestBase, XLATestBase, and possibly others, the primary device won't be available
|
345 |
+
# until setUpClass() sets it. Call that manually here if needed.
|
346 |
+
if hasattr(cls, 'setUpClass'):
|
347 |
+
cls.setUpClass()
|
348 |
+
return cls.get_primary_device()
|
349 |
+
|
350 |
+
# Returns a list of strings representing all available devices of this
|
351 |
+
# device type. The primary device must be the first string in the list
|
352 |
+
# and the list must contain no duplicates.
|
353 |
+
# Note: UNSTABLE API. Will be replaced once PyTorch has a device generic
|
354 |
+
# mechanism of acquiring all available devices.
|
355 |
+
@classmethod
|
356 |
+
def get_all_devices(cls):
|
357 |
+
return [cls.get_primary_device()]
|
358 |
+
|
359 |
+
# Returns the dtypes the test has requested.
|
360 |
+
# Prefers device-specific dtype specifications over generic ones.
|
361 |
+
@classmethod
|
362 |
+
def _get_dtypes(cls, test):
|
363 |
+
if not hasattr(test, 'dtypes'):
|
364 |
+
return None
|
365 |
+
|
366 |
+
default_dtypes = test.dtypes.get('all')
|
367 |
+
msg = f"@dtypes is mandatory when using @dtypesIf however '{test.__name__}' didn't specify it"
|
368 |
+
assert default_dtypes is not None, msg
|
369 |
+
|
370 |
+
return test.dtypes.get(cls.device_type, default_dtypes)
|
371 |
+
|
372 |
+
def _get_precision_override(self, test, dtype):
|
373 |
+
if not hasattr(test, 'precision_overrides'):
|
374 |
+
return self.precision
|
375 |
+
return test.precision_overrides.get(dtype, self.precision)
|
376 |
+
|
377 |
+
def _get_tolerance_override(self, test, dtype):
|
378 |
+
if not hasattr(test, 'tolerance_overrides'):
|
379 |
+
return self.precision, self.rel_tol
|
380 |
+
return test.tolerance_overrides.get(dtype, tol(self.precision, self.rel_tol))
|
381 |
+
|
382 |
+
def _apply_precision_override_for_test(self, test, param_kwargs):
|
383 |
+
dtype = param_kwargs['dtype'] if 'dtype' in param_kwargs else None
|
384 |
+
dtype = param_kwargs['dtypes'] if 'dtypes' in param_kwargs else dtype
|
385 |
+
if dtype:
|
386 |
+
self.precision = self._get_precision_override(test, dtype)
|
387 |
+
self.precision, self.rel_tol = self._get_tolerance_override(test, dtype)
|
388 |
+
|
389 |
+
# Creates device-specific tests.
|
390 |
+
@classmethod
|
391 |
+
def instantiate_test(cls, name, test, *, generic_cls=None):
|
392 |
+
|
393 |
+
def instantiate_test_helper(cls, name, *, test, param_kwargs=None, decorator_fn=lambda _: []):
|
394 |
+
# Add the device param kwarg if the test needs device or devices.
|
395 |
+
param_kwargs = {} if param_kwargs is None else param_kwargs
|
396 |
+
test_sig_params = inspect.signature(test).parameters
|
397 |
+
if 'device' in test_sig_params or 'devices' in test_sig_params:
|
398 |
+
device_arg: str = cls._init_and_get_primary_device()
|
399 |
+
if hasattr(test, 'num_required_devices'):
|
400 |
+
device_arg = cls.get_all_devices()
|
401 |
+
_update_param_kwargs(param_kwargs, 'device', device_arg)
|
402 |
+
|
403 |
+
# Apply decorators based on param kwargs.
|
404 |
+
for decorator in decorator_fn(param_kwargs):
|
405 |
+
test = decorator(test)
|
406 |
+
|
407 |
+
# Constructs the test
|
408 |
+
@wraps(test)
|
409 |
+
def instantiated_test(self, param_kwargs=param_kwargs):
|
410 |
+
# Sets precision and runs test
|
411 |
+
# Note: precision is reset after the test is run
|
412 |
+
guard_precision = self.precision
|
413 |
+
guard_rel_tol = self.rel_tol
|
414 |
+
try:
|
415 |
+
self._apply_precision_override_for_test(test, param_kwargs)
|
416 |
+
result = test(self, **param_kwargs)
|
417 |
+
except RuntimeError as rte:
|
418 |
+
# check if rte should stop entire test suite.
|
419 |
+
self._stop_test_suite = self._should_stop_test_suite()
|
420 |
+
# Check if test has been decorated with `@expectedFailure`
|
421 |
+
# Using `__unittest_expecting_failure__` attribute, see
|
422 |
+
# https://github.com/python/cpython/blob/ffa505b580464/Lib/unittest/case.py#L164
|
423 |
+
# In that case, make it fail with "unexpected success" by suppressing exception
|
424 |
+
if getattr(test, "__unittest_expecting_failure__", False) and self._stop_test_suite:
|
425 |
+
import sys
|
426 |
+
print("Suppressing fatal exception to trigger unexpected success", file=sys.stderr)
|
427 |
+
return
|
428 |
+
# raise the runtime error as is for the test suite to record.
|
429 |
+
raise rte
|
430 |
+
finally:
|
431 |
+
self.precision = guard_precision
|
432 |
+
self.rel_tol = guard_rel_tol
|
433 |
+
|
434 |
+
return result
|
435 |
+
|
436 |
+
assert not hasattr(cls, name), f"Redefinition of test {name}"
|
437 |
+
setattr(cls, name, instantiated_test)
|
438 |
+
|
439 |
+
def default_parametrize_fn(test, generic_cls, device_cls):
|
440 |
+
# By default, no parametrization is needed.
|
441 |
+
yield (test, '', {}, lambda _: [])
|
442 |
+
|
443 |
+
# Parametrization decorators set the parametrize_fn attribute on the test.
|
444 |
+
parametrize_fn = getattr(test, "parametrize_fn", default_parametrize_fn)
|
445 |
+
|
446 |
+
# If one of the @dtypes* decorators is present, also parametrize over the dtypes set by it.
|
447 |
+
dtypes = cls._get_dtypes(test)
|
448 |
+
if dtypes is not None:
|
449 |
+
|
450 |
+
def dtype_parametrize_fn(test, generic_cls, device_cls, dtypes=dtypes):
|
451 |
+
for dtype in dtypes:
|
452 |
+
param_kwargs: Dict[str, Any] = {}
|
453 |
+
_update_param_kwargs(param_kwargs, "dtype", dtype)
|
454 |
+
|
455 |
+
# Note that an empty test suffix is set here so that the dtype can be appended
|
456 |
+
# later after the device.
|
457 |
+
yield (test, '', param_kwargs, lambda _: [])
|
458 |
+
|
459 |
+
parametrize_fn = compose_parametrize_fns(dtype_parametrize_fn, parametrize_fn)
|
460 |
+
|
461 |
+
# Instantiate the parametrized tests.
|
462 |
+
for (test, test_suffix, param_kwargs, decorator_fn) in parametrize_fn(test, generic_cls, cls): # noqa: B020
|
463 |
+
test_suffix = '' if test_suffix == '' else '_' + test_suffix
|
464 |
+
device_suffix = '_' + cls.device_type
|
465 |
+
|
466 |
+
# Note: device and dtype suffix placement
|
467 |
+
# Special handling here to place dtype(s) after device according to test name convention.
|
468 |
+
dtype_kwarg = None
|
469 |
+
if 'dtype' in param_kwargs or 'dtypes' in param_kwargs:
|
470 |
+
dtype_kwarg = param_kwargs['dtypes'] if 'dtypes' in param_kwargs else param_kwargs['dtype']
|
471 |
+
test_name = f'{name}{test_suffix}{device_suffix}{_dtype_test_suffix(dtype_kwarg)}'
|
472 |
+
|
473 |
+
instantiate_test_helper(cls=cls, name=test_name, test=test, param_kwargs=param_kwargs,
|
474 |
+
decorator_fn=decorator_fn)
|
475 |
+
|
476 |
+
def run(self, result=None):
|
477 |
+
super().run(result=result)
|
478 |
+
# Early terminate test if _stop_test_suite is set.
|
479 |
+
if self._stop_test_suite:
|
480 |
+
result.stop()
|
481 |
+
|
482 |
+
|
483 |
+
class CPUTestBase(DeviceTypeTestBase):
|
484 |
+
device_type = 'cpu'
|
485 |
+
|
486 |
+
# No critical error should stop CPU test suite
|
487 |
+
def _should_stop_test_suite(self):
|
488 |
+
return False
|
489 |
+
|
490 |
+
class CUDATestBase(DeviceTypeTestBase):
|
491 |
+
device_type = 'cuda'
|
492 |
+
_do_cuda_memory_leak_check = True
|
493 |
+
_do_cuda_non_default_stream = True
|
494 |
+
primary_device: ClassVar[str]
|
495 |
+
cudnn_version: ClassVar[Any]
|
496 |
+
no_magma: ClassVar[bool]
|
497 |
+
no_cudnn: ClassVar[bool]
|
498 |
+
|
499 |
+
def has_cudnn(self):
|
500 |
+
return not self.no_cudnn
|
501 |
+
|
502 |
+
@classmethod
|
503 |
+
def get_primary_device(cls):
|
504 |
+
return cls.primary_device
|
505 |
+
|
506 |
+
@classmethod
|
507 |
+
def get_all_devices(cls):
|
508 |
+
primary_device_idx = int(cls.get_primary_device().split(':')[1])
|
509 |
+
num_devices = torch.cuda.device_count()
|
510 |
+
|
511 |
+
prim_device = cls.get_primary_device()
|
512 |
+
cuda_str = 'cuda:{0}'
|
513 |
+
non_primary_devices = [cuda_str.format(idx) for idx in range(num_devices) if idx != primary_device_idx]
|
514 |
+
return [prim_device] + non_primary_devices
|
515 |
+
|
516 |
+
@classmethod
|
517 |
+
def setUpClass(cls):
|
518 |
+
# has_magma shows up after cuda is initialized
|
519 |
+
t = torch.ones(1).cuda()
|
520 |
+
cls.no_magma = not torch.cuda.has_magma
|
521 |
+
|
522 |
+
# Determines if cuDNN is available and its version
|
523 |
+
cls.no_cudnn = not torch.backends.cudnn.is_acceptable(t)
|
524 |
+
cls.cudnn_version = None if cls.no_cudnn else torch.backends.cudnn.version()
|
525 |
+
|
526 |
+
# Acquires the current device as the primary (test) device
|
527 |
+
cls.primary_device = f'cuda:{torch.cuda.current_device()}'
|
528 |
+
|
529 |
+
# See Note [Lazy Tensor tests in device agnostic testing]
|
530 |
+
lazy_ts_backend_init = False
|
531 |
+
class LazyTestBase(DeviceTypeTestBase):
|
532 |
+
device_type = 'lazy'
|
533 |
+
|
534 |
+
def _should_stop_test_suite(self):
|
535 |
+
return False
|
536 |
+
|
537 |
+
@classmethod
|
538 |
+
def setUpClass(cls):
|
539 |
+
import torch._lazy
|
540 |
+
import torch._lazy.metrics
|
541 |
+
import torch._lazy.ts_backend
|
542 |
+
global lazy_ts_backend_init
|
543 |
+
if not lazy_ts_backend_init:
|
544 |
+
# Need to connect the TS backend to lazy key before running tests
|
545 |
+
torch._lazy.ts_backend.init()
|
546 |
+
lazy_ts_backend_init = True
|
547 |
+
|
548 |
+
class MPSTestBase(DeviceTypeTestBase):
|
549 |
+
device_type = 'mps'
|
550 |
+
primary_device: ClassVar[str]
|
551 |
+
|
552 |
+
@classmethod
|
553 |
+
def get_primary_device(cls):
|
554 |
+
return cls.primary_device
|
555 |
+
|
556 |
+
@classmethod
|
557 |
+
def get_all_devices(cls):
|
558 |
+
# currently only one device is supported on MPS backend
|
559 |
+
prim_device = cls.get_primary_device()
|
560 |
+
return [prim_device]
|
561 |
+
|
562 |
+
@classmethod
|
563 |
+
def setUpClass(cls):
|
564 |
+
cls.primary_device = 'mps:0'
|
565 |
+
|
566 |
+
def _should_stop_test_suite(self):
|
567 |
+
return False
|
568 |
+
|
569 |
+
class PrivateUse1TestBase(DeviceTypeTestBase):
|
570 |
+
primary_device: ClassVar[str]
|
571 |
+
device_mod = None
|
572 |
+
device_type = 'privateuse1'
|
573 |
+
|
574 |
+
@classmethod
|
575 |
+
def get_primary_device(cls):
|
576 |
+
return cls.primary_device
|
577 |
+
|
578 |
+
@classmethod
|
579 |
+
def get_all_devices(cls):
|
580 |
+
primary_device_idx = int(cls.get_primary_device().split(':')[1])
|
581 |
+
num_devices = cls.device_mod.device_count()
|
582 |
+
prim_device = cls.get_primary_device()
|
583 |
+
device_str = f'{cls.device_type}:{{0}}'
|
584 |
+
non_primary_devices = [device_str.format(idx) for idx in range(num_devices) if idx != primary_device_idx]
|
585 |
+
return [prim_device] + non_primary_devices
|
586 |
+
|
587 |
+
@classmethod
|
588 |
+
def setUpClass(cls):
|
589 |
+
cls.device_type = torch._C._get_privateuse1_backend_name()
|
590 |
+
cls.device_mod = getattr(torch, cls.device_type, None)
|
591 |
+
assert cls.device_mod is not None, f'''torch has no module of `{cls.device_type}`, you should register
|
592 |
+
a module by `torch._register_device_module`.'''
|
593 |
+
cls.primary_device = f'{cls.device_type}:{cls.device_mod.current_device()}'
|
594 |
+
|
595 |
+
# Adds available device-type-specific test base classes
|
596 |
+
def get_device_type_test_bases():
|
597 |
+
# set type to List[Any] due to mypy list-of-union issue:
|
598 |
+
# https://github.com/python/mypy/issues/3351
|
599 |
+
test_bases: List[Any] = list()
|
600 |
+
|
601 |
+
if IS_SANDCASTLE or IS_FBCODE:
|
602 |
+
if IS_REMOTE_GPU:
|
603 |
+
# Skip if sanitizer is enabled
|
604 |
+
if not TEST_WITH_ASAN and not TEST_WITH_TSAN and not TEST_WITH_UBSAN:
|
605 |
+
test_bases.append(CUDATestBase)
|
606 |
+
else:
|
607 |
+
test_bases.append(CPUTestBase)
|
608 |
+
else:
|
609 |
+
test_bases.append(CPUTestBase)
|
610 |
+
if torch.cuda.is_available():
|
611 |
+
test_bases.append(CUDATestBase)
|
612 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
613 |
+
device_mod = getattr(torch, device_type, None)
|
614 |
+
if hasattr(device_mod, "is_available") and device_mod.is_available():
|
615 |
+
test_bases.append(PrivateUse1TestBase)
|
616 |
+
# Disable MPS testing in generic device testing temporarily while we're
|
617 |
+
# ramping up support.
|
618 |
+
# elif torch.backends.mps.is_available():
|
619 |
+
# test_bases.append(MPSTestBase)
|
620 |
+
|
621 |
+
return test_bases
|
622 |
+
|
623 |
+
device_type_test_bases = get_device_type_test_bases()
|
624 |
+
|
625 |
+
|
626 |
+
def filter_desired_device_types(device_type_test_bases, except_for=None, only_for=None):
|
627 |
+
# device type cannot appear in both except_for and only_for
|
628 |
+
intersect = set(except_for if except_for else []) & set(only_for if only_for else [])
|
629 |
+
assert not intersect, f"device ({intersect}) appeared in both except_for and only_for"
|
630 |
+
|
631 |
+
if except_for:
|
632 |
+
device_type_test_bases = filter(
|
633 |
+
lambda x: x.device_type not in except_for, device_type_test_bases)
|
634 |
+
if only_for:
|
635 |
+
device_type_test_bases = filter(
|
636 |
+
lambda x: x.device_type in only_for, device_type_test_bases)
|
637 |
+
|
638 |
+
return list(device_type_test_bases)
|
639 |
+
|
640 |
+
|
641 |
+
# Note [How to extend DeviceTypeTestBase to add new test device]
|
642 |
+
# The following logic optionally allows downstream projects like pytorch/xla to
|
643 |
+
# add more test devices.
|
644 |
+
# Instructions:
|
645 |
+
# - Add a python file (e.g. pytorch/xla/test/pytorch_test_base.py) in downstream project.
|
646 |
+
# - Inside the file, one should inherit from `DeviceTypeTestBase` class and define
|
647 |
+
# a new DeviceTypeTest class (e.g. `XLATestBase`) with proper implementation of
|
648 |
+
# `instantiate_test` method.
|
649 |
+
# - DO NOT import common_device_type inside the file.
|
650 |
+
# `runpy.run_path` with `globals()` already properly setup the context so that
|
651 |
+
# `DeviceTypeTestBase` is already available.
|
652 |
+
# - Set a top-level variable `TEST_CLASS` equal to your new class.
|
653 |
+
# E.g. TEST_CLASS = XLATensorBase
|
654 |
+
# - To run tests with new device type, set `TORCH_TEST_DEVICE` env variable to path
|
655 |
+
# to this file. Multiple paths can be separated by `:`.
|
656 |
+
# See pytorch/xla/test/pytorch_test_base.py for a more detailed example.
|
657 |
+
_TORCH_TEST_DEVICES = os.environ.get('TORCH_TEST_DEVICES', None)
|
658 |
+
if _TORCH_TEST_DEVICES:
|
659 |
+
for path in _TORCH_TEST_DEVICES.split(':'):
|
660 |
+
# runpy (a stdlib module) lacks annotations
|
661 |
+
mod = runpy.run_path(path, init_globals=globals()) # type: ignore[func-returns-value]
|
662 |
+
device_type_test_bases.append(mod['TEST_CLASS'])
|
663 |
+
|
664 |
+
|
665 |
+
PYTORCH_CUDA_MEMCHECK = os.getenv('PYTORCH_CUDA_MEMCHECK', '0') == '1'
|
666 |
+
|
667 |
+
PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY = 'PYTORCH_TESTING_DEVICE_ONLY_FOR'
|
668 |
+
PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY = 'PYTORCH_TESTING_DEVICE_EXCEPT_FOR'
|
669 |
+
|
670 |
+
|
671 |
+
# Adds 'instantiated' device-specific test cases to the given scope.
|
672 |
+
# The tests in these test cases are derived from the generic tests in
|
673 |
+
# generic_test_class. This function should be used instead of
|
674 |
+
# instantiate_parametrized_tests() if the test class contains
|
675 |
+
# device-specific tests (NB: this supports additional @parametrize usage).
|
676 |
+
#
|
677 |
+
# See note "Writing Test Templates"
|
678 |
+
def instantiate_device_type_tests(generic_test_class, scope, except_for=None, only_for=None, include_lazy=False, allow_mps=False):
|
679 |
+
# Removes the generic test class from its enclosing scope so its tests
|
680 |
+
# are not discoverable.
|
681 |
+
del scope[generic_test_class.__name__]
|
682 |
+
|
683 |
+
# Creates an 'empty' version of the generic_test_class
|
684 |
+
# Note: we don't inherit from the generic_test_class directly because
|
685 |
+
# that would add its tests to our test classes and they would be
|
686 |
+
# discovered (despite not being runnable). Inherited methods also
|
687 |
+
# can't be removed later, and we can't rely on load_tests because
|
688 |
+
# pytest doesn't support it (as of this writing).
|
689 |
+
empty_name = generic_test_class.__name__ + "_base"
|
690 |
+
empty_class = type(empty_name, generic_test_class.__bases__, {})
|
691 |
+
|
692 |
+
# Acquires members names
|
693 |
+
# See Note [Overriding methods in generic tests]
|
694 |
+
generic_members = set(generic_test_class.__dict__.keys()) - set(empty_class.__dict__.keys())
|
695 |
+
generic_tests = [x for x in generic_members if x.startswith('test')]
|
696 |
+
|
697 |
+
# allow callers to specifically opt tests into being tested on MPS, similar to `include_lazy`
|
698 |
+
test_bases = device_type_test_bases.copy()
|
699 |
+
if allow_mps and TEST_MPS and MPSTestBase not in test_bases:
|
700 |
+
test_bases.append(MPSTestBase)
|
701 |
+
# Filter out the device types based on user inputs
|
702 |
+
desired_device_type_test_bases = filter_desired_device_types(test_bases, except_for, only_for)
|
703 |
+
if include_lazy:
|
704 |
+
# Note [Lazy Tensor tests in device agnostic testing]
|
705 |
+
# Right now, test_view_ops.py runs with LazyTensor.
|
706 |
+
# We don't want to opt every device-agnostic test into using the lazy device,
|
707 |
+
# because many of them will fail.
|
708 |
+
# So instead, the only way to opt a specific device-agnostic test file into
|
709 |
+
# lazy tensor testing is with include_lazy=True
|
710 |
+
if IS_FBCODE:
|
711 |
+
print("TorchScript backend not yet supported in FBCODE/OVRSOURCE builds", file=sys.stderr)
|
712 |
+
else:
|
713 |
+
desired_device_type_test_bases.append(LazyTestBase)
|
714 |
+
|
715 |
+
def split_if_not_empty(x: str):
|
716 |
+
return x.split(",") if len(x) != 0 else []
|
717 |
+
|
718 |
+
# Filter out the device types based on environment variables if available
|
719 |
+
# Usage:
|
720 |
+
# export PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda,cpu
|
721 |
+
# export PYTORCH_TESTING_DEVICE_EXCEPT_FOR=xla
|
722 |
+
env_only_for = split_if_not_empty(os.getenv(PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, ''))
|
723 |
+
env_except_for = split_if_not_empty(os.getenv(PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, ''))
|
724 |
+
|
725 |
+
desired_device_type_test_bases = filter_desired_device_types(desired_device_type_test_bases,
|
726 |
+
env_except_for, env_only_for)
|
727 |
+
|
728 |
+
|
729 |
+
# Creates device-specific test cases
|
730 |
+
for base in desired_device_type_test_bases:
|
731 |
+
class_name = generic_test_class.__name__ + base.device_type.upper()
|
732 |
+
|
733 |
+
# type set to Any and suppressed due to unsupport runtime class:
|
734 |
+
# https://github.com/python/mypy/wiki/Unsupported-Python-Features
|
735 |
+
device_type_test_class: Any = type(class_name, (base, empty_class), {})
|
736 |
+
|
737 |
+
for name in generic_members:
|
738 |
+
if name in generic_tests: # Instantiates test member
|
739 |
+
test = getattr(generic_test_class, name)
|
740 |
+
# XLA-compat shim (XLA's instantiate_test takes doesn't take generic_cls)
|
741 |
+
sig = inspect.signature(device_type_test_class.instantiate_test)
|
742 |
+
if len(sig.parameters) == 3:
|
743 |
+
# Instantiates the device-specific tests
|
744 |
+
device_type_test_class.instantiate_test(name, copy.deepcopy(test), generic_cls=generic_test_class)
|
745 |
+
else:
|
746 |
+
device_type_test_class.instantiate_test(name, copy.deepcopy(test))
|
747 |
+
else: # Ports non-test member
|
748 |
+
assert name not in device_type_test_class.__dict__, f"Redefinition of directly defined member {name}"
|
749 |
+
nontest = getattr(generic_test_class, name)
|
750 |
+
setattr(device_type_test_class, name, nontest)
|
751 |
+
|
752 |
+
# Mimics defining the instantiated class in the caller's file
|
753 |
+
# by setting its module to the given class's and adding
|
754 |
+
# the module to the given scope.
|
755 |
+
# This lets the instantiated class be discovered by unittest.
|
756 |
+
device_type_test_class.__module__ = generic_test_class.__module__
|
757 |
+
scope[class_name] = device_type_test_class
|
758 |
+
|
759 |
+
|
760 |
+
# Category of dtypes to run an OpInfo-based test for
|
761 |
+
# Example use: @ops(dtype=OpDTypes.supported)
|
762 |
+
#
|
763 |
+
# There are 5 categories:
|
764 |
+
# - supported: Every dtype supported by the operator. Use for exhaustive
|
765 |
+
# testing of all dtypes.
|
766 |
+
# - unsupported: Run tests on dtypes not supported by the operator. e.g. for
|
767 |
+
# testing the operator raises an error and doesn't crash.
|
768 |
+
# - supported_backward: Every dtype supported by the operator's backward pass.
|
769 |
+
# - unsupported_backward: Run tests on dtypes not supported by the operator's backward pass.
|
770 |
+
# - any_one: Runs a test for one dtype the operator supports. Prioritizes dtypes the
|
771 |
+
# operator supports in both forward and backward.
|
772 |
+
# - none: Useful for tests that are not dtype-specific. No dtype will be passed to the test
|
773 |
+
# when this is selected.
|
774 |
+
class OpDTypes(Enum):
|
775 |
+
supported = 0 # Test all supported dtypes (default)
|
776 |
+
unsupported = 1 # Test only unsupported dtypes
|
777 |
+
supported_backward = 2 # Test all supported backward dtypes
|
778 |
+
unsupported_backward = 3 # Test only unsupported backward dtypes
|
779 |
+
any_one = 4 # Test precisely one supported dtype
|
780 |
+
none = 5 # Instantiate no dtype variants (no dtype kwarg needed)
|
781 |
+
any_common_cpu_cuda_one = 6 # Test precisely one supported dtype that is common to both cuda and cpu
|
782 |
+
|
783 |
+
|
784 |
+
# Arbitrary order
|
785 |
+
ANY_DTYPE_ORDER = (
|
786 |
+
torch.float32,
|
787 |
+
torch.float64,
|
788 |
+
torch.complex64,
|
789 |
+
torch.complex128,
|
790 |
+
torch.float16,
|
791 |
+
torch.bfloat16,
|
792 |
+
torch.long,
|
793 |
+
torch.int32,
|
794 |
+
torch.int16,
|
795 |
+
torch.int8,
|
796 |
+
torch.uint8,
|
797 |
+
torch.bool
|
798 |
+
)
|
799 |
+
|
800 |
+
def _serialize_sample(sample_input):
|
801 |
+
# NB: For OpInfos, SampleInput.summary() prints in a cleaner way.
|
802 |
+
if getattr(sample_input, "summary", None) is not None:
|
803 |
+
return sample_input.summary()
|
804 |
+
return str(sample_input)
|
805 |
+
|
806 |
+
# Decorator that defines the OpInfos a test template should be instantiated for.
|
807 |
+
#
|
808 |
+
# Example usage:
|
809 |
+
#
|
810 |
+
# @ops(unary_ufuncs)
|
811 |
+
# def test_numerics(self, device, dtype, op):
|
812 |
+
# <test_code>
|
813 |
+
#
|
814 |
+
# This will instantiate variants of test_numerics for each given OpInfo,
|
815 |
+
# on each device the OpInfo's operator supports, and for every dtype supported by
|
816 |
+
# that operator. There are a few caveats to the dtype rule, explained below.
|
817 |
+
#
|
818 |
+
# The @ops decorator can accept two
|
819 |
+
# additional arguments, "dtypes" and "allowed_dtypes". If "dtypes" is specified
|
820 |
+
# then the test variants are instantiated for those dtypes, regardless of
|
821 |
+
# what the operator supports. If given "allowed_dtypes" then test variants
|
822 |
+
# are instantiated only for the intersection of allowed_dtypes and the dtypes
|
823 |
+
# they would otherwise be instantiated with. That is, allowed_dtypes composes
|
824 |
+
# with the options listed above and below.
|
825 |
+
#
|
826 |
+
# The "dtypes" argument can also accept additional values (see OpDTypes above):
|
827 |
+
# OpDTypes.supported - the test is instantiated for all dtypes the operator
|
828 |
+
# supports
|
829 |
+
# OpDTypes.unsupported - the test is instantiated for all dtypes the operator
|
830 |
+
# doesn't support
|
831 |
+
# OpDTypes.supported_backward - the test is instantiated for all dtypes the
|
832 |
+
# operator's gradient formula supports
|
833 |
+
# OpDTypes.unsupported_backward - the test is instantiated for all dtypes the
|
834 |
+
# operator's gradient formula doesn't support
|
835 |
+
# OpDTypes.any_one - the test is instantiated for one dtype the
|
836 |
+
# operator supports. The dtype supports forward and backward if possible.
|
837 |
+
# OpDTypes.none - the test is instantiated without any dtype. The test signature
|
838 |
+
# should not include a dtype kwarg in this case.
|
839 |
+
#
|
840 |
+
# These options allow tests to have considerable control over the dtypes
|
841 |
+
# they're instantiated for.
|
842 |
+
|
843 |
+
class ops(_TestParametrizer):
|
844 |
+
def __init__(self, op_list, *, dtypes: Union[OpDTypes, Sequence[torch.dtype]] = OpDTypes.supported,
|
845 |
+
allowed_dtypes: Optional[Sequence[torch.dtype]] = None):
|
846 |
+
self.op_list = list(op_list)
|
847 |
+
self.opinfo_dtypes = dtypes
|
848 |
+
self.allowed_dtypes = set(allowed_dtypes) if allowed_dtypes is not None else None
|
849 |
+
|
850 |
+
def _parametrize_test(self, test, generic_cls, device_cls):
|
851 |
+
""" Parameterizes the given test function across each op and its associated dtypes. """
|
852 |
+
if device_cls is None:
|
853 |
+
raise RuntimeError('The @ops decorator is only intended to be used in a device-specific '
|
854 |
+
'context; use it with instantiate_device_type_tests() instead of '
|
855 |
+
'instantiate_parametrized_tests()')
|
856 |
+
|
857 |
+
op = check_exhausted_iterator = object()
|
858 |
+
for op in self.op_list:
|
859 |
+
# Determine the set of dtypes to use.
|
860 |
+
dtypes: Union[Set[torch.dtype], Set[None]]
|
861 |
+
if isinstance(self.opinfo_dtypes, Sequence):
|
862 |
+
dtypes = set(self.opinfo_dtypes)
|
863 |
+
elif self.opinfo_dtypes == OpDTypes.unsupported_backward:
|
864 |
+
dtypes = set(get_all_dtypes()).difference(op.supported_backward_dtypes(device_cls.device_type))
|
865 |
+
elif self.opinfo_dtypes == OpDTypes.supported_backward:
|
866 |
+
dtypes = op.supported_backward_dtypes(device_cls.device_type)
|
867 |
+
elif self.opinfo_dtypes == OpDTypes.unsupported:
|
868 |
+
dtypes = set(get_all_dtypes()).difference(op.supported_dtypes(device_cls.device_type))
|
869 |
+
elif self.opinfo_dtypes == OpDTypes.supported:
|
870 |
+
dtypes = op.supported_dtypes(device_cls.device_type)
|
871 |
+
elif self.opinfo_dtypes == OpDTypes.any_one:
|
872 |
+
# Tries to pick a dtype that supports both forward or backward
|
873 |
+
supported = op.supported_dtypes(device_cls.device_type)
|
874 |
+
supported_backward = op.supported_backward_dtypes(device_cls.device_type)
|
875 |
+
supported_both = supported.intersection(supported_backward)
|
876 |
+
dtype_set = supported_both if len(supported_both) > 0 else supported
|
877 |
+
for dtype in ANY_DTYPE_ORDER:
|
878 |
+
if dtype in dtype_set:
|
879 |
+
dtypes = {dtype}
|
880 |
+
break
|
881 |
+
else:
|
882 |
+
dtypes = {}
|
883 |
+
elif self.opinfo_dtypes == OpDTypes.any_common_cpu_cuda_one:
|
884 |
+
# Tries to pick a dtype that supports both CPU and CUDA
|
885 |
+
supported = op.dtypes.intersection(op.dtypesIfCUDA)
|
886 |
+
if supported:
|
887 |
+
dtypes = {next(dtype for dtype in ANY_DTYPE_ORDER if dtype in supported)}
|
888 |
+
else:
|
889 |
+
dtypes = {}
|
890 |
+
|
891 |
+
elif self.opinfo_dtypes == OpDTypes.none:
|
892 |
+
dtypes = {None}
|
893 |
+
else:
|
894 |
+
raise RuntimeError(f"Unknown OpDType: {self.opinfo_dtypes}")
|
895 |
+
|
896 |
+
if self.allowed_dtypes is not None:
|
897 |
+
dtypes = dtypes.intersection(self.allowed_dtypes)
|
898 |
+
|
899 |
+
# Construct the test name; device / dtype parts are handled outside.
|
900 |
+
# See [Note: device and dtype suffix placement]
|
901 |
+
test_name = op.formatted_name
|
902 |
+
|
903 |
+
for dtype in dtypes:
|
904 |
+
# Construct parameter kwargs to pass to the test.
|
905 |
+
param_kwargs = {'op': op}
|
906 |
+
_update_param_kwargs(param_kwargs, 'dtype', dtype)
|
907 |
+
|
908 |
+
# NOTE: test_wrapper exists because we don't want to apply
|
909 |
+
# op-specific decorators to the original test.
|
910 |
+
# Test-specific decorators are applied to the original test,
|
911 |
+
# however.
|
912 |
+
try:
|
913 |
+
@wraps(test)
|
914 |
+
def test_wrapper(*args, **kwargs):
|
915 |
+
try:
|
916 |
+
return test(*args, **kwargs)
|
917 |
+
except unittest.SkipTest as e:
|
918 |
+
raise e
|
919 |
+
except Exception as e:
|
920 |
+
tracked_input = get_tracked_input()
|
921 |
+
if PRINT_REPRO_ON_FAILURE and tracked_input is not None:
|
922 |
+
raise Exception(
|
923 |
+
f"Caused by {tracked_input.type_desc} "
|
924 |
+
f"at index {tracked_input.index}: "
|
925 |
+
f"{_serialize_sample(tracked_input.val)}") from e
|
926 |
+
raise e
|
927 |
+
finally:
|
928 |
+
clear_tracked_input()
|
929 |
+
|
930 |
+
# Initialize info for the last input seen. This is useful for tracking
|
931 |
+
# down which inputs caused a test failure. Note that TrackedInputIter is
|
932 |
+
# responsible for managing this.
|
933 |
+
test.tracked_input = None
|
934 |
+
|
935 |
+
decorator_fn = partial(op.get_decorators, generic_cls.__name__,
|
936 |
+
test.__name__, device_cls.device_type, dtype)
|
937 |
+
|
938 |
+
yield (test_wrapper, test_name, param_kwargs, decorator_fn)
|
939 |
+
except Exception as ex:
|
940 |
+
# Provides an error message for debugging before rethrowing the exception
|
941 |
+
print(f"Failed to instantiate {test_name} for op {op.name}!")
|
942 |
+
raise ex
|
943 |
+
if op is check_exhausted_iterator:
|
944 |
+
raise ValueError('An empty op_list was passed to @ops. '
|
945 |
+
'Note that this may result from reuse of a generator.')
|
946 |
+
|
947 |
+
# Decorator that skips a test if the given condition is true.
|
948 |
+
# Notes:
|
949 |
+
# (1) Skip conditions stack.
|
950 |
+
# (2) Skip conditions can be bools or strings. If a string the
|
951 |
+
# test base must have defined the corresponding attribute to be False
|
952 |
+
# for the test to run. If you want to use a string argument you should
|
953 |
+
# probably define a new decorator instead (see below).
|
954 |
+
# (3) Prefer the existing decorators to defining the 'device_type' kwarg.
|
955 |
+
class skipIf:
|
956 |
+
|
957 |
+
def __init__(self, dep, reason, device_type=None):
|
958 |
+
self.dep = dep
|
959 |
+
self.reason = reason
|
960 |
+
self.device_type = device_type
|
961 |
+
|
962 |
+
def __call__(self, fn):
|
963 |
+
|
964 |
+
@wraps(fn)
|
965 |
+
def dep_fn(slf, *args, **kwargs):
|
966 |
+
if self.device_type is None or self.device_type == slf.device_type:
|
967 |
+
if (isinstance(self.dep, str) and getattr(slf, self.dep, True)) or (isinstance(self.dep, bool) and self.dep):
|
968 |
+
raise unittest.SkipTest(self.reason)
|
969 |
+
|
970 |
+
return fn(slf, *args, **kwargs)
|
971 |
+
return dep_fn
|
972 |
+
|
973 |
+
|
974 |
+
# Skips a test on CPU if the condition is true.
|
975 |
+
class skipCPUIf(skipIf):
|
976 |
+
|
977 |
+
def __init__(self, dep, reason):
|
978 |
+
super().__init__(dep, reason, device_type='cpu')
|
979 |
+
|
980 |
+
|
981 |
+
# Skips a test on CUDA if the condition is true.
|
982 |
+
class skipCUDAIf(skipIf):
|
983 |
+
|
984 |
+
def __init__(self, dep, reason):
|
985 |
+
super().__init__(dep, reason, device_type='cuda')
|
986 |
+
|
987 |
+
# Skips a test on Lazy if the condition is true.
|
988 |
+
class skipLazyIf(skipIf):
|
989 |
+
|
990 |
+
def __init__(self, dep, reason):
|
991 |
+
super().__init__(dep, reason, device_type='lazy')
|
992 |
+
|
993 |
+
# Skips a test on Meta if the condition is true.
|
994 |
+
class skipMetaIf(skipIf):
|
995 |
+
|
996 |
+
def __init__(self, dep, reason):
|
997 |
+
super().__init__(dep, reason, device_type='meta')
|
998 |
+
|
999 |
+
# Skips a test on MPS if the condition is true.
|
1000 |
+
class skipMPSIf(skipIf):
|
1001 |
+
|
1002 |
+
def __init__(self, dep, reason):
|
1003 |
+
super().__init__(dep, reason, device_type='mps')
|
1004 |
+
|
1005 |
+
# Skips a test on XLA if the condition is true.
|
1006 |
+
class skipXLAIf(skipIf):
|
1007 |
+
|
1008 |
+
def __init__(self, dep, reason):
|
1009 |
+
super().__init__(dep, reason, device_type='xla')
|
1010 |
+
|
1011 |
+
class skipPRIVATEUSE1If(skipIf):
|
1012 |
+
|
1013 |
+
def __init__(self, dep, reason):
|
1014 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
1015 |
+
super().__init__(dep, reason, device_type=device_type)
|
1016 |
+
|
1017 |
+
def _has_sufficient_memory(device, size):
|
1018 |
+
if torch.device(device).type == 'cuda':
|
1019 |
+
if not torch.cuda.is_available():
|
1020 |
+
return False
|
1021 |
+
gc.collect()
|
1022 |
+
torch.cuda.empty_cache()
|
1023 |
+
# torch.cuda.mem_get_info, aka cudaMemGetInfo, returns a tuple of (free memory, total memory) of a GPU
|
1024 |
+
if device == 'cuda':
|
1025 |
+
device = 'cuda:0'
|
1026 |
+
return torch.cuda.memory.mem_get_info(device)[0] >= size
|
1027 |
+
|
1028 |
+
if device == 'xla':
|
1029 |
+
raise unittest.SkipTest('TODO: Memory availability checks for XLA?')
|
1030 |
+
|
1031 |
+
if device != 'cpu':
|
1032 |
+
raise unittest.SkipTest('Unknown device type')
|
1033 |
+
|
1034 |
+
# CPU
|
1035 |
+
if not HAS_PSUTIL:
|
1036 |
+
raise unittest.SkipTest('Need psutil to determine if memory is sufficient')
|
1037 |
+
|
1038 |
+
# The sanitizers have significant memory overheads
|
1039 |
+
if TEST_WITH_ASAN or TEST_WITH_TSAN or TEST_WITH_UBSAN:
|
1040 |
+
effective_size = size * 10
|
1041 |
+
else:
|
1042 |
+
effective_size = size
|
1043 |
+
|
1044 |
+
if psutil.virtual_memory().available < effective_size:
|
1045 |
+
gc.collect()
|
1046 |
+
return psutil.virtual_memory().available >= effective_size
|
1047 |
+
|
1048 |
+
|
1049 |
+
def largeTensorTest(size, device=None):
|
1050 |
+
"""Skip test if the device has insufficient memory to run the test
|
1051 |
+
|
1052 |
+
size may be a number of bytes, a string of the form "N GB", or a callable
|
1053 |
+
|
1054 |
+
If the test is a device generic test, available memory on the primary device will be checked.
|
1055 |
+
It can also be overriden by the optional `device=` argument.
|
1056 |
+
In other tests, the `device=` argument needs to be specified.
|
1057 |
+
"""
|
1058 |
+
if isinstance(size, str):
|
1059 |
+
assert size.endswith(('GB', 'gb')), "only bytes or GB supported"
|
1060 |
+
size = 1024 ** 3 * int(size[:-2])
|
1061 |
+
|
1062 |
+
def inner(fn):
|
1063 |
+
@wraps(fn)
|
1064 |
+
def dep_fn(self, *args, **kwargs):
|
1065 |
+
size_bytes = size(self, *args, **kwargs) if callable(size) else size
|
1066 |
+
_device = device if device is not None else self.get_primary_device()
|
1067 |
+
if not _has_sufficient_memory(_device, size_bytes):
|
1068 |
+
raise unittest.SkipTest(f'Insufficient {_device} memory')
|
1069 |
+
|
1070 |
+
return fn(self, *args, **kwargs)
|
1071 |
+
return dep_fn
|
1072 |
+
return inner
|
1073 |
+
|
1074 |
+
|
1075 |
+
class expectedFailure:
|
1076 |
+
|
1077 |
+
def __init__(self, device_type):
|
1078 |
+
self.device_type = device_type
|
1079 |
+
|
1080 |
+
def __call__(self, fn):
|
1081 |
+
|
1082 |
+
@wraps(fn)
|
1083 |
+
def efail_fn(slf, *args, **kwargs):
|
1084 |
+
if self.device_type is None or self.device_type == slf.device_type:
|
1085 |
+
try:
|
1086 |
+
fn(slf, *args, **kwargs)
|
1087 |
+
except Exception:
|
1088 |
+
return
|
1089 |
+
else:
|
1090 |
+
slf.fail('expected test to fail, but it passed')
|
1091 |
+
|
1092 |
+
return fn(slf, *args, **kwargs)
|
1093 |
+
return efail_fn
|
1094 |
+
|
1095 |
+
|
1096 |
+
class onlyOn:
|
1097 |
+
|
1098 |
+
def __init__(self, device_type):
|
1099 |
+
self.device_type = device_type
|
1100 |
+
|
1101 |
+
def __call__(self, fn):
|
1102 |
+
|
1103 |
+
@wraps(fn)
|
1104 |
+
def only_fn(slf, *args, **kwargs):
|
1105 |
+
if self.device_type != slf.device_type:
|
1106 |
+
reason = f"Only runs on {self.device_type}"
|
1107 |
+
raise unittest.SkipTest(reason)
|
1108 |
+
|
1109 |
+
return fn(slf, *args, **kwargs)
|
1110 |
+
|
1111 |
+
return only_fn
|
1112 |
+
|
1113 |
+
|
1114 |
+
# Decorator that provides all available devices of the device type to the test
|
1115 |
+
# as a list of strings instead of providing a single device string.
|
1116 |
+
# Skips the test if the number of available devices of the variant's device
|
1117 |
+
# type is less than the 'num_required_devices' arg.
|
1118 |
+
class deviceCountAtLeast:
|
1119 |
+
|
1120 |
+
def __init__(self, num_required_devices):
|
1121 |
+
self.num_required_devices = num_required_devices
|
1122 |
+
|
1123 |
+
def __call__(self, fn):
|
1124 |
+
assert not hasattr(fn, 'num_required_devices'), f"deviceCountAtLeast redefinition for {fn.__name__}"
|
1125 |
+
fn.num_required_devices = self.num_required_devices
|
1126 |
+
|
1127 |
+
@wraps(fn)
|
1128 |
+
def multi_fn(slf, devices, *args, **kwargs):
|
1129 |
+
if len(devices) < self.num_required_devices:
|
1130 |
+
reason = f"fewer than {self.num_required_devices} devices detected"
|
1131 |
+
raise unittest.SkipTest(reason)
|
1132 |
+
|
1133 |
+
return fn(slf, devices, *args, **kwargs)
|
1134 |
+
|
1135 |
+
return multi_fn
|
1136 |
+
|
1137 |
+
# Only runs the test on the native device type (currently CPU, CUDA, Meta and PRIVATEUSE1)
|
1138 |
+
def onlyNativeDeviceTypes(fn):
|
1139 |
+
@wraps(fn)
|
1140 |
+
def only_fn(self, *args, **kwargs):
|
1141 |
+
if self.device_type not in NATIVE_DEVICES:
|
1142 |
+
reason = f"onlyNativeDeviceTypes: doesn't run on {self.device_type}"
|
1143 |
+
raise unittest.SkipTest(reason)
|
1144 |
+
|
1145 |
+
return fn(self, *args, **kwargs)
|
1146 |
+
|
1147 |
+
return only_fn
|
1148 |
+
|
1149 |
+
# Specifies per-dtype precision overrides.
|
1150 |
+
# Ex.
|
1151 |
+
#
|
1152 |
+
# @precisionOverride({torch.half : 1e-2, torch.float : 1e-4})
|
1153 |
+
# @dtypes(torch.half, torch.float, torch.double)
|
1154 |
+
# def test_X(self, device, dtype):
|
1155 |
+
# ...
|
1156 |
+
#
|
1157 |
+
# When the test is instantiated its class's precision will be set to the
|
1158 |
+
# corresponding override, if it exists.
|
1159 |
+
# self.precision can be accessed directly, and it also controls the behavior of
|
1160 |
+
# functions like self.assertEqual().
|
1161 |
+
#
|
1162 |
+
# Note that self.precision is a scalar value, so if you require multiple
|
1163 |
+
# precisions (or are working with multiple dtypes) they should be specified
|
1164 |
+
# explicitly and computed using self.precision (e.g.
|
1165 |
+
# self.precision *2, max(1, self.precision)).
|
1166 |
+
class precisionOverride:
|
1167 |
+
|
1168 |
+
def __init__(self, d):
|
1169 |
+
assert isinstance(d, dict), "precisionOverride not given a dtype : precision dict!"
|
1170 |
+
for dtype in d.keys():
|
1171 |
+
assert isinstance(dtype, torch.dtype), f"precisionOverride given unknown dtype {dtype}"
|
1172 |
+
|
1173 |
+
self.d = d
|
1174 |
+
|
1175 |
+
def __call__(self, fn):
|
1176 |
+
fn.precision_overrides = self.d
|
1177 |
+
return fn
|
1178 |
+
|
1179 |
+
# Specifies per-dtype tolerance overrides tol(atol, rtol). It has priority over
|
1180 |
+
# precisionOverride.
|
1181 |
+
# Ex.
|
1182 |
+
#
|
1183 |
+
# @toleranceOverride({torch.float : tol(atol=1e-2, rtol=1e-3},
|
1184 |
+
# torch.double : tol{atol=1e-4, rtol = 0})
|
1185 |
+
# @dtypes(torch.half, torch.float, torch.double)
|
1186 |
+
# def test_X(self, device, dtype):
|
1187 |
+
# ...
|
1188 |
+
#
|
1189 |
+
# When the test is instantiated its class's tolerance will be set to the
|
1190 |
+
# corresponding override, if it exists.
|
1191 |
+
# self.rtol and self.precision can be accessed directly, and they also control
|
1192 |
+
# the behavior of functions like self.assertEqual().
|
1193 |
+
#
|
1194 |
+
# The above example sets atol = 1e-2 and rtol = 1e-3 for torch.float and
|
1195 |
+
# atol = 1e-4 and rtol = 0 for torch.double.
|
1196 |
+
tol = namedtuple('tol', ['atol', 'rtol'])
|
1197 |
+
|
1198 |
+
class toleranceOverride:
|
1199 |
+
def __init__(self, d):
|
1200 |
+
assert isinstance(d, dict), "toleranceOverride not given a dtype : tol dict!"
|
1201 |
+
for dtype, prec in d.items():
|
1202 |
+
assert isinstance(dtype, torch.dtype), f"toleranceOverride given unknown dtype {dtype}"
|
1203 |
+
assert isinstance(prec, tol), "toleranceOverride not given a dtype : tol dict!"
|
1204 |
+
|
1205 |
+
self.d = d
|
1206 |
+
|
1207 |
+
def __call__(self, fn):
|
1208 |
+
fn.tolerance_overrides = self.d
|
1209 |
+
return fn
|
1210 |
+
|
1211 |
+
# Decorator that instantiates a variant of the test for each given dtype.
|
1212 |
+
# Notes:
|
1213 |
+
# (1) Tests that accept the dtype argument MUST use this decorator.
|
1214 |
+
# (2) Can be overridden for CPU or CUDA, respectively, using dtypesIfCPU
|
1215 |
+
# or dtypesIfCUDA.
|
1216 |
+
# (3) Can accept an iterable of dtypes or an iterable of tuples
|
1217 |
+
# of dtypes.
|
1218 |
+
# Examples:
|
1219 |
+
# @dtypes(torch.float32, torch.float64)
|
1220 |
+
# @dtypes((torch.long, torch.float32), (torch.int, torch.float64))
|
1221 |
+
class dtypes:
|
1222 |
+
|
1223 |
+
def __init__(self, *args, device_type="all"):
|
1224 |
+
if len(args) > 0 and isinstance(args[0], (list, tuple)):
|
1225 |
+
for arg in args:
|
1226 |
+
assert isinstance(arg, (list, tuple)), \
|
1227 |
+
"When one dtype variant is a tuple or list, " \
|
1228 |
+
"all dtype variants must be. " \
|
1229 |
+
f"Received non-list non-tuple dtype {str(arg)}"
|
1230 |
+
assert all(isinstance(dtype, torch.dtype) for dtype in arg), f"Unknown dtype in {str(arg)}"
|
1231 |
+
else:
|
1232 |
+
assert all(isinstance(arg, torch.dtype) for arg in args), f"Unknown dtype in {str(args)}"
|
1233 |
+
|
1234 |
+
self.args = args
|
1235 |
+
self.device_type = device_type
|
1236 |
+
|
1237 |
+
def __call__(self, fn):
|
1238 |
+
d = getattr(fn, 'dtypes', {})
|
1239 |
+
assert self.device_type not in d, f"dtypes redefinition for {self.device_type}"
|
1240 |
+
d[self.device_type] = self.args
|
1241 |
+
fn.dtypes = d
|
1242 |
+
return fn
|
1243 |
+
|
1244 |
+
|
1245 |
+
# Overrides specified dtypes on the CPU.
|
1246 |
+
class dtypesIfCPU(dtypes):
|
1247 |
+
|
1248 |
+
def __init__(self, *args):
|
1249 |
+
super().__init__(*args, device_type='cpu')
|
1250 |
+
|
1251 |
+
|
1252 |
+
# Overrides specified dtypes on CUDA.
|
1253 |
+
class dtypesIfCUDA(dtypes):
|
1254 |
+
|
1255 |
+
def __init__(self, *args):
|
1256 |
+
super().__init__(*args, device_type='cuda')
|
1257 |
+
|
1258 |
+
class dtypesIfMPS(dtypes):
|
1259 |
+
|
1260 |
+
def __init__(self, *args):
|
1261 |
+
super().__init__(*args, device_type='mps')
|
1262 |
+
|
1263 |
+
class dtypesIfPRIVATEUSE1(dtypes):
|
1264 |
+
|
1265 |
+
def __init__(self, *args):
|
1266 |
+
super().__init__(*args, device_type=torch._C._get_privateuse1_backend_name())
|
1267 |
+
|
1268 |
+
def onlyCPU(fn):
|
1269 |
+
return onlyOn('cpu')(fn)
|
1270 |
+
|
1271 |
+
|
1272 |
+
def onlyCUDA(fn):
|
1273 |
+
return onlyOn('cuda')(fn)
|
1274 |
+
|
1275 |
+
|
1276 |
+
def onlyMPS(fn):
|
1277 |
+
return onlyOn('mps')(fn)
|
1278 |
+
|
1279 |
+
def onlyPRIVATEUSE1(fn):
|
1280 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
1281 |
+
device_mod = getattr(torch, device_type, None)
|
1282 |
+
if device_mod is None:
|
1283 |
+
reason = f"Skip as torch has no module of {device_type}"
|
1284 |
+
return unittest.skip(reason)(fn)
|
1285 |
+
return onlyOn(device_type)(fn)
|
1286 |
+
|
1287 |
+
def onlyCUDAAndPRIVATEUSE1(fn):
|
1288 |
+
@wraps(fn)
|
1289 |
+
def only_fn(self, *args, **kwargs):
|
1290 |
+
if self.device_type not in ('cuda', torch._C._get_privateuse1_backend_name()):
|
1291 |
+
reason = f"onlyCUDAAndPRIVATEUSE1: doesn't run on {self.device_type}"
|
1292 |
+
raise unittest.SkipTest(reason)
|
1293 |
+
|
1294 |
+
return fn(self, *args, **kwargs)
|
1295 |
+
|
1296 |
+
return only_fn
|
1297 |
+
|
1298 |
+
def disablecuDNN(fn):
|
1299 |
+
|
1300 |
+
@wraps(fn)
|
1301 |
+
def disable_cudnn(self, *args, **kwargs):
|
1302 |
+
if self.device_type == 'cuda' and self.has_cudnn():
|
1303 |
+
with torch.backends.cudnn.flags(enabled=False):
|
1304 |
+
return fn(self, *args, **kwargs)
|
1305 |
+
return fn(self, *args, **kwargs)
|
1306 |
+
|
1307 |
+
return disable_cudnn
|
1308 |
+
|
1309 |
+
def disableMkldnn(fn):
|
1310 |
+
|
1311 |
+
@wraps(fn)
|
1312 |
+
def disable_mkldnn(self, *args, **kwargs):
|
1313 |
+
if torch.backends.mkldnn.is_available():
|
1314 |
+
with torch.backends.mkldnn.flags(enabled=False):
|
1315 |
+
return fn(self, *args, **kwargs)
|
1316 |
+
return fn(self, *args, **kwargs)
|
1317 |
+
|
1318 |
+
return disable_mkldnn
|
1319 |
+
|
1320 |
+
|
1321 |
+
def expectedFailureCUDA(fn):
|
1322 |
+
return expectedFailure('cuda')(fn)
|
1323 |
+
|
1324 |
+
def expectedFailureMeta(fn):
|
1325 |
+
return skipIfTorchDynamo()(expectedFailure('meta')(fn))
|
1326 |
+
|
1327 |
+
def expectedFailureXLA(fn):
|
1328 |
+
return expectedFailure('xla')(fn)
|
1329 |
+
|
1330 |
+
# Skips a test on CPU if LAPACK is not available.
|
1331 |
+
def skipCPUIfNoLapack(fn):
|
1332 |
+
return skipCPUIf(not torch._C.has_lapack, "PyTorch compiled without Lapack")(fn)
|
1333 |
+
|
1334 |
+
|
1335 |
+
# Skips a test on CPU if FFT is not available.
|
1336 |
+
def skipCPUIfNoFFT(fn):
|
1337 |
+
return skipCPUIf(not torch._C.has_spectral, "PyTorch is built without FFT support")(fn)
|
1338 |
+
|
1339 |
+
|
1340 |
+
# Skips a test on CPU if MKL is not available.
|
1341 |
+
def skipCPUIfNoMkl(fn):
|
1342 |
+
return skipCPUIf(not TEST_MKL, "PyTorch is built without MKL support")(fn)
|
1343 |
+
|
1344 |
+
|
1345 |
+
# Skips a test on CPU if MKL Sparse is not available (it's not linked on Windows).
|
1346 |
+
def skipCPUIfNoMklSparse(fn):
|
1347 |
+
return skipCPUIf(IS_WINDOWS or not TEST_MKL, "PyTorch is built without MKL support")(fn)
|
1348 |
+
|
1349 |
+
|
1350 |
+
# Skips a test on CPU if mkldnn is not available.
|
1351 |
+
def skipCPUIfNoMkldnn(fn):
|
1352 |
+
return skipCPUIf(not torch.backends.mkldnn.is_available(), "PyTorch is built without mkldnn support")(fn)
|
1353 |
+
|
1354 |
+
|
1355 |
+
# Skips a test on CUDA if MAGMA is not available.
|
1356 |
+
def skipCUDAIfNoMagma(fn):
|
1357 |
+
return skipCUDAIf('no_magma', "no MAGMA library detected")(skipCUDANonDefaultStreamIf(True)(fn))
|
1358 |
+
|
1359 |
+
def has_cusolver():
|
1360 |
+
return not TEST_WITH_ROCM
|
1361 |
+
|
1362 |
+
def has_hipsolver():
|
1363 |
+
rocm_version = _get_torch_rocm_version()
|
1364 |
+
# hipSOLVER is disabled on ROCM < 5.3
|
1365 |
+
return rocm_version >= (5, 3)
|
1366 |
+
|
1367 |
+
# Skips a test on CUDA/ROCM if cuSOLVER/hipSOLVER is not available
|
1368 |
+
def skipCUDAIfNoCusolver(fn):
|
1369 |
+
return skipCUDAIf(not has_cusolver() and not has_hipsolver(), "cuSOLVER not available")(fn)
|
1370 |
+
|
1371 |
+
|
1372 |
+
# Skips a test if both cuSOLVER and MAGMA are not available
|
1373 |
+
def skipCUDAIfNoMagmaAndNoCusolver(fn):
|
1374 |
+
if has_cusolver():
|
1375 |
+
return fn
|
1376 |
+
else:
|
1377 |
+
# cuSolver is disabled on cuda < 10.1.243, tests depend on MAGMA
|
1378 |
+
return skipCUDAIfNoMagma(fn)
|
1379 |
+
|
1380 |
+
# Skips a test if both cuSOLVER/hipSOLVER and MAGMA are not available
|
1381 |
+
def skipCUDAIfNoMagmaAndNoLinalgsolver(fn):
|
1382 |
+
if has_cusolver() or has_hipsolver():
|
1383 |
+
return fn
|
1384 |
+
else:
|
1385 |
+
# cuSolver is disabled on cuda < 10.1.243, tests depend on MAGMA
|
1386 |
+
return skipCUDAIfNoMagma(fn)
|
1387 |
+
|
1388 |
+
# Skips a test on CUDA when using ROCm.
|
1389 |
+
def skipCUDAIfRocm(func=None, *, msg="test doesn't currently work on the ROCm stack"):
|
1390 |
+
def dec_fn(fn):
|
1391 |
+
reason = f"skipCUDAIfRocm: {msg}"
|
1392 |
+
return skipCUDAIf(TEST_WITH_ROCM, reason=reason)(fn)
|
1393 |
+
if func:
|
1394 |
+
return dec_fn(func)
|
1395 |
+
return dec_fn
|
1396 |
+
|
1397 |
+
# Skips a test on CUDA when not using ROCm.
|
1398 |
+
def skipCUDAIfNotRocm(fn):
|
1399 |
+
return skipCUDAIf(not TEST_WITH_ROCM, "test doesn't currently work on the CUDA stack")(fn)
|
1400 |
+
|
1401 |
+
# Skips a test on CUDA if ROCm is unavailable or its version is lower than requested.
|
1402 |
+
def skipCUDAIfRocmVersionLessThan(version=None):
|
1403 |
+
|
1404 |
+
def dec_fn(fn):
|
1405 |
+
@wraps(fn)
|
1406 |
+
def wrap_fn(self, *args, **kwargs):
|
1407 |
+
if self.device_type == 'cuda':
|
1408 |
+
if not TEST_WITH_ROCM:
|
1409 |
+
reason = "ROCm not available"
|
1410 |
+
raise unittest.SkipTest(reason)
|
1411 |
+
rocm_version_tuple = _get_torch_rocm_version()
|
1412 |
+
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
|
1413 |
+
reason = f"ROCm {rocm_version_tuple} is available but {version} required"
|
1414 |
+
raise unittest.SkipTest(reason)
|
1415 |
+
|
1416 |
+
return fn(self, *args, **kwargs)
|
1417 |
+
|
1418 |
+
return wrap_fn
|
1419 |
+
return dec_fn
|
1420 |
+
|
1421 |
+
# Skips a test on CUDA when using ROCm.
|
1422 |
+
def skipCUDAIfNotMiopenSuggestNHWC(fn):
|
1423 |
+
return skipCUDAIf(not TEST_WITH_MIOPEN_SUGGEST_NHWC, "test doesn't currently work without MIOpen NHWC activation")(fn)
|
1424 |
+
|
1425 |
+
# Skips a test for specified CUDA versions, given in the form of a list of [major, minor]s.
|
1426 |
+
def skipCUDAVersionIn(versions : List[Tuple[int, int]] = None):
|
1427 |
+
def dec_fn(fn):
|
1428 |
+
@wraps(fn)
|
1429 |
+
def wrap_fn(self, *args, **kwargs):
|
1430 |
+
version = _get_torch_cuda_version()
|
1431 |
+
if version == (0, 0): # cpu or rocm
|
1432 |
+
return fn(self, *args, **kwargs)
|
1433 |
+
if version in (versions or []):
|
1434 |
+
reason = f"test skipped for CUDA version {version}"
|
1435 |
+
raise unittest.SkipTest(reason)
|
1436 |
+
return fn(self, *args, **kwargs)
|
1437 |
+
|
1438 |
+
return wrap_fn
|
1439 |
+
return dec_fn
|
1440 |
+
|
1441 |
+
# Skips a test for CUDA versions less than specified, given in the form of [major, minor].
|
1442 |
+
def skipCUDAIfVersionLessThan(versions : Tuple[int, int] = None):
|
1443 |
+
def dec_fn(fn):
|
1444 |
+
@wraps(fn)
|
1445 |
+
def wrap_fn(self, *args, **kwargs):
|
1446 |
+
version = _get_torch_cuda_version()
|
1447 |
+
if version == (0, 0): # cpu or rocm
|
1448 |
+
return fn(self, *args, **kwargs)
|
1449 |
+
if version < versions:
|
1450 |
+
reason = f"test skipped for CUDA versions < {version}"
|
1451 |
+
raise unittest.SkipTest(reason)
|
1452 |
+
return fn(self, *args, **kwargs)
|
1453 |
+
|
1454 |
+
return wrap_fn
|
1455 |
+
return dec_fn
|
1456 |
+
|
1457 |
+
# Skips a test on CUDA if cuDNN is unavailable or its version is lower than requested.
|
1458 |
+
def skipCUDAIfCudnnVersionLessThan(version=0):
|
1459 |
+
|
1460 |
+
def dec_fn(fn):
|
1461 |
+
@wraps(fn)
|
1462 |
+
def wrap_fn(self, *args, **kwargs):
|
1463 |
+
if self.device_type == 'cuda':
|
1464 |
+
if self.no_cudnn:
|
1465 |
+
reason = "cuDNN not available"
|
1466 |
+
raise unittest.SkipTest(reason)
|
1467 |
+
if self.cudnn_version is None or self.cudnn_version < version:
|
1468 |
+
reason = f"cuDNN version {self.cudnn_version} is available but {version} required"
|
1469 |
+
raise unittest.SkipTest(reason)
|
1470 |
+
|
1471 |
+
return fn(self, *args, **kwargs)
|
1472 |
+
|
1473 |
+
return wrap_fn
|
1474 |
+
return dec_fn
|
1475 |
+
|
1476 |
+
# Skips a test on CUDA if cuSparse generic API is not available
|
1477 |
+
def skipCUDAIfNoCusparseGeneric(fn):
|
1478 |
+
return skipCUDAIf(not TEST_CUSPARSE_GENERIC, "cuSparse Generic API not available")(fn)
|
1479 |
+
|
1480 |
+
def skipCUDAIfNoHipsparseGeneric(fn):
|
1481 |
+
return skipCUDAIf(not TEST_HIPSPARSE_GENERIC, "hipSparse Generic API not available")(fn)
|
1482 |
+
|
1483 |
+
def skipCUDAIfNoSparseGeneric(fn):
|
1484 |
+
return skipCUDAIf(not (TEST_CUSPARSE_GENERIC or TEST_HIPSPARSE_GENERIC), "Sparse Generic API not available")(fn)
|
1485 |
+
|
1486 |
+
def skipCUDAIfNoCudnn(fn):
|
1487 |
+
return skipCUDAIfCudnnVersionLessThan(0)(fn)
|
1488 |
+
|
1489 |
+
def skipCUDAIfMiopen(fn):
|
1490 |
+
return skipCUDAIf(torch.version.hip is not None, "Marked as skipped for MIOpen")(fn)
|
1491 |
+
|
1492 |
+
def skipCUDAIfNoMiopen(fn):
|
1493 |
+
return skipCUDAIf(torch.version.hip is None, "MIOpen is not available")(skipCUDAIfNoCudnn(fn))
|
1494 |
+
|
1495 |
+
def skipLazy(fn):
|
1496 |
+
return skipLazyIf(True, "test doesn't work with lazy tensors")(fn)
|
1497 |
+
|
1498 |
+
def skipMeta(fn):
|
1499 |
+
return skipMetaIf(True, "test doesn't work with meta tensors")(fn)
|
1500 |
+
|
1501 |
+
def skipXLA(fn):
|
1502 |
+
return skipXLAIf(True, "Marked as skipped for XLA")(fn)
|
1503 |
+
|
1504 |
+
def skipMPS(fn):
|
1505 |
+
return skipMPSIf(True, "test doesn't work on MPS backend")(fn)
|
1506 |
+
|
1507 |
+
def skipPRIVATEUSE1(fn):
|
1508 |
+
return skipPRIVATEUSE1If(True, "test doesn't work on privateuse1 backend")(fn)
|
1509 |
+
|
1510 |
+
# TODO: the "all" in the name isn't true anymore for quite some time as we have also have for example XLA and MPS now.
|
1511 |
+
# This should probably enumerate all available device type test base classes.
|
1512 |
+
def get_all_device_types() -> List[str]:
|
1513 |
+
return ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_dist_composable.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Owner(s): ["oncall: distributed"]
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
|
9 |
+
class UnitModule(nn.Module):
|
10 |
+
def __init__(self, device: torch.device):
|
11 |
+
super().__init__()
|
12 |
+
self.l1 = nn.Linear(100, 100, device=device)
|
13 |
+
self.seq = nn.Sequential(
|
14 |
+
nn.ReLU(),
|
15 |
+
nn.Linear(100, 100, device=device),
|
16 |
+
nn.ReLU(),
|
17 |
+
)
|
18 |
+
self.l2 = nn.Linear(100, 100, device=device)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
return self.l2(self.seq(self.l1(x)))
|
22 |
+
|
23 |
+
|
24 |
+
class CompositeModel(nn.Module):
|
25 |
+
def __init__(self, device: torch.device):
|
26 |
+
super().__init__()
|
27 |
+
self.l1 = nn.Linear(100, 100, device=device)
|
28 |
+
self.u1 = UnitModule(device)
|
29 |
+
self.u2 = UnitModule(device)
|
30 |
+
self.l2 = nn.Linear(100, 100, device=device)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.l2(self.u2(self.u1(self.l1(x))))
|
34 |
+
|
35 |
+
|
36 |
+
class UnitParamModule(nn.Module):
|
37 |
+
def __init__(self, device: torch.device):
|
38 |
+
super().__init__()
|
39 |
+
self.l = nn.Linear(100, 100, device=device)
|
40 |
+
self.seq = nn.Sequential(
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Linear(100, 100, device=device),
|
43 |
+
nn.ReLU(),
|
44 |
+
)
|
45 |
+
self.p = nn.Parameter(torch.randn((100, 100), device=device))
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
return torch.mm(self.seq(self.l(x)), self.p)
|
49 |
+
|
50 |
+
|
51 |
+
class CompositeParamModel(nn.Module):
|
52 |
+
def __init__(self, device: torch.device):
|
53 |
+
super().__init__()
|
54 |
+
self.l = nn.Linear(100, 100, device=device)
|
55 |
+
self.u1 = UnitModule(device)
|
56 |
+
self.u2 = UnitModule(device)
|
57 |
+
self.p = nn.Parameter(torch.randn((100, 100), device=device))
|
58 |
+
self.register_buffer(
|
59 |
+
"buffer", torch.randn((100, 100), device=device), persistent=True
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
a = self.u2(self.u1(self.l(x)))
|
64 |
+
b = self.p
|
65 |
+
return torch.mm(a, b)
|
66 |
+
|
67 |
+
|
68 |
+
class FakeSequential(nn.Module):
|
69 |
+
# Define this class to achieve a desired nested wrapping using the module
|
70 |
+
# wrap policy with `nn.Sequential`
|
71 |
+
def __init__(self, *modules: Tuple[nn.Module, ...]) -> None:
|
72 |
+
super().__init__()
|
73 |
+
self._module_sequence = list(modules)
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
76 |
+
for module in self._module_sequence:
|
77 |
+
x = module(x)
|
78 |
+
return x
|
79 |
+
|
80 |
+
|
81 |
+
class NestedSequentialModel(nn.Module):
|
82 |
+
def __init__(self, device: torch.device) -> None:
|
83 |
+
super().__init__()
|
84 |
+
# This nested structure exercises traversal order to catch differences
|
85 |
+
# between valid traversals (e.g. BFS and DFS variations).
|
86 |
+
self.seq1 = nn.Sequential(
|
87 |
+
nn.Linear(1, 1, device=device),
|
88 |
+
FakeSequential(
|
89 |
+
nn.Linear(1, 1, device=device),
|
90 |
+
nn.ReLU(),
|
91 |
+
FakeSequential(
|
92 |
+
nn.Linear(1, 1, device=device),
|
93 |
+
),
|
94 |
+
nn.ReLU(),
|
95 |
+
),
|
96 |
+
nn.Linear(1, 2, device=device),
|
97 |
+
)
|
98 |
+
self.lin = nn.Linear(2, 2, device=device)
|
99 |
+
self.seq2 = nn.Sequential(
|
100 |
+
nn.ReLU(),
|
101 |
+
nn.Linear(2, 3, device=device),
|
102 |
+
FakeSequential(
|
103 |
+
nn.Linear(3, 2, bias=False, device=device),
|
104 |
+
nn.Linear(2, 4, bias=False, device=device),
|
105 |
+
),
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
109 |
+
return self.seq2(self.lin(self.seq1(x)))
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faulthandler
|
2 |
+
import logging
|
3 |
+
import multiprocessing
|
4 |
+
import os
|
5 |
+
import queue
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import tempfile
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import traceback
|
12 |
+
import types
|
13 |
+
import unittest
|
14 |
+
from contextlib import contextmanager
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from datetime import timedelta
|
17 |
+
from enum import Enum
|
18 |
+
from functools import partial, reduce, wraps
|
19 |
+
from io import StringIO
|
20 |
+
from typing import Dict, NamedTuple, Optional, Union
|
21 |
+
from unittest.mock import patch
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch._dynamo.test_case
|
25 |
+
import torch.cuda.nccl
|
26 |
+
import torch.distributed as c10d
|
27 |
+
import torch.nn as nn
|
28 |
+
from torch.testing._internal.common_utils import (
|
29 |
+
FILE_SCHEMA,
|
30 |
+
find_free_port,
|
31 |
+
IS_SANDCASTLE,
|
32 |
+
retry_on_connect_failures,
|
33 |
+
skip_but_pass_in_sandcastle,
|
34 |
+
skip_but_pass_in_sandcastle_if,
|
35 |
+
TEST_WITH_ROCM,
|
36 |
+
TEST_WITH_TSAN,
|
37 |
+
TestCase,
|
38 |
+
)
|
39 |
+
from torch.testing._internal.distributed.multi_threaded_pg import (
|
40 |
+
_install_threaded_pg,
|
41 |
+
_uninstall_threaded_pg,
|
42 |
+
ProcessLocalGroup,
|
43 |
+
)
|
44 |
+
|
45 |
+
logging.basicConfig(level=logging.INFO)
|
46 |
+
logger = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
class TestSkip(NamedTuple):
|
50 |
+
exit_code: int
|
51 |
+
message: str
|
52 |
+
|
53 |
+
|
54 |
+
TEST_SKIPS = {
|
55 |
+
"backend_unavailable": TestSkip(
|
56 |
+
72, "Skipped because distributed backend is not available."
|
57 |
+
),
|
58 |
+
"small_worldsize": TestSkip(73, "Skipped due to small world size."),
|
59 |
+
"odd_worldsize": TestSkip(87, "Skipped due to odd world size."),
|
60 |
+
"no_cuda": TestSkip(74, "CUDA is not available."),
|
61 |
+
"multi-gpu-1": TestSkip(75, "Need at least 1 CUDA device"),
|
62 |
+
"multi-gpu-2": TestSkip(77, "Need at least 2 CUDA devices"),
|
63 |
+
"multi-gpu-3": TestSkip(80, "Need at least 3 CUDA devices"),
|
64 |
+
"multi-gpu-4": TestSkip(81, "Need at least 4 CUDA devices"),
|
65 |
+
"multi-gpu-5": TestSkip(82, "Need at least 5 CUDA devices"),
|
66 |
+
"multi-gpu-6": TestSkip(83, "Need at least 6 CUDA devices"),
|
67 |
+
"multi-gpu-7": TestSkip(84, "Need at least 7 CUDA devices"),
|
68 |
+
"multi-gpu-8": TestSkip(85, "Need at least 8 CUDA devices"),
|
69 |
+
"nccl": TestSkip(76, "c10d not compiled with NCCL support"),
|
70 |
+
"skipIfRocm": TestSkip(78, "Test skipped for ROCm"),
|
71 |
+
"no_peer_access": TestSkip(79, "Test skipped because no GPU peer access"),
|
72 |
+
"generic": TestSkip(
|
73 |
+
86, "Test skipped at subprocess level, look at subprocess log for skip reason"
|
74 |
+
),
|
75 |
+
"importerror": TestSkip(88, "Test skipped due to missing import"),
|
76 |
+
}
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class DistTestCases:
|
81 |
+
# Backends that do not support a specific collective
|
82 |
+
skip_collective = {}
|
83 |
+
skip_collective["allgather_coalesced"] = {"nccl", "mpi", "ucc"}
|
84 |
+
skip_collective["reduce"] = set()
|
85 |
+
skip_collective["sendrecv anysource"] = {"nccl", "ucc"}
|
86 |
+
skip_collective["cpu barrier"] = {"nccl", "ucc"}
|
87 |
+
|
88 |
+
# Sets showing that something is implemented
|
89 |
+
backend_feature = {}
|
90 |
+
backend_feature["gpu"] = {"nccl", "gloo", "ucc"}
|
91 |
+
backend_feature["cuda"] = {"nccl", "gloo", "ucc"}
|
92 |
+
backend_feature["ddp"] = {"nccl", "gloo", "ucc"}
|
93 |
+
backend_feature["subgroup"] = {"nccl", "gloo", "ucc"}
|
94 |
+
backend_feature["plugin"] = set()
|
95 |
+
|
96 |
+
|
97 |
+
def skip_if_no_gpu(func):
|
98 |
+
"""Skips if the world size exceeds the number of GPUs, ensuring that if the
|
99 |
+
test is run, each rank has its own GPU via ``torch.cuda.device(rank)``."""
|
100 |
+
|
101 |
+
@wraps(func)
|
102 |
+
def wrapper(*args, **kwargs):
|
103 |
+
if not torch.cuda.is_available():
|
104 |
+
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
|
105 |
+
world_size = int(os.environ["WORLD_SIZE"])
|
106 |
+
if torch.cuda.device_count() < world_size:
|
107 |
+
sys.exit(TEST_SKIPS[f"multi-gpu-{world_size}"].exit_code)
|
108 |
+
|
109 |
+
return func(*args, **kwargs)
|
110 |
+
|
111 |
+
return wrapper
|
112 |
+
|
113 |
+
|
114 |
+
def skip_if_small_worldsize(func):
|
115 |
+
@wraps(func)
|
116 |
+
def wrapper(*args, **kwargs):
|
117 |
+
if (os.environ["BACKEND"] != "mpi") and int(os.environ["WORLD_SIZE"]) <= 2:
|
118 |
+
sys.exit(TEST_SKIPS["small_worldsize"].exit_code)
|
119 |
+
|
120 |
+
return func(*args, **kwargs)
|
121 |
+
|
122 |
+
return wrapper
|
123 |
+
|
124 |
+
|
125 |
+
def skip_if_odd_worldsize(func):
|
126 |
+
@wraps(func)
|
127 |
+
def wrapper(*args, **kwargs):
|
128 |
+
if (os.environ["BACKEND"] != "mpi") and int(os.environ["WORLD_SIZE"]) % 2 == 1:
|
129 |
+
sys.exit(TEST_SKIPS["odd_worldsize"].exit_code)
|
130 |
+
|
131 |
+
return func(*args, **kwargs)
|
132 |
+
|
133 |
+
return wrapper
|
134 |
+
|
135 |
+
|
136 |
+
def require_n_gpus_for_nccl_backend(n, backend):
|
137 |
+
def decorator(func):
|
138 |
+
@wraps(func)
|
139 |
+
def wrapper(*args, **kwargs):
|
140 |
+
if backend == "nccl" and torch.cuda.device_count() < n:
|
141 |
+
sys.exit(TEST_SKIPS[f"multi-gpu-{n}"].exit_code)
|
142 |
+
else:
|
143 |
+
return func(*args, **kwargs)
|
144 |
+
|
145 |
+
return wrapper
|
146 |
+
|
147 |
+
return decorator
|
148 |
+
|
149 |
+
|
150 |
+
def import_transformers_or_skip():
|
151 |
+
def decorator(func):
|
152 |
+
@wraps(func)
|
153 |
+
def wrapper(*args, **kwargs):
|
154 |
+
try:
|
155 |
+
from transformers import ( # noqa: F401
|
156 |
+
AutoModelForMaskedLM,
|
157 |
+
BertConfig,
|
158 |
+
)
|
159 |
+
|
160 |
+
return func(*args, **kwargs)
|
161 |
+
except ImportError:
|
162 |
+
sys.exit(TEST_SKIPS["importerror"].exit_code)
|
163 |
+
|
164 |
+
return wrapper
|
165 |
+
|
166 |
+
return decorator
|
167 |
+
|
168 |
+
|
169 |
+
def skip_if_lt_x_gpu(x):
|
170 |
+
def decorator(func):
|
171 |
+
@wraps(func)
|
172 |
+
def wrapper(*args, **kwargs):
|
173 |
+
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
|
174 |
+
return func(*args, **kwargs)
|
175 |
+
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
|
176 |
+
|
177 |
+
return wrapper
|
178 |
+
|
179 |
+
return decorator
|
180 |
+
|
181 |
+
|
182 |
+
# This decorator helps avoiding initializing cuda while testing other backends
|
183 |
+
def nccl_skip_if_lt_x_gpu(backend, x):
|
184 |
+
def decorator(func):
|
185 |
+
@wraps(func)
|
186 |
+
def wrapper(*args, **kwargs):
|
187 |
+
if backend != "nccl":
|
188 |
+
return func(*args, **kwargs)
|
189 |
+
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
|
190 |
+
return func(*args, **kwargs)
|
191 |
+
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
|
192 |
+
|
193 |
+
return wrapper
|
194 |
+
|
195 |
+
return decorator
|
196 |
+
|
197 |
+
|
198 |
+
def verify_ddp_error_logged(model_DDP, err_substr):
|
199 |
+
# Verify error was logged in ddp_logging_data.
|
200 |
+
ddp_logging_data = model_DDP._get_ddp_logging_data()
|
201 |
+
assert "iteration" in ddp_logging_data
|
202 |
+
assert "has_error" in ddp_logging_data
|
203 |
+
assert "error" in ddp_logging_data
|
204 |
+
logging_err = ddp_logging_data["error"]
|
205 |
+
# Remove C++ stacktrace if needed.
|
206 |
+
actual = (
|
207 |
+
err_substr
|
208 |
+
if err_substr.find("\nException raised from ") == -1
|
209 |
+
else err_substr.split("\nException raised from ")[0]
|
210 |
+
)
|
211 |
+
assert (
|
212 |
+
actual in logging_err
|
213 |
+
), f"Did not find expected {actual} in ddp logging data error: {logging_err}"
|
214 |
+
|
215 |
+
|
216 |
+
def with_nccl_blocking_wait(func):
|
217 |
+
"""
|
218 |
+
Convenience decorator to set/unset TORCH_NCCL_BLOCKING_WAIT flag. Note that use of
|
219 |
+
this decorator will override the setting of TORCH_NCCL_ASYNC_ERROR_HANDLING for
|
220 |
+
the particular test. After the test, both TORCH_NCCL_BLOCKING_WAIT and
|
221 |
+
TORCH_NCCL_ASYNC_ERROR_HANDLING will be restored to their original values.
|
222 |
+
"""
|
223 |
+
|
224 |
+
@wraps(func)
|
225 |
+
def wrapper(*args, **kwargs):
|
226 |
+
# Save and unset TORCH_NCCL_ASYNC_ERROR_HANDLING
|
227 |
+
try:
|
228 |
+
cached_nccl_async_error_handling: Union[str, None] = os.environ[
|
229 |
+
"TORCH_NCCL_ASYNC_ERROR_HANDLING"
|
230 |
+
]
|
231 |
+
del os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"]
|
232 |
+
except KeyError:
|
233 |
+
# TORCH_NCCL_ASYNC_ERROR_HANDLING was unset
|
234 |
+
cached_nccl_async_error_handling = None
|
235 |
+
|
236 |
+
# Save val of TORCH_NCCL_BLOCKING_WAIT and set it.
|
237 |
+
try:
|
238 |
+
cached_nccl_blocking_wait: Union[str, None] = os.environ[
|
239 |
+
"TORCH_NCCL_BLOCKING_WAIT"
|
240 |
+
]
|
241 |
+
except KeyError:
|
242 |
+
cached_nccl_blocking_wait = None
|
243 |
+
finally:
|
244 |
+
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
|
245 |
+
|
246 |
+
try:
|
247 |
+
ret = func(*args, **kwargs)
|
248 |
+
return ret
|
249 |
+
finally:
|
250 |
+
# restore old values.
|
251 |
+
if cached_nccl_async_error_handling is not None:
|
252 |
+
os.environ[
|
253 |
+
"TORCH_NCCL_ASYNC_ERROR_HANDLING"
|
254 |
+
] = cached_nccl_async_error_handling
|
255 |
+
|
256 |
+
if cached_nccl_blocking_wait is not None:
|
257 |
+
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = cached_nccl_blocking_wait
|
258 |
+
|
259 |
+
return wrapper
|
260 |
+
|
261 |
+
|
262 |
+
def with_dist_debug_levels(levels):
|
263 |
+
"""
|
264 |
+
Runs a test for each distributed debug level specified in levels.
|
265 |
+
"""
|
266 |
+
|
267 |
+
def decorator(func):
|
268 |
+
@wraps(func)
|
269 |
+
def wrapper(*args, **kwargs):
|
270 |
+
old_level = os.environ.get("TORCH_DISTRIBUTED_DEBUG", None)
|
271 |
+
for level in levels:
|
272 |
+
os.environ["TORCH_DISTRIBUTED_DEBUG"] = level
|
273 |
+
c10d.set_debug_level_from_env()
|
274 |
+
ret = func(*args, **kwargs)
|
275 |
+
c10d.barrier()
|
276 |
+
if old_level is not None:
|
277 |
+
os.environ["TORCH_DISTRIBUTED_DEBUG"] = old_level
|
278 |
+
# Only returns test return for last test, but since these are
|
279 |
+
# unittests the return value is not really used and earlier tests
|
280 |
+
# would've raised had they failed.
|
281 |
+
return ret
|
282 |
+
|
283 |
+
return wrapper
|
284 |
+
|
285 |
+
return decorator
|
286 |
+
|
287 |
+
|
288 |
+
def requires_gloo():
|
289 |
+
return skip_but_pass_in_sandcastle_if(
|
290 |
+
not c10d.is_gloo_available(),
|
291 |
+
"c10d was not compiled with the Gloo backend",
|
292 |
+
)
|
293 |
+
|
294 |
+
|
295 |
+
def requires_nccl_version(version, msg):
|
296 |
+
if not c10d.is_nccl_available():
|
297 |
+
return skip_but_pass_in_sandcastle(
|
298 |
+
"c10d was not compiled with the NCCL backend",
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
return skip_but_pass_in_sandcastle_if(
|
302 |
+
torch.cuda.nccl.version() < version,
|
303 |
+
"Requires NCCL version greater than or equal to: {}, found: {}, reason: {}".format(
|
304 |
+
version, torch.cuda.nccl.version(), msg
|
305 |
+
),
|
306 |
+
)
|
307 |
+
|
308 |
+
|
309 |
+
def requires_nccl():
|
310 |
+
return skip_but_pass_in_sandcastle_if(
|
311 |
+
not c10d.is_nccl_available(),
|
312 |
+
"c10d was not compiled with the NCCL backend",
|
313 |
+
)
|
314 |
+
|
315 |
+
def requires_ucc():
|
316 |
+
return skip_but_pass_in_sandcastle_if(
|
317 |
+
not c10d.is_ucc_available(),
|
318 |
+
"c10d was not compiled with the UCC backend",
|
319 |
+
)
|
320 |
+
|
321 |
+
def requires_mpi():
|
322 |
+
return skip_but_pass_in_sandcastle_if(
|
323 |
+
not c10d.is_mpi_available(),
|
324 |
+
"c10d was not compiled with the MPI backend",
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def skip_if_rocm(func):
|
329 |
+
"""Skips a test for ROCm"""
|
330 |
+
func.skip_if_rocm = True
|
331 |
+
|
332 |
+
@wraps(func)
|
333 |
+
def wrapper(*args, **kwargs):
|
334 |
+
if not TEST_WITH_ROCM:
|
335 |
+
return func(*args, **kwargs)
|
336 |
+
sys.exit(TEST_SKIPS["skipIfRocm"].exit_code)
|
337 |
+
|
338 |
+
return wrapper
|
339 |
+
|
340 |
+
|
341 |
+
def skip_if_win32():
|
342 |
+
return skip_but_pass_in_sandcastle_if(
|
343 |
+
sys.platform == "win32",
|
344 |
+
"This unit test case is not supported on Windows platform",
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
@retry_on_connect_failures
|
349 |
+
def create_tcp_store(
|
350 |
+
addr="localhost",
|
351 |
+
world_size=1,
|
352 |
+
is_master=True,
|
353 |
+
timeout=timedelta(minutes=5),
|
354 |
+
wait_for_workers=True,
|
355 |
+
jit_class=False,
|
356 |
+
use_libuv=False
|
357 |
+
):
|
358 |
+
"""
|
359 |
+
Creates a TCP store. Retries if the chosen port is already in use.
|
360 |
+
"""
|
361 |
+
port = find_free_port()
|
362 |
+
if jit_class:
|
363 |
+
timeout_millisecond = int(timeout / timedelta(milliseconds=1))
|
364 |
+
return torch.classes.dist_c10d.TCPStore(
|
365 |
+
addr, port, world_size, is_master, timeout_millisecond
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
return c10d.TCPStore(
|
369 |
+
addr, port, world_size, is_master, wait_for_workers=wait_for_workers, use_libuv=use_libuv
|
370 |
+
)
|
371 |
+
|
372 |
+
|
373 |
+
if TEST_WITH_TSAN:
|
374 |
+
# TSAN runs much slower.
|
375 |
+
TIMEOUT_DEFAULT = 500
|
376 |
+
else:
|
377 |
+
TIMEOUT_DEFAULT = int(os.getenv('DISTRIBUTED_TESTS_DEFAULT_TIMEOUT', '300'))
|
378 |
+
TIMEOUT_OVERRIDE = {"test_ddp_uneven_inputs": 400}
|
379 |
+
|
380 |
+
|
381 |
+
# https://github.com/pytorch/pytorch/issues/75665
|
382 |
+
if TEST_WITH_ROCM:
|
383 |
+
TIMEOUT_OVERRIDE["test_join_kwargs"] = 200
|
384 |
+
|
385 |
+
|
386 |
+
def create_device(interface=None):
|
387 |
+
if sys.platform == "win32" or interface is None:
|
388 |
+
return c10d.ProcessGroupGloo.create_device(hostname="127.0.0.1")
|
389 |
+
else:
|
390 |
+
return c10d.ProcessGroupGloo.create_device(interface=interface)
|
391 |
+
|
392 |
+
|
393 |
+
def get_timeout(test_id) -> int:
|
394 |
+
return TIMEOUT_OVERRIDE.get(test_id.split(".")[-1], TIMEOUT_DEFAULT)
|
395 |
+
|
396 |
+
|
397 |
+
@contextmanager
|
398 |
+
def captured_output():
|
399 |
+
new_out, new_err = StringIO(), StringIO()
|
400 |
+
old_out, old_err = sys.stdout, sys.stderr
|
401 |
+
try:
|
402 |
+
sys.stdout, sys.stderr = new_out, new_err
|
403 |
+
yield sys.stdout, sys.stderr
|
404 |
+
finally:
|
405 |
+
sys.stdout, sys.stderr = old_out, old_err
|
406 |
+
|
407 |
+
|
408 |
+
def simple_sparse_reduce_tests(rank: int, world_size: int, num_inputs: int = 1):
|
409 |
+
"""
|
410 |
+
Generate a number of basic test cases for sparse reduction.
|
411 |
+
These cover tensors with a varying number of sparse dimensions and a varying
|
412 |
+
number of dense dimensions. The only reduction operation we support is sum.
|
413 |
+
"""
|
414 |
+
|
415 |
+
def generate(rank: int, world_size: int, sparse_dims: int = 1, dense_dims: int = 0):
|
416 |
+
# First sparse dimension is [0..rank].
|
417 |
+
# Subsequent dimensions are always 0, so we know there is
|
418 |
+
# a non-empty intersection between any two sparse tensors.
|
419 |
+
indices = torch.reshape(torch.arange(rank + 1), (1, rank + 1))
|
420 |
+
shape = [world_size] + [2 for _ in range(dense_dims)]
|
421 |
+
for _ in range(sparse_dims - 1):
|
422 |
+
indices = torch.cat((indices, torch.zeros(1, rank + 1)))
|
423 |
+
shape.append(world_size)
|
424 |
+
values = torch.ones([rank + 1] + [2 for _ in range(dense_dims)])
|
425 |
+
return torch.sparse_coo_tensor(indices, values, shape)
|
426 |
+
|
427 |
+
def compute_sum(fn, world_size: int):
|
428 |
+
return reduce(
|
429 |
+
lambda a, b: a + b, [fn(rank, world_size) for rank in range(world_size)]
|
430 |
+
)
|
431 |
+
|
432 |
+
return [
|
433 |
+
(
|
434 |
+
[
|
435 |
+
fn(num_inputs * rank + i, num_inputs * world_size)
|
436 |
+
for i in range(num_inputs)
|
437 |
+
],
|
438 |
+
[compute_sum(fn, num_inputs * world_size) for i in range(num_inputs)],
|
439 |
+
)
|
440 |
+
for fn in [
|
441 |
+
partial(generate, sparse_dims=1),
|
442 |
+
partial(generate, sparse_dims=2),
|
443 |
+
partial(generate, sparse_dims=3),
|
444 |
+
partial(generate, dense_dims=1),
|
445 |
+
partial(generate, dense_dims=2),
|
446 |
+
partial(generate, dense_dims=3),
|
447 |
+
]
|
448 |
+
]
|
449 |
+
|
450 |
+
|
451 |
+
# HELPER FOR MULTIGPU TESTS
|
452 |
+
def init_multigpu_helper(world_size: int, backend: str):
|
453 |
+
"""Multigpu tests are designed to simulate the multi nodes with multi
|
454 |
+
GPUs on each node. Nccl backend requires equal #GPUs in each process.
|
455 |
+
On a single node, all visible GPUs are evenly
|
456 |
+
divided to subsets, each process only uses a subset.
|
457 |
+
"""
|
458 |
+
nGPUs = torch.cuda.device_count()
|
459 |
+
visible_devices = range(nGPUs)
|
460 |
+
|
461 |
+
# If rank is less than or equal to number of available GPU's
|
462 |
+
# then each rank can be mapped to corresponding GPU.
|
463 |
+
nGPUs_per_process = 1
|
464 |
+
if world_size > nGPUs:
|
465 |
+
nGPUs_per_process = nGPUs // world_size
|
466 |
+
rank_to_GPU = {
|
467 |
+
i: list(visible_devices[i * nGPUs_per_process : (i + 1) * nGPUs_per_process])
|
468 |
+
for i in range(world_size)
|
469 |
+
}
|
470 |
+
return rank_to_GPU
|
471 |
+
|
472 |
+
|
473 |
+
tmp_dir: Optional[tempfile.TemporaryDirectory] = None
|
474 |
+
|
475 |
+
|
476 |
+
def initialize_temp_directories(init_method: Optional[str] = None) -> None:
|
477 |
+
global tmp_dir
|
478 |
+
tmp_dir = tempfile.TemporaryDirectory()
|
479 |
+
os.environ["TEMP_DIR"] = tmp_dir.name
|
480 |
+
os.mkdir(os.path.join(tmp_dir.name, "barrier"))
|
481 |
+
os.mkdir(os.path.join(tmp_dir.name, "test_dir"))
|
482 |
+
init_dir_path = os.path.join(tmp_dir.name, "init_dir")
|
483 |
+
os.mkdir(init_dir_path)
|
484 |
+
# Set init method if specified.
|
485 |
+
if init_method is not None:
|
486 |
+
os.environ["INIT_METHOD"] = init_method
|
487 |
+
else:
|
488 |
+
os.environ["INIT_METHOD"] = FILE_SCHEMA + os.path.join(
|
489 |
+
init_dir_path, "shared_init_file"
|
490 |
+
)
|
491 |
+
|
492 |
+
|
493 |
+
def cleanup_temp_dir() -> None:
|
494 |
+
if tmp_dir is not None:
|
495 |
+
tmp_dir.cleanup()
|
496 |
+
|
497 |
+
|
498 |
+
# Most tests operate with this worldsize
|
499 |
+
DEFAULT_WORLD_SIZE = 4
|
500 |
+
|
501 |
+
# [How does MultiProcessTestCase work?]
|
502 |
+
# Each MultiProcessTestCase instance uses 1 + `world_size()` processes, by
|
503 |
+
# default `world_size()` returns 4. Let's take `test_rpc_spawn.py` as an
|
504 |
+
# example which inherits from this class. Its `Setup()` methods calls into
|
505 |
+
# `MultiProcessTestCase._spawn_processes()` which spawns `world_size()`
|
506 |
+
# subprocesses. During the spawn, the main process passes the test name to
|
507 |
+
# subprocesses, and the name is acquired from self.id(). The subprocesses
|
508 |
+
# then use the provided test function name to retrieve the function attribute
|
509 |
+
# from the test instance and run it. The main process simply waits for all
|
510 |
+
# subprocesses to join.
|
511 |
+
|
512 |
+
|
513 |
+
class MultiProcessTestCase(TestCase):
|
514 |
+
MAIN_PROCESS_RANK = -1
|
515 |
+
# This exit code is used to indicate that the test code had an error and
|
516 |
+
# exited abnormally. There are certain tests that might use sys.exit() to
|
517 |
+
# simulate failures and in those cases, we can't have an exit code of 0,
|
518 |
+
# but we still want to ensure we didn't run into any other errors.
|
519 |
+
TEST_ERROR_EXIT_CODE = 10
|
520 |
+
|
521 |
+
# do not early terminate for distributed tests.
|
522 |
+
def _should_stop_test_suite(self) -> bool:
|
523 |
+
return False
|
524 |
+
|
525 |
+
@property
|
526 |
+
def world_size(self) -> int:
|
527 |
+
return DEFAULT_WORLD_SIZE
|
528 |
+
|
529 |
+
def join_or_run(self, fn):
|
530 |
+
@wraps(fn)
|
531 |
+
def wrapper(self):
|
532 |
+
if self.rank == self.MAIN_PROCESS_RANK:
|
533 |
+
self._join_processes(fn)
|
534 |
+
else:
|
535 |
+
fn()
|
536 |
+
|
537 |
+
return types.MethodType(wrapper, self)
|
538 |
+
|
539 |
+
# The main process spawns N subprocesses that run the test.
|
540 |
+
# Constructor patches current instance test method to
|
541 |
+
# assume the role of the main process and join its subprocesses,
|
542 |
+
# or run the underlying test function.
|
543 |
+
def __init__(self, method_name: str = "runTest") -> None:
|
544 |
+
super().__init__(method_name)
|
545 |
+
fn = getattr(self, method_name)
|
546 |
+
setattr(self, method_name, self.join_or_run(fn))
|
547 |
+
|
548 |
+
def setUp(self) -> None:
|
549 |
+
super().setUp()
|
550 |
+
self.skip_return_code_checks = [] # type: ignore[var-annotated]
|
551 |
+
self.processes = [] # type: ignore[var-annotated]
|
552 |
+
self.rank = self.MAIN_PROCESS_RANK
|
553 |
+
self.file_name = tempfile.NamedTemporaryFile(delete=False).name
|
554 |
+
# pid to pipe consisting of error message from process.
|
555 |
+
self.pid_to_pipe = {} # type: ignore[var-annotated]
|
556 |
+
|
557 |
+
def tearDown(self) -> None:
|
558 |
+
super().tearDown()
|
559 |
+
for p in self.processes:
|
560 |
+
p.terminate()
|
561 |
+
# Each Process instance holds a few open file descriptors. The unittest
|
562 |
+
# runner creates a new TestCase instance for each test method and keeps
|
563 |
+
# it alive until the end of the entire suite. We must thus reset the
|
564 |
+
# processes to prevent an effective file descriptor leak.
|
565 |
+
self.processes = []
|
566 |
+
|
567 |
+
def _current_test_name(self) -> str:
|
568 |
+
# self.id() == e.g. '__main__.TestDistributed.TestAdditive.test_get_rank'
|
569 |
+
return self.id().split(".")[-1]
|
570 |
+
|
571 |
+
def _start_processes(self, proc) -> None:
|
572 |
+
self.processes = []
|
573 |
+
for rank in range(int(self.world_size)):
|
574 |
+
parent_conn, child_conn = torch.multiprocessing.Pipe()
|
575 |
+
process = proc(
|
576 |
+
target=self.__class__._run,
|
577 |
+
name="process " + str(rank),
|
578 |
+
args=(rank, self._current_test_name(), self.file_name, child_conn),
|
579 |
+
)
|
580 |
+
process.start()
|
581 |
+
logger.info("Started process %s with pid %s", rank, process.pid)
|
582 |
+
self.pid_to_pipe[process.pid] = parent_conn
|
583 |
+
self.processes.append(process)
|
584 |
+
|
585 |
+
def _spawn_processes(self) -> None:
|
586 |
+
proc = torch.multiprocessing.get_context("spawn").Process
|
587 |
+
self._start_processes(proc)
|
588 |
+
|
589 |
+
class Event(Enum):
|
590 |
+
GET_TRACEBACK = 1
|
591 |
+
|
592 |
+
@staticmethod
|
593 |
+
def _event_listener(parent_pipe, signal_pipe, rank: int):
|
594 |
+
logger.info("Starting event listener thread for rank %s", rank)
|
595 |
+
while True:
|
596 |
+
ready_pipes = multiprocessing.connection.wait([parent_pipe, signal_pipe])
|
597 |
+
|
598 |
+
if parent_pipe in ready_pipes:
|
599 |
+
|
600 |
+
if parent_pipe.closed:
|
601 |
+
logger.info(
|
602 |
+
"Pipe closed for process %s, stopping event listener thread", rank
|
603 |
+
)
|
604 |
+
return
|
605 |
+
|
606 |
+
event = parent_pipe.recv()
|
607 |
+
logger.info("Received event %s on process %s", event, rank)
|
608 |
+
|
609 |
+
if event == MultiProcessTestCase.Event.GET_TRACEBACK:
|
610 |
+
# Return traceback to the parent process.
|
611 |
+
with tempfile.NamedTemporaryFile(mode="r+") as tmp_file:
|
612 |
+
faulthandler.dump_traceback(tmp_file)
|
613 |
+
# Flush buffers and seek to read from the beginning
|
614 |
+
tmp_file.flush()
|
615 |
+
tmp_file.seek(0)
|
616 |
+
parent_pipe.send(tmp_file.read())
|
617 |
+
|
618 |
+
logger.info("Process %s sent traceback", rank)
|
619 |
+
|
620 |
+
if signal_pipe in ready_pipes:
|
621 |
+
return
|
622 |
+
|
623 |
+
@classmethod
|
624 |
+
def _run(cls, rank: int, test_name: str, file_name: str, parent_pipe) -> None:
|
625 |
+
self = cls(test_name)
|
626 |
+
self.rank = rank
|
627 |
+
self.file_name = file_name
|
628 |
+
self.run_test(test_name, parent_pipe)
|
629 |
+
|
630 |
+
def run_test(self, test_name: str, parent_pipe) -> None:
|
631 |
+
# Start event listener thread.
|
632 |
+
signal_recv_pipe, signal_send_pipe = torch.multiprocessing.Pipe(duplex=False)
|
633 |
+
event_listener_thread = threading.Thread(
|
634 |
+
target=MultiProcessTestCase._event_listener,
|
635 |
+
args=(parent_pipe, signal_recv_pipe, self.rank),
|
636 |
+
daemon=True,
|
637 |
+
)
|
638 |
+
event_listener_thread.start()
|
639 |
+
if sys.platform != "win32" and sys.platform != "darwin":
|
640 |
+
# Register signal handler to dump stack traces on FATALs.
|
641 |
+
# Windows and MacOS do not support the signal handlers.
|
642 |
+
torch._C._set_print_stack_traces_on_fatal_signal(True)
|
643 |
+
# Show full C++ stacktraces when a Python error originating from C++ is raised.
|
644 |
+
os.environ["TORCH_SHOW_CPP_STACKTRACES"] = "1"
|
645 |
+
|
646 |
+
# self.id() == e.g. '__main__.TestDistributed.test_get_rank'
|
647 |
+
# We're retrieving a corresponding test and executing it.
|
648 |
+
try:
|
649 |
+
getattr(self, test_name)()
|
650 |
+
except unittest.SkipTest as se:
|
651 |
+
logger.info(
|
652 |
+
"Process %s skipping test %s for following reason: %s", self.rank, test_name, str(se)
|
653 |
+
)
|
654 |
+
sys.exit(TEST_SKIPS["generic"].exit_code)
|
655 |
+
except Exception as e:
|
656 |
+
logger.error(
|
657 |
+
"Caught exception: \n%s exiting "
|
658 |
+
"process %s with exit code: %s",
|
659 |
+
traceback.format_exc(), self.rank, MultiProcessTestCase.TEST_ERROR_EXIT_CODE
|
660 |
+
)
|
661 |
+
# Send error to parent process.
|
662 |
+
parent_pipe.send(traceback.format_exc())
|
663 |
+
sys.exit(MultiProcessTestCase.TEST_ERROR_EXIT_CODE)
|
664 |
+
finally:
|
665 |
+
if signal_send_pipe is not None:
|
666 |
+
signal_send_pipe.send(None)
|
667 |
+
|
668 |
+
assert event_listener_thread is not None
|
669 |
+
event_listener_thread.join()
|
670 |
+
# Close pipe after done with test.
|
671 |
+
parent_pipe.close()
|
672 |
+
|
673 |
+
def _get_timedout_process_traceback(self) -> None:
|
674 |
+
pipes = []
|
675 |
+
for i, process in enumerate(self.processes):
|
676 |
+
if process.exitcode is None:
|
677 |
+
pipe = self.pid_to_pipe[process.pid]
|
678 |
+
try:
|
679 |
+
pipe.send(MultiProcessTestCase.Event.GET_TRACEBACK)
|
680 |
+
pipes.append((i, pipe))
|
681 |
+
except ConnectionError as e:
|
682 |
+
logger.error(
|
683 |
+
"Encountered error while trying to get traceback for process %s: %s", i, e
|
684 |
+
)
|
685 |
+
|
686 |
+
# Wait for results.
|
687 |
+
for rank, pipe in pipes:
|
688 |
+
try:
|
689 |
+
# Wait for traceback
|
690 |
+
if pipe.poll(5):
|
691 |
+
if pipe.closed:
|
692 |
+
logger.info(
|
693 |
+
"Pipe closed for process %s, cannot retrieve traceback", rank
|
694 |
+
)
|
695 |
+
continue
|
696 |
+
|
697 |
+
traceback = pipe.recv()
|
698 |
+
logger.error(
|
699 |
+
"Process %s timed out with traceback: \n\n%s", rank, traceback
|
700 |
+
)
|
701 |
+
else:
|
702 |
+
logger.error(
|
703 |
+
"Could not retrieve traceback for timed out process: %s", rank
|
704 |
+
)
|
705 |
+
except ConnectionError as e:
|
706 |
+
logger.error(
|
707 |
+
"Encountered error while trying to get traceback for process %s: %s", rank, e
|
708 |
+
)
|
709 |
+
|
710 |
+
def _join_processes(self, fn) -> None:
|
711 |
+
timeout = get_timeout(self.id())
|
712 |
+
start_time = time.time()
|
713 |
+
subprocess_error = False
|
714 |
+
try:
|
715 |
+
while True:
|
716 |
+
# check to see if any subprocess exited with an error early.
|
717 |
+
for (i, p) in enumerate(self.processes):
|
718 |
+
# This is the exit code processes exit with if they
|
719 |
+
# encountered an exception.
|
720 |
+
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE:
|
721 |
+
print(
|
722 |
+
f"Process {i} terminated with exit code {p.exitcode}, terminating remaining processes."
|
723 |
+
)
|
724 |
+
active_children = torch.multiprocessing.active_children()
|
725 |
+
for ac in active_children:
|
726 |
+
ac.terminate()
|
727 |
+
subprocess_error = True
|
728 |
+
break
|
729 |
+
if subprocess_error:
|
730 |
+
break
|
731 |
+
# All processes have joined cleanly if they all a valid exitcode
|
732 |
+
if all(p.exitcode is not None for p in self.processes):
|
733 |
+
break
|
734 |
+
# Check if we should time out the test. If so, we terminate each process.
|
735 |
+
elapsed = time.time() - start_time
|
736 |
+
if elapsed > timeout:
|
737 |
+
self._get_timedout_process_traceback()
|
738 |
+
print(
|
739 |
+
f"Timing out after {timeout} seconds and killing subprocesses."
|
740 |
+
)
|
741 |
+
for p in self.processes:
|
742 |
+
p.terminate()
|
743 |
+
break
|
744 |
+
# Sleep to avoid excessive busy polling.
|
745 |
+
time.sleep(0.1)
|
746 |
+
|
747 |
+
elapsed_time = time.time() - start_time
|
748 |
+
|
749 |
+
if fn in self.skip_return_code_checks:
|
750 |
+
self._check_no_test_errors(elapsed_time)
|
751 |
+
else:
|
752 |
+
self._check_return_codes(elapsed_time)
|
753 |
+
finally:
|
754 |
+
# Close all pipes
|
755 |
+
for pipe in self.pid_to_pipe.values():
|
756 |
+
pipe.close()
|
757 |
+
|
758 |
+
def _check_no_test_errors(self, elapsed_time) -> None:
|
759 |
+
"""
|
760 |
+
Checks that we didn't have any errors thrown in the child processes.
|
761 |
+
"""
|
762 |
+
for i, p in enumerate(self.processes):
|
763 |
+
if p.exitcode is None:
|
764 |
+
raise RuntimeError(
|
765 |
+
f"Process {i} timed out after {elapsed_time} seconds"
|
766 |
+
)
|
767 |
+
self.assertNotEqual(self.TEST_ERROR_EXIT_CODE, p.exitcode)
|
768 |
+
|
769 |
+
def _check_return_codes(self, elapsed_time) -> None:
|
770 |
+
"""
|
771 |
+
Checks that the return codes of all spawned processes match, and skips
|
772 |
+
tests if they returned a return code indicating a skipping condition.
|
773 |
+
"""
|
774 |
+
# If no processes are spawned, there is nothing to check.
|
775 |
+
if not self.processes:
|
776 |
+
logger.warning("Note: no subprocesses were spawned, test was likely skipped.")
|
777 |
+
return
|
778 |
+
|
779 |
+
first_process = self.processes[0]
|
780 |
+
# first, we check if there are errors in actual processes
|
781 |
+
# (via TEST_ERROR_EXIT CODE), and raise an exception for those.
|
782 |
+
# the reason we do this is to attempt to raise a more helpful error
|
783 |
+
# message than "Process x terminated/timed out"
|
784 |
+
# TODO: we should pipe the exception of the failed subprocess here.
|
785 |
+
# Currently, the actual exception is displayed as a logging output.
|
786 |
+
errored_processes = [
|
787 |
+
(i, p)
|
788 |
+
for i, p in enumerate(self.processes)
|
789 |
+
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE
|
790 |
+
]
|
791 |
+
if errored_processes:
|
792 |
+
error = ""
|
793 |
+
for i, process in errored_processes:
|
794 |
+
# Get error from pipe.
|
795 |
+
error_message = self.pid_to_pipe[process.pid].recv()
|
796 |
+
error += (
|
797 |
+
"Process {} exited with error code {} and exception:\n{}\n".format(
|
798 |
+
i, MultiProcessTestCase.TEST_ERROR_EXIT_CODE, error_message
|
799 |
+
)
|
800 |
+
)
|
801 |
+
|
802 |
+
raise RuntimeError(error)
|
803 |
+
# If no process exited uncleanly, we check for timeouts, and then ensure
|
804 |
+
# each process exited cleanly.
|
805 |
+
for i, p in enumerate(self.processes):
|
806 |
+
if p.exitcode is None:
|
807 |
+
raise RuntimeError(
|
808 |
+
f"Process {i} terminated or timed out after {elapsed_time} seconds"
|
809 |
+
)
|
810 |
+
self.assertEqual(
|
811 |
+
p.exitcode,
|
812 |
+
first_process.exitcode,
|
813 |
+
msg="Expect process {} exit code to match Process 0 exit code of {}, but got {}".format(
|
814 |
+
i, first_process.exitcode, p.exitcode
|
815 |
+
),
|
816 |
+
)
|
817 |
+
for skip in TEST_SKIPS.values():
|
818 |
+
if first_process.exitcode == skip.exit_code:
|
819 |
+
if IS_SANDCASTLE:
|
820 |
+
# Don't use unittest.skip to skip the test on sandcastle
|
821 |
+
# since it creates tasks for skipped tests assuming there
|
822 |
+
# is some follow-up needed. Instead just "pass" the test
|
823 |
+
# with an appropriate message.
|
824 |
+
logger.info(
|
825 |
+
"Skipping %s on sandcastle for the following reason: %s", self.id(), skip.message
|
826 |
+
)
|
827 |
+
return
|
828 |
+
else:
|
829 |
+
raise unittest.SkipTest(skip.message)
|
830 |
+
self.assertEqual(
|
831 |
+
first_process.exitcode,
|
832 |
+
0,
|
833 |
+
msg=f"Expected zero exit code but got {first_process.exitcode} for pid: {first_process.pid}",
|
834 |
+
)
|
835 |
+
|
836 |
+
@property
|
837 |
+
def is_master(self) -> bool:
|
838 |
+
return self.rank == 0
|
839 |
+
|
840 |
+
|
841 |
+
# Cannot use functools.cache as it requires python 3.9
|
842 |
+
EFA_PROBE_RESULT = None
|
843 |
+
|
844 |
+
|
845 |
+
def has_efa() -> bool:
|
846 |
+
"""
|
847 |
+
If shell command `fi_info -p efa -t FI_EP_RDM` returns exit code 0 then we assume that the machine has
|
848 |
+
Libfabric EFA interfaces and EFA software components installed,
|
849 |
+
see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html.
|
850 |
+
"""
|
851 |
+
global EFA_PROBE_RESULT
|
852 |
+
if EFA_PROBE_RESULT is not None:
|
853 |
+
return EFA_PROBE_RESULT
|
854 |
+
|
855 |
+
try:
|
856 |
+
EFA_PROBE_RESULT = (
|
857 |
+
subprocess.run(["fi_info", "-p", "efa", "-t", "FI_EP_RDM"], check=False).returncode == 0
|
858 |
+
)
|
859 |
+
except FileNotFoundError:
|
860 |
+
EFA_PROBE_RESULT = False
|
861 |
+
return EFA_PROBE_RESULT
|
862 |
+
|
863 |
+
|
864 |
+
def tp_transports():
|
865 |
+
"""
|
866 |
+
If the machine has Libfabric EFA interfaces and EFA software components installed it may cause
|
867 |
+
'RuntimeError: In operator() at tensorpipe/common/ibv.h:172 "": Operation not supported' if tensorpipe
|
868 |
+
uses InfiniBand transport, so we exclude it from tensorpipe transports,
|
869 |
+
see https://github.com/pytorch/pytorch/issues/73885 and https://github.com/pytorch/pytorch/issues/65022
|
870 |
+
"""
|
871 |
+
return ["shm", "uv"] if has_efa() else None
|
872 |
+
|
873 |
+
|
874 |
+
def spawn_threads_and_init_comms(
|
875 |
+
func=None, timeout=TIMEOUT_DEFAULT, world_size=DEFAULT_WORLD_SIZE
|
876 |
+
):
|
877 |
+
"""
|
878 |
+
Wrapper to use with a test method
|
879 |
+
"""
|
880 |
+
if func is None:
|
881 |
+
return partial(
|
882 |
+
spawn_threads_and_init_comms, timeout=timeout, world_size=world_size
|
883 |
+
)
|
884 |
+
|
885 |
+
|
886 |
+
def _run_test_method_with_multi_threads(world_size, callback):
|
887 |
+
world = _install_threaded_pg()
|
888 |
+
global_store = c10d.HashStore()
|
889 |
+
|
890 |
+
def world_is_valid():
|
891 |
+
return world == c10d.distributed_c10d._world
|
892 |
+
|
893 |
+
def worker(rank, world_pg, store):
|
894 |
+
c10d.init_process_group(
|
895 |
+
backend="threaded", rank=rank, world_size=world_size, store=store
|
896 |
+
)
|
897 |
+
try:
|
898 |
+
callback()
|
899 |
+
except BaseException as ex:
|
900 |
+
# Exceptions are handled in MultiThreadedTestCase
|
901 |
+
MultiThreadedTestCase.exception_queue.put((rank, sys.exc_info()))
|
902 |
+
ProcessLocalGroup.exception_handle(ex) # trigger _terminate event and awaken worker threads
|
903 |
+
finally:
|
904 |
+
if world_is_valid():
|
905 |
+
c10d.destroy_process_group()
|
906 |
+
|
907 |
+
threads = []
|
908 |
+
for rank in range(world_size):
|
909 |
+
t = threading.Thread(target=worker, args=(rank, world, global_store))
|
910 |
+
t.start()
|
911 |
+
threads.append(t)
|
912 |
+
|
913 |
+
return threads
|
914 |
+
|
915 |
+
|
916 |
+
@wraps(func)
|
917 |
+
def wrapper(self, *args, **kwargs):
|
918 |
+
# TODO: get test name from kwargs
|
919 |
+
threads = _run_test_method_with_multi_threads(world_size, lambda: func(self, *args, **kwargs))
|
920 |
+
# join and error handling
|
921 |
+
MultiThreadedTestCase._join_threads(threads, func)
|
922 |
+
|
923 |
+
return wrapper
|
924 |
+
|
925 |
+
|
926 |
+
class MultiThreadedTestCase(TestCase):
|
927 |
+
"""
|
928 |
+
Test runner that runs all tests with the in-proc process group using
|
929 |
+
multiple threads with the threaded process group.
|
930 |
+
|
931 |
+
Each test spawns world_size threads and run the test method in each thread.
|
932 |
+
|
933 |
+
Difference from regular MultiProcess test runner:
|
934 |
+
Must explicitly defines SetUp and call self._spawn_threads() to run the tests.
|
935 |
+
Cannot use setUp / tearDown (must use perThreadSetup / perThreadShutdown)
|
936 |
+
to set up / tear down each thread when running each test.
|
937 |
+
No global state possible
|
938 |
+
How bad of a limitation is this?
|
939 |
+
"""
|
940 |
+
exception_queue = queue.Queue()
|
941 |
+
|
942 |
+
MAIN_THREAD_RANK = -1
|
943 |
+
|
944 |
+
def join_or_run(self, fn):
|
945 |
+
@wraps(fn)
|
946 |
+
def wrapper(self):
|
947 |
+
if self.rank == self.MAIN_THREAD_RANK:
|
948 |
+
self._join_threads(self.threads, fn)
|
949 |
+
else:
|
950 |
+
fn()
|
951 |
+
|
952 |
+
return types.MethodType(wrapper, self)
|
953 |
+
|
954 |
+
def __init__(self, method_name: str = "runTest") -> None:
|
955 |
+
super().__init__(method_name)
|
956 |
+
test_fn = getattr(self, method_name, None)
|
957 |
+
setattr(self, method_name, self.join_or_run(test_fn))
|
958 |
+
|
959 |
+
def perThreadSetUp(self):
|
960 |
+
# super().setUp() # TestCase.setUp() calls torch.manual_seed()
|
961 |
+
pass
|
962 |
+
|
963 |
+
def perThreadTearDown(self):
|
964 |
+
pass
|
965 |
+
|
966 |
+
def setUp(self) -> None:
|
967 |
+
"""
|
968 |
+
setUp only set up things in the main thread, if you want to configure things
|
969 |
+
in the spawned threads, use perThreadSetUp
|
970 |
+
"""
|
971 |
+
super().setUp()
|
972 |
+
self.rank = self.MAIN_THREAD_RANK
|
973 |
+
self.threads = []
|
974 |
+
# Show full C++ stacktraces when a Python error originating from C++ is raised.
|
975 |
+
os.environ["TORCH_SHOW_CPP_STACKTRACES"] = "1"
|
976 |
+
|
977 |
+
def tearDown(self):
|
978 |
+
"""
|
979 |
+
tearDown only set up things in the main thread, if you want to configure things
|
980 |
+
in the spawned threads, use perThreadTearDown
|
981 |
+
"""
|
982 |
+
super().tearDown()
|
983 |
+
self.threads = []
|
984 |
+
|
985 |
+
def _spawn_threads(self):
|
986 |
+
"""
|
987 |
+
class method to spawn threads and run test, use this method in the SetUp of your TestCase
|
988 |
+
"""
|
989 |
+
test_name = self._current_test_name
|
990 |
+
# for each test case, we need to create thread local world, and a global store
|
991 |
+
world = _install_threaded_pg()
|
992 |
+
self.__class__.global_store = c10d.HashStore()
|
993 |
+
|
994 |
+
def world_is_valid():
|
995 |
+
return world == c10d.distributed_c10d._world
|
996 |
+
|
997 |
+
if not world_is_valid():
|
998 |
+
raise RuntimeError("Invalid world")
|
999 |
+
|
1000 |
+
for rank in range(self.world_size):
|
1001 |
+
t = threading.Thread(target=self.__class__._run, args=(test_name, rank, self.world_size))
|
1002 |
+
t.start()
|
1003 |
+
self.threads.append(t)
|
1004 |
+
|
1005 |
+
@classmethod
|
1006 |
+
def _run(cls, test_name, rank, world_size):
|
1007 |
+
self = cls(test_name)
|
1008 |
+
self.rank = rank
|
1009 |
+
|
1010 |
+
# precision/rel_tol is a thread-local setting since it may be overridden per test, need to make
|
1011 |
+
# every thread have the same value. This would be relevant when we use op db tests, where it
|
1012 |
+
# needs those states to be set i.e. using instantiate_device_type_tests()
|
1013 |
+
# TODO: figure out a better way to do this
|
1014 |
+
if hasattr(self, "_tls"):
|
1015 |
+
self._tls = threading.local()
|
1016 |
+
self._tls.precision = TestCase._precision
|
1017 |
+
self._tls.rel_tol = TestCase._rel_tol
|
1018 |
+
|
1019 |
+
self.run_test_with_threaded_pg(test_name, rank, world_size)
|
1020 |
+
|
1021 |
+
def run_test_with_threaded_pg(self, test_name, rank, world_size):
|
1022 |
+
"""
|
1023 |
+
Run the current test associated with `test_name` using the threaded process group.
|
1024 |
+
"""
|
1025 |
+
c10d.init_process_group(
|
1026 |
+
backend="threaded", rank=rank, world_size=world_size, store=self.__class__.global_store
|
1027 |
+
)
|
1028 |
+
self.perThreadSetUp()
|
1029 |
+
|
1030 |
+
try:
|
1031 |
+
getattr(self, test_name)()
|
1032 |
+
except BaseException as ex:
|
1033 |
+
self.exception_queue.put((rank, sys.exc_info()))
|
1034 |
+
ProcessLocalGroup.exception_handle(ex) # trigger _terminate event and awaken worker threads
|
1035 |
+
finally:
|
1036 |
+
c10d.destroy_process_group()
|
1037 |
+
self.perThreadTearDown()
|
1038 |
+
|
1039 |
+
|
1040 |
+
@classmethod
|
1041 |
+
def _join_threads(cls, threads, fn):
|
1042 |
+
timeout = TIMEOUT_DEFAULT
|
1043 |
+
try:
|
1044 |
+
for idx, thread in enumerate(threads):
|
1045 |
+
thread.join(max(0, timeout))
|
1046 |
+
if thread.is_alive():
|
1047 |
+
MultiThreadedTestCase.exception_queue.put(
|
1048 |
+
(
|
1049 |
+
idx,
|
1050 |
+
(
|
1051 |
+
TimeoutError,
|
1052 |
+
TimeoutError(
|
1053 |
+
f"Rank failed to join in under {timeout} seconds"
|
1054 |
+
),
|
1055 |
+
None,
|
1056 |
+
),
|
1057 |
+
)
|
1058 |
+
)
|
1059 |
+
ProcessLocalGroup.reset()
|
1060 |
+
failed_ranks = []
|
1061 |
+
while not cls.exception_queue.empty():
|
1062 |
+
failure = cls.exception_queue.get()
|
1063 |
+
failed_ranks.append(failure)
|
1064 |
+
finally:
|
1065 |
+
_uninstall_threaded_pg()
|
1066 |
+
|
1067 |
+
cls._check_return_codes(failed_ranks, timeout, fn)
|
1068 |
+
|
1069 |
+
@classmethod
|
1070 |
+
def _check_return_codes(cls, failed_ranks, timeout, fn):
|
1071 |
+
# Print based on exceptions raised from threads
|
1072 |
+
# SkipTest: print info for each thread
|
1073 |
+
# TimeoutError: raise RuntimeError for any timed out thread
|
1074 |
+
# Normal Exception: print error for each thread that raises exception
|
1075 |
+
# and raise a RuntimeError
|
1076 |
+
error_msg = ""
|
1077 |
+
skip_code = -1
|
1078 |
+
for rank, exc_info in failed_ranks:
|
1079 |
+
exc = exc_info[1]
|
1080 |
+
if isinstance(exc, unittest.SkipTest):
|
1081 |
+
logger.info(
|
1082 |
+
"Thread %s skipping test %s for following reason: %s", rank, fn, str(exc)
|
1083 |
+
)
|
1084 |
+
if skip_code < 0:
|
1085 |
+
skip_code = TEST_SKIPS["generic"].exit_code
|
1086 |
+
elif isinstance(exc, TimeoutError):
|
1087 |
+
msg = f"Thread {rank} terminated or timed out after {timeout} seconds\n"
|
1088 |
+
logger.error(msg)
|
1089 |
+
raise RuntimeError(msg)
|
1090 |
+
elif isinstance(exc, Exception):
|
1091 |
+
msg = "".join(traceback.format_exception(*exc_info))
|
1092 |
+
logger.error(
|
1093 |
+
"Caught exception: \n%s exiting thread %s", msg, rank
|
1094 |
+
)
|
1095 |
+
error_msg += (
|
1096 |
+
f"Thread {rank} exited with exception:\n{msg}\n"
|
1097 |
+
)
|
1098 |
+
elif isinstance(exc, SystemExit):
|
1099 |
+
if type(exc.code) == int and skip_code < 0:
|
1100 |
+
skip_code = exc.code
|
1101 |
+
|
1102 |
+
# check exceptions
|
1103 |
+
if len(error_msg) > 0:
|
1104 |
+
raise RuntimeError(error_msg)
|
1105 |
+
# check skip
|
1106 |
+
if skip_code > 0:
|
1107 |
+
for skip in TEST_SKIPS.values():
|
1108 |
+
if skip_code == skip.exit_code:
|
1109 |
+
if IS_SANDCASTLE:
|
1110 |
+
# "pass" the test with an appropriate message.
|
1111 |
+
logger.info(
|
1112 |
+
"Skipping %s on sandcastle for the following reason: %s", fn, skip.message
|
1113 |
+
)
|
1114 |
+
return
|
1115 |
+
else:
|
1116 |
+
raise unittest.SkipTest(skip.message)
|
1117 |
+
|
1118 |
+
@property
|
1119 |
+
def world_size(self) -> int:
|
1120 |
+
return DEFAULT_WORLD_SIZE
|
1121 |
+
|
1122 |
+
@property
|
1123 |
+
def _current_test_name(self) -> str:
|
1124 |
+
# self.id() == e.g. '__main__.TestDistributed.TestAdditive.test_get_rank'
|
1125 |
+
return self.id().split(".")[-1]
|
1126 |
+
|
1127 |
+
def assertEqualOnRank(self, x, y, msg=None, *, rank=0):
|
1128 |
+
"""
|
1129 |
+
The reason why we have this util function instead of
|
1130 |
+
self.assertEqual is all threads are sharing one CPU RNG
|
1131 |
+
so the assertion result is only reliable on rank 0
|
1132 |
+
"""
|
1133 |
+
if self.rank == rank:
|
1134 |
+
self.assertEqual(x, y, msg)
|
1135 |
+
|
1136 |
+
def assertNotEqualOnRank(self, x, y, msg=None, *, rank=0):
|
1137 |
+
if self.rank == rank:
|
1138 |
+
self.assertNotEqual(x, y)
|
1139 |
+
|
1140 |
+
|
1141 |
+
class SaveForwardInputsModule(nn.Module):
|
1142 |
+
def __init__(
|
1143 |
+
self,
|
1144 |
+
forward_inputs: Dict[nn.Module, torch.Tensor],
|
1145 |
+
cast_forward_inputs: bool,
|
1146 |
+
) -> None:
|
1147 |
+
super().__init__()
|
1148 |
+
self.l = nn.Linear(100, 100)
|
1149 |
+
self.forward_inputs = forward_inputs
|
1150 |
+
self.cast_forward_inputs = cast_forward_inputs
|
1151 |
+
|
1152 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1153 |
+
self.forward_inputs[self] = x
|
1154 |
+
return self.l(x.to(self.l.weight.dtype) if self.cast_forward_inputs else x)
|
1155 |
+
|
1156 |
+
|
1157 |
+
class SaveForwardInputsModel(nn.Module):
|
1158 |
+
def __init__(
|
1159 |
+
self,
|
1160 |
+
forward_inputs: Dict[nn.Module, torch.Tensor],
|
1161 |
+
cast_forward_inputs: bool,
|
1162 |
+
) -> None:
|
1163 |
+
super().__init__()
|
1164 |
+
self.c1 = SaveForwardInputsModule(forward_inputs, cast_forward_inputs)
|
1165 |
+
self.c2 = SaveForwardInputsModule(forward_inputs, cast_forward_inputs)
|
1166 |
+
self.forward_inputs = forward_inputs
|
1167 |
+
|
1168 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1169 |
+
self.forward_inputs[self] = x
|
1170 |
+
return self.c2(self.c1(x))
|
1171 |
+
|
1172 |
+
@contextmanager
|
1173 |
+
def _dynamo_dist_per_rank_init(rank, world_size, init_pg=True):
|
1174 |
+
# To avoid multiple inheritance from _dynamo.test_case.TestCase and MultiProcessTestCase,
|
1175 |
+
# Just manually implement the most important part of the dynamo behavior to reset/clear.
|
1176 |
+
torch.cuda.set_device(rank)
|
1177 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
1178 |
+
os.environ['MASTER_PORT'] = '6789'
|
1179 |
+
if init_pg:
|
1180 |
+
c10d.init_process_group("nccl", rank=rank, world_size=world_size)
|
1181 |
+
torch._dynamo.reset()
|
1182 |
+
torch._dynamo.utils.counters.clear()
|
1183 |
+
try:
|
1184 |
+
yield
|
1185 |
+
finally:
|
1186 |
+
torch._dynamo.reset()
|
1187 |
+
torch._dynamo.utils.counters.clear()
|
1188 |
+
if init_pg:
|
1189 |
+
c10d.destroy_process_group()
|
1190 |
+
|
1191 |
+
|
1192 |
+
class DynamoDistributedSingleProcTestCase(torch._dynamo.test_case.TestCase):
|
1193 |
+
"""
|
1194 |
+
Test harness for single-process dynamo distributed tests,
|
1195 |
+
initializes dist process group.
|
1196 |
+
|
1197 |
+
Prefer this for simple tests, as it's easier to debug.
|
1198 |
+
"""
|
1199 |
+
|
1200 |
+
@classmethod
|
1201 |
+
def setUpClass(cls):
|
1202 |
+
super().setUpClass()
|
1203 |
+
# _exit_stack is set up in TestCase
|
1204 |
+
cls._exit_stack.enter_context(
|
1205 |
+
patch.dict(
|
1206 |
+
os.environ,
|
1207 |
+
{
|
1208 |
+
"MASTER_ADDR": "localhost",
|
1209 |
+
"MASTER_PORT": "12355",
|
1210 |
+
},
|
1211 |
+
)
|
1212 |
+
)
|
1213 |
+
cls.rank = 0
|
1214 |
+
cls.device = f"cuda:{cls.rank}"
|
1215 |
+
cls.device_ids = None if "cuda" in cls.device else [cls.rank]
|
1216 |
+
c10d.init_process_group("nccl", rank=cls.rank, world_size=1)
|
1217 |
+
|
1218 |
+
@classmethod
|
1219 |
+
def tearDownClass(cls):
|
1220 |
+
c10d.destroy_process_group()
|
1221 |
+
super().tearDownClass()
|
1222 |
+
|
1223 |
+
|
1224 |
+
class DynamoDistributedMultiProcTestCase(MultiProcessTestCase):
|
1225 |
+
"""
|
1226 |
+
Use this for tests that actually run on multiple GPUs.
|
1227 |
+
|
1228 |
+
Decorate tests with @skip_if_lt_x_gpu(ngpu)
|
1229 |
+
|
1230 |
+
Note: MultiProcTestCase spawns processes per test and is slow.
|
1231 |
+
Prefer MultiThreadedTestCase for most tests. Perhaps use this one
|
1232 |
+
sparingly for integration tests.
|
1233 |
+
"""
|
1234 |
+
def setUp(self):
|
1235 |
+
super().setUp()
|
1236 |
+
self._spawn_processes()
|
1237 |
+
|
1238 |
+
def tearDown(self):
|
1239 |
+
super().tearDown()
|
1240 |
+
try:
|
1241 |
+
os.remove(self.file_name)
|
1242 |
+
except OSError:
|
1243 |
+
pass
|
1244 |
+
|
1245 |
+
@property
|
1246 |
+
def world_size(self) -> int:
|
1247 |
+
return torch.cuda.device_count()
|
1248 |
+
|
1249 |
+
@classmethod
|
1250 |
+
def _run(cls, rank: int, test_name: str, file_name: str, parent_pipe) -> None:
|
1251 |
+
# The rest is copypasta from MultiProcessTestCase._run
|
1252 |
+
self = cls(test_name)
|
1253 |
+
self.rank = rank
|
1254 |
+
self.file_name = file_name
|
1255 |
+
self.run_test(test_name, parent_pipe)
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_dtype.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
# Functions and classes for describing the dtypes a function supports
|
7 |
+
# NOTE: these helpers should correspond to PyTorch's C++ dispatch macros
|
8 |
+
|
9 |
+
# Verifies each given dtype is a torch.dtype
|
10 |
+
def _validate_dtypes(*dtypes):
|
11 |
+
for dtype in dtypes:
|
12 |
+
assert isinstance(dtype, torch.dtype)
|
13 |
+
return dtypes
|
14 |
+
|
15 |
+
# class for tuples corresponding to a PyTorch dispatch macro
|
16 |
+
class _dispatch_dtypes(tuple):
|
17 |
+
def __add__(self, other):
|
18 |
+
assert isinstance(other, tuple)
|
19 |
+
return _dispatch_dtypes(tuple.__add__(self, other))
|
20 |
+
|
21 |
+
_empty_types = _dispatch_dtypes(())
|
22 |
+
def empty_types():
|
23 |
+
return _empty_types
|
24 |
+
|
25 |
+
_floating_types = _dispatch_dtypes((torch.float32, torch.float64))
|
26 |
+
def floating_types():
|
27 |
+
return _floating_types
|
28 |
+
|
29 |
+
_floating_types_and_half = _floating_types + (torch.half,)
|
30 |
+
def floating_types_and_half():
|
31 |
+
return _floating_types_and_half
|
32 |
+
|
33 |
+
def floating_types_and(*dtypes):
|
34 |
+
return _floating_types + _validate_dtypes(*dtypes)
|
35 |
+
|
36 |
+
_floating_and_complex_types = _floating_types + (torch.cfloat, torch.cdouble)
|
37 |
+
def floating_and_complex_types():
|
38 |
+
return _floating_and_complex_types
|
39 |
+
|
40 |
+
def floating_and_complex_types_and(*dtypes):
|
41 |
+
return _floating_and_complex_types + _validate_dtypes(*dtypes)
|
42 |
+
|
43 |
+
_double_types = _dispatch_dtypes((torch.float64, torch.complex128))
|
44 |
+
def double_types():
|
45 |
+
return _double_types
|
46 |
+
|
47 |
+
_integral_types = _dispatch_dtypes((torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64))
|
48 |
+
def integral_types():
|
49 |
+
return _integral_types
|
50 |
+
|
51 |
+
def integral_types_and(*dtypes):
|
52 |
+
return _integral_types + _validate_dtypes(*dtypes)
|
53 |
+
|
54 |
+
_all_types = _floating_types + _integral_types
|
55 |
+
def all_types():
|
56 |
+
return _all_types
|
57 |
+
|
58 |
+
def all_types_and(*dtypes):
|
59 |
+
return _all_types + _validate_dtypes(*dtypes)
|
60 |
+
|
61 |
+
_complex_types = _dispatch_dtypes((torch.cfloat, torch.cdouble))
|
62 |
+
def complex_types():
|
63 |
+
return _complex_types
|
64 |
+
|
65 |
+
def complex_types_and(*dtypes):
|
66 |
+
return _complex_types + _validate_dtypes(*dtypes)
|
67 |
+
|
68 |
+
_all_types_and_complex = _all_types + _complex_types
|
69 |
+
def all_types_and_complex():
|
70 |
+
return _all_types_and_complex
|
71 |
+
|
72 |
+
def all_types_and_complex_and(*dtypes):
|
73 |
+
return _all_types_and_complex + _validate_dtypes(*dtypes)
|
74 |
+
|
75 |
+
_all_types_and_half = _all_types + (torch.half,)
|
76 |
+
def all_types_and_half():
|
77 |
+
return _all_types_and_half
|
78 |
+
|
79 |
+
def custom_types(*dtypes):
|
80 |
+
"""Create a list of arbitrary dtypes"""
|
81 |
+
return _empty_types + _validate_dtypes(*dtypes)
|
82 |
+
|
83 |
+
# The functions below are used for convenience in our test suite and thus have no corresponding C++ dispatch macro
|
84 |
+
|
85 |
+
# See AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
|
86 |
+
def get_all_dtypes(include_half=True,
|
87 |
+
include_bfloat16=True,
|
88 |
+
include_bool=True,
|
89 |
+
include_complex=True,
|
90 |
+
include_complex32=False,
|
91 |
+
include_qint=False,
|
92 |
+
) -> List[torch.dtype]:
|
93 |
+
dtypes = get_all_int_dtypes() + get_all_fp_dtypes(include_half=include_half, include_bfloat16=include_bfloat16)
|
94 |
+
if include_bool:
|
95 |
+
dtypes.append(torch.bool)
|
96 |
+
if include_complex:
|
97 |
+
dtypes += get_all_complex_dtypes(include_complex32)
|
98 |
+
if include_qint:
|
99 |
+
dtypes += get_all_qint_dtypes()
|
100 |
+
return dtypes
|
101 |
+
|
102 |
+
def get_all_math_dtypes(device) -> List[torch.dtype]:
|
103 |
+
return get_all_int_dtypes() + get_all_fp_dtypes(include_half=device.startswith('cuda'),
|
104 |
+
include_bfloat16=False) + get_all_complex_dtypes()
|
105 |
+
|
106 |
+
def get_all_complex_dtypes(include_complex32=False) -> List[torch.dtype]:
|
107 |
+
return [torch.complex32, torch.complex64, torch.complex128] if include_complex32 else [torch.complex64, torch.complex128]
|
108 |
+
|
109 |
+
|
110 |
+
def get_all_int_dtypes() -> List[torch.dtype]:
|
111 |
+
return [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
|
112 |
+
|
113 |
+
|
114 |
+
def get_all_fp_dtypes(include_half=True, include_bfloat16=True) -> List[torch.dtype]:
|
115 |
+
dtypes = [torch.float32, torch.float64]
|
116 |
+
if include_half:
|
117 |
+
dtypes.append(torch.float16)
|
118 |
+
if include_bfloat16:
|
119 |
+
dtypes.append(torch.bfloat16)
|
120 |
+
return dtypes
|
121 |
+
|
122 |
+
|
123 |
+
def get_all_qint_dtypes() -> List[torch.dtype]:
|
124 |
+
return [torch.qint8, torch.quint8, torch.qint32, torch.quint4x2, torch.quint2x4]
|
125 |
+
|
126 |
+
|
127 |
+
float_to_corresponding_complex_type_map = {
|
128 |
+
torch.float16: torch.complex32,
|
129 |
+
torch.float32: torch.complex64,
|
130 |
+
torch.float64: torch.complex128,
|
131 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py
ADDED
@@ -0,0 +1,1219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Owner(s): ["oncall: distributed"]
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
from contextlib import nullcontext
|
9 |
+
from copy import deepcopy
|
10 |
+
from enum import auto, Enum
|
11 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
12 |
+
from unittest import mock
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.distributed as dist
|
16 |
+
import torch.nn as nn
|
17 |
+
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
|
18 |
+
from torch.distributed.fsdp._common_utils import TrainingState
|
19 |
+
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
|
20 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import (
|
21 |
+
BackwardPrefetch,
|
22 |
+
MixedPrecision,
|
23 |
+
ShardingStrategy,
|
24 |
+
)
|
25 |
+
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
|
26 |
+
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy, wrap
|
27 |
+
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
|
28 |
+
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
|
29 |
+
from torch.testing._internal.common_distributed import (
|
30 |
+
MultiProcessTestCase,
|
31 |
+
MultiThreadedTestCase,
|
32 |
+
TEST_SKIPS,
|
33 |
+
)
|
34 |
+
from torch.testing._internal.common_utils import FILE_SCHEMA, get_cycles_per_ms
|
35 |
+
|
36 |
+
|
37 |
+
class FSDPInitMode(Enum):
|
38 |
+
# No FSDP wrapping
|
39 |
+
NO_FSDP = auto()
|
40 |
+
# FSDP recursive wrapping
|
41 |
+
RECURSIVE = auto()
|
42 |
+
# TODO: FSDP non-recursive wrapping
|
43 |
+
# NONRECURSIVE = auto()
|
44 |
+
|
45 |
+
|
46 |
+
class CUDAInitMode(Enum):
|
47 |
+
# Move model to CUDA before passing to the FSDP constructor
|
48 |
+
CUDA_BEFORE = auto()
|
49 |
+
# Move model to CUDA after passing to the FSDP constructor
|
50 |
+
CUDA_AFTER = auto()
|
51 |
+
# Keep on CPU
|
52 |
+
CUDA_NEVER = auto()
|
53 |
+
|
54 |
+
|
55 |
+
class FSDPTestModel(nn.Module, ABC):
|
56 |
+
"""This defines the interface expected from all models used commonly for
|
57 |
+
FSDP unit tests."""
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
def get_input(self, device) -> Tuple[torch.Tensor, ...]:
|
61 |
+
"""Returns an input for the model as as tuple."""
|
62 |
+
...
|
63 |
+
|
64 |
+
@abstractmethod
|
65 |
+
def get_loss(self, input, output) -> torch.Tensor:
|
66 |
+
"""Returns the loss given the input and output."""
|
67 |
+
...
|
68 |
+
|
69 |
+
@abstractmethod
|
70 |
+
def run_backward(self, loss) -> None:
|
71 |
+
"""Runs the backward pass (e.g. including ``loss.backward()``)."""
|
72 |
+
...
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
@abstractmethod
|
76 |
+
def init(
|
77 |
+
group: dist.ProcessGroup,
|
78 |
+
fsdp_init_mode: FSDPInitMode,
|
79 |
+
*init_args: Any,
|
80 |
+
cuda_init_mode: CUDAInitMode,
|
81 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
82 |
+
deterministic: bool = False,
|
83 |
+
**init_kwargs: Any,
|
84 |
+
) -> nn.Module:
|
85 |
+
"""Initializes an instance of this model."""
|
86 |
+
...
|
87 |
+
|
88 |
+
|
89 |
+
def _assert_module_states(
|
90 |
+
model: nn.Module,
|
91 |
+
process_group: dist.ProcessGroup,
|
92 |
+
assert_fn: Callable,
|
93 |
+
):
|
94 |
+
"""
|
95 |
+
All-gathers module states across ranks and calls ``assert_fn`` on each pair
|
96 |
+
of corresponding states from rank 0 and a nonzero rank. For example, if
|
97 |
+
``assert_fn`` is ``self.assertEqual()``, then this checks that all module
|
98 |
+
states are equal across ranks.
|
99 |
+
"""
|
100 |
+
# Include names for debugging convenience
|
101 |
+
named_module_states = [
|
102 |
+
(param_name, param.detach().cpu())
|
103 |
+
for param_name, param in model.named_parameters()
|
104 |
+
]
|
105 |
+
named_module_states += [
|
106 |
+
(buffer_name, buffer.detach().cpu())
|
107 |
+
for buffer_name, buffer in model.named_buffers()
|
108 |
+
]
|
109 |
+
world_size = dist.get_world_size(process_group)
|
110 |
+
olist = [None for _ in range(world_size)]
|
111 |
+
dist.all_gather_object(olist, named_module_states, group=process_group)
|
112 |
+
rank0_states = olist[0]
|
113 |
+
for state in olist[1:]:
|
114 |
+
for (_, p1), (_, p2) in zip(rank0_states, state):
|
115 |
+
assert_fn(p1, p2)
|
116 |
+
|
117 |
+
|
118 |
+
def _zero_model(
|
119 |
+
model: nn.Module,
|
120 |
+
zero_buffers: bool = False,
|
121 |
+
summon_full=True,
|
122 |
+
):
|
123 |
+
"""Zeros the parameters and optionally buffers of ``model`` in place."""
|
124 |
+
ctx = FSDP.summon_full_params(model) if summon_full else nullcontext()
|
125 |
+
with ctx:
|
126 |
+
for param in model.parameters():
|
127 |
+
with torch.no_grad():
|
128 |
+
param.zero_()
|
129 |
+
if zero_buffers:
|
130 |
+
for buffer in model.buffers():
|
131 |
+
with torch.no_grad():
|
132 |
+
buffer.zero_()
|
133 |
+
|
134 |
+
|
135 |
+
def _get_state_dict(model, cpu_offload=False, half=False):
|
136 |
+
if not cpu_offload:
|
137 |
+
model = model.cuda()
|
138 |
+
if half:
|
139 |
+
model.half()
|
140 |
+
|
141 |
+
return model.state_dict()
|
142 |
+
|
143 |
+
|
144 |
+
def subtest_name(test_name_mapping, *args):
|
145 |
+
return "_".join(
|
146 |
+
[test_name_mapping[str(s)] if s is not None else "none" for s in args]
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
def _broadcast_state_dict(rank, state_dict):
|
151 |
+
# For non-FSDP roots, some parts of the model state on rank 0 may
|
152 |
+
# not be on CPU, so we move everything to CPU to avoid issues like:
|
153 |
+
# https://github.com/pytorch/pytorch/issues/77113.
|
154 |
+
for param_name, param in state_dict.items():
|
155 |
+
if param.device != torch.device("cpu"):
|
156 |
+
state_dict[param_name] = param.cpu()
|
157 |
+
|
158 |
+
olist = [state_dict if rank == 0 else None]
|
159 |
+
dist.broadcast_object_list(olist)
|
160 |
+
state_dict = olist[0]
|
161 |
+
# Ensure that the state is on CUDA
|
162 |
+
for param_name in state_dict.keys():
|
163 |
+
state_dict[param_name] = state_dict[param_name].cuda()
|
164 |
+
return state_dict
|
165 |
+
|
166 |
+
|
167 |
+
def get_full_params(model: nn.Module, recurse: bool = True):
|
168 |
+
"""
|
169 |
+
Returns the full unsharded parameters of ``model``. Any FSDP-managed
|
170 |
+
parameters offloaded to CPU are moved to GPU in the returned list.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
recurse (bool): If ``False``, only unshards the parameters immediate to
|
174 |
+
``model``; if ``True``, recurses through the module hierarchy
|
175 |
+
rooted at ``model``.
|
176 |
+
"""
|
177 |
+
with FSDP.summon_full_params(model, recurse=recurse):
|
178 |
+
return deepcopy(list(model.parameters()))
|
179 |
+
|
180 |
+
|
181 |
+
def _maybe_cuda(model: nn.Module, move_to_cuda: bool):
|
182 |
+
return model.cuda() if move_to_cuda else model
|
183 |
+
|
184 |
+
|
185 |
+
def _maybe_wrap_fsdp(model: nn.Module, wrap_fsdp: bool, *args, **kwargs):
|
186 |
+
return model if not wrap_fsdp else FSDP(model, *args, **kwargs)
|
187 |
+
|
188 |
+
|
189 |
+
class DummyProcessGroup:
|
190 |
+
def __init__(self, rank: int, size: int):
|
191 |
+
self._rank = rank
|
192 |
+
self._size = size
|
193 |
+
|
194 |
+
def rank(self) -> int:
|
195 |
+
return self._rank
|
196 |
+
|
197 |
+
def size(self) -> int:
|
198 |
+
return self._size
|
199 |
+
|
200 |
+
def allreduce(self, *args, **kwargs):
|
201 |
+
dist_wait = mock.Mock()
|
202 |
+
|
203 |
+
def get_future():
|
204 |
+
future = torch.futures.Future()
|
205 |
+
future.set_result(1)
|
206 |
+
return future
|
207 |
+
|
208 |
+
dist_wait.get_future = get_future
|
209 |
+
return dist_wait
|
210 |
+
|
211 |
+
|
212 |
+
class TransformerWithSharedParams(FSDPTestModel):
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
group: dist.ProcessGroup,
|
216 |
+
cuda_init_mode: CUDAInitMode,
|
217 |
+
add_bn: bool,
|
218 |
+
deterministic: bool,
|
219 |
+
):
|
220 |
+
super().__init__()
|
221 |
+
self.rank = group.rank()
|
222 |
+
self.world_size = group.size()
|
223 |
+
if deterministic:
|
224 |
+
torch.manual_seed(0)
|
225 |
+
d_vocab = 23
|
226 |
+
d_model = 16
|
227 |
+
|
228 |
+
self.embed_tokens = nn.Embedding(d_vocab, d_model)
|
229 |
+
self.transformer = nn.Transformer(
|
230 |
+
d_model=d_model,
|
231 |
+
num_encoder_layers=2,
|
232 |
+
num_decoder_layers=2,
|
233 |
+
dim_feedforward=8,
|
234 |
+
dropout=0.1,
|
235 |
+
)
|
236 |
+
self.output_proj = nn.Linear(d_model, d_vocab)
|
237 |
+
|
238 |
+
# share the embedding and output projection weights
|
239 |
+
self.output_proj.weight = self.embed_tokens.weight
|
240 |
+
self.register_buffer(
|
241 |
+
"vocab_bias", self.embed_tokens.weight.new_ones((d_model,))
|
242 |
+
)
|
243 |
+
self.register_buffer(
|
244 |
+
"long_buffer",
|
245 |
+
torch.zeros_like(self.vocab_bias, dtype=torch.long),
|
246 |
+
) # type: ignore[arg-type]
|
247 |
+
|
248 |
+
self.bs = 2
|
249 |
+
self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity()
|
250 |
+
if cuda_init_mode == CUDAInitMode.CUDA_BEFORE:
|
251 |
+
self = self.cuda()
|
252 |
+
if deterministic:
|
253 |
+
self.eval()
|
254 |
+
|
255 |
+
def get_input(self, device):
|
256 |
+
torch.manual_seed(1 + self.rank) # keep everything deterministic
|
257 |
+
src = torch.arange(12, device=device).view(6, self.bs) # T x B
|
258 |
+
tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B
|
259 |
+
return (src, tgt)
|
260 |
+
|
261 |
+
def forward(self, src_ids, tgt_ids):
|
262 |
+
src = self.embed_tokens(src_ids)
|
263 |
+
src = src + self.vocab_bias + self.long_buffer.type_as(src) # type: ignore[operator]
|
264 |
+
tgt = self.embed_tokens(tgt_ids)
|
265 |
+
tgt = self.bn(tgt)
|
266 |
+
x = self.transformer(src, tgt)
|
267 |
+
return self.output_proj(x)
|
268 |
+
|
269 |
+
def get_loss(self, input, output):
|
270 |
+
_, tgt = input
|
271 |
+
return nn.functional.cross_entropy(
|
272 |
+
output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum"
|
273 |
+
)
|
274 |
+
|
275 |
+
def run_backward(self, loss):
|
276 |
+
loss.backward()
|
277 |
+
|
278 |
+
@staticmethod
|
279 |
+
def init(
|
280 |
+
group: dist.ProcessGroup,
|
281 |
+
fsdp_init_mode: FSDPInitMode,
|
282 |
+
cuda_init_mode: CUDAInitMode,
|
283 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
284 |
+
deterministic: bool = False,
|
285 |
+
add_bn: bool = True,
|
286 |
+
) -> Union[nn.Module, FSDP]:
|
287 |
+
"""
|
288 |
+
Initializes a :class:`TransformerWithSharedParams` instance.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
292 |
+
any modules with FSDP. If ``RECURSIVE``, then wraps with
|
293 |
+
top-level FSDP. By default, the top-level FSDP uses the
|
294 |
+
``ModuleWrapPolicy`` for encoder and decoder layers, but a
|
295 |
+
different auto wrap policy may be specified via
|
296 |
+
``fsdp_kwargs``.
|
297 |
+
cuda_init_mode (CUDAInitMode): Determines model movement to CUDA.
|
298 |
+
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
299 |
+
forwarded to the FSDP constructor.
|
300 |
+
deterministic (bool): Whether to make the model deterministic
|
301 |
+
across constructions.
|
302 |
+
add_bn (bool): Whether to include batch norm in the model.
|
303 |
+
"""
|
304 |
+
|
305 |
+
if fsdp_kwargs is None:
|
306 |
+
fsdp_kwargs = {}
|
307 |
+
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
308 |
+
if isinstance(group, tuple):
|
309 |
+
pg = group[0]
|
310 |
+
else:
|
311 |
+
pg = group
|
312 |
+
return TransformerWithSharedParams(
|
313 |
+
pg, cuda_init_mode, add_bn, deterministic
|
314 |
+
)
|
315 |
+
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
316 |
+
# Default to the `ModuleWrapPolicy`
|
317 |
+
if "auto_wrap_policy" not in fsdp_kwargs:
|
318 |
+
auto_wrap_policy = ModuleWrapPolicy(
|
319 |
+
{
|
320 |
+
TransformerEncoderLayer,
|
321 |
+
TransformerDecoderLayer,
|
322 |
+
}
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
auto_wrap_policy = fsdp_kwargs.pop("auto_wrap_policy")
|
326 |
+
|
327 |
+
if (
|
328 |
+
"sharding_strategy" in fsdp_kwargs
|
329 |
+
and fsdp_kwargs["sharding_strategy"]
|
330 |
+
in {ShardingStrategy.HYBRID_SHARD, ShardingStrategy._HYBRID_SHARD_ZERO2}
|
331 |
+
and not isinstance(group, tuple)
|
332 |
+
):
|
333 |
+
fsdp_pg = None
|
334 |
+
else:
|
335 |
+
fsdp_pg = group
|
336 |
+
|
337 |
+
if isinstance(group, tuple):
|
338 |
+
tformer_pg = group[0]
|
339 |
+
else:
|
340 |
+
tformer_pg = group
|
341 |
+
|
342 |
+
m = TransformerWithSharedParams(
|
343 |
+
tformer_pg, cuda_init_mode, add_bn, deterministic
|
344 |
+
)
|
345 |
+
fsdp_model = FSDP(
|
346 |
+
m,
|
347 |
+
fsdp_pg,
|
348 |
+
auto_wrap_policy=auto_wrap_policy,
|
349 |
+
**fsdp_kwargs,
|
350 |
+
)
|
351 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
352 |
+
fsdp_model = fsdp_model.cuda()
|
353 |
+
return fsdp_model
|
354 |
+
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
355 |
+
|
356 |
+
def get_ignored_modules(self):
|
357 |
+
return [self.transformer]
|
358 |
+
|
359 |
+
|
360 |
+
class NestedWrappedModule(FSDPTestModel):
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
group: dist.ProcessGroup,
|
364 |
+
wrap_fsdp: bool,
|
365 |
+
cuda_init_mode: CUDAInitMode,
|
366 |
+
deterministic: bool,
|
367 |
+
**fsdp_kwargs,
|
368 |
+
):
|
369 |
+
super().__init__()
|
370 |
+
self.rank = group.rank()
|
371 |
+
self.world_size = group.size()
|
372 |
+
move_to_cuda = cuda_init_mode == CUDAInitMode.CUDA_BEFORE
|
373 |
+
|
374 |
+
def _maybe_wrap(layer):
|
375 |
+
if wrap_fsdp:
|
376 |
+
return FSDP(layer, group, **fsdp_kwargs)
|
377 |
+
return layer
|
378 |
+
|
379 |
+
if deterministic:
|
380 |
+
torch.manual_seed(0)
|
381 |
+
self.module = nn.Sequential(
|
382 |
+
_maybe_cuda(nn.Linear(8, 4), move_to_cuda),
|
383 |
+
_maybe_wrap(
|
384 |
+
nn.Sequential(
|
385 |
+
_maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)),
|
386 |
+
_maybe_cuda(nn.Linear(16, 16), move_to_cuda),
|
387 |
+
),
|
388 |
+
),
|
389 |
+
_maybe_wrap(_maybe_cuda(nn.Linear(16, 4), move_to_cuda)),
|
390 |
+
_maybe_cuda(nn.Linear(4, 8), move_to_cuda),
|
391 |
+
)
|
392 |
+
|
393 |
+
def get_input(self, device):
|
394 |
+
torch.manual_seed(1 + self.rank) # keep everything deterministic
|
395 |
+
return (torch.rand(4, 8, device=device),)
|
396 |
+
|
397 |
+
def forward(self, x):
|
398 |
+
return self.module(x)
|
399 |
+
|
400 |
+
def get_loss(self, input, output):
|
401 |
+
loss = output.sum()
|
402 |
+
return loss
|
403 |
+
|
404 |
+
def run_backward(self, loss):
|
405 |
+
loss.backward()
|
406 |
+
|
407 |
+
@staticmethod
|
408 |
+
def init(
|
409 |
+
group: dist.ProcessGroup,
|
410 |
+
fsdp_init_mode: FSDPInitMode,
|
411 |
+
cuda_init_mode: CUDAInitMode,
|
412 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
413 |
+
deterministic: bool = False,
|
414 |
+
) -> nn.Module:
|
415 |
+
"""
|
416 |
+
Initializes a :class:`NestedWrappedModule` instance.
|
417 |
+
|
418 |
+
Args:
|
419 |
+
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
420 |
+
any modules with FSDP. If ``RECURSIVE``, then wraps some nested
|
421 |
+
modules with FSDP but not the top-level module. The model may
|
422 |
+
later be wrapped with a top-level FSDP external to this method
|
423 |
+
if desired.
|
424 |
+
cuda_init_mode (CUDAInitMode): Determines model movement to CUDA.
|
425 |
+
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
426 |
+
forwarded to the FSDP constructor.
|
427 |
+
deterministic (bool): Whether to make the model deterministic
|
428 |
+
across constructions.
|
429 |
+
"""
|
430 |
+
if fsdp_kwargs is None:
|
431 |
+
fsdp_kwargs = {}
|
432 |
+
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
433 |
+
return NestedWrappedModule(
|
434 |
+
group,
|
435 |
+
wrap_fsdp=False,
|
436 |
+
cuda_init_mode=cuda_init_mode,
|
437 |
+
deterministic=deterministic,
|
438 |
+
)
|
439 |
+
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
440 |
+
# Does not wrap with top-level FSDP
|
441 |
+
fsdp_model = NestedWrappedModule(
|
442 |
+
group,
|
443 |
+
wrap_fsdp=True,
|
444 |
+
cuda_init_mode=cuda_init_mode,
|
445 |
+
deterministic=deterministic,
|
446 |
+
**fsdp_kwargs,
|
447 |
+
)
|
448 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
449 |
+
fsdp_model = fsdp_model.cuda()
|
450 |
+
return fsdp_model
|
451 |
+
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
452 |
+
|
453 |
+
|
454 |
+
class AlwaysWrapNestedWrappedModule(NestedWrappedModule):
|
455 |
+
@staticmethod
|
456 |
+
def init(
|
457 |
+
group: dist.ProcessGroup,
|
458 |
+
fsdp_init_mode: FSDPInitMode,
|
459 |
+
cuda_init_mode: CUDAInitMode,
|
460 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
461 |
+
deterministic: bool = False,
|
462 |
+
):
|
463 |
+
"""
|
464 |
+
Initializes a :class:`NestedWrappedModule` instance, but unlike
|
465 |
+
:meth:`NestedWrappedModule.init`, for the ``RECURSIVE`` init mode, this
|
466 |
+
wraps with top-level FSDP and the ``always_wrap_policy()`` auto wrap
|
467 |
+
policy.
|
468 |
+
"""
|
469 |
+
super_ = super(AlwaysWrapNestedWrappedModule, AlwaysWrapNestedWrappedModule)
|
470 |
+
model = super_.init(
|
471 |
+
group=group,
|
472 |
+
fsdp_init_mode=FSDPInitMode.NO_FSDP,
|
473 |
+
cuda_init_mode=cuda_init_mode,
|
474 |
+
fsdp_kwargs=fsdp_kwargs,
|
475 |
+
deterministic=deterministic,
|
476 |
+
)
|
477 |
+
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
478 |
+
return model
|
479 |
+
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
480 |
+
fsdp_model = FSDP(model, auto_wrap_policy=always_wrap_policy, **fsdp_kwargs)
|
481 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
482 |
+
fsdp_model = fsdp_model.cuda()
|
483 |
+
return fsdp_model
|
484 |
+
|
485 |
+
|
486 |
+
class NonUniformReqGradNWM(NestedWrappedModule):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
group: dist.ProcessGroup,
|
490 |
+
wrap_fsdp: bool,
|
491 |
+
cuda_init_mode: CUDAInitMode,
|
492 |
+
deterministic: bool,
|
493 |
+
**fsdp_kwargs,
|
494 |
+
):
|
495 |
+
super(NestedWrappedModule, self).__init__()
|
496 |
+
# This `__init__` only differs from `NestedWrappedModule.__init__` in that
|
497 |
+
# the last two `nn.Linear` layers are FSDP wrapped in a `nn.Sequential`
|
498 |
+
# container. This arrangement results in all elements of the last two parameters
|
499 |
+
# residing on a single rank. Freezing all parameters except those two allows us
|
500 |
+
# to verify that `ShardedGradScaler` accommodates situations where some ranks
|
501 |
+
# have no (non-zero sized) parameter shards.
|
502 |
+
self.rank = group.rank()
|
503 |
+
self.world_size = group.size()
|
504 |
+
move_to_cuda = cuda_init_mode == CUDAInitMode.CUDA_BEFORE
|
505 |
+
|
506 |
+
def _maybe_wrap(layer):
|
507 |
+
if wrap_fsdp:
|
508 |
+
return FSDP(layer, group, **fsdp_kwargs)
|
509 |
+
return layer
|
510 |
+
|
511 |
+
if deterministic:
|
512 |
+
torch.manual_seed(0)
|
513 |
+
self.module = nn.Sequential(
|
514 |
+
_maybe_cuda(nn.Linear(8, 4), move_to_cuda),
|
515 |
+
_maybe_wrap(
|
516 |
+
nn.Sequential(
|
517 |
+
_maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)),
|
518 |
+
_maybe_cuda(nn.Linear(16, 16), move_to_cuda),
|
519 |
+
),
|
520 |
+
),
|
521 |
+
_maybe_wrap(
|
522 |
+
nn.Sequential(
|
523 |
+
_maybe_cuda(nn.Linear(16, 4), move_to_cuda),
|
524 |
+
_maybe_cuda(nn.Linear(4, 8), move_to_cuda),
|
525 |
+
),
|
526 |
+
),
|
527 |
+
)
|
528 |
+
|
529 |
+
@staticmethod
|
530 |
+
def _set_nonuniform_req_grad(model, req_grad_mask) -> None:
|
531 |
+
for n, p in model.named_parameters():
|
532 |
+
if not re.match(req_grad_mask, n):
|
533 |
+
p.requires_grad_(False)
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def init(
|
537 |
+
group: dist.ProcessGroup,
|
538 |
+
fsdp_init_mode: FSDPInitMode,
|
539 |
+
cuda_init_mode: CUDAInitMode,
|
540 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
541 |
+
deterministic: bool = False,
|
542 |
+
):
|
543 |
+
"""
|
544 |
+
Initializes a :class:`NestedWrappedModule` instance, but unlike
|
545 |
+
:meth:`NestedWrappedModule.init`, it wraps a second :class:`torch.nn.Sequential`
|
546 |
+
container to enable the desired non-uniform ``requires_grad``
|
547 |
+
``use_orig_params=True`` tests. For both ``RECURSIVE`` and ``NO_FSDP``
|
548 |
+
init modes, freezes all parameters except the last two to validate
|
549 |
+
``ShardedGradScaler`` support for ranks with no (non-zero sized) local shards in
|
550 |
+
FSDP ``use_orig_params=True`` mode.
|
551 |
+
"""
|
552 |
+
# The parameters that should remain unfrozen are in `module.2.1`. The regex
|
553 |
+
# pattern below matches the relevant parameter names both with and without
|
554 |
+
# an interstitial FSDP module indicator (`_fsdp_wrapped_module`) present.
|
555 |
+
req_grad_pattern = re.compile(r"module\.2.*\.1.*")
|
556 |
+
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
557 |
+
ddp_model = NonUniformReqGradNWM(
|
558 |
+
group,
|
559 |
+
wrap_fsdp=False,
|
560 |
+
cuda_init_mode=cuda_init_mode,
|
561 |
+
deterministic=deterministic,
|
562 |
+
)
|
563 |
+
NonUniformReqGradNWM._set_nonuniform_req_grad(ddp_model, req_grad_pattern)
|
564 |
+
return ddp_model
|
565 |
+
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
566 |
+
if fsdp_kwargs is None:
|
567 |
+
fsdp_kwargs = {}
|
568 |
+
fsdp_model = NonUniformReqGradNWM(
|
569 |
+
group,
|
570 |
+
wrap_fsdp=True,
|
571 |
+
cuda_init_mode=cuda_init_mode,
|
572 |
+
deterministic=deterministic,
|
573 |
+
**fsdp_kwargs,
|
574 |
+
)
|
575 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
576 |
+
fsdp_model = fsdp_model.cuda()
|
577 |
+
NonUniformReqGradNWM._set_nonuniform_req_grad(fsdp_model, req_grad_pattern)
|
578 |
+
return fsdp_model
|
579 |
+
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
580 |
+
|
581 |
+
|
582 |
+
class ModuleWithDelay(FSDPTestModel):
|
583 |
+
"""This class wraps a :class:`FSDPTestModel` to optionally add a delay
|
584 |
+
after computing the loss and/or before the gradient reduction."""
|
585 |
+
|
586 |
+
def __init__(
|
587 |
+
self,
|
588 |
+
module: nn.Module,
|
589 |
+
delay_after_loss_ms: int,
|
590 |
+
delay_before_reduction_ms: int,
|
591 |
+
):
|
592 |
+
super().__init__()
|
593 |
+
self.delay_after_loss_ms = delay_after_loss_ms
|
594 |
+
self.delay_before_reduction_ms = delay_before_reduction_ms
|
595 |
+
self.module = module
|
596 |
+
|
597 |
+
def get_input(self, device):
|
598 |
+
return self.module.get_input(device)
|
599 |
+
|
600 |
+
def forward(self, x):
|
601 |
+
return self.module(x)
|
602 |
+
|
603 |
+
def get_loss(self, input, output):
|
604 |
+
loss = self.module.get_loss(input, output)
|
605 |
+
if self.delay_after_loss_ms > 0:
|
606 |
+
torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms()))
|
607 |
+
return loss
|
608 |
+
|
609 |
+
def run_backward(self, loss):
|
610 |
+
orig_reduce_scatter = torch.distributed.reduce_scatter_tensor
|
611 |
+
|
612 |
+
def _delayed_reduce_scatter(*args, **kwargs):
|
613 |
+
if self.delay_before_reduction_ms > 0:
|
614 |
+
torch.cuda._sleep(
|
615 |
+
int(self.delay_before_reduction_ms * get_cycles_per_ms())
|
616 |
+
)
|
617 |
+
return orig_reduce_scatter(*args, **kwargs)
|
618 |
+
|
619 |
+
with mock.patch(
|
620 |
+
"torch.distributed.reduce_scatter_tensor", _delayed_reduce_scatter
|
621 |
+
):
|
622 |
+
self.module.run_backward(loss)
|
623 |
+
|
624 |
+
@staticmethod
|
625 |
+
def init(
|
626 |
+
module_class: Type[FSDPTestModel],
|
627 |
+
*model_args: Any,
|
628 |
+
delay_after_loss_ms: int,
|
629 |
+
delay_before_reduction_ms: int,
|
630 |
+
**model_kwargs: Any,
|
631 |
+
):
|
632 |
+
"""
|
633 |
+
Args:
|
634 |
+
module_class (Type[FSDPTestModel]): Wrapped module class to which
|
635 |
+
to add delays.
|
636 |
+
model_args: Positional arguments forwarded to the ``module_class``
|
637 |
+
``init()``.
|
638 |
+
delay_after_loss_ms (int): Delay after computing the loss/before
|
639 |
+
the optimizer step (in ms).
|
640 |
+
delay_before_reduction_ms (int): Delay before reduce-scattering
|
641 |
+
gradients (in ms).
|
642 |
+
model_kwargs: Keyword arguments forwarded to the ``module_class``
|
643 |
+
``init()``.
|
644 |
+
"""
|
645 |
+
return ModuleWithDelay(
|
646 |
+
module_class.init(*model_args, **model_kwargs),
|
647 |
+
delay_after_loss_ms,
|
648 |
+
delay_before_reduction_ms,
|
649 |
+
)
|
650 |
+
|
651 |
+
|
652 |
+
class NestedWrappedModuleWithDelay(ModuleWithDelay):
|
653 |
+
@staticmethod
|
654 |
+
def init(
|
655 |
+
group: dist.ProcessGroup,
|
656 |
+
fsdp_init_mode: FSDPInitMode,
|
657 |
+
cuda_init_mode: CUDAInitMode = CUDAInitMode.CUDA_AFTER,
|
658 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
659 |
+
deterministic: bool = False,
|
660 |
+
delay_after_loss_ms: int = 0,
|
661 |
+
delay_before_reduction_ms: int = 0,
|
662 |
+
):
|
663 |
+
return super(NestedWrappedModuleWithDelay, NestedWrappedModuleWithDelay).init(
|
664 |
+
NestedWrappedModule,
|
665 |
+
group=group,
|
666 |
+
fsdp_init_mode=fsdp_init_mode,
|
667 |
+
cuda_init_mode=cuda_init_mode,
|
668 |
+
fsdp_kwargs=fsdp_kwargs,
|
669 |
+
deterministic=deterministic,
|
670 |
+
delay_after_loss_ms=delay_after_loss_ms,
|
671 |
+
delay_before_reduction_ms=delay_before_reduction_ms,
|
672 |
+
)
|
673 |
+
|
674 |
+
|
675 |
+
class DummyDDP(nn.Module):
|
676 |
+
def __init__(self, module):
|
677 |
+
super().__init__()
|
678 |
+
self.module = module
|
679 |
+
|
680 |
+
def forward(self, *args, **kwargs):
|
681 |
+
return self.module(*args, **kwargs)
|
682 |
+
|
683 |
+
|
684 |
+
class MixtureOfExperts(NestedWrappedModule):
|
685 |
+
def __init__(
|
686 |
+
self,
|
687 |
+
group: dist.ProcessGroup,
|
688 |
+
wrap_fsdp: bool,
|
689 |
+
cuda_init_mode: CUDAInitMode,
|
690 |
+
delay_before_free_ms: int,
|
691 |
+
deterministic: bool,
|
692 |
+
**fsdp_kwargs,
|
693 |
+
):
|
694 |
+
super().__init__(
|
695 |
+
group=group,
|
696 |
+
wrap_fsdp=wrap_fsdp,
|
697 |
+
cuda_init_mode=cuda_init_mode,
|
698 |
+
deterministic=deterministic,
|
699 |
+
)
|
700 |
+
self.group = group
|
701 |
+
self.delay_before_free_ms = delay_before_free_ms
|
702 |
+
self.wrap_fsdp = wrap_fsdp
|
703 |
+
self.move_to_cuda = cuda_init_mode == CUDAInitMode.CUDA_BEFORE
|
704 |
+
if deterministic:
|
705 |
+
# Give each rank different expert parameters
|
706 |
+
torch.manual_seed(42 + self.rank)
|
707 |
+
d_expert = 23
|
708 |
+
d_shared = 12
|
709 |
+
d_input = 8
|
710 |
+
expert = _maybe_cuda(nn.Linear(d_expert, d_shared), self.move_to_cuda)
|
711 |
+
|
712 |
+
self.num_expert_params = sum([p.numel() for p in expert.parameters()])
|
713 |
+
for p in expert.parameters():
|
714 |
+
p.expert = True # type: ignore[attr-defined]
|
715 |
+
|
716 |
+
if deterministic:
|
717 |
+
# Keep all other parameters the same across ranks
|
718 |
+
torch.manual_seed(0)
|
719 |
+
|
720 |
+
shared = _maybe_cuda(nn.Linear(d_shared, d_expert), self.move_to_cuda)
|
721 |
+
|
722 |
+
if wrap_fsdp:
|
723 |
+
# we create a process group of size 1 for the expert params
|
724 |
+
expert_group = torch.distributed.new_group(
|
725 |
+
[group.rank()]
|
726 |
+
) # world size 1 means no shard
|
727 |
+
expert = FSDP(expert, expert_group, **fsdp_kwargs) # type: ignore[assignment]
|
728 |
+
shared = FSDP(shared, group, **fsdp_kwargs) # type: ignore[assignment]
|
729 |
+
|
730 |
+
self.module = nn.Sequential(
|
731 |
+
_maybe_cuda(nn.Linear(d_input, d_shared), self.move_to_cuda),
|
732 |
+
shared,
|
733 |
+
expert,
|
734 |
+
_maybe_cuda(nn.Linear(d_shared, d_input), self.move_to_cuda),
|
735 |
+
)
|
736 |
+
|
737 |
+
def forward(self, x):
|
738 |
+
if self.delay_before_free_ms > 0:
|
739 |
+
expert = self.module[2]
|
740 |
+
if isinstance(expert, FSDP):
|
741 |
+
orig_reshard = torch.distributed.fsdp._runtime_utils._reshard
|
742 |
+
|
743 |
+
def _delayed_reshard(*args, **kwargs):
|
744 |
+
torch.cuda._sleep(
|
745 |
+
int(self.delay_before_free_ms * get_cycles_per_ms())
|
746 |
+
)
|
747 |
+
return orig_reshard(*args, **kwargs)
|
748 |
+
|
749 |
+
# This patch covers any `import torch..._reshard` uses.
|
750 |
+
with mock.patch(
|
751 |
+
"torch.distributed.fsdp._runtime_utils._reshard", _delayed_reshard
|
752 |
+
):
|
753 |
+
return self.module(x)
|
754 |
+
|
755 |
+
return self.module(x)
|
756 |
+
|
757 |
+
def run_backward(self, loss):
|
758 |
+
loss.backward()
|
759 |
+
# Manually reduce gradients if not wrapped in FullyShardedDataParallel
|
760 |
+
if not self.wrap_fsdp:
|
761 |
+
with torch.no_grad():
|
762 |
+
for p in self.parameters():
|
763 |
+
if hasattr(p, "expert"):
|
764 |
+
continue # these params don't need grad reduction
|
765 |
+
p.grad.div_(self.world_size)
|
766 |
+
torch.distributed.all_reduce(p.grad, group=self.group)
|
767 |
+
|
768 |
+
@staticmethod
|
769 |
+
def init(
|
770 |
+
group: dist.ProcessGroup,
|
771 |
+
fsdp_init_mode: FSDPInitMode,
|
772 |
+
cuda_init_mode: CUDAInitMode,
|
773 |
+
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
774 |
+
deterministic: bool = False,
|
775 |
+
delay_before_free_ms: int = 0,
|
776 |
+
):
|
777 |
+
"""
|
778 |
+
Initializes a :class:`MixtureOfExperts` instance.
|
779 |
+
|
780 |
+
Args:
|
781 |
+
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
782 |
+
any modules with FSDP. If ``RECURSIVE``, then wraps some nested
|
783 |
+
modules with FSDP, including the expert and shared layers, but
|
784 |
+
not the top-level module. The model may later be wrapped with a
|
785 |
+
top-level FSDP external to this method if desired.
|
786 |
+
cuda_init_mode (CUDAInitMode): Determines model movement to CUDA.
|
787 |
+
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
788 |
+
forwarded to the FSDP constructor.
|
789 |
+
deterministic (bool): Whether to make the model deterministic
|
790 |
+
across constructions.
|
791 |
+
delay_before_free_ms (int): Delay before resharding expert
|
792 |
+
parameters in the forward pass (in ms).
|
793 |
+
"""
|
794 |
+
if fsdp_kwargs is None:
|
795 |
+
fsdp_kwargs = {}
|
796 |
+
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
797 |
+
return MixtureOfExperts(
|
798 |
+
group,
|
799 |
+
wrap_fsdp=False,
|
800 |
+
cuda_init_mode=cuda_init_mode,
|
801 |
+
delay_before_free_ms=delay_before_free_ms,
|
802 |
+
deterministic=deterministic,
|
803 |
+
)
|
804 |
+
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
805 |
+
# Does not wrap with top-level FSDP
|
806 |
+
fsdp_model = MixtureOfExperts(
|
807 |
+
group,
|
808 |
+
wrap_fsdp=True,
|
809 |
+
cuda_init_mode=cuda_init_mode,
|
810 |
+
delay_before_free_ms=delay_before_free_ms,
|
811 |
+
deterministic=deterministic,
|
812 |
+
**fsdp_kwargs,
|
813 |
+
)
|
814 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
815 |
+
fsdp_model = fsdp_model.cuda()
|
816 |
+
return fsdp_model
|
817 |
+
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
818 |
+
|
819 |
+
|
820 |
+
def run_subtests(
|
821 |
+
cls_inst,
|
822 |
+
subtest_config: Dict[str, List[Any]],
|
823 |
+
test_fn: Callable,
|
824 |
+
*test_args,
|
825 |
+
**test_kwargs: Any,
|
826 |
+
):
|
827 |
+
"""
|
828 |
+
Runs a test function given by ``test_fn`` as a subtest according to the
|
829 |
+
configurations specified by ``subtest_config``. This amortizes the
|
830 |
+
costly setup overhead (including process spawn and initializing the
|
831 |
+
process group) over the subtests.
|
832 |
+
|
833 |
+
Args:
|
834 |
+
subtest_config (Dict[str, List[Any]]): A mapping from subtest
|
835 |
+
keyword argument name to a list of its possible values.
|
836 |
+
test_fn (Callable): A callable that runs the actual test.
|
837 |
+
test_args: Positional arguments to pass to ``test_fn``.
|
838 |
+
test_kwargs: Keyword arguments to pass to ``test_fn``.
|
839 |
+
"""
|
840 |
+
# Convert the config mapping to a list to have a fixed order
|
841 |
+
subtest_config_items: List[Tuple[str, List[Any]]] = list(subtest_config.items())
|
842 |
+
subtest_config_keys: List[str] = [item[0] for item in subtest_config_items]
|
843 |
+
subtest_config_values: List[List[Any]] = [item[1] for item in subtest_config_items]
|
844 |
+
for values in itertools.product(*subtest_config_values):
|
845 |
+
# Map keyword to chosen value
|
846 |
+
subtest_kwargs = dict(zip(subtest_config_keys, values))
|
847 |
+
with cls_inst.subTest(**subtest_kwargs):
|
848 |
+
test_fn(*test_args, **test_kwargs, **subtest_kwargs)
|
849 |
+
dist.barrier()
|
850 |
+
|
851 |
+
|
852 |
+
class FSDPTestMultiThread(MultiThreadedTestCase):
|
853 |
+
@property
|
854 |
+
def world_size(self):
|
855 |
+
return torch.cuda.device_count() if torch.cuda.is_available() else 4
|
856 |
+
|
857 |
+
def setUp(self):
|
858 |
+
super().setUp()
|
859 |
+
self._spawn_threads()
|
860 |
+
|
861 |
+
def run_subtests(self, *args, **kwargs):
|
862 |
+
return run_subtests(self, *args, **kwargs)
|
863 |
+
|
864 |
+
|
865 |
+
class FSDPTest(MultiProcessTestCase):
|
866 |
+
def setUp(self):
|
867 |
+
super().setUp()
|
868 |
+
# Set TORCH_NCCL_DESYNC_DEBUG=0 to disable the NCCL `workCleanupLoop()`,
|
869 |
+
# which can cause unit test flakiness:
|
870 |
+
# https://github.com/pytorch/pytorch/issues/90848
|
871 |
+
os.environ["TORCH_NCCL_DESYNC_DEBUG"] = "0"
|
872 |
+
self._spawn_processes()
|
873 |
+
|
874 |
+
@property
|
875 |
+
def world_size(self):
|
876 |
+
return min(torch.cuda.device_count(), 8) if torch.cuda.is_available() else 4
|
877 |
+
|
878 |
+
@property
|
879 |
+
def process_group(self):
|
880 |
+
return dist.distributed_c10d._get_default_group()
|
881 |
+
|
882 |
+
@property
|
883 |
+
def init_method(self):
|
884 |
+
return f"{FILE_SCHEMA}{self.file_name}"
|
885 |
+
|
886 |
+
def _check_cpu_offload(self, fsdp_model, cpu_offload):
|
887 |
+
self.assertEqual(cpu_offload, fsdp_model.cpu_offload)
|
888 |
+
|
889 |
+
def _check_backward_prefetch(self, fsdp_model, backward_prefetch):
|
890 |
+
self.assertEqual(backward_prefetch, fsdp_model.backward_prefetch)
|
891 |
+
|
892 |
+
def _check_forward_prefetch(self, fsdp_model, forward_prefetch):
|
893 |
+
self.assertEqual(forward_prefetch, fsdp_model.forward_prefetch)
|
894 |
+
|
895 |
+
def run_subtests(self, *args, **kwargs):
|
896 |
+
return run_subtests(self, *args, **kwargs)
|
897 |
+
|
898 |
+
@classmethod
|
899 |
+
def _run(cls, rank, test_name, file_name, pipe):
|
900 |
+
self = cls(test_name)
|
901 |
+
self.rank = rank
|
902 |
+
self.file_name = file_name
|
903 |
+
|
904 |
+
print(f"dist init r={self.rank}, world={self.world_size}")
|
905 |
+
|
906 |
+
# Specify gloo backend to make 'init_process_group()' succeed,
|
907 |
+
# Actual tests will be skipped if there is no enough GPUs.
|
908 |
+
backend = "nccl" if torch.cuda.is_available() else "gloo"
|
909 |
+
|
910 |
+
try:
|
911 |
+
dist.init_process_group(
|
912 |
+
init_method=self.init_method,
|
913 |
+
backend=backend,
|
914 |
+
world_size=int(self.world_size),
|
915 |
+
rank=self.rank,
|
916 |
+
)
|
917 |
+
except RuntimeError as e:
|
918 |
+
if "recompile" in e.args[0]:
|
919 |
+
sys.exit(TEST_SKIPS["backend_unavailable"].exit_code)
|
920 |
+
|
921 |
+
raise
|
922 |
+
|
923 |
+
if torch.cuda.is_available() and torch.cuda.device_count():
|
924 |
+
torch.cuda.set_device(self.rank % torch.cuda.device_count())
|
925 |
+
|
926 |
+
# Execute barrier prior to running test to ensure that every process
|
927 |
+
# has finished initialization and that the following test
|
928 |
+
# immediately exiting due to a skip doesn't cause flakiness.
|
929 |
+
dist.barrier()
|
930 |
+
|
931 |
+
self.run_test(test_name, pipe)
|
932 |
+
|
933 |
+
dist.barrier()
|
934 |
+
|
935 |
+
dist.destroy_process_group()
|
936 |
+
|
937 |
+
def _train_for_several_steps(
|
938 |
+
self,
|
939 |
+
model: nn.Module,
|
940 |
+
num_steps: int,
|
941 |
+
autocast: bool,
|
942 |
+
lr: float = 0.01,
|
943 |
+
fsdp_cpu_offload: Optional[CPUOffload] = None,
|
944 |
+
save_model: bool = False,
|
945 |
+
mixed_precision: Optional[MixedPrecision] = None,
|
946 |
+
enable_sharded_grad_scaler: bool = False,
|
947 |
+
use_pure_fp16: bool = False,
|
948 |
+
sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
|
949 |
+
):
|
950 |
+
cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params
|
951 |
+
|
952 |
+
model_device = next(model.parameters()).device
|
953 |
+
if sharded_grad_scaler_kwargs is None:
|
954 |
+
sharded_grad_scaler_kwargs = {}
|
955 |
+
sharded_grad_scaler = ShardedGradScaler(
|
956 |
+
enabled=enable_sharded_grad_scaler, **sharded_grad_scaler_kwargs
|
957 |
+
)
|
958 |
+
# use SGD with momentum instead of Adam, since Adam is scale invariant
|
959 |
+
# and this makes it bad for tests
|
960 |
+
optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
|
961 |
+
for _ in range(num_steps):
|
962 |
+
optim.zero_grad()
|
963 |
+
with torch.cuda.amp.autocast(enabled=autocast):
|
964 |
+
# Inputs always cuda regardless of cpu offloading, or model.device
|
965 |
+
input = model.module.get_input(torch.device("cuda"))
|
966 |
+
if use_pure_fp16 or (mixed_precision and not isinstance(model, FSDP)):
|
967 |
+
if isinstance(input, torch.Tensor):
|
968 |
+
input = input.half()
|
969 |
+
else:
|
970 |
+
input = tuple(x.half() for x in input)
|
971 |
+
output = model(*input)
|
972 |
+
# Post-forward, if CPU offloading model param should be on CPU.
|
973 |
+
if (
|
974 |
+
cpu_offload_params
|
975 |
+
and isinstance(model, FSDP)
|
976 |
+
# If not resharding after forward, the parameters are still
|
977 |
+
# exposed as unsharded views into the GPU flat parameter
|
978 |
+
and model.sharding_strategy
|
979 |
+
not in NO_RESHARD_AFTER_FORWARD_STRATEGIES
|
980 |
+
):
|
981 |
+
for p in model.parameters():
|
982 |
+
# Params should always be on CPU
|
983 |
+
self.assertEqual(p.device, torch.device("cpu"))
|
984 |
+
|
985 |
+
loss = model.module.get_loss(input, output).to(model_device)
|
986 |
+
loss = sharded_grad_scaler.scale(loss)
|
987 |
+
|
988 |
+
if not mixed_precision and not use_pure_fp16:
|
989 |
+
assert (
|
990 |
+
loss.dtype == torch.float32
|
991 |
+
), "loss data type should be float32, as the original \
|
992 |
+
parameter data type is float32."
|
993 |
+
else:
|
994 |
+
if use_pure_fp16:
|
995 |
+
self.assertEqual(loss.dtype, torch.float16)
|
996 |
+
# FSDP loss is fp16, DDP AMP loss is fp32
|
997 |
+
elif isinstance(model, FSDP):
|
998 |
+
self.assertEqual(loss.dtype, mixed_precision.param_dtype)
|
999 |
+
else:
|
1000 |
+
self.assertEqual(loss.dtype, torch.float32)
|
1001 |
+
model.module.run_backward(loss)
|
1002 |
+
# Post-backward, if CPU offloading model params should be on CPU.
|
1003 |
+
if cpu_offload_params and isinstance(model, FSDP):
|
1004 |
+
for p in model.parameters():
|
1005 |
+
# Params should always be on CPU
|
1006 |
+
self.assertEqual(p.device, torch.device("cpu"))
|
1007 |
+
# Unscale the gradients and step
|
1008 |
+
sharded_grad_scaler.step(optim)
|
1009 |
+
# Update the scale factor
|
1010 |
+
sharded_grad_scaler.update()
|
1011 |
+
# if save_model, simulate save + load.
|
1012 |
+
if save_model:
|
1013 |
+
state_dict = {k: v.clone() for k, v in model.state_dict().items()}
|
1014 |
+
# Zero params, if save/load state_dict did not work properly, this
|
1015 |
+
# would break the parity test with DDP.
|
1016 |
+
_zero_model(model)
|
1017 |
+
model.load_state_dict(state_dict)
|
1018 |
+
|
1019 |
+
if isinstance(model, FSDP):
|
1020 |
+
model._assert_state(TrainingState.IDLE)
|
1021 |
+
return loss.detach()
|
1022 |
+
|
1023 |
+
def _test_fsdp_parity(
|
1024 |
+
self,
|
1025 |
+
model_class: Type[FSDPTestModel],
|
1026 |
+
fsdp_init_mode: FSDPInitMode,
|
1027 |
+
cuda_init_mode: CUDAInitMode,
|
1028 |
+
ref_init_fn: Optional[Callable] = None,
|
1029 |
+
num_iters: int = 2,
|
1030 |
+
save_model: bool = True,
|
1031 |
+
cpu_offload: CPUOffload = CPUOffload(),
|
1032 |
+
backward_prefetch: Optional[BackwardPrefetch] = None,
|
1033 |
+
sharding_strategy: Optional[ShardingStrategy] = None,
|
1034 |
+
mixed_precision: Optional[MixedPrecision] = None,
|
1035 |
+
forward_prefetch: bool = False,
|
1036 |
+
use_orig_params: bool = False,
|
1037 |
+
enable_sharded_grad_scaler: bool = False,
|
1038 |
+
use_pure_fp16: bool = False,
|
1039 |
+
init_kwargs: Optional[Dict[str, Any]] = None,
|
1040 |
+
sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
|
1041 |
+
**fsdp_kwargs,
|
1042 |
+
):
|
1043 |
+
"""
|
1044 |
+
Tests FSDP training against a reference, which defaults to DDP but
|
1045 |
+
may be customized with ``ref_init_fn``.
|
1046 |
+
|
1047 |
+
Args:
|
1048 |
+
model_class (Type[FSDPTestModel]): A model class that inherits from
|
1049 |
+
``FSDPTestModel``, which defines the expected interface.
|
1050 |
+
fsdp_init_mode (FSDPInitMode): The mode to initialize the
|
1051 |
+
FSDP-wrapped model. This should not be ``NO_FSDP``.
|
1052 |
+
ref_init_fn (Optional[Callable]): A callable to invoke that wraps a
|
1053 |
+
non-wrapped model to construct the reference model, where this
|
1054 |
+
wrapper should provide data parallel semantics. If ``None``,
|
1055 |
+
then the callable defaults to the DDP constructor.
|
1056 |
+
"""
|
1057 |
+
assert (
|
1058 |
+
fsdp_init_mode != FSDPInitMode.NO_FSDP
|
1059 |
+
), "Expects an FSDP init mode that wraps with FSDP"
|
1060 |
+
if init_kwargs is None:
|
1061 |
+
init_kwargs = {}
|
1062 |
+
lr = 1e-2
|
1063 |
+
rank = self.process_group.rank()
|
1064 |
+
# Establish reference behavior with DDP
|
1065 |
+
model = model_class.init(
|
1066 |
+
self.process_group,
|
1067 |
+
FSDPInitMode.NO_FSDP,
|
1068 |
+
CUDAInitMode.CUDA_BEFORE,
|
1069 |
+
deterministic=True,
|
1070 |
+
**init_kwargs,
|
1071 |
+
)
|
1072 |
+
if ref_init_fn is None:
|
1073 |
+
ref_model = DDP(model, device_ids=[rank], output_device=rank)
|
1074 |
+
else:
|
1075 |
+
ref_model = ref_init_fn(model)
|
1076 |
+
if use_pure_fp16:
|
1077 |
+
ref_model = ref_model.half()
|
1078 |
+
ref_loss = self._train_for_several_steps(
|
1079 |
+
ref_model,
|
1080 |
+
num_iters,
|
1081 |
+
autocast=mixed_precision is not None,
|
1082 |
+
lr=lr,
|
1083 |
+
fsdp_cpu_offload=cpu_offload,
|
1084 |
+
mixed_precision=mixed_precision,
|
1085 |
+
enable_sharded_grad_scaler=enable_sharded_grad_scaler,
|
1086 |
+
use_pure_fp16=use_pure_fp16,
|
1087 |
+
sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
|
1088 |
+
)
|
1089 |
+
ddp_params = list(ref_model.parameters())
|
1090 |
+
# Check against FSDP behavior
|
1091 |
+
fsdp_kwargs.update(
|
1092 |
+
{
|
1093 |
+
"cpu_offload": cpu_offload,
|
1094 |
+
"backward_prefetch": backward_prefetch,
|
1095 |
+
"sharding_strategy": sharding_strategy,
|
1096 |
+
"mixed_precision": mixed_precision,
|
1097 |
+
"forward_prefetch": forward_prefetch,
|
1098 |
+
"use_orig_params": use_orig_params,
|
1099 |
+
}
|
1100 |
+
)
|
1101 |
+
try:
|
1102 |
+
fsdp_model = model_class.init(
|
1103 |
+
self.process_group,
|
1104 |
+
fsdp_init_mode,
|
1105 |
+
cuda_init_mode,
|
1106 |
+
fsdp_kwargs,
|
1107 |
+
deterministic=True,
|
1108 |
+
**init_kwargs,
|
1109 |
+
)
|
1110 |
+
except Exception as e:
|
1111 |
+
raise ValueError(f"Initializing {model_class} raised error {str(e)}") from e
|
1112 |
+
if not isinstance(fsdp_model, FSDP):
|
1113 |
+
# Enforce that we wrap with top-level FSDP since we are comparing
|
1114 |
+
# assuming a data parallel reference and some test models may not
|
1115 |
+
# do so in their `init()` method
|
1116 |
+
fsdp_model = FSDP(fsdp_model, self.process_group, **fsdp_kwargs)
|
1117 |
+
if use_pure_fp16:
|
1118 |
+
# Change the model parameter dtype after FSDP initialization
|
1119 |
+
fsdp_model = fsdp_model.half()
|
1120 |
+
if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
|
1121 |
+
fsdp_model = fsdp_model.cuda()
|
1122 |
+
offload_params = cpu_offload is not None and cpu_offload.offload_params
|
1123 |
+
# Offloading parameters with `CUDA_AFTER` should raise an error during
|
1124 |
+
# lazy initialization due to the parameter devices not being CPU;
|
1125 |
+
# otherwise, all parameter devices should be CPU
|
1126 |
+
expects_device_error = (
|
1127 |
+
offload_params and cuda_init_mode == CUDAInitMode.CUDA_AFTER
|
1128 |
+
)
|
1129 |
+
expects_cpu_device = (
|
1130 |
+
offload_params and cuda_init_mode != CUDAInitMode.CUDA_AFTER
|
1131 |
+
)
|
1132 |
+
if expects_cpu_device:
|
1133 |
+
cpu_device = torch.device("cpu")
|
1134 |
+
for param in fsdp_model.parameters():
|
1135 |
+
self.assertEqual(param.device, cpu_device)
|
1136 |
+
context = (
|
1137 |
+
self.assertRaisesRegex(
|
1138 |
+
RuntimeError,
|
1139 |
+
"An FSDP-managed module with parameter CPU offloading enabled "
|
1140 |
+
"has parameters on cuda",
|
1141 |
+
)
|
1142 |
+
if expects_device_error
|
1143 |
+
else nullcontext()
|
1144 |
+
)
|
1145 |
+
with context:
|
1146 |
+
fsdp_loss = self._train_for_several_steps(
|
1147 |
+
fsdp_model,
|
1148 |
+
num_iters,
|
1149 |
+
autocast=False,
|
1150 |
+
lr=lr,
|
1151 |
+
fsdp_cpu_offload=cpu_offload,
|
1152 |
+
save_model=save_model,
|
1153 |
+
mixed_precision=mixed_precision,
|
1154 |
+
enable_sharded_grad_scaler=enable_sharded_grad_scaler,
|
1155 |
+
use_pure_fp16=use_pure_fp16,
|
1156 |
+
sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
|
1157 |
+
)
|
1158 |
+
# No need to check for parameter and loss parity if expecting an error
|
1159 |
+
if expects_device_error:
|
1160 |
+
return
|
1161 |
+
# Check parameter devices are CPU if offloading to CPU before calling
|
1162 |
+
# `get_full_params()`, which will cast the parameters to FP32
|
1163 |
+
if offload_params:
|
1164 |
+
for param in fsdp_model.parameters():
|
1165 |
+
self.assertEqual(param.device, cpu_device)
|
1166 |
+
fsdp_loss = fsdp_loss.cuda()
|
1167 |
+
fsdp_unsharded_params = get_full_params(fsdp_model)
|
1168 |
+
# Do not check dtype since the reference DDP loss may not be the same
|
1169 |
+
# dtype as the FSDP loss in the case of mixed precision
|
1170 |
+
torch.testing.assert_close(ref_loss, fsdp_loss, check_dtype=False)
|
1171 |
+
# Do not check for parameter parity if using mixed precision since (1)
|
1172 |
+
# the DDP parameters are in FP16 (from `half()`) while the FSDP
|
1173 |
+
# parameters are in FP32 (from `summon_full_params()`) and (2) DDP runs
|
1174 |
+
# the optimizer in FP16 while FSDP runs it in FP32
|
1175 |
+
# TODO: Disable checking the parameters for pure FP16 due to floating
|
1176 |
+
# point inaccuracy. Note that this means that the backward pass is not
|
1177 |
+
# checked: https://github.com/pytorch/pytorch/issues/90784
|
1178 |
+
if mixed_precision is None and not use_pure_fp16:
|
1179 |
+
self.assertEqual(
|
1180 |
+
ddp_params,
|
1181 |
+
fsdp_unsharded_params,
|
1182 |
+
exact_device=True,
|
1183 |
+
msg="FSDP did not match DDP",
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
|
1187 |
+
class SkipModule(nn.Module):
|
1188 |
+
def __init__(self):
|
1189 |
+
super().__init__()
|
1190 |
+
self.lin = nn.Linear(10, 10, bias=False)
|
1191 |
+
|
1192 |
+
def forward(self, x):
|
1193 |
+
return self.lin(x)
|
1194 |
+
|
1195 |
+
|
1196 |
+
class NestedLinear(nn.Module):
|
1197 |
+
def __init__(self, fsdp_wrap):
|
1198 |
+
super().__init__()
|
1199 |
+
if fsdp_wrap:
|
1200 |
+
self.nested_linear = wrap(nn.Linear(10, 10, bias=False).cuda())
|
1201 |
+
else:
|
1202 |
+
self.nested_linear = nn.Linear(10, 10, bias=False).cuda()
|
1203 |
+
|
1204 |
+
def forward(self, x):
|
1205 |
+
return self.nested_linear(x)
|
1206 |
+
|
1207 |
+
|
1208 |
+
class SkipModel(nn.Module):
|
1209 |
+
def __init__(self, double_nest):
|
1210 |
+
super().__init__()
|
1211 |
+
self.linear = nn.Linear(10, 10, bias=False).cuda()
|
1212 |
+
self.linear_skip = SkipModule().cuda()
|
1213 |
+
self.nested_linear = wrap(NestedLinear(fsdp_wrap=double_nest))
|
1214 |
+
|
1215 |
+
def forward(self, x):
|
1216 |
+
x = self.linear(x)
|
1217 |
+
x = self.linear_skip(x)
|
1218 |
+
x = self.nested_linear(x)
|
1219 |
+
return x
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_jit.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Torch
|
2 |
+
import torch
|
3 |
+
import torch.cuda
|
4 |
+
import torch.jit
|
5 |
+
import torch.jit._logging
|
6 |
+
import torch.jit.frontend
|
7 |
+
import torch.jit.quantized
|
8 |
+
|
9 |
+
# Testing utils
|
10 |
+
from torch.testing._internal.common_dtype import floating_and_complex_types_and
|
11 |
+
from torch.testing._internal.common_utils import TestCase, \
|
12 |
+
freeze_rng_state, TemporaryFileName, enable_profiling_mode_for_profiling_tests, is_iterable_of_tensors
|
13 |
+
from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401
|
14 |
+
|
15 |
+
# Standard library
|
16 |
+
from itertools import chain
|
17 |
+
from typing import List, Union
|
18 |
+
from torch._C import TensorType
|
19 |
+
|
20 |
+
import io
|
21 |
+
|
22 |
+
def check_output_types(self, func, ref_outputs, args, kwargs):
|
23 |
+
graph = getattr(func, 'last_graph', None)
|
24 |
+
types = [o.type() for o in graph.outputs()]
|
25 |
+
self.assertTrue(len(types) == 1)
|
26 |
+
t = types[0]
|
27 |
+
torch._C._jit_assert_is_instance(ref_outputs, t)
|
28 |
+
|
29 |
+
# Test names in this set are only checked for a single derivative
|
30 |
+
nn_functional_single_grad = frozenset('test_nn_' + name for name in [
|
31 |
+
'pdist',
|
32 |
+
'multilabel_margin_loss',
|
33 |
+
'max_unpool3d',
|
34 |
+
'multi_margin_loss',
|
35 |
+
'binary_cross_entropy',
|
36 |
+
'binary_cross_entropy_size_average',
|
37 |
+
'ctc_loss',
|
38 |
+
'grid_sample',
|
39 |
+
])
|
40 |
+
|
41 |
+
def check_against_reference(self, func, reference_func, output_func, args, kwargs=None,
|
42 |
+
allow_unused=True, check_types=True, no_grad=False, no_gradgrad=False):
|
43 |
+
"""Verifies a function performs identically to some reference implementation.
|
44 |
+
|
45 |
+
Commonly, this is used to verify that a JIT implementation
|
46 |
+
(output_func) matches the behavior of the eager implementation
|
47 |
+
(reference_func).
|
48 |
+
"""
|
49 |
+
kwargs = kwargs if kwargs else {}
|
50 |
+
|
51 |
+
def allSum(vs):
|
52 |
+
if isinstance(vs, torch.Tensor):
|
53 |
+
vs = (vs,)
|
54 |
+
return sum((i + 1) * v.sum().abs() if v.dtype.is_complex else (i + 1) * v.sum()
|
55 |
+
for i, v in enumerate(vs)
|
56 |
+
if v is not None and v.dtype in floating_and_complex_types_and(torch.half, torch.bfloat16))
|
57 |
+
|
58 |
+
def clone_tensor(t, preserve_requires_grad):
|
59 |
+
require_grad = preserve_requires_grad and t.requires_grad
|
60 |
+
return t.detach().clone().requires_grad_(require_grad)
|
61 |
+
|
62 |
+
def clone_inputs(preserve_requires_grad: bool):
|
63 |
+
inputs: List[Union[torch.Tensor, List[torch.Tensor]]] = []
|
64 |
+
|
65 |
+
for arg in args:
|
66 |
+
if isinstance(arg, torch.Tensor):
|
67 |
+
inputs.append(clone_tensor(arg, preserve_requires_grad))
|
68 |
+
elif is_iterable_of_tensors(arg):
|
69 |
+
inputs.append([clone_tensor(t, preserve_requires_grad) for t in arg])
|
70 |
+
else:
|
71 |
+
inputs.append(arg)
|
72 |
+
|
73 |
+
return inputs
|
74 |
+
|
75 |
+
# Returns tensors in args that requires_grad, including tensors in TensorList args
|
76 |
+
def get_recording_tensors(args):
|
77 |
+
recording_tensors: List[torch.Tensor] = []
|
78 |
+
|
79 |
+
for arg in args:
|
80 |
+
if isinstance(arg, torch.Tensor) and arg.requires_grad:
|
81 |
+
recording_tensors.append(arg)
|
82 |
+
elif is_iterable_of_tensors(arg):
|
83 |
+
recording_tensors.extend(filter(lambda t: t.requires_grad, arg))
|
84 |
+
|
85 |
+
return recording_tensors
|
86 |
+
|
87 |
+
# test no gradients case
|
88 |
+
nograd_inputs = clone_inputs(preserve_requires_grad=False)
|
89 |
+
outputs = self.runAndSaveRNG(reference_func, nograd_inputs, kwargs)
|
90 |
+
with enable_profiling_mode_for_profiling_tests():
|
91 |
+
outputs_test = self.runAndSaveRNG(func, nograd_inputs, kwargs)
|
92 |
+
self.assertEqual(outputs, outputs_test)
|
93 |
+
|
94 |
+
if check_types:
|
95 |
+
check_output_types(self, func, outputs_test, nograd_inputs, kwargs)
|
96 |
+
|
97 |
+
if no_grad:
|
98 |
+
# skip grad tests
|
99 |
+
return
|
100 |
+
|
101 |
+
with enable_profiling_mode_for_profiling_tests():
|
102 |
+
# test single grad case
|
103 |
+
recording_inputs = clone_inputs(preserve_requires_grad=True)
|
104 |
+
recording_tensors = get_recording_tensors(recording_inputs)
|
105 |
+
outputs = output_func(self.runAndSaveRNG(reference_func, recording_inputs, kwargs))
|
106 |
+
grads = torch.autograd.grad(allSum(outputs), recording_tensors,
|
107 |
+
allow_unused=allow_unused)
|
108 |
+
outputs_test = output_func(self.runAndSaveRNG(func, recording_inputs, kwargs))
|
109 |
+
grads_test = torch.autograd.grad(allSum(outputs_test), recording_tensors,
|
110 |
+
allow_unused=allow_unused)
|
111 |
+
self.assertEqual(outputs, outputs_test)
|
112 |
+
self.assertEqual(grads, grads_test)
|
113 |
+
# test the grad grad case
|
114 |
+
if self._testMethodName in nn_functional_single_grad or no_gradgrad:
|
115 |
+
return
|
116 |
+
|
117 |
+
outputs = output_func(self.runAndSaveRNG(reference_func, recording_inputs, kwargs))
|
118 |
+
l1 = allSum(outputs)
|
119 |
+
grads = torch.autograd.grad(l1, recording_tensors, create_graph=True,
|
120 |
+
allow_unused=allow_unused)
|
121 |
+
|
122 |
+
l2 = (allSum(grads) * l1)
|
123 |
+
grads2 = torch.autograd.grad(l2, recording_tensors, allow_unused=allow_unused)
|
124 |
+
recording_inputs = clone_inputs(preserve_requires_grad=True)
|
125 |
+
recording_tensors = get_recording_tensors(recording_inputs)
|
126 |
+
outputs_test = output_func(self.runAndSaveRNG(func, recording_inputs, kwargs))
|
127 |
+
l1_test = allSum(outputs_test)
|
128 |
+
grads_test = torch.autograd.grad(
|
129 |
+
l1_test, recording_tensors, create_graph=True, allow_unused=allow_unused)
|
130 |
+
|
131 |
+
l2_test = (allSum(grads_test) * l1_test)
|
132 |
+
grads2_test = torch.autograd.grad(l2_test, recording_tensors, allow_unused=allow_unused)
|
133 |
+
|
134 |
+
self.assertEqual(outputs, outputs_test)
|
135 |
+
self.assertEqual(grads, grads_test)
|
136 |
+
for g2, g2_test in zip(grads2, grads2_test):
|
137 |
+
if g2 is None and g2_test is None:
|
138 |
+
continue
|
139 |
+
self.assertEqual(g2, g2_test, atol=5e-4, rtol=1e-4)
|
140 |
+
|
141 |
+
class JitCommonTestCase(TestCase):
|
142 |
+
def createFunctionFromGraph(self, trace):
|
143 |
+
graph = trace if isinstance(trace, torch._C.Graph) else trace.graph()
|
144 |
+
return torch._C._create_function_from_graph("forward", graph)
|
145 |
+
|
146 |
+
def assertExportImport(self, trace, inputs):
|
147 |
+
m = self.createFunctionFromGraph(trace)
|
148 |
+
self.assertExportImportModule(m, inputs)
|
149 |
+
|
150 |
+
def assertExportImportModule(self, m, inputs):
|
151 |
+
m_import = self.getExportImportCopy(m)
|
152 |
+
a = self.runAndSaveRNG(m, inputs)
|
153 |
+
b = self.runAndSaveRNG(m_import, inputs)
|
154 |
+
self.assertEqual(a, b, "Results of original model and "
|
155 |
+
"exported/imported version of model differed")
|
156 |
+
|
157 |
+
def runAndSaveRNG(self, func, inputs, kwargs=None):
|
158 |
+
kwargs = kwargs if kwargs else {}
|
159 |
+
with freeze_rng_state():
|
160 |
+
results = func(*inputs, **kwargs)
|
161 |
+
return results
|
162 |
+
|
163 |
+
def getExportImportCopy(self, m, also_test_file=True, map_location=None):
|
164 |
+
buffer = io.BytesIO()
|
165 |
+
torch.jit.save(m, buffer)
|
166 |
+
buffer.seek(0)
|
167 |
+
imported = torch.jit.load(buffer, map_location=map_location)
|
168 |
+
|
169 |
+
if not also_test_file:
|
170 |
+
return imported
|
171 |
+
|
172 |
+
with TemporaryFileName() as fname:
|
173 |
+
torch.jit.save(imported, fname)
|
174 |
+
return torch.jit.load(fname, map_location=map_location)
|
175 |
+
|
176 |
+
def autoDiffErrorMessage(self, should_autodiff_node, nodes_not_in_diff_graph,
|
177 |
+
fusion_nodes_not_found, non_fusible_nodes_being_fused,
|
178 |
+
fusion_nodes_found, nodes_in_diff_graph):
|
179 |
+
err_msg = "\nFailure in testing nodes' autodifferentiation. "
|
180 |
+
if should_autodiff_node:
|
181 |
+
err_msg += "One or more nodes were expected to be autodiffed, " \
|
182 |
+
"but were not found in specified fusible/nonfusible " \
|
183 |
+
"DifferentiableGraph groups. \nSpecifically:"
|
184 |
+
# The node is intended to appear in a differentiable graph but doesn't
|
185 |
+
diff_nodes_missing = []
|
186 |
+
# The node is intended to appear in a differentiable graph
|
187 |
+
# outside of a fusion group but instead is in a fusion group
|
188 |
+
diff_nodes_in_fusion = []
|
189 |
+
# The node is intended to appear in a fusion group but doesn't
|
190 |
+
fusion_nodes_missing = []
|
191 |
+
# The node is intended to appear in a fusion group but instead
|
192 |
+
# is just in an outer differentiable graph
|
193 |
+
fusion_nodes_in_diff = []
|
194 |
+
for node in nodes_not_in_diff_graph:
|
195 |
+
if node in non_fusible_nodes_being_fused:
|
196 |
+
diff_nodes_in_fusion.append(node)
|
197 |
+
else:
|
198 |
+
diff_nodes_missing.append(node)
|
199 |
+
for node in fusion_nodes_not_found:
|
200 |
+
if node in nodes_in_diff_graph:
|
201 |
+
fusion_nodes_in_diff.append(node)
|
202 |
+
else:
|
203 |
+
fusion_nodes_missing.append(node)
|
204 |
+
if len(diff_nodes_missing) > 0:
|
205 |
+
err_msg += f"\n {diff_nodes_missing} were not in one of the " \
|
206 |
+
"DifferentiableGraphs when they were expected to be. " \
|
207 |
+
"Did you intend for these nodes to be autodiffed? " \
|
208 |
+
"If not, remove them from the list of nonfusible nodes."
|
209 |
+
if len(diff_nodes_in_fusion) > 0:
|
210 |
+
err_msg += f"\n {diff_nodes_in_fusion} were found in one of the FusionGroups " \
|
211 |
+
"when they were expected to be just in a DifferentiableGraph. If it was " \
|
212 |
+
"intended for these nodes to be in FusionGroups, reclassify these nodes as " \
|
213 |
+
"fusible nodes. If these nodes were not intended to be fused, your " \
|
214 |
+
"autodifferentiation logic might be wrong."
|
215 |
+
if len(fusion_nodes_missing) > 0:
|
216 |
+
err_msg += f"\n {fusion_nodes_missing} were not in one of the FusionGroups " \
|
217 |
+
"of the DifferentiableGraphs when they were expected to be. " \
|
218 |
+
"They were also not found in an outer DifferentiableGraph. Did you " \
|
219 |
+
"intend for these nodes to be autodifferentiated? If not, you should " \
|
220 |
+
"remove these nodes from the test's fusible nodes. Otherwise your " \
|
221 |
+
"autodifferentiation logic might be wrong."
|
222 |
+
if len(fusion_nodes_in_diff) > 0:
|
223 |
+
err_msg += f"\n {fusion_nodes_in_diff} were not in one of the FusionGroups " \
|
224 |
+
"of the DifferentiableGraphs when they were expected to be, " \
|
225 |
+
"instead they were found just in an outer DifferentiableGraph. " \
|
226 |
+
"Did you intend for these nodes to be fused? If not, you should " \
|
227 |
+
"move these nodes into the test's nonfusible nodes. Otherwise your " \
|
228 |
+
"autodifferentiation logic might be wrong."
|
229 |
+
else:
|
230 |
+
err_msg += "One or more nodes were not expected to be autodiffed " \
|
231 |
+
"but were found in a DifferentiableGraph or in a FusionGroup " \
|
232 |
+
"of a DifferentiableGraph. Did you intend for these nodes to be " \
|
233 |
+
"autodiffed? If so, change this test to expect autodifferentiation. " \
|
234 |
+
"\nSpecifically:"
|
235 |
+
if len(fusion_nodes_found) > 0:
|
236 |
+
err_msg += f"\n {fusion_nodes_found} were not expected to be in " \
|
237 |
+
"one of the DifferentiableGraphs, but appeared in a FusionGroup " \
|
238 |
+
"of a DifferentiableGraph. "
|
239 |
+
if len(nodes_in_diff_graph) > 0:
|
240 |
+
err_msg += f"\n {nodes_in_diff_graph} were not expected to " \
|
241 |
+
"be in one of the DifferentiableGraphs but were."
|
242 |
+
return err_msg
|
243 |
+
|
244 |
+
def assertAutodiffNode(self, graph, should_autodiff_node, nonfusible_nodes, fusible_nodes):
|
245 |
+
diff_nodes = graph.findAllNodes('prim::DifferentiableGraph')
|
246 |
+
diff_subgraphs = [node.g('Subgraph') for node in diff_nodes]
|
247 |
+
|
248 |
+
# Note: currently no tests have fusible_nodes
|
249 |
+
fusion_nodes = list(chain.from_iterable([g.findAllNodes('prim::FusionGroup') for g in diff_subgraphs]))
|
250 |
+
fusion_subgraphs = [node.g('Subgraph') for node in fusion_nodes]
|
251 |
+
|
252 |
+
# For any non-fusible node, it must show up in one of the DifferentiableGraphs.
|
253 |
+
nodes_in_diff_graph = []
|
254 |
+
nodes_not_in_diff_graph = []
|
255 |
+
non_fusible_nodes_being_fused = []
|
256 |
+
for node in nonfusible_nodes:
|
257 |
+
if any(g.findNode(node) is not None for g in diff_subgraphs):
|
258 |
+
nodes_in_diff_graph.append(node)
|
259 |
+
else:
|
260 |
+
nodes_not_in_diff_graph.append(node)
|
261 |
+
if any(g.findNode(node) is not None for g in fusion_subgraphs):
|
262 |
+
non_fusible_nodes_being_fused.append(node)
|
263 |
+
found_all_nonfusible_nodes = len(nodes_in_diff_graph) == len(nonfusible_nodes)
|
264 |
+
|
265 |
+
# For any fusible node, it must show up in one of the FusionGroups in one of the DifferentiableGraphs.
|
266 |
+
fusion_nodes_found = []
|
267 |
+
fusion_nodes_not_found = []
|
268 |
+
for node in fusible_nodes:
|
269 |
+
if any(g.findNode(node) is not None for g in fusion_subgraphs):
|
270 |
+
fusion_nodes_found.append(node)
|
271 |
+
else:
|
272 |
+
fusion_nodes_not_found.append(node)
|
273 |
+
found_all_fusible_nodes = len(fusion_nodes_found) == len(fusible_nodes)
|
274 |
+
|
275 |
+
if should_autodiff_node is not None:
|
276 |
+
err_msg = self.autoDiffErrorMessage(should_autodiff_node,
|
277 |
+
nodes_not_in_diff_graph,
|
278 |
+
fusion_nodes_not_found,
|
279 |
+
non_fusible_nodes_being_fused,
|
280 |
+
fusion_nodes_found,
|
281 |
+
nodes_in_diff_graph)
|
282 |
+
self.assertEqual(should_autodiff_node,
|
283 |
+
found_all_nonfusible_nodes and found_all_fusible_nodes, err_msg)
|
284 |
+
|
285 |
+
def checkShapeAnalysis(self, out_sizes: Union[List[int], List[List[int]]],
|
286 |
+
traced_graph, assert_propagation, constant_prop=True):
|
287 |
+
# repropagte input shapes provided by tracing,
|
288 |
+
prev_symbolic_shapes_test_enabled = torch._C._jit_symbolic_shapes_test_mode_enabled()
|
289 |
+
for enable_test_mode in [True, False]:
|
290 |
+
# here we are testing allowing/disallowing substituting in complete shapes as constants,
|
291 |
+
# disallowing constants helps stress test partial eval and substitution pipeline
|
292 |
+
torch._C._jit_set_symbolic_shapes_test_mode(enable_test_mode)
|
293 |
+
torch._C._jit_erase_non_input_shape_information(traced_graph)
|
294 |
+
if constant_prop:
|
295 |
+
torch._C._jit_pass_constant_propagation(traced_graph)
|
296 |
+
torch._C._jit_pass_propagate_shapes_on_graph(traced_graph)
|
297 |
+
# Add sizes to default tensor type to avoid checking something out of scope
|
298 |
+
# and difficulties with tracer leaving in other parts of tensor type
|
299 |
+
output = next(traced_graph.outputs()).type()
|
300 |
+
|
301 |
+
def test_type(type, actual_size):
|
302 |
+
sizes = type.symbolic_sizes()
|
303 |
+
out_type = TensorType.get().with_sizes(sizes)
|
304 |
+
actual_type = TensorType.get().with_sizes(actual_size)
|
305 |
+
|
306 |
+
# always check actual shape is a subtype of the output
|
307 |
+
self.assertTrue(actual_type.isSubtypeOf(out_type))
|
308 |
+
|
309 |
+
# and then if assertion flag is provided, check shape analysis
|
310 |
+
# is successful
|
311 |
+
if assert_propagation:
|
312 |
+
self.assertEqual(out_type.sizes(), actual_size)
|
313 |
+
|
314 |
+
if output.isSubtypeOf(torch._C.TensorType.get()):
|
315 |
+
test_type(output, out_sizes)
|
316 |
+
else:
|
317 |
+
tuple_elements = output.elements()
|
318 |
+
for i in range(len(tuple_elements)):
|
319 |
+
test_type(tuple_elements[i], out_sizes[i])
|
320 |
+
|
321 |
+
torch._C._jit_set_symbolic_shapes_test_mode(prev_symbolic_shapes_test_enabled)
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_methods_invocations.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_pruning.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Owner(s): ["module: unknown"]
|
2 |
+
|
3 |
+
from torch.ao.pruning import BaseSparsifier
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
class ImplementedSparsifier(BaseSparsifier):
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
super().__init__(defaults=kwargs)
|
11 |
+
|
12 |
+
def update_mask(self, module, **kwargs):
|
13 |
+
module.parametrizations.weight[0].mask[0] = 0
|
14 |
+
linear_state = self.state['linear1.weight']
|
15 |
+
linear_state['step_count'] = linear_state.get('step_count', 0) + 1
|
16 |
+
|
17 |
+
|
18 |
+
class MockSparseLinear(nn.Linear):
|
19 |
+
"""
|
20 |
+
This class is a MockSparseLinear class to check convert functionality.
|
21 |
+
It is the same as a normal Linear layer, except with a different type, as
|
22 |
+
well as an additional from_dense method.
|
23 |
+
"""
|
24 |
+
@classmethod
|
25 |
+
def from_dense(cls, mod):
|
26 |
+
"""
|
27 |
+
"""
|
28 |
+
linear = cls(mod.in_features,
|
29 |
+
mod.out_features)
|
30 |
+
return linear
|
31 |
+
|
32 |
+
|
33 |
+
def rows_are_subset(subset_tensor, superset_tensor) -> bool:
|
34 |
+
"""
|
35 |
+
Checks to see if all rows in subset tensor are present in the superset tensor
|
36 |
+
"""
|
37 |
+
i = 0
|
38 |
+
for row in subset_tensor:
|
39 |
+
while i < len(superset_tensor):
|
40 |
+
if not torch.equal(row, superset_tensor[i]):
|
41 |
+
i += 1
|
42 |
+
else:
|
43 |
+
break
|
44 |
+
else:
|
45 |
+
return False
|
46 |
+
return True
|
47 |
+
|
48 |
+
|
49 |
+
class SimpleLinear(nn.Module):
|
50 |
+
r"""Model with only Linear layers without biases, some wrapped in a Sequential,
|
51 |
+
some following the Sequential. Used to test basic pruned Linear-Linear fusion."""
|
52 |
+
|
53 |
+
def __init__(self):
|
54 |
+
super().__init__()
|
55 |
+
self.seq = nn.Sequential(
|
56 |
+
nn.Linear(7, 5, bias=False),
|
57 |
+
nn.Linear(5, 6, bias=False),
|
58 |
+
nn.Linear(6, 4, bias=False),
|
59 |
+
)
|
60 |
+
self.linear1 = nn.Linear(4, 4, bias=False)
|
61 |
+
self.linear2 = nn.Linear(4, 10, bias=False)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x = self.seq(x)
|
65 |
+
x = self.linear1(x)
|
66 |
+
x = self.linear2(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
|
70 |
+
class LinearBias(nn.Module):
|
71 |
+
r"""Model with only Linear layers, alternating layers with biases,
|
72 |
+
wrapped in a Sequential. Used to test pruned Linear-Bias-Linear fusion."""
|
73 |
+
|
74 |
+
def __init__(self):
|
75 |
+
super().__init__()
|
76 |
+
self.seq = nn.Sequential(
|
77 |
+
nn.Linear(7, 5, bias=True),
|
78 |
+
nn.Linear(5, 6, bias=False),
|
79 |
+
nn.Linear(6, 3, bias=True),
|
80 |
+
nn.Linear(3, 3, bias=True),
|
81 |
+
nn.Linear(3, 10, bias=False),
|
82 |
+
)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
x = self.seq(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class LinearActivation(nn.Module):
|
90 |
+
r"""Model with only Linear layers, some with bias, some in a Sequential and some following.
|
91 |
+
Activation functions modules in between each Linear in the Sequential, and each outside layer.
|
92 |
+
Used to test pruned Linear(Bias)-Activation-Linear fusion."""
|
93 |
+
|
94 |
+
def __init__(self):
|
95 |
+
super().__init__()
|
96 |
+
self.seq = nn.Sequential(
|
97 |
+
nn.Linear(7, 5, bias=True),
|
98 |
+
nn.ReLU(),
|
99 |
+
nn.Linear(5, 6, bias=False),
|
100 |
+
nn.Tanh(),
|
101 |
+
nn.Linear(6, 4, bias=True),
|
102 |
+
)
|
103 |
+
self.linear1 = nn.Linear(4, 3, bias=True)
|
104 |
+
self.act1 = nn.ReLU()
|
105 |
+
self.linear2 = nn.Linear(3, 10, bias=False)
|
106 |
+
self.act2 = nn.Tanh()
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.seq(x)
|
110 |
+
x = self.linear1(x)
|
111 |
+
x = self.act1(x)
|
112 |
+
x = self.linear2(x)
|
113 |
+
x = self.act2(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
class LinearActivationFunctional(nn.Module):
|
118 |
+
r"""Model with only Linear layers, some with bias, some in a Sequential and some following.
|
119 |
+
Activation functions modules in between each Linear in the Sequential, and functional
|
120 |
+
activationals are called in between each outside layer.
|
121 |
+
Used to test pruned Linear(Bias)-Activation-Linear fusion."""
|
122 |
+
|
123 |
+
def __init__(self):
|
124 |
+
super().__init__()
|
125 |
+
self.seq = nn.Sequential(
|
126 |
+
nn.Linear(7, 5, bias=True),
|
127 |
+
nn.ReLU(),
|
128 |
+
nn.Linear(5, 6, bias=False),
|
129 |
+
nn.ReLU(),
|
130 |
+
nn.Linear(6, 4, bias=True),
|
131 |
+
)
|
132 |
+
self.linear1 = nn.Linear(4, 3, bias=True)
|
133 |
+
self.linear2 = nn.Linear(3, 8, bias=False)
|
134 |
+
self.linear3 = nn.Linear(8, 10, bias=False)
|
135 |
+
self.act1 = nn.ReLU()
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
x = self.seq(x)
|
139 |
+
x = self.linear1(x)
|
140 |
+
x = F.relu(x)
|
141 |
+
x = self.linear2(x)
|
142 |
+
x = F.relu(x)
|
143 |
+
x = self.linear3(x)
|
144 |
+
x = F.relu(x)
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
class SimpleConv2d(nn.Module):
|
149 |
+
r"""Model with only Conv2d layers, all without bias, some in a Sequential and some following.
|
150 |
+
Used to test pruned Conv2d-Conv2d fusion."""
|
151 |
+
|
152 |
+
def __init__(self):
|
153 |
+
super().__init__()
|
154 |
+
self.seq = nn.Sequential(
|
155 |
+
nn.Conv2d(1, 32, 3, 1, bias=False),
|
156 |
+
nn.Conv2d(32, 64, 3, 1, bias=False),
|
157 |
+
)
|
158 |
+
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False)
|
159 |
+
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False)
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
x = self.seq(x)
|
163 |
+
x = self.conv2d1(x)
|
164 |
+
x = self.conv2d2(x)
|
165 |
+
return x
|
166 |
+
|
167 |
+
|
168 |
+
class Conv2dBias(nn.Module):
|
169 |
+
r"""Model with only Conv2d layers, some with bias, some in a Sequential and some outside.
|
170 |
+
Used to test pruned Conv2d-Bias-Conv2d fusion."""
|
171 |
+
|
172 |
+
def __init__(self):
|
173 |
+
super().__init__()
|
174 |
+
self.seq = nn.Sequential(
|
175 |
+
nn.Conv2d(1, 32, 3, 1, bias=True),
|
176 |
+
nn.Conv2d(32, 32, 3, 1, bias=True),
|
177 |
+
nn.Conv2d(32, 64, 3, 1, bias=False),
|
178 |
+
)
|
179 |
+
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=True)
|
180 |
+
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
x = self.seq(x)
|
184 |
+
x = self.conv2d1(x)
|
185 |
+
x = self.conv2d2(x)
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
class Conv2dActivation(nn.Module):
|
190 |
+
r"""Model with only Conv2d layers, some with bias, some in a Sequential and some following.
|
191 |
+
Activation function modules in between each Sequential layer, functional activations called
|
192 |
+
in-between each outside layer.
|
193 |
+
Used to test pruned Conv2d-Bias-Activation-Conv2d fusion."""
|
194 |
+
|
195 |
+
def __init__(self):
|
196 |
+
super().__init__()
|
197 |
+
self.seq = nn.Sequential(
|
198 |
+
nn.Conv2d(1, 32, 3, 1, bias=True),
|
199 |
+
nn.ReLU(),
|
200 |
+
nn.Conv2d(32, 64, 3, 1, bias=True),
|
201 |
+
nn.Tanh(),
|
202 |
+
nn.Conv2d(64, 64, 3, 1, bias=False),
|
203 |
+
nn.ReLU(),
|
204 |
+
)
|
205 |
+
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False)
|
206 |
+
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=True)
|
207 |
+
|
208 |
+
def forward(self, x):
|
209 |
+
x = self.seq(x)
|
210 |
+
x = self.conv2d1(x)
|
211 |
+
x = F.relu(x)
|
212 |
+
x = self.conv2d2(x)
|
213 |
+
x = F.hardtanh(x)
|
214 |
+
return x
|
215 |
+
|
216 |
+
|
217 |
+
class Conv2dPadBias(nn.Module):
|
218 |
+
r"""Model with only Conv2d layers, all with bias and some with padding > 0,
|
219 |
+
some in a Sequential and some following. Activation function modules in between each layer.
|
220 |
+
Used to test that bias is propagated correctly in the special case of
|
221 |
+
pruned Conv2d-Bias-(Activation)Conv2d fusion, when the second Conv2d layer has padding > 0."""
|
222 |
+
|
223 |
+
def __init__(self):
|
224 |
+
super().__init__()
|
225 |
+
self.seq = nn.Sequential(
|
226 |
+
nn.Conv2d(1, 32, 3, 1, padding=1, bias=True),
|
227 |
+
nn.ReLU(),
|
228 |
+
nn.Conv2d(32, 32, 3, 1, bias=False),
|
229 |
+
nn.ReLU(),
|
230 |
+
nn.Conv2d(32, 32, 3, 1, padding=1, bias=True),
|
231 |
+
nn.ReLU(),
|
232 |
+
nn.Conv2d(32, 32, 3, 1, padding=1, bias=True),
|
233 |
+
nn.ReLU(),
|
234 |
+
nn.Conv2d(32, 64, 3, 1, bias=True),
|
235 |
+
nn.Tanh(),
|
236 |
+
)
|
237 |
+
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, padding=1, bias=True)
|
238 |
+
self.act1 = nn.ReLU()
|
239 |
+
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, padding=1, bias=True)
|
240 |
+
self.act2 = nn.Tanh()
|
241 |
+
|
242 |
+
def forward(self, x):
|
243 |
+
x = self.seq(x)
|
244 |
+
x = self.conv2d1(x)
|
245 |
+
x = self.act1(x)
|
246 |
+
x = self.conv2d2(x)
|
247 |
+
x = self.act2(x)
|
248 |
+
return x
|
249 |
+
|
250 |
+
|
251 |
+
class Conv2dPool(nn.Module):
|
252 |
+
r"""Model with only Conv2d layers, all with bias, some in a Sequential and some following.
|
253 |
+
Activation function modules in between each layer, Pool2d modules in between each layer.
|
254 |
+
Used to test pruned Conv2d-Pool2d-Conv2d fusion."""
|
255 |
+
|
256 |
+
def __init__(self):
|
257 |
+
super().__init__()
|
258 |
+
self.seq = nn.Sequential(
|
259 |
+
nn.Conv2d(1, 32, kernel_size=3, padding=1, bias=True),
|
260 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
261 |
+
nn.ReLU(),
|
262 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1, bias=True),
|
263 |
+
nn.Tanh(),
|
264 |
+
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
|
265 |
+
)
|
266 |
+
self.conv2d1 = nn.Conv2d(64, 48, kernel_size=3, padding=1, bias=True)
|
267 |
+
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
|
268 |
+
self.af1 = nn.ReLU()
|
269 |
+
self.conv2d2 = nn.Conv2d(48, 52, kernel_size=3, padding=1, bias=True)
|
270 |
+
self.conv2d3 = nn.Conv2d(52, 52, kernel_size=3, padding=1, bias=True)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
x = self.seq(x)
|
274 |
+
x = self.conv2d1(x)
|
275 |
+
x = self.maxpool(x)
|
276 |
+
x = self.af1(x)
|
277 |
+
x = self.conv2d2(x)
|
278 |
+
x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=1)
|
279 |
+
x = F.relu(x)
|
280 |
+
x = self.conv2d3(x)
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
class Conv2dPoolFlattenFunctional(nn.Module):
|
285 |
+
r"""Model with Conv2d layers, all with bias, some in a Sequential and some following, and then a Pool2d
|
286 |
+
and a functional Flatten followed by a Linear layer.
|
287 |
+
Activation functions and Pool2ds in between each layer also.
|
288 |
+
Used to test pruned Conv2d-Pool2d-Flatten-Linear fusion."""
|
289 |
+
|
290 |
+
def __init__(self):
|
291 |
+
super().__init__()
|
292 |
+
self.seq = nn.Sequential(
|
293 |
+
nn.Conv2d(1, 3, kernel_size=3, padding=1, bias=True),
|
294 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
295 |
+
nn.ReLU(),
|
296 |
+
nn.Conv2d(3, 5, kernel_size=3, padding=1, bias=True),
|
297 |
+
nn.Tanh(),
|
298 |
+
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
|
299 |
+
)
|
300 |
+
self.conv2d1 = nn.Conv2d(5, 7, kernel_size=3, padding=1, bias=True)
|
301 |
+
self.af1 = nn.ReLU()
|
302 |
+
self.conv2d2 = nn.Conv2d(7, 11, kernel_size=3, padding=1, bias=True)
|
303 |
+
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
|
304 |
+
self.fc = nn.Linear(11, 13, bias=True)
|
305 |
+
|
306 |
+
def forward(self, x):
|
307 |
+
x = self.seq(x)
|
308 |
+
x = self.conv2d1(x)
|
309 |
+
x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1)
|
310 |
+
x = self.af1(x)
|
311 |
+
x = self.conv2d2(x)
|
312 |
+
x = self.avg_pool(x)
|
313 |
+
x = torch.flatten(x, 1) # test functional flatten
|
314 |
+
x = self.fc(x)
|
315 |
+
return x
|
316 |
+
|
317 |
+
|
318 |
+
class Conv2dPoolFlatten(nn.Module):
|
319 |
+
r"""Model with Conv2d layers, all with bias, some in a Sequential and some following, and then a Pool2d
|
320 |
+
and a Flatten module followed by a Linear layer.
|
321 |
+
Activation functions and Pool2ds in between each layer also.
|
322 |
+
Used to test pruned Conv2d-Pool2d-Flatten-Linear fusion."""
|
323 |
+
|
324 |
+
def __init__(self):
|
325 |
+
super().__init__()
|
326 |
+
self.seq = nn.Sequential(
|
327 |
+
nn.Conv2d(1, 3, kernel_size=3, padding=1, bias=True),
|
328 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
329 |
+
nn.ReLU(),
|
330 |
+
nn.Conv2d(3, 5, kernel_size=3, padding=1, bias=True),
|
331 |
+
nn.Tanh(),
|
332 |
+
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
|
333 |
+
)
|
334 |
+
self.conv2d1 = nn.Conv2d(5, 7, kernel_size=3, padding=1, bias=True)
|
335 |
+
self.af1 = nn.ReLU()
|
336 |
+
self.conv2d2 = nn.Conv2d(7, 11, kernel_size=3, padding=1, bias=True)
|
337 |
+
self.avg_pool = nn.AdaptiveAvgPool2d((2, 2))
|
338 |
+
self.flatten = nn.Flatten()
|
339 |
+
self.fc = nn.Linear(44, 13, bias=True)
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
x = self.seq(x)
|
343 |
+
x = self.conv2d1(x)
|
344 |
+
x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1)
|
345 |
+
x = self.af1(x)
|
346 |
+
x = self.conv2d2(x)
|
347 |
+
x = self.avg_pool(x)
|
348 |
+
x = self.flatten(x)
|
349 |
+
x = self.fc(x)
|
350 |
+
return x
|
351 |
+
|
352 |
+
|
353 |
+
class LSTMLinearModel(nn.Module):
|
354 |
+
"""Container module with an encoder, a recurrent module, and a linear."""
|
355 |
+
|
356 |
+
def __init__(
|
357 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int
|
358 |
+
):
|
359 |
+
super().__init__()
|
360 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers)
|
361 |
+
self.linear = nn.Linear(hidden_dim, output_dim)
|
362 |
+
|
363 |
+
def forward(self, input):
|
364 |
+
output, hidden = self.lstm(input)
|
365 |
+
decoded = self.linear(output)
|
366 |
+
return decoded, output
|
367 |
+
|
368 |
+
|
369 |
+
class LSTMLayerNormLinearModel(nn.Module):
|
370 |
+
"""Container module with an LSTM, a LayerNorm, and a linear."""
|
371 |
+
|
372 |
+
def __init__(
|
373 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int
|
374 |
+
):
|
375 |
+
super().__init__()
|
376 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers)
|
377 |
+
self.norm = nn.LayerNorm(hidden_dim)
|
378 |
+
self.linear = nn.Linear(hidden_dim, output_dim)
|
379 |
+
|
380 |
+
def forward(self, x):
|
381 |
+
x, state = self.lstm(x)
|
382 |
+
x = self.norm(x)
|
383 |
+
x = self.linear(x)
|
384 |
+
return x, state
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_quantized.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""Importing this file includes common utility methods for checking quantized
|
2 |
+
tensors and modules.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from contextlib import contextmanager
|
7 |
+
from torch.testing._internal.common_utils import TEST_WITH_ASAN, TEST_WITH_TSAN, TEST_WITH_UBSAN, IS_PPC, IS_MACOS, IS_WINDOWS
|
8 |
+
|
9 |
+
supported_qengines = torch.backends.quantized.supported_engines
|
10 |
+
supported_qengines.remove('none')
|
11 |
+
# Note: We currently do not run QNNPACK tests on WINDOWS and MACOS as it is flaky. Issue #29326
|
12 |
+
# QNNPACK is not supported on PPC
|
13 |
+
# QNNPACK throws ASAN heap-buffer-overflow error.
|
14 |
+
if 'qnnpack' in supported_qengines and any([IS_PPC, TEST_WITH_ASAN, TEST_WITH_TSAN, TEST_WITH_UBSAN, IS_MACOS, IS_WINDOWS]):
|
15 |
+
supported_qengines.remove('qnnpack')
|
16 |
+
|
17 |
+
def _conv_output_shape(input_size, kernel_size, padding, stride, dilation,
|
18 |
+
output_padding=0):
|
19 |
+
"""Computes the output shape given convolution parameters."""
|
20 |
+
return np.floor((input_size + 2 * padding - kernel_size - (kernel_size - 1)
|
21 |
+
* (dilation - 1)) / stride) + 2 * output_padding + 1
|
22 |
+
|
23 |
+
# Quantization references
|
24 |
+
def _quantize(x, scale, zero_point, qmin=None, qmax=None, dtype=np.uint8):
|
25 |
+
"""Quantizes a numpy array."""
|
26 |
+
if qmin is None:
|
27 |
+
qmin = np.iinfo(dtype).min
|
28 |
+
if qmax is None:
|
29 |
+
qmax = np.iinfo(dtype).max
|
30 |
+
qx = np.round(x / scale + zero_point).astype(np.int64)
|
31 |
+
qx = np.clip(qx, qmin, qmax)
|
32 |
+
qx = qx.astype(dtype)
|
33 |
+
return qx
|
34 |
+
|
35 |
+
|
36 |
+
def _dequantize(qx, scale, zero_point):
|
37 |
+
"""Dequantizes a numpy array."""
|
38 |
+
x = (qx.astype(float) - zero_point) * scale
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
def _requantize(x, multiplier, zero_point, qmin=0, qmax=255, qtype=np.uint8):
|
43 |
+
"""Requantizes a numpy array, i.e., intermediate int32 or int16 values are
|
44 |
+
converted back to given type"""
|
45 |
+
qx = (x * multiplier).round() + zero_point
|
46 |
+
qx = np.clip(qx, qmin, qmax).astype(qtype)
|
47 |
+
return qx
|
48 |
+
|
49 |
+
def _calculate_dynamic_qparams(X, dtype, reduce_range=False, qscheme=torch.per_tensor_affine):
|
50 |
+
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
51 |
+
according to the min and max element of the tensor"""
|
52 |
+
assert qscheme in (torch.per_tensor_affine, torch.per_tensor_symmetric)
|
53 |
+
if qscheme == torch.per_tensor_symmetric:
|
54 |
+
assert dtype == torch.qint8
|
55 |
+
if isinstance(X, torch.Tensor):
|
56 |
+
X = X.numpy()
|
57 |
+
if dtype == torch.qint8:
|
58 |
+
if reduce_range:
|
59 |
+
qmin, qmax = -64, 63
|
60 |
+
else:
|
61 |
+
qmin, qmax = -128, 127
|
62 |
+
else: # dtype == torch.quint8
|
63 |
+
if reduce_range:
|
64 |
+
qmin, qmax = 0, 127
|
65 |
+
else:
|
66 |
+
qmin, qmax = 0, 255
|
67 |
+
min_val = X.min()
|
68 |
+
max_val = X.max()
|
69 |
+
is_symmetric = (qscheme == torch.per_tensor_symmetric)
|
70 |
+
if min_val == max_val:
|
71 |
+
scale = 1.0
|
72 |
+
zero_point = 0
|
73 |
+
else:
|
74 |
+
if is_symmetric:
|
75 |
+
max_val = max(max_val, -min_val)
|
76 |
+
min_val = -max_val
|
77 |
+
scale = (max_val - min_val) / (qmax - qmin)
|
78 |
+
scale = max(scale, np.finfo(np.float32).eps)
|
79 |
+
zero_point = 0
|
80 |
+
else:
|
81 |
+
max_val = max(max_val, 0.0)
|
82 |
+
min_val = min(min_val, 0.0)
|
83 |
+
scale = (max_val - min_val) / (qmax - qmin)
|
84 |
+
scale = max(scale, np.finfo(np.float32).eps)
|
85 |
+
zero_point = qmin - round(min_val / scale)
|
86 |
+
zero_point = max(qmin, zero_point)
|
87 |
+
zero_point = min(qmax, zero_point)
|
88 |
+
return [float(scale), int(zero_point)]
|
89 |
+
|
90 |
+
def _calculate_dynamic_per_channel_qparams(X, dtype):
|
91 |
+
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
92 |
+
according to the min and max element of the tensor"""
|
93 |
+
if isinstance(X, torch.Tensor):
|
94 |
+
X = X.numpy()
|
95 |
+
qmin, qmax = torch.iinfo(dtype).min, torch.iinfo(dtype).max
|
96 |
+
n_levels = qmax - qmin
|
97 |
+
scale = np.zeros(X.shape[0], dtype=np.float64)
|
98 |
+
zero_point = np.zeros(X.shape[0], dtype=np.int64)
|
99 |
+
for i in range(zero_point.shape[0]):
|
100 |
+
min_val = X.min()
|
101 |
+
max_val = X.max()
|
102 |
+
if min_val == max_val:
|
103 |
+
scale[i] = 1.0
|
104 |
+
zero_point[i] = 0
|
105 |
+
else:
|
106 |
+
max_val = max(max_val, 0.0)
|
107 |
+
min_val = min(min_val, 0.0)
|
108 |
+
scale[i] = (max_val - min_val) / n_levels
|
109 |
+
scale[i] = max(scale[i], np.finfo(np.float32).eps)
|
110 |
+
zero_point[i] = qmin - round(min_val / scale[i])
|
111 |
+
zero_point[i] = max(qmin, zero_point[i])
|
112 |
+
zero_point[i] = min(qmax, zero_point[i])
|
113 |
+
|
114 |
+
return scale, zero_point
|
115 |
+
|
116 |
+
def _snr(x, x_hat):
|
117 |
+
"""Calculates the signal to noise ratio and returns the signal and noise
|
118 |
+
power, as well as the SNR in dB.
|
119 |
+
If the input is a list/tuple this function is called recursively on each
|
120 |
+
element. The result will have the same nested structure as the inputs.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
x, x_hat: Either a tensor or a nested list/tuple of tensors.
|
124 |
+
Returns:
|
125 |
+
signal, noise, SNR(in dB): Either floats or a nested list of floats
|
126 |
+
"""
|
127 |
+
if isinstance(x, (list, tuple)):
|
128 |
+
assert(len(x) == len(x_hat))
|
129 |
+
res = []
|
130 |
+
for idx in range(len(x)):
|
131 |
+
res.append(_snr(x[idx], x_hat[idx]))
|
132 |
+
return res
|
133 |
+
if x_hat.is_quantized:
|
134 |
+
x_hat = x_hat.dequantize()
|
135 |
+
if x.is_quantized:
|
136 |
+
x = x.dequantize()
|
137 |
+
noise = (x - x_hat).norm()
|
138 |
+
if noise == 0:
|
139 |
+
return 0.0, float('inf'), float('inf')
|
140 |
+
signal = x.norm()
|
141 |
+
snr = signal / noise
|
142 |
+
snr_db = 20 * snr.log10()
|
143 |
+
return signal, noise, snr_db
|
144 |
+
|
145 |
+
@contextmanager
|
146 |
+
def override_quantized_engine(qengine):
|
147 |
+
previous = torch.backends.quantized.engine
|
148 |
+
torch.backends.quantized.engine = qengine
|
149 |
+
try:
|
150 |
+
yield
|
151 |
+
finally:
|
152 |
+
torch.backends.quantized.engine = previous
|
153 |
+
|
154 |
+
@contextmanager
|
155 |
+
def override_cpu_allocator_for_qnnpack(qengine_is_qnnpack):
|
156 |
+
try:
|
157 |
+
if qengine_is_qnnpack:
|
158 |
+
torch._C._set_default_mobile_cpu_allocator()
|
159 |
+
yield
|
160 |
+
finally:
|
161 |
+
if qengine_is_qnnpack:
|
162 |
+
torch._C._unset_default_mobile_cpu_allocator()
|
163 |
+
|
164 |
+
# TODO: Update all quantization tests to use this decorator.
|
165 |
+
# Currently for some of the tests it seems to have inconsistent params
|
166 |
+
# for fbgemm vs qnnpack.
|
167 |
+
def override_qengines(qfunction):
|
168 |
+
def test_fn(*args, **kwargs):
|
169 |
+
for qengine in supported_qengines:
|
170 |
+
with override_quantized_engine(qengine):
|
171 |
+
# qfunction should not return anything.
|
172 |
+
qfunction(*args, **kwargs)
|
173 |
+
return test_fn
|
174 |
+
|
175 |
+
def qengine_is_fbgemm():
|
176 |
+
return torch.backends.quantized.engine == 'fbgemm'
|
177 |
+
def qengine_is_qnnpack():
|
178 |
+
return torch.backends.quantized.engine == 'qnnpack'
|
179 |
+
def qengine_is_onednn():
|
180 |
+
return torch.backends.quantized.engine == 'onednn'
|
181 |
+
def qengine_is_x86():
|
182 |
+
return torch.backends.quantized.engine == 'x86'
|
183 |
+
|
184 |
+
# Helper function used to simulate per-channel fake-quant against any axis
|
185 |
+
def _permute_to_axis_zero(X, axis):
|
186 |
+
new_axis_list = list(range(X.dim()))
|
187 |
+
new_axis_list[axis] = 0
|
188 |
+
new_axis_list[0] = axis
|
189 |
+
y = X.permute(tuple(new_axis_list))
|
190 |
+
return y, new_axis_list
|
191 |
+
|
192 |
+
# Reference method for fake quantize
|
193 |
+
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
|
194 |
+
def _fake_quantize_per_channel_affine_reference(X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
|
195 |
+
dtype = X.dtype
|
196 |
+
X, permute_axis_list = _permute_to_axis_zero(X.to(torch.float32), axis)
|
197 |
+
res = torch.zeros_like(X)
|
198 |
+
|
199 |
+
for i in range(X.size()[0]):
|
200 |
+
res[i] = (torch.clamp(torch.round(X[i] * (1.0 / per_channel_scale[i]) +
|
201 |
+
per_channel_zero_point[i]), quant_min, quant_max) - per_channel_zero_point[i]) * per_channel_scale[i]
|
202 |
+
|
203 |
+
out = res.permute(tuple(permute_axis_list))
|
204 |
+
return out.to(dtype)
|
205 |
+
|
206 |
+
# Reference method for the gradient of the fake quantize operator
|
207 |
+
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
|
208 |
+
def _fake_quantize_per_channel_affine_grad_reference(dY, X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
|
209 |
+
dtype = X.dtype
|
210 |
+
X, permute_axis_list = _permute_to_axis_zero(X.to(torch.float32), axis)
|
211 |
+
Xq = torch.zeros_like(X)
|
212 |
+
for i in range(X.size()[0]):
|
213 |
+
Xq[i] = torch.round(X[i] * (1.0 / per_channel_scale[i]) + per_channel_zero_point[i])
|
214 |
+
Xq = Xq.permute(tuple(permute_axis_list))
|
215 |
+
mask = (Xq >= quant_min) * (Xq <= quant_max)
|
216 |
+
res = torch.zeros_like(dY)
|
217 |
+
res[mask] = dY[mask]
|
218 |
+
return res.to(dtype)
|
219 |
+
|
220 |
+
def to_tensor(X, device):
|
221 |
+
if not isinstance(X, torch.Tensor):
|
222 |
+
X = torch.tensor(X)
|
223 |
+
else:
|
224 |
+
X = X.clone().detach()
|
225 |
+
return X.to(device=torch.device(device), dtype=torch.float32)
|
env-llmeval/lib/python3.10/site-packages/torch/testing/_internal/common_subclass.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from copy import deepcopy
|
3 |
+
from torch.utils._pytree import tree_map
|
4 |
+
|
5 |
+
# TODO: Move LoggingTensor here.
|
6 |
+
from torch.testing._internal.logging_tensor import LoggingTensor
|
7 |
+
|
8 |
+
|
9 |
+
# Base class for wrapper-style tensors.
|
10 |
+
class WrapperTensor(torch.Tensor):
|
11 |
+
@staticmethod
|
12 |
+
def __new__(cls, *args, **kwargs):
|
13 |
+
t, kwargs = cls.get_wrapper_properties(*args, **kwargs)
|
14 |
+
if "size" not in kwargs:
|
15 |
+
size = t.size()
|
16 |
+
else:
|
17 |
+
size = kwargs["size"]
|
18 |
+
del kwargs["size"]
|
19 |
+
if "dtype" not in kwargs:
|
20 |
+
kwargs["dtype"] = t.dtype
|
21 |
+
if "layout" not in kwargs:
|
22 |
+
kwargs["layout"] = t.layout
|
23 |
+
if "device" not in kwargs:
|
24 |
+
kwargs["device"] = t.device
|
25 |
+
if "requires_grad" not in kwargs:
|
26 |
+
kwargs["requires_grad"] = False
|
27 |
+
# Ignore memory_format and pin memory for now as I don't know how to
|
28 |
+
# safely access them on a Tensor (if possible??)
|
29 |
+
|
30 |
+
wrapper = torch.Tensor._make_wrapper_subclass(cls, size, **kwargs)
|
31 |
+
wrapper._validate_methods()
|
32 |
+
return wrapper
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def get_wrapper_properties(cls, *args, **kwargs):
|
36 |
+
# Should return both an example Tensor and a dictionary of kwargs
|
37 |
+
# to override any of that example Tensor's properly.
|
38 |
+
# This is very similar to the `t.new_*(args)` API
|
39 |
+
raise NotImplementedError("You need to implement get_wrapper_properties")
|
40 |
+
|
41 |
+
def _validate_methods(self):
|
42 |
+
# Skip this if not in debug mode?
|
43 |
+
# Changing these on the python side is wrong as it would not be properly reflected
|
44 |
+
# on the c++ side
|
45 |
+
# This doesn't catch attributes set in the __init__
|
46 |
+
forbidden_overrides = ["size", "stride", "dtype", "layout", "device", "requires_grad"]
|
47 |
+
for el in forbidden_overrides:
|
48 |
+
if getattr(self.__class__, el) is not getattr(torch.Tensor, el):
|
49 |
+
raise RuntimeError(f"Subclass {self.__class__.__name__} is overwriting the "
|
50 |
+
f"property {el} but this is not allowed as such change would "
|
51 |
+
"not be reflected to c++ callers.")
|
52 |
+
|
53 |
+
|
54 |
+
class DiagTensorBelow(WrapperTensor):
|
55 |
+
@classmethod
|
56 |
+
def get_wrapper_properties(cls, diag, requires_grad=False):
|
57 |
+
assert diag.ndim == 1
|
58 |
+
return diag, {"size": diag.size() + diag.size(), "requires_grad": requires_grad}
|
59 |
+
|
60 |
+
def __init__(self, diag, requires_grad=False):
|
61 |
+
self.diag = diag
|
62 |
+
|
63 |
+
handled_ops = {}
|
64 |
+
|
65 |
+
# We disable torch function here to avoid any unwanted wrapping of the output
|
66 |
+
__torch_function__ = torch._C._disabled_torch_function_impl
|
67 |
+
|
68 |
+
@classmethod
|
69 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
70 |
+
if not all(issubclass(cls, t) for t in types):
|
71 |
+
return NotImplemented
|
72 |
+
|
73 |
+
# For everything else, call the handler:
|
74 |
+
fn = cls.handled_ops.get(func.__name__, None)
|
75 |
+
if fn:
|
76 |
+
return fn(*args, **(kwargs or {}))
|
77 |
+
else:
|
78 |
+
# Note that here, because we don't need to provide the autograd formulas
|
79 |
+
# we can have a default "fallback" that creates a plain Tensor based
|
80 |
+
# on the diag elements and calls the func again.
|
81 |
+
|
82 |
+
def unwrap(e):
|
83 |
+
return e.diag.diag() if isinstance(e, DiagTensorBelow) else e
|
84 |
+
|
85 |
+
def wrap(e):
|
86 |
+
if isinstance(e, torch.Tensor) and e.ndim == 1:
|
87 |
+
return DiagTensorBelow(e)
|
88 |
+
if isinstance(e, torch.Tensor) and e.ndim == 2 and e.count_nonzero() == e.diag().count_nonzero():
|
89 |
+
return DiagTensorBelow(e.diag())
|
90 |
+
return e
|
91 |
+
|
92 |
+
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs or {})))
|
93 |
+
return rs
|
94 |
+
|
95 |
+
def __repr__(self):
|
96 |
+
return super().__repr__(tensor_contents=f"diag={self.diag}")
|
97 |
+
|
98 |
+
|
99 |
+
class SparseTensor(WrapperTensor):
|
100 |
+
@classmethod
|
101 |
+
def get_wrapper_properties(cls, size, values, indices, requires_grad=False):
|
102 |
+
assert values.device == indices.device
|
103 |
+
return values, {"size": size, "requires_grad": requires_grad}
|
104 |
+
|
105 |
+
def __init__(self, size, values, indices, requires_grad=False):
|
106 |
+
self.values = values
|
107 |
+
self.indices = indices
|
108 |
+
|
109 |
+
def __repr__(self):
|
110 |
+
return super().__repr__(tensor_contents=f"values={self.values}, indices={self.indices}")
|
111 |
+
|
112 |
+
def sparse_to_dense(self):
|
113 |
+
res = torch.zeros(self.size(), dtype=self.values.dtype)
|
114 |
+
res[self.indices.unbind(1)] = self.values
|
115 |
+
return res
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def from_dense(t):
|
119 |
+
indices = t.nonzero()
|
120 |
+
values = t[indices.unbind(1)]
|
121 |
+
return SparseTensor(t.size(), values, indices)
|
122 |
+
|
123 |
+
@classmethod
|
124 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
125 |
+
func_name = f"{func.__module__}.{func.__name__}"
|
126 |
+
|
127 |
+
res = cls._try_call_special_impl(func_name, args, kwargs)
|
128 |
+
if res is not NotImplemented:
|
129 |
+
return res
|
130 |
+
|
131 |
+
# Otherwise, use a default implementation that construct dense
|
132 |
+
# tensors and use that to compute values
|
133 |
+
def unwrap(e):
|
134 |
+
return e.sparse_to_dense() if isinstance(e, SparseTensor) else e
|
135 |
+
|
136 |
+
# Wrap back all Tensors into our custom class
|
137 |
+
def wrap(e):
|
138 |
+
# Check for zeros and use that to get indices
|
139 |
+
return SparseTensor.from_dense(e) if isinstance(e, torch.Tensor) else e
|
140 |
+
|
141 |
+
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs or {})))
|
142 |
+
return rs
|
143 |
+
|
144 |
+
# To show how things happen later
|
145 |
+
def __rmul__(self, other):
|
146 |
+
return super().__rmul__(other)
|
147 |
+
|
148 |
+
_SPECIAL_IMPLS = {}
|
149 |
+
|
150 |
+
@classmethod
|
151 |
+
def _try_call_special_impl(cls, func, args, kwargs):
|
152 |
+
if func not in cls._SPECIAL_IMPLS:
|
153 |
+
return NotImplemented
|
154 |
+
return cls._SPECIAL_IMPLS[func](args, kwargs)
|
155 |
+
|
156 |
+
|
157 |
+
# Example non-wrapper subclass that stores extra state.
|
158 |
+
class NonWrapperTensor(torch.Tensor):
|
159 |
+
def __new__(cls, data):
|
160 |
+
t = torch.Tensor._make_subclass(cls, data)
|
161 |
+
t.extra_state = {
|
162 |
+
'last_func_called': None
|
163 |
+
}
|
164 |
+
return t
|
165 |
+
|
166 |
+
@classmethod
|
167 |
+
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
168 |
+
result = super().__torch_function__(func, types, args, kwargs)
|
169 |
+
|
170 |
+
if isinstance(result, cls):
|
171 |
+
# Do something with the extra state. For the example here, just store the name of the
|
172 |
+
# last function called (skip for deepcopy so the copy has the same extra state).
|
173 |
+
if func is torch.Tensor.__deepcopy__:
|
174 |
+
result.extra_state = deepcopy(args[0].extra_state)
|
175 |
+
else:
|
176 |
+
result.extra_state = {
|
177 |
+
'last_func_called': func.__name__,
|
178 |
+
}
|
179 |
+
|
180 |
+
return result
|
181 |
+
|
182 |
+
# new_empty() must be defined for deepcopy to work
|
183 |
+
def new_empty(self, shape):
|
184 |
+
return type(self)(torch.empty(shape))
|
185 |
+
|
186 |
+
|
187 |
+
# Class used to store info about subclass tensors used in testing.
|
188 |
+
class SubclassInfo:
|
189 |
+
|
190 |
+
__slots__ = ['name', 'create_fn', 'closed_under_ops']
|
191 |
+
|
192 |
+
def __init__(self, name, create_fn, closed_under_ops=True):
|
193 |
+
self.name = name
|
194 |
+
self.create_fn = create_fn # create_fn(shape) -> tensor instance
|
195 |
+
self.closed_under_ops = closed_under_ops
|
196 |
+
|
197 |
+
|
198 |
+
subclass_db = {
|
199 |
+
torch.Tensor: SubclassInfo(
|
200 |
+
'base_tensor', create_fn=torch.randn
|
201 |
+
),
|
202 |
+
NonWrapperTensor: SubclassInfo(
|
203 |
+
'non_wrapper_tensor',
|
204 |
+
create_fn=lambda shape: NonWrapperTensor(torch.randn(shape))
|
205 |
+
),
|
206 |
+
LoggingTensor: SubclassInfo(
|
207 |
+
'logging_tensor',
|
208 |
+
create_fn=lambda shape: LoggingTensor(torch.randn(shape))
|
209 |
+
),
|
210 |
+
SparseTensor: SubclassInfo(
|
211 |
+
'sparse_tensor',
|
212 |
+
create_fn=lambda shape: SparseTensor.from_dense(torch.randn(shape).relu())
|
213 |
+
),
|
214 |
+
DiagTensorBelow: SubclassInfo(
|
215 |
+
'diag_tensor_below',
|
216 |
+
create_fn=lambda shape: DiagTensorBelow(torch.randn(shape)),
|
217 |
+
closed_under_ops=False # sparse semantics
|
218 |
+
),
|
219 |
+
}
|