applied-ai-018's picture
Add files using upload-large-folder tool
8e72e9a verified
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import numpy as np
import os
import torch
from megatron import get_args, get_retro_args
from tools.bert_embedding.utils import BlockPathMap
from tools.retro.db.utils import get_merged_train_dataset as get_db_dataset
from tools.retro.external_libs import h5py
from .chunk_dataset import get_chunk_dataset_map
from .utils import get_neighbor_dirname
class RetroDataset(torch.utils.data.Dataset):
'''Dataset of retro samples.
Each sample contains the original GPT sample, along with the token IDs
of each neighbor of each chunk within the sequence. Neighbor array has
shape (num_chunks_per_sample, num_neighbors, num_retrieved_tokens).
'''
def __init__(self,
num_neighbors,
num_retrieved_chunks,
block_size,
db_dataset,
chunk_dataset,
neighbor_path_map):
'''Note: chunk dataset wraps original GPT dataset (see
chunk_dataset.py).'''
super().__init__()
self.num_neighbors = num_neighbors
self.num_retrieved_chunks = num_retrieved_chunks
self.block_size = block_size
self.db_dataset = db_dataset
self.chunk_dataset = chunk_dataset
self.neighbor_path_map = neighbor_path_map
def __len__(self):
return len(self.chunk_dataset.sample_dataset)
def __getitem__(self, sample_idx):
n_chunks_per_sample = self.chunk_dataset.n_chunks_per_sample
# Get standard sample.
sample = self.chunk_dataset.sample_dataset[sample_idx]
# Sample idx to chunk idxs.
chunk_idxs = list(range(
sample_idx * n_chunks_per_sample,
(sample_idx + 1) * n_chunks_per_sample,
))
# Collect retrieved tokens.
all_retrieved_chunk_ids = []
all_retrieved_token_ids = []
for chunk_idx in chunk_idxs:
# Neighbor chunk ids.
neighbor_path = self.neighbor_path_map[chunk_idx]
with h5py.File(neighbor_path, "r") as f:
neighbor_chunk_ids = f["neighbors"] \
[chunk_idx % self.block_size, :self.num_neighbors].tolist()
# Retrieved (neighbor + continuation) token ids.
retrieved_chunk_ids = []
retrieved_token_ids = []
for neighbor_chunk_id in neighbor_chunk_ids:
current_chunk_ids = [
i % len(self.db_dataset)
for i in range(
neighbor_chunk_id,
neighbor_chunk_id + self.num_retrieved_chunks)]
current_token_ids = [self.db_dataset[ci]["text"]
for ci in current_chunk_ids]
retrieved_chunk_ids.append(current_chunk_ids)
retrieved_token_ids.append(current_token_ids)
# Collect retrieved tokens.
all_retrieved_chunk_ids.append(retrieved_chunk_ids)
all_retrieved_token_ids.append(retrieved_token_ids)
# Reshape retrieved tokens.
all_retrieved_chunk_ids = np.array(all_retrieved_chunk_ids) \
.reshape((n_chunks_per_sample, self.num_neighbors, -1))
all_retrieved_token_ids = np.array(all_retrieved_token_ids) \
.reshape((n_chunks_per_sample, self.num_neighbors, -1))
# Sample.
sample = {
**sample,
"neighbor_chunks" : all_retrieved_chunk_ids,
"neighbor_tokens" : all_retrieved_token_ids,
}
return sample
def get_retro_datasets(verify_sizes=True):
'''Get train, valid, test retro datasets.'''
args = get_args()
retro_args = get_retro_args()
# DB dataset.
db_dataset = get_db_dataset()
# Retro datasets.
chunk_ds_info_map = get_chunk_dataset_map()
retro_dataset_map = {}
for data_key, chunk_ds_info in chunk_ds_info_map.items():
chunk_dataset = chunk_ds_info["data"]
neighbor_dir = chunk_ds_info["neighbor_dir"]
neighbor_path_map = BlockPathMap.from_dir(neighbor_dir,
retro_args.retro_block_size)
# Verify dataset prefixes.
expected_dir = get_neighbor_dirname(data_key, chunk_dataset.sample_dataset)
assert expected_dir == neighbor_dir, \
"inconsistent dataset source; '%s' vs. '%s'." % \
(expected_dir, neighbor_dir)
# Verify num chunks.
n_sample_chunks = len(chunk_dataset)
n_neighbor_chunks = neighbor_path_map.max_idx
if not os.path.isdir(neighbor_dir):
if torch.distributed.get_rank() == 0:
raise Exception("neighbor directory '%s' not found; please "
"compare --train-samples, --seq-length, --seed, "
"--eval-iters, and --eval-interval, with "
"retro preprocessing args." %
neighbor_dir)
torch.distributed.barrier()
exit()
if verify_sizes and n_sample_chunks != n_neighbor_chunks:
if torch.distributed.get_rank() == 0:
print("neighbor_dir : %s" % neighbor_dir)
print("neighbor_path_map : %s" % neighbor_path_map)
raise Exception("num sampled chunks (%d) != num neighbor chunks "
"(%d); did you complete querying the entire "
"pretraining dataset?"
% (n_sample_chunks, n_neighbor_chunks))
torch.distributed.barrier()
exit()
# Retro dataset.
retro_dataset_map[data_key] = RetroDataset(
num_neighbors=args.retro_num_neighbors,
num_retrieved_chunks=args.retro_num_retrieved_chunks,
block_size=retro_args.retro_block_size,
db_dataset=db_dataset,
chunk_dataset=chunk_dataset,
neighbor_path_map=neighbor_path_map,
)
# Extract datasets.
train_ds = retro_dataset_map.get("train", None)
valid_ds = retro_dataset_map.get("valid", None)
test_ds = retro_dataset_map.get("test", None)
return train_ds, valid_ds, test_ds