applied-ai-018's picture
Add files using upload-large-folder tool
eb49b41 verified
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2021 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Copyright (C) 2021-2022 Habana Labs, Ltd. an Intel Company
###############################################################################
# Changes:
# - renamed from t2t_decoder.py to decoder.py
# - added shebang
# - organized imports
# - added support for HPU
# - renamed t2t_trainer to trainer
# - added use_hpu hparam
# - added workarounds to run on HPU
# - added support for recipe cache
# - added support for fast inference
# - added support for horovod
r"""Decode from trained T2T models.
This binary performs inference using the Estimator API.
Example usage to decode from dataset:
./decoder.py \
--data_dir ~/data \
--problem=algorithmic_identity_binary40 \
--model=transformer
--hparams_set=transformer_base
Set FLAGS.decode_interactive or FLAGS.decode_from_file for alternative decode
sources.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from TensorFlow.nlp.transformer import trainer
from TensorFlow.nlp.transformer.data_generators import problem # pylint: disable=unused-import
from TensorFlow.nlp.transformer.data_generators import text_encoder
from TensorFlow.nlp.transformer.utils import decoding
from TensorFlow.nlp.transformer.utils import registry
from TensorFlow.nlp.transformer.utils import trainer_lib
from TensorFlow.nlp.transformer.utils import usr_dir
import tensorflow.compat.v1 as tf
flags = tf.flags
FLAGS = flags.FLAGS
# Additional flags in trainer.py and utils/flags.py
flags.DEFINE_string("checkpoint_path", None,
"Path to the model checkpoint. Overrides output_dir.")
flags.DEFINE_bool("keep_timestamp", False,
"Set the mtime of the decoded file to the "
"checkpoint_path+'.index' mtime.")
flags.DEFINE_bool("decode_interactive", False,
"Interactive local inference mode.")
flags.DEFINE_integer("decode_shards", 1, "Number of decoding replicas.")
flags.DEFINE_string("score_file", "", "File to score. Each line in the file "
"must be in the format input \t target.")
flags.DEFINE_bool("decode_in_memory", False, "Decode in memory.")
flags.DEFINE_bool("disable_grappler_optimizations", False,
"Disable Grappler if need be to avoid tensor format errors.")
flags.DEFINE_bool("use_fast_inference", True, "Use fast inference with static shapes")
def create_hparams():
hparams_path = None
if FLAGS.output_dir:
hparams_path = os.path.join(FLAGS.output_dir, "hparams.json")
return trainer_lib.create_hparams(
FLAGS.hparams_set,
FLAGS.hparams,
data_dir=os.path.expanduser(FLAGS.data_dir),
problem_name=FLAGS.problem,
hparams_path=hparams_path)
def create_decode_hparams():
decode_hp = decoding.decode_hparams(FLAGS.decode_hparams)
decode_hp.shards = FLAGS.decode_shards
decode_hp.shard_id = FLAGS.worker_id
decode_in_memory = FLAGS.decode_in_memory or decode_hp.decode_in_memory
decode_hp.decode_in_memory = decode_in_memory
decode_hp.decode_to_file = FLAGS.decode_to_file
decode_hp.decode_reference = FLAGS.decode_reference
return decode_hp
def decode(estimator, hparams, decode_hp):
"""Decode from estimator. Interactive, from file, or from dataset."""
if FLAGS.decode_interactive:
if estimator.config.use_tpu:
raise ValueError("TPU can only decode from dataset.")
decoding.decode_interactively(estimator, hparams, decode_hp,
checkpoint_path=FLAGS.checkpoint_path)
elif FLAGS.decode_from_file:
decoding.decode_from_file(estimator, FLAGS.decode_from_file, hparams,
decode_hp, FLAGS.decode_to_file,
checkpoint_path=FLAGS.checkpoint_path)
if FLAGS.checkpoint_path and FLAGS.keep_timestamp:
ckpt_time = os.path.getmtime(FLAGS.checkpoint_path + ".index")
os.utime(FLAGS.decode_to_file, (ckpt_time, ckpt_time))
else:
decoding.decode_from_dataset(
estimator,
FLAGS.problem,
hparams,
decode_hp,
decode_to_file=FLAGS.decode_to_file,
dataset_split="test" if FLAGS.eval_use_test_set else None,
checkpoint_path=FLAGS.checkpoint_path)
def score_file(filename):
"""Score each line in a file and return the scores."""
# Prepare model.
hparams = create_hparams()
encoders = registry.problem(FLAGS.problem).feature_encoders(FLAGS.data_dir)
has_inputs = "inputs" in encoders
# Prepare features for feeding into the model.
if has_inputs:
inputs_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_inputs = tf.reshape(inputs_ph, [1, -1, 1, 1]) # Make it 4D.
targets_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_targets = tf.reshape(targets_ph, [1, -1, 1, 1]) # Make it 4D.
if has_inputs:
features = {"inputs": batch_inputs, "targets": batch_targets}
else:
features = {"targets": batch_targets}
# Prepare the model and the graph when model runs on features.
model = registry.model(FLAGS.model)(hparams, tf.estimator.ModeKeys.EVAL)
_, losses = model(features)
saver = tf.train.Saver()
with tf.Session() as sess:
# Load weights from checkpoint.
if FLAGS.checkpoint_path is None:
ckpts = tf.train.get_checkpoint_state(FLAGS.output_dir)
ckpt = ckpts.model_checkpoint_path
else:
ckpt = FLAGS.checkpoint_path
saver.restore(sess, ckpt)
# Run on each line.
with tf.gfile.Open(filename) as f:
lines = f.readlines()
results = []
for line in lines:
tab_split = line.split("\t")
if len(tab_split) > 2:
raise ValueError("Each line must have at most one tab separator.")
if len(tab_split) == 1:
targets = tab_split[0].strip()
else:
targets = tab_split[1].strip()
inputs = tab_split[0].strip()
# Run encoders and append EOS symbol.
targets_numpy = encoders["targets"].encode(
targets) + [text_encoder.EOS_ID]
if has_inputs:
inputs_numpy = encoders["inputs"].encode(inputs) + [text_encoder.EOS_ID]
# Prepare the feed.
if has_inputs:
feed = {inputs_ph: inputs_numpy, targets_ph: targets_numpy}
else:
feed = {targets_ph: targets_numpy}
# Get the score.
np_loss = sess.run(losses["training"], feed)
results.append(np_loss)
return results
def get_workaround_flag(name):
return f'WA_{name}'
def is_workaround_enabled(name):
flag = get_workaround_flag(name)
is_enabled = os.environ.get(flag, 'true') == 'true'
if is_enabled:
print(f"Warning! Workaround {flag} is enabled. Run with {flag}=false to disable it.")
return is_enabled
def main(_):
tf.disable_v2_behavior()
tf.enable_resource_variables()
tf.logging.set_verbosity(tf.logging.INFO)
trainer_lib.set_random_seed(FLAGS.random_seed)
usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
if FLAGS.use_hpu:
from habana_frameworks.tensorflow import load_habana_module
load_habana_module()
hvd = trainer.init_multinode()
if FLAGS.use_hpu:
if FLAGS.recipe_cache:
trainer.prepare_recipe_cache()
if FLAGS.use_bf16:
if not is_workaround_enabled('FORCE_FP32'):
os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path
else:
print("Warning! BF16 precision is not supported in inference mode. Switching back to fp32...")
if is_workaround_enabled('DISABLE_DYNAMIC_SHAPES'):
os.environ['TF_ENABLE_DYNAMIC_SHAPES'] = 'false'
if FLAGS.score_file:
filename = os.path.expanduser(FLAGS.score_file)
if not tf.gfile.Exists(filename):
raise ValueError("The file to score doesn't exist: %s" % filename)
results = score_file(filename)
if not FLAGS.decode_to_file:
raise ValueError("To score a file, specify --decode_to_file for results.")
write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w")
for score in results:
write_file.write("%.6f\n" % score)
write_file.close()
return
hp = create_hparams()
hp.add_hparam("use_hpu", FLAGS.use_hpu)
hp.add_hparam("use_horovod", FLAGS.use_horovod)
decode_hp = create_decode_hparams()
decode_hp.add_hparam("use_horovod", hp.use_horovod)
if FLAGS.use_horovod:
hp.add_hparam("hvd_worker_id", hvd.rank())
hp.add_hparam("hvd_size", hvd.size())
decode_hp.add_hparam("hvd_worker_id", hp.hvd_worker_id)
decode_hp.add_hparam("hvd_size", hp.hvd_size)
run_config = trainer.create_run_config(hp)
if FLAGS.disable_grappler_optimizations:
run_config.session_config.graph_options.rewrite_options.disable_meta_optimizer = True
assert FLAGS.use_fast_inference or not FLAGS.use_horovod, "Multinode inference is only supported with use_fast_inference=True"
# summary-hook in tf.estimator.EstimatorSpec requires
# hparams.model_dir to be set.
hp.add_hparam("model_dir", run_config.model_dir)
estimator = trainer_lib.create_estimator(
FLAGS.model,
hp,
run_config,
decode_hparams=decode_hp,
use_tpu=FLAGS.use_tpu)
decode(estimator, hp, decode_hp)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()