peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tasks
/msdp
/prompt.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Prompting the pretrained language model to generate knowledge/response""" | |
import json | |
import torch | |
import requests | |
from nltk import word_tokenize | |
from megatron import get_args | |
from megatron import print_rank_0 | |
from megatron import get_tokenizer | |
from megatron.core import mpu | |
from megatron.model import GPTModel | |
from megatron.training import get_model | |
from megatron.arguments import core_transformer_config_from_args | |
from megatron.checkpointing import load_checkpoint | |
from megatron.initialize import initialize_megatron | |
from megatron.text_generation import generate_and_post_process | |
def call_model_api(inputs, tokens_to_generate): | |
"""Calling the model api to get the output generations""" | |
args = get_args() | |
# The following is an example of using the Megatron API | |
# You can also implement your own API function to place this part | |
headers = {'Content-Type': 'application/json; charset=UTF-8'} | |
data = {"prompts": [inputs], "tokens_to_generate": tokens_to_generate, "top_k": 1} | |
data_json = json.dumps(data) | |
outputs = requests.put(args.megatron_api_url, headers=headers, data=data_json).json()["text"][0] | |
input_len = len(inputs) | |
outputs = outputs[input_len:] | |
outputs = outputs.split("\n")[0].strip() | |
return outputs | |
def read_prompts(prompt_path, prompt_type, n_example): | |
"""Read prompt data""" | |
if prompt_type == "knowledge": | |
# prompts for the knowledge generation | |
prompt_examples_dict = {} | |
# read prompt_path | |
with open(prompt_path, "r") as f: | |
for i, line in enumerate(f): | |
line = line.strip() | |
line_dict = json.loads(line) | |
key = list(line_dict.keys())[0] | |
if key not in prompt_examples_dict: | |
prompt_examples = line_dict[key] | |
prompt = "" | |
for instance in prompt_examples: | |
instance = instance.strip() | |
prompt += instance + " \n" | |
prompt_examples_dict[key] = prompt | |
return prompt_examples_dict | |
else: | |
# prompts for the response generation | |
# read prompt_path | |
prompt = "" | |
with open(prompt_path, "r") as f: | |
prompt_examples = f.readlines() | |
prompt_examples = prompt_examples[:n_example] | |
for instance in prompt_examples: | |
instance = instance.strip() | |
prompt += instance + " \n" | |
return prompt | |
def generate_samples_by_calling_api(): | |
""" Generate outputs by calling""" | |
args = get_args() | |
assert args.prompt_type in ["knowledge", "response"], \ | |
"Please input a correct prompt type!" | |
if args.prompt_type == "knowledge": | |
# read knowledge generation prompts | |
knwl_gen_prompt_dict = read_prompts( | |
args.prompt_file, args.prompt_type, args.num_prompt_examples) | |
else: | |
resp_gen_prompt = read_prompts( | |
args.prompt_file, args.prompt_type, args.num_prompt_examples) | |
# read the test data | |
fname = open(args.sample_input_file, "r") | |
test_sample_list = fname.readlines() | |
# create output file | |
fname_out = open(args.sample_output_file, "w") | |
# call the api to get the output generations | |
for test_sample in test_sample_list: | |
test_sample = test_sample.strip() | |
splits = test_sample.split("\t") | |
topic = splits[0] | |
# prepare the inputs for the api | |
if args.prompt_type == "knowledge": | |
## inputs = prompt + current test | |
# get the prompt | |
turns = splits[1].split(" [SEP] ") | |
last_turn = turns[-1] | |
key = topic + " " + last_turn | |
inputs = knwl_gen_prompt_dict[key] | |
# add current test | |
inputs += "( " + last_turn + " ) " + topic + " =>" | |
else: | |
# inputs = prompt + current test | |
# get the prompt | |
inputs = resp_gen_prompt | |
# add current test | |
turns = splits[1].split(" [SEP] ") | |
knowledge = splits[2] | |
last_turn = turns[-1] | |
last_turn = " ".join(word_tokenize(last_turn)) | |
knowledge = " ".join(word_tokenize(knowledge)) | |
knowledge = knowledge.strip() | |
last_turn = last_turn.strip() | |
inputs += "Topic: " + topic + ". " | |
inputs += "User says: " + last_turn + " " | |
inputs += "We know that: " + knowledge + " " | |
inputs += "System replies:" | |
# get the output generations from the api, | |
# and write to the output file | |
generations = call_model_api(inputs, args.out_seq_length) | |
fname_out.write(generations) | |
fname_out.write("\n") | |
fname.close() | |
fname_out.close() | |
def model_provider(pre_process=True, post_process=True): | |
"""Build the model.""" | |
config = core_transformer_config_from_args(get_args()) | |
print_rank_0('building GPT model ...') | |
model = GPTModel( | |
config=config, | |
num_tokentypes=0, | |
parallel_output=True, | |
pre_process=pre_process, | |
post_process=post_process | |
) | |
return model | |
def generate_samples_by_prompting_input_from_file(model): | |
"""Prompt a pretrained language model to generate knowledge/response""" | |
# get tokenizer | |
args = get_args() | |
tokenizer = get_tokenizer() | |
# Read the sample file and open the output file. | |
assert args.sample_input_file is not None, \ | |
'sample input file is not provided.' | |
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: | |
fname = open(args.sample_input_file, "r") | |
all_raw_text = fname.readlines() | |
input_count = len(all_raw_text) | |
if args.sample_output_file is None: | |
sample_output_file = args.sample_input_file + ".out" | |
print('`sample-output-file` not specified, setting ' | |
'it to {}'.format(sample_output_file)) | |
else: | |
sample_output_file = args.sample_output_file | |
fname_out = open(sample_output_file, "w") | |
# only two prompt types (i.e., knowledge and response) are allowed | |
assert args.prompt_type in ["knowledge", "response"], \ | |
"Please input a correct prompt type!" | |
# Read the prompt file | |
if args.prompt_type == "knowledge": | |
# read the prompts for the knowledge generation | |
prompt_examples_dict = {} | |
with open(args.prompt_file, "r") as f: | |
for i, line in enumerate(f): | |
line = line.strip() | |
line_dict = json.loads(line) | |
key = list(line_dict.keys())[0] | |
# get the prompt examples based on the key | |
if key not in prompt_examples_dict: | |
prompt_examples = line_dict[key] | |
prompt = "" | |
for instance in prompt_examples: | |
instance = instance.strip() | |
prompt += instance + " \n" | |
prompt_examples_dict[key] = prompt | |
else: | |
# read the prompts for the response generation | |
# prompts are fixed for all test samples | |
with open(args.prompt_file, "r") as f: | |
prompt_examples = f.readlines() | |
prompt_examples = prompt_examples[:args.num_prompt_examples] | |
prompt = "" | |
for instance in prompt_examples: | |
instance = instance.strip() | |
prompt += instance + " \n" | |
input_pos = 0 | |
model.eval() | |
# perform prompting | |
with torch.no_grad(): | |
while True: | |
raw_text_len = 0 | |
if mpu.is_pipeline_first_stage() \ | |
and mpu.get_tensor_model_parallel_rank() == 0: | |
input_str = all_raw_text[input_pos] | |
input_str = input_str.strip() | |
splits = input_str.split("\t") | |
topic = splits[0] | |
if args.prompt_type == "knowledge": | |
# first add the prompt into the raw_text | |
turns = splits[1].split(" [SEP] ") | |
last_turn = turns[-1] | |
key = topic + " " + last_turn | |
raw_text = prompt_examples_dict[key] | |
# construct inputs for knowledge generation | |
# then add the constructed inputs into the raw_text | |
raw_text += "( " + last_turn + " ) " + topic + " =>" | |
else: | |
# first add the prompt into the raw_text | |
raw_text = prompt | |
# construct inputs for response generation | |
# then add the constructed inputs into the raw_text | |
turns = splits[1].split(" [SEP] ") | |
knowledge = splits[2] | |
last_turn = turns[-1] | |
last_turn = " ".join(word_tokenize(last_turn)) | |
knowledge = " ".join(word_tokenize(knowledge)) | |
knowledge = knowledge.strip() | |
last_turn = last_turn.strip() | |
raw_text += "Topic: " + topic + ". " | |
raw_text += "User says: " + last_turn + " " | |
raw_text += "We know that: " + knowledge + " " | |
raw_text += "System replies:" | |
input_pos += 1 | |
raw_text_len = len(raw_text) | |
else: | |
raw_text = "EMPTY TEXT" | |
if input_pos % 100 == 0: | |
print_rank_0("input_pos: %d" % input_pos) | |
outputs = generate_and_post_process( | |
model=model, | |
prompts=[raw_text], | |
tokens_to_generate=args.out_seq_length, | |
top_k_sampling=1) | |
prompts_plus_generations = outputs[0] | |
prompts_plus_generations = prompts_plus_generations[0] | |
# write the generated output to the output file | |
if mpu.get_tensor_model_parallel_rank() == 0: | |
if mpu.is_pipeline_first_stage(): | |
generations = prompts_plus_generations[raw_text_len:] | |
generations = generations.split("\n")[0] | |
generations = generations.strip() | |
fname_out.write(generations) | |
fname_out.write("\n") | |
raw_text = None | |
if input_pos == input_count: | |
return | |
def main(): | |
args = get_args() | |
if args.api_prompt: | |
# obtain the generations by calling the api | |
generate_samples_by_calling_api() | |
return | |
if args.num_layers_per_virtual_pipeline_stage is not None: | |
print("Interleaved pipeline schedule is not yet supported for text generation.") | |
exit() | |
# Set up model and load checkpoint. | |
model = get_model(model_provider, wrap_with_ddp=False) | |
if args.load is not None: | |
_ = load_checkpoint(model, None, None) | |
assert len(model) == 1, "Above condition should have caught this" | |
model = model[0] | |
# perform the prompting | |
generate_samples_by_prompting_input_from_file(model) | |