applied-ai-018's picture
Add files using upload-large-folder tool
f1316e7 verified
import os
import json
import gzip
import re
from tqdm import tqdm
from multiprocessing import Pool
langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"]
language_characters = {
"as": {"range": (0x0980, 0x09FF)}, # Assamese
"bn": {"range": (0x0980, 0x09FF)}, # Bengali
"gu": {"range": (0x0A80, 0x0AFF)}, # Gujarati
"kn": {"range": (0x0C80, 0x0CFF)}, # Kannada
"hi": {"range": (0x0900, 0x097F)}, # Hindi
"ml": {"range": (0x0D00, 0x0D7F)}, # Malayalam
"mr": {"range": (0x0900, 0x097F)}, # Marathi
"ne": {"range": (0x0900, 0x097F)}, # Nepali
"or": {"range": (0x0B00, 0x0B7F)}, # Oriya
"sa": {"range": (0x0900, 0x097F)}, # Sanskrit
"sd": {"range": (0x0600, 0x06FF)}, # Sindhi
"ta": {"range": (0x0B80, 0x0BFF)}, # Tamil
"ur": {"range": (0x0600, 0x06FF)}, # Urdu
"te": {"range": (0x0C00, 0x0C7F)}, # Telugu
"mai": {"range": (0x0900, 0x097F)} # Maithili
}
language_percentage = 40
num_of_words = 4
def check_language_percentage(text, language):
unicode_range = language_characters.get(language)
language_character_count = sum(unicode_range["range"][0] <= ord(char) <= unicode_range["range"][1] for char in text)
# Calculate the percentage of characters belonging to the specified language
percentage = (language_character_count / len(text)) * 100
# Check if the percentage meets the threshold of 30%
if percentage >= language_percentage:
return True
else:
return False
def valid(json_obj, lang):
content = json_obj["raw_content"]
sentences = content.split('\n')
filtered_sentences = []
for sentence in sentences:
end_of_sentence_pattern = r'[।?!]+'
lines = re.split(end_of_sentence_pattern, sentence)
lines = [line for line in lines if line != ""]
filtered_lines = []
for i in range(len(lines)):
if(not(lines[i] == "।" or lines[i] == "?" or lines[i] == "!")):
if(check_language_percentage(lines[i], lang) and len(lines[i].split()) >= num_of_words):
filtered_lines.append(lines[i])
i += 1
if(i+1 < len(lines)):
filtered_lines.append(lines[i])
else:
i += 1
# else:
# filtered_lines.append(lines[i])
filtered_sentences.append("".join(filtered_lines))
json_obj["raw_content"] = re.sub(r'\n+', '\n', "\n".join(filtered_sentences))
return json_obj
def process_file(file_info):
input_path, output_path = file_info
lang = input_path.split('/')[-1].split('_')[0]
filtered_documents = []
# Read JSON objects and filter them
with gzip.open(input_path, 'rt') as input_file:
for line in input_file:
json_obj = json.loads(line)
new_obj = valid(json_obj, lang)
if(len(new_obj["raw_content"].split()) >= 50):
filtered_documents.append(new_obj)
# Write filtered JSON objects to new file
with gzip.open(output_path, 'wt') as output_file:
for doc in filtered_documents:
output_file.write(json.dumps(doc, ensure_ascii=False) + '\n')
def filter_json_files(input_folder, output_folder):
# Create output folder if it doesn't exist
if not os.path.exists(output_folder):
os.makedirs(output_folder)
file_infos = []
# Iterate through each JSON file in the input folder
for filename in sorted(os.listdir(input_folder)):
if filename.endswith(".json.gz"):
input_path = os.path.join(input_folder, filename)
output_path = os.path.join(output_folder, filename)
file_infos.append((input_path, output_path))
# Initialize tqdm with the total number of files
with tqdm(total=len(file_infos)) as pbar:
# Create a pool of workers
with Pool(processes=160) as pool:
# Use tqdm as a context manager to automatically close the pool and update the progress bar
for _ in pool.imap_unordered(process_file, file_infos):
pbar.update()
print("Filtering done for ", input_folder.split('/')[-1])
snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"]
for snap in snapshots:
input_folder = f"/mnt/weka/peacock/wet-data/output/global_filtered_without_bloom_new/{snap}"
output_folder = f"/mnt/weka/peacock/wet-data/output/heuristic_filtered_without_bloom_new/{snap}"
filter_json_files(input_folder, output_folder)