|
import sentencepiece as spm |
|
from tokenizers import Tokenizer, normalizers, pre_tokenizers, decoders, trainers, models |
|
from tokenizers.models import BPE, Unigram |
|
from transformers import PreTrainedTokenizerFast, convert_slow_tokenizer |
|
import warnings |
|
from typing import Dict, List, Tuple |
|
|
|
from packaging import version |
|
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors |
|
from tokenizers.models import BPE, Unigram, WordPiece |
|
|
|
def _get_prepend_scheme(add_prefix_space: bool, original_tokenizer) -> str: |
|
if add_prefix_space: |
|
prepend_scheme = "always" |
|
if not getattr(original_tokenizer, "legacy", True): |
|
prepend_scheme = "first" |
|
else: |
|
prepend_scheme = "never" |
|
return prepend_scheme |
|
|
|
class SpmConverter2(convert_slow_tokenizer.SpmConverter): |
|
def __init__(self, *args): |
|
convert_slow_tokenizer.requires_backends(self, "protobuf") |
|
|
|
super().__init__(*args) |
|
|
|
|
|
model_pb2 = convert_slow_tokenizer.import_protobuf() |
|
|
|
m = model_pb2.ModelProto() |
|
with open(self.original_tokenizer.vocab_file, "rb") as f: |
|
m.ParseFromString(f.read()) |
|
self.proto = m |
|
|
|
if self.proto.trainer_spec.byte_fallback: |
|
if not getattr(self, "handle_byte_fallback", None): |
|
warnings.warn( |
|
"The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option" |
|
" which is not implemented in the fast tokenizers. In practice this means that the fast version of the" |
|
" tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these " |
|
"unknown tokens into a sequence of byte tokens matching the original piece of text." |
|
) |
|
|
|
def tokenizer(self, proto): |
|
model_type = proto.trainer_spec.model_type |
|
vocab_scores = self.vocab(proto) |
|
unk_id = self.unk_id(proto) |
|
|
|
_, merges = convert_slow_tokenizer.SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() |
|
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)} |
|
tokenizer = Tokenizer( |
|
BPE( |
|
bpe_vocab, |
|
merges, |
|
unk_token=proto.trainer_spec.unk_piece, |
|
fuse_unk=True, |
|
) |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
spm_tokenizer = spm.SentencePieceProcessor(model_file="/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model") |
|
spm_tokenizer.vocab_file = "/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model" |
|
spm_converter = SpmConverter2(spm_tokenizer) |
|
converted = spm_converter.converted() |
|
converted.save('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json') |
|
|
|
tok = PreTrainedTokenizerFast( |
|
tokenizer_file='/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json', |
|
clean_up_tokenization_spaces=False, |
|
pad_token='<PAD>', |
|
unk_token='<UNK>', |
|
bos_token='<BOS>', |
|
eos_token='<EOS>', |
|
mask_token='<MASK>', |
|
model_max_length=1024, |
|
padding_side='right', |
|
truncation_side='right' |
|
) |
|
tok.save_pretrained('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer') |
|
|