commit
stringlengths
40
40
old_file
stringlengths
2
205
new_file
stringlengths
2
205
old_contents
stringlengths
0
32.9k
new_contents
stringlengths
1
38.9k
subject
stringlengths
3
9.4k
message
stringlengths
6
9.84k
lang
stringlengths
3
13
license
stringclasses
13 values
repos
stringlengths
6
115k
07045b7aa32a14de23ec233029b6fc6134b24685
experiment/liftVec.agda
experiment/liftVec.agda
open import Function open import Data.Nat using (ℕ ; suc ; zero) open import Data.Fin using (Fin) open import Data.Vec open import Data.Vec.N-ary.NP open import Relation.Binary.PropositionalEquality module liftVec where module single (A : Set)(_+_ : A → A → A)where data Tm : Set where var : Tm cst : A → Tm fun : Tm → Tm → Tm eval : Tm → A → A eval var x = x eval (cst c) x = c eval (fun tm tm') x = eval tm x + eval tm' x veval : {m : ℕ} → Tm → Vec A m → Vec A m veval var xs = xs veval (cst x) xs = replicate x veval (fun tm tm') xs = zipWith _+_ (veval tm xs) (veval tm' xs) record Fm : Set where constructor _=='_ field lhs : Tm rhs : Tm s[_] : Fm → Set s[ lhs ==' rhs ] = (x : A) → eval lhs x ≡ eval rhs x v[_] : Fm → Set v[ lhs ==' rhs ] = {m : ℕ}(xs : Vec A m) → veval lhs xs ≡ veval rhs xs lemma1 : (t : Tm) → veval t [] ≡ [] lemma1 var = refl lemma1 (cst x) = refl lemma1 (fun t t') rewrite lemma1 t | lemma1 t' = refl lemma2 : {m : ℕ}(x : A)(xs : Vec A m)(t : Tm) → veval t (x ∷ xs) ≡ eval t x ∷ veval t xs lemma2 _ _ var = refl lemma2 _ _ (cst c) = refl lemma2 x xs (fun t t') rewrite lemma2 x xs t | lemma2 x xs t' = refl prf : (t : Fm) → s[ t ] → v[ t ] prf (lhs ==' rhs) pr [] rewrite lemma1 lhs | lemma1 rhs = refl prf (l ==' r) pr (x ∷ xs) rewrite lemma2 x xs l | lemma2 x xs r = cong₂ (_∷_) (pr x) (prf (l ==' r) pr xs) module MultiDataType {A : Set} {nrVar : ℕ} where data Tm : Set where var : Fin nrVar → Tm cst : A → Tm fun : Tm → Tm → Tm infixl 6 _+'_ _+'_ : Tm → Tm → Tm _+'_ = fun infix 4 _≡'_ record TmEq : Set where constructor _≡'_ field lhs rhs : Tm module multi (A : Set)(_+_ : A → A → A)(nrVar : ℕ) where open MultiDataType {A} {nrVar} public sEnv : Set sEnv = Vec A nrVar vEnv : ℕ → Set vEnv m = Vec (Vec A m) nrVar Var : Set Var = Fin nrVar _!_ : {X : Set} → Vec X nrVar → Var → X E ! v = lookup v E eval : Tm → sEnv → A eval (var x) G = G ! x eval (cst c) G = c eval (fun t t') G = eval t G + eval t' G veval : {m : ℕ} → Tm → vEnv m → Vec A m veval (var x) G = G ! x veval (cst c) G = replicate c veval (fun t t') G = zipWith _+_ (veval t G) (veval t' G) lemma1 : {xs : Vec (Vec A 0) nrVar} (t : Tm) → veval t xs ≡ [] lemma1 {xs} (var x) with xs ! x ... | [] = refl lemma1 (cst x) = refl lemma1 {xs} (fun t t') rewrite lemma1 {xs} t | lemma1 {xs} t' = refl lemVar : {m n : ℕ}(G : Vec (Vec A (suc m)) n)(i : Fin n) → lookup i G ≡ lookup i (map head G) ∷ lookup i (map tail G) lemVar [] () lemVar ((x ∷ G) ∷ G₁) Data.Fin.zero = refl lemVar (G ∷ G') (Data.Fin.suc i) = lemVar G' i lemma2 : {n : ℕ}(xs : vEnv (suc n))(t : Tm) → veval t xs ≡ eval t (map head xs) ∷ veval t (map tail xs) lemma2 G (var x) = lemVar G x lemma2 _ (cst x) = refl lemma2 G (fun t t') rewrite lemma2 G t | lemma2 G t' = refl s[_==_] : Tm → Tm → Set s[ l == r ] = (G : Vec A nrVar) → eval l G ≡ eval r G v[_==_] : Tm → Tm → Set v[ l == r ] = {m : ℕ}(G : Vec (Vec A m) nrVar) → veval l G ≡ veval r G prf : (l r : Tm) → s[ l == r ] → v[ l == r ] prf l r pr {zero} G rewrite lemma1 {G} l | lemma1 {G} r = refl prf l r pr {suc m} G rewrite lemma2 G l | lemma2 G r = cong₂ _∷_ (pr (replicate head ⊛ G)) (prf l r pr (map tail G)) module Full (A : Set)(_+_ : A → A → A) (m : ℕ) n where open multi A _+_ n public solve : ∀ (l r : Tm) → ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G)) → ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G)) solve l r x = curryⁿ {n} {A = Vec A m} {B = curryⁿ′ f} (λ xs → subst id (sym (curry-$ⁿ′ f xs)) (prf l r (λ G → subst id (curry-$ⁿ′ g G) (x $ⁿ G)) xs)) where f = λ G → veval {m} l G ≡ veval r G g = λ G → eval l G ≡ eval r G mkTm : N-ary n Tm TmEq → TmEq mkTm = go (tabulate id) where go : {m : ℕ} -> Vec (Fin n) m → N-ary m Tm TmEq → TmEq go [] f = f go (x ∷ args) f = go args (f (var x)) prove : ∀ (t : N-ary n Tm TmEq) → let l = TmEq.lhs (mkTm t) r = TmEq.rhs (mkTm t) in ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G)) → ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G)) prove t x = solve (TmEq.lhs (mkTm t)) (TmEq.rhs (mkTm t)) x open import Data.Bool module example where open import Data.Fin open import Data.Bool.NP open import Data.Product using (Σ ; proj₁) module VecBoolXorProps {m} = Full Bool _xor_ m open MultiDataType coolTheorem : {m : ℕ} → (xs ys : Vec Bool m) → zipWith _xor_ xs ys ≡ zipWith _xor_ ys xs coolTheorem = VecBoolXorProps.prove 2 (λ x y → x +' y ≡' y +' x) Xor°.+-comm coolTheorem2 : {m : ℕ} → (xs : Vec Bool m) → _ coolTheorem2 = VecBoolXorProps.prove 1 (λ x → (x +' x) ≡' (cst false)) (proj₁ Xor°.-‿inverse) test = example.coolTheorem (true ∷ false ∷ []) (false ∷ false ∷ [])
open import Function open import Data.Nat using (ℕ ; suc ; zero) open import Data.Fin using (Fin) open import Data.Vec open import Data.Vec.N-ary.NP open import Relation.Binary.PropositionalEquality module liftVec where module single (A : Set)(_+_ : A → A → A)where data Tm : Set where var : Tm cst : A → Tm fun : Tm → Tm → Tm eval : Tm → A → A eval var x = x eval (cst c) x = c eval (fun tm tm') x = eval tm x + eval tm' x veval : {m : ℕ} → Tm → Vec A m → Vec A m veval var xs = xs veval (cst x) xs = replicate x veval (fun tm tm') xs = zipWith _+_ (veval tm xs) (veval tm' xs) record Fm : Set where constructor _=='_ field lhs : Tm rhs : Tm s[_] : Fm → Set s[ lhs ==' rhs ] = (x : A) → eval lhs x ≡ eval rhs x v[_] : Fm → Set v[ lhs ==' rhs ] = {m : ℕ}(xs : Vec A m) → veval lhs xs ≡ veval rhs xs lemma1 : (t : Tm) → veval t [] ≡ [] lemma1 var = refl lemma1 (cst x) = refl lemma1 (fun t t') rewrite lemma1 t | lemma1 t' = refl lemma2 : {m : ℕ}(x : A)(xs : Vec A m)(t : Tm) → veval t (x ∷ xs) ≡ eval t x ∷ veval t xs lemma2 _ _ var = refl lemma2 _ _ (cst c) = refl lemma2 x xs (fun t t') rewrite lemma2 x xs t | lemma2 x xs t' = refl prf : (t : Fm) → s[ t ] → v[ t ] prf (lhs ==' rhs) pr [] rewrite lemma1 lhs | lemma1 rhs = refl prf (l ==' r) pr (x ∷ xs) rewrite lemma2 x xs l | lemma2 x xs r = cong₂ (_∷_) (pr x) (prf (l ==' r) pr xs) module MultiDataType {A : Set} {nrVar : ℕ} where data Tm : Set where var : Fin nrVar → Tm cst : A → Tm fun : Tm → Tm → Tm infixl 6 _+'_ _+'_ : Tm → Tm → Tm _+'_ = fun infix 4 _≡'_ record TmEq : Set where constructor _≡'_ field lhs rhs : Tm module multi (A : Set)(_+_ : A → A → A)(nrVar : ℕ) where open MultiDataType {A} {nrVar} public sEnv : Set sEnv = Vec A nrVar vEnv : ℕ → Set vEnv m = Vec (Vec A m) nrVar Var : Set Var = Fin nrVar _!_ : {X : Set} → Vec X nrVar → Var → X E ! v = lookup v E eval : Tm → sEnv → A eval (var x) G = G ! x eval (cst c) G = c eval (fun t t') G = eval t G + eval t' G veval : {m : ℕ} → Tm → vEnv m → Vec A m veval (var x) G = G ! x veval (cst c) G = replicate c veval (fun t t') G = zipWith _+_ (veval t G) (veval t' G) lemma1 : {xs : Vec (Vec A 0) nrVar} (t : Tm) → veval t xs ≡ [] lemma1 {xs} (var x) with xs ! x ... | [] = refl lemma1 (cst x) = refl lemma1 {xs} (fun t t') rewrite lemma1 {xs} t | lemma1 {xs} t' = refl lemVar : {m n : ℕ}(G : Vec (Vec A (suc m)) n)(i : Fin n) → lookup i G ≡ lookup i (map head G) ∷ lookup i (map tail G) lemVar [] () lemVar ((x ∷ G) ∷ G₁) Data.Fin.zero = refl lemVar (G ∷ G') (Data.Fin.suc i) = lemVar G' i lemma2 : {n : ℕ}(xs : vEnv (suc n))(t : Tm) → veval t xs ≡ eval t (map head xs) ∷ veval t (map tail xs) lemma2 G (var x) = lemVar G x lemma2 _ (cst x) = refl lemma2 G (fun t t') rewrite lemma2 G t | lemma2 G t' = refl s[_==_] : Tm → Tm → Set s[ l == r ] = (G : Vec A nrVar) → eval l G ≡ eval r G v[_==_] : Tm → Tm → Set v[ l == r ] = {m : ℕ}(G : Vec (Vec A m) nrVar) → veval l G ≡ veval r G prf : (l r : Tm) → s[ l == r ] → v[ l == r ] prf l r pr {zero} G rewrite lemma1 {G} l | lemma1 {G} r = refl prf l r pr {suc m} G rewrite lemma2 G l | lemma2 G r = cong₂ _∷_ (pr (replicate head ⊛ G)) (prf l r pr (map tail G)) module Full (A : Set)(_+_ : A → A → A) (m : ℕ) n where open multi A _+_ n public solve : ∀ (l r : Tm) → ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G)) → ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G)) solve l r x = curryⁿ {n} {A = Vec A m} {B = curryⁿ′ f} (λ xs → subst id (sym (curry-$ⁿ′ f xs)) (prf l r (λ G → subst id (curry-$ⁿ′ g G) (x $ⁿ G)) xs)) where f = λ G → veval {m} l G ≡ veval r G g = λ G → eval l G ≡ eval r G mkTm : N-ary n Tm TmEq → TmEq mkTm = go (tabulate id) where go : {m : ℕ} -> Vec (Fin n) m → N-ary m Tm TmEq → TmEq go [] f = f go (x ∷ args) f = go args (f (var x)) prove : ∀ (t : N-ary n Tm TmEq) → let l = TmEq.lhs (mkTm t) r = TmEq.rhs (mkTm t) in ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G)) → ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G)) prove t x = solve (TmEq.lhs (mkTm t)) (TmEq.rhs (mkTm t)) x open import Data.Two module example where open import Data.Fin open import Data.Product using (Σ ; proj₁) module VecBoolXorProps {m} = Full 𝟚 _xor_ m open MultiDataType coolTheorem : {m : ℕ} → (xs ys : Vec 𝟚 m) → zipWith _xor_ xs ys ≡ zipWith _xor_ ys xs coolTheorem = VecBoolXorProps.prove 2 (λ x y → x +' y ≡' y +' x) Xor°.+-comm coolTheorem2 : {m : ℕ} → (xs : Vec 𝟚 m) → _ coolTheorem2 = VecBoolXorProps.prove 1 (λ x → (x +' x) ≡' (cst 0₂)) (proj₁ Xor°.-‿inverse) test = example.coolTheorem (1₂ ∷ 0₂ ∷ []) (0₂ ∷ 0₂ ∷ [])
Upgrade to Data.Two
Upgrade to Data.Two
Agda
bsd-3-clause
crypto-agda/agda-nplib
a79e9939c6512db4827fc831f2689871d99cfc26
Base/Change/Context.agda
Base/Change/Context.agda
module Base.Change.Context {Type : Set} (ΔType : Type → Type) where -- Transform a context of values into a context of values and -- changes. open import Base.Syntax.Context Type ΔContext : Context → Context ΔContext ∅ = ∅ ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ -- like ΔContext, but ΔType τ and τ are swapped ΔContext′ : Context → Context ΔContext′ ∅ = ∅ ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
module Base.Change.Context {Type : Set} (ΔType : Type → Type) where open import Base.Syntax.Context Type -- Transform a context of values into a context of values and -- changes. ΔContext : Context → Context ΔContext ∅ = ∅ ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ -- like ΔContext, but ΔType τ and τ are swapped ΔContext′ : Context → Context ΔContext′ ∅ = ∅ ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
Move function-specific comment right before function
Move function-specific comment right before function Currently, this seems a comment about the whole module. Old-commit-hash: c25e918e712496981adfe4c74f94a8d80e8e5052
Agda
mit
inc-lc/ilc-agda
06d988ce4bc3692e4e60e39bdb8f2e1daddb660e
Denotation/Change/Popl14.agda
Denotation/Change/Popl14.agda
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u -------------------- -- Implementation -- -------------------- -- ΔVal τ is intended to be the semantic domain for changes of values -- of type τ. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal int = ℤ ΔVal bag = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {int} n Δn = n + Δn _⊞_ {bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {int} m n = m - n _⊟_ {bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {int} n Δn = ⊤ valid {bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext (λ w → begin (v ⊞ (u ⊟ v)) w ≡⟨ refl ⟩ v w ⊞ (u (w ⊞ (w ⊟ w)) ⊟ v w) ≡⟨ cong (λ hole → v w ⊞ (u hole ⊟ v w)) v+[u-v]=u ⟩ v w ⊞ (u w ⊟ v w) ≡⟨ v+[u-v]=u ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {int} {u} {v} = tt R[v,u-v] {bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw in R[v,u-v] {τ} , (begin (v ⊞ (u ⊟ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {u = u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {u = u w′} {v w}) ⟩ v w ⊞ (u ⊟ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {int} n Δn = n + Δn _⟦⊕⟧_ {bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → f v ⟦⊕⟧ Δf v (v ⟦⊝⟧ v) _⟦⊝⟧_ {int} m n = m - n _⟦⊝⟧_ {bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → g (v ⟦⊕⟧ Δv) ⟦⊝⟧ f v
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let _+_ = _⊞_ {τ} _-_ = _⊟_ {τ} in v + (u - v) ≡ u -------------------- -- Implementation -- -------------------- -- ΔVal τ is intended to be the semantic domain for changes of values -- of type τ. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal (base base-int) = ℤ ΔVal (base base-bag) = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {base base-int} n Δn = n + Δn _⊞_ {base base-bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {base base-int} m n = m - n _⊟_ {base base-bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base base-int} n Δn = ⊤ valid {base base-bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = let _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₀_ = _⊞_ {σ} _-₀_ = _⊟_ {σ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v + (u - v)) w ≡⟨ refl ⟩ v w +₁ (u (w +₀ (w -₀ w)) -₁ v w) ≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩ v w +₁ (u w -₁ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base base-int} {u} {v} = tt R[v,u-v] {base base-bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in R[v,u-v] {τ} , (begin (v + (u - v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w +₁ (u - v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {base base-int} n Δn = n + Δn _⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → let _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} in f v +₁ Δf v (v -₀ v) _⟦⊝⟧_ {base base-int} m n = m - n _⟦⊝⟧_ {base base-bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
add type annotations to Denotation.Change.Popl14
[WIP] add type annotations to Denotation.Change.Popl14 Old-commit-hash: 90b06722aecf9d0b5c6c69547217cb2c522912be
Agda
mit
inc-lc/ilc-agda
d9a3d68c58bd5c8ae49738e7a8f68fd5e89b4bce
lambda.agda
lambda.agda
module lambda where open import Relation.Binary.PropositionalEquality open import Denotational.Notation -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type bool : Type infixr 5 _⇒_ -- Denotational Semantics data Bool : Set where true false : Bool ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ bool ⟧Type = Bool meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- TYPING CONTEXTS, VARIABLES and WEAKENING open import Syntactic.Contexts Type public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool cond : ∀ {Γ τ} → (e₁ : Term Γ bool) (e₂ e₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ cond t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v cond-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ cond t₁ t₂ t₃ ↓ v₂ cond-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ cond t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (cond-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (cond-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} true = true weaken {Γ₁} {Γ₂} false = false weaken {Γ₁} {Γ₂} (cond e₁ e₂ e₃) = cond (weaken {Γ₁} {Γ₂} e₁) (weaken {Γ₁} {Γ₂} e₂) (weaken {Γ₁} {Γ₂} e₃)
module lambda where open import Relation.Binary.PropositionalEquality open import Syntactic.Types public open import Syntactic.Contexts Type public open import Denotational.Notation open import Denotational.Values public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool cond : ∀ {Γ τ} → (e₁ : Term Γ bool) (e₂ e₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ cond t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v cond-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ cond t₁ t₂ t₃ ↓ v₂ cond-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ cond t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (cond-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (cond-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} true = true weaken {Γ₁} {Γ₂} false = false weaken {Γ₁} {Γ₂} (cond e₁ e₂ e₃) = cond (weaken {Γ₁} {Γ₂} e₁) (weaken {Γ₁} {Γ₂} e₂) (weaken {Γ₁} {Γ₂} e₃)
Improve reuse (see #28).
Improve reuse (see #28). Old-commit-hash: 7da11aabf971e192ab71542164b98c80cbe26325
Agda
mit
inc-lc/ilc-agda
a883bca1e4dcf18cbd172d5af888116a00518e15
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x) , abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ}) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ lift-diff apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ lift-apply
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x) , abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) diff-term = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ}) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ diff-term apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ lift-apply
Rename lift-diff to diff-term.
Rename lift-diff to diff-term. Old-commit-hash: 64cb73fbed07060d460e4d9ee85fcec48281d13a
Agda
mit
inc-lc/ilc-agda
b01d8abafe916c9d2d8af12b12d2adb5f2ae8340
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
module Syntax.Term.Plotkin where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open import Syntax.Type.Plotkin open import Syntax.Context data Term {B : Set {- of base types -}} {C : Set {- of constants -}} {type-of : C → Type B} (Γ : Context {Type B}) : (τ : Type B) → Set where const : (c : C) → Term Γ (type-of c) var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term {B} {C} {type-of} Γ (σ ⇒ τ)) (t : Term {B} {C} {type-of} Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term {B} {C} {type-of} (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {B C type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {B} {C} {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {B C type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {B} {C} {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {B C type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {B} {C} {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {B C ⊢ Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term {B} {C} {⊢} Γ₁ τ → Term {B} {C} {⊢} Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {B C ⊢ Γ σ τ} → Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {B C ⊢ Γ α β τ} → Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {B C ⊢ Γ α β γ τ} → Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {B C ⊢ Γ α β γ} → Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {B C ⊢ Γ α β γ δ} → Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {B C ⊢ Γ α β γ δ ε} → Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {B C ⊢ Γ α β γ δ ε ζ} → Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {B C ⊢ Γ α β γ δ ε ζ η} → Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open import Syntax.Type.Plotkin open import Syntax.Context data Term {type-of : C → Type B} (Γ : Context {Type B}) : (τ : Type B) → Set where const : (c : C) → Term Γ (type-of c) var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term {type-of} Γ (σ ⇒ τ)) (t : Term {type-of} Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term {type-of} (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {type-of} {Δbase : B → Type B} → let Δtype = lift-Δtype Δbase term = Term {type-of} in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {⊢ Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term {⊢} Γ₁ τ → Term {⊢} Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {⊢ Γ σ τ} → Term {⊢} Γ τ → Term {⊢} (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {⊢ Γ α β τ} → Term {⊢} Γ τ → Term {⊢} (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {⊢ Γ α β γ τ} → Term {⊢} Γ τ → Term {⊢} (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {⊢ Γ α β γ} → Term {⊢} Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {⊢ Γ α β γ δ} → Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {⊢ Γ α β γ δ ε} → Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {⊢ Γ α β γ δ ε ζ} → Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {⊢ Γ α β γ δ ε ζ η} → Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
Move parameters to module level.
Move parameters to module level. All definitions in this module depend on the parameters {B} and {C} which never change inside this module. So it is easier to parameterize the whole module instead of each separate definition. Old-commit-hash: 1303320f48d486d11152713c604275c2c7bcdc18
Agda
mit
inc-lc/ilc-agda
9755ab9f86f1e00b28c36e99421e4e9be389a95f
Base/Change/Products.agda
Base/Change/Products.agda
module Base.Change.Products where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Data.Product -- Also try defining sectioned change structures on the positives halves of -- groups? Or on arbitrary subsets? -- Restriction: we pair sets on the same level (because right now everything -- else would risk getting in the way). module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where open ≡-Reasoning -- The simplest possible definition of changes for products. -- The following is probably bullshit: -- Does not handle products of functions - more accurately, writing the -- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p PChange : A × B → Set ℓ PChange (a , b) = Δ a × Δ b _⊕_ : (v : A × B) → PChange v → A × B _⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db _⊝_ : A × B → (v : A × B) → PChange v _⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u p-update-diff (ua , ub) (va , vb) = let u = (ua , ub) v = (va , vb) in begin v ⊕ (u ⊝ v) ≡⟨⟩ (va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb)) --v ⊕ ((ua ⊟ va , ub ⊟ vb)) ≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩ (ua , ub) ≡⟨⟩ u ∎ changeAlgebra : ChangeAlgebra ℓ (A × B) changeAlgebra = record { Change = PChange ; update = _⊕_ ; diff = _⊝_ ; isChangeAlgebra = record { update-diff = p-update-diff } } proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v) proj₁′ (a , b) (da , db) = da proj₁′Derivative : Derivative proj₁ proj₁′ -- Implementation note: we do not need to pattern match on v and dv because -- they are records, hence Agda knows that pattern matching on records cannot -- fail. Technically, the required feature is the eta-rule on records. proj₁′Derivative v dv = refl -- An extended explanation. proj₁′Derivative₁ : Derivative proj₁ proj₁′ proj₁′Derivative₁ (a , b) (da , db) = let v = (a , b) dv = (da , db) in begin proj₁ v ⊞ proj₁′ v dv ≡⟨⟩ a ⊞ da ≡⟨⟩ proj₁ (v ⊞ dv) ∎ -- Same for the second extractor. proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v) proj₂′ (a , b) (da , db) = db proj₂′Derivative : Derivative proj₂ proj₂′ proj₂′Derivative v dv = refl -- We should do the same for uncurry instead. -- What one could wrongly expect to be the derivative of the constructor: _,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b) _,_′ a da b db = da , db -- That has the correct behavior, in a sense, and it would be in the -- subset-based formalization in the paper. -- -- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof -- As a consequence, proving that's a derivative seems too insanely hard. We -- might want to provide a proof schema for curried functions at once, -- starting from the right correctness equation. B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B) A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}} module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}} module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}} _,_′-real : Δ _,_ _,_′-real = nil _,_ _,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real) _,_′-real-Derivative = FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_ _,_′′ : (a : A) → Δ a → Δ {{B→A×B}} (λ b → (a , b)) _,_′′ a da = record { apply = _,_′ a da ; correct = λ b db → begin (a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db)) ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) ≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩ a ⊞ da , b ⊞ db ≡⟨⟩ (a , b) ⊞ (_,_′ a da) b db ∎ } _,_′′′ : Δ {{A→B→A×B}} _,_ _,_′′′ = record { apply = _,_′′ ; correct = λ a da → begin update (_,_ (a ⊞ da)) (_,_′′ (a ⊞ da) (nil (a ⊞ da))) ≡⟨ {!!} ⟩ update (_,_ a) (_,_′′ a da) ∎ } where -- This is needed to use update above. -- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly. open ChangeAlgebra B→A×B hiding (nil) {- {! begin (_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da)) {- ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -} ≡⟨ ? ⟩ {-a ⊞ da , b ⊞ db ≡⟨⟩-} (_,_ a) ⊞ (_,_′′ a da) ∎!} } -} open import Postulate.Extensionality _,_′Derivative : Derivative {{CA}} {{B→A×B}} _,_ _,_′′ _,_′Derivative a da = begin _⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da) ≡⟨⟩ (λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b)) --ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b)) ≡⟨ {!!} ⟩ (λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b)) ≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩ --FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!} _,_ (a ⊞ da) ∎
module Base.Change.Products where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Data.Product -- Also try defining sectioned change structures on the positives halves of -- groups? Or on arbitrary subsets? -- Restriction: we pair sets on the same level (because right now everything -- else would risk getting in the way). module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where open ≡-Reasoning -- The simplest possible definition of changes for products. -- The following is probably bullshit: -- Does not handle products of functions - more accurately, writing the -- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p PChange : A × B → Set ℓ PChange (a , b) = Δ a × Δ b _⊕_ : (v : A × B) → PChange v → A × B _⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db _⊝_ : A × B → (v : A × B) → PChange v _⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u p-update-diff (ua , ub) (va , vb) = let u = (ua , ub) v = (va , vb) in begin v ⊕ (u ⊝ v) ≡⟨⟩ (va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb)) --v ⊕ ((ua ⊟ va , ub ⊟ vb)) ≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩ (ua , ub) ≡⟨⟩ u ∎ changeAlgebra : ChangeAlgebra ℓ (A × B) changeAlgebra = record { Change = PChange ; update = _⊕_ ; diff = _⊝_ ; isChangeAlgebra = record { update-diff = p-update-diff } } proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v) proj₁′ (a , b) (da , db) = da proj₁′Derivative : Derivative proj₁ proj₁′ -- Implementation note: we do not need to pattern match on v and dv because -- they are records, hence Agda knows that pattern matching on records cannot -- fail. Technically, the required feature is the eta-rule on records. proj₁′Derivative v dv = refl -- An extended explanation. proj₁′Derivative₁ : Derivative proj₁ proj₁′ proj₁′Derivative₁ (a , b) (da , db) = let v = (a , b) dv = (da , db) in begin proj₁ v ⊞ proj₁′ v dv ≡⟨⟩ a ⊞ da ≡⟨⟩ proj₁ (v ⊞ dv) ∎ -- Same for the second extractor. proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v) proj₂′ (a , b) (da , db) = db proj₂′Derivative : Derivative proj₂ proj₂′ proj₂′Derivative v dv = refl -- We should do the same for uncurry instead. -- What one could wrongly expect to be the derivative of the constructor: _,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b) _,_′ a da b db = da , db -- That has the correct behavior, in a sense, and it would be in the -- subset-based formalization in the paper. -- -- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof -- As a consequence, proving that's a derivative seems too insanely hard. We -- might want to provide a proof schema for curried functions at once, -- starting from the right correctness equation. B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B) A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}} module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}} module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}} _,_′-real : Δ _,_ _,_′-real = nil _,_ _,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real) _,_′-real-Derivative = FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_ _,_′′ : (a : A) → Δ a → Δ {{B→A×B}} (λ b → (a , b)) _,_′′ a da = record { apply = _,_′ a da ; correct = λ b db → begin (a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db)) ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) ≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩ a ⊞ da , b ⊞ db ≡⟨⟩ (a , b) ⊞ (_,_′ a da) b db ∎ } {- _,_′′′ : Δ {{A→B→A×B}} _,_ _,_′′′ = record { apply = _,_′′ ; correct = λ a da → begin update (_,_ (a ⊞ da)) (_,_′′ (a ⊞ da) (nil (a ⊞ da))) ≡⟨ {!!} ⟩ update (_,_ a) (_,_′′ a da) ∎ } where -- This is needed to use update above. -- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly. open ChangeAlgebra B→A×B hiding (nil) {- {! begin (_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da)) {- ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -} ≡⟨ ? ⟩ {-a ⊞ da , b ⊞ db ≡⟨⟩-} (_,_ a) ⊞ (_,_′′ a da) ∎!} } -} open import Postulate.Extensionality _,_′Derivative : Derivative {{CA}} {{B→A×B}} _,_ _,_′′ _,_′Derivative a da = begin _⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da) ≡⟨⟩ (λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b)) --ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b)) ≡⟨ {!!} ⟩ (λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b)) ≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩ --FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!} _,_ (a ⊞ da) ∎ -}
Comment out holes to ensure Everything compiles again
Comment out holes to ensure Everything compiles again Old-commit-hash: dfc28a00f9301015066e19d4be2c4179f8e0849b
Agda
mit
inc-lc/ilc-agda
07b3b64ff9795f6941b64231e7b2a0dd630e0de4
lib/Explore/Examples.agda
lib/Explore/Examples.agda
{-# OPTIONS --without-K #-} module Explore.Examples where open import Type open import Level.NP open import Data.Maybe.NP open import Data.List open import Data.Two open import Data.Product open import Data.Sum.NP open import Data.One open import HoTT using (UA) open import Function.Extensionality using (FunExt) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Explore.Core open import Explore.Explorable open import Explore.Universe.Base open import Explore.Monad {₀} ₀ public renaming (map to map-explore) open import Explore.Two open import Explore.Product open Explore.Product.Operators module E where open FromExplore public module M {Msg Digest : ★} (_==_ : Digest → Digest → 𝟚) (H : Msg → Digest) (exploreMsg : ∀ {ℓ} → Explore ℓ Msg) (d : Digest) where module V1 where list-H⁻¹ : List Msg list-H⁻¹ = exploreMsg [] _++_ (λ m → [0: [] 1: [ m ] ] (H m == d)) module ExploreMsg = FromExplore {A = Msg} exploreMsg module V2 where first-H⁻¹ : Maybe Msg first-H⁻¹ = ExploreMsg.findKey (λ m → H m == d) module V3 where explore-H⁻¹ : Explore ₀ Msg explore-H⁻¹ ε _⊕_ f = exploreMsg ε _⊕_ (λ m → [0: ε 1: f m ] (H m == d)) module V4 where explore-H⁻¹ : Explore ₀ Msg explore-H⁻¹ = exploreMsg >>= λ m → [0: empty-explore 1: point-explore m ] (H m == d) module V5 where explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg explore-H⁻¹ = filter-explore (λ m → H m == d) exploreMsg list-H⁻¹ : List Msg list-H⁻¹ = E.list explore-H⁻¹ first-H⁻¹ : Maybe Msg first-H⁻¹ = E.first explore-H⁻¹ module V6 where explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg explore-H⁻¹ = explore-endo (filter-explore (λ m → H m == d) exploreMsg) list-H⁻¹ : List Msg list-H⁻¹ = E.list explore-H⁻¹ first-H⁻¹ : Maybe Msg first-H⁻¹ = E.first explore-H⁻¹ last-H⁻¹ : Maybe Msg last-H⁻¹ = E.last explore-H⁻¹ Msg = 𝟚 × 𝟚 Digest = 𝟚 -- _==_ : Digest → Digest → 𝟚 H : Msg → Digest H (x , y) = x xor y Msgᵉ : ∀ {ℓ} → Explore ℓ Msg Msgᵉ = 𝟚ᵉ ×ᵉ 𝟚ᵉ module N5 = M.V5 _==_ H Msgᵉ module N6 = M.V6 _==_ H Msgᵉ test5 = N5.list-H⁻¹ test6-list : N6.list-H⁻¹ 0₂ ≡ (0₂ , 0₂) ∷ (1₂ , 1₂) ∷ [] test6-list = refl test6-rev-list : E.list (E.backward (N6.explore-H⁻¹ 0₂)) ≡ (1₂ , 1₂) ∷ (0₂ , 0₂) ∷ [] test6-rev-list = refl test6-first : N6.first-H⁻¹ 0₂ ≡ just (0₂ , 0₂) test6-first = refl test6-last : N6.last-H⁻¹ 0₂ ≡ just (1₂ , 1₂) test6-last = refl -- -} {- 𝟛ᵁ : U 𝟛ᵁ = 𝟙ᵁ ⊎ᵁ 𝟚ᵁ list22 = list (𝟚ᵁ →ᵁ 𝟚ᵁ) list33 = list (𝟛ᵁ →ᵁ 𝟛ᵁ) -} {- module _ {{_ : UA}}{{_ : FunExt}} where check22 : ∀ (f : 𝟚 → 𝟚) x → ✓ (f x == f (f (f x))) check22 f x = {!check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x)!} -}
{-# OPTIONS --without-K #-} module Explore.Examples where open import Type open import Level.NP open import Data.Maybe.NP open import Data.List open import Data.Zero open import Data.One open import Data.Two open import Data.Product open import Data.Sum.NP open import HoTT using (UA) open import Function.NP open import Function.Extensionality using (FunExt) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Explore.Core open import Explore.Explorable open import Explore.Universe.Type {𝟘} open import Explore.Universe.Base open import Explore.Monad {₀} ₀ public renaming (map to map-explore) open import Explore.Two open import Explore.Product open Explore.Product.Operators module E where open FromExplore public module M {Msg Digest : ★} (_==_ : Digest → Digest → 𝟚) (H : Msg → Digest) (exploreMsg : ∀ {ℓ} → Explore ℓ Msg) (d : Digest) where module V1 where list-H⁻¹ : List Msg list-H⁻¹ = exploreMsg [] _++_ (λ m → [0: [] 1: [ m ] ] (H m == d)) module ExploreMsg = FromExplore {A = Msg} exploreMsg module V2 where first-H⁻¹ : Maybe Msg first-H⁻¹ = ExploreMsg.findKey (λ m → H m == d) module V3 where explore-H⁻¹ : Explore ₀ Msg explore-H⁻¹ ε _⊕_ f = exploreMsg ε _⊕_ (λ m → [0: ε 1: f m ] (H m == d)) module V4 where explore-H⁻¹ : Explore ₀ Msg explore-H⁻¹ = exploreMsg >>= λ m → [0: empty-explore 1: point-explore m ] (H m == d) module V5 where explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg explore-H⁻¹ = filter-explore (λ m → H m == d) exploreMsg list-H⁻¹ : List Msg list-H⁻¹ = E.list explore-H⁻¹ first-H⁻¹ : Maybe Msg first-H⁻¹ = E.first explore-H⁻¹ module V6 where explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg explore-H⁻¹ = explore-endo (filter-explore (λ m → H m == d) exploreMsg) list-H⁻¹ : List Msg list-H⁻¹ = E.list explore-H⁻¹ first-H⁻¹ : Maybe Msg first-H⁻¹ = E.first explore-H⁻¹ last-H⁻¹ : Maybe Msg last-H⁻¹ = E.last explore-H⁻¹ Msg = 𝟚 × 𝟚 Digest = 𝟚 -- _==_ : Digest → Digest → 𝟚 H : Msg → Digest H (x , y) = x xor y Msgᵉ : ∀ {ℓ} → Explore ℓ Msg Msgᵉ = 𝟚ᵉ ×ᵉ 𝟚ᵉ module N5 = M.V5 _==_ H Msgᵉ module N6 = M.V6 _==_ H Msgᵉ test5 = N5.list-H⁻¹ test6-list : N6.list-H⁻¹ 0₂ ≡ (0₂ , 0₂) ∷ (1₂ , 1₂) ∷ [] test6-list = refl test6-rev-list : E.list (E.backward (N6.explore-H⁻¹ 0₂)) ≡ (1₂ , 1₂) ∷ (0₂ , 0₂) ∷ [] test6-rev-list = refl test6-first : N6.first-H⁻¹ 0₂ ≡ just (0₂ , 0₂) test6-first = refl test6-last : N6.last-H⁻¹ 0₂ ≡ just (1₂ , 1₂) test6-last = refl -- -} 𝟛ᵁ : U 𝟛ᵁ = 𝟙ᵁ ⊎ᵁ 𝟚ᵁ prop-∧-comm : 𝟚 × 𝟚 → 𝟚 prop-∧-comm (x , y) = x ∧ y == y ∧ x module _ {{_ : UA}}{{_ : FunExt}} where check-∧-comm : ∀ x y → ✓ (x ∧ y == y ∧ x) check-∧-comm x y = check! (𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-comm (x , y) prop-∧-∨-distr : 𝟚 × 𝟚 × 𝟚 → 𝟚 prop-∧-∨-distr (x , y , z) = x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z module _ {{_ : UA}}{{_ : FunExt}} where check-∧-∨-distr : ∀ x y z → ✓ (x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z) check-∧-∨-distr x y z = check! (𝟚ᵁ ×ᵁ 𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-∨-distr (x , y , z) list22 = list (𝟚ᵁ →ᵁ 𝟚ᵁ) list33 = list (𝟛ᵁ →ᵁ 𝟛ᵁ) {- module _ {{_ : UA}}{{_ : FunExt}} where module _ (fᵁ : El (𝟚ᵁ →ᵁ 𝟚ᵁ)) x where f = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ fᵁ check22 : ✓ (f x == f (f (f x))) check22 = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x) {- check22 : ∀ (f : 𝟚 → 𝟚) x → ✓ (f x == f (f (f x))) check22 f x = let k = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x) in {!k!} -- -} -- -} -- -} -- -}
Update the Examples
Update the Examples
Agda
bsd-3-clause
crypto-agda/explore
b4c39231ae725a5b759926a08d76642ed2df680d
Base/Change/Products.agda
Base/Change/Products.agda
module Base.Change.Products where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Data.Product -- Also try defining sectioned change structures on the positives halves of -- groups? Or on arbitrary subsets? -- Restriction: we pair sets on the same level (because right now everything -- else would risk getting in the way). module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where open ≡-Reasoning -- The simplest possible definition of changes for products. PChange : A × B → Set ℓ PChange (a , b) = Δ a × Δ b -- An interesting alternative definition allows omitting the nil change of a -- component when that nil change can be computed from the type. For instance, the nil change for integers is always the same. -- However, the nil change for function isn't always the same (unless we -- defunctionalize them first), so nil changes for functions can't be omitted. _⊕_ : (v : A × B) → PChange v → A × B _⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db _⊝_ : A × B → (v : A × B) → PChange v _⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b p-nil : (v : A × B) → PChange v p-nil (a , b) = (nil a , nil b) p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u p-update-diff (ua , ub) (va , vb) = let u = (ua , ub) v = (va , vb) in begin v ⊕ (u ⊝ v) ≡⟨⟩ (va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb)) --v ⊕ ((ua ⊟ va , ub ⊟ vb)) ≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩ (ua , ub) ≡⟨⟩ u ∎ p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v p-update-nil (a , b) = let v = (a , b) in begin v ⊕ (p-nil v) ≡⟨⟩ (a ⊞ nil a , b ⊞ nil b) ≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩ (a , b) ≡⟨⟩ v ∎ changeAlgebra : ChangeAlgebra ℓ (A × B) changeAlgebra = record { Change = PChange ; update = _⊕_ ; diff = _⊝_ ; nil = p-nil ; isChangeAlgebra = record { update-diff = p-update-diff ; update-nil = p-update-nil } } proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v) proj₁′ (a , b) (da , db) = da proj₁′Derivative : Derivative proj₁ proj₁′ -- Implementation note: we do not need to pattern match on v and dv because -- they are records, hence Agda knows that pattern matching on records cannot -- fail. Technically, the required feature is the eta-rule on records. proj₁′Derivative v dv = refl -- An extended explanation. proj₁′Derivative₁ : Derivative proj₁ proj₁′ proj₁′Derivative₁ (a , b) (da , db) = let v = (a , b) dv = (da , db) in begin proj₁ v ⊞ proj₁′ v dv ≡⟨⟩ a ⊞ da ≡⟨⟩ proj₁ (v ⊞ dv) ∎ -- Same for the second extractor. proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v) proj₂′ (a , b) (da , db) = db proj₂′Derivative : Derivative proj₂ proj₂′ proj₂′Derivative v dv = refl B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B) A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}} module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}} module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}} -- Morally, the following is a change: -- What one could wrongly expect to be the derivative of the constructor: _,_′-realizer : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b) _,_′-realizer a da b db = da , db -- That has the correct behavior, in a sense, and it would be in the -- subset-based formalization in the paper. -- -- But the above is not even a change, because it does not contain a proof of -- its own validity, and because after application it does not contain a -- proof. -- -- However, the above is (morally) a "realizer" of the actual change, since it -- only represents its computational behavior, not its proof manipulation. -- Hence, we need to do some additional work. _,_′-realizer-correct _,_′-realizer-correct-detailed : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → (a , b ⊞ db) ⊞ (_,_′-realizer a da (b ⊞ db) (nil (b ⊞ db))) ≡ (a , b) ⊞ (_,_′-realizer a da b db) _,_′-realizer-correct a da b db rewrite update-nil (b ⊞ db) = refl _,_′-realizer-correct-detailed a da b db = begin (a , b ⊞ db) ⊞ (_,_′-realizer a da) (b ⊞ db) (nil (b ⊞ db)) ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) ≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩ a ⊞ da , b ⊞ db ≡⟨⟩ (a , b) ⊞ (_,_′-realizer a da) b db ∎ _,_′ : (a : A) → (da : Δ a) → Δ (_,_ a) _,_′ a da = record { apply = _,_′-realizer a da ; correct = λ b db → _,_′-realizer-correct a da b db } _,_′-Derivative : Derivative _,_ _,_′ _,_′-Derivative a da = ext (λ b → cong (_,_ (a ⊞ da)) (update-nil b)) where open import Postulate.Extensionality -- Define specialized variant of uncurry, and derive it. uncurry₀ : ∀ {C : Set ℓ} → (A → B → C) → A × B → C uncurry₀ f (a , b) = f a b module _ {C : Set ℓ} {{CC : ChangeAlgebra ℓ C}} where B→C : ChangeAlgebra ℓ (B → C) B→C = FunctionChanges.changeAlgebra B C A→B→C : ChangeAlgebra ℓ (A → B → C) A→B→C = FunctionChanges.changeAlgebra A (B → C) A×B→C : ChangeAlgebra ℓ (A × B → C) A×B→C = FunctionChanges.changeAlgebra (A × B) C module ΔB→C = FunctionChanges B C {{CB}} {{CC}} module ΔA→B→C = FunctionChanges A (B → C) {{CA}} {{B→C}} module ΔA×B→C = FunctionChanges (A × B) C {{changeAlgebra}} {{CC}} uncurry₀′-realizer : (f : A → B → C) → Δ f → (p : A × B) → Δ p → Δ (uncurry₀ f p) uncurry₀′-realizer f df (a , b) (da , db) = ΔB→C.apply (ΔA→B→C.apply df a da) b db uncurry₀′-realizer-correct uncurry₀′-realizer-correct-detailed : ∀ (f : A → B → C) (df : Δ f) (p : A × B) (dp : Δ p) → uncurry₀ f (p ⊕ dp) ⊞ uncurry₀′-realizer f df (p ⊕ dp) (nil (p ⊞ dp)) ≡ uncurry₀ f p ⊞ uncurry₀′-realizer f df p dp -- Hard to read uncurry₀′-realizer-correct f df (a , b) (da , db) rewrite sym (ΔB→C.incrementalization (f (a ⊞ da)) (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) | update-nil (b ⊞ db) | {- cong (λ □ → □ (b ⊞ db)) -} (sym (ΔA→B→C.incrementalization f df (a ⊞ da) (nil (a ⊞ da)))) | update-nil (a ⊞ da) | cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df a da) | ΔB→C.incrementalization (f a) (ΔA→B→C.apply df a da) b db = refl -- Verbose, but it shows all the intermediate steps. uncurry₀′-realizer-correct-detailed f df (a , b) (da , db) = begin uncurry₀ f (a ⊞ da , b ⊞ db) ⊞ uncurry₀′-realizer f df (a ⊞ da , b ⊞ db) (nil (a ⊞ da , b ⊞ db)) ≡⟨⟩ f (a ⊞ da) (b ⊞ db) ⊞ ΔB→C.apply (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db)) ≡⟨ sym (ΔB→C.incrementalization (f (a ⊞ da)) (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) ⟩ (f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db))) ≡⟨ cong-lem₀ ⟩ (f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) ≡⟨ sym cong-lem₂ ⟩ ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡⟨ cong-lem₁ ⟩ (f ⊞ df) (a ⊞ da) (b ⊞ db) ≡⟨ cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df a da) ⟩ (f a ⊞ ΔA→B→C.apply df a da) (b ⊞ db) ≡⟨ ΔB→C.incrementalization (f a) (ΔA→B→C.apply df a da) b db ⟩ f a b ⊞ ΔB→C.apply (ΔA→B→C.apply df a da) b db ≡⟨⟩ uncurry₀ f (a , b) ⊞ uncurry₀′-realizer f df (a , b) (da , db) ∎ where cong-lem₀ : (f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db))) ≡ (f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) cong-lem₀ rewrite update-nil (b ⊞ db) = refl cong-lem₁ : ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡ (f ⊞ df) (a ⊞ da) (b ⊞ db) cong-lem₁ rewrite update-nil (a ⊞ da) = refl cong-lem₂ : ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡ (f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) cong-lem₂ = cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df (a ⊞ da) (nil (a ⊞ da))) uncurry₀′ : (f : A → B → C) → Δ f → Δ (uncurry f) uncurry₀′ f df = record { apply = uncurry₀′-realizer f df ; correct = uncurry₀′-realizer-correct f df } -- Now proving that uncurry₀′ is a derivative is trivial! uncurry₀′Derivative₀ : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′ uncurry₀′Derivative₀ f df = refl -- If you wonder what's going on, here's the step-by-step proof, going purely by definitional equality. uncurry₀′Derivative : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′ uncurry₀′Derivative f df = begin uncurry₀ f ⊞ uncurry₀′ f df ≡⟨⟩ (λ {(a , b) → uncurry₀ f (a , b) ⊞ ΔA×B→C.apply (uncurry₀′ f df) (a , b) (nil (a , b))}) ≡⟨⟩ (λ {(a , b) → f a b ⊞ ΔB→C.apply (ΔA→B→C.apply df a (nil a)) b (nil b)}) ≡⟨⟩ (λ {(a , b) → (f a ⊞ ΔA→B→C.apply df a (nil a)) b}) ≡⟨⟩ (λ {(a , b) → (f ⊞ df) a b}) ≡⟨⟩ (λ {(a , b) → uncurry₀ (f ⊞ df) (a , b)}) ≡⟨⟩ uncurry₀ (f ⊞ df) ∎
module Base.Change.Products where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Data.Product -- Also try defining sectioned change structures on the positives halves of -- groups? Or on arbitrary subsets? -- Restriction: we pair sets on the same level (because right now everything -- else would risk getting in the way). module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where open ≡-Reasoning -- The simplest possible definition of changes for products. PChange : A × B → Set ℓ PChange (a , b) = Δ a × Δ b -- An interesting alternative definition allows omitting the nil change of a -- component when that nil change can be computed from the type. For instance, the nil change for integers is always the same. -- However, the nil change for function isn't always the same (unless we -- defunctionalize them first), so nil changes for functions can't be omitted. _⊕_ : (v : A × B) → PChange v → A × B _⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db _⊝_ : A × B → (v : A × B) → PChange v _⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b p-nil : (v : A × B) → PChange v p-nil (a , b) = (nil a , nil b) p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u p-update-diff (ua , ub) (va , vb) = let u = (ua , ub) v = (va , vb) in begin v ⊕ (u ⊝ v) ≡⟨⟩ (va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb)) --v ⊕ ((ua ⊟ va , ub ⊟ vb)) ≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩ (ua , ub) ≡⟨⟩ u ∎ p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v p-update-nil (a , b) = let v = (a , b) in begin v ⊕ (p-nil v) ≡⟨⟩ (a ⊞ nil a , b ⊞ nil b) ≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩ (a , b) ≡⟨⟩ v ∎ changeAlgebra : ChangeAlgebra ℓ (A × B) changeAlgebra = record { Change = PChange ; update = _⊕_ ; diff = _⊝_ ; nil = p-nil ; isChangeAlgebra = record { update-diff = p-update-diff ; update-nil = p-update-nil } } proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v) proj₁′ (a , b) (da , db) = da proj₁′Derivative : Derivative proj₁ proj₁′ -- Implementation note: we do not need to pattern match on v and dv because -- they are records, hence Agda knows that pattern matching on records cannot -- fail. Technically, the required feature is the eta-rule on records. proj₁′Derivative v dv = refl -- An extended explanation. proj₁′Derivative₁ : Derivative proj₁ proj₁′ proj₁′Derivative₁ (a , b) (da , db) = let v = (a , b) dv = (da , db) in begin proj₁ v ⊞ proj₁′ v dv ≡⟨⟩ a ⊞ da ≡⟨⟩ proj₁ (v ⊞ dv) ∎ -- Same for the second extractor. proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v) proj₂′ (a , b) (da , db) = db proj₂′Derivative : Derivative proj₂ proj₂′ proj₂′Derivative v dv = refl B→A×B = FunctionChanges.changeAlgebra B (A × B) A→B→A×B = FunctionChanges.changeAlgebra A (B → A × B) {{CA}} {{B→A×B}} -- Morally, the following is a change: -- What one could wrongly expect to be the derivative of the constructor: _,_′-realizer : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b) _,_′-realizer a da b db = da , db -- That has the correct behavior, in a sense, and it would be in the -- subset-based formalization in the paper. -- -- But the above is not even a change, because it does not contain a proof of -- its own validity, and because after application it does not contain a -- proof. -- -- However, the above is (morally) a "realizer" of the actual change, since it -- only represents its computational behavior, not its proof manipulation. -- Hence, we need to do some additional work. _,_′-realizer-correct _,_′-realizer-correct-detailed : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → (a , b ⊞ db) ⊞ (_,_′-realizer a da (b ⊞ db) (nil (b ⊞ db))) ≡ (a , b) ⊞ (_,_′-realizer a da b db) _,_′-realizer-correct a da b db rewrite update-nil (b ⊞ db) = refl _,_′-realizer-correct-detailed a da b db = begin (a , b ⊞ db) ⊞ (_,_′-realizer a da) (b ⊞ db) (nil (b ⊞ db)) ≡⟨⟩ a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) ≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩ a ⊞ da , b ⊞ db ≡⟨⟩ (a , b) ⊞ (_,_′-realizer a da) b db ∎ _,_′ : (a : A) → (da : Δ a) → Δ (_,_ a) _,_′ a da = record { apply = _,_′-realizer a da ; correct = λ b db → _,_′-realizer-correct a da b db } _,_′-Derivative : Derivative _,_ _,_′ _,_′-Derivative a da = ext (λ b → cong (_,_ (a ⊞ da)) (update-nil b)) where open import Postulate.Extensionality -- Define specialized variant of uncurry, and derive it. uncurry₀ : ∀ {C : Set ℓ} → (A → B → C) → A × B → C uncurry₀ f (a , b) = f a b module _ {C : Set ℓ} {{CC : ChangeAlgebra ℓ C}} where B→C : ChangeAlgebra ℓ (B → C) B→C = FunctionChanges.changeAlgebra B C A→B→C : ChangeAlgebra ℓ (A → B → C) A→B→C = FunctionChanges.changeAlgebra A (B → C) A×B→C : ChangeAlgebra ℓ (A × B → C) A×B→C = FunctionChanges.changeAlgebra (A × B) C open FunctionChanges using (apply; correct) uncurry₀′-realizer : (f : A → B → C) → Δ f → (p : A × B) → Δ p → Δ (uncurry₀ f p) uncurry₀′-realizer f df (a , b) (da , db) = apply (apply df a da) b db uncurry₀′-realizer-correct uncurry₀′-realizer-correct-detailed : ∀ (f : A → B → C) (df : Δ f) (p : A × B) (dp : Δ p) → uncurry₀ f (p ⊕ dp) ⊞ uncurry₀′-realizer f df (p ⊕ dp) (nil (p ⊞ dp)) ≡ uncurry₀ f p ⊞ uncurry₀′-realizer f df p dp -- Hard to read uncurry₀′-realizer-correct f df (a , b) (da , db) rewrite sym (correct (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) | update-nil (b ⊞ db) | {- cong (λ □ → □ (b ⊞ db)) -} (sym (correct df (a ⊞ da) (nil (a ⊞ da)))) | update-nil (a ⊞ da) | cong (λ □ → □ (b ⊞ db)) (correct df a da) | correct (apply df a da) b db = refl -- Verbose, but it shows all the intermediate steps. uncurry₀′-realizer-correct-detailed f df (a , b) (da , db) = begin uncurry₀ f (a ⊞ da , b ⊞ db) ⊞ uncurry₀′-realizer f df (a ⊞ da , b ⊞ db) (nil (a ⊞ da , b ⊞ db)) ≡⟨⟩ f (a ⊞ da) (b ⊞ db) ⊞ apply (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db)) ≡⟨ sym (correct (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) ⟩ (f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db))) ≡⟨ cong-lem₀ ⟩ (f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) ≡⟨ sym cong-lem₂ ⟩ ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡⟨ cong-lem₁ ⟩ (f ⊞ df) (a ⊞ da) (b ⊞ db) ≡⟨ cong (λ □ → □ (b ⊞ db)) (correct df a da) ⟩ (f a ⊞ apply df a da) (b ⊞ db) ≡⟨ correct (apply df a da) b db ⟩ f a b ⊞ apply (apply df a da) b db ≡⟨⟩ uncurry₀ f (a , b) ⊞ uncurry₀′-realizer f df (a , b) (da , db) ∎ where cong-lem₀ : (f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db))) ≡ (f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) cong-lem₀ rewrite update-nil (b ⊞ db) = refl cong-lem₁ : ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡ (f ⊞ df) (a ⊞ da) (b ⊞ db) cong-lem₁ rewrite update-nil (a ⊞ da) = refl cong-lem₂ : ((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db) ≡ (f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) cong-lem₂ = cong (λ □ → □ (b ⊞ db)) (correct df (a ⊞ da) (nil (a ⊞ da))) uncurry₀′ : (f : A → B → C) → Δ f → Δ (uncurry f) uncurry₀′ f df = record { apply = uncurry₀′-realizer f df ; correct = uncurry₀′-realizer-correct f df } -- Now proving that uncurry₀′ is a derivative is trivial! uncurry₀′Derivative₀ : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′ uncurry₀′Derivative₀ f df = refl -- If you wonder what's going on, here's the step-by-step proof, going purely by definitional equality. uncurry₀′Derivative : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′ uncurry₀′Derivative f df = begin uncurry₀ f ⊞ uncurry₀′ f df ≡⟨⟩ (λ {(a , b) → uncurry₀ f (a , b) ⊞ apply (uncurry₀′ f df) (a , b) (nil (a , b))}) ≡⟨⟩ (λ {(a , b) → f a b ⊞ apply (apply df a (nil a)) b (nil b)}) ≡⟨⟩ (λ {(a , b) → (f a ⊞ apply df a (nil a)) b}) ≡⟨⟩ (λ {(a , b) → (f ⊞ df) a b}) ≡⟨⟩ (λ {(a , b) → uncurry₀ (f ⊞ df) (a , b)}) ≡⟨⟩ uncurry₀ (f ⊞ df) ∎
Simplify code
Base.Change.Products: Simplify code These simplifications are inspired by Base.Change.Sums. But they're still modest.
Agda
mit
inc-lc/ilc-agda
5957a0a5f21ebc9ad88ea001c4afa6b381372c04
Parametric/Change/Type.agda
Parametric/Change/Type.agda
import Parametric.Syntax.Type as Type module Parametric.Change.Type (Base : Type.Structure) where open Type.Structure Base Structure : Set Structure = Base → Base module Structure (ΔBase : Structure) where ΔType : Type → Type ΔType (base ι) = base (ΔBase ι) ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ open import Base.Change.Context ΔType public
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Simply-typed changes (Fig. 3 and Fig. 4d) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Change.Type (Base : Type.Structure) where open Type.Structure Base -- Extension point: Simply-typed changes of base types. Structure : Set Structure = Base → Base module Structure (ΔBase : Structure) where -- We provide: Simply-typed changes on simple types. ΔType : Type → Type ΔType (base ι) = base (ΔBase ι) ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ -- And we also provide context merging. open import Base.Change.Context ΔType public
Document P.C.Type.
Document P.C.Type. Old-commit-hash: 11e38d018843f21411d014020ce42181e1f77d32
Agda
mit
inc-lc/ilc-agda
27037592477c7d9112554d56337e06c5a2c6f0b9
Parametric/Syntax/Term.agda
Parametric/Syntax/Term.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of terms (Fig. 1a and 1b). ------------------------------------------------------------------------ -- The syntax of terms depends on the syntax of simple types -- (because terms are indexed by types in order to rule out -- ill-typed terms). But we are in the Parametric.* hierarchy, so -- we don't know the full syntax of types, only how to lift the -- syntax of base types into the syntax of simple types. This -- means that we have to be parametric in the syntax of base -- types, too. -- -- In such parametric modules that depend on other parametric -- modules, we first import our dependencies under a more -- convenient name. import Parametric.Syntax.Type as Type -- Then we start the module proper, with parameters for all -- extension points of our dependencies. Note that here, the -- "Structure" naming convenion makes some sense, because we can -- say that we need some "Type.Structure" in order to define the -- "Term.Structure". module Parametric.Syntax.Term (Base : Type.Structure) where -- Now inside the module, we can open our dependencies with the -- parameters for their extension points. Again, here the name -- "Structure" makes some sense, because we can say that we want -- to access the "Type.Structure" that is induced by Base. open Type.Structure Base -- At this point, we have dealt with the extension points of our -- dependencies, and we have all the definitions about simple -- types, contexts, variables, and variable sets in scope that we -- provided in Parametric.Syntax.Type. Now we can proceed to -- define our own extension point, following the pattern -- explained in Parametric.Syntax.Type. open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import Data.Unit open import Data.Sum -- Our extension point is a set of primitives, indexed by the -- types of their arguments and their return type. In general, if -- you're confused about what an extension point means, you might -- want to open the corresponding module in the Nehemiah -- hierarchy to see how it is implemented in the example -- plugin. In this case, that would be the Nehemiah.Syntax.Term -- module. Structure : Set₁ Structure = Context → Type → Set module Structure (Const : Structure) where import Base.Data.DependentList as DependentList open DependentList public using (∅ ; _•_) open DependentList -- Declarations of Term and Terms to enable mutual recursion. -- -- Note that terms are indexed by contexts and types. In the -- paper, we define the abstract syntax of terms in Fig 1a and -- then define a type system in Fig 1b. All lemmas and theorems -- then explicitly specify that they only hold for well-typed -- terms. Here, we use the indices to define a type that can -- only hold well-typed terms in the first place. data Term (Γ : Context) : (τ : Type) → Set -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. Terms : Context → Context → Set Terms Γ = DependentList (Term Γ) -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where -- constants aka. primitives can only occur fully applied. const : ∀ {Σ τ} → (c : Const Σ τ) → (args : Terms Γ Σ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indicies, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Free variables FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ FV (const ι ts) = FV-terms ts FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t FV-terms ∅ = none FV-terms (t • ts) = FV t ∪ FV-terms ts closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken-terms : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weaken-terms Γ₁≼Γ₂ ∅ = ∅ weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ uncurriedConst constant = const constant CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ curriedConst constant = curryTermConstructor (uncurriedConst constant) -- HOAS-like smart constructors for lambdas, for different arities. -- We could also write this: module NamespaceForBadAbs₁ where abs₁′ : ∀ {Γ τ₁ τ} → (Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) → (Term Γ (τ₁ ⇒ τ)) abs₁′ {Γ} {τ₁} = λ f → abs (f (var this)) -- However, this is less general, and it is harder to reuse. In particular, -- this cannot be used inside abs₂, ..., abs₆. -- Now, let's write other variants with a loop! open import Data.Vec using (_∷_; []; Vec; foldr) open import Data.Nat module AbsNHelpers where open import Function hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set hoasArgType Γ τ = foldr _ (λ a b → a → b) (Term Γ τ) ∘ Data.Vec.map (Term Γ) -- That is, --hoasArgType Γ τ [] = Term Γ τ --hoasArgType Γ τ (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τ τs hoasResType : ∀ {n} → Type → Vec Type n → Type hoasResType τ = foldr _ _⇒_ τ absNType : {n : ℕ} → Vec _ n → Set absNType τs = ∀ {Γ τ} → (f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τ τs) → Term Γ (hoasResType τ τs) -- A better type for absN but a mess to use due to the proofs (which aren't synthesized, even though maybe they should be?) -- absN : (n : ℕ) → {_ : n > 0} → absNType n -- XXX See "how to keep your neighbours in order" for tricks. -- Please the termination checker by keeping this case separate. absNBase : ∀ {τ₁} → absNType (τ₁ ∷ []) absNBase {τ₁} f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this)) -- Otherwise, the recursive step of absN would invoke absN twice, and the -- termination checker does not figure out that the calls are in fact -- terminating. open AbsNHelpers using (absNType; absNBase) -- XXX: could we be using the same trick as above to take the N implicit -- arguments individually, rather than in a vector? I can't figure out how, -- at least not without trying it. But it seems that's what's shown in Agda 2.4.0 release notes! absN : {n : ℕ} → (τs : Vec _ (suc n)) → absNType τs absN {zero} (τ₁ ∷ []) = absNBase absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f = absNBase (λ {_} {Γ≼Γ′} x₁ → absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) -- What I'd like to write, avoiding the need for absNBase, but can't because of the termination checker. {- absN {zero} (τ₁ ∷ []) f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this)) absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f = absN (τ₁ ∷ []) (λ {_} {Γ≼Γ′} x₁ → absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) -} -- Declare abs₁ .. abs₆ wrappers for more convenient use, allowing implicit -- type arguments to be synthesized. Somehow, Agda does not manage to -- synthesize τs by unification. -- Implicit arguments are reversed when assembling the list, but that's no real problem. module _ {τ₁ : Type} where τs₁ = τ₁ ∷ [] abs₁ : absNType τs₁ abs₁ = absN τs₁ module _ {τ₂ : Type} where τs₂ = τ₂ ∷ τs₁ abs₂ : absNType τs₂ abs₂ = absN τs₂ module _ {τ₃ : Type} where τs₃ = τ₃ ∷ τs₂ abs₃ : absNType τs₃ abs₃ = absN τs₃ module _ {τ₄ : Type} where τs₄ = τ₄ ∷ τs₃ abs₄ : absNType τs₄ abs₄ = absN τs₄ module _ {τ₅ : Type} where τs₅ = τ₅ ∷ τs₄ abs₅ : absNType τs₅ abs₅ = absN τs₅ module _ {τ₆ : Type} where τs₆ = τ₆ ∷ τs₅ abs₆ : absNType τs₆ abs₆ = absN τs₆
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of terms (Fig. 1a and 1b). ------------------------------------------------------------------------ -- The syntax of terms depends on the syntax of simple types -- (because terms are indexed by types in order to rule out -- ill-typed terms). But we are in the Parametric.* hierarchy, so -- we don't know the full syntax of types, only how to lift the -- syntax of base types into the syntax of simple types. This -- means that we have to be parametric in the syntax of base -- types, too. -- -- In such parametric modules that depend on other parametric -- modules, we first import our dependencies under a more -- convenient name. import Parametric.Syntax.Type as Type -- Then we start the module proper, with parameters for all -- extension points of our dependencies. Note that here, the -- "Structure" naming convenion makes some sense, because we can -- say that we need some "Type.Structure" in order to define the -- "Term.Structure". module Parametric.Syntax.Term (Base : Type.Structure) where -- Now inside the module, we can open our dependencies with the -- parameters for their extension points. Again, here the name -- "Structure" makes some sense, because we can say that we want -- to access the "Type.Structure" that is induced by Base. open Type.Structure Base -- At this point, we have dealt with the extension points of our -- dependencies, and we have all the definitions about simple -- types, contexts, variables, and variable sets in scope that we -- provided in Parametric.Syntax.Type. Now we can proceed to -- define our own extension point, following the pattern -- explained in Parametric.Syntax.Type. open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function using (_∘_) open import Data.Unit open import Data.Sum -- Our extension point is a set of primitives, indexed by the -- types of their arguments and their return type. In general, if -- you're confused about what an extension point means, you might -- want to open the corresponding module in the Nehemiah -- hierarchy to see how it is implemented in the example -- plugin. In this case, that would be the Nehemiah.Syntax.Term -- module. Structure : Set₁ Structure = Context → Type → Set module Structure (Const : Structure) where import Base.Data.DependentList as DependentList open DependentList public using (∅ ; _•_) open DependentList -- Declarations of Term and Terms to enable mutual recursion. -- -- Note that terms are indexed by contexts and types. In the -- paper, we define the abstract syntax of terms in Fig 1a and -- then define a type system in Fig 1b. All lemmas and theorems -- then explicitly specify that they only hold for well-typed -- terms. Here, we use the indices to define a type that can -- only hold well-typed terms in the first place. data Term (Γ : Context) : (τ : Type) → Set -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. Terms : Context → Context → Set Terms Γ = DependentList (Term Γ) -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where -- constants aka. primitives can only occur fully applied. const : ∀ {Σ τ} → (c : Const Σ τ) → (args : Terms Γ Σ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indicies, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Free variables FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ FV (const ι ts) = FV-terms ts FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t FV-terms ∅ = none FV-terms (t • ts) = FV t ∪ FV-terms ts closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken-terms : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weaken-terms Γ₁≼Γ₂ ∅ = ∅ weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ uncurriedConst constant = const constant CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ curriedConst constant = curryTermConstructor (uncurriedConst constant) -- HOAS-like smart constructors for lambdas, for different arities. -- We could also write this: module NamespaceForBadAbs₁ where abs₁′ : ∀ {Γ τ₁ τ} → (Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) → (Term Γ (τ₁ ⇒ τ)) abs₁′ {Γ} {τ₁} = λ f → abs (f (var this)) -- However, this is less general, and it is harder to reuse. In particular, -- this cannot be used inside abs₂, ..., abs₆. -- Now, let's write other variants with a loop! open import Data.Vec using (_∷_; []; Vec; foldr; [_]) open import Data.Nat module AbsNHelpers where open import Function hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set hoasArgType Γ τ = foldr _ (λ a b → a → b) (Term Γ τ) ∘ Data.Vec.map (Term Γ) -- That is, --hoasArgType Γ τ [] = Term Γ τ --hoasArgType Γ τ (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τ τs hoasResType : ∀ {n} → Type → Vec Type n → Type hoasResType τ = foldr _ _⇒_ τ absNType : {n : ℕ} → Vec _ n → Set absNType τs = ∀ {Γ τ} → (f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τ τs) → Term Γ (hoasResType τ τs) -- A better type for absN but a mess to use due to the proofs (which aren't synthesized, even though maybe they should be?) -- absN : (n : ℕ) → {_ : n > 0} → absNType n -- XXX See "how to keep your neighbours in order" for tricks. -- Please the termination checker by keeping this case separate. absNBase : ∀ {τ₁} → absNType [ τ₁ ] absNBase {τ₁} f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this)) -- Otherwise, the recursive step of absN would invoke absN twice, and the -- termination checker does not figure out that the calls are in fact -- terminating. -- What I'd like to write, avoiding the need for absNBase, but can't because of the termination checker. {- absN {zero} (τ₁ ∷ []) f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this)) absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f = absN (τ₁ ∷ []) (λ {_} {Γ≼Γ′} x₁ → absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) -} --What I have to write instead: absN : {n : ℕ} → (τs : Vec _ (suc n)) → absNType τs absN {zero} (τ₁ ∷ []) = absNBase absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f = absNBase (λ {_} {Γ≼Γ′} x₁ → absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) -- Using a similar trick, we can declare absV which takes the N implicit -- type arguments individually, collects them and passes them on to absN. -- This is inspired by what's shown in the Agda 2.4.0 release notes, and -- relies critically on support for varying arity. To collect them, we need -- to use an accumulator argument. absVType : ∀ n {m} (τs : Vec Type m) → Set absVType 0 τs = absNType τs absVType (suc n) τs = {τᵢ : Type} → absVType n (τᵢ ∷ τs) -- XXX absVAux : ∀ {m} → (τs : Vec Type m) → ∀ n → absVType (suc n) τs absVAux τs zero {τᵢ} = absN (τᵢ ∷ τs) absVAux τs (suc n) {τᵢ} = absVAux (τᵢ ∷ τs) n absV = absVAux [] open AbsNHelpers using (absV) public -- Declare abs₁ .. abs₆ wrappers for more convenient use, allowing implicit -- type arguments to be synthesized. Somehow, Agda does not manage to -- synthesize τs by unification. -- Implicit arguments are reversed when assembling the list, but that's no real problem. abs₁ = absV 0 abs₂ = absV 1 abs₃ = absV 2 abs₄ = absV 3 abs₅ = absV 4 abs₆ = absV 5 {- abs₁ Have: {τ₁ : Type} {Γ : Context} {τ : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ) → Term Γ (τ₁ Type.Structure.⇒ τ) abs₂ Have: {τ₁ : Type} {τ₁ = τ₂ : Type} {Γ : Context} {τ : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₂ → Term Γ′ τ₁ → Term Γ′ τ) → Term Γ (τ₂ Type.Structure.⇒ τ₁ Type.Structure.⇒ τ) -}
Remove remaining duplication between abs₁ ... abs₆
Remove remaining duplication between abs₁ ... abs₆ This relies on Agda 2.4.0's varying arity in a more essential way.
Agda
mit
inc-lc/ilc-agda
05536450804504640dcab4d2a372088bbc7ef7b3
src/fot/FOTC/Program/McCarthy91/PropertiesATP.agda
src/fot/FOTC/Program/McCarthy91/PropertiesATP.agda
------------------------------------------------------------------------------ -- Main properties of the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- The main properties proved of the McCarthy 91 function (called -- f₉₁) are -- 1. The function always terminates. -- 2. For all n, n < f₉₁ n + 11. -- 3. For all n > 100, then f₉₁ n = n - 10. -- 4. For all n <= 100, then f₉₁ n = 91. -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.McCarthy91.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP using ( x>y→x≤y→⊥ ) open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x>y∨x≯y ; x≯y→x≤y ; x≯Sy→x≯y∨x≡Sy ; x+k<y+k→x<y ; <-trans ) open import FOTC.Data.Nat.PropertiesATP using ( ∸-N ; +-N ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP using ( x<x+11 ) open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 10-N ; 11-N ; 89-N ; 90-N ; 91-N ; 92-N ; 93-N ; 94-N ; 95-N ; 96-N ; 97-N ; 98-N ; 99-N ; 100-N ) open import FOTC.Program.McCarthy91.ArithmeticATP open import FOTC.Program.McCarthy91.AuxiliaryPropertiesATP open import FOTC.Program.McCarthy91.McCarthy91 open import FOTC.Program.McCarthy91.WF-Relation open import FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP open import FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP ------------------------------------------------------------------------------ -- For all n > 100, then f₉₁ n = n - 10. -- -- N.B. (21 November 2013). The hypothesis N n is not necessary. postulate f₉₁-x>100 : ∀ n → N n → n > 100' → f₉₁ n ≡ n ∸ 10' {-# ATP prove f₉₁-x>100 #-} -- For all n <= 100, then f₉₁ n = 91. f₉₁-x≯100 : ∀ {n} → N n → n ≯ 100' → f₉₁ n ≡ 91' f₉₁-x≯100 = ◁-wfind A h where A : D → Set A d = d ≯ 100' → f₉₁ d ≡ 91' h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m h {m} Nm f with x>y∨x≯y Nm 100-N ... | inj₁ m>100 = λ m≯100 → ⊥-elim (x>y→x≤y→⊥ Nm 100-N m>100 (x≯y→x≤y Nm 100-N m≯100)) ... | inj₂ m≯100 with x≯Sy→x≯y∨x≡Sy Nm 99-N m≯100 ... | inj₂ m≡100 = λ _ → f₉₁-x≡y f₉₁-100 m≡100 ... | inj₁ m≯99 with x≯Sy→x≯y∨x≡Sy Nm 98-N m≯99 ... | inj₂ m≡99 = λ _ → f₉₁-x≡y f₉₁-99 m≡99 ... | inj₁ m≯98 with x≯Sy→x≯y∨x≡Sy Nm 97-N m≯98 ... | inj₂ m≡98 = λ _ → f₉₁-x≡y f₉₁-98 m≡98 ... | inj₁ m≯97 with x≯Sy→x≯y∨x≡Sy Nm 96-N m≯97 ... | inj₂ m≡97 = λ _ → f₉₁-x≡y f₉₁-97 m≡97 ... | inj₁ m≯96 with x≯Sy→x≯y∨x≡Sy Nm 95-N m≯96 ... | inj₂ m≡96 = λ _ → f₉₁-x≡y f₉₁-96 m≡96 ... | inj₁ m≯95 with x≯Sy→x≯y∨x≡Sy Nm 94-N m≯95 ... | inj₂ m≡95 = λ _ → f₉₁-x≡y f₉₁-95 m≡95 ... | inj₁ m≯94 with x≯Sy→x≯y∨x≡Sy Nm 93-N m≯94 ... | inj₂ m≡94 = λ _ → f₉₁-x≡y f₉₁-94 m≡94 ... | inj₁ m≯93 with x≯Sy→x≯y∨x≡Sy Nm 92-N m≯93 ... | inj₂ m≡93 = λ _ → f₉₁-x≡y f₉₁-93 m≡93 ... | inj₁ m≯92 with x≯Sy→x≯y∨x≡Sy Nm 91-N m≯92 ... | inj₂ m≡92 = λ _ → f₉₁-x≡y f₉₁-92 m≡92 ... | inj₁ m≯91 with x≯Sy→x≯y∨x≡Sy Nm 90-N m≯91 ... | inj₂ m≡91 = λ _ → f₉₁-x≡y f₉₁-91 m≡91 ... | inj₁ m≯90 with x≯Sy→x≯y∨x≡Sy Nm 89-N m≯90 ... | inj₂ m≡90 = λ _ → f₉₁-x≡y f₉₁-90 m≡90 ... | inj₁ m≯89 = λ _ → f₉₁-m≯89 where m≤89 : m ≤ 89' m≤89 = x≯y→x≤y Nm 89-N m≯89 f₉₁-m+11 : m + 11' ≯ 100' → f₉₁ (m + 11') ≡ 91' f₉₁-m+11 = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm)) f₉₁-m≯89 : f₉₁ m ≡ 91' f₉₁-m≯89 = f₉₁-x≯100-helper m 91' m≯100 (f₉₁-m+11 (x≤89→x+11≯100 Nm m≤89)) f₉₁-91 -- The function always terminates. f₉₁-N : ∀ {n} → N n → N (f₉₁ n) f₉₁-N {n} Nn with x>y∨x≯y Nn 100-N ... | inj₁ n>100 = subst N (sym (f₉₁-x>100 n Nn n>100)) (∸-N Nn 10-N) ... | inj₂ n≯100 = subst N (sym (f₉₁-x≯100 Nn n≯100)) 91-N -- For all n, n < f₉₁ n + 11. f₉₁-ineq : ∀ {n} → N n → n < f₉₁ n + 11' f₉₁-ineq = ◁-wfind A h where A : D → Set A d = d < f₉₁ d + 11' h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m h {m} Nm f with x>y∨x≯y Nm 100-N ... | inj₁ m>100 = x>100→x<f₉₁-x+11 Nm m>100 ... | inj₂ m≯100 = let f₉₁-m+11-N : N (f₉₁ (m + 11')) f₉₁-m+11-N = f₉₁-N (+-N Nm 11-N) h₁ : A (m + 11') h₁ = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm)) m<f₉₁m+11 : m < f₉₁ (m + 11') m<f₉₁m+11 = x+k<y+k→x<y Nm f₉₁-m+11-N 11-N h₁ h₂ : A (f₉₁ (m + 11')) h₂ = f f₉₁-m+11-N (<→◁ f₉₁-m+11-N Nm m≯100 m<f₉₁m+11) in (<-trans Nm f₉₁-m+11-N (x+11-N (f₉₁-N Nm)) m<f₉₁m+11 (f₉₁x+11<f₉₁x+11 m m≯100 h₂))
------------------------------------------------------------------------------ -- Main properties of the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- The main properties proved of the McCarthy 91 function (called -- f₉₁) are -- 1. The function always terminates. -- 2. For all n, n < f₉₁ n + 11. -- 3. For all n > 100, then f₉₁ n = n - 10. -- 4. For all n <= 100, then f₉₁ n = 91. -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.McCarthy91.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP using ( x>y→x≤y→⊥ ) open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x>y∨x≯y ; x≯y→x≤y ; x≯Sy→x≯y∨x≡Sy ; x+k<y+k→x<y ; <-trans ) open import FOTC.Data.Nat.PropertiesATP using ( ∸-N ; +-N ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP using ( x<x+11 ) open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 10-N ; 11-N ; 89-N ; 90-N ; 91-N ; 92-N ; 93-N ; 94-N ; 95-N ; 96-N ; 97-N ; 98-N ; 99-N ; 100-N ) open import FOTC.Program.McCarthy91.ArithmeticATP open import FOTC.Program.McCarthy91.AuxiliaryPropertiesATP open import FOTC.Program.McCarthy91.McCarthy91 open import FOTC.Program.McCarthy91.WF-Relation open import FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP open import FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP ------------------------------------------------------------------------------ -- For all n > 100, then f₉₁ n = n - 10. postulate f₉₁-x>100 : ∀ n → n > 100' → f₉₁ n ≡ n ∸ 10' {-# ATP prove f₉₁-x>100 #-} -- For all n <= 100, then f₉₁ n = 91. f₉₁-x≯100 : ∀ {n} → N n → n ≯ 100' → f₉₁ n ≡ 91' f₉₁-x≯100 = ◁-wfind A h where A : D → Set A d = d ≯ 100' → f₉₁ d ≡ 91' h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m h {m} Nm f with x>y∨x≯y Nm 100-N ... | inj₁ m>100 = λ m≯100 → ⊥-elim (x>y→x≤y→⊥ Nm 100-N m>100 (x≯y→x≤y Nm 100-N m≯100)) ... | inj₂ m≯100 with x≯Sy→x≯y∨x≡Sy Nm 99-N m≯100 ... | inj₂ m≡100 = λ _ → f₉₁-x≡y f₉₁-100 m≡100 ... | inj₁ m≯99 with x≯Sy→x≯y∨x≡Sy Nm 98-N m≯99 ... | inj₂ m≡99 = λ _ → f₉₁-x≡y f₉₁-99 m≡99 ... | inj₁ m≯98 with x≯Sy→x≯y∨x≡Sy Nm 97-N m≯98 ... | inj₂ m≡98 = λ _ → f₉₁-x≡y f₉₁-98 m≡98 ... | inj₁ m≯97 with x≯Sy→x≯y∨x≡Sy Nm 96-N m≯97 ... | inj₂ m≡97 = λ _ → f₉₁-x≡y f₉₁-97 m≡97 ... | inj₁ m≯96 with x≯Sy→x≯y∨x≡Sy Nm 95-N m≯96 ... | inj₂ m≡96 = λ _ → f₉₁-x≡y f₉₁-96 m≡96 ... | inj₁ m≯95 with x≯Sy→x≯y∨x≡Sy Nm 94-N m≯95 ... | inj₂ m≡95 = λ _ → f₉₁-x≡y f₉₁-95 m≡95 ... | inj₁ m≯94 with x≯Sy→x≯y∨x≡Sy Nm 93-N m≯94 ... | inj₂ m≡94 = λ _ → f₉₁-x≡y f₉₁-94 m≡94 ... | inj₁ m≯93 with x≯Sy→x≯y∨x≡Sy Nm 92-N m≯93 ... | inj₂ m≡93 = λ _ → f₉₁-x≡y f₉₁-93 m≡93 ... | inj₁ m≯92 with x≯Sy→x≯y∨x≡Sy Nm 91-N m≯92 ... | inj₂ m≡92 = λ _ → f₉₁-x≡y f₉₁-92 m≡92 ... | inj₁ m≯91 with x≯Sy→x≯y∨x≡Sy Nm 90-N m≯91 ... | inj₂ m≡91 = λ _ → f₉₁-x≡y f₉₁-91 m≡91 ... | inj₁ m≯90 with x≯Sy→x≯y∨x≡Sy Nm 89-N m≯90 ... | inj₂ m≡90 = λ _ → f₉₁-x≡y f₉₁-90 m≡90 ... | inj₁ m≯89 = λ _ → f₉₁-m≯89 where m≤89 : m ≤ 89' m≤89 = x≯y→x≤y Nm 89-N m≯89 f₉₁-m+11 : m + 11' ≯ 100' → f₉₁ (m + 11') ≡ 91' f₉₁-m+11 = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm)) f₉₁-m≯89 : f₉₁ m ≡ 91' f₉₁-m≯89 = f₉₁-x≯100-helper m 91' m≯100 (f₉₁-m+11 (x≤89→x+11≯100 Nm m≤89)) f₉₁-91 -- The function always terminates. f₉₁-N : ∀ {n} → N n → N (f₉₁ n) f₉₁-N {n} Nn with x>y∨x≯y Nn 100-N ... | inj₁ n>100 = subst N (sym (f₉₁-x>100 n n>100)) (∸-N Nn 10-N) ... | inj₂ n≯100 = subst N (sym (f₉₁-x≯100 Nn n≯100)) 91-N -- For all n, n < f₉₁ n + 11. f₉₁-ineq : ∀ {n} → N n → n < f₉₁ n + 11' f₉₁-ineq = ◁-wfind A h where A : D → Set A d = d < f₉₁ d + 11' h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m h {m} Nm f with x>y∨x≯y Nm 100-N ... | inj₁ m>100 = x>100→x<f₉₁-x+11 Nm m>100 ... | inj₂ m≯100 = let f₉₁-m+11-N : N (f₉₁ (m + 11')) f₉₁-m+11-N = f₉₁-N (+-N Nm 11-N) h₁ : A (m + 11') h₁ = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm)) m<f₉₁m+11 : m < f₉₁ (m + 11') m<f₉₁m+11 = x+k<y+k→x<y Nm f₉₁-m+11-N 11-N h₁ h₂ : A (f₉₁ (m + 11')) h₂ = f f₉₁-m+11-N (<→◁ f₉₁-m+11-N Nm m≯100 m<f₉₁m+11) in (<-trans Nm f₉₁-m+11-N (x+11-N (f₉₁-N Nm)) m<f₉₁m+11 (f₉₁x+11<f₉₁x+11 m m≯100 h₂))
Revert "Added a non-required totality hypothesis."
Revert "Added a non-required totality hypothesis." This reverts commit 57708b770c00d1ba6276cda0f02752e147f2f533.
Agda
mit
asr/fotc,asr/fotc
f04e665aed5f41deea97dd4b7160ad5ee957e41a
Nehemiah/Change/Validity.agda
Nehemiah/Change/Validity.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Validity where open import Nehemiah.Syntax.Type open import Nehemiah.Denotation.Value import Parametric.Change.Validity ⟦_⟧Base as Validity open import Nehemiah.Change.Type open import Nehemiah.Change.Value open import Data.Integer open import Structure.Bag.Nehemiah open import Base.Change.Algebra open import Level change-algebra-base : ∀ ι → ChangeAlgebra zero ⟦ ι ⟧Base change-algebra-base base-int = GroupChanges.changeAlgebra ℤ change-algebra-base base-bag = GroupChanges.changeAlgebra Bag change-algebra-base-family : ChangeAlgebraFamily zero ⟦_⟧Base change-algebra-base-family = family change-algebra-base open Validity.Structure change-algebra-base-family public
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Validity where open import Nehemiah.Syntax.Type open import Nehemiah.Denotation.Value import Parametric.Change.Validity ⟦_⟧Base as Validity open import Nehemiah.Change.Type open import Nehemiah.Change.Value open import Data.Integer open import Structure.Bag.Nehemiah open import Base.Change.Algebra open import Level change-algebra-base : ∀ ι → ChangeAlgebra zero ⟦ ι ⟧Base change-algebra-base base-int = GroupChanges.changeAlgebra ℤ {{abelian-int}} change-algebra-base base-bag = GroupChanges.changeAlgebra Bag {{abelian-bag}} instance change-algebra-base-family : ChangeAlgebraFamily zero ⟦_⟧Base change-algebra-base-family = family change-algebra-base --open Validity.Structure change-algebra-base-family public --XXX agda/agda#1985. open Validity.Structure public
Update Nehemiah.Change.Validity
Update Nehemiah.Change.Validity * Adapt to weaker instance resolution. * Omit module application that runs into agda/agda#1985.
Agda
mit
inc-lc/ilc-agda
94c667f3d542af3d0d5f3f603fe4d1aeccaf6e95
New/Changes.agda
New/Changes.agda
module New.Changes where open import Relation.Binary.PropositionalEquality open import Level open import Data.Unit open import Data.Product record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where field _⊕_ : A → Ch → A _⊝_ : A → A → Ch valid : A → Ch → Set ℓ ⊝-valid : ∀ (a b : A) → valid a (b ⊝ a) ⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b infixl 6 _⊕_ _⊝_ Δ : A → Set ℓ Δ a = Σ[ da ∈ Ch ] (valid a da) update-diff = ⊕-⊝ nil : A → Ch nil a = a ⊝ a nil-valid : (a : A) → valid a (nil a) nil-valid a = ⊝-valid a a update-nil : (a : A) → a ⊕ nil a ≡ a update-nil a = update-diff a a record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where field Ch : Set ℓ isChAlg : IsChAlg A Ch open IsChAlg isChAlg public open ChAlg {{...}} public hiding (Ch) Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ Ch A {{CA}} = ChAlg.Ch CA -- Huge hack, but it does gives the output you want to see in all cases I've seen. {-# DISPLAY IsChAlg.valid x = valid #-} {-# DISPLAY ChAlg.valid x = valid #-} {-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY ChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY IsChAlg.nil x = nil #-} {-# DISPLAY ChAlg.nil x = nil #-} {-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-} {-# DISPLAY ChAlg._⊝_ x = _⊝_ #-} module _ {ℓ₁} {ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where private fCh = A → Ch A → Ch B _f⊕_ : (A → B) → fCh → A → B _f⊕_ = λ f df a → f a ⊕ df a (nil a) _f⊝_ : (g f : A → B) → fCh _f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a open ≡-Reasoning open import Postulate.Extensionality IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂) IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da instance funCA : ChAlg (A → B) private funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a) funCA = record { Ch = A → Ch A → Ch B ; isChAlg = record { _⊕_ = _f⊕_ ; _⊝_ = _f⊝_ ; valid = λ f df → ∀ a da (v : valid a da) → valid (f a) (df a da) × (f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da ; ⊝-valid = λ f g a da (v : valid a da) → ⊝-valid (f a) (g (a ⊕ da)) , ( begin f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da)) ≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da))) (update-nil (a ⊕ da)) ⟩ f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da)) ≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩ g (a ⊕ da) ≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩ f a ⊕ (g (a ⊕ da) ⊝ f a) ∎) ; ⊕-⊝ = λ g f → ext (funUpdateDiff g f) } } nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f) nil-is-derivative f a da v = begin f (a ⊕ da) ≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩ (f ⊕ nil f) (a ⊕ da) ≡⟨ proj₂ (nil-valid f a da v) ⟩ f a ⊕ (nil f a da) ∎ private _p⊕_ : A × B → Ch A × Ch B → A × B _p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db _p⊝_ : A × B → A × B → Ch A × Ch B _p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1 pvalid : A × B → Ch A × Ch B → Set (ℓ₂ ⊔ ℓ₁) pvalid (a , b) (da , db) = valid a da × valid b db p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1) p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2 p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2 p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1) instance pairCA : ChAlg (A × B) pairCA = record { Ch = Ch A × Ch B ; isChAlg = record { _⊕_ = _p⊕_ ; _⊝_ = _p⊝_ ; valid = pvalid ; ⊝-valid = p⊝-valid ; ⊕-⊝ = p⊕-⊝ } } open import Data.Integer open import Theorem.Groups-Nehemiah instance intCA : ChAlg ℤ intCA = record { Ch = ℤ ; isChAlg = record { _⊕_ = _+_ ; _⊝_ = _-_ ; valid = λ a b → ⊤ ; ⊝-valid = λ a b → tt ; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
module New.Changes where open import Relation.Binary.PropositionalEquality open import Level open import Data.Unit open import Data.Product open import Data.Sum record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where field _⊕_ : A → Ch → A _⊝_ : A → A → Ch valid : A → Ch → Set ℓ ⊝-valid : ∀ (a b : A) → valid a (b ⊝ a) ⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b infixl 6 _⊕_ _⊝_ Δ : A → Set ℓ Δ a = Σ[ da ∈ Ch ] (valid a da) update-diff = ⊕-⊝ nil : A → Ch nil a = a ⊝ a nil-valid : (a : A) → valid a (nil a) nil-valid a = ⊝-valid a a update-nil : (a : A) → a ⊕ nil a ≡ a update-nil a = update-diff a a record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where field Ch : Set ℓ isChAlg : IsChAlg A Ch open IsChAlg isChAlg public open ChAlg {{...}} public hiding (Ch) Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ Ch A {{CA}} = ChAlg.Ch CA -- Huge hack, but it does gives the output you want to see in all cases I've seen. {-# DISPLAY IsChAlg.valid x = valid #-} {-# DISPLAY ChAlg.valid x = valid #-} {-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY ChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY IsChAlg.nil x = nil #-} {-# DISPLAY ChAlg.nil x = nil #-} {-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-} {-# DISPLAY ChAlg._⊝_ x = _⊝_ #-} module _ {ℓ₁} {ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where private fCh = A → Ch A → Ch B _f⊕_ : (A → B) → fCh → A → B _f⊕_ = λ f df a → f a ⊕ df a (nil a) _f⊝_ : (g f : A → B) → fCh _f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a open ≡-Reasoning open import Postulate.Extensionality IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂) IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da instance funCA : ChAlg (A → B) private funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a) funCA = record { Ch = A → Ch A → Ch B ; isChAlg = record { _⊕_ = _f⊕_ ; _⊝_ = _f⊝_ ; valid = λ f df → ∀ a da (v : valid a da) → valid (f a) (df a da) × (f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da ; ⊝-valid = λ f g a da (v : valid a da) → ⊝-valid (f a) (g (a ⊕ da)) , ( begin f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da)) ≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da))) (update-nil (a ⊕ da)) ⟩ f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da)) ≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩ g (a ⊕ da) ≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩ f a ⊕ (g (a ⊕ da) ⊝ f a) ∎) ; ⊕-⊝ = λ g f → ext (funUpdateDiff g f) } } nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f) nil-is-derivative f a da v = begin f (a ⊕ da) ≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩ (f ⊕ nil f) (a ⊕ da) ≡⟨ proj₂ (nil-valid f a da v) ⟩ f a ⊕ (nil f a da) ∎ private _p⊕_ : A × B → Ch A × Ch B → A × B _p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db _p⊝_ : A × B → A × B → Ch A × Ch B _p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1 pvalid : A × B → Ch A × Ch B → Set (ℓ₂ ⊔ ℓ₁) pvalid (a , b) (da , db) = valid a da × valid b db p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1) p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2 p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2 p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1) instance pairCA : ChAlg (A × B) pairCA = record { Ch = Ch A × Ch B ; isChAlg = record { _⊕_ = _p⊕_ ; _⊝_ = _p⊝_ ; valid = pvalid ; ⊝-valid = p⊝-valid ; ⊕-⊝ = p⊕-⊝ } } private SumChange = (Ch A ⊎ Ch B) ⊎ (A ⊎ B) data SumChange2 : Set (ℓ₁ ⊔ ℓ₂) where ch₁ : (da : Ch A) → SumChange2 ch₂ : (db : Ch B) → SumChange2 rp : (s : A ⊎ B) → SumChange2 convert : SumChange → SumChange2 convert (inj₁ (inj₁ da)) = ch₁ da convert (inj₁ (inj₂ db)) = ch₂ db convert (inj₂ s) = rp s convert₁ : SumChange2 → SumChange convert₁ (ch₁ da) = inj₁ (inj₁ da) convert₁ (ch₂ db) = inj₁ (inj₂ db) convert₁ (rp s) = inj₂ s data SValid : A ⊎ B → SumChange → Set (ℓ₁ ⊔ ℓ₂) where sv₁ : ∀ (a : A) (da : Ch A) (ada : valid a da) → SValid (inj₁ a) (convert₁ (ch₁ da)) sv₂ : ∀ (b : B) (db : Ch B) (bdb : valid b db) → SValid (inj₂ b) (convert₁ (ch₂ db)) svrp : ∀ (s₁ s₂ : A ⊎ B) → SValid s₁ (convert₁ (rp s₂)) inv1 : ∀ ds → convert₁ (convert ds) ≡ ds inv1 (inj₁ (inj₁ da)) = refl inv1 (inj₁ (inj₂ db)) = refl inv1 (inj₂ s) = refl inv2 : ∀ ds → convert (convert₁ ds) ≡ ds inv2 (ch₁ da) = refl inv2 (ch₂ db) = refl inv2 (rp s) = refl private s⊕2 : A ⊎ B → SumChange2 → A ⊎ B s⊕2 (inj₁ a) (ch₁ da) = inj₁ (a ⊕ da) s⊕2 (inj₂ b) (ch₂ db) = inj₂ (b ⊕ db) s⊕2 (inj₂ b) (ch₁ da) = inj₂ b -- invalid s⊕2 (inj₁ a) (ch₂ db) = inj₁ a -- invalid s⊕2 s (rp s₁) = s₁ s⊕ : A ⊎ B → SumChange → A ⊎ B s⊕ s ds = s⊕2 s (convert ds) s⊝2 : A ⊎ B → A ⊎ B → SumChange2 s⊝2 (inj₁ x2) (inj₁ x1) = ch₁ (x2 ⊝ x1) s⊝2 (inj₂ y2) (inj₂ y1) = ch₂ (y2 ⊝ y1) s⊝2 s2 s1 = rp s2 s⊝ : A ⊎ B → A ⊎ B → SumChange s⊝ s2 s1 = convert₁ (s⊝2 s2 s1) s⊝-valid : (a b : A ⊎ B) → SValid a (s⊝ b a) s⊝-valid (inj₁ x1) (inj₁ x2) = sv₁ x1 (x2 ⊝ x1) (⊝-valid x1 x2) s⊝-valid (inj₂ y1) (inj₂ y2) = sv₂ y1 (y2 ⊝ y1) (⊝-valid y1 y2) s⊝-valid s1@(inj₁ x) s2@(inj₂ y) = svrp s1 s2 s⊝-valid s1@(inj₂ y) s2@(inj₁ x) = svrp s1 s2 s⊕-⊝ : (b a : A ⊎ B) → s⊕ a (s⊝ b a) ≡ b s⊕-⊝ (inj₁ x2) (inj₁ x1) rewrite ⊕-⊝ x2 x1 = refl s⊕-⊝ (inj₁ x2) (inj₂ y1) = refl s⊕-⊝ (inj₂ y2) (inj₁ x1) = refl s⊕-⊝ (inj₂ y2) (inj₂ y1) rewrite ⊕-⊝ y2 y1 = refl sumCA = record { Ch = SumChange ; isChAlg = record { _⊕_ = s⊕ ; _⊝_ = s⊝ ; valid = SValid ; ⊝-valid = s⊝-valid ; ⊕-⊝ = s⊕-⊝ } } open import Data.Integer open import Theorem.Groups-Nehemiah instance intCA : ChAlg ℤ intCA = record { Ch = ℤ ; isChAlg = record { _⊕_ = _+_ ; _⊝_ = _-_ ; valid = λ a b → ⊤ ; ⊝-valid = λ a b → tt ; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
Add change structure for changes
Add change structure for changes
Agda
mit
inc-lc/ilc-agda
f1c2df98ed89a3de0f4b42407cb950eded1c5ed4
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ {{Γ′}} (abs t) ≈⟨ Δ-abs {{Γ′}} t ⟩ abs (abs (Δ {τ • Γ₁} {{Γ″}} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩ abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) ≡⟨⟩ derive-term {{Γ′}} (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ {{Γ′}} (app t₁ t₂) ≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ {{Γ′}} t₂) (Δ {{Γ′}} t₃)) ≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct {{Γ′}} t₂) (derive-term-correct {{Γ′}} t₃)) ⟩ if (derive-term {{Γ′}} t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term {{Γ′}} t₂) (derive-term {{Γ′}} t₃)) ≡⟨⟩ derive-term {{Γ′}} (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ {{Γ′}} (abs t) ≈⟨ Δ-abs {{Γ′}} t ⟩ abs (abs (Δ {τ • Γ₁} {{Γ″}} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩ abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) ≡⟨⟩ derive-term {{Γ′}} (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ {{Γ′}} (app t₁ t₂) ≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧ (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧ ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ {{Γ′}} t₂) (Δ {{Γ′}} t₃)) ≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct {{Γ′}} t₂) (derive-term-correct {{Γ′}} t₃)) ⟩ if (derive-term {{Γ′}} t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term {{Γ′}} t₂) (derive-term {{Γ′}} t₃)) ≡⟨⟩ derive-term {{Γ′}} (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
Increase overloading and confusion.
Increase overloading and confusion. Old-commit-hash: df682306832e5b833f837c92dec32b3c428a7ab9
Agda
mit
inc-lc/ilc-agda
757995f811b789374410d560566e8717a68f1e24
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = trans (proof (let open ≙-Reasoning in begin dx ≙⟨ dx≙nil-x ⟩ nil x ∎)) (let open ≡-Reasoning in begin x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎) -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
Revert "Show how badly reasoning for ≙ and ≡ combine"
Revert "Show how badly reasoning for ≙ and ≡ combine" This reverts commit 24faa2c5edd91d1db64977d5124ef40e01de433f. The commit showed how badly something worked, so let's leave in the old version for now. Old-commit-hash: 9f5f49cf0319ba809356655a204ec83725dfceb4
Agda
mit
inc-lc/ilc-agda
c1d53d1c793d91e002e6c8b4ffbbcc8dca4c6eda
README.agda
README.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Machine-checked formalization of the theoretical results presented -- in the paper: -- -- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann. -- A Theory of Changes for Higher-Order Languages: -- Incrementalizing λ-Calculi by Static Differentiation. -- To appear at PLDI, ACM 2014. -- -- We claim that this formalization -- -- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper, -- (2) formally specifies the interface between our incrementalization -- framework and potential plugins, and -- (3) shows that the plugin interface can be instantiated. -- -- The first claim is the main reason for a machine-checked -- proof: We want to be sure that we got the proofs right. -- -- The second claim is about reusability and applicability: Only -- a clearly defined interface allows other researchers to -- provide plugins for our framework. -- -- The third claim is to show that the plugin interface is -- consistent: An inconsistent plugin interface would allow to -- prove arbitrary results in the framework. ------------------------------------------------------------------------ module README where -- We know two good ways to read this code base. You can either -- use Emacs with agda2-mode to interact with the source files, -- or you can use a web browser to view the pretty-printed and -- hyperlinked source files. For Agda power users, we also -- include basic setup information for your own machine. -- IF YOU WANT TO USE A BROWSER -- ============================ -- -- Start with *HTML* version of this readme. On the AEC -- submission website (online or inside the VM), follow the link -- "view the Agda code in their browser" to the file -- agda/README.html. -- -- The source code is syntax highlighted and hyperlinked. You can -- click on module names to open the corresponding files, or you -- can click on identifiers to jump to their definition. In -- general, a Agda file with name `Foo/Bar/Baz.agda` contains a -- module `Foo.Bar.Baz` and is shown in an HTML file -- `Foo.Bar.Baz.html`. -- -- Note that we also include the HTML files generated for our -- transitive dependencies from the Agda standard library. This -- allows you to follow hyperlinks to the Agda standard -- library. It is the default behavior of `agda --html` which we -- used to generate the HTML. -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE EMACS -- ======================== -- -- Open this file in Emacs with agda2-mode installed. See below -- for which Agda version you need to install. On the VM image, -- everything is setup for you and you can just open this file in -- Emacs. -- -- C-c C-l Load code. Type checks and syntax highlights. Use -- this if the code is not syntax highlighted, or -- after you changed something that you want to type -- check. -- -- M-. Jump to definition of identifier at the point. -- M-* Jump back. -- -- Note that README.agda imports Everything.agda which imports -- every Agda file in our formalization. So if README.agda type -- checks successfully, everything does. If you want to type -- check everything from scratch, delete the *.agdai files to -- disable separate compilation. You can use "find . -name -- '*.agdai' | xargs rm" to do that. -- -- More information on the Agda mode is available on the Agda wiki: -- -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE YOUR OWN SETUP -- ================================= -- -- To typecheck this formalization, you need to install the appropriate version -- of Agda (2.4.0), the Agda standard library (version 0.8), generate -- Everything.agda with the attached Haskell helper, and finally run Agda on -- this file. -- -- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh -- script and following instructions given on output will eventually generate -- Everything.agda and proceed to type check everything on command line. -- -- If you're not an Agda power user, it is probably easier to use -- the VM image or look at the pretty-printed and hyperlinked -- HTML files, see above. -- WHERE TO START READING? -- ======================= -- -- modules.pdf -- The graph of dependencies between Agda modules. -- Good if you want to get a broad overview. -- -- README.agda -- This file. A coarse-grained introduction to the Agda -- formalization. Good if you want to begin at the beginning -- and understand the structure of our code. -- -- PLDI14-List-of-Theorems.agda -- Pointers to the Agda formalizations of all theorems, lemmas -- or definitions in the PLDI paper. Good if you want to read -- the paper and the Agda code side by side. -- -- Here is an import of this file, so you can jump to it -- directly (use M-. in Emacs or click the module name in the -- Browser): import PLDI14-List-of-Theorems -- Everything.agda -- Imports every Agda module in our formalization. Good if you -- want to make sure you don't miss anything. -- -- Again, here's is an import of this file so you can navigate -- there: import Everything -- (This import is also important to ensure that if we typecheck -- README.agda, we also typecheck every other file of our -- formalization). -- THE AGDA CODE -- ============= -- -- The formalization has four parts: -- -- 1. A formalization of change structures. This lives in -- Base.Change.Algebra. (What we call "change structure" in the -- paper, we call "change algebra" in the Agda code. We changed -- the name when writing the paper, and never got around to -- updating the name in the Agda code). -- -- 2. Incrementalization framework for first-class functions, -- with extension points for plugging in data types and their -- incrementalization. This lives in the Parametric.* -- hierarchy. -- -- 3. An example plugin that provides integers and bags -- with negative multiplicity. This lives in the Nehemiah.* -- hierarchy. (For some reason, we choose to call this -- particular incarnation of the plugin Nehemiah). -- -- 4. Other material that is unrelated to the framework/plugin -- distinction. This is all other files. -- FORMALIZATION OF CHANGE STRUCTURES -- ================================== -- -- Section 2 of the paper, and Base.Change.Algebra in Agda. import Base.Change.Algebra -- INCREMENTALIZATION FRAMEWORK -- ============================ -- -- Section 3 of the paper, and Parametric.* hierarchy in Agda. -- -- The extension points are implemented as module parameters. See -- detailed explanation in Parametric.Syntax.Type and -- Parametric.Syntax.Term. Some extension points are for types, -- some for values, and some for proof fragments. In Agda, these -- three kinds of entities are unified anyway, so we can encode -- all of them as module parameters. -- -- Every module in the Parametric.* hierarchy adds at least one -- extension point, so the module hierarchy of a plugin will -- typically mirror the Parametric.* hierarchy, defining the -- values for these extension points. -- -- Firstly, we have the syntax of types and terms, the erased -- change structure for function types and incrementalization as -- a term-to-term transformation. The contents of these modules -- formalizes Sec. 3.1 and 3.2 of the paper, except for the -- second and third line of Figure 3, which is formalized further -- below. import Parametric.Syntax.Type -- syntax of types import Parametric.Syntax.Term -- syntax of terms import Parametric.Change.Type -- simply-typed changes import Parametric.Change.Derive -- incrementalization -- Secondly, we define the usual denotational semantics of the -- simply-typed lambda calculus in terms of total functions, and -- the change semantics in terms of a change structure on total -- functions. The contents of these modules formalize Sec. 3.3, -- 3.4 and 3.5 of the paper. import Parametric.Denotation.Value -- standard values import Parametric.Denotation.Evaluation -- standard evaluation import Parametric.Change.Validity -- dependently-typed changes import Parametric.Change.Specification -- change evaluation -- Thirdly, we define terms that operate on simply-typed changes, -- and connect them to their values. The concents of these -- modules formalize the second and third line of Figure 3, as -- well as the semantics of these lines. import Parametric.Change.Term -- terms that operate on simply-typed changes import Parametric.Change.Value -- the values of these terms import Parametric.Change.Evaluation -- connecting the terms and their values -- Finally, we prove correctness by connecting the (syntactic) -- incrementalization to the (semantic) change evaluation by a -- logical relation, and a proof that the values of terms -- produced by the incrementalization transformation are related -- to the change values of the original terms. The contents of -- these modules formalize Sec. 3.6. import Parametric.Change.Implementation -- logical relation import Parametric.Change.Correctness -- main correctness proof -- EXAMPLE PLUGIN -- ============== -- -- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda. -- -- The module structure of the plugin follows the structure of -- the Parametric.* hierarchy. For example, the extension point -- defined in Parametric.Syntax.Term is instantiated in -- Nehemiah.Syntax.Term. -- -- As discussed in Sec. 3.7 of the paper, the point of this -- plugin is not to speed up any real programs, but to show "that -- the interface for proof plugins can be implemented". As a -- first step towards proving correctness of the more complicated -- plugin with integers, bags and finite maps we implement in -- Scala, we choose to define plugin with integers and bags in -- Agda. Instead of implementing bags (with negative -- multiplicities, like in the paper) in Agda, though, we -- postulate that a group of such bags exist. Note that integer -- bags with integer multiplicities are actually the free group -- given a singleton operation `Integer -> Bag`, so this should -- be easy to formalize in principle. -- Before we start with the plugin, we postulate an abstract data -- type for integer bags. import Postulate.Bag-Nehemiah -- Firstly, we extend the syntax of types and terms, the erased -- change structure for function types, and incrementalization as -- a term-to-term transformation to account for the data types of -- the Nehemiah language. The contents of these modules -- instantiate the extension points in Sec. 3.1 and 3.2 of the -- paper, except for the second and third line of Figure 3, which -- is instantiated further below. import Nehemiah.Syntax.Type import Nehemiah.Syntax.Term import Nehemiah.Change.Type import Nehemiah.Change.Derive -- Secondly, we extend the usual denotational semantics and the -- change semantics to account for the data types of the Nehemiah -- language. The contents of these modules instantiate the -- extension points in Sec. 3.3, 3.4 and 3.5 of the paper. import Nehemiah.Denotation.Value import Nehemiah.Denotation.Evaluation import Nehemiah.Change.Validity import Nehemiah.Change.Specification -- Thirdly, we extend the terms that operate on simply-typed -- changes, and the connection to their values to account for the -- data types of the Nehemiah language. The concents of these -- modules instantiate the extension points in the second and -- third line of Figure 3. import Nehemiah.Change.Term import Nehemiah.Change.Value import Nehemiah.Change.Evaluation -- Finally, we extend the logical relation and the main -- correctness proof to account for the data types in the -- Nehemiah language. The contents of these modules instantiate -- the extension points defined in Sec. 3.6. import Nehemiah.Change.Implementation import Nehemiah.Change.Correctness -- OTHER MATERIAL -- ============== -- -- We postulate extensionality of Agda functions. This postulate -- is well known to be compatible with Agda's type theory. import Postulate.Extensionality -- For historical reasons, we reexport Data.List.All from the -- standard library under the name DependentList. import Base.Data.DependentList -- This module supports overloading the ⟦_⟧ notation based on -- Agda's instance arguments. import Base.Denotation.Notation -- These modules implement contexts including typed de Bruijn -- indices to represent bound variables, sets of bound variables, -- and environments. These modules are parametric in the set of -- types (that are stored in contexts) and the set of values -- (that are stored in environments). So these modules are even -- more parametric than the Parametric.* hierarchy. import Base.Syntax.Context import Base.Syntax.Vars import Base.Denotation.Environment -- This module contains some helper definitions to merge a -- context of values and a context of changes. import Base.Change.Context
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Machine-checked formalization of the theoretical results presented -- in the paper: -- -- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann. -- A Theory of Changes for Higher-Order Languages: -- Incrementalizing λ-Calculi by Static Differentiation. -- To appear at PLDI, ACM 2014. -- -- We claim that this formalization -- -- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper, -- (2) formally specifies the interface between our incrementalization -- framework and potential plugins, and -- (3) shows that the plugin interface can be instantiated. -- -- The first claim is the main reason for a machine-checked -- proof: We want to be sure that we got the proofs right. -- -- The second claim is about reusability and applicability: Only -- a clearly defined interface allows other researchers to -- provide plugins for our framework. -- -- The third claim is to show that the plugin interface is -- consistent: An inconsistent plugin interface would allow to -- prove arbitrary results in the framework. ------------------------------------------------------------------------ module README where -- We know two good ways to read this code base. You can either -- use Emacs with agda2-mode to interact with the source files, -- or you can use a web browser to view the pretty-printed and -- hyperlinked source files. For Agda power users, we also -- include basic setup information for your own machine. -- IF YOU WANT TO USE A BROWSER -- ============================ -- -- Start with *HTML* version of this readme. On the AEC -- submission website (online or inside the VM), follow the link -- "view the Agda code in their browser" to the file -- agda/README.html. -- -- The source code is syntax highlighted and hyperlinked. You can -- click on module names to open the corresponding files, or you -- can click on identifiers to jump to their definition. In -- general, a Agda file with name `Foo/Bar/Baz.agda` contains a -- module `Foo.Bar.Baz` and is shown in an HTML file -- `Foo.Bar.Baz.html`. -- -- Note that we also include the HTML files generated for our -- transitive dependencies from the Agda standard library. This -- allows you to follow hyperlinks to the Agda standard -- library. It is the default behavior of `agda --html` which we -- used to generate the HTML. -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE EMACS -- ======================== -- -- Open this file in Emacs with agda2-mode installed. See below -- for which Agda version you need to install. On the VM image, -- everything is setup for you and you can just open this file in -- Emacs. -- -- C-c C-l Load code. Type checks and syntax highlights. Use -- this if the code is not syntax highlighted, or -- after you changed something that you want to type -- check. -- -- M-. Jump to definition of identifier at the point. -- M-* Jump back. -- -- Note that README.agda imports Everything.agda which imports -- every Agda file in our formalization. So if README.agda type -- checks successfully, everything does. If you want to type -- check everything from scratch, delete the *.agdai files to -- disable separate compilation. You can use "find . -name -- '*.agdai' | xargs rm" to do that. -- -- More information on the Agda mode is available on the Agda wiki: -- -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE YOUR OWN SETUP -- ================================= -- -- To typecheck this formalization, you need to install the appropriate version -- of Agda (2.4.0.*), the Agda standard library (version 0.8), generate -- Everything.agda with the attached Haskell helper, and finally run Agda on -- this file. -- -- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh -- script and following instructions given on output will eventually generate -- Everything.agda and proceed to type check everything on command line. -- -- If you're not an Agda power user, it is probably easier to use -- the VM image or look at the pretty-printed and hyperlinked -- HTML files, see above. -- WHERE TO START READING? -- ======================= -- -- modules.pdf -- The graph of dependencies between Agda modules. -- Good if you want to get a broad overview. -- -- README.agda -- This file. A coarse-grained introduction to the Agda -- formalization. Good if you want to begin at the beginning -- and understand the structure of our code. -- -- PLDI14-List-of-Theorems.agda -- Pointers to the Agda formalizations of all theorems, lemmas -- or definitions in the PLDI paper. Good if you want to read -- the paper and the Agda code side by side. -- -- Here is an import of this file, so you can jump to it -- directly (use M-. in Emacs or click the module name in the -- Browser): import PLDI14-List-of-Theorems -- Everything.agda -- Imports every Agda module in our formalization. Good if you -- want to make sure you don't miss anything. -- -- Again, here's is an import of this file so you can navigate -- there: import Everything -- (This import is also important to ensure that if we typecheck -- README.agda, we also typecheck every other file of our -- formalization). -- THE AGDA CODE -- ============= -- -- The formalization has four parts: -- -- 1. A formalization of change structures. This lives in -- Base.Change.Algebra. (What we call "change structure" in the -- paper, we call "change algebra" in the Agda code. We changed -- the name when writing the paper, and never got around to -- updating the name in the Agda code). -- -- 2. Incrementalization framework for first-class functions, -- with extension points for plugging in data types and their -- incrementalization. This lives in the Parametric.* -- hierarchy. -- -- 3. An example plugin that provides integers and bags -- with negative multiplicity. This lives in the Nehemiah.* -- hierarchy. (For some reason, we choose to call this -- particular incarnation of the plugin Nehemiah). -- -- 4. Other material that is unrelated to the framework/plugin -- distinction. This is all other files. -- FORMALIZATION OF CHANGE STRUCTURES -- ================================== -- -- Section 2 of the paper, and Base.Change.Algebra in Agda. import Base.Change.Algebra -- INCREMENTALIZATION FRAMEWORK -- ============================ -- -- Section 3 of the paper, and Parametric.* hierarchy in Agda. -- -- The extension points are implemented as module parameters. See -- detailed explanation in Parametric.Syntax.Type and -- Parametric.Syntax.Term. Some extension points are for types, -- some for values, and some for proof fragments. In Agda, these -- three kinds of entities are unified anyway, so we can encode -- all of them as module parameters. -- -- Every module in the Parametric.* hierarchy adds at least one -- extension point, so the module hierarchy of a plugin will -- typically mirror the Parametric.* hierarchy, defining the -- values for these extension points. -- -- Firstly, we have the syntax of types and terms, the erased -- change structure for function types and incrementalization as -- a term-to-term transformation. The contents of these modules -- formalizes Sec. 3.1 and 3.2 of the paper, except for the -- second and third line of Figure 3, which is formalized further -- below. import Parametric.Syntax.Type -- syntax of types import Parametric.Syntax.Term -- syntax of terms import Parametric.Change.Type -- simply-typed changes import Parametric.Change.Derive -- incrementalization -- Secondly, we define the usual denotational semantics of the -- simply-typed lambda calculus in terms of total functions, and -- the change semantics in terms of a change structure on total -- functions. The contents of these modules formalize Sec. 3.3, -- 3.4 and 3.5 of the paper. import Parametric.Denotation.Value -- standard values import Parametric.Denotation.Evaluation -- standard evaluation import Parametric.Change.Validity -- dependently-typed changes import Parametric.Change.Specification -- change evaluation -- Thirdly, we define terms that operate on simply-typed changes, -- and connect them to their values. The concents of these -- modules formalize the second and third line of Figure 3, as -- well as the semantics of these lines. import Parametric.Change.Term -- terms that operate on simply-typed changes import Parametric.Change.Value -- the values of these terms import Parametric.Change.Evaluation -- connecting the terms and their values -- Finally, we prove correctness by connecting the (syntactic) -- incrementalization to the (semantic) change evaluation by a -- logical relation, and a proof that the values of terms -- produced by the incrementalization transformation are related -- to the change values of the original terms. The contents of -- these modules formalize Sec. 3.6. import Parametric.Change.Implementation -- logical relation import Parametric.Change.Correctness -- main correctness proof -- EXAMPLE PLUGIN -- ============== -- -- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda. -- -- The module structure of the plugin follows the structure of -- the Parametric.* hierarchy. For example, the extension point -- defined in Parametric.Syntax.Term is instantiated in -- Nehemiah.Syntax.Term. -- -- As discussed in Sec. 3.7 of the paper, the point of this -- plugin is not to speed up any real programs, but to show "that -- the interface for proof plugins can be implemented". As a -- first step towards proving correctness of the more complicated -- plugin with integers, bags and finite maps we implement in -- Scala, we choose to define plugin with integers and bags in -- Agda. Instead of implementing bags (with negative -- multiplicities, like in the paper) in Agda, though, we -- postulate that a group of such bags exist. Note that integer -- bags with integer multiplicities are actually the free group -- given a singleton operation `Integer -> Bag`, so this should -- be easy to formalize in principle. -- Before we start with the plugin, we postulate an abstract data -- type for integer bags. import Postulate.Bag-Nehemiah -- Firstly, we extend the syntax of types and terms, the erased -- change structure for function types, and incrementalization as -- a term-to-term transformation to account for the data types of -- the Nehemiah language. The contents of these modules -- instantiate the extension points in Sec. 3.1 and 3.2 of the -- paper, except for the second and third line of Figure 3, which -- is instantiated further below. import Nehemiah.Syntax.Type import Nehemiah.Syntax.Term import Nehemiah.Change.Type import Nehemiah.Change.Derive -- Secondly, we extend the usual denotational semantics and the -- change semantics to account for the data types of the Nehemiah -- language. The contents of these modules instantiate the -- extension points in Sec. 3.3, 3.4 and 3.5 of the paper. import Nehemiah.Denotation.Value import Nehemiah.Denotation.Evaluation import Nehemiah.Change.Validity import Nehemiah.Change.Specification -- Thirdly, we extend the terms that operate on simply-typed -- changes, and the connection to their values to account for the -- data types of the Nehemiah language. The concents of these -- modules instantiate the extension points in the second and -- third line of Figure 3. import Nehemiah.Change.Term import Nehemiah.Change.Value import Nehemiah.Change.Evaluation -- Finally, we extend the logical relation and the main -- correctness proof to account for the data types in the -- Nehemiah language. The contents of these modules instantiate -- the extension points defined in Sec. 3.6. import Nehemiah.Change.Implementation import Nehemiah.Change.Correctness -- OTHER MATERIAL -- ============== -- -- We postulate extensionality of Agda functions. This postulate -- is well known to be compatible with Agda's type theory. import Postulate.Extensionality -- For historical reasons, we reexport Data.List.All from the -- standard library under the name DependentList. import Base.Data.DependentList -- This module supports overloading the ⟦_⟧ notation based on -- Agda's instance arguments. import Base.Denotation.Notation -- These modules implement contexts including typed de Bruijn -- indices to represent bound variables, sets of bound variables, -- and environments. These modules are parametric in the set of -- types (that are stored in contexts) and the set of values -- (that are stored in environments). So these modules are even -- more parametric than the Parametric.* hierarchy. import Base.Syntax.Context import Base.Syntax.Vars import Base.Denotation.Environment -- This module contains some helper definitions to merge a -- context of values and a context of changes. import Base.Change.Context
Update recommended version of Agda
README.agda: Update recommended version of Agda Rationale: 2.4.0 doesn't install any more.
Agda
mit
inc-lc/ilc-agda
464a985aa70ecceb7a7917d62fc7cb3e05dd59c2
models/Desc.agda
models/Desc.agda
{-# OPTIONS --type-in-type --no-termination-check --no-positivity-check #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where record One : Set where --**************** -- Sum and friends --**************** data _+_ (A B : Set) : Set where l : A -> A + B r : B -> A + B --******************************************** -- Desc code --******************************************** -- Inductive types are implemented as a Universe. Hence, in this -- section, we implement their code. -- We can read this code as follow (see Conor's "Ornamental -- algebras"): a description in |Desc| is a program to read one node -- of the described tree. data Desc : Set where Arg : (X : Set) -> (X -> Desc) -> Desc -- Read a field in |X|; continue, given its value -- Often, |X| is an |EnumT|, hence allowing to choose a constructor -- among a finite set of constructors Ind : (H : Set) -> Desc -> Desc -- Read a field in H; read a recursive subnode given the field, -- continue regarless of the subnode -- Often, |H| is |1|, hence |Ind| simplifies to |Inf : Desc -> Desc|, -- meaning: read a recursive subnode and continue regardless Done : Desc -- Stop reading --******************************************** -- Desc decoder --******************************************** -- Provided the type of the recursive subnodes |R|, we decode a -- description as a record describing the node. [|_|]_ : Desc -> Set -> Set [| Arg A D |] R = Sigma A (\ a -> [| D a |] R) [| Ind H D |] R = (H -> R) * [| D |] R [| Done |] R = One --******************************************** -- Functions on codes --******************************************** -- Saying that a "predicate" |p| holds everywhere in |v| amounts to -- write something of the following type: Everywhere : (d : Desc) (D : Set) (bp : D -> Set) (V : [| d |] D) -> Set Everywhere (Arg A f) d p v = Everywhere (f (fst v)) d p (snd v) -- It must hold for this constructor Everywhere (Ind H x) d p v = ((y : H) -> p (fst v y)) * Everywhere x d p (snd v) -- It must hold for the subtrees Everywhere Done _ _ _ = _ -- It trivially holds at endpoints -- Then, we can build terms that inhabits this type. That is, a -- function that takes a "predicate" |bp| and makes it hold everywhere -- in the data-structure. It is the equivalent of a "map", but in a -- dependently-typed setting. everywhere : (d : Desc) (D : Set) (bp : D -> Set) -> ((y : D) -> bp y) -> (v : [| d |] D) -> Everywhere d D bp v everywhere (Arg a f) d bp p v = everywhere (f (fst v)) d bp p (snd v) -- It holds everywhere on this constructor everywhere (Ind H x) d bp p v = (\y -> p (fst v y)) , everywhere x d bp p (snd v) -- It holds here, and down in the recursive subtrees everywhere Done _ _ _ _ = One -- Nothing needs to be done on endpoints -- Looking at the decoder, a natural thing to do is to define its -- fixpoint |Mu D|, hence instantiating |R| with |Mu D| itself. data Mu (D : Desc) : Set where Con : [| D |] (Mu D) -> Mu D -- Using the "map" defined by |everywhere|, we can implement a "fold" -- over the |Mu| fixpoint: foldDesc : (D : Desc) (bp : Mu D -> Set) -> ((x : [| D |] (Mu D)) -> Everywhere D (Mu D) bp x -> bp (Con x)) -> (v : Mu D) -> bp v foldDesc D bp p (Con v) = p v (everywhere D (Mu D) bp (\x -> foldDesc D bp p x) v) --******************************************** -- Nat --******************************************** data NatConst : Set where ZE : NatConst SU : NatConst natc : NatConst -> Desc natc ZE = Done natc SU = Ind One Done natd : Desc natd = Arg NatConst natc nat : Set nat = Mu natd zero : nat zero = Con ( ZE , _ ) suc : nat -> nat suc n = Con ( SU , ( (\_ -> n) , _ ) ) two : nat two = suc (suc zero) four : nat four = suc (suc (suc (suc zero))) sum : nat -> ((x : Sigma NatConst (\ a -> [| natc a |] Mu (Arg NatConst natc))) -> Everywhere (natc (fst x)) (Mu (Arg NatConst natc)) (\ _ -> Mu (Arg NatConst natc)) (snd x) -> Mu (Arg NatConst natc)) sum n2 (ZE , _) p = n2 sum n2 (SU , f) p = suc ( fst p _) plus : nat -> nat -> nat plus n1 n2 = foldDesc natd (\_ -> nat) (sum n2) n1 x : nat x = plus two two
{-# OPTIONS --type-in-type #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** data Desc : Set where id : Desc const : Set -> Desc prod : Desc -> Desc -> Desc sigma : (S : Set) -> (S -> Desc) -> Desc pi : (S : Set) -> (S -> Desc) -> Desc --******************************************** -- Desc interpretation --******************************************** [|_|]_ : Desc -> Set -> Set [| id |] Z = Z [| const X |] Z = X [| prod D D' |] Z = [| D |] Z * [| D' |] Z [| sigma S T |] Z = Sigma S (\s -> [| T s |] Z) [| pi S T |] Z = (s : S) -> [| T s |] Z --******************************************** -- Fixpoint construction --******************************************** data Mu (D : Desc) : Set where con : [| D |] (Mu D) -> Mu D --******************************************** -- Predicate: All --******************************************** All : (D : Desc)(X : Set)(P : X -> Set) -> [| D |] X -> Set All id X P x = P x All (const Z) X P x = Z All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d') All (sigma S T) X P (a , b) = All (T a) X P b All (pi S T) X P f = (s : S) -> All (T s) X P (f s) all : (D : Desc)(X : Set)(P : X -> Set)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x all id X P R x = R x all (const Z) X P R z = z all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d' all (sigma S T) X P R (a , b) = all (T a) X P R b all (pi S T) X P R f = \ s -> all (T s) X P R (f s) --******************************************** -- Elimination principle: induction --******************************************** {- induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms (con xs) = ms xs (all D (Mu D) P (\x -> induction D P ms x) xs) -} module Elim (D : Desc) (P : Mu D -> Set) (ms : (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) where mutual induction : (x : Mu D) -> P x induction (con xs) = ms xs (hyps D xs) hyps : (D' : Desc) (xs : [| D' |] (Mu D)) -> All D' (Mu D) P xs hyps id x = induction x hyps (const Z) z = z hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (sigma S T) (a , b) = hyps (T a) b hyps (pi S T) f = \s -> hyps (T s) (f s) induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms x = Elim.induction D P ms x --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Suc : NatConst natCases : NatConst -> Desc natCases Ze = const Unit natCases Suc = id NatD : Desc NatD = sigma NatConst natCases Nat : Set Nat = Mu NatD ze : Nat ze = con (Ze , Void) suc : Nat -> Nat suc n = con (Suc , n) --**************** -- List --**************** data ListConst : Set where Nil : ListConst Cons : ListConst listCases : Set -> ListConst -> Desc listCases X Nil = const Unit listCases X Cons = sigma X (\_ -> id) ListD : Set -> Desc ListD X = sigma ListConst (listCases X) List : Set -> Set List X = Mu (ListD X) nil : {X : Set} -> List X nil = con ( Nil , Void ) cons : {X : Set} -> X -> List X -> List X cons x t = con ( Cons , ( x , t )) --**************** -- Tree --**************** data TreeConst : Set where Leaf : TreeConst Node : TreeConst treeCases : Set -> TreeConst -> Desc treeCases X Leaf = const Unit treeCases X Node = sigma X (\_ -> prod id id) TreeD : Set -> Desc TreeD X = sigma TreeConst (treeCases X) Tree : Set -> Set Tree X = Mu (TreeD X) leaf : {X : Set} -> Tree X leaf = con (Leaf , Void) node : {X : Set} -> X -> Tree X -> Tree X -> Tree X node x le ri = con (Node , (x , (le , ri))) --******************************************** -- Finite sets --******************************************** EnumU : Set EnumU = Nat nilE : EnumU nilE = ze consE : EnumU -> EnumU consE e = suc e {- data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU -} data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) casesSpi : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set) -> Set) xs -> (P' : EnumT (con xs) -> Set) -> Set casesSpi (Ze , Void) hs P' = Unit casesSpi (Suc , n) hs P' = P' EZe * hs (\e -> P' (ESu e)) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi e P = induction NatD (\e -> (P : EnumT e -> Set) -> Set) casesSpi e P {- spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) -} casesSwitch : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set)(b' : spi e P')(x' : EnumT e) -> P' x') xs -> (P' : EnumT (con xs) -> Set)(b' : spi (con xs) P')(x' : EnumT (con xs)) -> P' x' casesSwitch (Ze , Void) hs P' b' () casesSwitch (Suc , n) hs P' b' EZe = fst b' casesSwitch (Suc , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e' switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch e P b x = induction NatD (\e -> (P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x) casesSwitch e P b x {- switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n -} --******************************************** -- Tagged description --******************************************** TagDesc : Set TagDesc = Sigma EnumU (\e -> spi e (\_ -> Desc)) toDesc : TagDesc -> Desc toDesc (B , F) = sigma (EnumT B) (\e -> switch B (\_ -> Desc) F e) --******************************************** -- Catamorphism --******************************************** cata : (D : Desc) (T : Set) -> ([| D |] T -> T) -> (Mu D) -> T cata D T phi x = induction D (\_ -> T) (\x ms -> phi (replace D T x ms )) x where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T replace id T x y = y replace (const Z) T z z' = z' replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Free monad construction --******************************************** _**_ : TagDesc -> (X : Set) -> TagDesc (e , D) ** X = consE e , (const X , D) --******************************************** -- Substitution --******************************************** apply : (D : TagDesc)(X Y : Set) -> (X -> Mu (toDesc (D ** Y))) -> [| toDesc (D ** X) |] (Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) apply (E , B) X Y sig (EZe , x) = sig x apply (E , B) X Y sig (ESu n , t) = con (ESu n , t) subst : (D : TagDesc)(X Y : Set) -> Mu (toDesc (D ** X)) -> (X -> Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) subst D X Y x sig = cata (toDesc (D ** X)) (Mu (toDesc (D ** Y))) (apply D X Y sig) x
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Agda
mit
kwangkim/pigment,kwangkim/pigment,brixen/Epigram,kwangkim/pigment
7f1a4e72fc0081b46fe06904e4627bb80b3240ac
proposal/examples/TacticsMatchingFunctionCalls.agda
proposal/examples/TacticsMatchingFunctionCalls.agda
{- This file demonstrates a technique that simulates the ability to pattern match against function calls rather than just variables or constructors. This technique is necessary to write certain kinds of tactics as generic functions. -} module TacticsMatchingFunctionCalls where open import Data.Bool hiding ( _≟_ ) open import Data.Nat open import Data.Fin hiding ( _+_ ) open import Data.Product hiding ( map ) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function ---------------------------------------------------------------------- {- Zero is the right identity of addition on the natural numbers. -} plusrident : (n : ℕ) → n ≡ n + 0 plusrident zero = refl plusrident (suc n) = cong suc (plusrident n) ---------------------------------------------------------------------- {- Arith is a universe of codes representing the natural numbers along with a limited set of functions over them. We would like to write tactics that pattern match against types indexed by applications of these functions. -} data Arith : Set where `zero : Arith `suc : (a : Arith) → Arith _`+_ _`*_ : (a₁ a₂ : Arith) → Arith eval : Arith → ℕ eval `zero = zero eval (`suc a) = suc (eval a) eval (a₁ `+ a₂) = eval a₁ + eval a₂ eval (a₁ `* a₂) = eval a₁ * eval a₂ ---------------------------------------------------------------------- {- Φ (standing for *function*-indexed types) represents an indexed type, but we *can* pattern match on function calls in its index position. A - The type of codes, including constructors and functions. i.e. Arith A′ - The model underlying the codes. i.e. ℕ el - The evaluation function from code values to model values. i.e. eval B - The genuine indexed datatype that Φ represents. i.e. Fin a - The index value as a code, which may be a function call and hence supports pattern matching. i.e. (a `+ `zero) -} data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where φ : (b : B (el a)) → Φ A A′ el B a ---------------------------------------------------------------------- {- Alternatively, we can specialize Φ to our Arith universe. This may be a good use of our ability to cheaply define new datatypes via Desc. -} data ΦArith (B : ℕ → Set) (a : Arith) : Set where φ : (b : B (eval a)) → ΦArith B a ---------------------------------------------------------------------- {- Going further, we could even specialize B in ΦArith to Fin. -} data Fin₂ (a : Arith) : Set where fin : (i : Fin (eval a)) → Fin₂ a ---------------------------------------------------------------------- {- A small universe of dependent types that is sufficient for the examples given below. -} data Type : Set ⟦_⟧ : Type → Set data Type where `Bool `ℕ `Arith : Type `Fin : (n : ℕ) → Type `Φ : (A A′ : Type) (el : ⟦ A ⟧ → ⟦ A′ ⟧) (B : ⟦ A′ ⟧ → Type) (a : ⟦ A ⟧) → Type `ΦArith : (B : ℕ → Type) (a : Arith) → Type `Fin₂ : (a : Arith) → Type `Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type `Id : (A : Type) (x y : ⟦ A ⟧) → Type ⟦ `Bool ⟧ = Bool ⟦ `ℕ ⟧ = ℕ ⟦ `Arith ⟧ = Arith ⟦ `Fin n ⟧ = Fin n ⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a ⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a ⟦ `Fin₂ a ⟧ = Fin₂ a ⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧ ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧) ⟦ `Id A x y ⟧ = x ≡ y _`→_ : (A B : Type) → Type A `→ B = `Π A (const B) _`×_ : (A B : Type) → Type A `× B = `Σ A (const B) ---------------------------------------------------------------------- {- Tactics are represented as generic functions taking a Dynamic value (of any type), and returning a Dynamic value (at a possibly different type). The convention is to behave like the identity function if the tactic doesn't match the current value or fails. In practice, the context will be a List of Dynamic values, and a tactic will map a Context to a Context. For simplicity, the tactics I give below only map a Dynamic to a Dynamic. -} Dynamic : Set Dynamic = Σ Type ⟦_⟧ Tactic : Set Tactic = Dynamic → Dynamic ---------------------------------------------------------------------- {- Here is an example of a tactic that only needs to pattern match on a variable or constructor, but not a function. We don't encounter any problems when writing this kind of a tactic. The tactic below changes a `Fin n` value into a `Fin (n + 0)` value. -} add-plus0-Fin : Tactic add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i add-plus0-Fin x = x ---------------------------------------------------------------------- {- In contrast, it is not straightforward to write tactics that need to pattern match on function calls. For example, below is ideally what we want to write to change a value of `Fin (n + 0)` to a value of `Fin n`. -} -- rm-plus0-Fin : Tactic -- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i -- rm-plus0-Fin x = x ---------------------------------------------------------------------- {- Instead of matching directly on `Fin, we can match on a `Φ that represents `Fin. This allows us to match on the the `+ function call in the index position. Because we cannot match against the function `el` (we would like to match it against `eval`), we add to our return type that proves the extentional equality between `el` and `eval`. Also note that the tactic below can be used for any type indexed by ℕ, not just Fin. -} rm-plus0 : Tactic rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) = `Π `Arith (λ x → `Id `ℕ (el x) (eval x)) `→ `Φ `Arith `ℕ el B a , λ f → φ (subst (λ x → ⟦ B x ⟧) (sym (f a)) (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) (subst (λ x → ⟦ B x ⟧) (f (a `+ `zero)) b))) rm-plus0 x = x ---------------------------------------------------------------------- {- Now it is possible to apply the generic tactic to a specific value and have the desired behavior occur. Notice that the generated extentional equality premise is trivially provable because eval is always equal to eval. -} eg-rm-plus0 : (a : Arith) → ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧ → ⟦ `Φ `Arith `ℕ eval `Fin a ⟧ eg-rm-plus0 a (φ i) = proj₂ (rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i)) (λ _ → refl) ---------------------------------------------------------------------- {- Here is the same tactic but using the specialized ΦArith type. -} rm-plus0-Arith : Tactic rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) = `ΦArith B a , φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Arith x = x ---------------------------------------------------------------------- {- And the same example usage, this time without needing to prove a premise. -} eg-rm-plus0-Arith : (a : Arith) → ⟦ `ΦArith `Fin (a `+ `zero) ⟧ → ⟦ `ΦArith `Fin a ⟧ eg-rm-plus0-Arith a (φ i) = proj₂ (rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i)) ---------------------------------------------------------------------- {- Finally, here is the same tactic but using the even more specialized Fin₂ type. -} rm-plus0-Fin : Tactic rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i) = `Fin₂ a , fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Fin x = x ---------------------------------------------------------------------- eg-rm-plus0-Fin : (a : Arith) → ⟦ `Fin₂ (a `+ `zero) ⟧ → ⟦ `Fin₂ a ⟧ eg-rm-plus0-Fin a (fin i) = proj₂ (rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i)) ----------------------------------------------------------------------
{- This file demonstrates a technique that simulates the ability to pattern match against function calls rather than just variables or constructors. This technique is necessary to write certain kinds of tactics as generic functions. -} module TacticsMatchingFunctionCalls where open import Data.Bool hiding ( _≟_ ) open import Data.Nat open import Data.Fin hiding ( _+_ ) open import Data.Product hiding ( map ) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function ---------------------------------------------------------------------- {- Zero is the right identity of addition on the natural numbers. -} plusrident : (n : ℕ) → n ≡ n + 0 plusrident zero = refl plusrident (suc n) = cong suc (plusrident n) ---------------------------------------------------------------------- {- Arith is a universe of codes representing the natural numbers along with a limited set of functions over them. We would like to write tactics that pattern match against types indexed by applications of these functions. -} data Arith : Set where `zero : Arith `suc : (a : Arith) → Arith _`+_ _`*_ : (a₁ a₂ : Arith) → Arith eval : Arith → ℕ eval `zero = zero eval (`suc a) = suc (eval a) eval (a₁ `+ a₂) = eval a₁ + eval a₂ eval (a₁ `* a₂) = eval a₁ * eval a₂ ---------------------------------------------------------------------- {- Φ (standing for *function*-indexed types) represents an indexed type, but we *can* pattern match on function calls in its index position. A - The type of codes, including constructors and functions. i.e. Arith A′ - The model underlying the codes. i.e. ℕ el - The evaluation function from code values to model values. i.e. eval B - The genuine indexed datatype that Φ represents. i.e. Fin a - The index value as a code, which may be a function call and hence supports pattern matching. i.e. (a `+ `zero) -} data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where φ : (b : B (el a)) → Φ A A′ el B a ---------------------------------------------------------------------- {- Alternatively, we can specialize Φ to our Arith universe. This may be a good use of our ability to cheaply define new datatypes via Desc. -} data ΦArith (B : ℕ → Set) (a : Arith) : Set where φ : (b : B (eval a)) → ΦArith B a ---------------------------------------------------------------------- {- Going further, we could even specialize B in ΦArith to Fin. -} data Fin₂ (a : Arith) : Set where fin : (i : Fin (eval a)) → Fin₂ a ---------------------------------------------------------------------- {- A small universe of dependent types that is sufficient for the examples given below. -} data Type : Set ⟦_⟧ : Type → Set data Type where `Bool `ℕ `Arith : Type `Fin : (n : ℕ) → Type `Φ : (A A′ : Type) (el : ⟦ A ⟧ → ⟦ A′ ⟧) (B : ⟦ A′ ⟧ → Type) (a : ⟦ A ⟧) → Type `ΦArith : (B : ℕ → Type) (a : Arith) → Type `Fin₂ : (a : Arith) → Type `Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type `Id : (A : Type) (x y : ⟦ A ⟧) → Type ⟦ `Bool ⟧ = Bool ⟦ `ℕ ⟧ = ℕ ⟦ `Arith ⟧ = Arith ⟦ `Fin n ⟧ = Fin n ⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a ⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a ⟦ `Fin₂ a ⟧ = Fin₂ a ⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧ ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧) ⟦ `Id A x y ⟧ = x ≡ y _`→_ : (A B : Type) → Type A `→ B = `Π A (const B) _`×_ : (A B : Type) → Type A `× B = `Σ A (const B) ---------------------------------------------------------------------- {- Tactics are represented as generic functions taking a Dynamic value (of any type), and returning a Dynamic value (at a possibly different type). The convention is to behave like the identity function if the tactic doesn't match the current value or fails. In practice, the context will be a List of Dynamic values, and a tactic will map a Context to a Context. For simplicity, the tactics I give below only map a Dynamic to a Dynamic. -} Dynamic : Set Dynamic = Σ Type ⟦_⟧ Tactic : Set Tactic = Dynamic → Dynamic ---------------------------------------------------------------------- {- Here is an example of a tactic that only needs to pattern match on a variable or constructor, but not a function. We don't encounter any problems when writing this kind of a tactic. The tactic below changes a `Fin n` value into a `Fin (n + 0)` value. -} add-plus0-Fin : Tactic add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i add-plus0-Fin x = x ---------------------------------------------------------------------- {- In contrast, it is not straightforward to write tactics that need to pattern match on function calls. For example, below is ideally what we want to write to change a value of `Fin (n + 0)` to a value of `Fin n`. -} -- rm-plus0-Fin : Tactic -- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i -- rm-plus0-Fin x = x ---------------------------------------------------------------------- {- Instead of matching directly on `Fin, we can match on a `Φ that represents `Fin. This allows us to match on the the `+ function call in the index position. Because we cannot match against the function `el` (we would like to match it against `eval`), we add to our return type that proves the extentional equality between `el` and `eval`. Also note that the tactic below can be used for any type indexed by ℕ, not just Fin. -} rm-plus0 : Tactic rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) = `Π `Arith (λ x → `Id `ℕ (el x) (eval x)) `→ `Φ `Arith `ℕ el B a , λ f → φ (subst (λ x → ⟦ B x ⟧) (sym (f a)) (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) (subst (λ x → ⟦ B x ⟧) (f (a `+ `zero)) b))) rm-plus0 x = x ---------------------------------------------------------------------- {- Now it is possible to apply the generic tactic to a specific value and have the desired behavior occur. Notice that the generated extentional equality premise is trivially provable because eval is always equal to eval. -} eg-rm-plus0 : (a : Arith) → ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧ → ⟦ `Φ `Arith `ℕ eval `Fin a ⟧ eg-rm-plus0 a (φ i) = proj₂ (rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i)) (λ _ → refl) ---------------------------------------------------------------------- {- Here is the same tactic but using the specialized ΦArith type. -} rm-plus0-Arith : Tactic rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) = `ΦArith B a , φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Arith x = x ---------------------------------------------------------------------- {- And the same example usage, this time without needing to prove a premise. -} eg-rm-plus0-Arith : (a : Arith) → ⟦ `ΦArith `Fin (a `+ `zero) ⟧ → ⟦ `ΦArith `Fin a ⟧ eg-rm-plus0-Arith a (φ i) = proj₂ (rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i)) ---------------------------------------------------------------------- {- Finally, here is the same tactic but using the even more specialized Fin₂ type. -} rm-plus0-Fin : Tactic rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i) = `Fin₂ a , fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Fin x = x ---------------------------------------------------------------------- eg-rm-plus0-Fin : (a : Arith) → ⟦ `Fin₂ (a `+ `zero) ⟧ → ⟦ `Fin₂ a ⟧ eg-rm-plus0-Fin a (fin i) = proj₂ (rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i)) ---------------------------------------------------------------------- {- A tactic to simplify by one step of `+. -} simp-step-plus0-Fin : Tactic simp-step-plus0-Fin (`Fin₂ (`zero `+ a) , fin i) = `Fin₂ a , fin i simp-step-plus0-Fin (`Fin₂ (`suc a₁ `+ a₂) , fin i) = `Fin₂ (`suc (a₁ `+ a₂)) , fin i simp-step-plus0-Fin x = x ---------------------------------------------------------------------- {- A semantics-preserving definitional evaluator, and a tactic to simplify as far as possible using definitional equality. This is like the "simp" tactic in Coq. -} eval₂ : (a₁ : Arith) → Σ Arith (λ a₂ → eval a₁ ≡ eval a₂) eval₂ `zero = `zero , refl eval₂ (`suc a) with eval₂ a ... | a′ , p rewrite p = `suc a′ , refl eval₂ (`zero `+ a₂) = eval₂ a₂ eval₂ (`suc a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = `suc (a₁′ `+ a₂′) , refl eval₂ (a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `+ a₂′) , refl eval₂ (`zero `* a₂) = `zero , refl eval₂ (`suc a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = a₂′ `+ (a₁′ `* a₂′) , refl eval₂ (a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `* a₂′) , refl simp-Fin : Tactic simp-Fin (`Fin₂ a , fin i) with eval₂ a ... | a′ , p rewrite p = `Fin₂ a′ , fin i simp-Fin x = x ----------------------------------------------------------------------
Add Coq's "simp" tactic.
Add Coq's "simp" tactic.
Agda
bsd-3-clause
spire/spire
71b3a14edcb512975548e8df67858a30b1f62d68
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → CurriedTermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
Rename TermConstructor to CurriedTermConstructor.
Rename TermConstructor to CurriedTermConstructor. This rename prepares for introducing UncurriedTermConstructor which will allow to clarify the role of lift-η-const-rec. Old-commit-hash: b9de3c413f5a2a2015d3114bfb8483ab3078cc06
Agda
mit
inc-lc/ilc-agda
6538c1e3a868c0dc095139fc2243a8683b77c995
Data/NatBag/Properties.agda
Data/NatBag/Properties.agda
module Data.NatBag.Properties where import Data.Nat as ℕ open import Relation.Binary.PropositionalEquality open import Data.NatBag open import Data.Integer open import Data.Sum hiding (map) open import Data.Product hiding (map) -- This import is too slow. -- It causes Agda 2.3.2 to use so much memory that cai's -- computer with 4GB RAM begins to thresh. -- -- open import Data.Integer.Properties using (n⊖n≡0) n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0 n⊖n≡0 ℕ.zero = refl n⊖n≡0 (ℕ.suc n) = n⊖n≡0 n ---------------- -- Statements -- ---------------- b\\b=∅ : ∀ {b : Bag} → b \\ b ≡ empty ∅++b=b : ∀ {b : Bag} → empty ++ b ≡ b b\\∅=b : ∀ {b : Bag} → b \\ empty ≡ b ∅\\b=-b : ∀ {b : Bag} → empty \\ b ≡ map₂ -_ b -- ++d=\\-d : ∀ {b d : Bag} → b ++ d ≡ b \\ map₂ -_ d b++[d\\b]=d : ∀ {b d : Bag} → b ++ (d \\ b) ≡ d ------------ -- Proofs -- ------------ i-i=0 : ∀ {i : ℤ} → (i - i) ≡ (+ 0) i-i=0 {+ ℕ.zero} = refl i-i=0 {+ ℕ.suc n} = n⊖n≡0 n i-i=0 { -[1+ n ]} = n⊖n≡0 n -- Debug tool -- Lets you try out inhabitance of any type anywhere absurd! : ∀ {B C : Set} → 0 ≡ 1 → B → {x : B} → C absurd! () -- Specialized absurdity needed to type check. -- λ () hasn't enough information sometimes. absurd : Nonzero (+ 0) → ∀ {A : Set} → A absurd () -- Here to please the termination checker. neb\\neb=∅ : ∀ {neb : NonemptyBag} → zipNonempty _-_ neb neb ≡ empty neb\\neb=∅ {singleton i i≠0} with nonzero? (i - i) ... | inj₁ _ = refl ... | inj₂ 0≠0 rewrite i-i=0 {i} = absurd 0≠0 neb\\neb=∅ {i ∷ neb} with nonzero? (i - i) ... | inj₁ _ rewrite neb\\neb=∅ {neb} = refl ... | inj₂ 0≠0 rewrite neb\\neb=∅ {neb} | i-i=0 {i} = absurd 0≠0 {- ++d=\\-d {inj₁ ∅} {inj₁ ∅} = refl ++d=\\-d {inj₁ ∅} {inj₂ (i ∷ y)} = {!!} ++d=\\-d {inj₂ y} {d} = {!!} ++d=\\-d {inj₁ ∅} {inj₂ (singleton i i≠0)} rewrite ∅++b=b {inj₂ (singleton i i≠0)} with nonzero? i | nonzero? (+ 0 - i) ... | inj₂ _ | inj₂ 0-i≠0 = begin {!!} ≡⟨ {!!} ⟩ {!inj₂ (singleton (- i) ?)!} ∎ where open ≡-Reasoning ... | inj₁ i=0 | _ rewrite i=0 = absurd i≠0 ++d=\\-d {inj₁ ∅} {inj₂ (singleton (+ 0) i≠0)} | _ | _ = absurd i≠0 ++d=\\-d {inj₁ ∅} {inj₂ (singleton (+ (ℕ.suc n)) i≠0)} | inj₂ (positive .n) | inj₁ () ++d=\\-d {inj₁ ∅} {inj₂ (singleton -[1+ n ] i≠0)} | inj₂ (negative .n) | inj₁ () -} b\\b=∅ {inj₁ ∅} = refl b\\b=∅ {inj₂ neb} = neb\\neb=∅ {neb} ∅++b=b {b} = {!!} b\\∅=b {b} = {!!} ∅\\b=-b {b} = {!!} negate : ∀ {i} → Nonzero i → Nonzero (- i) negate (negative n) = positive n negate (positive n) = negative n negate′ : ∀ {i} → (i≠0 : Nonzero i) → Nonzero (+ 0 - i) negate′ { -[1+ n ]} (negative .n) = positive n negate′ {+ .(ℕ.suc n)} (positive n) = negative n 0-i=-i : ∀ {i} → + 0 - i ≡ - i 0-i=-i { -[1+ n ]} = refl -- cases are split, for arguments to 0-i=-i {+ ℕ.zero} = refl -- refl are different. 0-i=-i {+ ℕ.suc n} = refl rewrite-singleton : ∀ (i : ℤ) (0-i≠0 : Nonzero (+ 0 - i)) ( -i≠0 : Nonzero (- i)) → singleton (+ 0 - i) 0-i≠0 ≡ singleton (- i) -i≠0 rewrite-singleton (+ ℕ.zero) () () rewrite-singleton (+ ℕ.suc n) (negative .n) (negative .n) = refl rewrite-singleton ( -[1+ n ]) (positive .n) (positive .n) = refl negateSingleton : ∀ {i i≠0} → mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0) ≡ inj₂ (singleton (- i) (negate i≠0)) -- Fun fact: -- Pattern-match on implicit parameters in the first two -- cases results in rejection by Agda. negateSingleton {i} {i≠0} with nonzero? i | nonzero? (+ 0 - i) negateSingleton | inj₂ (negative n) | inj₁ () negateSingleton | inj₂ (positive n) | inj₁ () negateSingleton {_} {i≠0} | inj₁ i=0 | _ rewrite i=0 = absurd i≠0 negateSingleton {i} {i≠0} | inj₂ _ | inj₂ 0-i≠0 = begin -- Reasoning done in 1 step. Included for clarity only. inj₂ (singleton (+ 0 + - i) 0-i≠0) ≡⟨ cong inj₂ (rewrite-singleton i 0-i≠0 (negate i≠0)) ⟩ inj₂ (singleton (- i) (negate i≠0)) ∎ where open ≡-Reasoning absurd[i-i≠0] : ∀ {i} → Nonzero (i - i) → ∀ {A : Set} → A absurd[i-i≠0] {+ ℕ.zero} = absurd absurd[i-i≠0] {+ ℕ.suc n} = absurd[i-i≠0] { -[1+ n ]} absurd[i-i≠0] { -[1+ ℕ.zero ]} = absurd absurd[i-i≠0] { -[1+ ℕ.suc n ]} = absurd[i-i≠0] { -[1+ n ]} annihilate : ∀ {i i≠0} → inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡ inj₁ ∅ annihilate {i} with nonzero? (i - i) ... | inj₁ i-i=0 = λ {i≠0} → refl ... | inj₂ i-i≠0 = absurd[i-i≠0] {i} i-i≠0 {- left-is-not-right : ∀ {A B : Set} {a : A} {b : B} → inj₁ a ≡ inj₂ b → ∀ {X : Set} → X left-is-not-right = λ {A} {B} {a} {b} → λ () never-both : ∀ {A B : Set} {sum : A ⊎ B} {a b} → sum ≡ inj₁ a → sum ≡ inj₂ b → ∀ {X : Set} → X never-both s=a s=b = left-is-not-right (trans (sym s=a) s=b) empty-bag? : ∀ (b : Bag) → (b ≡ inj₁ ∅) ⊎ Σ NonemptyBag (λ neb → b ≡ inj₂ neb) empty-bag? (inj₁ ∅) = inj₁ refl empty-bag? (inj₂ neb) = inj₂ (neb , refl) -} b++[∅\\b]=∅ : ∀ {b} → b ++ (empty \\ b) ≡ empty b++[∅\\b]=∅ {inj₁ ∅} = refl b++[∅\\b]=∅ {inj₂ (singleton i i≠0)} = begin inj₂ (singleton i i≠0) ++ mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0) ≡⟨ cong₂ _++_ {x = inj₂ (singleton i i≠0)} refl (negateSingleton {i} {i≠0}) ⟩ inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡⟨ annihilate {i} {i≠0} ⟩ inj₁ ∅ ∎ where open ≡-Reasoning b++[∅\\b]=∅ {inj₂ (i ∷ y)} = {!!} b++[d\\b]=d {inj₁ ∅} {d} rewrite b\\∅=b {d} | ∅++b=b {d} = refl b++[d\\b]=d {b} {inj₁ ∅} = b++[∅\\b]=∅ {b} b++[d\\b]=d {inj₂ b} {inj₂ d} = {!!}
module Data.NatBag.Properties where import Data.Nat as ℕ open import Relation.Binary.PropositionalEquality open import Data.NatBag open import Data.Integer open import Data.Sum hiding (map) open import Data.Product hiding (map) -- This import is too slow. -- It causes Agda 2.3.2 to use so much memory that cai's -- computer with 4GB RAM begins to thresh. -- -- open import Data.Integer.Properties using (n⊖n≡0) n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0 n⊖n≡0 ℕ.zero = refl n⊖n≡0 (ℕ.suc n) = n⊖n≡0 n ---------------- -- Statements -- ---------------- b\\b=∅ : ∀ {b : Bag} → b \\ b ≡ empty ∅++b=b : ∀ {b : Bag} → empty ++ b ≡ b b\\∅=b : ∀ {b : Bag} → b \\ empty ≡ b ∅\\b=-b : ∀ {b : Bag} → empty \\ b ≡ map₂ -_ b b++[d\\b]=d : ∀ {b d : Bag} → b ++ (d \\ b) ≡ d ------------ -- Proofs -- ------------ i-i=0 : ∀ {i : ℤ} → (i - i) ≡ (+ 0) i-i=0 {+ ℕ.zero} = refl i-i=0 {+ ℕ.suc n} = n⊖n≡0 n i-i=0 { -[1+ n ]} = n⊖n≡0 n -- Debug tool -- Lets you try out inhabitance of any type anywhere absurd! : ∀ {B C : Set} → 0 ≡ 1 → B → {x : B} → C absurd! () -- Specialized absurdity needed to type check. -- λ () hasn't enough information sometimes. absurd : Nonzero (+ 0) → ∀ {A : Set} → A absurd () -- Here to please the termination checker. neb\\neb=∅ : ∀ {neb : NonemptyBag} → zipNonempty _-_ neb neb ≡ empty neb\\neb=∅ {singleton i i≠0} with nonzero? (i - i) ... | inj₁ _ = refl ... | inj₂ 0≠0 rewrite i-i=0 {i} = absurd 0≠0 neb\\neb=∅ {i ∷ neb} with nonzero? (i - i) ... | inj₁ _ rewrite neb\\neb=∅ {neb} = refl ... | inj₂ 0≠0 rewrite neb\\neb=∅ {neb} | i-i=0 {i} = absurd 0≠0 b\\b=∅ {inj₁ ∅} = refl b\\b=∅ {inj₂ neb} = neb\\neb=∅ {neb} ∅++b=b {b} = {!!} b\\∅=b {b} = {!!} ∅\\b=-b {b} = {!!} negate : ∀ {i} → Nonzero i → Nonzero (- i) negate (negative n) = positive n negate (positive n) = negative n negate′ : ∀ {i} → (i≠0 : Nonzero i) → Nonzero (+ 0 - i) negate′ { -[1+ n ]} (negative .n) = positive n negate′ {+ .(ℕ.suc n)} (positive n) = negative n 0-i=-i : ∀ {i} → + 0 - i ≡ - i 0-i=-i { -[1+ n ]} = refl -- cases are split, for arguments to 0-i=-i {+ ℕ.zero} = refl -- refl are different. 0-i=-i {+ ℕ.suc n} = refl rewrite-singleton : ∀ (i : ℤ) (0-i≠0 : Nonzero (+ 0 - i)) ( -i≠0 : Nonzero (- i)) → singleton (+ 0 - i) 0-i≠0 ≡ singleton (- i) -i≠0 rewrite-singleton (+ ℕ.zero) () () rewrite-singleton (+ ℕ.suc n) (negative .n) (negative .n) = refl rewrite-singleton ( -[1+ n ]) (positive .n) (positive .n) = refl negateSingleton : ∀ {i i≠0} → mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0) ≡ inj₂ (singleton (- i) (negate i≠0)) -- Fun fact: -- Pattern-match on implicit parameters in the first two -- cases results in rejection by Agda. negateSingleton {i} {i≠0} with nonzero? i | nonzero? (+ 0 - i) negateSingleton | inj₂ (negative n) | inj₁ () negateSingleton | inj₂ (positive n) | inj₁ () negateSingleton {_} {i≠0} | inj₁ i=0 | _ rewrite i=0 = absurd i≠0 negateSingleton {i} {i≠0} | inj₂ _ | inj₂ 0-i≠0 = begin -- Reasoning done in 1 step. Included for clarity only. inj₂ (singleton (+ 0 + - i) 0-i≠0) ≡⟨ cong inj₂ (rewrite-singleton i 0-i≠0 (negate i≠0)) ⟩ inj₂ (singleton (- i) (negate i≠0)) ∎ where open ≡-Reasoning absurd[i-i≠0] : ∀ {i} → Nonzero (i - i) → ∀ {A : Set} → A absurd[i-i≠0] {+ ℕ.zero} = absurd absurd[i-i≠0] {+ ℕ.suc n} = absurd[i-i≠0] { -[1+ n ]} absurd[i-i≠0] { -[1+ ℕ.zero ]} = absurd absurd[i-i≠0] { -[1+ ℕ.suc n ]} = absurd[i-i≠0] { -[1+ n ]} annihilate : ∀ {i i≠0} → inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡ inj₁ ∅ annihilate {i} with nonzero? (i - i) ... | inj₁ i-i=0 = λ {i≠0} → refl ... | inj₂ i-i≠0 = absurd[i-i≠0] {i} i-i≠0 b++[∅\\b]=∅ : ∀ {b} → b ++ (empty \\ b) ≡ empty b++[∅\\b]=∅ {inj₁ ∅} = refl b++[∅\\b]=∅ {inj₂ (singleton i i≠0)} = begin inj₂ (singleton i i≠0) ++ mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0) ≡⟨ cong₂ _++_ {x = inj₂ (singleton i i≠0)} refl (negateSingleton {i} {i≠0}) ⟩ inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡⟨ annihilate {i} {i≠0} ⟩ inj₁ ∅ ∎ where open ≡-Reasoning b++[∅\\b]=∅ {inj₂ (i ∷ y)} = {!!} b++[d\\b]=d {inj₁ ∅} {d} rewrite b\\∅=b {d} | ∅++b=b {d} = refl b++[d\\b]=d {b} {inj₁ ∅} = b++[∅\\b]=∅ {b} b++[d\\b]=d {inj₂ b} {inj₂ d} = {!!}
Remove dead code of Data.NatBag.Properties Checkpoint: Recast property proofs using set theoretic methods (#55)
Remove dead code of Data.NatBag.Properties Checkpoint: Recast property proofs using set theoretic methods (#55) Old-commit-hash: 04b32e5d92152cdab089a25c0d8f9f4c39279fb0
Agda
mit
inc-lc/ilc-agda
2971c097d16d13188929ef857808539310db0b8e
meaning.agda
meaning.agda
module meaning where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟦_⟧ : Syntax → Semantics open Meaning {{...}} public
module meaning where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
Improve printing of resolved overloading.
Improve printing of resolved overloading. After this change, the semantic brackets will contain the syntactic thing even if Agda displays explicitly resolved overloaded notation. Old-commit-hash: c8cbc43ed8e715342e0cc3bccc98e0be2dd23560
Agda
mit
inc-lc/ilc-agda
b5190556d5bc58a768c39b9fa871dea8b2d6f0f1
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ diff-term apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ apply-term
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in abs₄ (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ diff-term apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ apply-term
Fix bug in diff-term.
Fix bug in diff-term. Old-commit-hash: 01ada999b676d2a8a2ab289b3a0c79f1524620e5
Agda
mit
inc-lc/ilc-agda
011116b87218eb84d5010b97f93c495b4f090fae
incremental.agda
incremental.agda
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ -- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = {!!}
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ -- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = {!!}
Implement nil changes.
Implement nil changes. Old-commit-hash: da546d60ec48fe5f6f8b261aac1fdbb71b18fa69
Agda
mit
inc-lc/ilc-agda
f2fde70dc52c3050e537b787efd3c7efa9778118
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ uncurriedConst constant = const constant CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ curriedConst constant = curryTermConstructor (uncurriedConst constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ uncurriedConst constant = const constant CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ curriedConst constant = curryTermConstructor (uncurriedConst constant) -- HOAS-like smart constructors for lambdas, for different arities. abs₁ : ∀ {Γ τ₁ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → (x : Term Γ′ τ₁) → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ)) abs₁ {Γ} {τ₁} = λ f → abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this)) abs₂ : ∀ {Γ τ₁ τ₂ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ₂ ⇒ τ)) abs₂ f = abs₁ (λ {_} {Γ≼Γ′} x₁ → abs₁ (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) abs₃ : ∀ {Γ τ₁ τ₂ τ₃ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ)) abs₃ f = abs₁ (λ {_} {Γ≼Γ′} x₁ → abs₂ (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) abs₄ : ∀ {Γ τ₁ τ₂ τ₃ τ₄ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ)) abs₄ f = abs₁ (λ {_} {Γ≼Γ′} x₁ → abs₃ (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) abs₅ : ∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ)) abs₅ f = abs₁ (λ {_} {Γ≼Γ′} x₁ → abs₄ (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁))) abs₆ : ∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ₆ τ} → (∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ₆ → Term Γ′ τ) → (Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ₆ ⇒ τ)) abs₆ f = abs₁ (λ {_} {Γ≼Γ′} x₁ → abs₅ (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
Introduce HOAS-like smart constructors for lambdas
Introduce HOAS-like smart constructors for lambdas Old-commit-hash: 6bf4939f8ec84c611d98f6f2395332943573dfe5
Agda
mit
inc-lc/ilc-agda
8514aefef6973b813691fb922e6d44e072cfc75d
generic-zero-knowledge-interactive.agda
generic-zero-knowledge-interactive.agda
open import Type open import Data.Bool.NP as Bool hiding (check) open import Data.Nat open import Data.Maybe open import Data.Product.NP open import Data.Bits open import Function.NP open import Relation.Binary.PropositionalEquality.NP open import sum module generic-zero-knowledge-interactive where -- A random argument, this is only a formal notation to -- indicate that the argument is supposed to be picked -- at random uniformly. (do not confuse with our randomness -- monad). record ↺ (A : ★) : ★ where constructor rand field get : A module M (Permutation : ★) (_⁻¹ : Endo Permutation) (sumπ : Sum Permutation) (μπ : SumProp sumπ) (Rₚ-xtra : ★) -- extra prover/adversary randomness (sumRₚ-xtra : Sum Rₚ-xtra) (μRₚ-xtra : SumProp sumRₚ-xtra) (Problem : ★) (_==_ : Problem → Problem → Bit) (==-refl : ∀ {pb} → (pb == pb) ≡ true) (_∙P_ : Permutation → Endo Problem) (⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x) (Solution : ★) (_∙S_ : Permutation → Endo Solution) (⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x) (check : Problem → Solution → Bit) (check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s) (easy-pb : Permutation → Problem) (easy-sol : Permutation → Solution) (check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true) where -- prover/adversary randomness Rₚ : ★ Rₚ = Permutation × Rₚ-xtra sumRₚ : Sum Rₚ sumRₚ = sumπ ×Sum sumRₚ-xtra μRₚ : SumProp sumRₚ μRₚ = μπ ×μ μRₚ-xtra R = Bit × Rₚ sumR : Sum R sumR = sumBit ×Sum sumRₚ μR : SumProp sumR μR = μBit ×μ μRₚ check-π : Problem → Solution → Rₚ → Bit check-π p s (π , _) = check (π ∙P p) (π ∙S s) otp-∙-check : let #_ = count μRₚ in ∀ p₀ s₀ p₁ s₁ → check p₀ s₀ ≡ check p₁ s₁ → #(check-π p₀ s₀) ≡ #(check-π p₁ s₁) otp-∙-check p₀ s₀ p₁ s₁ check-pf = count-ext μRₚ {f = check-π p₀ s₀} {check-π p₁ s₁} (λ π,r → check-π p₀ s₀ π,r ≡⟨ check-∙ p₀ s₀ (proj₁ π,r) ⟩ check p₀ s₀ ≡⟨ check-pf ⟩ check p₁ s₁ ≡⟨ sym (check-∙ p₁ s₁ (proj₁ π,r)) ⟩ check-π p₁ s₁ π,r ∎) where open ≡-Reasoning #_ : (↺ (Bit × Permutation × Rₚ-xtra) → Bit) → ℕ # f = count μR (f ∘ rand) _≡#_ : (f g : ↺ (Bit × Rₚ) → Bit) → ★ f ≡# g = # f ≡ # g {- otp-∙ : let otp = λ O pb s → count μRₚ (λ { (π , _) → O (π ∙P pb) (π ∙S s) }) in ∀ pb₀ s₀ pb₁ s₁ → check pb₀ s₀ ≡ check pb₁ s₁ → (O : _ → _ → Bit) → otp O pb₀ s₀ ≡ otp O pb₁ s₁ otp-∙ pb₀ s₀ pb₁ s₁ check-pf O = {!(μπ ×Sum-proj₂ μRₚ-xtra ?!} -} Answer : Bit → ★ Answer false{-0b-} = Permutation Answer true {-1b-} = Solution answer : Permutation → Solution → ∀ b → Answer b answer π _ false = π answer _ s true = s -- The prover is the advesary in the generic terminology, -- and the verifier is the challenger. DepProver : ★ DepProver = Problem → ↺ Rₚ → (b : Bit) → Problem × Answer b Prover₀ : ★ Prover₀ = Problem → ↺ Rₚ → Problem × Permutation Prover₁ : ★ Prover₁ = Problem → ↺ Rₚ → Problem × Solution Prover : ★ Prover = Prover₀ × Prover₁ prover : DepProver → Prover prover dpr = (λ pb r → dpr pb r 0b) , (λ pb r → dpr pb r 1b) depProver : Prover → DepProver depProver (pr₀ , pr₁) pb r false = pr₀ pb r depProver (pr₀ , pr₁) pb r true = pr₁ pb r -- Here we show that the explicit commitment step seems useless given -- the formalization. The verifier can "trust" the prover on the fact -- that any choice is going to be govern only by the problem and the -- randomness. module WithCommitment (Commitment : ★) (AnswerWC : Bit → ★) (reveal : ∀ b → Commitment → AnswerWC b → Problem × Answer b) where ProverWC = (Problem → Rₚ → Commitment) × (Problem → Rₚ → (b : Bit) → AnswerWC b) depProver' : ProverWC → DepProver depProver' (pr₀ , pr₁) pb (rand rₚ) b = reveal b (pr₀ pb rₚ) (pr₁ pb rₚ b) Verif : Problem → ∀ b → Problem × Answer b → Bit Verif pb false{-0b-} (π∙pb , π) = (π ∙P pb) == π∙pb Verif pb true {-1b-} (π∙pb , π∙s) = check π∙pb π∙s _⇄′_ : Problem → DepProver → Bit → ↺ Rₚ → Bit (pb ⇄′ pr) b (rand rₚ) = Verif pb b (pr pb (rand rₚ) b) _⇄_ : Problem → DepProver → ↺ (Bit × Rₚ) → Bit (pb ⇄ pr) (rand (b , rₚ)) = (pb ⇄′ pr) b (rand rₚ) _⇄''_ : Problem → Prover → ↺ (Bit × Rₚ) → Bit pb ⇄'' pr = pb ⇄ depProver pr honest : (Problem → Maybe Solution) → DepProver honest solve pb (rand (π , rₚ)) b = (π ∙P pb , answer π sol b) module Honest where sol : Solution sol with solve pb ... | just sol = π ∙S sol ... | nothing = π ∙S easy-sol π module WithCorrectSolver (pb : Problem) (s : Solution) (check-s : check pb s ≡ true) where -- When the honest prover has a solution, he gets accepted -- unconditionally by the verifier. honest-accepted : ∀ r → (pb ⇄ honest (const (just s))) r ≡ 1b honest-accepted (rand (true , π , rₚ)) rewrite check-∙ pb s π = check-s honest-accepted (rand (false , π , rₚ)) = ==-refl honest-⅁ = λ pb s → (pb ⇄ honest (const (just s))) module HonestLeakZeroKnowledge (pb₀ pb₁ : Problem) (s₀ s₁ : Solution) (check-pf : check pb₀ s₀ ≡ check pb₁ s₁) where helper : ∀ rₚ → Bool.toℕ ((pb₀ ⇄′ honest (const (just s₀))) 0b (rand rₚ)) ≡ Bool.toℕ ((pb₁ ⇄′ honest (const (just s₁))) 0b (rand rₚ)) helper (π , rₚ) rewrite ==-refl {π ∙P pb₀} | ==-refl {π ∙P pb₁} = refl honest-leak : honest-⅁ pb₀ s₀ ≡# honest-⅁ pb₁ s₁ honest-leak rewrite otp-∙-check pb₀ s₀ pb₁ s₁ check-pf | sum-ext μRₚ helper = refl module HonestLeakZeroKnowledge' (pb : Problem) (s₀ s₁ : Solution) (check-pf : check pb s₀ ≡ check pb s₁) where honest-leak : honest-⅁ pb s₀ ≡# honest-⅁ pb s₁ honest-leak = HonestLeakZeroKnowledge.honest-leak pb pb s₀ s₁ check-pf -- Predicts b=b′ cheater : ∀ b′ → DepProver cheater b′ pb (rand (π , _)) b = π ∙P (case b′ 0→ pb 1→ easy-pb π) , answer π (π ∙S easy-sol π) b -- If cheater predicts correctly, verifer accepts him cheater-accepted : ∀ b pb rₚ → (pb ⇄′ cheater b) b rₚ ≡ 1b cheater-accepted true pb (rand (π , rₚ)) = check-easy π cheater-accepted false pb (rand (π , rₚ)) = ==-refl -- If cheater predicts incorrecty, verifier rejects him module CheaterRejected (pb : Problem) (not-easy-sol : ∀ π → check (π ∙P pb) (π ∙S easy-sol π) ≡ false) (not-easy-pb : ∀ π → ((π ∙P pb) == (π ∙P easy-pb π)) ≡ false) where cheater-rejected : ∀ b rₚ → (pb ⇄′ cheater (not b)) b rₚ ≡ 0b cheater-rejected true (rand (π , rₚ)) = not-easy-sol π cheater-rejected false (rand (π , rₚ)) = not-easy-pb π module DLog (ℤq : ★) (_⊞_ : ℤq → ℤq → ℤq) (⊟_ : ℤq → ℤq) (G : ★) (g : G) (_^_ : G → ℤq → G) (_∙_ : G → G → G) (⊟-⊞ : ∀ π x → (⊟ π) ⊞ (π ⊞ x) ≡ x) (^⊟-∙ : ∀ α β x → ((α ^ (⊟ x)) ∙ ((α ^ x) ∙ β)) ≡ β) -- (∙-assoc : ∀ α β γ → α ∙ (β ∙ γ) ≡ (α ∙ β) ∙ γ) (dist-^-⊞ : ∀ α x y → α ^ (x ⊞ y) ≡ (α ^ x) ∙ (α ^ y)) (_==_ : G → G → Bool) (==-refl : ∀ {α} → (α == α) ≡ true) (==-cong-∙ : ∀ {α β b} γ → α == β ≡ b → (γ ∙ α) == (γ ∙ β) ≡ b) (==-true : ∀ {α β} → α == β ≡ true → α ≡ β) (sumℤq : Sum ℤq) (μℤq : SumProp sumℤq) (Rₚ-xtra : ★) -- extra prover/adversary randomness (sumRₚ-xtra : Sum Rₚ-xtra) (μRₚ-xtra : SumProp sumRₚ-xtra) (some-ℤq : ℤq) where Permutation = ℤq Problem = G Solution = ℤq _⁻¹ : Endo Permutation π ⁻¹ = ⊟ π g^_ : ℤq → G g^ x = g ^ x _∙P_ : Permutation → Endo Problem π ∙P p = g^ π ∙ p ⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x ⁻¹-inverseP π x rewrite ^⊟-∙ g x π = refl _∙S_ : Permutation → Endo Solution π ∙S s = π ⊞ s ⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x ⁻¹-inverseS = ⊟-⊞ check : Problem → Solution → Bit check p s = p == g^ s check-∙' : ∀ p s π b → check p s ≡ b → check (π ∙P p) (π ∙S s) ≡ b check-∙' p s π true check-p-s rewrite dist-^-⊞ g π s | ==-true check-p-s = ==-refl check-∙' p s π false check-p-s rewrite dist-^-⊞ g π s = ==-cong-∙ (g^ π) check-p-s check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s check-∙ p s π = check-∙' p s π (check p s) refl easy-sol : Permutation → Solution easy-sol π = some-ℤq easy-pb : Permutation → Problem easy-pb π = g^(easy-sol π) check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true check-easy π rewrite dist-^-⊞ g π (easy-sol π) = ==-refl open M Permutation _⁻¹ sumℤq μℤq Rₚ-xtra sumRₚ-xtra μRₚ-xtra Problem _==_ ==-refl _∙P_ ⁻¹-inverseP Solution _∙S_ ⁻¹-inverseS check check-∙ easy-pb easy-sol check-easy -- -} -- -} -- -} -- -} -- -}
open import Type open import Data.Bool.NP as Bool hiding (check) open import Data.Nat open import Data.Maybe open import Data.Product.NP open import Data.Bits open import Function.NP open import Relation.Binary.PropositionalEquality.NP open import sum module generic-zero-knowledge-interactive where -- A random argument, this is only a formal notation to -- indicate that the argument is supposed to be picked -- at random uniformly. (do not confuse with our randomness -- monad). record ↺ (A : ★) : ★ where constructor rand field get : A module M (Permutation : ★) (_⁻¹ : Endo Permutation) (μπ : SumProp Permutation) (Rₚ-xtra : ★) -- extra prover/adversary randomness (μRₚ-xtra : SumProp Rₚ-xtra) (Problem : ★) (_==_ : Problem → Problem → Bit) (==-refl : ∀ {pb} → (pb == pb) ≡ true) (_∙P_ : Permutation → Endo Problem) (⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x) (Solution : ★) (_∙S_ : Permutation → Endo Solution) (⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x) (check : Problem → Solution → Bit) (check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s) (easy-pb : Permutation → Problem) (easy-sol : Permutation → Solution) (check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true) where -- prover/adversary randomness Rₚ : ★ Rₚ = Permutation × Rₚ-xtra μRₚ : SumProp Rₚ μRₚ = μπ ×μ μRₚ-xtra R = Bit × Rₚ μR : SumProp R μR = μBit ×μ μRₚ check-π : Problem → Solution → Rₚ → Bit check-π p s (π , _) = check (π ∙P p) (π ∙S s) otp-∙-check : let #_ = count μRₚ in ∀ p₀ s₀ p₁ s₁ → check p₀ s₀ ≡ check p₁ s₁ → #(check-π p₀ s₀) ≡ #(check-π p₁ s₁) otp-∙-check p₀ s₀ p₁ s₁ check-pf = count-ext μRₚ {f = check-π p₀ s₀} {check-π p₁ s₁} (λ π,r → check-π p₀ s₀ π,r ≡⟨ check-∙ p₀ s₀ (proj₁ π,r) ⟩ check p₀ s₀ ≡⟨ check-pf ⟩ check p₁ s₁ ≡⟨ sym (check-∙ p₁ s₁ (proj₁ π,r)) ⟩ check-π p₁ s₁ π,r ∎) where open ≡-Reasoning #_ : (↺ (Bit × Permutation × Rₚ-xtra) → Bit) → ℕ # f = count μR (f ∘ rand) _≡#_ : (f g : ↺ (Bit × Rₚ) → Bit) → ★ f ≡# g = # f ≡ # g {- otp-∙ : let otp = λ O pb s → count μRₚ (λ { (π , _) → O (π ∙P pb) (π ∙S s) }) in ∀ pb₀ s₀ pb₁ s₁ → check pb₀ s₀ ≡ check pb₁ s₁ → (O : _ → _ → Bit) → otp O pb₀ s₀ ≡ otp O pb₁ s₁ otp-∙ pb₀ s₀ pb₁ s₁ check-pf O = {!(μπ ×Sum-proj₂ μRₚ-xtra ?!} -} Answer : Bit → ★ Answer false{-0b-} = Permutation Answer true {-1b-} = Solution answer : Permutation → Solution → ∀ b → Answer b answer π _ false = π answer _ s true = s -- The prover is the advesary in the generic terminology, -- and the verifier is the challenger. DepProver : ★ DepProver = Problem → ↺ Rₚ → (b : Bit) → Problem × Answer b Prover₀ : ★ Prover₀ = Problem → ↺ Rₚ → Problem × Permutation Prover₁ : ★ Prover₁ = Problem → ↺ Rₚ → Problem × Solution Prover : ★ Prover = Prover₀ × Prover₁ prover : DepProver → Prover prover dpr = (λ pb r → dpr pb r 0b) , (λ pb r → dpr pb r 1b) depProver : Prover → DepProver depProver (pr₀ , pr₁) pb r false = pr₀ pb r depProver (pr₀ , pr₁) pb r true = pr₁ pb r -- Here we show that the explicit commitment step seems useless given -- the formalization. The verifier can "trust" the prover on the fact -- that any choice is going to be govern only by the problem and the -- randomness. module WithCommitment (Commitment : ★) (AnswerWC : Bit → ★) (reveal : ∀ b → Commitment → AnswerWC b → Problem × Answer b) where ProverWC = (Problem → Rₚ → Commitment) × (Problem → Rₚ → (b : Bit) → AnswerWC b) depProver' : ProverWC → DepProver depProver' (pr₀ , pr₁) pb (rand rₚ) b = reveal b (pr₀ pb rₚ) (pr₁ pb rₚ b) Verif : Problem → ∀ b → Problem × Answer b → Bit Verif pb false{-0b-} (π∙pb , π) = (π ∙P pb) == π∙pb Verif pb true {-1b-} (π∙pb , π∙s) = check π∙pb π∙s _⇄′_ : Problem → DepProver → Bit → ↺ Rₚ → Bit (pb ⇄′ pr) b (rand rₚ) = Verif pb b (pr pb (rand rₚ) b) _⇄_ : Problem → DepProver → ↺ (Bit × Rₚ) → Bit (pb ⇄ pr) (rand (b , rₚ)) = (pb ⇄′ pr) b (rand rₚ) _⇄''_ : Problem → Prover → ↺ (Bit × Rₚ) → Bit pb ⇄'' pr = pb ⇄ depProver pr honest : (Problem → Maybe Solution) → DepProver honest solve pb (rand (π , rₚ)) b = (π ∙P pb , answer π sol b) module Honest where sol : Solution sol with solve pb ... | just sol = π ∙S sol ... | nothing = π ∙S easy-sol π module WithCorrectSolver (pb : Problem) (s : Solution) (check-s : check pb s ≡ true) where -- When the honest prover has a solution, he gets accepted -- unconditionally by the verifier. honest-accepted : ∀ r → (pb ⇄ honest (const (just s))) r ≡ 1b honest-accepted (rand (true , π , rₚ)) rewrite check-∙ pb s π = check-s honest-accepted (rand (false , π , rₚ)) = ==-refl honest-⅁ = λ pb s → (pb ⇄ honest (const (just s))) module HonestLeakZeroKnowledge (pb₀ pb₁ : Problem) (s₀ s₁ : Solution) (check-pf : check pb₀ s₀ ≡ check pb₁ s₁) where helper : ∀ rₚ → Bool.toℕ ((pb₀ ⇄′ honest (const (just s₀))) 0b (rand rₚ)) ≡ Bool.toℕ ((pb₁ ⇄′ honest (const (just s₁))) 0b (rand rₚ)) helper (π , rₚ) rewrite ==-refl {π ∙P pb₀} | ==-refl {π ∙P pb₁} = refl honest-leak : honest-⅁ pb₀ s₀ ≡# honest-⅁ pb₁ s₁ honest-leak rewrite otp-∙-check pb₀ s₀ pb₁ s₁ check-pf | sum-ext μRₚ helper = refl module HonestLeakZeroKnowledge' (pb : Problem) (s₀ s₁ : Solution) (check-pf : check pb s₀ ≡ check pb s₁) where honest-leak : honest-⅁ pb s₀ ≡# honest-⅁ pb s₁ honest-leak = HonestLeakZeroKnowledge.honest-leak pb pb s₀ s₁ check-pf -- Predicts b=b′ cheater : ∀ b′ → DepProver cheater b′ pb (rand (π , _)) b = π ∙P (case b′ 0→ pb 1→ easy-pb π) , answer π (π ∙S easy-sol π) b -- If cheater predicts correctly, verifer accepts him cheater-accepted : ∀ b pb rₚ → (pb ⇄′ cheater b) b rₚ ≡ 1b cheater-accepted true pb (rand (π , rₚ)) = check-easy π cheater-accepted false pb (rand (π , rₚ)) = ==-refl -- If cheater predicts incorrecty, verifier rejects him module CheaterRejected (pb : Problem) (not-easy-sol : ∀ π → check (π ∙P pb) (π ∙S easy-sol π) ≡ false) (not-easy-pb : ∀ π → ((π ∙P pb) == (π ∙P easy-pb π)) ≡ false) where cheater-rejected : ∀ b rₚ → (pb ⇄′ cheater (not b)) b rₚ ≡ 0b cheater-rejected true (rand (π , rₚ)) = not-easy-sol π cheater-rejected false (rand (π , rₚ)) = not-easy-pb π module DLog (ℤq : ★) (_⊞_ : ℤq → ℤq → ℤq) (⊟_ : ℤq → ℤq) (G : ★) (g : G) (_^_ : G → ℤq → G) (_∙_ : G → G → G) (⊟-⊞ : ∀ π x → (⊟ π) ⊞ (π ⊞ x) ≡ x) (^⊟-∙ : ∀ α β x → ((α ^ (⊟ x)) ∙ ((α ^ x) ∙ β)) ≡ β) -- (∙-assoc : ∀ α β γ → α ∙ (β ∙ γ) ≡ (α ∙ β) ∙ γ) (dist-^-⊞ : ∀ α x y → α ^ (x ⊞ y) ≡ (α ^ x) ∙ (α ^ y)) (_==_ : G → G → Bool) (==-refl : ∀ {α} → (α == α) ≡ true) (==-cong-∙ : ∀ {α β b} γ → α == β ≡ b → (γ ∙ α) == (γ ∙ β) ≡ b) (==-true : ∀ {α β} → α == β ≡ true → α ≡ β) (μℤq : SumProp ℤq) (Rₚ-xtra : ★) -- extra prover/adversary randomness (μRₚ-xtra : SumProp Rₚ-xtra) (some-ℤq : ℤq) where Permutation = ℤq Problem = G Solution = ℤq _⁻¹ : Endo Permutation π ⁻¹ = ⊟ π g^_ : ℤq → G g^ x = g ^ x _∙P_ : Permutation → Endo Problem π ∙P p = g^ π ∙ p ⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x ⁻¹-inverseP π x rewrite ^⊟-∙ g x π = refl _∙S_ : Permutation → Endo Solution π ∙S s = π ⊞ s ⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x ⁻¹-inverseS = ⊟-⊞ check : Problem → Solution → Bit check p s = p == g^ s check-∙' : ∀ p s π b → check p s ≡ b → check (π ∙P p) (π ∙S s) ≡ b check-∙' p s π true check-p-s rewrite dist-^-⊞ g π s | ==-true check-p-s = ==-refl check-∙' p s π false check-p-s rewrite dist-^-⊞ g π s = ==-cong-∙ (g^ π) check-p-s check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s check-∙ p s π = check-∙' p s π (check p s) refl easy-sol : Permutation → Solution easy-sol π = some-ℤq easy-pb : Permutation → Problem easy-pb π = g^(easy-sol π) check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true check-easy π rewrite dist-^-⊞ g π (easy-sol π) = ==-refl open M Permutation _⁻¹ μℤq Rₚ-xtra μRₚ-xtra Problem _==_ ==-refl _∙P_ ⁻¹-inverseP Solution _∙S_ ⁻¹-inverseS check check-∙ easy-pb easy-sol check-easy -- -} -- -} -- -} -- -} -- -}
update generic ZK
update generic ZK
Agda
bsd-3-clause
crypto-agda/crypto-agda
569e98b5b6d8a84329f54249ad3f83477357f717
flipbased-implem.agda
flipbased-implem.agda
module flipbased-implem where open import Function open import Data.Bits open import Data.Nat.NP open import Data.Vec open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ import Data.Fin as Fin open ≡ using (_≗_; _≡_) open Fin using (Fin; suc) import flipbased -- “↺ n A” reads like: “toss n coins and then return a value of type A” record ↺ {a} n (A : Set a) : Set a where constructor mk field run↺ : Bits n → A open ↺ public private -- If you are not allowed to toss any coin, then you are deterministic. Det : ∀ {a} → Set a → Set a Det = ↺ 0 runDet : ∀ {a} {A : Set a} → Det A → A runDet f = run↺ f [] toss : ↺ 1 Bit toss = mk head return↺ : ∀ {n a} {A : Set a} → A → ↺ n A return↺ = mk ∘ const map↺ : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → ↺ n A → ↺ n B map↺ f x = mk (f ∘ run↺ x) -- map↺ f x ≗ x >>=′ (return {0} ∘ f) join↺ : ∀ {n₁ n₂ a} {A : Set a} → ↺ n₁ (↺ n₂ A) → ↺ (n₁ + n₂) A join↺ {n₁} x = mk (λ bs → run↺ (run↺ x (take _ bs)) (drop n₁ bs)) -- join↺ x = x >>= id comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → ↺ m A → ↺ n A comap f (mk g) = mk (g ∘ f) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → ↺ m A → ↺ n A weaken≤ p = comap (take≤ p) open flipbased ↺ toss weaken≤ return↺ map↺ join↺ public _≗↺_ : ∀ {c a} {A : Set a} (f g : ↺ c A) → Set a f ≗↺ g = run↺ f ≗ run↺ g ⅁ : ℕ → Set ⅁ n = ↺ n Bit _≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ⅁ c) → Set ⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b ≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c}) ≗⅁-trans p q b R = ≡.trans (p b R) (q b R) count↺ᶠ : ∀ {c} → ⅁ c → Fin (suc (2^ c)) count↺ᶠ f = #⟨ run↺ f ⟩ᶠ count↺ : ∀ {c} → ⅁ c → ℕ count↺ = Fin.toℕ ∘ count↺ᶠ _∼[_]⅁_ : ∀ {m n} → ⅁ m → (ℕ → ℕ → Set) → ⅁ n → Set _∼[_]⅁_ {m} {n} f _∼_ g = ⟨2^ n * count↺ f ⟩ ∼ ⟨2^ m * count↺ g ⟩ _∼[_]⅁′_ : ∀ {n} → ⅁ n → (ℕ → ℕ → Set) → ⅁ n → Set _∼[_]⅁′_ {n} f _∼_ g = count↺ f ∼ count↺ g _≈⅁_ : ∀ {m n} → ⅁ m → ⅁ n → Set f ≈⅁ g = f ∼[ _≡_ ]⅁ g _≈⅁′_ : ∀ {n} (f g : ⅁ n) → Set f ≈⅁′ g = f ∼[ _≡_ ]⅁′ g ≈⅁-refl : ∀ {n} {f : ⅁ n} → f ≈⅁ f ≈⅁-refl = ≡.refl ≈⅁-sym : ∀ {n} → Symmetric {A = ⅁ n} _≈⅁_ ≈⅁-sym = ≡.sym ≈⅁-trans : ∀ {n} → Transitive {A = ⅁ n} _≈⅁_ ≈⅁-trans = ≡.trans ≗⇒≈⅁ : ∀ {c} {f g : ⅁ c} → f ≗↺ g → f ≈⅁ g ≗⇒≈⅁ pf rewrite ext-# pf = ≡.refl ≈⅁′⇒≈⅁ : ∀ {n} {f g : ⅁ n} → f ≈⅁′ g → f ≈⅁ g ≈⅁′⇒≈⅁ eq rewrite eq = ≡.refl ≈⅁⇒≈⅁′ : ∀ {n} {f g : ⅁ n} → f ≈⅁ g → f ≈⅁′ g ≈⅁⇒≈⅁′ {n} = 2^-inj n ≈⅁-cong : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ≈⅁ f' → g ≈⅁ g' ≈⅁-cong f≗g f'≗g' f≈f' rewrite ext-# f≗g | ext-# f'≗g' = f≈f' ≈⅁′-cong : ∀ {c} {f g f' g' : ⅁ c} → f ≗↺ g → f' ≗↺ g' → f ≈⅁′ f' → g ≈⅁′ g' ≈⅁′-cong f≗g f'≗g' f≈f' rewrite ext-# f≗g | ext-# f'≗g' = f≈f'
module flipbased-implem where open import Function open import Data.Bits open import Data.Nat.NP open import Data.Vec open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ import Data.Fin as Fin open ≡ using (_≗_; _≡_) open Fin using (Fin; suc) import flipbased -- “↺ n A” reads like: “toss n coins and then return a value of type A” record ↺ {a} n (A : Set a) : Set a where constructor mk field run↺ : Bits n → A open ↺ public private -- If you are not allowed to toss any coin, then you are deterministic. Det : ∀ {a} → Set a → Set a Det = ↺ 0 runDet : ∀ {a} {A : Set a} → Det A → A runDet f = run↺ f [] toss : ↺ 1 Bit toss = mk head return↺ : ∀ {n a} {A : Set a} → A → ↺ n A return↺ = mk ∘ const map↺ : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → ↺ n A → ↺ n B map↺ f x = mk (f ∘ run↺ x) -- map↺ f x ≗ x >>=′ (return {0} ∘ f) join↺ : ∀ {n₁ n₂ a} {A : Set a} → ↺ n₁ (↺ n₂ A) → ↺ (n₁ + n₂) A join↺ {n₁} x = mk (λ bs → run↺ (run↺ x (take _ bs)) (drop n₁ bs)) -- join↺ x = x >>= id comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → ↺ m A → ↺ n A comap f (mk g) = mk (g ∘ f) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → ↺ m A → ↺ n A weaken≤ p = comap (take≤ p) open flipbased ↺ toss weaken≤ return↺ map↺ join↺ public _≗↺_ : ∀ {c a} {A : Set a} (f g : ↺ c A) → Set a f ≗↺ g = run↺ f ≗ run↺ g ⅁ : ℕ → Set ⅁ n = ↺ n Bit _≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ⅁ c) → Set ⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b ≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c}) ≗⅁-trans p q b R = ≡.trans (p b R) (q b R) count↺ᶠ : ∀ {c} → ⅁ c → Fin (suc (2^ c)) count↺ᶠ f = #⟨ run↺ f ⟩ᶠ count↺ : ∀ {c} → ⅁ c → ℕ count↺ f = #⟨ run↺ f ⟩ ≗↺-cong-# : ∀ {n} {f g : ⅁ n} → f ≗↺ g → count↺ f ≡ count↺ g ≗↺-cong-# {f = f} {g} = ≗-cong-# (run↺ f) (run↺ g) _∼[_]⅁_ : ∀ {m n} → ⅁ m → (ℕ → ℕ → Set) → ⅁ n → Set _∼[_]⅁_ {m} {n} f _∼_ g = ⟨2^ n * count↺ f ⟩ ∼ ⟨2^ m * count↺ g ⟩ _∼[_]⅁′_ : ∀ {n} → ⅁ n → (ℕ → ℕ → Set) → ⅁ n → Set _∼[_]⅁′_ {n} f _∼_ g = count↺ f ∼ count↺ g _≈⅁_ : ∀ {m n} → ⅁ m → ⅁ n → Set f ≈⅁ g = f ∼[ _≡_ ]⅁ g _≈⅁′_ : ∀ {n} (f g : ⅁ n) → Set f ≈⅁′ g = f ∼[ _≡_ ]⅁′ g ≈⅁-refl : ∀ {n} {f : ⅁ n} → f ≈⅁ f ≈⅁-refl = ≡.refl ≈⅁-sym : ∀ {n} → Symmetric {A = ⅁ n} _≈⅁_ ≈⅁-sym = ≡.sym ≈⅁-trans : ∀ {n} → Transitive {A = ⅁ n} _≈⅁_ ≈⅁-trans = ≡.trans ≗⇒≈⅁ : ∀ {c} {f g : ⅁ c} → f ≗↺ g → f ≈⅁ g ≗⇒≈⅁ pf rewrite ≗↺-cong-# pf = ≡.refl ≈⅁′⇒≈⅁ : ∀ {n} {f g : ⅁ n} → f ≈⅁′ g → f ≈⅁ g ≈⅁′⇒≈⅁ eq rewrite eq = ≡.refl ≈⅁⇒≈⅁′ : ∀ {n} {f g : ⅁ n} → f ≈⅁ g → f ≈⅁′ g ≈⅁⇒≈⅁′ {n} = 2^-inj n ≈⅁-cong : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ≈⅁ f' → g ≈⅁ g' ≈⅁-cong f≗g f'≗g' f≈f' rewrite ≗↺-cong-# f≗g | ≗↺-cong-# f'≗g' = f≈f' ≈⅁′-cong : ∀ {c} {f g f' g' : ⅁ c} → f ≗↺ g → f' ≗↺ g' → f ≈⅁′ f' → g ≈⅁′ g' ≈⅁′-cong f≗g f'≗g' f≈f' rewrite ≗↺-cong-# f≗g | ≗↺-cong-# f'≗g' = f≈f' data Rat : Set where _/_ : (num denom : ℕ) → Rat Pr[_≡1] : ∀ {n} (f : ⅁ n) → Rat Pr[_≡1] {n} f = count↺ f / 2^ n
Switch count↺ to be based on search
Switch count↺ to be based on search
Agda
bsd-3-clause
crypto-agda/crypto-agda
b590f8a3ed001a65516e5f2211013e1a46683692
ZK/PartialHeliosVerifier.agda
ZK/PartialHeliosVerifier.agda
{-# OPTIONS --without-K #-} module ZK.PartialHeliosVerifier where open import Type open import Function hiding (case_of_) open import Data.Bool.Base open import Data.Product open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS as JS hiding (_+_; _/_; _*_; join) open import FFI.JS.BigI as BigI import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS open import FFI.JS.SHA1 open import FFI.JS.Proc open import Control.Process.Type join : String → List String → String join sep [] = "" join sep (x ∷ xs) = x ++ foldr (λ y z → sep ++ y ++ z) "" xs {- instance showBigI = mk λ _ → showString ∘ BigI.toString -} G = BigI ℤq = BigI BigI▹G : BigI → G BigI▹G = id BigI▹ℤq : BigI → ℤq BigI▹ℤq = id non0I : BigI → BigI non0I x with equals x 0I ... | true = throw "Should be non zero!" 0I ... | false = x module BigICG (p q : BigI) where _^_ : G → ℤq → G _·_ : G → G → G _/_ : G → G → G _+_ : ℤq → ℤq → ℤq _*_ : ℤq → ℤq → ℤq _==_ : (x y : G) → Bool _^_ = λ x y → modPow x y p _·_ = λ x y → mod (multiply x y) p _/_ = λ x y → mod (multiply x (modInv (non0I y) p)) p _+_ = λ x y → mod (add x y) q _*_ = λ x y → mod (multiply x y) q _==_ = equals sumI : List BigI → BigI sumI = foldr _+_ 0I bignum : Number → BigI bignum n = bigI (Number▹String n) "10" -- TODO check with undefined bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" {- print : {A : Set}{{_ : Show A}} → A → Callback0 print = Console.log ∘ show -} PubKey = G EncRnd = ℤq {- randomness used for encryption of ct -} Message = G {- plain text message -} Challenge = ℤq Response = ℤq CommitmentPart = G CipherTextPart = G module HeliosVerifyV3 (g : G) p q (y : PubKey) where open BigICG p q verify-chaum-pedersen : (α β : CipherTextPart)(M : Message)(A B : G)(c : Challenge)(s : Response) → Bool verify-chaum-pedersen α β M A B c s = trace "α=" α λ _ → trace "β=" β λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → (g ^ s) == (A · (α ^ c)) ∧ (y ^ s) == (B · ((β / M) ^ c)) verify-individual-proof : (α β : CipherTextPart)(ix : Number)(π : JSValue) → Bool verify-individual-proof α β ix π = trace "m=" m λ _ → trace "M=" M λ _ → trace "commitmentA=" A λ _ → trace "commitmentB=" B λ _ → trace "challenge=" c λ _ → trace "response=" s λ _ → res where m = bignum ix M = g ^ m A = bigdec (π ·« "commitment" » ·« "A" ») B = bigdec (π ·« "commitment" » ·« "B" ») c = bigdec (π ·« "challenge" ») s = bigdec (π ·« "response" ») res = verify-chaum-pedersen α β M A B c s -- Conform to HeliosV3 but it is too weak. -- One should follow a "Strong Fiat Shamir" transformation -- from interactive ZK proof to non-interactive ZK proofs. -- Namely one should hash the statement as well. -- -- SHA1(A0 + "," + B0 + "," + A1 + "," + B1 + ... + "Amax" + "," + Bmax) hash-commitments : JSArray JSValue → BigI hash-commitments πs = fromHex $ trace-call "SHA1(commitments)=" SHA1 $ trace-call "commitments=" (join ",") $ decodeJSArray πs λ _ π → (castString (π ·« "commitment" » ·« "A" »)) ++ "," ++ (castString (π ·« "commitment" » ·« "B" »)) sum-challenges : JSArray JSValue → BigI sum-challenges πs = sumI $ decodeJSArray πs λ _ π → bigdec (π ·« "challenge" ») verify-challenges : JSArray JSValue → Bool verify-challenges πs = trace "hash(commitments)=" h λ _ → trace "sum(challenge)=" c λ _ → h == c where h = hash-commitments πs c = sum-challenges πs verify-choice : (v : JSValue)(πs : JSArray JSValue) → Bool verify-choice v πs = trace "α=" α λ _ → trace "β=" β λ _ → verify-challenges πs ∧ and (decodeJSArray πs $ verify-individual-proof α β) where α = bigdec (v ·« "alpha" ») β = bigdec (v ·« "beta" ») verify-choices : (choices πs : JSArray JSValue) → Bool verify-choices choices πs = trace "TODO: check the array size of choices πs together election data" "" λ _ → and $ decodeJSArray choices λ ix choice → trace "verify choice " ix λ _ → verify-choice choice (castJSArray (πs Array[ ix ])) verify-answer : (answer : JSValue) → Bool verify-answer answer = trace "TODO: CHECK the overall_proof" "" λ _ → verify-choices choices individual-proofs where choices = answer ·« "choices" »A individual-proofs = answer ·« "individual_proofs" »A overall-proof = answer ·« "overall_proof" »A verify-answers : (answers : JSArray JSValue) → Bool verify-answers answers = and $ decodeJSArray answers λ ix a → trace "verify answer " ix λ _ → verify-answer a {- verify-election-hash = "" -- notice the whitespaces and the alphabetical order of keys -- {"email": ["[email protected]", "[email protected]"], "first_name": "Ben", "last_name": "Adida"} computed_hash = base64.b64encode(hash.new(election.toJSON()).digest())[:-1] computed_hash == vote.election_hash: "" -} -- module _ {-(election : JSValue)-} where verify-ballot : (ballot : JSValue) → Bool verify-ballot ballot = trace "TODO: CHECK the election_hash: " election_hash λ _ → trace "TODO: CHECK the election_uuid: " election_uuid λ _ → verify-answers answers where answers = ballot ·« "answers" »A election_hash = ballot ·« "election_hash" » election_uuid = ballot ·« "election_uuid" » verify-ballots : (ballots : JSArray JSValue) → Bool verify-ballots ballots = and $ decodeJSArray ballots λ ix ballot → trace "verify ballot " ix λ _ → verify-ballot ballot -- Many checks are still missing! verify-helios-election : (arg : JSValue) → Bool verify-helios-election arg = trace "res=" res id where ed = arg ·« "election_data" » bs = arg ·« "ballots" »A pk = ed ·« "public_key" » g = bigdec (pk ·« "g" ») p = bigdec (pk ·« "p" ») q = bigdec (pk ·« "q" ») y = bigdec (pk ·« "y" ») res = trace "g=" g λ _ → trace "p=" p λ _ → trace "q=" q λ _ → trace "y=" y λ _ → HeliosVerifyV3.verify-ballots g p q y bs srv : URI → JSProc srv d = recv d λ q → send d (fromBool (verify-helios-election q)) end -- Working around Agda.Primitive.lsuc being undefined case_of_ : {A : Set} {B : Set} → A → (A → B) → B case x of f = f x main : JS! main = Process.argv !₁ λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → server "127.0.0.1" "1337" srv !₁ λ uri → Console.log (showURI uri) ; (arg ∷ args'') → case args'' of λ { [] → let opts = -- fromJSObject (fromObject (("encoding" , fromString "utf8") ∷ [])) -- nullJS JSON-parse "{\"encoding\":\"utf8\"}" in Console.log ("readFile=" ++ arg) >> FS.readFile arg opts !₂ λ err dat → Console.log ("readFile: err=" ++ JS.toString err) >> Console.log (Bool▹String (verify-helios-election (JSON-parse (castString dat)))) ; _ → Console.log "usage" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} module ZK.PartialHeliosVerifier where open import Type open import Function hiding (case_of_) open import Data.Bool.Base open import Data.Product open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS as JS hiding (_+_; _/_; _*_; join) open import FFI.JS.BigI as BigI import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS open import FFI.JS.SHA1 open import FFI.JS.Proc open import Control.Process.Type join : String → List String → String join sep [] = "" join sep (x ∷ xs) = x ++ foldr (λ y z → sep ++ y ++ z) "" xs {- instance showBigI = mk λ _ → showString ∘ BigI.toString -} G = BigI ℤq = BigI BigI▹G : BigI → G BigI▹G = id BigI▹ℤq : BigI → ℤq BigI▹ℤq = id non0I : BigI → BigI non0I x with equals x 0I ... | true = throw "Should be non zero!" 0I ... | false = x module BigICG (p q : BigI) where _^_ : G → ℤq → G _·_ : G → G → G _/_ : G → G → G _+_ : ℤq → ℤq → ℤq _*_ : ℤq → ℤq → ℤq _==_ : (x y : G) → Bool _^_ = λ x y → modPow x y p _·_ = λ x y → mod (multiply x y) p _/_ = λ x y → mod (multiply x (modInv (non0I y) p)) p _+_ = λ x y → mod (add x y) q _*_ = λ x y → mod (multiply x y) q _==_ = equals sumI : List BigI → BigI sumI = foldr _+_ 0I bignum : Number → BigI bignum n = bigI (Number▹String n) "10" -- TODO check with undefined bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" {- print : {A : Set}{{_ : Show A}} → A → Callback0 print = Console.log ∘ show -} PubKey = G EncRnd = ℤq {- randomness used for encryption of ct -} Message = G {- plain text message -} Challenge = ℤq Response = ℤq CommitmentPart = G CipherTextPart = G module HeliosVerifyV3 (g : G) p q (y : PubKey) where open BigICG p q verify-chaum-pedersen : (α β : CipherTextPart)(M : Message)(A B : G)(c : Challenge)(s : Response) → Bool verify-chaum-pedersen α β M A B c s = trace "α=" α λ _ → trace "β=" β λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → (g ^ s) == (A · (α ^ c)) ∧ (y ^ s) == (B · ((β / M) ^ c)) verify-individual-proof : (α β : CipherTextPart)(ix : Number)(π : JSValue) → Bool verify-individual-proof α β ix π = trace "m=" m λ _ → trace "M=" M λ _ → trace "commitmentA=" A λ _ → trace "commitmentB=" B λ _ → trace "challenge=" c λ _ → trace "response=" s λ _ → res where m = bignum ix M = g ^ m A = bigdec (π ·« "commitment" » ·« "A" ») B = bigdec (π ·« "commitment" » ·« "B" ») c = bigdec (π ·« "challenge" ») s = bigdec (π ·« "response" ») res = verify-chaum-pedersen α β M A B c s -- Conform to HeliosV3 but it is too weak. -- One should follow a "Strong Fiat Shamir" transformation -- from interactive ZK proof to non-interactive ZK proofs. -- Namely one should hash the statement as well. -- -- SHA1(A0 + "," + B0 + "," + A1 + "," + B1 + ... + "Amax" + "," + Bmax) hash-commitments : JSArray JSValue → BigI hash-commitments πs = fromHex $ trace-call "SHA1(commitments)=" SHA1 $ trace-call "commitments=" (join ",") $ decodeJSArray πs λ _ π → (castString (π ·« "commitment" » ·« "A" »)) ++ "," ++ (castString (π ·« "commitment" » ·« "B" »)) sum-challenges : JSArray JSValue → BigI sum-challenges πs = sumI $ decodeJSArray πs λ _ π → bigdec (π ·« "challenge" ») verify-challenges : JSArray JSValue → Bool verify-challenges πs = trace "hash(commitments)=" h λ _ → trace "sum(challenge)=" c λ _ → h == c where h = hash-commitments πs c = sum-challenges πs verify-choice : (v : JSValue)(πs : JSArray JSValue) → Bool verify-choice v πs = trace "α=" α λ _ → trace "β=" β λ _ → verify-challenges πs ∧ and (decodeJSArray πs $ verify-individual-proof α β) where α = bigdec (v ·« "alpha" ») β = bigdec (v ·« "beta" ») verify-choices : (choices πs : JSArray JSValue) → Bool verify-choices choices πs = trace "TODO: check the array size of choices πs together election data" "" λ _ → and $ decodeJSArray choices λ ix choice → trace "verify choice " ix λ _ → verify-choice choice (castJSArray (πs Array[ ix ])) verify-answer : (answer : JSValue) → Bool verify-answer answer = trace "TODO: CHECK the overall_proof" "" λ _ → verify-choices choices individual-proofs where choices = answer ·« "choices" »A individual-proofs = answer ·« "individual_proofs" »A overall-proof = answer ·« "overall_proof" »A verify-answers : (answers : JSArray JSValue) → Bool verify-answers answers = and $ decodeJSArray answers λ ix a → trace "verify answer " ix λ _ → verify-answer a {- verify-election-hash = "" -- notice the whitespaces and the alphabetical order of keys -- {"email": ["[email protected]", "[email protected]"], "first_name": "Ben", "last_name": "Adida"} computed_hash = base64.b64encode(hash.new(election.toJSON()).digest())[:-1] computed_hash == vote.election_hash: "" -} -- module _ {-(election : JSValue)-} where verify-ballot : (ballot : JSValue) → Bool verify-ballot ballot = trace "TODO: CHECK the election_hash: " election_hash λ _ → trace "TODO: CHECK the election_uuid: " election_uuid λ _ → verify-answers answers where answers = ballot ·« "answers" »A election_hash = ballot ·« "election_hash" » election_uuid = ballot ·« "election_uuid" » verify-ballots : (ballots : JSArray JSValue) → Bool verify-ballots ballots = and $ decodeJSArray ballots λ ix ballot → trace "verify ballot " ix λ _ → verify-ballot ballot -- Many checks are still missing! verify-helios-election : (arg : JSValue) → Bool verify-helios-election arg = trace "res=" res id where ed = arg ·« "election_data" » bs = arg ·« "ballots" »A pk = ed ·« "public_key" » g = bigdec (pk ·« "g" ») p = bigdec (pk ·« "p" ») q = bigdec (pk ·« "q" ») y = bigdec (pk ·« "y" ») res = trace "g=" g λ _ → trace "p=" p λ _ → trace "q=" q λ _ → trace "y=" y λ _ → HeliosVerifyV3.verify-ballots g p q y bs srv : URI → JSProc srv d = recv d λ q → send d (fromBool (verify-helios-election q)) end -- Working around Agda.Primitive.lsuc being undefined case_of_ : {A : Set} {B : Set} → A → (A → B) → B case x of f = f x main : JS! main = Process.argv >>= λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → server "127.0.0.1" "1337" srv >>= λ uri → Console.log (showURI uri) ; (arg ∷ args'') → case args'' of λ { [] → let opts = -- fromJSObject (fromObject (("encoding" , fromString "utf8") ∷ [])) -- nullJS JSON-parse "{\"encoding\":\"utf8\"}" in Console.log ("readFile=" ++ arg) >> FS.readFile arg opts >>== λ err dat → Console.log ("readFile: err=" ++ JS.toString err) >> Console.log (Bool▹String (verify-helios-election (JSON-parse (castString dat)))) ; _ → Console.log "usage" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -} -- -}
Update binds
Update binds
Agda
bsd-3-clause
crypto-agda/crypto-agda
24e0a0189105b8f3f2766a604a1ad5423b51b77e
Parametric/Change/Derive.agda
Parametric/Change/Derive.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Derive {Base : Type.Structure} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase Structure : Set Structure = ∀ {Γ Σ τ} → Const Σ τ → Terms (ΔContext Γ) Σ → Terms (ΔContext Γ) (mapContext ΔType Σ) → Term (ΔContext Γ) (ΔType τ) module Structure (deriveConst : Structure) where fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ fit-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) Σ fit-terms = weaken-terms Γ≼ΔΓ deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (mapContext ΔType Σ) derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ) derive-terms {∅} ∅ = ∅ derive-terms {τ • Σ} (t • ts) = derive t • derive-terms ts derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) derive (const c ts) = deriveConst c (fit-terms ts) (derive-terms ts)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Incrementalization as term-to-term transformation (Fig. 4g). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Derive {Base : Type.Structure} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase -- Extension point: Incrementalization of fully applied primitives. Structure : Set Structure = ∀ {Γ Σ τ} → Const Σ τ → Terms (ΔContext Γ) Σ → Terms (ΔContext Γ) (mapContext ΔType Σ) → Term (ΔContext Γ) (ΔType τ) module Structure (deriveConst : Structure) where fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ fit-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) Σ fit-terms = weaken-terms Γ≼ΔΓ -- In the paper, we transform "x" to "dx". Here, we work with -- de Bruijn indices, so we have to manipulate the indices to -- account for a bigger context after transformation. deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (mapContext ΔType Σ) derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ) derive-terms {∅} ∅ = ∅ derive-terms {τ • Σ} (t • ts) = derive t • derive-terms ts -- We provide: Incrementalization of arbitrary terms. derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) derive (const c ts) = deriveConst c (fit-terms ts) (derive-terms ts)
Document P.C.Derive.
Document P.C.Derive. Old-commit-hash: 962425cf9bb190e1b8fb2c400bd9765180081dd0
Agda
mit
inc-lc/ilc-agda
8d4599155dc64db203782bdd39087df1a8014331
Popl14/Change/Term.agda
Popl14/Change/Term.agda
module Popl14.Change.Term where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Data.Integer open import Popl14.Syntax.Type public open import Popl14.Syntax.Term public open import Popl14.Change.Type public import Parametric.Change.Term Const ΔBase as ChangeTerm diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-base : ChangeTerm.ApplyStructure apply-base {base-int} = abs₂ (λ Δx x → add x Δx) apply-base {base-bag} = abs₂ (λ Δx x → union x Δx) apply-term {base ι} = apply-base {ι} apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-base : ChangeTerm.DiffStructure diff-base {base-int} = abs₂ (λ x y → add x (minus y)) diff-base {base-bag} = abs₂ (λ x y → union x (negate y)) diff-term {base ι} = diff-base {ι} diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
module Popl14.Change.Term where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Data.Integer open import Popl14.Syntax.Type public open import Popl14.Syntax.Term public open import Popl14.Change.Type public import Parametric.Change.Term Const ΔBase as ChangeTerm diff-base : ChangeTerm.DiffStructure diff-base {base-int} = abs₂ (λ x y → add x (minus y)) diff-base {base-bag} = abs₂ (λ x y → union x (negate y)) apply-base : ChangeTerm.ApplyStructure apply-base {base-int} = abs₂ (λ Δx x → add x Δx) apply-base {base-bag} = abs₂ (λ Δx x → union x Δx) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-term {base ι} = apply-base {ι} apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-term {base ι} = diff-base {ι} diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
Move (apply|diff)-base to the top of the module.
Move (apply|diff)-base to the top of the module. This commit separates the POPL14-specific code from the language-independent code in this module. The following commits will remove the language-independent code. Old-commit-hash: 245a7b618b2ac811d28d702089482e9aed8b8425
Agda
mit
inc-lc/ilc-agda
c68a9b8870e9eaca8c1a746f2ec67e2c84d97fd5
Crypto/JS/BigI/CyclicGroup.agda
Crypto/JS/BigI/CyclicGroup.agda
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (JS[_]; return; Bool; _++_; _>>_) open import FFI.JS.Check using (check!) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract ℤ[_]★ : Set ℤ[_]★ = BigI private ℤp★ : Set ℤp★ = BigI mod-p : BigI → ℤp★ mod-p x = mod x p -- There are two ways to go from BigI to ℤp★: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹ℤ[_]★ : BigI → JS[ ℤp★ ] BigI▹ℤ[_]★ x = -- Console.log "BigI▹ℤ[_]★" >> check! "below modulus" (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) >> check! "strictcly positive" (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") >> return x repr : ℤp★ → BigI repr x = x 1# : ℤp★ 1# = 1I 1/_ : ℤp★ → ℤp★ 1/ x = modInv x p _^_ : ℤp★ → BigI → ℤp★ x ^ y = modPow x y p _*_ _/_ : ℤp★ → ℤp★ → ℤp★ x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance ℤ[_]★-Eq? : Eq? ℤp★ ℤ[_]★-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤp★ → ℤp★ → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List ℤp★ → ℤp★ prod = foldr _*_ 1# mon-ops : Monoid-Ops ℤp★ mon-ops = _*_ , 1# grp-ops : Group-Ops ℤp★ grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group ℤp★ grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (JS[_]; return; _++_; _>>_) open import FFI.JS.Check using (check!) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract ℤ[_]★ : Set ℤ[_]★ = BigI private ℤp★ : Set ℤp★ = BigI mod-p : BigI → ℤp★ mod-p x = mod x p -- There are two ways to go from BigI to ℤp★: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹ℤ[_]★ : BigI → JS[ ℤp★ ] BigI▹ℤ[_]★ x = -- Console.log "BigI▹ℤ[_]★" >> check! "below modulus" (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) >> check! "strictcly positive" (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") >> return x repr : ℤp★ → BigI repr x = x 1# : ℤp★ 1# = 1I 1/_ : ℤp★ → ℤp★ 1/ x = modInv x p _^_ : ℤp★ → BigI → ℤp★ x ^ y = modPow x y p _*_ _/_ : ℤp★ → ℤp★ → ℤp★ x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance ℤ[_]★-Eq? : Eq? ℤp★ ℤ[_]★-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤp★ → ℤp★ → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List ℤp★ → ℤp★ prod = foldr _*_ 1# mon-ops : Monoid-Ops ℤp★ mon-ops = _*_ , 1# grp-ops : Group-Ops ℤp★ grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group ℤp★ grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
remove useless import
CyclicGroup: remove useless import
Agda
bsd-3-clause
crypto-agda/crypto-agda
3a1143b9db99b9ec7e1431f08aab91f27cf9bd7a
Postulate/Extensionality.agda
Postulate/Extensionality.agda
module Postulate.Extensionality where -- POSTULATE EXTENSIONALITY -- -- Justification on Agda mailing list: -- http://permalink.gmane.org/gmane.comp.lang.agda/2343 open import Relation.Binary.PropositionalEquality postulate ext : ∀ {a b} → Extensionality a b -- Convenience of using extensionality 3 times in a row -- (using it twice in a row is moderately tolerable) ext³ : ∀ {A : Set} {B : A → Set} {C : (a : A) → B a → Set } {D : (a : A) → (b : B a) → C a b → Set} {f g : (a : A) → (b : B a) → (c : C a b) → D a b c} → ((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g ext³ fabc=gabc = ext (λ a → ext (λ b → ext (λ c → fabc=gabc a b c)))
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Postulate extensionality of functions. -- -- Justification on Agda mailing list: -- http://permalink.gmane.org/gmane.comp.lang.agda/2343 ------------------------------------------------------------------------ module Postulate.Extensionality where open import Relation.Binary.PropositionalEquality postulate ext : ∀ {a b} → Extensionality a b -- Convenience of using extensionality 3 times in a row -- (using it twice in a row is moderately tolerable) ext³ : ∀ {A : Set} {B : A → Set} {C : (a : A) → B a → Set } {D : (a : A) → (b : B a) → C a b → Set} {f g : (a : A) → (b : B a) → (c : C a b) → D a b c} → ((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g ext³ fabc=gabc = ext (λ a → ext (λ b → ext (λ c → fabc=gabc a b c)))
Document Postulate.Extensionality regularly.
Document Postulate.Extensionality regularly. Old-commit-hash: 35222e92088dbd2313ec7252e50cd68e85b340bf
Agda
mit
inc-lc/ilc-agda
e7d0ffc6976dc3270e58e80326cf78dc7e9dcb2e
flat-funs.agda
flat-funs.agda
module flat-funs where open import Data.Nat import Level as L open import composable open import vcomp record FlatFuns {t} (T : Set t) : Set (L.suc t) where constructor mk field `⊤ : T `Bit : T _`×_ : T → T → T _`^_ : T → ℕ → T _`→_ : T → T → Set `Vec : T → ℕ → T `Vec A n = A `^ n `Bits : ℕ → T `Bits n = `Bit `^ n infixr 2 _`×_ infixl 2 _`^_ infix 0 _`→_ record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where constructor mk open FlatFuns ♭Funs field idO : ∀ {A} → A `→ A isComposable : Composable _`→_ isVComposable : VComposable _`×_ _`→_ -- Fanout _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C fst : ∀ {A B} → A `× B `→ A snd : ∀ {A B} → A `× B `→ B open Composable isComposable open VComposable isVComposable <_,_> : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C < f , g > = f &&& g <_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) < f × g > = f *** g open Composable isComposable public open VComposable isVComposable public open import Data.Unit using (⊤) open import Data.Vec open import Data.Bits open import Data.Product open import Function fun♭Funs : FlatFuns Set fun♭Funs = mk ⊤ Bit _×_ Vec (λ A B → A → B) bitsFun♭Funs : FlatFuns ℕ bitsFun♭Funs = mk 0 1 _+_ _*_ (λ i o → Bits i → Bits o) fun♭Ops : FlatFunsOps fun♭Funs fun♭Ops = mk id funComp funVComp _&&&_ proj₁ proj₂ where _&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C (f &&& g) x = (f x , g x) bitsFun♭Ops : FlatFunsOps bitsFun♭Funs bitsFun♭Ops = mk id bitsFunComp bitsFunVComp _&&&_ (λ {A} → take A) (λ {A} → drop A) where open FlatFuns bitsFun♭Funs _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C (f &&& g) x = (f x ++ g x) ×-♭Funs : ∀ {s t} {S : Set s} {T : Set t} → FlatFuns S → FlatFuns T → FlatFuns (S × T) ×-♭Funs funs-S funs-T = ? where module S = FlatFuns funs-S module T = FlatFuns funs-T ×-♭Ops : ∀ {s t} {S : Set s} {T : Set t} {funs-S : FlatFuns S} {funs-T : FlatFuns T} → FlatFunsOps funs-S → FlatFunsOps funs-T → FlatFunsOps (×-♭Funs funs-S funs-T) ×-♭Ops ops-S ops-T = ? where module S = FlatFunsOps ops-S module T = FlatFunsOps ops-T
module flat-funs where open import Data.Nat open import Data.Bits using (Bits) import Level as L import Function as F open import composable open import vcomp open import universe record FlatFuns {t} (T : Set t) : Set (L.suc t) where constructor mk field universe : Universe T _`→_ : T → T → Set infix 0 _`→_ open Universe universe public record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where constructor mk open FlatFuns ♭Funs field idO : ∀ {A} → A `→ A _>>>_ : ∀ {A B C} → (A `→ B) → (B `→ C) → (A `→ C) _***_ : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) -- Fanout _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C fst : ∀ {A B} → A `× B `→ A snd : ∀ {A B} → A `× B `→ B constBits : ∀ {n} → Bits n → `⊤ `→ `Bits n <_,_> : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C < f , g > = f &&& g <_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) < f × g > = f *** g open import Data.Unit using (⊤) open import Data.Vec open import Data.Bits open import Data.Fin using (Fin) renaming (_+_ to _+ᶠ_) open import Data.Product renaming (zip to ×-zip; map to ×-map) open import Function -→- : Set → Set → Set -→- A B = A → B _→ᶠ_ : ℕ → ℕ → Set _→ᶠ_ i o = Fin i → Fin o mapArr : ∀ {s t} {S : Set s} {T : Set t} (F G : T → S) → (S → S → Set) → (T → T → Set) mapArr F G _`→_ A B = F A `→ G B fun♭Funs : FlatFuns Set fun♭Funs = mk Set-U -→- bitsFun♭Funs : FlatFuns ℕ bitsFun♭Funs = mk Bits-U _→ᵇ_ finFun♭Funs : FlatFuns ℕ finFun♭Funs = mk Fin-U _→ᶠ_ fun♭Ops : FlatFunsOps fun♭Funs fun♭Ops = mk id (λ f g x → g (f x)) (λ f g → ×-map f g) _&&&_ proj₁ proj₂ const where _&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C (f &&& g) x = (f x , g x) bitsFun♭Ops : FlatFunsOps bitsFun♭Funs bitsFun♭Ops = mk id (λ f g → g ∘ f) (VComposable._***_ bitsFunVComp) _&&&_ (λ {A} → take A) (λ {A} → drop A) (λ xs _ → xs ++ [] {- ugly? -}) where open FlatFuns bitsFun♭Funs _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C (f &&& g) x = (f x ++ g x) ×-♭Funs : ∀ {s t} {S : Set s} {T : Set t} → FlatFuns S → FlatFuns T → FlatFuns (S × T) ×-♭Funs funs-S funs-T = mk (×-U S.universe T.universe) (λ { (A₀ , A₁) (B₀ , B₁) → (A₀ S.`→ B₀) × (A₁ T.`→ B₁) }) where module S = FlatFuns funs-S module T = FlatFuns funs-T ×⊤-♭Funs : ∀ {s} {S : Set s} → FlatFuns S → FlatFuns ⊤ → FlatFuns S ×⊤-♭Funs funs-S funs-T = mk S.universe (λ A B → (A S.`→ B) × (_ T.`→ _)) where module S = FlatFuns funs-S module T = FlatFuns funs-T ×-♭Ops : ∀ {s t} {S : Set s} {T : Set t} {funs-S : FlatFuns S} {funs-T : FlatFuns T} → FlatFunsOps funs-S → FlatFunsOps funs-T → FlatFunsOps (×-♭Funs funs-S funs-T) ×-♭Ops ops-S ops-T = mk (S.idO , T.idO) (×-zip S._>>>_ T._>>>_) (×-zip S._***_ T._***_) (×-zip S._&&&_ T._&&&_) (S.fst , T.fst) (S.snd , T.snd) (S.constBits &&& T.constBits) where module S = FlatFunsOps ops-S module T = FlatFunsOps ops-T open FlatFunsOps fun♭Ops ×⊤-♭Ops : ∀ {s} {S : Set s} {funs-S : FlatFuns S} {funs-⊤ : FlatFuns ⊤} → FlatFunsOps funs-S → FlatFunsOps funs-⊤ → FlatFunsOps (×⊤-♭Funs funs-S funs-⊤) ×⊤-♭Ops ops-S ops-⊤ = mk (S.idO , T.idO) (×-zip S._>>>_ T._>>>_) (×-zip S._***_ T._***_) (×-zip S._&&&_ T._&&&_) (S.fst , T.fst) (S.snd , T.snd) (S.constBits &&& T.constBits) where module S = FlatFunsOps ops-S module T = FlatFunsOps ops-⊤ open FlatFunsOps fun♭Ops constFuns : Set → FlatFuns ⊤ constFuns A = mk ⊤-U (λ _ _ → A) timeOps : FlatFunsOps (constFuns ℕ) timeOps = mk 0 _+_ _⊔_ _⊔_ 0 0 (const 0) spaceOps : FlatFunsOps (constFuns ℕ) spaceOps = mk 0 _+_ _+_ _+_ 0 0 (λ {n} _ → n) time×spaceOps : FlatFunsOps (constFuns (ℕ × ℕ)) time×spaceOps = ×⊤-♭Ops timeOps spaceOps
put the type interface in the universe module
flat-funs: put the type interface in the universe module
Agda
bsd-3-clause
crypto-agda/crypto-agda
785dddce82b3dc294f8d52a3a8a96b64366b1ac4
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit module Structure where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
Remove more
Remove more No Structure in Base. Old-commit-hash: 81cee315c1ade9b842f0400fbc2bd215a189e8dc
Agda
mit
inc-lc/ilc-agda
2aa331ecc397f402c621e7b4b53886eb5ca53e91
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x) , abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
Use HOAS-enabled helpers for nested abstractions.
Use HOAS-enabled helpers for nested abstractions. Old-commit-hash: f5006b448dcc30a8ff103cf5de501e945e14faa1
Agda
mit
inc-lc/ilc-agda
24ce7b62d29582982f0f0c2694ebd10a473113aa
Game/IND-CCA2.agda
Game/IND-CCA2.agda
{-# OPTIONS --without-K #-} open import Type open import Data.Bit open import Data.Maybe open import Data.Product open import Data.Unit open import Data.Nat.NP open import Rat open import Explore.Type open import Explore.Explorable open import Explore.Product open Operators open import Relation.Binary.PropositionalEquality module Game.IND-CCA2 (PubKey : ★) (SecKey : ★) (Message : ★) (CipherText : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (KeyGen : Rₖ → PubKey × SecKey) (Enc : PubKey → Message → Rₑ → CipherText) (Dec : SecKey → CipherText → Message) where open import Game.CCA-Common Message CipherText Adv : ★ Adv = Rₐ → PubKey → Strategy ((Message × Message) × (CipherText → Strategy Bit)) {- Valid-Adv : Adv → Set Valid-Adv adv = ∀ {rₐ rₓ pk c} → Valid (λ x → x ≢ c) {!!} -} R : ★ R = Rₐ × Rₖ × Rₑ Game : ★ Game = Adv → R → Bit ⅁ : Bit → Game ⅁ b m (rₐ , rₖ , rₑ) with KeyGen rₖ ... | pk , sk = b′ where open Eval Dec sk ev = eval (m rₐ pk) mb = proj (proj₁ ev) b d = proj₂ ev c = Enc pk mb rₑ b′ = eval (d c) module Advantage (μₑ : Explore₀ Rₑ) (μₖ : Explore₀ Rₖ) (μₐ : Explore₀ Rₐ) where μR : Explore₀ R μR = μₐ ×ᵉ μₖ ×ᵉ μₑ module μR = FromExplore₀ μR run : Bit → Adv → ℕ run b adv = μR.count (⅁ b adv) Advantage : Adv → ℕ Advantage adv = dist (run 0b adv) (run 1b adv) Advantageℚ : Adv → ℚ Advantageℚ adv = Advantage adv / μR.Card -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type open import Data.Bit open import Data.Maybe open import Data.Product open import Data.Unit open import Data.Nat.NP --open import Rat open import Explore.Type open import Explore.Explorable open import Explore.Product open Operators open import Relation.Binary.PropositionalEquality module Game.IND-CCA2 (PubKey : ★) (SecKey : ★) (Message : ★) (CipherText : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (KeyGen : Rₖ → PubKey × SecKey) (Enc : PubKey → Message → Rₑ → CipherText) (Dec : SecKey → CipherText → Message) where open import Game.CCA-Common Message CipherText Adv : ★ Adv = Rₐ → PubKey → Strategy ((Message × Message) × (CipherText → Strategy Bit)) {- Valid-Adv : Adv → Set Valid-Adv adv = ∀ {rₐ rₓ pk c} → Valid (λ x → x ≢ c) {!!} -} R : ★ R = Rₐ × Rₖ × Rₑ Game : ★ Game = Adv → R → Bit ⅁ : Bit → Game ⅁ b m (rₐ , rₖ , rₑ) with KeyGen rₖ ... | pk , sk = b′ where open Eval Dec sk ev = eval (m rₐ pk) mb = proj (proj₁ ev) b d = proj₂ ev c = Enc pk mb rₑ b′ = eval (d c) module Advantage (μₑ : Explore₀ Rₑ) (μₖ : Explore₀ Rₖ) (μₐ : Explore₀ Rₐ) where μR : Explore₀ R μR = μₐ ×ᵉ μₖ ×ᵉ μₑ module μR = FromExplore₀ μR run : Bit → Adv → ℕ run b adv = μR.count (⅁ b adv) Advantage : Adv → ℕ Advantage adv = dist (run 0b adv) (run 1b adv) --Advantageℚ : Adv → ℚ --Advantageℚ adv = Advantage adv / μR.Card -- -} -- -} -- -} -- -}
Hide the Rat code
IND-CCA2: Hide the Rat code
Agda
bsd-3-clause
crypto-agda/crypto-agda
16f8a95227efdacdb93599ca7b8ddfd847c2e47a
Parametric/Denotation/Value.agda
Parametric/Denotation/Value.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Value domains for languages described in Plotkin style ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Denotation.Value (Base : Type.Structure) where open import Base.Denotation.Notation open Type.Structure Base Structure : Set₁ Structure = Base → Set module Structure (⟦_⟧Base : Structure) where ⟦_⟧Type : Type -> Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type open import Base.Denotation.Environment Type ⟦_⟧Type public
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for standard evaluation (Def. 3.1 and 3.2, Fig. 4c and 4f). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Denotation.Value (Base : Type.Structure) where open import Base.Denotation.Notation open Type.Structure Base -- Extension point: Values for base types. Structure : Set₁ Structure = Base → Set module Structure (⟦_⟧Base : Structure) where -- We provide: Values for arbitrary types. ⟦_⟧Type : Type -> Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type -- This means: Overload ⟦_⟧ to mean ⟦_⟧Type. meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- We also provide: Environments of such values. open import Base.Denotation.Environment Type ⟦_⟧Type public
Document P.D.Value.
Document P.D.Value. Old-commit-hash: bfaab88fbd6365ff0b9046dd999ccd1362c526d6
Agda
mit
inc-lc/ilc-agda
a2f7958b6a6e7245442d1e150092aacdc7c8707d
examples/Propositional.agda
examples/Propositional.agda
module Propositional where open import Data.Nat open import Relation.Binary.PropositionalEquality open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open ≡-Reasoning -------------------------------------------------------------------------------- -- Some easy lemmas -------------------------------------------------------------------------------- +-zero : ∀ a → a + zero ≡ a +-zero zero = refl +-zero (suc a) rewrite +-zero a = refl +-suc : ∀ a b → a + suc b ≡ suc (a + b) +-suc zero b = refl +-suc (suc a) b rewrite +-suc a b = refl +-assoc : ∀ a b c → a + b + c ≡ a + (b + c) +-assoc zero b c = refl +-assoc (suc a) b c rewrite +-assoc a b c = refl -------------------------------------------------------------------------------- -- Proofs by equational reasoning -------------------------------------------------------------------------------- -- commutativity of addition proved traditionally +-comm₁ : ∀ a b → a + b ≡ b + a +-comm₁ zero b = sym (+-zero b) +-comm₁ (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong suc (+-comm₁ a b) ⟩ suc (b + a) ≡⟨ sym (+-suc b a) ⟩ b + suc a ∎ -- commutativity of addition proved with holes +-comm : ∀ a b → a + b ≡ b + a +-comm zero b = sym (+-zero b) +-comm (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong! (+-comm a b) ⟩ suc (b + a) ≡⟨ cong! (+-suc b a) ⟩ b + suc a ∎ -- distributivity of multiplication over addition proved traditionally *-distrib-+₁ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+₁ zero b c = refl *-distrib-+₁ (suc a) b c = b + c + a * (b + c) ≡⟨ cong (λ h → b + c + h) (*-distrib-+₁ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ sym (+-assoc (b + c) (a * b) (a * c)) ⟩ ((b + c) + a * b) + a * c ≡⟨ cong (λ h → h + a * c) (+-assoc b c (a * b)) ⟩ (b + (c + a * b)) + a * c ≡⟨ cong (λ h → (b + h) + a * c) (+-comm c (a * b)) ⟩ (b + (a * b + c)) + a * c ≡⟨ cong (λ h → h + a * c) (sym (+-assoc b (a * b) c)) ⟩ ((b + a * b) + c) + a * c ≡⟨ +-assoc (b + a * b) c (a * c) ⟩ (b + a * b) + (c + a * c) ∎ -- distributivity of multiplication over addition proved with holes *-distrib-+ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+ zero b c = refl *-distrib-+ (suc a) b c = b + c + ⌞ a * (b + c) ⌟ ≡⟨ cong! (*-distrib-+ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ cong! (+-assoc (b + c) (a * b) (a * c)) ⟩ ⌞ (b + c) + a * b ⌟ + a * c ≡⟨ cong! (+-assoc b c (a * b)) ⟩ (b + ⌞ c + a * b ⌟) + a * c ≡⟨ cong! (+-comm c (a * b)) ⟩ ⌞ b + (a * b + c) ⌟ + a * c ≡⟨ cong! (+-assoc b (a * b) c) ⟩ ⌞ ((b + a * b) + c) + a * c ⌟ ≡⟨ cong! (+-assoc (b + a * b) c (a * c)) ⟩ (b + a * b) + (c + a * c) ∎
module Propositional where open import Data.Nat open import Relation.Binary.PropositionalEquality open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open ≡-Reasoning -------------------------------------------------------------------------------- -- Some easy lemmas -------------------------------------------------------------------------------- +-zero : ∀ a → a + zero ≡ a +-zero zero = refl +-zero (suc a) rewrite +-zero a = refl +-suc : ∀ a b → a + suc b ≡ suc (a + b) +-suc zero b = refl +-suc (suc a) b rewrite +-suc a b = refl +-assoc : ∀ a b c → a + b + c ≡ a + (b + c) +-assoc zero b c = refl +-assoc (suc a) b c rewrite +-assoc a b c = refl -------------------------------------------------------------------------------- -- Proofs by equational reasoning -------------------------------------------------------------------------------- -- commutativity of addition proved traditionally +-comm₁ : ∀ a b → a + b ≡ b + a +-comm₁ zero b = sym (+-zero b) +-comm₁ (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong suc (+-comm₁ a b) ⟩ suc (b + a) ≡⟨ sym (+-suc b a) ⟩ b + suc a ∎ -- commutativity of addition proved with holes +-comm : ∀ a b → a + b ≡ b + a +-comm zero b = sym (+-zero b) +-comm (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong! (+-comm a b) ⟩ suc (b + a) ≡⟨ cong! (+-suc b a) ⟩ b + suc a ∎ -- distributivity of multiplication over addition proved traditionally *-distrib-+₁ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+₁ zero b c = refl *-distrib-+₁ (suc a) b c = b + c + a * (b + c) ≡⟨ cong (λ h → b + c + h) (*-distrib-+₁ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ sym (+-assoc (b + c) (a * b) (a * c)) ⟩ ((b + c) + a * b) + a * c ≡⟨ cong (λ h → h + a * c) (+-assoc b c (a * b)) ⟩ (b + (c + a * b)) + a * c ≡⟨ cong (λ h → (b + h) + a * c) (+-comm c (a * b)) ⟩ (b + (a * b + c)) + a * c ≡⟨ cong (λ h → h + a * c) (sym (+-assoc b (a * b) c)) ⟩ ((b + a * b) + c) + a * c ≡⟨ +-assoc (b + a * b) c (a * c) ⟩ (b + a * b) + (c + a * c) ∎ -- distributivity of multiplication over addition proved with holes *-distrib-+ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+ zero b c = refl *-distrib-+ (suc a) b c = b + c + ⌞ a * (b + c) ⌟ ≡⟨ cong! (*-distrib-+ a b c) ⟩ ⌞ (b + c) + (a * b + a * c) ⌟ ≡⟨ cong! (+-assoc (b + c) (a * b) (a * c)) ⟩ ⌞ (b + c) + a * b ⌟ + a * c ≡⟨ cong! (+-assoc b c (a * b)) ⟩ (b + ⌞ c + a * b ⌟) + a * c ≡⟨ cong! (+-comm c (a * b)) ⟩ ⌞ b + (a * b + c) ⌟ + a * c ≡⟨ cong! (+-assoc b (a * b) c) ⟩ ⌞ ((b + a * b) + c) + a * c ⌟ ≡⟨ cong! (+-assoc (b + a * b) c (a * c)) ⟩ (b + a * b) + (c + a * c) ∎
Add a hole in the examples that's strictly unnecessary
Add a hole in the examples that's strictly unnecessary ... but potentially confusing if it isn't there
Agda
mit
bch29/agda-holes
48d1be2bb4bb61634b15fbd0cff064c02be1f4f9
Base/Syntax/Context.agda
Base/Syntax/Context.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. -- ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. -- ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
Comment on handling of contexts
Comment on handling of contexts Old-commit-hash: 0bfc0dfdc024921016f8df0d8252aa20f5f0f8d6
Agda
mit
inc-lc/ilc-agda
7ec8bed818d248b395b4b0b2c2d2f21361f940bc
Thesis/LangOps.agda
Thesis/LangOps.agda
module Thesis.LangOps where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality oplusτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ ⇒ τ) ominusτo : ∀ {Γ} τ → Term Γ (τ ⇒ τ ⇒ Δt τ) onilτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ) onilτo τ = abs (app₂ (ominusτo τ) (var this) (var this)) -- Do NOT try to read this, such terms are write-only. But the behavior is -- specified to be oplusτ-equiv and ominusτ-equiv. oplusτo (σ ⇒ τ) = abs (abs (abs (app₂ (oplusτo τ) (app (var (that (that this))) (var this)) (app₂ (var (that this)) (var this) (app (onilτo σ) (var this)))))) oplusτo unit = abs (abs (const unit)) oplusτo int = const plus oplusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (oplusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (oplusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) oplusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const linj) (app₂ (oplusτo σ) (var (that (that this))) (var this)))) (abs (app (const linj) (var (that (that this))))))) (abs (var this)))) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const rinj) (var (that (that this))))) (abs (app (const rinj) (app₂ (oplusτo τ) (var (that (that this))) (var this)))))) (abs (var this)))))) ominusτo (σ ⇒ τ) = abs (abs (abs (abs (app₂ (ominusτo τ) (app (var (that (that (that this)))) (app₂ (oplusτo σ) (var (that this)) (var this))) (app (var (that (that this))) (var (that this))))))) ominusτo unit = abs (abs (const unit)) ominusτo int = const minus ominusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (ominusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (ominusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) ominusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app (const linj) (app (const linj) (app₂ (ominusτo σ) (var (that this)) (var this))))) (abs (app (const rinj) (var (that (that (that this)))))))) (abs (app₃ (const match) (var (that this)) (abs (app (const rinj) (var (that (that (that this)))))) (abs (app (const linj) (app (const rinj) (app₂ (ominusτo τ) (var (that this)) (var this))))))))) oplusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ a da → ⟦ oplusτo τ ⟧Term ρ a da ≡ a ⊕ da ominusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ b a → ⟦ ominusτo τ ⟧Term ρ b a ≡ b ⊝ a oplusτ-equiv-ext : ∀ τ Γ → ⟦ oplusτo {Γ} τ ⟧Term ≡ λ ρ → _⊕_ oplusτ-equiv-ext τ _ = ext³ (λ ρ a da → oplusτ-equiv _ ρ τ a da) ominusτ-equiv-ext : ∀ τ Γ → ⟦ ominusτo {Γ} τ ⟧Term ≡ λ ρ → _⊝_ ominusτ-equiv-ext τ _ = ext³ (λ ρ a da → ominusτ-equiv _ ρ τ a da) oplusτ-equiv Γ ρ (σ ⇒ τ) f df = ext (λ a → lemma a) where module _ (a : ⟦ σ ⟧Type) where ρ′ = a • df • f • ρ ρ′′ = a • ρ′ lemma : ⟦ oplusτo τ ⟧Term ρ′ (f a) (df a (⟦ ominusτo σ ⟧Term ρ′′ a a)) ≡ f a ⊕ df a (nil a) lemma rewrite ominusτ-equiv _ ρ′′ σ a a | oplusτ-equiv _ ρ′ τ (f a) (df a (nil a)) = refl oplusτ-equiv Γ ρ unit tt tt = refl oplusτ-equiv Γ ρ int a da = refl oplusτ-equiv Γ ρ (pair σ τ) (a , b) (da , db) rewrite oplusτ-equiv _ ((da , db) • (a , b) • ρ) σ a da | oplusτ-equiv _ ((da , db) • (a , b) • ρ) τ b db = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₁ dx)) rewrite oplusτ-equiv-ext σ (Δt σ • sum (Δt σ) (Δt τ) • σ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₂ dy)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₁ dx)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₂ dy)) rewrite oplusτ-equiv-ext τ (Δt τ • sum (Δt σ) (Δt τ) • τ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) = refl ominusτ-equiv Γ ρ (σ ⇒ τ) g f = ext (λ a → ext (lemma a)) where module _ (a : ⟦ σ ⟧Type) (da : Chτ σ) where ρ′ = da • a • f • g • ρ lemma : ⟦ ominusτo τ ⟧Term (da • a • f • g • ρ) (g (⟦ oplusτo σ ⟧Term (da • a • f • g • ρ) a da)) (f a) ≡ g (a ⊕ da) ⊝ f a lemma rewrite oplusτ-equiv _ ρ′ σ a da | ominusτ-equiv _ ρ′ τ (g (a ⊕ da)) (f a) = refl ominusτ-equiv Γ ρ unit tt tt = refl ominusτ-equiv Γ ρ int b a = refl ominusτ-equiv Γ ρ (pair σ τ) (a2 , b2) (a1 , b1) rewrite ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) σ a2 a1 | ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) τ b2 b1 = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ x₁) rewrite ominusτ-equiv-ext σ (σ • σ • sum σ τ • sum σ τ • Γ) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ x) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) rewrite ominusτ-equiv-ext τ (τ • τ • sum σ τ • sum σ τ • Γ) = refl
module Thesis.LangOps where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality oplusτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ ⇒ τ) ominusτo : ∀ {Γ} τ → Term Γ (τ ⇒ τ ⇒ Δt τ) onilτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ) onilτo τ = abs (app₂ (ominusτo τ) (var this) (var this)) -- Do NOT try to read this, such terms are write-only. But the behavior is -- specified to be oplusτ-equiv and ominusτ-equiv. oplusτo (σ ⇒ τ) = abs (abs (abs (app₂ (oplusτo τ) (app (var (that (that this))) (var this)) (app₂ (var (that this)) (var this) (app (onilτo σ) (var this)))))) oplusτo unit = abs (abs (const unit)) oplusτo int = const plus oplusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (oplusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (oplusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) oplusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const linj) (app₂ (oplusτo σ) (var (that (that this))) (var this)))) (abs (app (const linj) (var (that (that this))))))) (abs (var this)))) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const rinj) (var (that (that this))))) (abs (app (const rinj) (app₂ (oplusτo τ) (var (that (that this))) (var this)))))) (abs (var this)))))) ominusτo (σ ⇒ τ) = abs (abs (abs (abs (app₂ (ominusτo τ) (app (var (that (that (that this)))) (app₂ (oplusτo σ) (var (that this)) (var this))) (app (var (that (that this))) (var (that this))))))) ominusτo unit = abs (abs (const unit)) ominusτo int = const minus ominusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (ominusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (ominusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) ominusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app (const linj) (app (const linj) (app₂ (ominusτo σ) (var (that this)) (var this))))) (abs (app (const rinj) (var (that (that (that this)))))))) (abs (app₃ (const match) (var (that this)) (abs (app (const rinj) (var (that (that (that this)))))) (abs (app (const linj) (app (const rinj) (app₂ (ominusτo τ) (var (that this)) (var this))))))))) oplusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ a da → ⟦ oplusτo τ ⟧Term ρ a da ≡ a ⊕ da ominusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ b a → ⟦ ominusτo τ ⟧Term ρ b a ≡ b ⊝ a oplusτ-equiv-ext : ∀ τ Γ → ⟦ oplusτo {Γ} τ ⟧Term ≡ λ ρ → _⊕_ oplusτ-equiv-ext τ _ = ext³ (λ ρ a da → oplusτ-equiv _ ρ τ a da) ominusτ-equiv-ext : ∀ τ Γ → ⟦ ominusτo {Γ} τ ⟧Term ≡ λ ρ → _⊝_ ominusτ-equiv-ext τ _ = ext³ (λ ρ a da → ominusτ-equiv _ ρ τ a da) oplusτ-equiv Γ ρ (σ ⇒ τ) f df = ext (λ a → lemma a) where module _ (a : ⟦ σ ⟧Type) where ρ′ = a • df • f • ρ ρ′′ = a • ρ′ lemma : ⟦ oplusτo τ ⟧Term ρ′ (f a) (df a (⟦ ominusτo σ ⟧Term ρ′′ a a)) ≡ f a ⊕ df a (nil a) lemma rewrite ominusτ-equiv _ ρ′′ σ a a | oplusτ-equiv _ ρ′ τ (f a) (df a (nil a)) = refl oplusτ-equiv Γ ρ unit tt tt = refl oplusτ-equiv Γ ρ int a da = refl oplusτ-equiv Γ ρ (pair σ τ) (a , b) (da , db) rewrite oplusτ-equiv _ ((da , db) • (a , b) • ρ) σ a da | oplusτ-equiv _ ((da , db) • (a , b) • ρ) τ b db = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₁ dx)) rewrite oplusτ-equiv-ext σ (Δt σ • sum (Δt σ) (Δt τ) • σ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₂ dy)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₁ dx)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₂ dy)) rewrite oplusτ-equiv-ext τ (Δt τ • sum (Δt σ) (Δt τ) • τ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) = refl ominusτ-equiv Γ ρ (σ ⇒ τ) g f = ext (λ a → ext (lemma a)) where module _ (a : ⟦ σ ⟧Type) (da : Chτ σ) where ρ′ = da • a • f • g • ρ lemma : ⟦ ominusτo τ ⟧Term (da • a • f • g • ρ) (g (⟦ oplusτo σ ⟧Term (da • a • f • g • ρ) a da)) (f a) ≡ g (a ⊕ da) ⊝ f a lemma rewrite oplusτ-equiv _ ρ′ σ a da | ominusτ-equiv _ ρ′ τ (g (a ⊕ da)) (f a) = refl ominusτ-equiv Γ ρ unit tt tt = refl ominusτ-equiv Γ ρ int b a = refl ominusτ-equiv Γ ρ (pair σ τ) (a2 , b2) (a1 , b1) rewrite ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) σ a2 a1 | ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) τ b2 b1 = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ x₁) rewrite ominusτ-equiv-ext σ (σ • σ • sum σ τ • sum σ τ • Γ) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ x) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) rewrite ominusτ-equiv-ext τ (τ • τ • sum σ τ • sum σ τ • Γ) = refl -- Proved these lemmas to show them in thesis. oplusτ-equiv-term : ∀ dΓ (dρ : ⟦ dΓ ⟧Context) τ t dt → ⟦ app₂ (oplusτo τ) t dt ⟧Term dρ ≡ ⟦ t ⟧Term dρ ⊕ ⟦ dt ⟧Term dρ oplusτ-equiv-term dΓ dρ τ t dt = oplusτ-equiv dΓ dρ τ (⟦ t ⟧Term dρ) (⟦ dt ⟧Term dρ) ominusτ-equiv-term : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ t2 t1 → ⟦ app₂ (ominusτo τ) t2 t1 ⟧Term ρ ≡ ⟦ t2 ⟧Term ρ ⊝ ⟦ t1 ⟧Term ρ ominusτ-equiv-term Γ ρ τ t2 t1 = ominusτ-equiv Γ ρ τ (⟦ t2 ⟧Term ρ) (⟦ t1 ⟧Term ρ)
Add lemmas I present in thesis
Add lemmas I present in thesis
Agda
mit
inc-lc/ilc-agda
965133f11d3863769cb8e636eff326a49bc7321b
Crypto/JS/BigI/CyclicGroup.agda
Crypto/JS/BigI/CyclicGroup.agda
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (Bool; trace-call; _++_) open import FFI.JS.Check renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract -- ℤp* 𝔾 : Set 𝔾 = BigI private mod-p : BigI → 𝔾 mod-p x = mod x p -- There are two ways to go from BigI to 𝔾: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹𝔾 : BigI → 𝔾 BigI▹𝔾 = -- trace-call "BigI▹𝔾 " λ x → (check? (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) (check? (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x)) check-non-zero : 𝔾 → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : 𝔾 → BigI repr x = x 1# : 𝔾 1# = 1I 1/_ : 𝔾 → 𝔾 1/ x = modInv (check-non-zero x) p _^_ : 𝔾 → BigI → 𝔾 x ^ y = modPow x y p _*_ _/_ : 𝔾 → 𝔾 → 𝔾 x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance 𝔾-Eq? : Eq? 𝔾 𝔾-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : 𝔾 → 𝔾 → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List 𝔾 → 𝔾 prod = foldr _*_ 1# mon-ops : Monoid-Ops 𝔾 mon-ops = _*_ , 1# grp-ops : Group-Ops 𝔾 grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group 𝔾 grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (Bool; trace-call; _++_) open import FFI.JS.Check renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract ℤ[_]★ : Set ℤ[_]★ = BigI private ℤp★ : Set ℤp★ = BigI mod-p : BigI → ℤp★ mod-p x = mod x p -- There are two ways to go from BigI to ℤp★: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹ℤ[_]★ : BigI → ℤp★ BigI▹ℤ[_]★ = -- trace-call "BigI▹ℤ[_]★ " λ x → (check? (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) (check? (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x)) check-non-zero : ℤp★ → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : ℤp★ → BigI repr x = x 1# : ℤp★ 1# = 1I 1/_ : ℤp★ → ℤp★ 1/ x = modInv (check-non-zero x) p _^_ : ℤp★ → BigI → ℤp★ x ^ y = modPow x y p _*_ _/_ : ℤp★ → ℤp★ → ℤp★ x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance ℤ[_]★-Eq? : Eq? ℤp★ ℤ[_]★-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤp★ → ℤp★ → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List ℤp★ → ℤp★ prod = foldr _*_ 1# mon-ops : Monoid-Ops ℤp★ mon-ops = _*_ , 1# grp-ops : Group-Ops ℤp★ grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group ℤp★ grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
rename 𝔾 as ℤ[ p ]★
CyclicGroup: rename 𝔾 as ℤ[ p ]★
Agda
bsd-3-clause
crypto-agda/crypto-agda
da7ed128a0220380c3109913af5f58760ad241d3
Base/Denotation/Notation.agda
Base/Denotation/Notation.agda
module Base.Denotation.Notation where -- OVERLOADING ⟦_⟧ NOTATION -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Overloading ⟦_⟧ notation -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. ------------------------------------------------------------------------ module Base.Denotation.Notation where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
Improve commentary in Base.Denotation.Notation.
Improve commentary in Base.Denotation.Notation. Old-commit-hash: f51d5958c73259a9120fc8a2ad20854bb12f8870
Agda
mit
inc-lc/ilc-agda
66a643a5678be6f131477803e19ed0cb52159556
agda/Equality.agda
agda/Equality.agda
-- This is an implementation of the equality type for Sets. Agda's -- standard equality is more powerful. The main idea here is to -- illustrate the equality type. module Equality where open import Level -- The equality of two elements of type A. The type a ≡ b is a family -- of types which captures the statement of equality in A. Not all of -- the types are inhabited as in general not all elements are equal -- here. The only type that are inhabited are a ≡ a by the element -- that we call definition. This is called refl (for reflection in -- agda). data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where definition : {x : A} → x ≡ x -- ≡ is a symmetric relation. sym : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym definition = definition -- ≡ is a transitive relation. trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans pAB definition = pAB -- trans definition pBC = pBC -- alternate proof of transitivity. -- Congruence. If we apply f to equals the result are also equal. cong : ∀{ℓ₀ ℓ₁} {A : Set ℓ₀} {B : Set ℓ₁} {a₀ a₁ : A} → (f : A → B) → a₀ ≡ a₁ → f a₀ ≡ f a₁ cong f definition = definition -- Pretty way of doing equational reasoning. If we want to prove a₀ ≡ -- b through an intermediate set of equations use this. The general -- form will look like. -- -- begin a ≈ a₀ by p₀ -- ≈ a₁ by p₁ -- ... -- ≈ b by p -- ∎ begin : ∀{ℓ} {A : Set ℓ} (a : A) → a ≡ a _≈_by_ : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → (c : A) → b ≡ c → a ≡ c _∎ : ∀{ℓ} {A : Set ℓ} (a : A) → A begin a = definition aEb ≈ c by bEc = trans aEb bEc x ∎ = x infixl 1 _≈_by_ infixl 1 _≡_
-- This is an implementation of the equality type for Sets. Agda's -- standard equality is more powerful. The main idea here is to -- illustrate the equality type. module Equality where open import Level -- The equality of two elements of type A. The type a ≡ b is a family -- of types which captures the statement of equality in A. Not all of -- the types are inhabited as in general not all elements are equal -- here. The only type that are inhabited are a ≡ a by the element -- that we call definition. This is called refl (for reflection in -- agda). data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : {x : A} → x ≡ x -- ≡ is a symmetric relation. sym : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym refl = refl -- ≡ is a transitive relation. trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans pAB refl = pAB -- trans refl pBC = pBC -- alternate proof of transitivity. -- Congruence. If we apply f to equals the result are also equal. cong : ∀{ℓ₀ ℓ₁} {A : Set ℓ₀} {B : Set ℓ₁} {a₀ a₁ : A} → (f : A → B) → a₀ ≡ a₁ → f a₀ ≡ f a₁ cong f refl = refl -- Pretty way of doing equational reasoning. If we want to prove a₀ ≡ -- b through an intermediate set of equations use this. The general -- form will look like. -- -- begin a ≈ a₀ by p₀ -- ≈ a₁ by p₁ -- ... -- ≈ b by p -- ∎ begin : ∀{ℓ} {A : Set ℓ} (a : A) → a ≡ a _≈_by_ : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → (c : A) → b ≡ c → a ≡ c _∎ : ∀{ℓ} {A : Set ℓ} (a : A) → A begin a = refl aEb ≈ c by bEc = trans aEb bEc x ∎ = x infixl 1 _≈_by_ infixl 1 _≡_
use the standard terminology refl.
use the standard terminology refl.
Agda
unlicense
piyush-kurur/sample-code
5303d7901af55944be2ec4695ee17bbd01624291
Theorem/CongApp.agda
Theorem/CongApp.agda
module Theorem.CongApp where -- Theorem CongApp. -- If f ≡ g and x ≡ y, then (f x) ≡ (g y). open import Relation.Binary.PropositionalEquality public infixl 0 _⟨$⟩_ _⟨$⟩_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y : A} → f ≡ g → x ≡ y → f x ≡ g y _⟨$⟩_ = cong₂ (λ x y → x y)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Congruence of application. -- -- If f ≡ g and x ≡ y, then (f x) ≡ (g y). ------------------------------------------------------------------------ module Theorem.CongApp where open import Relation.Binary.PropositionalEquality public infixl 0 _⟨$⟩_ _⟨$⟩_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y : A} → f ≡ g → x ≡ y → f x ≡ g y _⟨$⟩_ = cong₂ (λ x y → x y)
Document Theorem.CongApp regularly.
Document Theorem.CongApp regularly. Old-commit-hash: f16f3e3d0b8e59230bd86a0c223af263a8db75e8
Agda
mit
inc-lc/ilc-agda
b87eb75ad51669de831d389ef1a78b415b31a18d
lib/Data/Nat/Distance.agda
lib/Data/Nat/Distance.agda
open import Data.Nat.NP open import Data.Nat.Properties as Props open import Data.Product open import Relation.Binary.PropositionalEquality.NP module Data.Nat.Distance where dist : ℕ → ℕ → ℕ dist zero y = y dist x zero = x dist (suc x) (suc y) = dist x y dist-refl : ∀ x → dist x x ≡ 0 dist-refl zero = idp dist-refl (suc x) rewrite dist-refl x = idp dist-0≡id : ∀ x → dist 0 x ≡ x dist-0≡id _ = idp dist-x-x+y≡y : ∀ x y → dist x (x + y) ≡ y dist-x-x+y≡y zero y = idp dist-x-x+y≡y (suc x) y = dist-x-x+y≡y x y dist-comm : ∀ x y → dist x y ≡ dist y x dist-comm zero zero = idp dist-comm zero (suc y) = idp dist-comm (suc x) zero = idp dist-comm (suc x) (suc y) = dist-comm x y dist-x+ : ∀ x y z → dist (x + y) (x + z) ≡ dist y z dist-x+ zero y z = idp dist-x+ (suc x) y z = dist-x+ x y z dist-2* : ∀ x y → dist (2* x) (2* y) ≡ 2* dist x y dist-2* zero y = idp dist-2* (suc x) zero = idp dist-2* (suc x) (suc y) rewrite +-assoc-comm x 1 x | +-assoc-comm y 1 y = dist-2* x y dist-asym-def : ∀ {x y} → x ≤ y → x + dist x y ≡ y dist-asym-def z≤n = idp dist-asym-def (s≤s pf) = ap suc (dist-asym-def pf) dist-sym-wlog : ∀ (f : ℕ → ℕ) → (∀ x k → dist (f x) (f (x + k)) ≡ f k) → ∀ x y → dist (f x) (f y) ≡ f (dist x y) dist-sym-wlog f pf x y with compare x y dist-sym-wlog f pf x .(suc (x + k)) | less .x k with pf x (suc k) ... | q rewrite +-assoc-comm x 1 k | q | ! +-assoc-comm x 1 k | dist-x-x+y≡y x (suc k) = idp dist-sym-wlog f pf .y y | equal .y with pf y 0 ... | q rewrite ℕ°.+-comm y 0 | dist-refl y = q dist-sym-wlog f pf .(suc (y + k)) y | greater .y k with pf y (suc k) ... | q rewrite +-assoc-comm 1 y k | dist-comm (y + suc k) y | dist-x-x+y≡y y (suc k) | dist-comm (f (y + suc k)) (f y) = q dist-x* : ∀ x y z → dist (x * y) (x * z) ≡ x * dist y z dist-x* x = dist-sym-wlog (_*_ x) pf where pf : ∀ a k → dist (x * a) (x * (a + k)) ≡ x * k pf a k rewrite proj₁ ℕ°.distrib x a k = dist-x-x+y≡y (x * a) _ dist-2^* : ∀ x y z → dist ⟨2^ x * y ⟩ ⟨2^ x * z ⟩ ≡ ⟨2^ x * dist y z ⟩ dist-2^* x = dist-sym-wlog (2^⟨ x ⟩*) pf where pf : ∀ a k → dist ⟨2^ x * a ⟩ ⟨2^ x * (a + k) ⟩ ≡ ⟨2^ x * k ⟩ pf a k rewrite 2^*-distrib x a k = dist-x-x+y≡y ⟨2^ x * a ⟩ ⟨2^ x * k ⟩ dist-bounded : ∀ {x y f} → x ≤ f → y ≤ f → dist x y ≤ f dist-bounded z≤n y≤f = y≤f dist-bounded (s≤s x≤f) z≤n = s≤s x≤f dist-bounded (s≤s x≤f) (s≤s y≤f) = ≤-step (dist-bounded x≤f y≤f) -- Triangular inequality dist-sum : ∀ x y z → dist x z ≤ dist x y + dist y z dist-sum zero zero z = ℕ≤.refl dist-sum zero (suc y) zero = z≤n dist-sum zero (suc y) (suc z) = s≤s (dist-sum zero y z) dist-sum (suc x) zero zero = s≤s (ℕ≤.reflexive (ℕ°.+-comm 0 x)) dist-sum (suc x) (suc y) zero rewrite ℕ°.+-comm (dist x y) (suc y) | dist-comm x y = s≤s (dist-sum zero y x) dist-sum (suc x) zero (suc z) = dist-sum x zero z ∙≤ ℕ≤.reflexive (ap₂ _+_ (dist-comm x 0) idp) ∙≤ ≤-step (ℕ≤.refl {x} +-mono ≤-step ℕ≤.refl) dist-sum (suc x) (suc y) (suc z) = dist-sum x y z dist≡0 : ∀ x y → dist x y ≡ 0 → x ≡ y dist≡0 zero zero d≡0 = refl dist≡0 zero (suc y) () dist≡0 (suc x) zero () dist≡0 (suc x) (suc y) d≡0 = ap suc (dist≡0 x y d≡0) ∸-dist : ∀ x y → y ≤ x → x ∸ y ≡ dist x y ∸-dist x .0 z≤n = ! dist-comm x 0 ∸-dist ._ ._ (s≤s y≤x) = ∸-dist _ _ y≤x {- post--ulate dist-≤ : ∀ x y → dist x y ≤ x dist-mono₁ : ∀ x y z t → x ≤ y → dist z t ≤ dist (x + z) (y + t) -} -- Haskell -- let dist x y = abs (x - y) -- quickCheck (forAll (replicateM 3 (choose (0,100))) (\ [x,y,z] -> dist (x * y) (x * z) == x * dist y z))
open import Function.NP open import Data.Nat.NP open import Data.Nat.Properties as Props open import Data.Nat.Properties.Simple open import Data.Product.NP open import Relation.Binary.PropositionalEquality.NP open import Relation.Binary open import Relation.Nullary module Data.Nat.Distance where {- dist : ℕ → ℕ → ℕ dist zero y = y dist x zero = x dist (suc x) (suc y) = dist x y -} -- `symIter` from Conor McBride -- Since symIter is essentially `dist` with callbacks, I -- include it here. module Generic {a}{A : Set a}(z : ℕ → A)(s : A → A) where dist : ℕ → ℕ → A dist zero y = z y dist x zero = z x dist (suc x) (suc y) = s (dist x y) dist-comm : ∀ x y → dist x y ≡ dist y x dist-comm zero zero = idp dist-comm zero (suc y) = idp dist-comm (suc x) zero = idp dist-comm (suc x) (suc y) = ap s (dist-comm x y) dist-0≡id : ∀ x → dist 0 x ≡ z x dist-0≡id _ = idp dist-0≡id′ : ∀ x → dist x 0 ≡ z x dist-0≡id′ zero = idp dist-0≡id′ (suc _) = idp open Generic id id public module Add where open Generic id (suc ∘ suc) public renaming ( dist to _+'_ ; dist-0≡id to +'0-identity ; dist-0≡id′ to 0+'-identity ; dist-comm to +'-comm ) +-spec : ∀ x y → x +' y ≡ x + y +-spec zero _ = idp +-spec (suc x) zero = ap suc (ℕ°.+-comm 0 x) +-spec (suc x) (suc y) = ap suc (ap suc (+-spec x y) ∙ ! +-suc x y) module AddMult where open Generic (λ x → x , 0) (λ { (s , p) → (2 + s , 1 + s + p) }) public renaming ( dist to _+*_ ; dist-0≡id to +*0-identity ; dist-0≡id′ to 0+*-identity ; dist-comm to +*-comm ) _+'_ : ℕ → ℕ → ℕ x +' y = fst (x +* y) _*'_ : ℕ → ℕ → ℕ x *' y = snd (x +* y) +*-spec : ∀ x y → (x +' y ≡ x + y) × (x *' y ≡ x * y) +*-spec zero _ = idp , idp +*-spec (suc x) zero = ap suc (ℕ°.+-comm 0 x) , ℕ°.*-comm 0 x +*-spec (suc x) (suc y) = ap suc p+ , ap suc p* where p = +*-spec x y p+ = ap suc (fst p) ∙ ! +-suc x y p* = ap₂ _+_ (fst p) (snd p) ∙ +-assoc x y (x * y) ∙ ap (λ z → x + (y + z)) (ℕ°.*-comm x y) ∙ ! +-assoc-comm y x (y * x) ∙ ap (_+_ y) (ℕ°.*-comm (suc y) x) module Min where open Generic (const zero) suc public renaming ( dist to _⊓'_ ; dist-0≡id to ⊓'0-zero ; dist-0≡id′ to 0⊓'-zero ; dist-comm to ⊓'-comm ) ⊓'-spec : ∀ x y → x ⊓' y ≡ x ⊓ y ⊓'-spec zero zero = idp ⊓'-spec zero (suc y) = idp ⊓'-spec (suc x) zero = idp ⊓'-spec (suc x) (suc y) = ap suc (⊓'-spec x y) module Max where open Generic id suc public renaming ( dist to _⊔'_ ; dist-0≡id to ⊔'0-identity ; dist-0≡id′ to 0⊔'-identity ; dist-comm to ⊔'-comm ) ⊔'-spec : ∀ x y → x ⊔' y ≡ x ⊔ y ⊔'-spec zero zero = idp ⊔'-spec zero (suc y) = idp ⊔'-spec (suc x) zero = idp ⊔'-spec (suc x) (suc y) = ap suc (⊔'-spec x y) dist-refl : ∀ x → dist x x ≡ 0 dist-refl zero = idp dist-refl (suc x) rewrite dist-refl x = idp dist-x-x+y≡y : ∀ x y → dist x (x + y) ≡ y dist-x-x+y≡y zero y = idp dist-x-x+y≡y (suc x) y = dist-x-x+y≡y x y dist-x+ : ∀ x y z → dist (x + y) (x + z) ≡ dist y z dist-x+ zero y z = idp dist-x+ (suc x) y z = dist-x+ x y z dist-2* : ∀ x y → dist (2* x) (2* y) ≡ 2* dist x y dist-2* zero y = idp dist-2* (suc x) zero = idp dist-2* (suc x) (suc y) rewrite +-assoc-comm x 1 x | +-assoc-comm y 1 y = dist-2* x y dist-asym-def : ∀ {x y} → x ≤ y → x + dist x y ≡ y dist-asym-def z≤n = idp dist-asym-def (s≤s pf) = ap suc (dist-asym-def pf) dist-sym-wlog : ∀ (f : ℕ → ℕ) → (∀ x k → dist (f x) (f (x + k)) ≡ f k) → ∀ x y → dist (f x) (f y) ≡ f (dist x y) dist-sym-wlog f pf x y with compare x y dist-sym-wlog f pf x .(suc (x + k)) | less .x k with pf x (suc k) ... | q rewrite +-assoc-comm x 1 k | q | ! +-assoc-comm x 1 k | dist-x-x+y≡y x (suc k) = idp dist-sym-wlog f pf .y y | equal .y with pf y 0 ... | q rewrite ℕ°.+-comm y 0 | dist-refl y = q dist-sym-wlog f pf .(suc (y + k)) y | greater .y k with pf y (suc k) ... | q rewrite +-assoc-comm 1 y k | dist-comm (y + suc k) y | dist-x-x+y≡y y (suc k) | dist-comm (f (y + suc k)) (f y) = q dist-x* : ∀ x y z → dist (x * y) (x * z) ≡ x * dist y z dist-x* x = dist-sym-wlog (_*_ x) pf where pf : ∀ a k → dist (x * a) (x * (a + k)) ≡ x * k pf a k rewrite fst ℕ°.distrib x a k = dist-x-x+y≡y (x * a) _ dist-2^* : ∀ x y z → dist ⟨2^ x * y ⟩ ⟨2^ x * z ⟩ ≡ ⟨2^ x * dist y z ⟩ dist-2^* x = dist-sym-wlog (2^⟨ x ⟩*) pf where pf : ∀ a k → dist ⟨2^ x * a ⟩ ⟨2^ x * (a + k) ⟩ ≡ ⟨2^ x * k ⟩ pf a k rewrite 2^*-distrib x a k = dist-x-x+y≡y ⟨2^ x * a ⟩ ⟨2^ x * k ⟩ dist-bounded : ∀ {x y f} → x ≤ f → y ≤ f → dist x y ≤ f dist-bounded z≤n y≤f = y≤f dist-bounded (s≤s x≤f) z≤n = s≤s x≤f dist-bounded (s≤s x≤f) (s≤s y≤f) = ≤-step (dist-bounded x≤f y≤f) -- Triangular inequality dist-sum : ∀ x y z → dist x z ≤ dist x y + dist y z dist-sum zero zero z = ℕ≤.refl dist-sum zero (suc y) zero = z≤n dist-sum zero (suc y) (suc z) = s≤s (dist-sum zero y z) dist-sum (suc x) zero zero = s≤s (ℕ≤.reflexive (ℕ°.+-comm 0 x)) dist-sum (suc x) (suc y) zero rewrite ℕ°.+-comm (dist x y) (suc y) | dist-comm x y = s≤s (dist-sum zero y x) dist-sum (suc x) zero (suc z) = dist-sum x zero z ∙≤ ℕ≤.reflexive (ap₂ _+_ (dist-comm x 0) idp) ∙≤ ≤-step (ℕ≤.refl {x} +-mono ≤-step ℕ≤.refl) dist-sum (suc x) (suc y) (suc z) = dist-sum x y z dist≡0 : ∀ x y → dist x y ≡ 0 → x ≡ y dist≡0 zero zero d≡0 = idp dist≡0 zero (suc y) () dist≡0 (suc x) zero () dist≡0 (suc x) (suc y) d≡0 = ap suc (dist≡0 x y d≡0) ∸-≤-dist : ∀ x y → x ∸ y ≤ dist x y ∸-≤-dist zero zero = z≤n ∸-≤-dist zero (suc y) = z≤n ∸-≤-dist (suc x) zero = ℕ≤.refl ∸-≤-dist (suc x) (suc y) = ∸-≤-dist x y ∸-dist : ∀ x y → y ≤ x → x ∸ y ≡ dist x y ∸-dist x .0 z≤n = ! dist-comm x 0 ∸-dist ._ ._ (s≤s y≤x) = ∸-dist _ _ y≤x dist-min-max : ∀ x y → dist x y ≡ (x ⊔ y) ∸ (x ⊓ y) dist-min-max zero zero = idp dist-min-max zero (suc y) = idp dist-min-max (suc x) zero = idp dist-min-max (suc x) (suc y) = dist-min-max x y -- -} -- -} -- -} -- -} -- -}
add the `symIter` from Conor and some lemmas
Dist: add the `symIter` from Conor and some lemmas
Agda
bsd-3-clause
crypto-agda/agda-nplib
1dd4fe7a8a920498ea83e46ad2707edca7f6f4bf
Syntax/Type/Plotkin.agda
Syntax/Type/Plotkin.agda
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift-Δtype : ∀ {B} → (B → Type B) → (Type B → Type B) lift-Δtype f (base ι) = f ι lift-Δtype f (σ ⇒ τ) = let Δ = lift-Δtype f in σ ⇒ Δ σ ⇒ Δ τ -- Note: the above is *not* a monadic bind. -- -- Proof. base` is the most straightforward `return` of the -- functor `Type`. -- -- return : B → Type B -- return = base -- -- Let -- -- m : Type B -- m = base κ ⇒ base ι -- -- then -- -- m >>= return = lift-Δtype return m -- = base κ ⇒ base κ ⇒ base ι -- -- violating the second monadic law, m >>= return ≡ m. ∎ open import Function -- Variant of lift-Δtype for (Δ : B → B). lift-Δtype₀ : ∀ {B} → (B → B) → (Type B → Type B) lift-Δtype₀ f = lift-Δtype $ base ∘ f -- This has a similar type to the type of `fmap`, -- and `base` has a similar type to the type of `return`. -- -- Similarly, for collections map can be defined from flatMap, -- like lift-Δtype₀ can be defined in terms of lift-Δtype.
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. open import Function infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift-Δtype : ∀ {B} → (B → Type B) → (Type B → Type B) lift-Δtype f (base ι) = f ι lift-Δtype f (σ ⇒ τ) = let Δ = lift-Δtype f in σ ⇒ Δ σ ⇒ Δ τ -- Note: the above is *not* a monadic bind. -- -- Proof. base` is the most straightforward `return` of the -- functor `Type`. -- -- return : B → Type B -- return = base -- -- Let -- -- m : Type B -- m = base κ ⇒ base ι -- -- then -- -- m >>= return = lift-Δtype return m -- = base κ ⇒ base κ ⇒ base ι -- -- violating the second monadic law, m >>= return ≡ m. ∎ -- Variant of lift-Δtype for (Δ : B → B). lift-Δtype₀ : ∀ {B} → (B → B) → (Type B → Type B) lift-Δtype₀ f = lift-Δtype $ base ∘ f -- This has a similar type to the type of `fmap`, -- and `base` has a similar type to the type of `return`. -- -- Similarly, for collections map can be defined from flatMap, -- like lift-Δtype₀ can be defined in terms of lift-Δtype.
move import to top of file in Syntax.Type.Plotkin
Agda: move import to top of file in Syntax.Type.Plotkin Old-commit-hash: 0d789d2318a5215ac4ba2f68286e7db5826593ec
Agda
mit
inc-lc/ilc-agda
fa1e5e6ba14f3f7038a0a46052c8f81d12ed2e9d
Base/Change/Equivalence/Base.agda
Base/Change/Equivalence/Base.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence - base definitions ------------------------------------------------------------------------ module Base.Change.Equivalence.Base where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence - base definitions ------------------------------------------------------------------------ module Base.Change.Equivalence.Base where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record (a Haskell "newtype") -- instead of a "type synonym". record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence }
Clarify Agda comment
Clarify Agda comment Old-commit-hash: e00f9f0bb80cb86372669d674900a9abd43b7ef4
Agda
mit
inc-lc/ilc-agda
e2d49c81f464ab9449818f964e0078660f4315da
Syntactic/Contexts.agda
Syntactic/Contexts.agda
module Syntactic.Contexts (Type : Set) where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
module Syntactic.Contexts (Type : Set) where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
add lemma about syntactic contexts
Agda: add lemma about syntactic contexts Old-commit-hash: 3613bba9a32778eaaa8f9d22419c23a8505be346
Agda
mit
inc-lc/ilc-agda
0ecf1536814a880e8cdbe60b6eef1ff1106504bf
Parametric/Change/Correctness.agda
Parametric/Change/Correctness.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) -- Our main theorem, as we used to state it in the paper. main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {y : Term ∅ σ} → ⟦ app f y ⟧ ≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ main-theorem {σ} {τ} {f} {x} {y} = let h = ⟦ f ⟧ ∅ Δh = ⟦ f ⟧Δ ∅ ∅ Δh′ = ⟦ derive f ⟧ ∅ v = ⟦ x ⟧ ∅ u = ⟦ y ⟧ ∅ Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin h u ≡⟨ cong h (sym (update-diff₍ σ ₎ u v)) ⟩ h (v ⊞₍ σ ₎ (u ⊟₍ σ ₎ v)) ≡⟨ corollary-closed {σ} {τ} f v (u ⊟₍ σ ₎ v) ⟩ h v ⊞₍ τ ₎ call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v) ≡⟨ carry-over {τ} (call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v)) (derive-correct f ∅ ∅ ∅ ∅ v (u ⊟₍ σ ₎ v) (u ⟦⊝₍ σ ₎⟧ v) (u⊟v≈u⊝v {σ} {u} {v})) ⟩ h v ⟦⊕₍ τ ₎⟧ Δh′ v (u ⟦⊝₍ σ ₎⟧ v) ≡⟨ trans (cong (λ hole → h v ⟦⊕₍ τ ₎⟧ Δh′ v hole) (meaning-⊝ {σ} {s = y} {x})) (meaning-⊕ {t = app f x} {Δt = Δoutput-term}) ⟩ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ ∅ ∎}) where open ≡-Reasoning -- A corollary, closer to what we state in the paper. main-theorem-coroll : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {dx : Term ∅ (ΔType σ)} → ⟦ app f (x ⊕₍ σ ₎ dx) ⟧ ≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) ((x ⊕₍ σ ₎ dx) ⊝ x) ⟧ main-theorem-coroll {σ} {τ} {f} {x} {dx} = main-theorem {σ} {τ} {f} {x} {x ⊕₍ σ ₎ dx} -- For the statement in the paper, we'd need to talk about valid changes in -- the lambda calculus. In fact we can, thanks to the `implements` relation; -- but I guess the required proof must be done directly from derive-correct, -- not from main-theorem.
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) derive-correct-closed : ∀ {τ} (t : Term ∅ τ) → ⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅ derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅ main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} → {dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} → ⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} = let g = ⟦ f ⟧ ∅ Δg = ⟦ f ⟧Δ ∅ ∅ Δg′ = ⟦ derive f ⟧ ∅ v = ⟦ s ⟧ ∅ dv′ = ⟦ ds ⟧ ∅ u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅ -- Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin g u ≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩ g (v ⟦⊕₍ σ ₎⟧ dv′) ≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ corollary-closed {σ} {τ} f v dv ⟩ g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv ≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv) (derive-correct f ∅ ∅ ∅ ∅ v dv dv′ erasure) ⟩ g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′ ≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅ ∎}) where open ≡-Reasoning
make main theorem correspond to the one stated in the paper
make main theorem correspond to the one stated in the paper Old-commit-hash: 84979b2067c54a685110f1bad744ba106a962a0f
Agda
mit
inc-lc/ilc-agda
272abae5605c8fd8c5385376ffe4f4d4c26d2a9d
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) $ proof dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) $ proof df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
Add and use a congruence lemma
Add and use a congruence lemma To reduce explicit wrapping/unwrapping of proofs of ≙. Old-commit-hash: 2bc64b5b9f3b074a70918e11f66512232fb6796b
Agda
mit
inc-lc/ilc-agda
57dd579828aa8a7c7ff8b0546dd51520584eb18e
Denotational/Evaluation/Total.agda
Denotational/Evaluation/Total.agda
module Denotational.Evaluation.Total where -- EVALUATION with a primitive for TOTAL DERIVATIVES -- -- This module defines the semantics of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Changes open import ChangeContexts -- TERMS -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ = if ⟦ t₁ ⟧Term ρ then ⟦ t₂ ⟧Term ρ else ⟦ t₃ ⟧Term ρ ⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- PROPERTIES of WEAKENING weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ) weaken-sound (var x) ρ = lift-sound _ x ρ weaken-sound true ρ = refl weaken-sound false ρ = refl weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ ... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ weaken-sound (Δ {{Γ′}} t) {Γ″} ρ = cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
module Denotational.Evaluation.Total where -- EVALUATION with a primitive for TOTAL DERIVATIVES -- -- This module defines the semantics of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Changes open import ChangeContexts -- TERMS -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ = if ⟦ t₁ ⟧Term ρ then ⟦ t₂ ⟧Term ρ else ⟦ t₃ ⟧Term ρ ⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) {- Here is an example to understand the semantics of Δ. I will use a named variable representation for the task. Consider the typing judgment: x: T |- x: T Thus, we have that: dx : Δ T, x: T |- Δ x : Δ T Thanks to weakening, we also have: y : S, dx : Δ T, x: T |- Δ x : Δ T In the formalization, we need a proof Γ′ that the context Γ₁ = dx : Δ T, x: T is a subcontext of Γ₂ = y : S, dx : Δ T, x: T. Thus, Γ′ has type Γ₁ ≼ Γ₂. Now take the environment: ρ = y ↦ w, dx ↦ dv, x ↦ v Since the semantics of Γ′ : Γ₁ ≼ Γ₂ is a function from environments for Γ₂ to environments for Γ₁, we have that: ⟦ Γ′ ⟧ ρ = dx ↦ dv, x ↦ v From the definitions of update and ignore, it follows that: update (⟦ Γ′ ⟧ ρ) = x ↦ dv ⊕ v ignore (⟦ Γ′ ⟧ ρ) = x ↦ v Hence, finally, we have that: diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) is simply diff (dv ⊕ v) v (or (dv ⊕ v) ⊝ v). If dv is a valid change, that's just dv, that is ⟦ dx ⟧ ρ. In other words -} meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- PROPERTIES of WEAKENING weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ) weaken-sound (var x) ρ = lift-sound _ x ρ weaken-sound true ρ = refl weaken-sound false ρ = refl weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ ... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ weaken-sound (Δ {{Γ′}} t) {Γ″} ρ = cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
add extended comment on semantics of Δ
agda: add extended comment on semantics of Δ During my walk-throughs on the code, explaining this line was a bit hard and required a small example. After writing it here during the walkthrough, I decided to extend it and save it. Old-commit-hash: 279b6047512b8c934cae49bda5977fa104077e12
Agda
mit
inc-lc/ilc-agda
beadc4c6bf5a0654b270878f150131cb18ada078
lib/Data/Bool/NP.agda
lib/Data/Bool/NP.agda
{-# OPTIONS --universe-polymorphism #-} module Data.Bool.NP where open import Data.Bool using (Bool; true; false; T; if_then_else_; not) open import Data.Unit using (⊤) open import Data.Sum open import Function open import Relation.Binary.NP open import Relation.Binary.Logical open import Relation.Nullary open import Relation.Nullary.Decidable import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) check : ∀ b → {pf : T b} → ⊤ check = _ If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B If_then_else_ true x _ = x _ If_then_else_ false _ x = x _ If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B If′_then_else_ true x _ = x If′_then_else_ false _ x = x If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) → if b then A else B → if b then C else D If-map true f _ = f _ If-map false _ f = f _ If-elim : ∀ {A B : Set} {P : Bool → Set} b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b If-elim true f _ = f _ If-elim false _ f = f _ If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A If-true {b = true} _ = ≡.refl If-true {b = false} () If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B If-false {b = true} () If-false {b = false} _ = ≡.refl cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁) cong-if true _ = ≡.refl cong-if false _ = ≡.refl data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where ⟦true⟧ : ⟦Bool⟧ true true ⟦false⟧ : ⟦Bool⟧ false false private module ⟦Bool⟧-Internals where refl : Reflexive ⟦Bool⟧ refl {true} = ⟦true⟧ refl {false} = ⟦false⟧ sym : Symmetric ⟦Bool⟧ sym ⟦true⟧ = ⟦true⟧ sym ⟦false⟧ = ⟦false⟧ trans : Transitive ⟦Bool⟧ trans ⟦true⟧ = id trans ⟦false⟧ = id subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ subst _ ⟦true⟧ = id subst _ ⟦false⟧ = id _≟_ : Decidable ⟦Bool⟧ true ≟ true = yes ⟦true⟧ false ≟ false = yes ⟦false⟧ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence ⟦Bool⟧ isEquivalence = record { refl = refl; sym = sym; trans = trans } isDecEquivalence : IsDecEquivalence ⟦Bool⟧ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence } equality : Equality ⟦Bool⟧ equality = record { isEquivalence = isEquivalence; subst = subst } module ⟦Bool⟧-Props where open ⟦Bool⟧-Internals public using (subst; decSetoid; equality) open DecSetoid decSetoid public open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans) ⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_ ⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ ⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧) If′_then_else_ If′_then_else_ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ _==_ : (x y : Bool) → Bool true == true = true true == false = false false == true = false false == false = true module == where _≈_ : (x y : Bool) → Set x ≈ y = T (x == y) refl : Reflexive _≈_ refl {true} = _ refl {false} = _ subst : ∀ {ℓ} → Substitutive _≈_ ℓ subst _ {true} {true} _ = id subst _ {false} {false} _ = id subst _ {true} {false} () subst _ {false} {true} () sym : Symmetric _≈_ sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x}) trans : Transitive _≈_ trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y _≟_ : Decidable _≈_ true ≟ true = yes _ false ≟ false = yes _ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence _≈_ isEquivalence = record { refl = λ {x} → refl {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence } module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid open Data.Bool public ⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b ⟦true⟧′ {true} _ = ⟦true⟧ ⟦true⟧′ {false} () ⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b ⟦false⟧′ {true} () ⟦false⟧′ {false} _ = ⟦false⟧ T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂) T∧ {true} {true} _ _ = _ T∧ {false} {_} () _ T∧ {true} {false} _ () T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁ T∧₁ {true} {true} _ = _ T∧₁ {false} {_} () T∧₁ {true} {false} () T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂ T∧₂ {true} {true} _ = _ T∧₂ {false} {_} () T∧₂ {true} {false} () T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂ T∨'⊎ {true} _ = inj₁ _ T∨'⊎ {false} {true} _ = inj₂ _ T∨'⊎ {false} {false} () T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂) T∨₁ {true} _ = _ T∨₁ {false} {true} _ = _ T∨₁ {false} {false} () T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂) T∨₂ {true} _ = _ T∨₂ {false} {true} _ = _ T∨₂ {false} {false} () T'not'¬ : ∀ {b} → T (not b) → ¬ (T b) T'not'¬ {false} _ = λ() T'not'¬ {true} () T'¬'not : ∀ {b} → ¬ (T b) → T (not b) T'¬'not {true} f = f _ T'¬'not {false} _ = _ Tdec : ∀ b → Dec (T b) Tdec true = yes _ Tdec false = no λ()
{-# OPTIONS --universe-polymorphism #-} module Data.Bool.NP where open import Data.Bool using (Bool; true; false; T; if_then_else_; not) import Algebra import Data.Bool.Properties open import Data.Unit using (⊤) open import Data.Sum open import Function open import Relation.Binary.NP open import Relation.Binary.Logical open import Relation.Nullary open import Relation.Nullary.Decidable import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) module Xor° = Algebra.CommutativeRing Data.Bool.Properties.commutativeRing-xor-∧ module Bool° = Algebra.CommutativeSemiring Data.Bool.Properties.commutativeSemiring-∧-∨ check : ∀ b → {pf : T b} → ⊤ check = _ If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B If_then_else_ true x _ = x _ If_then_else_ false _ x = x _ If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B If′_then_else_ true x _ = x If′_then_else_ false _ x = x If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) → if b then A else B → if b then C else D If-map true f _ = f _ If-map false _ f = f _ If-elim : ∀ {A B : Set} {P : Bool → Set} b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b If-elim true f _ = f _ If-elim false _ f = f _ If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A If-true {b = true} _ = ≡.refl If-true {b = false} () If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B If-false {b = true} () If-false {b = false} _ = ≡.refl cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁) cong-if true _ = ≡.refl cong-if false _ = ≡.refl data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where ⟦true⟧ : ⟦Bool⟧ true true ⟦false⟧ : ⟦Bool⟧ false false private module ⟦Bool⟧-Internals where refl : Reflexive ⟦Bool⟧ refl {true} = ⟦true⟧ refl {false} = ⟦false⟧ sym : Symmetric ⟦Bool⟧ sym ⟦true⟧ = ⟦true⟧ sym ⟦false⟧ = ⟦false⟧ trans : Transitive ⟦Bool⟧ trans ⟦true⟧ = id trans ⟦false⟧ = id subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ subst _ ⟦true⟧ = id subst _ ⟦false⟧ = id _≟_ : Decidable ⟦Bool⟧ true ≟ true = yes ⟦true⟧ false ≟ false = yes ⟦false⟧ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence ⟦Bool⟧ isEquivalence = record { refl = refl; sym = sym; trans = trans } isDecEquivalence : IsDecEquivalence ⟦Bool⟧ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence } equality : Equality ⟦Bool⟧ equality = record { isEquivalence = isEquivalence; subst = subst } module ⟦Bool⟧-Props where open ⟦Bool⟧-Internals public using (subst; decSetoid; equality) open DecSetoid decSetoid public open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans) ⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_ ⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ ⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧) If′_then_else_ If′_then_else_ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ _==_ : (x y : Bool) → Bool true == true = true true == false = false false == true = false false == false = true module == where _≈_ : (x y : Bool) → Set x ≈ y = T (x == y) refl : Reflexive _≈_ refl {true} = _ refl {false} = _ subst : ∀ {ℓ} → Substitutive _≈_ ℓ subst _ {true} {true} _ = id subst _ {false} {false} _ = id subst _ {true} {false} () subst _ {false} {true} () sym : Symmetric _≈_ sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x}) trans : Transitive _≈_ trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y _≟_ : Decidable _≈_ true ≟ true = yes _ false ≟ false = yes _ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence _≈_ isEquivalence = record { refl = λ {x} → refl {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence } module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid open Data.Bool public ⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b ⟦true⟧′ {true} _ = ⟦true⟧ ⟦true⟧′ {false} () ⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b ⟦false⟧′ {true} () ⟦false⟧′ {false} _ = ⟦false⟧ T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂) T∧ {true} {true} _ _ = _ T∧ {false} {_} () _ T∧ {true} {false} _ () T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁ T∧₁ {true} {true} _ = _ T∧₁ {false} {_} () T∧₁ {true} {false} () T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂ T∧₂ {true} {true} _ = _ T∧₂ {false} {_} () T∧₂ {true} {false} () T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂ T∨'⊎ {true} _ = inj₁ _ T∨'⊎ {false} {true} _ = inj₂ _ T∨'⊎ {false} {false} () T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂) T∨₁ {true} _ = _ T∨₁ {false} {true} _ = _ T∨₁ {false} {false} () T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂) T∨₂ {true} _ = _ T∨₂ {false} {true} _ = _ T∨₂ {false} {false} () T'not'¬ : ∀ {b} → T (not b) → ¬ (T b) T'not'¬ {false} _ = λ() T'not'¬ {true} () T'¬'not : ∀ {b} → ¬ (T b) → T (not b) T'¬'not {true} f = f _ T'¬'not {false} _ = _ Tdec : ∀ b → Dec (T b) Tdec true = yes _ Tdec false = no λ()
add ring modules Xor°, Bool°
Data.Bool.NP: add ring modules Xor°, Bool°
Agda
bsd-3-clause
crypto-agda/agda-nplib
09aa7263bcfccc0537afdaba6875c6d31a8fa0e1
lib/Algebra/Group.agda
lib/Algebra/Group.agda
{-# OPTIONS --without-K #-} -- TODO -- If you are looking for a proof of: -- f (Σ(xᵢ∈A) g(x₁)) ≡ Π(xᵢ∈A) (f(g(xᵢ))) -- Have a look to: -- https://github.com/crypto-agda/explore/blob/master/lib/Explore/GroupHomomorphism.agda open import Type using (Type_) open import Data.Product.NP using (_,_) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid module Algebra.Group where record Group-Ops {ℓ} (G : Type ℓ) : Type ℓ where constructor _,_ field mon-ops : Monoid-Ops G _⁻¹ : G → G open Monoid-Ops mon-ops public open From-Group-Ops ε _∙_ _⁻¹ public record Group-Struct {ℓ} {G : Type ℓ} (grp-ops : Group-Ops G) : Type ℓ where constructor _,_ open Group-Ops grp-ops -- laws field mon-struct : Monoid-Struct mon-ops inverse : Inverse ε _⁻¹ _∙_ mon : Monoid G mon = mon-ops , mon-struct open Monoid-Struct mon-struct public open From-Assoc-Identities-Inverse assoc identity inverse public -- TODO Monoid+LeftInverse → Group record Group {ℓ}(G : Type ℓ) : Type ℓ where constructor _,_ field grp-ops : Group-Ops G grp-struct : Group-Struct grp-ops open Group-Ops grp-ops public open Group-Struct grp-struct public -- A renaming of Group-Ops with additive notation module Additive-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) where private module M = Group-Ops grp using () renaming ( _⁻¹ to 0−_ ; _/_ to _−_ ; _^⁻_ to _⊗⁻_ ; _^_ to _⊗_ ; mon-ops to +-mon-ops ; /= to −=) open M public using (0−_; +-mon-ops; −=) open Additive-Monoid-Ops +-mon-ops public infixl 6 _−_ infixl 7 _⊗⁻_ _⊗_ _−_ = M._−_ _⊗⁻_ = M._⊗⁻_ _⊗_ = M._⊗_ -- A renaming of Group-Struct with additive notation module Additive-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using () renaming ( mon-struct to +-mon-struct ; mon to +-mon ; assoc to +-assoc ; identity to +-identity ; ε∙-identity to 0+-identity ; ∙ε-identity to +0-identity ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; inverse to 0−-inverse ; ∙-/ to +-−; /-∙ to −-+ ; unique-ε-left to unique-0-left ; unique-ε-right to unique-0-right ; x/y≡ε→x≡y to x−y≡0→x≡y ; x/y≢ε to x−y≢0 ; is-ε-left to is-0-left ; is-ε-right to is-0-right ; unique-⁻¹ to unique-0− ; cancels-∙-left to cancels-+-left ; cancels-∙-right to cancels-+-right ; elim-∙-right-/ to elim-+-right-− ; elim-assoc= to elim-+-assoc= ; elim-!assoc= to elim-+-!assoc= ; elim-inner= to elim-+-inner= ; ⁻¹-hom′ to 0−-hom′ ; ⁻¹-inj to 0−-inj ; ⁻¹-involutive to 0−-involutive ; ε⁻¹≡ε to 0−0≡0 ) -- A renaming of Group with additive notation module Additive-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Additive-Group-Ops (Group.grp-ops mon) public open Additive-Group-Struct (Group.grp-struct mon) public -- A renaming of Group-Ops with multiplicative notation module Multiplicative-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) = Group-Ops grp using ( _⁻¹; _/_; /=; _^⁺_ ; _^⁻_; _^_; _²; _³; _⁴ ) renaming ( _∙_ to _*_; ε to 1#; mon-ops to *-mon-ops; ∙= to *= ) -- A renaming of Group-Struct with multiplicative notation module Multiplicative-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using ( unique-⁻¹ ; ⁻¹-hom′ ; ⁻¹-inj ; ⁻¹-involutive ) renaming ( assoc to *-assoc ; identity to *-identity ; ε∙-identity to 1*-identity ; ∙ε-identity to *1-identity ; inverse to ⁻¹-inverse ; ∙-/ to *-/; /-∙ to /-* ; mon-struct to *-mon-struct ; mon to *-mon ; unique-ε-left to unique-1-left ; unique-ε-right to unique-1-right ; x/y≡ε→x≡y to x/y≡1→x≡y ; x/y≢ε to x/y≢1 ; is-ε-left to is-1-left ; is-ε-right to is-1-right ; cancels-∙-left to cancels-*-left ; cancels-∙-right to cancels-*-right ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; elim-∙-right-/ to elim-*-right-/ ; elim-assoc= to elim-*-assoc= ; elim-!assoc= to elim-*-!assoc= ; elim-inner= to elim-*-inner= ; ε⁻¹≡ε to 1⁻¹≡1 ) -- A renaming of Group with multiplicative notation module Multiplicative-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Multiplicative-Group-Ops (Group.grp-ops mon) public open Multiplicative-Group-Struct (Group.grp-struct mon) public -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} -- TODO -- If you are looking for a proof of: -- f (Σ(xᵢ∈A) g(x₁)) ≡ Π(xᵢ∈A) (f(g(xᵢ))) -- Have a look to: -- https://github.com/crypto-agda/explore/blob/master/lib/Explore/GroupHomomorphism.agda open import Type using (Type_) open import Data.Product.NP using (_,_;fst;snd) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid module Algebra.Group where record Group-Ops {ℓ} (G : Type ℓ) : Type ℓ where constructor _,_ field mon-ops : Monoid-Ops G _⁻¹ : G → G open Monoid-Ops mon-ops public open From-Group-Ops ε _∙_ _⁻¹ public record Group-Struct {ℓ} {G : Type ℓ} (grp-ops : Group-Ops G) : Type ℓ where constructor _,_ open Group-Ops grp-ops -- laws field mon-struct : Monoid-Struct mon-ops inverse : Inverse ε _⁻¹ _∙_ mon : Monoid G mon = mon-ops , mon-struct ⁻¹∙-inverse : LeftInverse ε _⁻¹ _∙_ ⁻¹∙-inverse = fst inverse ∙⁻¹-inverse : RightInverse ε _⁻¹ _∙_ ∙⁻¹-inverse = snd inverse open Monoid-Struct mon-struct public open From-Assoc-Identities-Inverse assoc identity inverse public -- TODO Monoid+LeftInverse → Group record Group {ℓ}(G : Type ℓ) : Type ℓ where constructor _,_ field grp-ops : Group-Ops G grp-struct : Group-Struct grp-ops open Group-Ops grp-ops public open Group-Struct grp-struct public -- A renaming of Group-Ops with additive notation module Additive-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) where private module M = Group-Ops grp using () renaming ( _⁻¹ to 0−_ ; _/_ to _−_ ; _^⁻_ to _⊗⁻_ ; _^_ to _⊗_ ; mon-ops to +-mon-ops ; /= to −=) open M public using (0−_; +-mon-ops; −=) open Additive-Monoid-Ops +-mon-ops public infixl 6 _−_ infixl 7 _⊗⁻_ _⊗_ _−_ = M._−_ _⊗⁻_ = M._⊗⁻_ _⊗_ = M._⊗_ -- A renaming of Group-Struct with additive notation module Additive-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using () renaming ( mon-struct to +-mon-struct ; mon to +-mon ; assoc to +-assoc ; identity to +-identity ; ε∙-identity to 0+-identity ; ∙ε-identity to +0-identity ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; inverse to 0−-inverse ; ∙-/ to +-−; /-∙ to −-+ ; unique-ε-left to unique-0-left ; unique-ε-right to unique-0-right ; x/y≡ε→x≡y to x−y≡0→x≡y ; x/y≢ε to x−y≢0 ; is-ε-left to is-0-left ; is-ε-right to is-0-right ; unique-⁻¹ to unique-0− ; cancels-∙-left to cancels-+-left ; cancels-∙-right to cancels-+-right ; elim-∙-right-/ to elim-+-right-− ; elim-assoc= to elim-+-assoc= ; elim-!assoc= to elim-+-!assoc= ; elim-inner= to elim-+-inner= ; ⁻¹-hom′ to 0−-hom′ ; ⁻¹-inj to 0−-inj ; ⁻¹-involutive to 0−-involutive ; ε⁻¹≡ε to 0−0≡0 ) -- A renaming of Group with additive notation module Additive-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Additive-Group-Ops (Group.grp-ops mon) public open Additive-Group-Struct (Group.grp-struct mon) public -- A renaming of Group-Ops with multiplicative notation module Multiplicative-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) = Group-Ops grp using ( _⁻¹; _/_; /=; _^⁺_ ; _^⁻_; _^_; _²; _³; _⁴ ) renaming ( _∙_ to _*_; ε to 1#; mon-ops to *-mon-ops; ∙= to *= ) -- A renaming of Group-Struct with multiplicative notation module Multiplicative-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using ( unique-⁻¹ ; ⁻¹-hom′ ; ⁻¹-inj ; ⁻¹-involutive ) renaming ( assoc to *-assoc ; identity to *-identity ; ε∙-identity to 1*-identity ; ∙ε-identity to *1-identity ; inverse to ⁻¹-inverse ; ∙-/ to *-/; /-∙ to /-* ; mon-struct to *-mon-struct ; mon to *-mon ; unique-ε-left to unique-1-left ; unique-ε-right to unique-1-right ; x/y≡ε→x≡y to x/y≡1→x≡y ; x/y≢ε to x/y≢1 ; is-ε-left to is-1-left ; is-ε-right to is-1-right ; cancels-∙-left to cancels-*-left ; cancels-∙-right to cancels-*-right ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; elim-∙-right-/ to elim-*-right-/ ; elim-assoc= to elim-*-assoc= ; elim-!assoc= to elim-*-!assoc= ; elim-inner= to elim-*-inner= ; ε⁻¹≡ε to 1⁻¹≡1 ) -- A renaming of Group with multiplicative notation module Multiplicative-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Multiplicative-Group-Ops (Group.grp-ops mon) public open Multiplicative-Group-Struct (Group.grp-struct mon) public -- -} -- -} -- -} -- -}
update Group to include left and right inverse
update Group to include left and right inverse
Agda
bsd-3-clause
crypto-agda/agda-nplib
bd4721cbfeecd02bd82f2eb2bb19570e836dac3a
Denotation/Implementation/Popl14.agda
Denotation/Implementation/Popl14.agda
module Denotation.Implementation.Popl14 where -- Notions of programs being implementations of specifications -- for Calculus Popl14 open import Denotation.Specification.Canon-Popl14 public open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Derive open import Popl14.Change.Value open import Popl14.Change.Validity open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Tuples open import Structure.Bag.Popl14 open import Postulate.Extensionality infix 4 implements syntax implements τ u v = u ≈₍ τ ₎ v implements : ∀ (τ : Type) → Change τ → ⟦ ΔType τ ⟧ → Set u ≈₍ int ₎ v = u ≡ v u ≈₍ bag ₎ v = u ≡ v u ≈₍ σ ⇒ τ ₎ v = (w : ⟦ σ ⟧) (Δw : Change σ) (R[w,Δw] : valid {σ} w Δw) (Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ Δw Δw′) → implements τ (u (cons w Δw R[w,Δw])) (v w Δw′) infix 4 _≈_ _≈_ : ∀ {τ} → Change τ → ⟦ ΔType τ ⟧ → Set _≈_ {τ} = implements τ module Disambiguation (τ : Type) where _✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚_ = _⟦⊕⟧_ {τ} _−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−_ = _⟦⊝⟧_ {τ} infixl 6 _✚_ _−_ _≃_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃_ = _≈_ {τ} infix 4 _≃_ module FunctionDisambiguation (σ : Type) (τ : Type) where open Disambiguation (σ ⇒ τ) public _✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚₁_ = _⟦⊕⟧_ {τ} _−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−₁_ = _⟦⊝⟧_ {τ} infixl 6 _✚₁_ _−₁_ _≃₁_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃₁_ = _≈_ {τ} infix 4 _≃₁_ _✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧ _✚₀_ = _⟦⊕⟧_ {σ} _−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧ _−₀_ = _⟦⊝⟧_ {σ} infixl 6 _✚₀_ _−₀_ _≃₀_ : Change σ → ⟦ ΔType σ ⟧ → Set _≃₀_ = _≈_ {σ} infix 4 _≃₀_ compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set compatible {∅} ∅ ∅ = ⊤ compatible {τ • Γ} (cons v Δv _ • ρ) (Δv′ • v′ • ρ′) = Triple (v ≡ v′) (λ _ → Δv ≈₍ τ ₎ Δv′) (λ _ _ → compatible ρ ρ′) -- If a program implements a specification, then certain things -- proven about the specification carry over to the programs. carry-over : ∀ {τ} {v : ⟦ τ ⟧} {Δv : Change τ} {Δv′ : ⟦ ΔType τ ⟧} (R[v,Δv] : valid {τ} v Δv) (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) → let open Disambiguation τ in v ⊞₍ τ ₎ Δv ≡ v ✚ Δv′ u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let open Disambiguation τ in u ⊟₍ τ ₎ v ≃ u − v u⊟v≈u⊝v {base base-int} = refl u⊟v≈u⊝v {base base-bag} = refl u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where open FunctionDisambiguation σ τ result : (w : ⟦ σ ⟧) (Δw : Change σ) → valid {σ} w Δw → (Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ → g (w ⊞₍ σ ₎ Δw) ⊟₍ τ ₎ f w ≃₁ g (w ✚₀ Δw′) −₁ f w result w Δw R[w,Δw] Δw′ Δw≈Δw′ rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ = u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w} carry-over {base base-int} {v} _ Δv≈Δv′ = cong (_+_ v) Δv≈Δv′ carry-over {base base-bag} {v} _ Δv≈Δv′ = cong (_++_ v) Δv≈Δv′ carry-over {σ ⇒ τ} {f} {Δf} {Δf′} R[f,Δf] Δf≈Δf′ = ext (λ v → let open FunctionDisambiguation σ τ V = R[v,u-v] {σ} {v} {v} S = u⊟v≈u⊝v {σ} {v} {v} in carry-over {τ} {f v} {Δf (nil-valid-change σ v)} {Δf′ v (v −₀ v)} (proj₁ (R[f,Δf] (nil-valid-change σ v))) (Δf≈Δf′ v (v ⊟₍ σ ₎ v) V (v −₀ v) S)) -- A property relating `ignore` and the subcontext relation Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′ ⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl ⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ • ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C) -- A specialization of the soundness of weakening ⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′ ⟦fit⟧ t {ρ} {ρ′} C = trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
module Denotation.Implementation.Popl14 where -- Notions of programs being implementations of specifications -- for Calculus Popl14 open import Denotation.Specification.Canon-Popl14 public open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Derive open import Popl14.Change.Value open import Popl14.Change.Validity open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Tuples open import Structure.Bag.Popl14 open import Postulate.Extensionality infix 4 implements syntax implements τ u v = u ≈₍ τ ₎ v implements : ∀ (τ : Type) → Change τ → ⟦ ΔType τ ⟧ → Set u ≈₍ int ₎ v = u ≡ v u ≈₍ bag ₎ v = u ≡ v u ≈₍ σ ⇒ τ ₎ v = (w : ⟦ σ ⟧) (Δw : Change σ) (R[w,Δw] : valid {σ} w Δw) (Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ Δw Δw′) → implements τ (u (cons w Δw R[w,Δw])) (v w Δw′) infix 4 _≈_ _≈_ : ∀ {τ} → Change τ → ⟦ ΔType τ ⟧ → Set _≈_ {τ} = implements τ module Disambiguation (τ : Type) where _✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚_ = _⟦⊕⟧_ {τ} _−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−_ = _⟦⊝⟧_ {τ} infixl 6 _✚_ _−_ _≃_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃_ = _≈_ {τ} infix 4 _≃_ module FunctionDisambiguation (σ : Type) (τ : Type) where open Disambiguation (σ ⇒ τ) public _✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚₁_ = _⟦⊕⟧_ {τ} _−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−₁_ = _⟦⊝⟧_ {τ} infixl 6 _✚₁_ _−₁_ _≃₁_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃₁_ = _≈_ {τ} infix 4 _≃₁_ _✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧ _✚₀_ = _⟦⊕⟧_ {σ} _−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧ _−₀_ = _⟦⊝⟧_ {σ} infixl 6 _✚₀_ _−₀_ _≃₀_ : Change σ → ⟦ ΔType σ ⟧ → Set _≃₀_ = _≈_ {σ} infix 4 _≃₀_ compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set compatible {∅} ∅ ∅ = ⊤ compatible {τ • Γ} (cons v Δv _ • ρ) (Δv′ • v′ • ρ′) = Triple (v ≡ v′) (λ _ → Δv ≈₍ τ ₎ Δv′) (λ _ _ → compatible ρ ρ′) -- If a program implements a specification, then certain things -- proven about the specification carry over to the programs. carry-over : ∀ {τ} {v : ⟦ τ ⟧} {Δv : Change τ} (R[v,Δv] : valid {τ} v Δv) {Δv′ : ⟦ ΔType τ ⟧} (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) → let open Disambiguation τ in v ⊞₍ τ ₎ Δv ≡ v ✚ Δv′ u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let open Disambiguation τ in u ⊟₍ τ ₎ v ≃ u − v u⊟v≈u⊝v {base base-int} = refl u⊟v≈u⊝v {base base-bag} = refl u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where open FunctionDisambiguation σ τ result : (w : ⟦ σ ⟧) (Δw : Change σ) → valid {σ} w Δw → (Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ → g (w ⊞₍ σ ₎ Δw) ⊟₍ τ ₎ f w ≃₁ g (w ✚₀ Δw′) −₁ f w result w Δw R[w,Δw] Δw′ Δw≈Δw′ rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ = u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w} carry-over {base base-int} {v} _ Δv≈Δv′ = cong (_+_ v) Δv≈Δv′ carry-over {base base-bag} {v} _ Δv≈Δv′ = cong (_++_ v) Δv≈Δv′ carry-over {σ ⇒ τ} {f} {Δf} R[f,Δf] {Δf′} Δf≈Δf′ = ext (λ v → let open FunctionDisambiguation σ τ V = R[v,u-v] {σ} {v} {v} S = u⊟v≈u⊝v {σ} {v} {v} in carry-over {τ} {f v} {Δf (nil-valid-change σ v)} (proj₁ (R[f,Δf] (nil-valid-change σ v))) {Δf′ v (v −₀ v)} (Δf≈Δf′ v (v ⊟₍ σ ₎ v) V (v −₀ v) S)) -- A property relating `ignore` and the subcontext relation Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′ ⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl ⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ • ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C) -- A specialization of the soundness of weakening ⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′ ⟦fit⟧ t {ρ} {ρ′} C = trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
Change argument order of carry-over.
Change argument order of carry-over. This commit prepares for uncurrying cary-over. Old-commit-hash: e1a21bdcbe7ee2b217917bd6ac9dfc576487102a
Agda
mit
inc-lc/ilc-agda
9028d1ebd71caa01d4b8a57cbb884b32e787ebe1
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-var-3 : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context (Δ-Context Γ)) τ lift-var-3 this = that (that (that this)) lift-var-3 (that x) = that (that (that (that (lift-var-3 x)))) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore ∅ (τ₂ • Γrest) t₁ = weakenOne ∅ (Δ-Type τ₂) (doWeakenMore (τ₂ • ∅) Γrest t₁) doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) prefix : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context prefix Γ Γ′ = take (Δ-Context Γ) Γ′ rest : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context rest Γ Γ′ = drop (Δ-Context Γ) Γ′ weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 Γ Γ′ t = doWeakenMore (prefix Γ Γ′) (rest Γ Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t)) weakenMore : --∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (weakenMore2 Γ Γ′ t) {- weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 ∅ ∅ t₁ = Δ t₁ weakenMore2 (τ₁ • Γ₁) ∅ t₁ = weakenOne ∅ (Δ-Type (Δ-Type τ₁)) (weakenOne (Δ-Type τ₁ • ∅) (Δ-Type τ₁) {! weakenMore2 (Δ {τ₁ • Γ₁} {τ} t₁)!}) --(weakenMore2 {τ₁ • Γ₁} (Δ-Type τ₁ • τ₁ • ∅) t₁ )) -- (Δ {τ₁ • Γ₁} {τ} t₁))) weakenMore2 (τ₁ • Γ₁) (.(Δ-Type τ₁) • Γ′₁) t₁ = {!!} -} lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore ∅ (τ₂ • Γrest) t₁ = weakenOne ∅ (Δ-Type τ₂) (doWeakenMore (τ₂ • ∅) Γrest t₁) doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) prefix : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context prefix Γ Γ′ = take (Δ-Context Γ) Γ′ rest : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context rest Γ Γ′ = drop (Δ-Context Γ) Γ′ weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 Γ Γ′ t = doWeakenMore (prefix Γ Γ′) (rest Γ Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t)) weakenMore : --∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (weakenMore2 Γ Γ′ t) lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
Revert "agda/...: misc (to revert)"
Revert "agda/...: misc (to revert)" This reverts commit ae3a9db6fb87ddc01573ae236f8850b322bec8db. Old-commit-hash: fa2ae9742c4282275b8f242a197b35ef1acf5932
Agda
mit
inc-lc/ilc-agda
2e98871b50826699f6f16a2718f8f2361a559c4d
Thesis/ANormalUntyped.agda
Thesis/ANormalUntyped.agda
module Thesis.ANormalUntyped where open import Data.Nat.Base open import Data.Integer.Base open import Relation.Binary.PropositionalEquality {- Typed deBruijn indexes for untyped languages. -} -- Using a record gives an eta rule saying that all types are equal. record Type : Set where constructor Uni open import Base.Syntax.Context Type public data Term (Γ : Context) : Set where var : (x : Var Γ Uni) → Term Γ lett : (f : Var Γ Uni) → (x : Var Γ Uni) → Term (Uni • Γ) → Term Γ {- deriveC Δ (lett f x t) = dlett df x dx -} -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- cvar : (x : Var Γ τ) Δ → -- ΔCTerm Γ τ Δ -- clett : ∀ {σ τ₁ κ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → -- ΔCTerm (τ₁ • Γ) τ (? • Δ) → -- ΔCTerm Γ τ Δ weaken-term : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ → Term Γ₂ weaken-term Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken-term Γ₁≼Γ₂ (lett f x t) = lett (weaken-var Γ₁≼Γ₂ f) (weaken-var Γ₁≼Γ₂ x) (weaken-term (keep _ • Γ₁≼Γ₂) t) data Fun (Γ : Context) : Set where term : Term Γ → Fun Γ abs : ∀ {σ} → Fun (σ • Γ) → Fun Γ weaken-fun : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Fun Γ₁ → Fun Γ₂ weaken-fun Γ₁≼Γ₂ (term x) = term (weaken-term Γ₁≼Γ₂ x) weaken-fun Γ₁≼Γ₂ (abs f) = abs (weaken-fun (keep _ • Γ₁≼Γ₂) f) data Val : Type → Set -- data Val (τ : Type) : Set open import Base.Denotation.Environment Type Val public open import Base.Data.DependentList public -- data Val (τ : Type) where data Val where closure : ∀ {Γ} → (t : Fun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → Val Uni intV : ∀ (n : ℤ) → Val Uni -- ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type -- ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ -- ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ) data ErrVal : Set where Done : (v : Val Uni) → ErrVal Error : ErrVal TimeOut : ErrVal _>>=_ : ErrVal → (Val Uni → ErrVal) → ErrVal Done v >>= f = f v Error >>= f = Error TimeOut >>= f = TimeOut Res : Set Res = ℕ → ErrVal eval-fun : ∀ {Γ} → Fun Γ → ⟦ Γ ⟧Context → Res eval-term : ∀ {Γ} → Term Γ → ⟦ Γ ⟧Context → Res apply : Val Uni → Val Uni → Res apply (closure f ρ) a n = eval-fun f (a • ρ) n apply (intV _) a n = Error eval-term t ρ zero = TimeOut eval-term (var x) ρ (suc n) = Done (⟦ x ⟧Var ρ) eval-term (lett f x t) ρ (suc n) = apply (⟦ f ⟧Var ρ) (⟦ x ⟧Var ρ) n >>= (λ v → eval-term t (v • ρ) n) eval-fun (term t) ρ n = eval-term t ρ n eval-fun (abs f) ρ n = Done (closure f ρ) -- Erasure from typed to untyped values. import Thesis.ANormalBigStep as T erase-type : T.Type → Type erase-type _ = Uni erase-val : ∀ {τ} → T.Val τ → Val (erase-type τ) erase-errVal : ∀ {τ} → T.ErrVal τ → ErrVal erase-errVal (T.Done v) = Done (erase-val v) erase-errVal T.Error = Error erase-errVal T.TimeOut = TimeOut erase-res : ∀ {τ} → T.Res τ → Res erase-res r n = erase-errVal (r n) erase-ctx : T.Context → Context erase-ctx ∅ = ∅ erase-ctx (τ • Γ) = erase-type τ • (erase-ctx Γ) erase-env : ∀ {Γ} → T.Op.⟦ Γ ⟧Context → ⟦ erase-ctx Γ ⟧Context erase-env ∅ = ∅ erase-env (v • ρ) = erase-val v • erase-env ρ erase-var : ∀ {Γ τ} → T.Var Γ τ → Var (erase-ctx Γ) (erase-type τ) erase-var T.this = this erase-var (T.that x) = that (erase-var x) erase-term : ∀ {Γ τ} → T.Term Γ τ → Term (erase-ctx Γ) erase-term (T.var x) = var (erase-var x) erase-term (T.lett f x t) = lett (erase-var f) (erase-var x) (erase-term t) erase-fun : ∀ {Γ τ} → T.Fun Γ τ → Fun (erase-ctx Γ) erase-fun (T.term x) = term (erase-term x) erase-fun (T.abs f) = abs (erase-fun f) erase-val (T.closure t ρ) = closure (erase-fun t) (erase-env ρ) erase-val (T.intV n) = intV n -- Different erasures commute. erasure-commute-var : ∀ {Γ τ} (x : T.Var Γ τ) ρ → erase-val (T.Op.⟦ x ⟧Var ρ) ≡ ⟦ erase-var x ⟧Var (erase-env ρ) erasure-commute-var T.this (v • ρ) = refl erasure-commute-var (T.that x) (v • ρ) = erasure-commute-var x ρ erase-bind : ∀ {σ τ Γ} a (t : T.Term (σ • Γ) τ) ρ n → erase-errVal (a T.>>= (λ v → T.eval-term t (v • ρ) n)) ≡ erase-errVal a >>= (λ v → eval-term (erase-term t) (v • erase-env ρ) n) erasure-commute-fun : ∀ {Γ τ} (t : T.Fun Γ τ) ρ n → erase-errVal (T.eval-fun t ρ n) ≡ eval-fun (erase-fun t) (erase-env ρ) n erasure-commute-apply : ∀ {σ τ} (f : T.Val (σ T.⇒ τ)) a n → erase-errVal (T.apply f a n) ≡ apply (erase-val f) (erase-val a) n erasure-commute-apply {σ} (T.closure t ρ) a n = erasure-commute-fun t (a • ρ) n erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n → erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n erasure-commute-fun (T.term t) ρ n = erasure-commute-term t ρ n erasure-commute-fun (T.abs t) ρ n = refl erasure-commute-term t ρ zero = refl erasure-commute-term (T.var x) ρ (ℕ.suc n) = cong Done (erasure-commute-var x ρ) erasure-commute-term (T.lett f x t) ρ (ℕ.suc n) rewrite erase-bind (T.apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n) t ρ n | erasure-commute-apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n | erasure-commute-var f ρ | erasure-commute-var x ρ = refl erase-bind (T.Done v) t ρ n = erasure-commute-term t (v • ρ) n erase-bind T.Error t ρ n = refl erase-bind T.TimeOut t ρ n = refl
module Thesis.ANormalUntyped where open import Data.Empty open import Data.Product open import Data.Nat.Base import Data.Integer.Base as I open I using (ℤ) open import Data.Integer.Base using (ℤ) open import Relation.Binary.PropositionalEquality {- Typed deBruijn indexes for untyped languages. -} -- Using a record gives an eta rule saying that all types are equal. record Type : Set where constructor Uni record DType : Set where constructor DUni open import Base.Syntax.Context Type public import Base.Syntax.Context DType as DC data Term (Γ : Context) : Set where var : (x : Var Γ Uni) → Term Γ lett : (f : Var Γ Uni) → (x : Var Γ Uni) → Term (Uni • Γ) → Term Γ ΔΔ : Context → DC.Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = DUni • ΔΔ Γ derive-dvar : ∀ {Δ} → (x : Var Δ Uni) → DC.Var (ΔΔ Δ) DUni derive-dvar this = DC.this derive-dvar (that x) = DC.that (derive-dvar x) data DTerm : (Δ : Context) → Set where dvar : ∀ {Δ} (x : DC.Var (ΔΔ Δ) DUni) → DTerm Δ dlett : ∀ {Δ} → (f : Var Δ Uni) → (x : Var Δ Uni) → (t : Term (Uni • Δ)) → (df : DC.Var (ΔΔ Δ) DUni) → (dx : DC.Var (ΔΔ Δ) DUni) → (dt : DTerm (Uni • Δ)) → DTerm Δ derive-dterm : ∀ {Δ} → (t : Term Δ) → DTerm Δ derive-dterm (var x) = dvar (derive-dvar x) derive-dterm (lett f x t) = dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t) {- deriveC Δ (lett f x t) = dlett df x dx -} -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- cvar : (x : Var Γ τ) Δ → -- ΔCTerm Γ τ Δ -- clett : ∀ {σ τ₁ κ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → -- ΔCTerm (τ₁ • Γ) τ (? • Δ) → -- ΔCTerm Γ τ Δ weaken-term : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ → Term Γ₂ weaken-term Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken-term Γ₁≼Γ₂ (lett f x t) = lett (weaken-var Γ₁≼Γ₂ f) (weaken-var Γ₁≼Γ₂ x) (weaken-term (keep _ • Γ₁≼Γ₂) t) -- I don't necessarily recommend having a separate syntactic category for -- functions, but we should prove a fundamental lemma for them too, somehow. -- I'll probably end up with some ANF allowing lambdas to do the semantics. data Fun (Γ : Context) : Set where term : Term Γ → Fun Γ abs : ∀ {σ} → Fun (σ • Γ) → Fun Γ data DFun (Δ : Context) : Set where dterm : DTerm Δ → DFun Δ dabs : DFun (Uni • Δ) → DFun Δ derive-dfun : ∀ {Δ} → (t : Fun Δ) → DFun Δ derive-dfun (term t) = dterm (derive-dterm t) derive-dfun (abs f) = dabs (derive-dfun f) weaken-fun : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Fun Γ₁ → Fun Γ₂ weaken-fun Γ₁≼Γ₂ (term x) = term (weaken-term Γ₁≼Γ₂ x) weaken-fun Γ₁≼Γ₂ (abs f) = abs (weaken-fun (keep _ • Γ₁≼Γ₂) f) data Val : Type → Set data DVal : DType → Set -- data Val (τ : Type) : Set open import Base.Denotation.Environment Type Val public open import Base.Data.DependentList public import Base.Denotation.Environment DType DVal as D -- data Val (τ : Type) where data Val where closure : ∀ {Γ} → (t : Fun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → Val Uni intV : ∀ (n : ℕ) → Val Uni data DVal where dclosure : ∀ {Γ} → (dt : DFun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → (dρ : D.⟦ ΔΔ Γ ⟧Context) → DVal DUni dintV : ∀ (n : ℤ) → DVal DUni ChΔ : ∀ (Δ : Context) → Set ChΔ Δ = D.⟦ ΔΔ Δ ⟧Context -- ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type -- ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ -- ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ) -- XXX separate syntax is a bit dangerous. Also, do I want to be so accurate relative to the original model? data _F⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Fun Γ → ℕ → Val Uni → Set where abs : ∀ {t : Fun (Uni • Γ)} → ρ F⊢ abs t ↓[ 0 ] closure t ρ data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Term Γ → ℕ → Val Uni → Set where var : ∀ (x : Var Γ Uni) → ρ ⊢ var x ↓[ 0 ] (⟦ x ⟧Var ρ) lett : ∀ n1 n2 {Γ' ρ′ v1 v2 v3} {f x t t'} → ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → ρ ⊢ var x ↓[ 0 ] v1 → (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → (v2 • ρ) ⊢ t ↓[ n2 ] v3 → ρ ⊢ lett f x t ↓[ suc (suc (n1 + n2)) ] v3 -- lit : ∀ n → -- ρ ⊢ const (lit n) ↓[ 0 ] intV n -- data _D_⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : D.⟦ ΔΔ Γ ⟧Context) : DTerm Γ → ℕ → DVal DUni → Set where -- dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) → -- ρ D dρ ⊢ dvar x ↓[ 0 ] (D.⟦ x ⟧Var dρ) -- dlett : ∀ n1 n2 n3 n4 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} → -- ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → -- ρ ⊢ var x ↓[ 0 ] v1 → -- (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → -- (v2 • ρ) ⊢ t ↓[ n2 ] v3 → -- -- With a valid input ρ' and ρ'' coincide? Varies among plausible validity -- -- definitions. -- ρ D dρ ⊢ dvar df ↓[ 0 ] dclosure {Γ'} dt' ρ'' dρ' → -- ρ D dρ ⊢ dvar dx ↓[ 0 ] dv1 → -- (v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓[ n3 ] dv2 → -- (v2 • ρ) D (dv2 • dρ) ⊢ dt ↓[ n4 ] dv3 → -- ρ D dρ ⊢ dlett f x t df dx dt ↓[ suc (suc (n1 + n2)) ] dv3 -- Do I need to damn count steps here? No. data _D_F⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DFun Γ → DVal DUni → Set where dabs : ∀ {t : DFun (Uni • Γ)} → ρ D dρ F⊢ dabs t ↓ dclosure t ρ dρ data _D_⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DTerm Γ → DVal DUni → Set where dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) → ρ D dρ ⊢ dvar x ↓ (D.⟦ x ⟧Var dρ) dlett : ∀ n1 n2 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} → ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → ρ ⊢ var x ↓[ 0 ] v1 → (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → (v2 • ρ) ⊢ t ↓[ n2 ] v3 → -- With a valid input ρ' and ρ'' coincide? Varies among plausible validity -- definitions. ρ D dρ ⊢ dvar df ↓ dclosure {Γ'} dt' ρ'' dρ' → ρ D dρ ⊢ dvar dx ↓ dv1 → (v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓ dv2 → (v2 • ρ) D (dv2 • dρ) ⊢ dt ↓ dv3 → ρ D dρ ⊢ dlett f x t df dx dt ↓ dv3 {-# TERMINATING #-} -- Dear lord. Why on Earth. mutual -- Single context? Yeah, good, that's what we want in the end... -- Though we might want more flexibility till when we have replacement -- changes. rrelT3 : ∀ {Γ} (t1 : Fun Γ) (dt : DFun Γ) (t2 : Fun Γ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelT3 t1 dt t2 ρ1 dρ ρ2 k = (v1 v2 : Val Uni) → ∀ j n2 (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) → Σ[ dv ∈ DVal DUni ] Σ[ dn ∈ ℕ ] ρ1 D dρ F⊢ dt ↓ dv × rrelV3 v1 dv v2 (k ∸ j) rrelV3 : ∀ (v1 : Val Uni) (dv : DVal DUni) (v2 : Val Uni) → ℕ → Set rrelV3 (intV v1) (dintV dv) (intV v2) n = dv I.+ (I.+ v1) ≡ (I.+ v2) rrelV3 (closure {Γ1} t1 ρ1) (dclosure {ΔΓ} dt ρ' dρ) (closure {Γ2} t2 ρ2) n = -- Require a proof that the two contexts match: Σ ((Γ1 ≡ Γ2) × (Γ1 ≡ ΔΓ)) λ { (refl , refl) → ∀ (k : ℕ) (k<n : k < n) v1 dv v2 → rrelV3 v1 dv v2 k → rrelT3 t1 dt t2 (v1 • ρ1) (dv • dρ) (v2 • ρ2) k } rrelV3 _ _ _ n = ⊥ -- -- [_]τ from v1 to v2) : -- -- [ τ ]τ dv from v1 to v2) = -- -- data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where -- -- v∅ : [ ∅ ]Δ ∅ from ∅ to ∅ -- -- _v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} → -- -- (dvv : [ τ ]τ dv from v1 to v2) → -- -- (dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) → -- -- [ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2) -- data ErrVal : Set where -- Done : (v : Val Uni) → ErrVal -- Error : ErrVal -- TimeOut : ErrVal -- _>>=_ : ErrVal → (Val Uni → ErrVal) → ErrVal -- Done v >>= f = f v -- Error >>= f = Error -- TimeOut >>= f = TimeOut -- Res : Set -- Res = ℕ → ErrVal -- -- eval-fun : ∀ {Γ} → Fun Γ → ⟦ Γ ⟧Context → Res -- -- eval-term : ∀ {Γ} → Term Γ → ⟦ Γ ⟧Context → Res -- -- apply : Val Uni → Val Uni → Res -- -- apply (closure f ρ) a n = eval-fun f (a • ρ) n -- -- apply (intV _) a n = Error -- -- eval-term t ρ zero = TimeOut -- -- eval-term (var x) ρ (suc n) = Done (⟦ x ⟧Var ρ) -- -- eval-term (lett f x t) ρ (suc n) = apply (⟦ f ⟧Var ρ) (⟦ x ⟧Var ρ) n >>= (λ v → eval-term t (v • ρ) n) -- -- eval-fun (term t) ρ n = eval-term t ρ n -- -- eval-fun (abs f) ρ n = Done (closure f ρ) -- -- -- Erasure from typed to untyped values. -- -- import Thesis.ANormalBigStep as T -- -- erase-type : T.Type → Type -- -- erase-type _ = Uni -- -- erase-val : ∀ {τ} → T.Val τ → Val (erase-type τ) -- -- erase-errVal : ∀ {τ} → T.ErrVal τ → ErrVal -- -- erase-errVal (T.Done v) = Done (erase-val v) -- -- erase-errVal T.Error = Error -- -- erase-errVal T.TimeOut = TimeOut -- -- erase-res : ∀ {τ} → T.Res τ → Res -- -- erase-res r n = erase-errVal (r n) -- -- erase-ctx : T.Context → Context -- -- erase-ctx ∅ = ∅ -- -- erase-ctx (τ • Γ) = erase-type τ • (erase-ctx Γ) -- -- erase-env : ∀ {Γ} → T.Op.⟦ Γ ⟧Context → ⟦ erase-ctx Γ ⟧Context -- -- erase-env ∅ = ∅ -- -- erase-env (v • ρ) = erase-val v • erase-env ρ -- -- erase-var : ∀ {Γ τ} → T.Var Γ τ → Var (erase-ctx Γ) (erase-type τ) -- -- erase-var T.this = this -- -- erase-var (T.that x) = that (erase-var x) -- -- erase-term : ∀ {Γ τ} → T.Term Γ τ → Term (erase-ctx Γ) -- -- erase-term (T.var x) = var (erase-var x) -- -- erase-term (T.lett f x t) = lett (erase-var f) (erase-var x) (erase-term t) -- -- erase-fun : ∀ {Γ τ} → T.Fun Γ τ → Fun (erase-ctx Γ) -- -- erase-fun (T.term x) = term (erase-term x) -- -- erase-fun (T.abs f) = abs (erase-fun f) -- -- erase-val (T.closure t ρ) = closure (erase-fun t) (erase-env ρ) -- -- erase-val (T.intV n) = intV n -- -- -- Different erasures commute. -- -- erasure-commute-var : ∀ {Γ τ} (x : T.Var Γ τ) ρ → -- -- erase-val (T.Op.⟦ x ⟧Var ρ) ≡ ⟦ erase-var x ⟧Var (erase-env ρ) -- -- erasure-commute-var T.this (v • ρ) = refl -- -- erasure-commute-var (T.that x) (v • ρ) = erasure-commute-var x ρ -- -- erase-bind : ∀ {σ τ Γ} a (t : T.Term (σ • Γ) τ) ρ n → erase-errVal (a T.>>= (λ v → T.eval-term t (v • ρ) n)) ≡ erase-errVal a >>= (λ v → eval-term (erase-term t) (v • erase-env ρ) n) -- -- erasure-commute-fun : ∀ {Γ τ} (t : T.Fun Γ τ) ρ n → -- -- erase-errVal (T.eval-fun t ρ n) ≡ eval-fun (erase-fun t) (erase-env ρ) n -- -- erasure-commute-apply : ∀ {σ τ} (f : T.Val (σ T.⇒ τ)) a n → erase-errVal (T.apply f a n) ≡ apply (erase-val f) (erase-val a) n -- -- erasure-commute-apply {σ} (T.closure t ρ) a n = erasure-commute-fun t (a • ρ) n -- -- erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n → -- -- erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n -- -- erasure-commute-fun (T.term t) ρ n = erasure-commute-term t ρ n -- -- erasure-commute-fun (T.abs t) ρ n = refl -- -- erasure-commute-term t ρ zero = refl -- -- erasure-commute-term (T.var x) ρ (ℕ.suc n) = cong Done (erasure-commute-var x ρ) -- -- erasure-commute-term (T.lett f x t) ρ (ℕ.suc n) rewrite erase-bind (T.apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n) t ρ n | erasure-commute-apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n | erasure-commute-var f ρ | erasure-commute-var x ρ = refl -- -- erase-bind (T.Done v) t ρ n = erasure-commute-term t (v • ρ) n -- -- erase-bind T.Error t ρ n = refl -- -- erase-bind T.TimeOut t ρ n = refl
Write down real step-indexed logical relation for untyped terms
Write down real step-indexed logical relation for untyped terms Sadly, Agda does not recognize this is terminating, because recursing on k with k < n is not a structurally recursive call on a subterm. SAD!
Agda
mit
inc-lc/ilc-agda
7849a93dd727b32c2606d958173b08212260367d
Game/Transformation/ReceiptFreeness-CCA2d/Valid.agda
Game/Transformation/ReceiptFreeness-CCA2d/Valid.agda
{-# OPTIONS --copatterns #-} open import Type open import Function open import Data.One open import Data.Two open import Data.Maybe open import Data.Product open import Data.Nat open import Data.Vec hiding (_>>=_ ; _∈_) open import Data.List as L open import Data.Fin as Fin using (Fin) open import Relation.Binary.PropositionalEquality.NP as ≡ open import Control.Strategy renaming (map to mapS) open import Game.Challenge import Game.ReceiptFreeness import Game.IND-CCA2-dagger import Game.IND-CPA-utils import Data.List.Any open Data.List.Any using (here; there) open Data.List.Any.Membership-≡ using (_∈_ ; _∉_) module Game.Transformation.ReceiptFreeness-CCA2d.Valid (PubKey : ★) (SecKey : ★) -- Message = 𝟚 (CipherText : ★) (SerialNumber : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (#q : ℕ) (max#q : Fin #q) (KeyGen : Rₖ → PubKey × SecKey) (Enc : let Message = 𝟚 in PubKey → Message → Rₑ → CipherText) (Dec : let Message = 𝟚 in SecKey → CipherText → Message) (Check : let open Game.ReceiptFreeness PubKey SecKey CipherText SerialNumber Rₑ Rₖ Rₐ #q max#q KeyGen Enc Dec in BB → Receipt → 𝟚) (CheckMem : ∀ bb r → ✓ (Check bb r) → proj₁ (proj₂ r) ∉ L.map (proj₁ ∘ proj₂) bb) -- (CheckEnc : ∀ pk m rₑ → Check (Enc pk m rₑ) ≡ 1₂) where _²' : ★ → ★ X ²' = X × X r-sn : Receipt → SerialNumber r-sn (_ , sn , _) = sn module Simulator-Valid (RFA : RF.Adversary)(RFA-Valid : RF.Valid-Adversary RFA) (WRONG-HYP : ∀ r r' → r-sn r ≡ r-sn r' → enc-co r ≡ enc-co r') where valid : CCA2†.Valid-Adversary (Simulator.A† RFA) valid (rₐ , rgb) pk = Phase1 _ (RFA-Valid rₐ pk) where open CCA2†.Valid-Adversary (rₐ , rgb) pk module RFA = RF.Valid-Adversary rₐ pk open Simulator RFA open AdversaryParts rgb pk rₐ -- could refine r more -- {- Phase2 : ∀ RF {bb i taA taB r} → r-sn (r 0₂) ∈ L.map r-sn bb → r-sn (r 1₂) ∈ L.map r-sn bb → RFA.Phase2-Valid r RF → Phase2-Valid (proj₂ ∘ proj₂ ∘ r) (mapS proj₁ (mitm-to-client-trans (MITM-phase 1₂ i bb (taA , taB)) RF)) Phase2 (ask REB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RBB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RTally cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask (RCO x) cont) r0 r1 ((r₀ , r₁) , RF-valid) = r₀ , r₁ , (λ r → Phase2 (cont _) r0 r1 (RF-valid _)) Phase2 (ask (Vote x) cont) {bb} r0 r1 RF-valid with Check bb x | CheckMem bb x ... | 0₂ | _ = Phase2 (cont _) r0 r1 (RF-valid _) ... | 1₂ | not-in-bb = (λ eq → not-in-bb _ {!subst (λ x → x ∈ L.map r-sn bb) eq!}) , {!!}, , λ r → Phase2 (cont _) (there r0) (there r1) (RF-valid _) Phase2 (done x) r0 r1 RF-valid = RF-valid Phase1 : ∀ RF {sn i bb taA taB} → RFA.Phase1-Valid sn RF → Phase1-Valid (mapS A†2 (mitm-to-client-trans (MITM-phase 0₂ i bb (taA , taB)) RF)) Phase1 (ask REB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RBB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RTally cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask (RCO x) cont) RF-valid r = Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) {bb = bb} RF-valid with Check bb x Phase1 (ask (Vote x) cont) RF-valid | 1₂ = λ r → Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) RF-valid | 0₂ = Phase1 _ (RF-valid _) Phase1 (done x) (sn₀∉sn , sn₁∉sn , RF-valid) cs = Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs) )) (here refl) (there (here refl)) (RF-valid _) -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --copatterns #-} open import Type open import Function open import Data.One open import Data.Two open import Data.Maybe open import Data.Product open import Data.Nat open import Data.Vec hiding (_>>=_ ; _∈_) open import Data.List as L open import Data.Fin as Fin using (Fin) open import Relation.Binary.PropositionalEquality.NP as ≡ open import Control.Strategy renaming (map to mapS) open import Control.Strategy.Utils open import Game.Challenge import Game.ReceiptFreeness import Game.IND-CCA2-dagger import Game.IND-CCA2-dagger.Valid import Game.IND-CPA-utils import Data.List.Any open Data.List.Any using (here; there) open Data.List.Any.Membership-≡ using (_∈_ ; _∉_) import Game.ReceiptFreeness.Adversary import Game.ReceiptFreeness.Valid import Game.Transformation.ReceiptFreeness-CCA2d.Simulator module Game.Transformation.ReceiptFreeness-CCA2d.Valid (PubKey : ★) (CipherText : ★) (SerialNumber : ★) (Receipt : ★) (MarkedReceipt? : ★) (Ballot : ★) (Tally : ★) -- (BB : ★) -- ([] : BB) -- (_∷_ : Receipt → BB → BB) (Rgb : ★) (genBallot : PubKey → Rgb → Ballot) (tallyMarkedReceipt? : let CO = 𝟚 in CO → MarkedReceipt? → Tally) (0,0 : Tally) (1,1 : Tally) (_+,+_ : Tally → Tally → Tally) (receipts : SerialNumber ² → CipherText ² → Receipt ²) (enc-co : Receipt → CipherText) (r-sn : Receipt → SerialNumber) (m? : Receipt → MarkedReceipt?) (b-sn : Ballot → SerialNumber) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₐ : ★) (#q : ℕ) (max#q : Fin #q) (Check : let BB = List Receipt in BB → Receipt → 𝟚) where _²' : ★ → ★ X ²' = X × X CO = 𝟚 BB = List Receipt all-sn : BB → List SerialNumber all-sn = L.map r-sn module RF = Game.ReceiptFreeness.Adversary PubKey (SerialNumber ²) Rₐ Receipt Ballot Tally CO BB module RFV = Game.ReceiptFreeness.Valid PubKey SerialNumber Rₐ Receipt Ballot Tally CO BB CipherText enc-co r-sn b-sn open Game.Transformation.ReceiptFreeness-CCA2d.Simulator PubKey CipherText (SerialNumber ²) Receipt MarkedReceipt? Ballot Tally BB [] _∷_ Rgb genBallot tallyMarkedReceipt? 0,0 1,1 _+,+_ receipts enc-co m? Rₐ #q max#q Check module CCA2†V = Game.IND-CCA2-dagger.Valid PubKey Message CipherText Rₐ† module Simulator-Valid (RFA : RF.Adversary)(RFA-Valid : RFV.Valid-Adversary RFA) (WRONG-HYP : ∀ r r' → enc-co r ≡ enc-co r' → r-sn r ≡ r-sn r') (CheckMem : ∀ bb r → ✓ (Check bb r) → r-sn r ∉ all-sn bb) where valid : CCA2†V.Valid-Adversary (Simulator.A† RFA) valid (rₐ , rgb) pk = Phase1 _ (RFA-Valid rₐ pk) where open CCA2†V.Valid-Adversary (rₐ , rgb) pk module RFVA = RFV.Valid-Adversary rₐ pk open RF open Simulator RFA open AdversaryParts rgb pk rₐ -- could refine r more -- {- Phase2 : ∀ RF {bb i ta r} → r-sn (r 0₂) ∈ all-sn bb → r-sn (r 1₂) ∈ all-sn bb → RFVA.Phase2-Valid r RF → Phase2-Valid (enc-co ∘ r) (mapS proj₁ (mitm-to-client-trans (MITM-phase 1₂ i bb ta) RF)) Phase2 (ask REB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RBB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RTally cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask (RCO x) cont) r0 r1 ((r₀ , r₁) , RF-valid) = r₀ , r₁ , (λ r → Phase2 (cont _) r0 r1 (RF-valid _)) Phase2 (ask (Vote x) cont) {bb} r0 r1 RF-valid with Check bb x | CheckMem bb x ... | 0₂ | _ = Phase2 (cont _) r0 r1 (RF-valid _) ... | 1₂ | not-in-bb = (λ eq → not-in-bb _ (subst (λ x₁ → x₁ ∈ all-sn bb) (WRONG-HYP _ _ eq) r0)) , (λ eq → not-in-bb _ (subst (λ x₁ → x₁ ∈ all-sn bb) (WRONG-HYP _ _ eq) r1)) , λ r → Phase2 (cont _) (there r0) (there r1) (RF-valid _) --Phase2 (cont _) (there r0) (there r1) (RF-valid _) Phase2 (done x) r0 r1 RF-valid = RF-valid Phase1 : ∀ RF {sn i bb ta} → RFVA.Phase1-Valid sn RF → Phase1-Valid (mapS A†2 (mitm-to-client-trans (MITM-phase 0₂ i bb ta) RF)) Phase1 (ask REB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RBB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RTally cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask (RCO x) cont) RF-valid r = Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) {bb = bb} RF-valid with Check bb x Phase1 (ask (Vote x) cont) RF-valid | 1₂ = λ r → Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) RF-valid | 0₂ = Phase1 _ (RF-valid _) Phase1 (done x) {bb = bb'}{ta} (sn₀∉sn , sn₁∉sn , RF-valid) cs = {!Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs))) (here refl) (there (here refl)) (RF-valid _)!} -- Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs) )) -- ? ? (RF-valid _) -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -}
update the validity for the simulator
update the validity for the simulator
Agda
bsd-3-clause
crypto-agda/crypto-agda
41898751fdcc62758217e161ad60e93a20db6f51
lib/Algebra/Monoid.agda
lib/Algebra/Monoid.agda
open import Function.NP open import Data.Product.NP open import Data.Nat using (ℕ; fold; zero) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; suc to 1+_) open import Data.Integer using (ℤ; +_; -[1+_]; _⊖_) renaming (_+_ to _+ℤ_; _*_ to _*ℤ_) open import Relation.Binary.PropositionalEquality.NP renaming (_∙_ to _♦_) open import Algebra.FunctionProperties.Eq open ≡-Reasoning module Algebra.Monoid where record Monoid-Ops {ℓ} (M : Set ℓ) : Set ℓ where constructor mk infixl 7 _∙_ field _∙_ : M → M → M ε : M _^⁺_ : M → ℕ → M x ^⁺ n = fold ε (_∙_ x) n module FromInverseOp (_⁻¹ : Op₁ M) where infixl 7 _/_ _/_ : M → M → M x / y = x ∙ y ⁻¹ open FromOp₂ _/_ public renaming (op= to /=) _^⁻_ _^⁻′_ : M → ℕ → M x ^⁻ n = (x ^⁺ n)⁻¹ x ^⁻′ n = (x ⁻¹)^⁺ n _^_ : M → ℤ → M x ^ -[1+ n ] = x ^⁻(1+ n) x ^ (+ n) = x ^⁺ n record Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops -- laws field assoc : Associative _∙_ identity : Identity ε _∙_ open FromOp₂ _∙_ public renaming (op= to ∙=) open FromAssoc _∙_ assoc public module _ {b} where ^⁺0-ε : b ^⁺ 0 ≡ ε ^⁺0-ε = idp ^⁺1-id : b ^⁺ 1 ≡ b ^⁺1-id = snd identity ^⁺2-∙ : b ^⁺ 2 ≡ b ∙ b ^⁺2-∙ = ap (_∙_ _) ^⁺1-id ^⁺-+ : ∀ m {n} → b ^⁺ (m +ℕ n) ≡ b ^⁺ m ∙ b ^⁺ n ^⁺-+ 0 = ! fst identity ^⁺-+ (1+ m) = ap (_∙_ b) (^⁺-+ m) ♦ ! assoc ^⁺-* : ∀ m {n} → b ^⁺(m *ℕ n) ≡ (b ^⁺ n)^⁺ m ^⁺-* 0 = idp ^⁺-* (1+ m) {n} = b ^⁺ (n +ℕ m *ℕ n) ≡⟨ ^⁺-+ n ⟩ b ^⁺ n ∙ b ^⁺(m *ℕ n) ≡⟨ ap (_∙_ (b ^⁺ n)) (^⁺-* m) ⟩ b ^⁺ n ∙ (b ^⁺ n)^⁺ m ∎ comm-ε : ∀ {x} → x ∙ ε ≡ ε ∙ x comm-ε = snd identity ♦ ! fst identity module _ {c x y} (e : (x ∙ y) ≡ ε) where elim-assoc= : (c ∙ x) ∙ y ≡ c elim-assoc= = assoc ♦ ∙= idp e ♦ snd identity elim-!assoc= : x ∙ (y ∙ c) ≡ c elim-!assoc= = ! assoc ♦ ∙= e idp ♦ fst identity module _ {c d x y} (e : (x ∙ y) ≡ ε) where elim-inner= : (c ∙ x) ∙ (y ∙ d) ≡ c ∙ d elim-inner= = assoc ♦ ap (_∙_ c) (elim-!assoc= e) module FromLeftInverse (_⁻¹ : Op₁ M) (inv-l : LeftInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-left : LeftCancel _∙_ cancels-∙-left {c} {x} {y} e = x ≡⟨ ! fst identity ⟩ ε ∙ x ≡⟨ ∙= (! inv-l) idp ⟩ c ⁻¹ ∙ c ∙ x ≡⟨ !assoc= e ⟩ c ⁻¹ ∙ c ∙ y ≡⟨ ∙= inv-l idp ⟩ ε ∙ y ≡⟨ fst identity ⟩ y ∎ inv-r : RightInverse ε _⁻¹ _∙_ inv-r = cancels-∙-left (! assoc ♦ ∙= inv-l idp ♦ ! comm-ε) /-∙ : ∀ {x y} → x ≡ (x / y) ∙ y /-∙ {x} {y} = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-l) ⟩ x ∙ (y ⁻¹ ∙ y) ≡⟨ ! assoc ⟩ (x / y) ∙ y ∎ module FromRightInverse (_⁻¹ : Op₁ M) (inv-r : RightInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-right : RightCancel _∙_ cancels-∙-right {c} {x} {y} e = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ∙= idp (! inv-r) ⟩ x ∙ (c ∙ c ⁻¹) ≡⟨ assoc= e ⟩ y ∙ (c ∙ c ⁻¹) ≡⟨ ∙= idp inv-r ⟩ y ∙ ε ≡⟨ snd identity ⟩ y ∎ inv-l : LeftInverse ε _⁻¹ _∙_ inv-l = cancels-∙-right (assoc ♦ ∙= idp inv-r ♦ comm-ε) module _ {x y} where is-ε-left : x ≡ ε → x ∙ y ≡ y is-ε-left e = ap (λ z → z ∙ _) e ♦ fst identity is-ε-right : y ≡ ε → x ∙ y ≡ x is-ε-right e = ap (λ z → _ ∙ z) e ♦ snd identity ∙-/ : x ≡ (x ∙ y) / y ∙-/ = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-r) ⟩ x ∙ (y / y) ≡⟨ ! assoc ⟩ (x ∙ y) / y ∎ module _ {x y} where unique-ε-left : x ∙ y ≡ y → x ≡ ε unique-ε-left eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ y / y ≡⟨ inv-r ⟩ ε ∎ unique-ε-right : x ∙ y ≡ x → y ≡ ε unique-ε-right eq = y ≡⟨ ! is-ε-left inv-l ⟩ x ⁻¹ ∙ x ∙ y ≡⟨ assoc ⟩ x ⁻¹ ∙ (x ∙ y) ≡⟨ ∙= idp eq ⟩ x ⁻¹ ∙ x ≡⟨ inv-l ⟩ ε ∎ unique-⁻¹ : x ∙ y ≡ ε → x ≡ y ⁻¹ unique-⁻¹ eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ ε / y ≡⟨ fst identity ⟩ y ⁻¹ ∎ open FromLeftInverse _⁻¹ inv-l hiding (inv-r) ε⁻¹-ε : ε ⁻¹ ≡ ε ε⁻¹-ε = unique-ε-left inv-l involutive : Involutive _⁻¹ involutive {x} = cancels-∙-right (x ⁻¹ ⁻¹ ∙ x ⁻¹ ≡⟨ inv-l ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ∎) ⁻¹-hom′ : ∀ {x y} → (x ∙ y)⁻¹ ≡ y ⁻¹ ∙ x ⁻¹ ⁻¹-hom′ {x} {y} = cancels-∙-left {x ∙ y} ((x ∙ y) ∙ (x ∙ y)⁻¹ ≡⟨ inv-r ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ≡⟨ ap (_∙_ x) (! fst identity) ⟩ x ∙ (ε ∙ x ⁻¹) ≡⟨ ∙= idp (∙= (! inv-r) idp) ⟩ x ∙ ((y ∙ y ⁻¹) ∙ x ⁻¹) ≡⟨ ap (_∙_ x) assoc ⟩ x ∙ (y ∙ (y ⁻¹ ∙ x ⁻¹)) ≡⟨ ! assoc ⟩ (x ∙ y) ∙ (y ⁻¹ ∙ x ⁻¹) ∎) elim-∙-left-⁻¹∙ : ∀ {c x y} → (c ∙ x)⁻¹ ∙ (c ∙ y) ≡ x ⁻¹ ∙ y elim-∙-left-⁻¹∙ {c} {x} {y} = (c ∙ x)⁻¹ ∙ (c ∙ y) ≡⟨ ∙= ⁻¹-hom′ idp ⟩ x ⁻¹ ∙ c ⁻¹ ∙ (c ∙ y) ≡⟨ elim-inner= inv-l ⟩ x ⁻¹ ∙ y ∎ elim-∙-right-/ : ∀ {c x y} → (x ∙ c) / (y ∙ c) ≡ x / y elim-∙-right-/ {c} {x} {y} = x ∙ c ∙ (y ∙ c)⁻¹ ≡⟨ ap (_∙_ _) ⁻¹-hom′ ⟩ x ∙ c ∙ (c ⁻¹ / y) ≡⟨ elim-inner= inv-r ⟩ x / y ∎ module _ {b} where ^⁺suc : ∀ n → b ^⁺(1+ n) ≡ b ^⁺ n ∙ b ^⁺suc 0 = comm-ε ^⁺suc (1+ n) = ap (_∙_ b) (^⁺suc n) ♦ ! assoc ^⁺-comm : ∀ n → b ∙ b ^⁺ n ≡ b ^⁺ n ∙ b ^⁺-comm = ^⁺suc ^⁻suc : ∀ n → b ^⁻(1+ n) ≡ b ⁻¹ ∙ b ^⁻ n ^⁻suc n = ap _⁻¹ (^⁺suc n) ♦ ⁻¹-hom′ ^⁻′-spec : ∀ n → b ^⁻′ n ≡ b ^⁻ n ^⁻′-spec 0 = ! ε⁻¹-ε ^⁻′-spec (1+ n) = ap (_∙_ (b ⁻¹)) (^⁻′-spec n) ♦ ! ⁻¹-hom′ ♦ ap _⁻¹ (! ^⁺suc n) ^⁻′1-id : b ^⁻′ 1 ≡ b ⁻¹ ^⁻′1-id = snd identity ^⁻1-id : b ^⁻ 1 ≡ b ⁻¹ ^⁻1-id = ! ^⁻′-spec 1 ♦ ^⁻′1-id ^⁻′2-∙ : b ^⁻′ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻′2-∙ = ap (_∙_ _) ^⁻′1-id ^⁻2-∙ : b ^⁻ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻2-∙ = ! ^⁻′-spec 2 ♦ ^⁻′2-∙ record Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-struct : Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Monoid-Struct mon-struct public record Commutative-Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops field mon-struct : Monoid-Struct mon-ops comm : Commutative _∙_ open Monoid-Struct mon-struct public open FromAssocComm _∙_ assoc comm public hiding (!assoc=; assoc=; inner=) record Commutative-Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-comm : Commutative-Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Commutative-Monoid-Struct mon-comm public mon : Monoid M mon = record { mon-struct = mon-struct } -- A renaming of Monoid with additive notation module Additive-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ) -- A renaming of Monoid with multiplicative notation module Multiplicative-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ) module Additive-Commutative-Monoid {M} (mon-comm : Commutative-Monoid M) = Commutative-Monoid mon-comm renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; assoc-comm to +-assoc-comm ; interchange to +-interchange ; outer= to +-outer= ) module Multiplicative-Commutative-Monoid {M} (mon : Commutative-Monoid M) = Commutative-Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; assoc-comm to *-assoc-comm ; interchange to *-interchange ; outer= to *-outer= ) record MonoidHomomorphism {A B : Set} (monA0+ : Monoid A) (monB1* : Monoid B) (f : A → B) : Set where open Additive-Monoid monA0+ open Multiplicative-Monoid monB1* field 0-hom-1 : f 0ᵐ ≡ 1ᵐ +-hom-* : ∀ {x y} → f (x + y) ≡ f x * f y -- -} -- -} -- -} -- -}
open import Function.NP open import Data.Product.NP open import Data.Nat using (ℕ; zero) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; suc to 1+_) open import Data.Integer using (ℤ; +_; -[1+_]; _⊖_) renaming (_+_ to _+ℤ_; _*_ to _*ℤ_) open import Relation.Binary.PropositionalEquality.NP renaming (_∙_ to _♦_) open import Algebra.FunctionProperties.Eq open ≡-Reasoning module Algebra.Monoid where record Monoid-Ops {ℓ} (M : Set ℓ) : Set ℓ where constructor mk infixl 7 _∙_ field _∙_ : M → M → M ε : M _^⁺_ : M → ℕ → M x ^⁺ n = nest n (_∙_ x) ε module FromInverseOp (_⁻¹ : Op₁ M) where infixl 7 _/_ _/_ : M → M → M x / y = x ∙ y ⁻¹ open FromOp₂ _/_ public renaming (op= to /=) _^⁻_ _^⁻′_ : M → ℕ → M x ^⁻ n = (x ^⁺ n)⁻¹ x ^⁻′ n = (x ⁻¹)^⁺ n _^_ : M → ℤ → M x ^ -[1+ n ] = x ^⁻(1+ n) x ^ (+ n) = x ^⁺ n record Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops -- laws field assoc : Associative _∙_ identity : Identity ε _∙_ open FromOp₂ _∙_ public renaming (op= to ∙=) open FromAssoc _∙_ assoc public module _ {b} where ^⁺0-ε : b ^⁺ 0 ≡ ε ^⁺0-ε = idp ^⁺1-id : b ^⁺ 1 ≡ b ^⁺1-id = snd identity ^⁺2-∙ : b ^⁺ 2 ≡ b ∙ b ^⁺2-∙ = ap (_∙_ _) ^⁺1-id ^⁺-+ : ∀ m {n} → b ^⁺ (m +ℕ n) ≡ b ^⁺ m ∙ b ^⁺ n ^⁺-+ 0 = ! fst identity ^⁺-+ (1+ m) = ap (_∙_ b) (^⁺-+ m) ♦ ! assoc ^⁺-* : ∀ m {n} → b ^⁺(m *ℕ n) ≡ (b ^⁺ n)^⁺ m ^⁺-* 0 = idp ^⁺-* (1+ m) {n} = b ^⁺ (n +ℕ m *ℕ n) ≡⟨ ^⁺-+ n ⟩ b ^⁺ n ∙ b ^⁺(m *ℕ n) ≡⟨ ap (_∙_ (b ^⁺ n)) (^⁺-* m) ⟩ b ^⁺ n ∙ (b ^⁺ n)^⁺ m ∎ comm-ε : ∀ {x} → x ∙ ε ≡ ε ∙ x comm-ε = snd identity ♦ ! fst identity module _ {c x y} (e : (x ∙ y) ≡ ε) where elim-assoc= : (c ∙ x) ∙ y ≡ c elim-assoc= = assoc ♦ ∙= idp e ♦ snd identity elim-!assoc= : x ∙ (y ∙ c) ≡ c elim-!assoc= = ! assoc ♦ ∙= e idp ♦ fst identity module _ {c d x y} (e : (x ∙ y) ≡ ε) where elim-inner= : (c ∙ x) ∙ (y ∙ d) ≡ c ∙ d elim-inner= = assoc ♦ ap (_∙_ c) (elim-!assoc= e) module FromLeftInverse (_⁻¹ : Op₁ M) (inv-l : LeftInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-left : LeftCancel _∙_ cancels-∙-left {c} {x} {y} e = x ≡⟨ ! fst identity ⟩ ε ∙ x ≡⟨ ∙= (! inv-l) idp ⟩ c ⁻¹ ∙ c ∙ x ≡⟨ !assoc= e ⟩ c ⁻¹ ∙ c ∙ y ≡⟨ ∙= inv-l idp ⟩ ε ∙ y ≡⟨ fst identity ⟩ y ∎ inv-r : RightInverse ε _⁻¹ _∙_ inv-r = cancels-∙-left (! assoc ♦ ∙= inv-l idp ♦ ! comm-ε) /-∙ : ∀ {x y} → x ≡ (x / y) ∙ y /-∙ {x} {y} = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-l) ⟩ x ∙ (y ⁻¹ ∙ y) ≡⟨ ! assoc ⟩ (x / y) ∙ y ∎ module FromRightInverse (_⁻¹ : Op₁ M) (inv-r : RightInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-right : RightCancel _∙_ cancels-∙-right {c} {x} {y} e = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ∙= idp (! inv-r) ⟩ x ∙ (c ∙ c ⁻¹) ≡⟨ assoc= e ⟩ y ∙ (c ∙ c ⁻¹) ≡⟨ ∙= idp inv-r ⟩ y ∙ ε ≡⟨ snd identity ⟩ y ∎ inv-l : LeftInverse ε _⁻¹ _∙_ inv-l = cancels-∙-right (assoc ♦ ∙= idp inv-r ♦ comm-ε) module _ {x y} where is-ε-left : x ≡ ε → x ∙ y ≡ y is-ε-left e = ap (λ z → z ∙ _) e ♦ fst identity is-ε-right : y ≡ ε → x ∙ y ≡ x is-ε-right e = ap (λ z → _ ∙ z) e ♦ snd identity ∙-/ : x ≡ (x ∙ y) / y ∙-/ = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-r) ⟩ x ∙ (y / y) ≡⟨ ! assoc ⟩ (x ∙ y) / y ∎ module _ {x y} where unique-ε-left : x ∙ y ≡ y → x ≡ ε unique-ε-left eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ y / y ≡⟨ inv-r ⟩ ε ∎ unique-ε-right : x ∙ y ≡ x → y ≡ ε unique-ε-right eq = y ≡⟨ ! is-ε-left inv-l ⟩ x ⁻¹ ∙ x ∙ y ≡⟨ assoc ⟩ x ⁻¹ ∙ (x ∙ y) ≡⟨ ∙= idp eq ⟩ x ⁻¹ ∙ x ≡⟨ inv-l ⟩ ε ∎ unique-⁻¹ : x ∙ y ≡ ε → x ≡ y ⁻¹ unique-⁻¹ eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ ε / y ≡⟨ fst identity ⟩ y ⁻¹ ∎ open FromLeftInverse _⁻¹ inv-l hiding (inv-r) ε⁻¹-ε : ε ⁻¹ ≡ ε ε⁻¹-ε = unique-ε-left inv-l involutive : Involutive _⁻¹ involutive {x} = cancels-∙-right (x ⁻¹ ⁻¹ ∙ x ⁻¹ ≡⟨ inv-l ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ∎) ⁻¹-hom′ : ∀ {x y} → (x ∙ y)⁻¹ ≡ y ⁻¹ ∙ x ⁻¹ ⁻¹-hom′ {x} {y} = cancels-∙-left {x ∙ y} ((x ∙ y) ∙ (x ∙ y)⁻¹ ≡⟨ inv-r ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ≡⟨ ap (_∙_ x) (! fst identity) ⟩ x ∙ (ε ∙ x ⁻¹) ≡⟨ ∙= idp (∙= (! inv-r) idp) ⟩ x ∙ ((y ∙ y ⁻¹) ∙ x ⁻¹) ≡⟨ ap (_∙_ x) assoc ⟩ x ∙ (y ∙ (y ⁻¹ ∙ x ⁻¹)) ≡⟨ ! assoc ⟩ (x ∙ y) ∙ (y ⁻¹ ∙ x ⁻¹) ∎) elim-∙-left-⁻¹∙ : ∀ {c x y} → (c ∙ x)⁻¹ ∙ (c ∙ y) ≡ x ⁻¹ ∙ y elim-∙-left-⁻¹∙ {c} {x} {y} = (c ∙ x)⁻¹ ∙ (c ∙ y) ≡⟨ ∙= ⁻¹-hom′ idp ⟩ x ⁻¹ ∙ c ⁻¹ ∙ (c ∙ y) ≡⟨ elim-inner= inv-l ⟩ x ⁻¹ ∙ y ∎ elim-∙-right-/ : ∀ {c x y} → (x ∙ c) / (y ∙ c) ≡ x / y elim-∙-right-/ {c} {x} {y} = x ∙ c ∙ (y ∙ c)⁻¹ ≡⟨ ap (_∙_ _) ⁻¹-hom′ ⟩ x ∙ c ∙ (c ⁻¹ / y) ≡⟨ elim-inner= inv-r ⟩ x / y ∎ module _ {b} where ^⁺suc : ∀ n → b ^⁺(1+ n) ≡ b ^⁺ n ∙ b ^⁺suc 0 = comm-ε ^⁺suc (1+ n) = ap (_∙_ b) (^⁺suc n) ♦ ! assoc ^⁺-comm : ∀ n → b ∙ b ^⁺ n ≡ b ^⁺ n ∙ b ^⁺-comm = ^⁺suc ^⁻suc : ∀ n → b ^⁻(1+ n) ≡ b ⁻¹ ∙ b ^⁻ n ^⁻suc n = ap _⁻¹ (^⁺suc n) ♦ ⁻¹-hom′ ^⁻′-spec : ∀ n → b ^⁻′ n ≡ b ^⁻ n ^⁻′-spec 0 = ! ε⁻¹-ε ^⁻′-spec (1+ n) = ap (_∙_ (b ⁻¹)) (^⁻′-spec n) ♦ ! ⁻¹-hom′ ♦ ap _⁻¹ (! ^⁺suc n) ^⁻′1-id : b ^⁻′ 1 ≡ b ⁻¹ ^⁻′1-id = snd identity ^⁻1-id : b ^⁻ 1 ≡ b ⁻¹ ^⁻1-id = ! ^⁻′-spec 1 ♦ ^⁻′1-id ^⁻′2-∙ : b ^⁻′ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻′2-∙ = ap (_∙_ _) ^⁻′1-id ^⁻2-∙ : b ^⁻ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻2-∙ = ! ^⁻′-spec 2 ♦ ^⁻′2-∙ record Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-struct : Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Monoid-Struct mon-struct public record Commutative-Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops field mon-struct : Monoid-Struct mon-ops comm : Commutative _∙_ open Monoid-Struct mon-struct public open FromAssocComm _∙_ assoc comm public hiding (!assoc=; assoc=; inner=) record Commutative-Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-comm : Commutative-Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Commutative-Monoid-Struct mon-comm public mon : Monoid M mon = record { mon-struct = mon-struct } -- A renaming of Monoid with additive notation module Additive-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ) -- A renaming of Monoid with multiplicative notation module Multiplicative-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ) module Additive-Commutative-Monoid {M} (mon-comm : Commutative-Monoid M) = Commutative-Monoid mon-comm renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; assoc-comm to +-assoc-comm ; interchange to +-interchange ; outer= to +-outer= ) module Multiplicative-Commutative-Monoid {M} (mon : Commutative-Monoid M) = Commutative-Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; assoc-comm to *-assoc-comm ; interchange to *-interchange ; outer= to *-outer= ) record MonoidHomomorphism {A B : Set} (monA0+ : Monoid A) (monB1* : Monoid B) (f : A → B) : Set where open Additive-Monoid monA0+ open Multiplicative-Monoid monB1* field 0-hom-1 : f 0ᵐ ≡ 1ᵐ +-hom-* : ∀ {x y} → f (x + y) ≡ f x * f y -- -} -- -} -- -} -- -}
use nest and not fold
Monoid: use nest and not fold
Agda
bsd-3-clause
crypto-agda/agda-nplib
7826abee6b67c7b55aa70968ca7fd6b637d30857
Base/Syntax/Context.agda
Base/Syntax/Context.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We provide two approaches for weakening: context prefixes and -- and subcontext relationship. In this formalization, we mostly -- (maybe exclusively?) use the latter. -- Context Prefixes -- ---------------- -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context _⋎_ = List._++_ take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts and subcontexts, -- together with variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We define weakening based on subcontext relationship. -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation. open Subcontexts public
Drop Prefixes
Drop Prefixes
Agda
mit
inc-lc/ilc-agda
d4d74883fdfb5330e27bb48434b046f8291b5f3d
Denotation/Change/Popl14.agda
Denotation/Change/Popl14.agda
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let _+_ = _⊞_ {τ} _-_ = _⊟_ {τ} in v + (u - v) ≡ u -------------------- -- Implementation -- -------------------- -- ΔVal τ is intended to be the semantic domain for changes of values -- of type τ. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal (base base-int) = ℤ ΔVal (base base-bag) = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {base base-int} n Δn = n + Δn _⊞_ {base base-bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {base base-int} m n = m - n _⊟_ {base base-bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base base-int} n Δn = ⊤ valid {base base-bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = let _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₀_ = _⊞_ {σ} _-₀_ = _⊟_ {σ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v + (u - v)) w ≡⟨ refl ⟩ v w +₁ (u (w +₀ (w -₀ w)) -₁ v w) ≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩ v w +₁ (u w -₁ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base base-int} {u} {v} = tt R[v,u-v] {base base-bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in R[v,u-v] {τ} , (begin (v + (u - v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w +₁ (u - v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {base base-int} n Δn = n + Δn _⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → let _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} in f v +₁ Δf v (v -₀ v) _⟦⊝⟧_ {base base-int} m n = m - n _⟦⊝⟧_ {base base-bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let _+_ = _⊞_ {τ} _-_ = _⊟_ {τ} in v + (u - v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal (base base-int) = ℤ ΔVal (base base-bag) = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {base base-int} n Δn = n + Δn _⊞_ {base base-bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {base base-int} m n = m - n _⊟_ {base base-bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base base-int} n Δn = ⊤ valid {base base-bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = let _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₀_ = _⊞_ {σ} _-₀_ = _⊟_ {σ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v + (u - v)) w ≡⟨ refl ⟩ v w +₁ (u (w +₀ (w -₀ w)) -₁ v w) ≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩ v w +₁ (u w -₁ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base base-int} {u} {v} = tt R[v,u-v] {base base-bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in R[v,u-v] {τ} , (begin (v + (u - v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w +₁ (u - v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {base base-int} n Δn = n + Δn _⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → let _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} in f v +₁ Δf v (v -₀ v) _⟦⊝⟧_ {base base-int} m n = m - n _⟦⊝⟧_ {base base-bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
Improve documentation of ΔVal.
Improve documentation of ΔVal. Old-commit-hash: fb71a0ea6af97c62b01a9d8b7d3089e5cd3139ed
Agda
mit
inc-lc/ilc-agda
a0c0e331a5839a6f7cd2921fe50b2acfdf977244
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ t₂) (Δ t₃)) ≈⟨ ≈-if (derive-term-correct t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct t₂) (derive-term-correct t₃)) ⟩ if (derive-term t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term t₂) (derive-term t₃)) ≡⟨⟩ derive-term (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ {{Γ′}} (abs t) ≈⟨ Δ-abs {{Γ′}} t ⟩ abs (abs (Δ {τ • Γ₁} {{Γ″}} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩ abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) ≡⟨⟩ derive-term {{Γ′}} (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ {{Γ′}} (app t₁ t₂) ≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ {{Γ′}} t₂) (Δ {{Γ′}} t₃)) ≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct {{Γ′}} t₂) (derive-term-correct {{Γ′}} t₃)) ⟩ if (derive-term {{Γ′}} t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term {{Γ′}} t₂) (derive-term {{Γ′}} t₃)) ≡⟨⟩ derive-term {{Γ′}} (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
Resolve implicit arguments.
Resolve implicit arguments. When I filled the last hole in total.agda in the previous commit, Agda told me to 'resolve implicit argument', so I added explicit implicit arguments until Agda was satisfied. I don't know whether or why it matters to do this. Old-commit-hash: ed138bd06659ab2caac47a670b7d3d60c4d97f3a
Agda
mit
inc-lc/ilc-agda
db5307718bfbf262aa80ac0a0dd4b8da3799363b
Denotational/WeakValidChanges.agda
Denotational/WeakValidChanges.agda
module Denotational.WeakValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.ChangeTypes.ChangesAreDerivatives open import Denotational.Notation open import Denotational.Values open import Denotational.Changes open import Denotational.EqualityLemmas -- DEFINITION of weakly valid changes via a logical relation -- Strong validity: open import Denotational.ValidChanges -- Weak validity, defined through a function producing a type. -- -- Since this is a logical relation, this couldn't be defined as a -- datatype, since it is not strictly positive. Weak-Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Weak-Valid-Δ {bool} v dv = ⊤ Weak-Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : Weak-Valid-Δ s ds) → Weak-Valid-Δ (f s) (df s ds) × df is-correct-for f on s and ds strong-to-weak-validity : ∀ {τ : Type} {v : ⟦ τ ⟧} {dv} → Valid-Δ v dv → Weak-Valid-Δ v dv strong-to-weak-validity {bool} _ = tt strong-to-weak-validity {τ ⇒ τ₁} {v} {dv} s-valid-v-dv s ds _ = strong-to-weak-validity dv-s-ds-valid-on-v-s , dv-is-correct-for-v-on-s-and-ds where proofs = s-valid-v-dv s ds dv-s-ds-valid-on-v-s = proj₁ proofs dv-is-correct-for-v-on-s-and-ds = proj₂ proofs {- -- This proof doesn't go through: the desired equivalence is too -- strong, and we can't fill the holes because dv is arbitrary. diff-apply-proof-weak : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof-weak {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv {!!})) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv {!!})) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof-weak {bool} db b _ = xor-cancellative b db -- That'd be the core of the proof of diff-apply-weak, if we relax the -- equivalence in the goal to something more correct. We need a proof -- of validity only for the first argument, somehow: maybe because -- diff itself produces strongly valid changes? -- -- Ahah! Not really: below we use the unprovable -- diff-apply-proof-weak. To be able to use induction, we need to use -- this weaker lemma again. Hence, we'll only be able to prove the -- same equivalence, which will needs another proof of validity to -- unfold further until the base case. diff-apply-proof-weak-f : ∀ {τ₁ τ₂} (df : ⟦ Δ-Type (τ₁ ⇒ τ₂) ⟧) (f : ⟦ τ₁ ⇒ τ₂ ⟧) → (Weak-Valid-Δ f df) → ∀ dv v → (Weak-Valid-Δ v dv) → (diff (apply df f) f) v dv ≡ df v dv diff-apply-proof-weak-f {τ₁} {τ₂} df f df-valid dv v dv-valid = begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)) ⟩ df v dv ∎ where open ≡-Reasoning -} -- A stronger delta equivalence. Note this isn't a congruence; it -- should be possible to define some congruence rules, but those will -- be more complex. data _≈_ : {τ : Type} → ⟦ Δ-Type τ ⟧ → ⟦ Δ-Type τ ⟧ → Set where --base : ∀ (v : ⟦ bool ⟧) → v ≈ v base : ∀ (v1 v2 : ⟦ bool ⟧) → (≡ : v1 ≡ v2) → v1 ≈ v2 fun : ∀ {σ τ} (f1 f2 : ⟦ Δ-Type (σ ⇒ τ) ⟧) → (t≈ : ∀ s ds (valid : Weak-Valid-Δ s ds) → f1 s ds ≈ f2 s ds) → f1 ≈ f2 ≡→≈ : ∀ {τ} {v1 v2 : ⟦ Δ-Type τ ⟧} → v1 ≡ v2 → v1 ≈ v2 ≡→≈ {bool} {v1} {.v1} refl = base v1 v1 refl ≡→≈ {τ₁ ⇒ τ₂} {v1} {.v1} refl = fun v1 v1 (λ s ds _ → ≡→≈ refl) open import Relation.Binary hiding (_⇒_) ≈-refl : ∀ {τ} → Reflexive (_≈_ {τ}) ≈-refl = ≡→≈ refl ≈-sym : ∀ {τ} → Symmetric (_≈_ {τ}) ≈-sym (base v1 v2 ≡) = base _ _ (sym ≡) ≈-sym {(σ ⇒ τ)} (fun f1 f2 t≈) = fun _ _ (λ s ds valid → ≈-sym (t≈ s ds valid)) ≈-trans : ∀ {τ} → Transitive (_≈_ {τ}) ≈-trans {.bool} {.k} {.k} {k} (base .k .k refl) (base .k .k refl) = base k k refl ≈-trans {σ ⇒ τ} {.f1} {.f2} {k} (fun f1 .f2 ≈₁) (fun f2 .k ≈₂) = fun f1 k (λ s ds valid → ≈-trans (≈₁ _ _ valid) (≈₂ _ _ valid)) ≈-isEquivalence : ∀ {τ} → IsEquivalence (_≈_ {τ}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Type → Setoid _ _ ≈-setoid τ = record { Carrier = ⟦ Δ-Type τ ⟧ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning where module _ {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid τ) public hiding (_≡⟨_⟩_) -- Correct proof, to refactor using ≈-Reasoning diff-apply-proof-weak-real : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≈ dv diff-apply-proof-weak-real {τ₁ ⇒ τ₂} df f df-valid = fun _ _ (λ v dv dv-valid → ≈-trans (≡→≈ ( begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ∎)) (diff-apply-proof-weak-real {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)))) --≈⟨ fill in the above proof ⟩ --df v dv where open ≡-Reasoning diff-apply-proof-weak-real {bool} db b _ = ≡→≈ (xor-cancellative b db)
module Denotational.WeakValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.ChangeTypes.ChangesAreDerivatives open import Denotational.Notation open import Denotational.Values open import Denotational.Changes open import Denotational.EqualityLemmas -- DEFINITION of weakly valid changes via a logical relation -- Strong validity: open import Denotational.ValidChanges -- Weak validity, defined through a function producing a type. -- -- Since this is a logical relation, this couldn't be defined as a -- datatype, since it is not strictly positive. Weak-Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Weak-Valid-Δ {bool} v dv = ⊤ Weak-Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : Weak-Valid-Δ s ds) → Weak-Valid-Δ (f s) (df s ds) × df is-correct-for f on s and ds strong-to-weak-validity : ∀ {τ : Type} {v : ⟦ τ ⟧} {dv} → Valid-Δ v dv → Weak-Valid-Δ v dv strong-to-weak-validity {bool} _ = tt strong-to-weak-validity {τ ⇒ τ₁} {v} {dv} s-valid-v-dv = λ s ds _ → let proofs = s-valid-v-dv s ds dv-s-ds-valid-on-v-s = proj₁ proofs dv-is-correct-for-v-on-s-and-ds = proj₂ proofs in strong-to-weak-validity dv-s-ds-valid-on-v-s , dv-is-correct-for-v-on-s-and-ds {- -- This proof doesn't go through: the desired equivalence is too -- strong, and we can't fill the holes because dv is arbitrary. diff-apply-proof-weak : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof-weak {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv {!!})) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv {!!})) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof-weak {bool} db b _ = xor-cancellative b db -- That'd be the core of the proof of diff-apply-weak, if we relax the -- equivalence in the goal to something more correct. We need a proof -- of validity only for the first argument, somehow: maybe because -- diff itself produces strongly valid changes? -- -- Ahah! Not really: below we use the unprovable -- diff-apply-proof-weak. To be able to use induction, we need to use -- this weaker lemma again. Hence, we'll only be able to prove the -- same equivalence, which will needs another proof of validity to -- unfold further until the base case. diff-apply-proof-weak-f : ∀ {τ₁ τ₂} (df : ⟦ Δ-Type (τ₁ ⇒ τ₂) ⟧) (f : ⟦ τ₁ ⇒ τ₂ ⟧) → (Weak-Valid-Δ f df) → ∀ dv v → (Weak-Valid-Δ v dv) → (diff (apply df f) f) v dv ≡ df v dv diff-apply-proof-weak-f {τ₁} {τ₂} df f df-valid dv v dv-valid = begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)) ⟩ df v dv ∎ where open ≡-Reasoning -} -- A stronger delta equivalence. Note this isn't a congruence; it -- should be possible to define some congruence rules, but those will -- be more complex. data _≈_ : {τ : Type} → ⟦ Δ-Type τ ⟧ → ⟦ Δ-Type τ ⟧ → Set where --base : ∀ (v : ⟦ bool ⟧) → v ≈ v base : ∀ (v1 v2 : ⟦ bool ⟧) → (≡ : v1 ≡ v2) → v1 ≈ v2 fun : ∀ {σ τ} (f1 f2 : ⟦ Δ-Type (σ ⇒ τ) ⟧) → (t≈ : ∀ s ds (valid : Weak-Valid-Δ s ds) → f1 s ds ≈ f2 s ds) → f1 ≈ f2 ≡→≈ : ∀ {τ} {v1 v2 : ⟦ Δ-Type τ ⟧} → v1 ≡ v2 → v1 ≈ v2 ≡→≈ {bool} {v1} {.v1} refl = base v1 v1 refl ≡→≈ {τ₁ ⇒ τ₂} {v1} {.v1} refl = fun v1 v1 (λ s ds _ → ≡→≈ refl) open import Relation.Binary hiding (_⇒_) ≈-refl : ∀ {τ} → Reflexive (_≈_ {τ}) ≈-refl = ≡→≈ refl ≈-sym : ∀ {τ} → Symmetric (_≈_ {τ}) ≈-sym (base v1 v2 ≡) = base _ _ (sym ≡) ≈-sym {(σ ⇒ τ)} (fun f1 f2 t≈) = fun _ _ (λ s ds valid → ≈-sym (t≈ s ds valid)) ≈-trans : ∀ {τ} → Transitive (_≈_ {τ}) ≈-trans {.bool} {.k} {.k} {k} (base .k .k refl) (base .k .k refl) = base k k refl ≈-trans {σ ⇒ τ} {.f1} {.f2} {k} (fun f1 .f2 ≈₁) (fun f2 .k ≈₂) = fun f1 k (λ s ds valid → ≈-trans (≈₁ _ _ valid) (≈₂ _ _ valid)) ≈-isEquivalence : ∀ {τ} → IsEquivalence (_≈_ {τ}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Type → Setoid _ _ ≈-setoid τ = record { Carrier = ⟦ Δ-Type τ ⟧ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning where module _ {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid τ) public hiding (_≡⟨_⟩_) -- Correct proof, to refactor using ≈-Reasoning diff-apply-proof-weak-real : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≈ dv diff-apply-proof-weak-real {τ₁ ⇒ τ₂} df f df-valid = fun _ _ (λ v dv dv-valid → ≈-trans (≡→≈ ( begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ∎)) (diff-apply-proof-weak-real {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)))) --≈⟨ fill in the above proof ⟩ --df v dv where open ≡-Reasoning diff-apply-proof-weak-real {bool} db b _ = ≡→≈ (xor-cancellative b db)
Change where-clause to let-expr so that agda 2.3.2 typechecks README
Change where-clause to let-expr so that agda 2.3.2 typechecks README Old-commit-hash: 6ffa74c100a7ee9d51e15d960db14c801f06e27c
Agda
mit
inc-lc/ilc-agda
cad090cf1face3e9ee7c8e4575440a427c74e66a
lib/Explore/BinTree.agda
lib/Explore/BinTree.agda
{-# OPTIONS --without-K #-} module Explore.BinTree where open import Data.Tree.Binary open import Explore.Core open import Explore.Properties fromBinTree : ∀ {m} {A} → BinTree A → Explore m A fromBinTree empty = empty-explore fromBinTree (leaf x) = point-explore x fromBinTree (fork ℓ r) = merge-explore (fromBinTree ℓ) (fromBinTree r) fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind empty = empty-explore-ind fromBinTree-ind (leaf x) = point-explore-ind x fromBinTree-ind (fork ℓ r) = merge-explore-ind (fromBinTree-ind ℓ) (fromBinTree-ind r) {- fromBinTree : ∀ {m A} → BinTree A → Explore m A fromBinTree (leaf x) _ _ f = f x fromBinTree (fork ℓ r) ε _∙_ f = fromBinTree ℓ ε _∙_ f ∙ fromBinTree r ε _∙_ f fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind (leaf x) P _ P∙ Pf = Pf x fromBinTree-ind (fork ℓ r) P Pε P∙ Pf = P∙ (fromBinTree-ind ℓ P Pε P∙ Pf) (fromBinTree-ind r P Pε P∙ Pf) -}
{-# OPTIONS --without-K #-} module Explore.BinTree where open import Level.NP open import Type hiding (★) open import Data.Tree.Binary open import Data.Zero open import Data.Product open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Type.Identities open import Function.Extensionality open import Explore.Core open import Explore.Properties open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism fromBinTree : ∀ {m} {A} → BinTree A → Explore m A fromBinTree empty = empty-explore fromBinTree (leaf x) = point-explore x fromBinTree (fork ℓ r) = merge-explore (fromBinTree ℓ) (fromBinTree r) fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind empty = empty-explore-ind fromBinTree-ind (leaf x) = point-explore-ind x fromBinTree-ind (fork ℓ r) = merge-explore-ind (fromBinTree-ind ℓ) (fromBinTree-ind r) {- fromBinTree : ∀ {m A} → BinTree A → Explore m A fromBinTree (leaf x) _ _ f = f x fromBinTree (fork ℓ r) ε _∙_ f = fromBinTree ℓ ε _∙_ f ∙ fromBinTree r ε _∙_ f fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind (leaf x) P _ P∙ Pf = Pf x fromBinTree-ind (fork ℓ r) P Pε P∙ Pf = P∙ (fromBinTree-ind ℓ P Pε P∙ Pf) (fromBinTree-ind r P Pε P∙ Pf) -} AnyP≡ΣfromBinTree : ∀ {p}{A : ★ _}{P : A → ★ p}(xs : BinTree A) → Any P xs ≡ Σᵉ (fromBinTree xs) P AnyP≡ΣfromBinTree empty = idp AnyP≡ΣfromBinTree (leaf x) = idp AnyP≡ΣfromBinTree (fork xs xs₁) = ⊎= (AnyP≡ΣfromBinTree xs) (AnyP≡ΣfromBinTree xs₁) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀} where exploreΣ∈ : ∀ {m} xs → Explore m (Σ A λ x → Any (_≡_ x) xs) exploreΣ∈ empty = explore-iso (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) Lift𝟘ᵉ exploreΣ∈ (leaf x) = point-explore (x , idp) exploreΣ∈ (fork xs xs₁) = explore-iso (coe-equiv (! Σ⊎-split)) (exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁) Σᵉ-adq-exploreΣ∈ : ∀ {m} xs → Adequate-Σᵉ {m} (exploreΣ∈ xs) Σᵉ-adq-exploreΣ∈ empty = Σ-iso-ok (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) {Aᵉ = Lift𝟘ᵉ} ΣᵉLift𝟘-ok Σᵉ-adq-exploreΣ∈ (leaf x₁) F = ! Σ𝟙-snd ∙ Σ-fst≃ (≃-sym (Σx≡≃𝟙 x₁)) F Σᵉ-adq-exploreΣ∈ (fork xs xs₁) = Σ-iso-ok (coe-equiv (! Σ⊎-split)) {Aᵉ = exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁} (Σᵉ⊎-ok {eᴬ = exploreΣ∈ xs}{eᴮ = exploreΣ∈ xs₁} (Σᵉ-adq-exploreΣ∈ xs) (Σᵉ-adq-exploreΣ∈ xs₁)) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀}{P : A → ★ _}(explore-P : ∀ {m} x → Explore m (P x)) where open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism exploreAny : ∀ {m} xs → Explore m (Any P xs) exploreAny empty = Lift𝟘ᵉ exploreAny (leaf x) = explore-P x exploreAny (fork xs xs₁) = exploreAny xs ⊎ᵉ exploreAny xs₁ module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σᵉ {m} (explore-P x)) where Σᵉ-adq-exploreAny : ∀ {m} xs → Adequate-Σᵉ {m} (exploreAny xs) Σᵉ-adq-exploreAny empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreAny (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreAny (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreAny xs _) (Σᵉ-adq-exploreAny xs₁ _) ∙ ! dist-⊎-Σ exploreΣᵉ : ∀ {m} xs → Explore m (Σᵉ (fromBinTree xs) P) exploreΣᵉ {m} xs = fromBinTree-ind xs (λ e → Explore m (Σᵉ e P)) Lift𝟘ᵉ _⊎ᵉ_ explore-P module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σᵉ {m} (explore-P x)) where Σᵉ-adq-exploreΣᵉ : ∀ {m} xs → Adequate-Σᵉ {m} (exploreΣᵉ xs) Σᵉ-adq-exploreΣᵉ empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreΣᵉ (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreΣᵉ (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreΣᵉ xs _) (Σᵉ-adq-exploreΣᵉ xs₁ _) ∙ ! dist-⊎-Σ -- -} -- -} -- -} -- -}
Add more exploration functions about binary trees
Add more exploration functions about binary trees
Agda
bsd-3-clause
crypto-agda/explore
15cd0eafd613a991286818c276496c93db0ada5d
Parametric/Denotation/CachingMValue.agda
Parametric/Denotation/CachingMValue.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for caching evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value import Parametric.Denotation.MValue as MValue module Parametric.Denotation.CachingMValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open MValue.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) module Structure where -- XXX: below we need to override just a few cases. Inheritance would handle -- this precisely; without inheritance, we might want to use one of the -- standard encodings of related features (delegation?). ⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁ ⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁ -- This line is the only change, up to now, for the caching semantics starting from CBPV. ⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCacheWrong × ⟦ τ₁ ⟧ValTypeHidCacheWrong ) -- Delegation upward. ⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType ⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType -- The above does not override what happens in recursive occurrences. {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- This line is the only change, up to now, for the caching semantics. -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -}
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for caching evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value import Parametric.Denotation.MValue as MValue module Parametric.Denotation.CachingMValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open MValue.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) module Structure where {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. -- -- XXX: This line is the only change, up to now, for the caching semantics, -- the rest is copied. Inheritance would handle this precisely; without -- inheritance, we might want to use one of the standard encodings of related -- features (delegation?). ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -}
Drop ⟦_⟧*TypeHidCacheWrong
Drop ⟦_⟧*TypeHidCacheWrong This wrong definition should not be counted among the failures before CBPV, since it was created after and it is due to a separate limitation.
Agda
mit
inc-lc/ilc-agda
e7b75259e34cf9de11a2696f75d1384a4dc62f8d
agda/Nat.agda
agda/Nat.agda
module Nat where data ℕ : Set where zero : ℕ succ : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + b = b succ a + b = succ (a + b) _×_ : ℕ → ℕ → ℕ zero × b = zero succ a × b = (a × b) + b open import Relation.Binary.PropositionalEquality 0-is-right-identity-of-+ : ∀ (n : ℕ) → n + zero ≡ n 0-is-right-identity-of-+ zero = refl 0-is-right-identity-of-+ (succ n) = cong succ (0-is-right-identity-of-+ n) +-is-associative : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c +-is-associative zero b c = refl +-is-associative (succ a) b c = cong succ (+-is-associative a b c) lemma : ∀ (a b : ℕ) → a + succ b ≡ succ (a + b) lemma zero b = refl lemma (succ a) b = cong succ (lemma a b) import Relation.Binary.EqReasoning as EqR open module EqNat = EqR (setoid ℕ) +-is-commutative : ∀ (a b : ℕ) → a + b ≡ b + a +-is-commutative a zero = 0-is-right-identity-of-+ a +-is-commutative a (succ b) = begin a + succ b ≈⟨ lemma a b ⟩ succ (a + b) ≈⟨ cong succ (+-is-commutative a b) ⟩ succ (b + a) ≈⟨ refl ⟩ succ b + a ∎
module Nat where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC succ #-} _+_ : ℕ → ℕ → ℕ zero + b = b succ a + b = succ (a + b) _×_ : ℕ → ℕ → ℕ zero × b = zero succ a × b = (a × b) + b open import Relation.Binary.PropositionalEquality 0-is-right-identity-of-+ : ∀ (n : ℕ) → n + zero ≡ n 0-is-right-identity-of-+ zero = refl 0-is-right-identity-of-+ (succ n) = cong succ (0-is-right-identity-of-+ n) +-is-associative : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c +-is-associative zero b c = refl +-is-associative (succ a) b c = cong succ (+-is-associative a b c) lemma : ∀ (a b : ℕ) → a + succ b ≡ succ (a + b) lemma zero b = refl lemma (succ a) b = cong succ (lemma a b) import Relation.Binary.EqReasoning as EqR open module EqNat = EqR (setoid ℕ) +-is-commutative : ∀ (a b : ℕ) → a + b ≡ b + a +-is-commutative a zero = 0-is-right-identity-of-+ a +-is-commutative a (succ b) = begin a + succ b ≈⟨ lemma a b ⟩ succ (a + b) ≈⟨ cong succ (+-is-commutative a b) ⟩ succ (b + a) ≈⟨ refl ⟩ succ b + a ∎
allow the use of more natural notation in Nat
allow the use of more natural notation in Nat
Agda
unlicense
piyush-kurur/sample-code
8e1932027422fbfd5254b377ea26f80df138163c
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context module Parametric.Change.Term {Base : Set} (Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}) where -- Terms that operate on changes open Type Base open Context Type open import Parametric.Change.Type Δbase open import Parametric.Syntax.Term Constant open import Data.Product -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context module Parametric.Change.Term {Base : Set} (Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}) {Δbase : Base → Type.Type Base} where -- Terms that operate on changes open Type Base open Context Type open import Parametric.Change.Type Δbase open import Parametric.Syntax.Term Constant open import Data.Product -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
Move parameter to module level.
Move parameter to module level. All definitions in this module take the same parameter, so moving that parameter to the module level makes it easier to instantiate all of the definitions at once. Old-commit-hash: c9a73b24cd02aed1ee75b46416c1893c8c37b130
Agda
mit
inc-lc/ilc-agda
bdfd1c903bebb00f241b98797e6544d8970bea49
Crypto/JS/BigI/FiniteField.agda
Crypto/JS/BigI/FiniteField.agda
{-# OPTIONS --without-K #-} open import Type.Eq using (_==_; Eq?; ≡⇒==; ==⇒≡) open import Data.Two.Base using (𝟚; ✓) open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl; ap) open import FFI.JS using (JS[_]; _++_; return; _>>_) open import FFI.JS.Check using (check!) renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Homomorphism open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where -- The constructor mk is not exported. private module Internals where data ℤ[_] : Set where mk : BigI → ℤ[_] mk-inj : ∀ {x y : BigI} → ℤ[_].mk x ≡ mk y → x ≡ y mk-inj refl = refl open Internals public using (ℤ[_]) open Internals ℤq : Set ℤq = ℤ[_] private mod-q : BigI → ℤq mod-q x = mk (mod x q) -- There are two ways to go from BigI to ℤq: BigI▹ℤ[ q ] and mod-q -- Use BigI▹ℤ[ q ] for untrusted input data and mod-q for internal -- computation. BigI▹ℤ[_] : BigI → JS[ ℤq ] BigI▹ℤ[_] x = -- Console.log "BigI▹ℤ[_]" check! "below the modulus" (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) >> check! "positivity" (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") >> return (mk x) check-non-zero : ℤq → BigI check-non-zero (mk x) = -- trace-call "check-non-zero " check? (x >I 0I) (λ _ → "Should be non zero") x ℤ[_]▹BigI : ℤq → BigI ℤ[_]▹BigI (mk x) = x 0# 1# : ℤq 0# = mk 0I 1# = mk 1I -- One could choose here to return a dummy value when 0 is given. -- Instead we throw an exception which in some circumstances could -- be bad if the runtime semantics is too eager. 1/_ : ℤq → ℤq 1/ x = mk (modInv (check-non-zero x) q) _^I_ : ℤq → BigI → ℤq mk x ^I y = mk (modPow x y q) ℤq▹BigI = ℤ[_]▹BigI BigI▹ℤq = BigI▹ℤ[_] _⊗I_ : ℤq → BigI → ℤq x ⊗I y = mod-q (multiply (ℤq▹BigI x) y) _+_ _−_ _*_ _/_ : ℤq → ℤq → ℤq x + y = mod-q (add (ℤq▹BigI x) (ℤq▹BigI y)) x − y = mod-q (subtract (ℤq▹BigI x) (ℤq▹BigI y)) x * y = x ⊗I ℤq▹BigI y x / y = x * 1/ y *-def : _*_ ≡ (λ x y → x ⊗I ℤq▹BigI y) *-def = refl 0−_ : ℤq → ℤq 0− x = mod-q (negate (ℤq▹BigI x)) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# instance ℤ[_]-Eq? : Eq? ℤq ℤ[_]-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤq → ℤq → 𝟚 mk x ==' mk y = x == y ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ≡⇒==' {mk x} {mk y} p = ≡⇒== (mk-inj p) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y ==⇒≡' {mk x} {mk y} p = ap mk (==⇒≡ p) ℤq-Eq? = ℤ[_]-Eq? +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct module fld = Field fld -- open fld using (+-grp) public ℤ[_]+-grp : Group ℤq ℤ[_]+-grp = fld.+-grp ℤq+-grp : Group ℤq ℤq+-grp = fld.+-grp -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq using (_==_; Eq?; ≡⇒==; ==⇒≡) open import Data.Two.Base using (𝟚; ✓) open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl; ap) open import FFI.JS using (JS[_]; _++_; return; _>>_) open import FFI.JS.Check using (check!) --renaming (check to check?) renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Homomorphism open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where -- The constructor mk is not exported. private module Internals where data ℤ[_] : Set where mk : BigI → ℤ[_] mk-inj : ∀ {x y : BigI} → ℤ[_].mk x ≡ mk y → x ≡ y mk-inj refl = refl open Internals public using (ℤ[_]) open Internals ℤq : Set ℤq = ℤ[_] private mod-q : BigI → ℤq mod-q x = mk (mod x q) -- There are two ways to go from BigI to ℤq: BigI▹ℤ[ q ] and mod-q -- Use BigI▹ℤ[ q ] for untrusted input data and mod-q for internal -- computation. BigI▹ℤ[_] : BigI → JS[ ℤq ] BigI▹ℤ[_] x = -- Console.log "BigI▹ℤ[_]" check! "below the modulus" (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) >> check! "positivity" (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") >> return (mk x) check-non-zero : ℤq → BigI check-non-zero (mk x) = -- trace-call "check-non-zero " check? (x >I 0I) (λ _ → "Should be non zero") x ℤ[_]▹BigI : ℤq → BigI ℤ[_]▹BigI (mk x) = x 0# 1# : ℤq 0# = mk 0I 1# = mk 1I -- One could choose here to return a dummy value when 0 is given. -- Instead we throw an exception which in some circumstances could -- be bad if the runtime semantics is too eager. 1/_ : ℤq → ℤq 1/ x = mk (modInv (check-non-zero x) q) _^I_ : ℤq → BigI → ℤq mk x ^I y = mk (modPow x y q) ℤq▹BigI = ℤ[_]▹BigI BigI▹ℤq = BigI▹ℤ[_] _⊗I_ : ℤq → BigI → ℤq x ⊗I y = mod-q (multiply (ℤq▹BigI x) y) _+_ _−_ _*_ _/_ : ℤq → ℤq → ℤq x + y = mod-q (add (ℤq▹BigI x) (ℤq▹BigI y)) x − y = mod-q (subtract (ℤq▹BigI x) (ℤq▹BigI y)) x * y = x ⊗I ℤq▹BigI y x / y = x * 1/ y *-def : _*_ ≡ (λ x y → x ⊗I ℤq▹BigI y) *-def = refl 0−_ : ℤq → ℤq 0− x = mod-q (negate (ℤq▹BigI x)) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# instance ℤ[_]-Eq? : Eq? ℤq ℤ[_]-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤq → ℤq → 𝟚 mk x ==' mk y = x == y ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ≡⇒==' {mk x} {mk y} p = ≡⇒== (mk-inj p) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y ==⇒≡' {mk x} {mk y} p = ap mk (==⇒≡ p) ℤq-Eq? = ℤ[_]-Eq? +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct module fld = Field fld -- open fld using (+-grp) public ℤ[_]+-grp : Group ℤq ℤ[_]+-grp = fld.+-grp ℤq+-grp : Group ℤq ℤq+-grp = fld.+-grp -- -} -- -} -- -} -- -}
Use warn-check since check is monadic now...
ℤq: Use warn-check since check is monadic now...
Agda
bsd-3-clause
crypto-agda/crypto-agda
3be2477097d1bfe6056a5d1fbcef0fb70636e4dc
lib/Relation/Binary/PropositionalEquality/NP.agda
lib/Relation/Binary/PropositionalEquality/NP.agda
{-# OPTIONS --universe-polymorphism #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≡≡_ : ∀ {a} {A : Set a} {i j : A} (i≡j₁ : i ≡ j) (i≡j₂ : i ≡ j) → i≡j₁ ≡ i≡j₂ _≡≡_ refl refl = refl _≟≡_ : ∀ {a} {A : Set a} {i j : A} → Decidable {A = i ≡ j} _≡_ _≟≡_ refl refl = yes refl injective : ∀ {a} {A : Set a} → InjectiveRel A _≡_ injective refl refl = refl surjective : ∀ {a} {A : Set a} → SurjectiveRel A _≡_ surjective refl refl = refl bijective : ∀ {a} {A : Set a} → BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } module ≡-Reasoning {a} {A : Set a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : Set a} {B : Set b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦Set⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦Set⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → Set ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦Set₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
{-# OPTIONS --universe-polymorphism #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≡≡_ : ∀ {a} {A : Set a} {i j : A} (i≡j₁ : i ≡ j) (i≡j₂ : i ≡ j) → i≡j₁ ≡ i≡j₂ _≡≡_ refl refl = refl _≟≡_ : ∀ {a} {A : Set a} {i j : A} → Decidable {A = i ≡ j} _≡_ _≟≡_ refl refl = yes refl _≗₂_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f g : A → B → C) → Set _ f ≗₂ g = ∀ x y → f x y ≡ g x y injective : ∀ {a} {A : Set a} → InjectiveRel A _≡_ injective refl refl = refl surjective : ∀ {a} {A : Set a} → SurjectiveRel A _≡_ surjective refl refl = refl bijective : ∀ {a} {A : Set a} → BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } module ≡-Reasoning {a} {A : Set a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : Set a} {B : Set b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦Set⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦Set⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → Set ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦Set₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
add ≗₂
add ≗₂
Agda
bsd-3-clause
crypto-agda/agda-nplib
89da077b4d098d6e0939d860c48061f66c5d3369
formalization/agda/Spire/Operational.agda
formalization/agda/Spire/Operational.agda
module Spire.Operational where ---------------------------------------------------------------------- data Level : Set where zero : Level suc : Level → Level ---------------------------------------------------------------------- data Context : Set data Type (Γ : Context) : Set data Value (Γ : Context) : Type Γ → Set data Neutral (Γ : Context) : Type Γ → Set ---------------------------------------------------------------------- data Context where ∅ : Context _,_ : (Γ : Context) → Type Γ → Context data Type Γ where `⊥ `⊤ `Bool : Type Γ `Type : (ℓ : Level) → Type Γ `Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ `⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ ---------------------------------------------------------------------- ⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ postulate wknT : ∀{Γ A} → Type Γ → Type (Γ , A) subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x) data Var : (Γ : Context) (A : Type Γ) → Set where here : ∀{Γ A} → Var (Γ , A) (wknT A) there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A) ---------------------------------------------------------------------- data Value Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Value Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Value Γ `⊤ `true `false : Value Γ `Bool _`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B) `λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B) `neut : ∀{A} → Neutral Γ A → Value Γ A ---------------------------------------------------------------------- data Neutral Γ where {- Value elimination -} `var : ∀{A} → Var Γ A → Neutral Γ A `if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C `proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A `proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab))) _`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a) ---------------------------------------------------------------------- ⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧ ⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧ ⟦ `⊥ ⟧ = `⊥ ⟦ `⊤ ⟧ = `⊤ ⟦ `Bool ⟧ = `Bool ⟦ `Type {zero} ⟧ = `⊥ ⟦ `Type {suc ℓ} ⟧ = `Type ℓ ⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧ ⟦ `neut A ⟧ = `⟦ A ⟧ ---------------------------------------------------------------------- if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C if `true then c₁ else c₂ = c₁ if `false then c₁ else c₂ = c₂ if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂) ---------------------------------------------------------------------- proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A proj₁ (a `, b) = a proj₁ (`neut ab) = `neut (`proj₁ ab) proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab)) proj₂ (a `, b) = b proj₂ (`neut ab) = `neut (`proj₂ ab) ---------------------------------------------------------------------- _$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a) `λ b $ a = subV b a `neut f $ a = `neut (f `$ a) ---------------------------------------------------------------------- data Term (Γ : Context) : Type Γ → Set eval : ∀{Γ A} → Term Γ A → Value Γ A data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Term Γ `⊤ `true `false : Term Γ `Bool _`,_ : ∀{A B} (a : Term Γ A) (b : Term Γ (subT B (eval a))) → Term Γ (`Σ A B) {- Value elimination -} `var : ∀{A} → Var Γ A → Term Γ A `if_`then_`else_ : ∀{C} (b : Term Γ `Bool) (c₁ c₂ : Term Γ C) → Term Γ C _`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a)) `proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A `proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab))) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `Type = `Type eval (`Π A B) = `Π (eval A) (eval B) eval (`Σ A B) = `Σ (eval A) (eval B) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Value introduction -} eval `tt = `tt eval `true = `true eval `false = `false eval (a `, b) = eval a `, eval b {- Value elimination -} eval (`var i) = `neut (`var i) eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂ eval (f `$ a) = eval f $ eval a eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) ----------------------------------------------------------------------
module Spire.Operational where ---------------------------------------------------------------------- data Level : Set where zero : Level suc : Level → Level ---------------------------------------------------------------------- data Context : Set data Type (Γ : Context) : Set data Value (Γ : Context) : Type Γ → Set data Neutral (Γ : Context) : Type Γ → Set ---------------------------------------------------------------------- data Context where ∅ : Context _,_ : (Γ : Context) → Type Γ → Context data Type Γ where `⊥ `⊤ `Bool : Type Γ `Type : (ℓ : Level) → Type Γ `Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ `⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ ---------------------------------------------------------------------- ⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ postulate wknT : ∀{Γ A} → Type Γ → Type (Γ , A) subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x) data Var : (Γ : Context) (A : Type Γ) → Set where here : ∀{Γ A} → Var (Γ , A) (wknT A) there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A) ---------------------------------------------------------------------- data Value Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Value Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Value Γ `⊤ `true `false : Value Γ `Bool _`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B) `λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B) `neut : ∀{A} → Neutral Γ A → Value Γ A ---------------------------------------------------------------------- data Neutral Γ where {- Value elimination -} `var : ∀{A} → Var Γ A → Neutral Γ A `if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C `elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b)) `proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A `proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab))) _`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a) ---------------------------------------------------------------------- ⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧ ⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧ ⟦ `⊥ ⟧ = `⊥ ⟦ `⊤ ⟧ = `⊤ ⟦ `Bool ⟧ = `Bool ⟦ `Type {zero} ⟧ = `⊥ ⟦ `Type {suc ℓ} ⟧ = `Type ℓ ⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧ ⟦ `neut A ⟧ = `⟦ A ⟧ ---------------------------------------------------------------------- if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C if `true then c₁ else c₂ = c₁ if `false then c₁ else c₂ = c₂ if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂) elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Value Γ `Bool) → Value Γ (subT ⟦ P ⟧ b) elimBool P pt pf `true = pt elimBool P pt pf `false = pf elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b) ---------------------------------------------------------------------- proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A proj₁ (a `, b) = a proj₁ (`neut ab) = `neut (`proj₁ ab) proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab)) proj₂ (a `, b) = b proj₂ (`neut ab) = `neut (`proj₂ ab) ---------------------------------------------------------------------- _$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a) `λ b $ a = subV b a `neut f $ a = `neut (f `$ a) ---------------------------------------------------------------------- data Term (Γ : Context) : Type Γ → Set eval : ∀{Γ A} → Term Γ A → Value Γ A data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Term Γ `⊤ `true `false : Term Γ `Bool _`,_ : ∀{A B} (a : Term Γ A) (b : Term Γ (subT B (eval a))) → Term Γ (`Σ A B) {- Value elimination -} `var : ∀{A} → Var Γ A → Term Γ A `if_`then_`else_ : ∀{C} (b : Term Γ `Bool) (c₁ c₂ : Term Γ C) → Term Γ C _`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a)) `proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A `proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab))) `elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ)) (pt : Term Γ (subT ⟦ eval P ⟧ `true)) (pf : Term Γ (subT ⟦ eval P ⟧ `false)) (b : Term Γ `Bool) → Term Γ (subT ⟦ eval P ⟧ (eval b)) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `Type = `Type eval (`Π A B) = `Π (eval A) (eval B) eval (`Σ A B) = `Σ (eval A) (eval B) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Value introduction -} eval `tt = `tt eval `true = `true eval `false = `false eval (a `, b) = eval a `, eval b {- Value elimination -} eval (`var i) = `neut (`var i) eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂ eval (f `$ a) = eval f $ eval a eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b) ----------------------------------------------------------------------
Add elimBool to operational semantics.
Add elimBool to operational semantics.
Agda
bsd-3-clause
spire/spire
d28029e6a6b72c675115285102a2d423b1c0b3f9
prg.agda
prg.agda
module prg where open import fun-universe open import Function open import Data.Nat.NP hiding (_==_) open import Data.Bool.NP hiding (_==_) open import Data.Nat.Properties open import Data.Bool.Properties open import Data.Bits open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Data.Empty open import Data.Vec open import Relation.Binary.PropositionalEquality.NP PRGFun : (k n : ℕ) → Set PRGFun k n = Bits k → Bits n module PRG⅁₁ {k n} (PRG : PRGFun k n) where -- TODO: give the adv some rand Adv : Set Adv = Bits n → Bit chal : Bit → Bits (n + k) → Bits n chal b R = if b then take n R else PRG (drop n R) prg⅁ : Adv → Bit → Bits (n + k) → Bit prg⅁ adv b R = adv (chal b R) -- ``Looks pseudo-random if the message is the output of the PRG some key'' brute′ : Adv brute′ m = search {k} _∨_ ((_==_ m) ∘ PRG) -- ``Looks random if the message is not a possible output of the PRG'' brute : Adv brute m = search {k} _∧_ (not ∘ (_==_ m) ∘ PRG) private brute-PRG-K≡0b-aux : ∀ {k n} (PRG : Bits k → Bits n) K → PRG⅁₁.brute PRG (PRG K) ≡ 0b brute-PRG-K≡0b-aux {zero} {n} PRG [] = cong not (==-refl (PRG [])) brute-PRG-K≡0b-aux {suc k} {n} PRG (true ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 1∷_) K = Bool°.+-comm (search _∧_ (not ∘ _==_ (PRG (1∷ K)) ∘ PRG ∘ 0∷_)) 0b brute-PRG-K≡0b-aux {suc k} {n} PRG (false ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 0∷_) K = refl brute′-bound-aux : ∀ {k n} (PRG : Bits k → Bits n) → let open PRG⅁₁ PRG in #⟨ brute′ ⟩ ≤ 2^ k brute′-bound-aux {zero} PRG = ℕ≤.reflexive #⟨ PRG [] ==⟩ brute′-bound-aux {suc k} PRG = #∨ {f = λ x → search _∨_ (_==_ x ∘ PRG ∘ 0∷_)} (brute′-bound-aux (PRG ∘ 0∷_)) (brute′-bound-aux (PRG ∘ 1∷_)) module PRG⅁ {k n} (PRG : PRGFun k n) where open PRG⅁₁ PRG public brute-PRG-K≡0b : ∀ K → brute (PRG K) ≡ 0b brute-PRG-K≡0b = brute-PRG-K≡0b-aux PRG prg⅁-brute-0 : prg⅁ brute 0b ≗ (const 0b) prg⅁-brute-0 R = brute-PRG-K≡0b (drop n R) brute′-bound : #⟨ brute′ ⟩ ≤ 2^ k brute′-bound = brute′-bound-aux PRG not∘brute′≗brute : not ∘ brute′ ≗ brute not∘brute′≗brute x = search-comm _∨_ _∧_ not (_==_ x ∘ PRG) de-morgan brute≗not∘brute′ : brute′ ≗ not ∘ brute brute≗not∘brute′ x = trans (sym (not-involutive _)) (cong not (not∘brute′≗brute x))
module prg where open import fun-universe open import Function open import Data.Nat.NP hiding (_==_) open import Data.Bool.NP hiding (_==_) open import Data.Nat.Properties open import Data.Bool.Properties open import Data.Bits open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Data.Empty open import Data.Vec open import Relation.Binary.PropositionalEquality.NP PRGFun : (k n : ℕ) → Set PRGFun k n = Bits k → Bits n module PRG⅁₁ {k n} (PRG : PRGFun k n) where -- TODO: give the adv some rand Adv : Set Adv = Bits n → Bit chal : Bit → Bits (n + k) → Bits n chal b R = if b then take n R else PRG (drop n R) prg⅁ : Adv → Bit → Bits (n + k) → Bit prg⅁ adv b R = adv (chal b R) -- ``Looks pseudo-random if the message is the output of the PRG some key'' brute′ : Adv brute′ m = search _∨_ {k} ((_==_ m) ∘ PRG) -- ``Looks random if the message is not a possible output of the PRG'' brute : Adv brute m = search _∧_ {k} (not ∘ (_==_ m) ∘ PRG) private brute-PRG-K≡0b-aux : ∀ {k n} (PRG : Bits k → Bits n) K → PRG⅁₁.brute PRG (PRG K) ≡ 0b brute-PRG-K≡0b-aux {zero} {n} PRG [] = cong not (==-refl (PRG [])) brute-PRG-K≡0b-aux {suc k} {n} PRG (true ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 1∷_) K = Bool°.+-comm (search _∧_ (not ∘ _==_ (PRG (1∷ K)) ∘ PRG ∘ 0∷_)) 0b brute-PRG-K≡0b-aux {suc k} {n} PRG (false ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 0∷_) K = refl brute′-bound-aux : ∀ {k n} (PRG : Bits k → Bits n) → let open PRG⅁₁ PRG in #⟨ brute′ ⟩ ≤ 2^ k brute′-bound-aux {zero} PRG = ℕ≤.reflexive #⟨ PRG [] ==⟩ brute′-bound-aux {suc k} PRG = #∨ {f = λ x → search _∨_ (_==_ x ∘ PRG ∘ 0∷_)} (brute′-bound-aux (PRG ∘ 0∷_)) (brute′-bound-aux (PRG ∘ 1∷_)) module PRG⅁ {k n} (PRG : PRGFun k n) where open PRG⅁₁ PRG public brute-PRG-K≡0b : ∀ K → brute (PRG K) ≡ 0b brute-PRG-K≡0b = brute-PRG-K≡0b-aux PRG prg⅁-brute-0 : prg⅁ brute 0b ≗ (const 0b) prg⅁-brute-0 R = brute-PRG-K≡0b (drop n R) brute′-bound : #⟨ brute′ ⟩ ≤ 2^ k brute′-bound = brute′-bound-aux PRG not∘brute′≗brute : not ∘ brute′ ≗ brute not∘brute′≗brute x = search-hom _∨_ _∧_ not (_==_ x ∘ PRG) de-morgan brute≗not∘brute′ : brute′ ≗ not ∘ brute brute≗not∘brute′ x = trans (sym (not-involutive _)) (cong not (not∘brute′≗brute x))
fix argument order
prg: fix argument order
Agda
bsd-3-clause
crypto-agda/crypto-agda
f274de0be6b9f871bb446ee6381969cac1a7ad8a
Parametric/Denotation/CachingEvaluation.agda
Parametric/Denotation/CachingEvaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (τ₁ v× τ₂ v× σ) , (r₂ ,′ (c₁ ,′ c₂ ,′ r₁)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
Fix order of returned caches
Fix order of returned caches
Agda
mit
inc-lc/ilc-agda
a127cbe0afe5735ec22de57b718586c54a38c33b
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 7)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Fix testd
Fix testd
Agda
mit
louisswarren/hieretikz
3682d42d35e0734a6a4d6a4ee62cbad3965309b9
Parametric/Change/Term.agda
Parametric/Change/Term.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes (Fig. 3). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product -- Extension point 1: A term for ⊝ on base types. DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) -- Extension point 2: A term for ⊕ on base types. ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) -- We provide: terms for ⊕ and ⊝ on arbitrary types. diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in absV 4 (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in absV 3 (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = app₂ apply-term
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes (Fig. 3). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product -- Extension point 1: A term for ⊝ on base types. DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) -- Extension point 2: A term for ⊕ on base types. ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) -- We provide: terms for ⊕ and ⊝ on arbitrary types. diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in absV 4 (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in absV 3 (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = apply τ
Make _⊕_ more coherent with _⊝_
Make _⊕_ more coherent with _⊝_
Agda
mit
inc-lc/ilc-agda
5cd94161fed3259ba24dc7c2099fc439a5fdadb1
New/Derive.agda
New/Derive.agda
module New.Derive where open import New.Lang open import New.Changes open import New.LangOps ΔΓ : Context → Context ΔΓ ∅ = ∅ ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) -- dplus = λ m dm n dn → (m + dm) + (n + dn) - (m + n) = dm + dn deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) -- deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) -- deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) -- deriveConst (match {t1} {t2} {t3}) = -- -- λ s ds f df g dg → -- abs (abs (abs (abs (abs (abs -- -- match ds -- (app₃ (const match) (var (that (that (that (that this))))) -- -- λ ds₁ → match ds₁ -- (abs (app₃ (const match) (var this) -- -- case inj₁ da → absV 1 (λ da → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- λ a → app₂ df a da -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- -- absurd: λ b → dg b (nil b) -- (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- -- case inj₂ db → absV 1 (λ db → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- absurd: λ a → df a (nil a) -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- -- λ b → app₂ dg b db -- (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- -- recomputation branch: -- -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) -- (abs (app₂ (ominusτo t3) -- -- (match s2 (f ⊕ df) (g ⊕ dg)) -- (app₃ (const match) -- (var this) -- (app₂ (oplusτo (t1 ⇒ t3)) -- (var (that (that (that (that this))))) -- (var (that (that (that this))))) -- (app₂ (oplusτo (t2 ⇒ t3)) -- (var (that (that this))) -- (var (that this)))) -- -- (match s f g) -- (app₃ (const match) -- (var (that (that (that (that (that (that this))))))) -- (var (that (that (that (that this))))) -- (var (that (that this)))))))))))) -- {- -- derive (λ s f g → match s f g) = -- λ s ds f df g dg → -- case ds of -- ch1 da → -- case s of -- inj1 a → df a da -- inj2 b → {- absurd -} dg b (nil b) -- ch2 db → -- case s of -- inj2 b → dg b db -- inj1 a → {- absurd -} df a (nil a) -- rp s2 → -- match (f ⊕ df) (g ⊕ dg) s2 ⊝ -- match f g s -- -} deriveVar : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) open import New.LangChanges -- Lemmas needed to reason about derivation, for any correctness proof alternate : ∀ {Γ} → ⟦ Γ ⟧Context → eCh Γ → ⟦ ΔΓ Γ ⟧Context alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ (alternate ρ dρ) ⟦Γ≼ΔΓ⟧ ∅ ∅ = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term (alternate ρ dρ) fit-sound t ρ dρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _)) -- The change semantics is just the semantics composed with derivation! ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ x ⟧ΔVar ρ dρ = ⟦ deriveVar x ⟧Var (alternate ρ dρ) ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term (alternate ρ dρ) ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Cht τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) (alternate ρ dρ) | ⟦∅≼Γ⟧-∅ (alternate ρ dρ) = refl
module New.Derive where open import New.Lang open import New.Changes open import New.LangOps deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) -- dplus = λ m dm n dn → (m + dm) + (n + dn) - (m + n) = dm + dn deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) -- deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) -- deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) -- deriveConst (match {t1} {t2} {t3}) = -- -- λ s ds f df g dg → -- abs (abs (abs (abs (abs (abs -- -- match ds -- (app₃ (const match) (var (that (that (that (that this))))) -- -- λ ds₁ → match ds₁ -- (abs (app₃ (const match) (var this) -- -- case inj₁ da → absV 1 (λ da → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- λ a → app₂ df a da -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- -- absurd: λ b → dg b (nil b) -- (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- -- case inj₂ db → absV 1 (λ db → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- absurd: λ a → df a (nil a) -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- -- λ b → app₂ dg b db -- (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- -- recomputation branch: -- -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) -- (abs (app₂ (ominusτo t3) -- -- (match s2 (f ⊕ df) (g ⊕ dg)) -- (app₃ (const match) -- (var this) -- (app₂ (oplusτo (t1 ⇒ t3)) -- (var (that (that (that (that this))))) -- (var (that (that (that this))))) -- (app₂ (oplusτo (t2 ⇒ t3)) -- (var (that (that this))) -- (var (that this)))) -- -- (match s f g) -- (app₃ (const match) -- (var (that (that (that (that (that (that this))))))) -- (var (that (that (that (that this))))) -- (var (that (that this)))))))))))) -- {- -- derive (λ s f g → match s f g) = -- λ s ds f df g dg → -- case ds of -- ch1 da → -- case s of -- inj1 a → df a da -- inj2 b → {- absurd -} dg b (nil b) -- ch2 db → -- case s of -- inj2 b → dg b db -- inj1 a → {- absurd -} df a (nil a) -- rp s2 → -- match (f ⊕ df) (g ⊕ dg) s2 ⊝ -- match f g s -- -} ΔΓ : Context → Context ΔΓ ∅ = ∅ ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ deriveVar : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) open import New.LangChanges -- Lemmas needed to reason about derivation, for any correctness proof alternate : ∀ {Γ} → ⟦ Γ ⟧Context → eCh Γ → ⟦ ΔΓ Γ ⟧Context alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ (alternate ρ dρ) ⟦Γ≼ΔΓ⟧ ∅ ∅ = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term (alternate ρ dρ) fit-sound t ρ dρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _)) -- The change semantics is just the semantics composed with derivation! ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ x ⟧ΔVar ρ dρ = ⟦ deriveVar x ⟧Var (alternate ρ dρ) ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term (alternate ρ dρ) ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Cht τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) (alternate ρ dρ) | ⟦∅≼Γ⟧-∅ (alternate ρ dρ) = refl
Reorder definitions
Reorder definitions Move definitions about change contexts next to their uses.
Agda
mit
inc-lc/ilc-agda
42316d32e1b90cea16ece1ad29627cb678610bc6
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
Clarify that change algebra operations trivially preserve d.o.e.
Clarify that change algebra operations trivially preserve d.o.e. Old-commit-hash: c11fb0c1abae938f0c7ec3dacff96f112f6bbee4
Agda
mit
inc-lc/ilc-agda
b3c29af8a0e31056b3efe8dd76723fe0d834058a
lib/Relation/Binary/PropositionalEquality/NP.agda
lib/Relation/Binary/PropositionalEquality/NP.agda
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q ! : {x y : A} → (x ≡ y → y ≡ x) ! refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! refl x = x cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦★⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q ! : {x y : A} → (x ≡ y → y ≡ x) ! refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! refl x = x cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} Pullback : ∀ {b c} {B : ★ b} {C : ★ c} (f : A → C) (g : B → C) → ★ _ Pullback {B = B} f g = Σ A (λ x → Σ B (λ y → f x ≡ g y)) module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦★⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
Add Pullback
Add Pullback
Agda
bsd-3-clause
crypto-agda/agda-nplib
e58fdcf2bd3f99745f653c3ee049cb1244bcb092
lib/Relation/Binary/NP.agda
lib/Relation/Binary/NP.agda
{-# OPTIONS --without-K #-} {-# OPTIONS --universe-polymorphism #-} module Relation.Binary.NP where open import Level open import Relation.Binary public import Relation.Binary.PropositionalEquality as PropEq -- could this be moved in place of Trans is Relation.Binary.Core Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'} → Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈ substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_ substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where field isEquivalence : IsEquivalence _≡_ subst : Substitutive _≡_ a open IsEquivalence isEquivalence public to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈ to-reflexive = substitutive-to-reflexive subst to-propositional : _≡_ ⇒ PropEq._≡_ to-propositional = substitutive⇒≡ subst -- Equational reasoning combinators. module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where infix 2 finally infixr 2 _≈⟨_⟩_ _≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z _ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z -- When there is no reflexivty available this -- combinator can be used to end the reasoning. finally : ∀ (x y : A) → x ≈ y → x ≈ y finally _ _ x≈y = x≈y syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎ module Refl-Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (refl : Reflexive _≈_) (trans : Transitive _≈_) where open Trans-Reasoning _≈_ trans public hiding (finally) infix 2 _∎ _∎ : ∀ x → x ≈ x _ ∎ = refl infixr 2 _≈⟨-by-definition-⟩_ _≈⟨-by-definition-⟩_ : ∀ x {y : A} → x ≈ y → x ≈ y _ ≈⟨-by-definition-⟩ x≈y = x≈y module Equivalence-Reasoning {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} (E : IsEquivalence _≈_) where open IsEquivalence E open Refl-Trans-Reasoning _≈_ refl trans public module Preorder-Reasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P open Refl-Trans-Reasoning _∼_ refl trans public renaming (_≈⟨_⟩_ to _∼⟨_⟩_; _≈⟨-by-definition-⟩_ to _∼⟨-by-definition-⟩_) open Equivalence-Reasoning isEquivalence public renaming (_∎ to _☐) module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where open Equivalence-Reasoning (Setoid.isEquivalence s) public
{-# OPTIONS --without-K #-} {-# OPTIONS --universe-polymorphism #-} module Relation.Binary.NP where open import Level open import Relation.Binary public import Relation.Binary.PropositionalEquality as PropEq -- could this be moved in place of Trans is Relation.Binary.Core Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'} → Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈ substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_ substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where field isEquivalence : IsEquivalence _≡_ subst : Substitutive _≡_ a open IsEquivalence isEquivalence public to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈ to-reflexive = substitutive-to-reflexive subst to-propositional : _≡_ ⇒ PropEq._≡_ to-propositional = substitutive⇒≡ subst -- Equational reasoning combinators. module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where infix 2 finally infixr 2 _≈⟨_⟩_ _≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z _ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z -- When there is no reflexivty available this -- combinator can be used to end the reasoning. finally : ∀ (x y : A) → x ≈ y → x ≈ y finally _ _ x≈y = x≈y syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎ module Refl-Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (refl : Reflexive _≈_) (trans : Transitive _≈_) where open Trans-Reasoning _≈_ trans public hiding (finally) infix 2 _∎ _∎ : ∀ x → x ≈ x _ ∎ = refl infixr 2 _≈⟨by-definition⟩_ _≈⟨by-definition⟩_ : ∀ x {y : A} → x ≈ y → x ≈ y _ ≈⟨by-definition⟩ x≈y = x≈y module Equivalence-Reasoning {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} (E : IsEquivalence _≈_) where open IsEquivalence E open Refl-Trans-Reasoning _≈_ refl trans public module Preorder-Reasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P open Refl-Trans-Reasoning _∼_ refl trans public renaming (_≈⟨_⟩_ to _∼⟨_⟩_; _≈⟨by-definition⟩_ to _∼⟨by-definition⟩_) open Equivalence-Reasoning isEquivalence public renaming (_∎ to _☐) module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where open Equivalence-Reasoning (Setoid.isEquivalence s) public
Rename by-definition combinator for eq-reasoning
Rename by-definition combinator for eq-reasoning
Agda
bsd-3-clause
crypto-agda/agda-nplib
a0cb2129d6925e76e7c69250fbe510b3a711b245
Parametric/Denotation/Evaluation.agda
Parametric/Denotation/Evaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation (Def. 3.3 and Fig. 4i) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality -- Extension Point: Evaluation of fully applied constants. Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ -- We provide: Evaluation of arbitrary terms. ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map-IVT (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation (Def. 3.3 and Fig. 4i) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality -- Extension Point: Evaluation of fully applied constants. Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ -- We provide: Evaluation of arbitrary terms. ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
Correct code in comment
Correct code in comment map-IVT does not exist currently (not sure it ever did, I did not investigate); what we want and does not work is simply map. Hence, fix the comment to clarify it.
Agda
mit
inc-lc/ilc-agda
caab0f0a9ebc53432d697d8dfef61fb6cae09b67
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR (≙-setoid {x = x}) public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning
Prepare for splitting
Equivalence: Prepare for splitting The file has become too big. Splitting the anonymous modules requires more work out of type inference and introduces one type inference failure, which is fixed in this commmit. Old-commit-hash: 32f42f80b60cd3dd45e879d7a367b4fe933bb9d8
Agda
mit
inc-lc/ilc-agda
26feb31d8f07b57839d5ad020a366816d0ae21fb
Parametric/Denotation/Evaluation.agda
Parametric/Denotation/Evaluation.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Syntax.Context Type open import Base.Denotation.Environment Type ⟦_⟧Type open import Base.Denotation.Notation Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure(⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Syntax.Context Type open import Base.Denotation.Environment Type ⟦_⟧Type open import Base.Denotation.Notation Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term
insert missing space (cosmetic)
insert missing space (cosmetic) Old-commit-hash: 4d559497f68fabe2674c6d523508f715c78256c8
Agda
mit
inc-lc/ilc-agda
321249014d14436b6f3f84e01fdeb73f0d5faf7b
crypto-agda.agda
crypto-agda.agda
module crypto-agda where import Cipher.ElGamal.Generic import Composition.Forkable import Composition.Horizontal import Composition.Vertical import Crypto.Schemes --import FiniteField.FinImplem import FunUniverse.Agda import FunUniverse.BinTree import FunUniverse.Bits import FunUniverse.Category import FunUniverse.Category.Op import FunUniverse.Circuit import FunUniverse.Const import FunUniverse.Core import FunUniverse.Cost import FunUniverse.Data import FunUniverse.Defaults.FirstPart --import FunUniverse.ExnArrow import FunUniverse.Fin import FunUniverse.Fin.Op import FunUniverse.Fin.Op.Abstract --import FunUniverse.FlatFunsProd --import FunUniverse.Interface.Bits import FunUniverse.Interface.Two import FunUniverse.Interface.Vec import FunUniverse.Inverse --import FunUniverse.Loop import FunUniverse.Nand import FunUniverse.Nand.Function import FunUniverse.Nand.Properties import FunUniverse.README import FunUniverse.Rewiring.Linear --import FunUniverse.State import FunUniverse.Syntax import FunUniverse.Types import Game.DDH import Game.EntropySmoothing import Game.EntropySmoothing.WithKey import Game.IND-CPA import Game.Transformation.InternalExternal import Language.Simple.Abstract import Language.Simple.Interface import Language.Simple.Two.Mux import Language.Simple.Two.Mux.Normalise import Language.Simple.Two.Nand import README import Solver.AddMax import Solver.Linear --import Solver.Linear.Examples import Solver.Linear.Parser import Solver.Linear.Syntax import adder import alea.cpo import bijection-syntax.Bijection-Fin import bijection-syntax.Bijection import bijection-syntax.README --import circuits.bytecode import circuits.circuit --import elgamal --import sha1
module crypto-agda where import Attack.Compression import Attack.Reencryption import Attack.Reencryption.OneBitMessage import Cipher.ElGamal.Generic import Cipher.ElGamal.Homomorphic import Composition.Forkable import Composition.Horizontal import Composition.Vertical import Crypto.Schemes import FiniteField.FinImplem import FunUniverse.Agda import FunUniverse.BinTree import FunUniverse.Bits import FunUniverse.Category import FunUniverse.Category.Op import FunUniverse.Circuit import FunUniverse.Const import FunUniverse.Core import FunUniverse.Cost import FunUniverse.Data import FunUniverse.Defaults.FirstPart import FunUniverse.ExnArrow import FunUniverse.Fin import FunUniverse.Fin.Op import FunUniverse.Fin.Op.Abstract import FunUniverse.FlatFunsProd import FunUniverse.Interface.Bits import FunUniverse.Interface.Two import FunUniverse.Interface.Vec import FunUniverse.Inverse import FunUniverse.Loop import FunUniverse.Nand import FunUniverse.Nand.Function import FunUniverse.Nand.Properties import FunUniverse.README import FunUniverse.Rewiring.Linear import FunUniverse.State import FunUniverse.Syntax import FunUniverse.Types import Game.DDH import Game.EntropySmoothing import Game.EntropySmoothing.WithKey import Game.IND-CCA import Game.IND-CCA2-dagger import Game.IND-CCA2 import Game.IND-CPA import Game.Transformation.CCA-CPA import Game.Transformation.CCA2-CCA import Game.Transformation.CCA2-CCA2d import Game.Transformation.CCA2d-CCA2 import Game.Transformation.InternalExternal import Language.Simple.Abstract import Language.Simple.Interface import Language.Simple.Two.Mux import Language.Simple.Two.Mux.Normalise import Language.Simple.Two.Nand import README import Solver.AddMax import Solver.Linear import Solver.Linear.Examples import Solver.Linear.Parser import Solver.Linear.Syntax import adder import alea.cpo import bijection-syntax.Bijection-Fin import bijection-syntax.Bijection import bijection-syntax.README import circuits.bytecode import circuits.circuit import elgamal import sha1
update crypto-agda.agda
update crypto-agda.agda
Agda
bsd-3-clause
crypto-agda/crypto-agda
bc0f697e345522fad65844eed07cba984158e3b7
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). {- open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎ -}
Comment out bug-triggering code
Parametric.Change.Validity: Comment out bug-triggering code This code is exported and used elsewhere :-(
Agda
mit
inc-lc/ilc-agda
ac25a046e34905a5fd630275f7f19cf585a2f9ab
ZK/JSChecker.agda
ZK/JSChecker.agda
{-# OPTIONS --without-K #-} module ZK.JSChecker where open import Function using (id; _∘′_; case_of_) open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS open import FFI.JS.Check -- open import FFI.JS.Proc using (URI; JSProc; showURI; server) -- open import Control.Process.Type import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS import FFI.JS.BigI as BigI open BigI using (BigI; bigI) import Crypto.JS.BigI.ZqZp as ZqZp -- TODO dynamise me primality-test-probability-bound : Number primality-test-probability-bound = readNumber "10" -- TODO: check if this is large enough min-bits-q : Number min-bits-q = 256N min-bits-p : Number min-bits-p = 2048N -- TODO check with undefined bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" -- TODO bug (undefined)! record ZK-chaum-pedersen-pok-elgamal-rnd {--(ℤq ℤp★ : Set)--} : Set where field m c s : BigI {--ℤq--} g p q y α β A B : BigI --ℤp★ zk-check-chaum-pedersen-pok-elgamal-rnd! : ZK-chaum-pedersen-pok-elgamal-rnd {-BigI BigI-} → JS! zk-check-chaum-pedersen-pok-elgamal-rnd! pf = trace "g=" g λ _ → trace "p=" I.p λ _ → trace "q=" I.q λ _ → trace "y=" y λ _ → trace "α=" α λ _ → trace "β=" β λ _ → trace "m=" m λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → checks! >> check! "g^s==A·α^c" ((g ^ s) == (A · (α ^ c))) (λ _ → "") >> check! "y^s==B·(β/M)^c" ((y ^ s) == (B · ((β ·/ M) ^ c))) (λ _ → "") module ZK-check-chaum-pedersen-pok-elgamal-rnd where module I = ZK-chaum-pedersen-pok-elgamal-rnd pf params = record { primality-test-probability-bound = primality-test-probability-bound ; min-bits-q = min-bits-q ; min-bits-p = min-bits-p ; qI = I.q ; pI = I.p ; gI = I.g } open module [ℤq]ℤp★ = ZqZp params A = BigI▹ℤp★ I.A B = BigI▹ℤp★ I.B α = BigI▹ℤp★ I.α β = BigI▹ℤp★ I.β y = BigI▹ℤp★ I.y s = BigI▹ℤq I.s c = BigI▹ℤq I.c m = BigI▹ℤq I.m M = g ^ m zk-check! : JSValue → JS! zk-check! arg = check! "type of statement" (typ === fromString cpt) (λ _ → "Expected type of statement: " ++ cpt ++ " not " ++ toString typ) >> zk-check-chaum-pedersen-pok-elgamal-rnd! pok module Zk-check where cpt = "chaum-pedersen-pok-elgamal-rnd" stm = arg ·« "statement" » typ = stm ·« "type" » dat = stm ·« "data" » g = bigdec (dat ·« "g" ») p = bigdec (dat ·« "p" ») q = bigdec (dat ·« "q" ») y = bigdec (dat ·« "y" ») m = bigdec (dat ·« "plain" ») enc = dat ·« "enc" » α = bigdec (enc ·« "alpha" ») β = bigdec (enc ·« "beta" ») prf = arg ·« "proof" » com = prf ·« "commitment" » A = bigdec (com ·« "A" ») B = bigdec (com ·« "B" ») c = bigdec (prf ·« "challenge" ») s = bigdec (prf ·« "response" ») pok = record { g = g; p = p; q = q; y = y; α = α; β = β; A = A; B = B; c = c; s = s; m = m } {- srv : URI → JSProc srv d = recv d λ q → send d (fromBool (zk-check q)) end -} -- Working around Agda.Primitive.lsuc being undefined -- case_of_ : {A : Set} {B : Set} → A → (A → B) → B -- case x of f = f x main : JS! main = Process.argv !₁ λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → Console.log "usage: No arguments" {- server "127.0.0.1" "1337" srv !₁ λ uri → Console.log (showURI uri) -} ; (arg ∷ args'') → case args'' of λ { [] → Console.log ("Reading input file: " ++ arg) >> FS.readFile arg nullJS !₂ λ err dat → check! "reading input file" (is-null err) (λ _ → "readFile error: " ++ toString err) >> zk-check! (JSON-parse (toString dat)) ; _ → Console.log "usage: Too many arguments" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} module ZK.JSChecker where open import Function using (id; _∘′_; case_of_) open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS open import FFI.JS.Check -- open import FFI.JS.Proc using (URI; JSProc; showURI; server) -- open import Control.Process.Type import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS import FFI.JS.BigI as BigI open BigI using (BigI; bigI) import Crypto.JS.BigI.ZqZp as ZqZp -- TODO dynamise me primality-test-probability-bound : Number primality-test-probability-bound = readNumber "10" -- TODO: check if this is large enough min-bits-q : Number min-bits-q = 256N min-bits-p : Number min-bits-p = 2048N bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" -- TODO bug (undefined)! record ZK-chaum-pedersen-pok-elgamal-rnd {--(ℤq ℤp★ : Set)--} : Set where field m c s : BigI {--ℤq--} g p q y α β A B : BigI --ℤp★ zk-check-chaum-pedersen-pok-elgamal-rnd! : ZK-chaum-pedersen-pok-elgamal-rnd {-BigI BigI-} → JS! zk-check-chaum-pedersen-pok-elgamal-rnd! pf = trace "g=" g λ _ → trace "p=" I.p λ _ → trace "q=" I.q λ _ → trace "y=" y λ _ → trace "α=" α λ _ → trace "β=" β λ _ → trace "m=" m λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → checks! >> check! "g^s==A·α^c" ((g ^ s) == (A · (α ^ c))) (λ _ → "") >> check! "y^s==B·(β/M)^c" ((y ^ s) == (B · ((β ·/ M) ^ c))) (λ _ → "") module ZK-check-chaum-pedersen-pok-elgamal-rnd where module I = ZK-chaum-pedersen-pok-elgamal-rnd pf params = record { primality-test-probability-bound = primality-test-probability-bound ; min-bits-q = min-bits-q ; min-bits-p = min-bits-p ; qI = I.q ; pI = I.p ; gI = I.g } open module [ℤq]ℤp★ = ZqZp params A = BigI▹ℤp★ I.A B = BigI▹ℤp★ I.B α = BigI▹ℤp★ I.α β = BigI▹ℤp★ I.β y = BigI▹ℤp★ I.y s = BigI▹ℤq I.s c = BigI▹ℤq I.c m = BigI▹ℤq I.m M = g ^ m zk-check! : JSValue → JS! zk-check! arg = check! "type of statement" (typ === fromString cpt) (λ _ → "Expected type of statement: " ++ cpt ++ " not " ++ toString typ) >> zk-check-chaum-pedersen-pok-elgamal-rnd! pok module Zk-check where cpt = "chaum-pedersen-pok-elgamal-rnd" stm = arg ·« "statement" » typ = stm ·« "type" » dat = stm ·« "data" » g = bigdec (dat ·« "g" ») p = bigdec (dat ·« "p" ») q = bigdec (dat ·« "q" ») y = bigdec (dat ·« "y" ») m = bigdec (dat ·« "plain" ») enc = dat ·« "enc" » α = bigdec (enc ·« "alpha" ») β = bigdec (enc ·« "beta" ») prf = arg ·« "proof" » com = prf ·« "commitment" » A = bigdec (com ·« "A" ») B = bigdec (com ·« "B" ») c = bigdec (prf ·« "challenge" ») s = bigdec (prf ·« "response" ») pok = record { g = g; p = p; q = q; y = y; α = α; β = β; A = A; B = B; c = c; s = s; m = m } {- srv : URI → JSProc srv d = recv d λ q → send d (fromBool (zk-check q)) end -} -- Working around Agda.Primitive.lsuc being undefined -- case_of_ : {A : Set} {B : Set} → A → (A → B) → B -- case x of f = f x main : JS! main = Process.argv !₁ λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → Console.log "usage: No arguments" {- server "127.0.0.1" "1337" srv !₁ λ uri → Console.log (showURI uri) -} ; (arg ∷ args'') → case args'' of λ { [] → Console.log ("Reading input file: " ++ arg) >> FS.readFile arg nullJS !₂ λ err dat → check! "reading input file" (is-null err) (λ _ → "readFile error: " ++ toString err) >> zk-check! (JSON-parse (toString dat)) ; _ → Console.log "usage: Too many arguments" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -}
Remove no longer relevant TODO
Remove no longer relevant TODO
Agda
bsd-3-clause
crypto-agda/crypto-agda
a6dfe1f553ba79964ad12503ce1a9095fe79ffe2
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) apply : {A B : Set} → (A → B) → List A → List B apply _ ∘ = ∘ apply f (x ∷ xs) = (f x) ∷ (apply f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 7)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Add test
Add test
Agda
mit
louisswarren/hieretikz
51432b971511d6e3b28904b1d33fc55d32888906
lib/Function/Extensionality.agda
lib/Function/Extensionality.agda
{-# OPTIONS --without-K #-} module Function.Extensionality where open import Function.NP open import Relation.Binary.PropositionalEquality.NP -- renaming (subst to tr) happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x happly p x = ap (λ f → f x) p postulate FunExt : Set λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} (f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁ happly-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → happly (λ= fg) ≡ fg λ=-happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → λ= (happly α) ≡ α -- This should be derivable if I had a proper proof of λ= tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p) {f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x) → tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x) !-α-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → ! α ≡ λ= (!_ ∘ happly α) !-α-λ= refl = ! λ=-happly refl !-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → ! (λ= fg) ≡ λ= (!_ ∘ fg) !-λ= fg = !-α-λ= (λ= fg) ∙ ap λ= (λ= (λ x → ap !_ (happly (happly-λ= fg) x)))
{-# OPTIONS --without-K #-} module Function.Extensionality where open import Function.NP open import Relation.Binary.PropositionalEquality.NP -- renaming (subst to tr) happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x happly p x = ap (λ f → f x) p postulate FunExt : Set λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} (f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁ happly-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → happly (λ= fg) ≡ fg λ=-happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → λ= (happly α) ≡ α -- This should be derivable if I had a proper proof of λ= tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p) {f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x) → tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x) !-α-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → ! α ≡ λ= (!_ ∘ happly α) !-α-λ= refl = ! λ=-happly refl !-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → ! (λ= fg) ≡ λ= (!_ ∘ fg) !-λ= fg = !-α-λ= (λ= fg) ∙ ap λ= (λ= (λ x → ap !_ (happly (happly-λ= fg) x))) module _ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} where λ=ⁱ : (f= : ∀ {x} → f₀ x ≡ f₁ x) → f₀ ≡ f₁ λ=ⁱ f= = λ= λ x → f= {x}
add a version with implicit arguments
FunExt: add a version with implicit arguments
Agda
bsd-3-clause
crypto-agda/agda-nplib
702fcd37b6983eaf128ea29fca185751c2444c69
lib/Relation/Binary/Permutation.agda
lib/Relation/Binary/Permutation.agda
--TODO {-# OPTIONS --without-K #-} module Relation.Binary.Permutation where open import Level open import Data.Product.NP open import Data.Zero open import Data.One open import Data.Sum open import Data.List open import Relation.Nullary open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_;_≢_) private _⇔_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (R₁ : REL A B ℓ₁) (R₂ : REL A B ℓ₂) → Set _ R₁ ⇔ R₂ = R₁ ⇒ R₂ × R₂ ⇒ R₁ infix 2 _⇔_ ⟨_,_⟩∈_ : ∀ {ℓ a b} {A : Set a} {B : Set b} (x : A) (y : B) → REL A B ℓ → Set ℓ ⟨_,_⟩∈_ x y R = R x y data _[_↔_] {a} {A : Set a} (R : Rel A a) (x y : A) : Rel A a where here₁ : ∀ {j} (yRj : ⟨ y , j ⟩∈ R ) → ---------------------- ⟨ x , j ⟩∈ R [ x ↔ y ] here₂ : ∀ {j} (xRj : ⟨ x , j ⟩∈ R ) → ---------------------- ⟨ y , j ⟩∈ R [ x ↔ y ] there : ∀ {i j} (x≢i : x ≢ i ) (y≢i : y ≢ i ) (iRj : ⟨ i , j ⟩∈ R ) → ----------------------- ⟨ i , j ⟩∈ R [ x ↔ y ] module PermComm {a} {A : Set a} {R : Rel A a} where ⟹ : ∀ {x y} → R [ x ↔ y ] ⇒ R [ y ↔ x ] ⟹ (here₁ yRj) = here₂ yRj ⟹ (here₂ xRj) = here₁ xRj ⟹ (there x≢i x≢j iRj) = there x≢j x≢i iRj lem : ∀ {x y} → R [ x ↔ y ] ⇔ R [ y ↔ x ] lem = (λ {_} → ⟹) , (λ {_} → ⟹) module PermIdem {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) {x y : A} {R : Rel A a} where ⇐ : ∀ {x y} → R [ x ↔ y ] [ x ↔ y ] ⇒ R ⇐ (here₁ (here₁ yRj)) = yRj ⇐ (here₁ (here₂ xRj)) = xRj ⇐ (here₁ (there _ y≢y _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (here₂ (here₁ yRj)) = yRj ⇐ (here₂ (here₂ xRj)) = xRj ⇐ (here₂ (there x≢x _ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there x≢x _ (here₁ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there _ y≢y (here₂ _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (there _ _ (there _ _ iRj)) = iRj ⟹ : R ⇒ R [ x ↔ y ] [ x ↔ y ] ⟹ {i} {j} R with x ≟ i | y ≟ i ... | yes x≡i | _ rewrite x≡i = here₁ (here₂ R) ... | _ | yes y≡i rewrite y≡i = here₂ (here₁ R) ... | no x≢i | no y≢i = there x≢i y≢i (there x≢i y≢i R) lem : R ⇔ R [ x ↔ y ] [ x ↔ y ] lem = (λ {_} → ⟹) , λ {_} → ⇐ Permutation : ∀ {a} → Set a → Set a Permutation A = List (A × A) permRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a → Rel A a permRel π R = foldr (λ p r → r [ fst p ↔ snd p ]) R π toRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a toRel π = permRel π (λ _ _ → Lift 𝟙) {- _⟨$⟩₁_ : ∀ {a} {A : Set a} → Permutation A → A → Maybe A [] ⟨$⟩₁ y = nothing (x ∷ xs) ⟨$⟩₁ y = if ⌊ x ≟A y ⌋ then ? else -}
--TODO {-# OPTIONS --without-K #-} module Relation.Binary.Permutation where open import Level open import Data.Product.NP open import Data.Zero open import Data.One open import Data.Sum open import Data.List open import Relation.Nullary open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_;_≢_) private _⇔_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (R₁ : REL A B ℓ₁) (R₂ : REL A B ℓ₂) → Set _ R₁ ⇔ R₂ = R₁ ⇒ R₂ × R₂ ⇒ R₁ infix 2 _⇔_ ⟨_,_⟩∈_ : ∀ {ℓ a b} {A : Set a} {B : Set b} (x : A) (y : B) → REL A B ℓ → Set ℓ ⟨_,_⟩∈_ x y R = R x y data _[_↔_] {a} {A : Set a} (R : Rel A a) (x y : A) : Rel A a where here₁ : ∀ {j} (yRj : ⟨ y , j ⟩∈ R ) → ---------------------- ⟨ x , j ⟩∈ R [ x ↔ y ] here₂ : ∀ {j} (xRj : ⟨ x , j ⟩∈ R ) → ---------------------- ⟨ y , j ⟩∈ R [ x ↔ y ] there : ∀ {i j} (x≢i : x ≢ i ) (y≢i : y ≢ i ) (iRj : ⟨ i , j ⟩∈ R ) → ----------------------- ⟨ i , j ⟩∈ R [ x ↔ y ] module PermComm {a} {A : Set a} {R : Rel A a} where ⟹ : ∀ {x y} → R [ x ↔ y ] ⇒ R [ y ↔ x ] ⟹ (here₁ yRj) = here₂ yRj ⟹ (here₂ xRj) = here₁ xRj ⟹ (there x≢i x≢j iRj) = there x≢j x≢i iRj lem : ∀ {x y} → R [ x ↔ y ] ⇔ R [ y ↔ x ] lem = (λ {_} → ⟹) , (λ {_} → ⟹) module PermIdem {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) {R : Rel A a} where ⇐ : ∀ {x y} → R [ x ↔ y ] [ x ↔ y ] ⇒ R ⇐ (here₁ (here₁ yRj)) = yRj ⇐ (here₁ (here₂ xRj)) = xRj ⇐ (here₁ (there _ y≢y _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (here₂ (here₁ yRj)) = yRj ⇐ (here₂ (here₂ xRj)) = xRj ⇐ (here₂ (there x≢x _ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there x≢x _ (here₁ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there _ y≢y (here₂ _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (there _ _ (there _ _ iRj)) = iRj ⟹ : ∀ {x y} → R ⇒ R [ x ↔ y ] [ x ↔ y ] ⟹ {x} {y} {i} {j} R with x ≟ i | y ≟ i ... | yes x≡i | _ rewrite x≡i = here₁ (here₂ R) ... | _ | yes y≡i rewrite y≡i = here₂ (here₁ R) ... | no x≢i | no y≢i = there x≢i y≢i (there x≢i y≢i R) lem : ∀ {x y} → R ⇔ R [ x ↔ y ] [ x ↔ y ] lem = (λ {_} → ⟹) , λ {_} → ⇐ Permutation : ∀ {a} → Set a → Set a Permutation A = List (A × A) permRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a → Rel A a permRel π R = foldr (λ p r → r [ fst p ↔ snd p ]) R π toRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a toRel π = permRel π (λ _ _ → Lift 𝟙) {- _⟨$⟩₁_ : ∀ {a} {A : Set a} → Permutation A → A → Maybe A [] ⟨$⟩₁ y = nothing (x ∷ xs) ⟨$⟩₁ y = if ⌊ x ≟A y ⌋ then ? else -}
Fix in Relation.Binary.Permutation
Fix in Relation.Binary.Permutation
Agda
bsd-3-clause
crypto-agda/agda-nplib
3822d110c060a75d914e9d0e4fc105f00e99980a
Syntax/Language/Atlas.agda
Syntax/Language/Atlas.agda
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- The binary operator with which all base-type values -- form a group union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = app (app (const xor) s) t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- The binary operator such that -- union t t ≡ t -- To implement union, we need for each non-map base-type -- an operator such that `op v v = v` on all values `v`. -- for Booleans, conjunction is good enough. -- -- TODO (later): support conjunction, probably by Boolean -- elimination form if-then-else postulate and! : ∀ {Γ} → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = and! s t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
fix bug in `union` by postulating conjunction
Atlas: fix bug in `union` by postulating conjunction Old-commit-hash: 69ed9a83b2b162709e5dfcf541f9d0bf18c7e970
Agda
mit
inc-lc/ilc-agda
080a08a480530a0bfbe7ee42fb486407caea4a5e
Parametric/Change/Equivalence.agda
Parametric/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Equivalence {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {ℓ} {A} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. That should be true for functions -- using changes parametrically, for derivatives and function changes, and -- for functions using only the interface to changes (including the fact -- that function changes are functions). Stating the general result, though, -- seems hard, we should rather have lemmas proving that certain classes of -- functions respect this equivalence.
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Parametric.Change.Equivalence where open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {ℓ} {A} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. That should be true for functions -- using changes parametrically, for derivatives and function changes, and -- for functions using only the interface to changes (including the fact -- that function changes are functions). Stating the general result, though, -- seems hard, we should rather have lemmas proving that certain classes of -- functions respect this equivalence.
Remove extra imports
Remove extra imports Old-commit-hash: 3a9775f6afd97585f6b425390b5431b43807b03e
Agda
mit
inc-lc/ilc-agda
3409935502fb668aa913b86adee0b90b81efb211
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
data Bool : Set where true : Bool false : Bool _∨_ : Bool → Bool → Bool true ∨ _ = true false ∨ b = b _∧_ : Bool → Bool → Bool false ∧ _ = false true ∧ b = b ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _==_ : ℕ → ℕ → Bool zero == zero = true suc n == suc m = n == m _ == _ = false ---------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ [_] : {A : Set} → A → List A [ x ] = x ∷ [] any : {A : Set} → (A → Bool) → List A → Bool any _ [] = false any f (x ∷ xs) = (f x) ∨ (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ [] = false x ∈ (y ∷ ys) with x == y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q == s (p ⇒ q) ≡≡ (r ⇒ s) = (p == r) ∧ (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ [] = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure [] found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs []) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs ([ n ]))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ [] ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ [] cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷ (model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷ (model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷ (model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷ (model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ [] testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Use standard syntax
Use standard syntax
Agda
mit
louisswarren/hieretikz
20a1abbafdf38b144be117be78c688be2786fbee
Neglible.agda
Neglible.agda
{-# OPTIONS --copatterns #-} open import Algebra open import Function open import Data.Nat.NP open import Data.Nat.Distance open import Data.Nat.Properties open import Data.Two open import Data.Zero open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Explore.Core open import Explore.Universe.Type {𝟘} open import Explore.Universe.Base module Neglible where module prop = CommutativeSemiring commutativeSemiring module OR = Poset (DecTotalOrder.poset decTotalOrder) ≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n ≤-*-cancel {suc x} {m} {n} (s≤s le) mn rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn record ℕ→ℚ : Set where constructor _/_[_] field εN : (n : ℕ) → ℕ εD : (n : ℕ) → ℕ εD-pos : ∀ n → εD n > 0 record Is-Neg (ε : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ ε field cₙ : (c : ℕ) → ℕ prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n open Is-Neg 0ℕℚ : ℕ→ℚ ℕ→ℚ.εN 0ℕℚ _ = 0 ℕ→ℚ.εD 0ℕℚ _ = 1 ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n 0ℕℚ-neg : Is-Neg 0ℕℚ cₙ 0ℕℚ-neg _ = 0 prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n _+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n +ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ) cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma where open ≤-Reasoning open ℕ→ℚ εM open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos) lemma = n * (n ^ c * (εN n * μD n + μN n * εD n)) ≡⟨ ! prop.*-assoc n (n ^ c) _ ∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n) ∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n)) (! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩ n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n ≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎)) +-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩ εD n * μD n + μD n * εD n ≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩ 2 * (εD n * μD n) ≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩ n * (εD n * μD n) ∎ module _ (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ε : ℕ→ℚ open ℕ→ℚ ε field ε-neg : Is-Neg ε bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k ~-trans : Transitive _~_ _~_.ε (~-trans x x₁) = _ _~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁) _~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k = (b * d) * dist #f #h ≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩ (b * d) * (dist #f #g + dist #g #h) ≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h) ∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl ∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h)) ⟩ d * (b * dist #f #g) + b * (d * dist #g #h) ≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩ d * (|R| * a) + b * (|R| * c) ≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩ |R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k ∎ where open ≤-Reasoning rot : ∀ x y z → x * (y * z) ≡ y * (z * x) rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) a = ℕ→ℚ.εN ε₀ k b = ℕ→ℚ.εD ε₀ k c = ℕ→ℚ.εN ε₁ k d = ℕ→ℚ.εD ε₁ k -- -} -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --copatterns #-} open import Algebra open import Function open import Data.Nat.NP open import Data.Nat.Distance open import Data.Nat.Properties open import Data.Two open import Data.Zero open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Explore.Core open import Explore.Universe.Type {𝟘} open import Explore.Universe.Base module Neglible where module prop = CommutativeSemiring commutativeSemiring module OR = Poset (DecTotalOrder.poset decTotalOrder) ≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n ≤-*-cancel {suc x} {m} {n} (s≤s le) mn rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn record ℕ→ℚ : Set where constructor _/_[_] field εN : (n : ℕ) → ℕ εD : (n : ℕ) → ℕ εD-pos : ∀ n → εD n > 0 record Is-Neg (ε : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ ε field cₙ : (c : ℕ) → ℕ prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n open Is-Neg 0ℕℚ : ℕ→ℚ ℕ→ℚ.εN 0ℕℚ _ = 0 ℕ→ℚ.εD 0ℕℚ _ = 1 ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n 0ℕℚ-neg : Is-Neg 0ℕℚ cₙ 0ℕℚ-neg _ = 0 prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n _+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n +ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ) cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma where open ≤-Reasoning open ℕ→ℚ εM open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos) lemma = n * (n ^ c * (εN n * μD n + μN n * εD n)) ≡⟨ ! prop.*-assoc n (n ^ c) _ ∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n) ∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n)) (! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩ n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n ≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎)) +-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩ εD n * μD n + μD n * εD n ≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩ 2 * (εD n * μD n) ≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩ n * (εD n * μD n) ∎ infix 4 _≤→_ record _≤→_ (f g : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ f renaming (εN to fN; εD to fD) open ℕ→ℚ g renaming (εN to gN; εD to gD) field -- fN k / fD k ≤ gN k / gD k ≤→ : ∀ k → fN k * gD k ≤ gN k * fD k ≤→-trans : ∀ {f g h} → f ≤→ g → g ≤→ h → f ≤→ h _≤→_.≤→ (≤→-trans {fN / fD [ fD-pos ]} {gN / gD [ gD-pos ]} {hN / hD [ hD-pos ]} (mk fg) (mk gh)) k = ≤-*-cancel (gD-pos k) lemma where open ≤-Reasoning lemma : gD k * (fN k * hD k) ≤ gD k * (hN k * fD k) lemma = gD k * (fN k * hD k) ≡⟨ ! prop.*-assoc (gD k) (fN k) (hD k) ∙ ap (flip _*_ (hD k)) (prop.*-comm (gD k) (fN k)) ⟩ (fN k * gD k) * hD k ≤⟨ fg k *-mono OR.refl ⟩ (gN k * fD k) * hD k ≡⟨ prop.*-assoc (gN k) (fD k) (hD k) ∙ ap (_*_ (gN k)) (prop.*-comm (fD k) (hD k)) ∙ ! prop.*-assoc (gN k) (hD k) (fD k) ⟩ (gN k * hD k) * fD k ≤⟨ gh k *-mono OR.refl ⟩ (hN k * gD k) * fD k ≡⟨ ap (flip _*_ (fD k)) (prop.*-comm (hN k) (gD k)) ∙ prop.*-assoc (gD k) (hN k) (fD k) ⟩ gD k * (hN k * fD k) ∎ +ℕℚ-mono : ∀ {f f' g g'} → f ≤→ f' → g ≤→ g' → f +ℕℚ g ≤→ f' +ℕℚ g' _≤→_.≤→ (+ℕℚ-mono {fN / fD [ _ ]} {f'N / f'D [ _ ]} {gN / gD [ _ ]} {g'N / g'D [ _ ]} (mk ff) (mk gg)) k = (fN k * gD k + gN k * fD k) * (f'D k * g'D k) ≡⟨ proj₂ prop.distrib (f'D k * g'D k) (fN k * gD k) (gN k * fD k) ⟩ fN k * gD k * (f'D k * g'D k) + gN k * fD k * (f'D k * g'D k) ≡⟨ ap₂ _+_ (*-interchange (fN k) (gD k) (f'D k) (g'D k) ∙ ap (_*_ (fN k * f'D k)) (prop.*-comm (gD k) (g'D k))) (ap (_*_ (gN k * fD k)) (prop.*-comm (f'D k) (g'D k)) ∙ *-interchange (gN k) (fD k) (g'D k) (f'D k)) ⟩ fN k * f'D k * (g'D k * gD k) + gN k * g'D k * (fD k * f'D k) ≤⟨ (ff k *-mono OR.refl) +-mono (gg k *-mono OR.refl) ⟩ f'N k * fD k * (g'D k * gD k) + g'N k * gD k * (fD k * f'D k) ≡⟨ ap₂ _+_ (*-interchange (f'N k) (fD k) (g'D k) (gD k)) (ap (_*_ (g'N k * gD k)) (prop.*-comm (fD k) (f'D k)) ∙ *-interchange (g'N k) (gD k) (f'D k) (fD k) ∙ ap (_*_ (g'N k * f'D k)) (prop.*-comm (gD k) (fD k))) ⟩ f'N k * g'D k * (fD k * gD k) + g'N k * f'D k * (fD k * gD k) ≡⟨ ! proj₂ prop.distrib (fD k * gD k) (f'N k * g'D k) (g'N k * f'D k) ⟩ (f'N k * g'D k + g'N k * f'D k) * (fD k * gD k) ∎ where open ≤-Reasoning record NegBounded (f : ℕ→ℚ) : Set where constructor mk field ε : ℕ→ℚ ε-neg : Is-Neg ε bounded : f ≤→ ε module _ where open NegBounded ≤-NB : {f g : ℕ→ℚ} → f ≤→ g → NegBounded g → NegBounded f ε (≤-NB le nb) = ε nb ε-neg (≤-NB le nb) = ε-neg nb bounded (≤-NB le nb) = ≤→-trans le (bounded nb) _+NB_ : {f g : ℕ→ℚ} → NegBounded f → NegBounded g → NegBounded (f +ℕℚ g) ε (fNB +NB gNB) = ε fNB +ℕℚ ε gNB ε-neg (fNB +NB gNB) = +ℕℚ-neg (ε-neg fNB) (ε-neg gNB) bounded (fNB +NB gNB) = +ℕℚ-mono (bounded fNB) (bounded gNB) module ~-NegBounded (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n))(inh : ∀ x → 0 < Card (Rᵁ x)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) ~dist : (f g : (x : ℕ) → R x → 𝟚) → ℕ→ℚ ℕ→ℚ.εN (~dist f g) n = dist (# (f n)) (# (g n)) ℕ→ℚ.εD (~dist f g) n = Card (Rᵁ n) ℕ→ℚ.εD-pos (~dist f g) n = inh n ~dist-sum : ∀ f g h → ~dist f h ≤→ ~dist f g +ℕℚ ~dist g h _≤→_.≤→ (~dist-sum f g h) k = #fh * (|R| * |R|) ≤⟨ dist-sum #f #g #h *-mono OR.refl ⟩ (#fg + #gh) * (|R| * |R|) ≡⟨ ! prop.*-assoc (#fg + #gh) |R| |R| ∙ ap (flip _*_ |R|) (proj₂ prop.distrib |R| #fg #gh) ⟩ (#fg * |R| + #gh * |R|) * |R| ∎ where open ≤-Reasoning |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) #fh = dist #f #h #fg = dist #f #g #gh = dist #g #h record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ~ : NegBounded (~dist f g) ~-trans : Transitive _~_ _~_.~ (~-trans {f}{g}{h} (mk fg) (mk gh)) = ≤-NB (~dist-sum f g h) (fg +NB gh) module ~-Inlined (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ε : ℕ→ℚ open ℕ→ℚ ε field ε-neg : Is-Neg ε bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k ~-trans : Transitive _~_ _~_.ε (~-trans x x₁) = _ _~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁) _~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k = (b * d) * dist #f #h ≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩ (b * d) * (dist #f #g + dist #g #h) ≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h) ∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl ∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h)) ⟩ d * (b * dist #f #g) + b * (d * dist #g #h) ≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩ d * (|R| * a) + b * (|R| * c) ≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩ |R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k ∎ where open ≤-Reasoning rot : ∀ x y z → x * (y * z) ≡ y * (z * x) rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) a = ℕ→ℚ.εN ε₀ k b = ℕ→ℚ.εD ε₀ k c = ℕ→ℚ.εN ε₁ k d = ℕ→ℚ.εD ε₁ k -- -} -- -} -- -} -- -} -- -} -- -}
Update to Neglible
Update to Neglible
Agda
bsd-3-clause
crypto-agda/crypto-agda
f7a0824e23aa553c512f0fbff1879941ee29f6d0
lib/FFI/JS.agda
lib/FFI/JS.agda
module FFI.JS where open import Data.Empty public renaming (⊥ to 𝟘) open import Data.Unit.Base public renaming (⊤ to 𝟙) open import Data.Char.Base public using (Char) open import Data.String.Base public using (String) open import Data.Bool.Base public using (Bool; true; false) open import Data.List.Base using (List; []; _∷_) open import Data.Product using (_×_) renaming (proj₁ to fst; proj₂ to snd) open import Function using (id; _∘_) open import Control.Process.Type {-# COMPILED_JS Bool function (x,v) { return ((x)? v["true"]() : v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-} postulate Number : Set JSArray : Set → Set JSObject : Set JSValue : Set postulate readNumber : String → Number {-# COMPILED_JS readNumber Number #-} postulate 0N : Number {-# COMPILED_JS 0N 0 #-} postulate 1N : Number {-# COMPILED_JS 1N 1 #-} postulate 2N : Number {-# COMPILED_JS 2N 2 #-} postulate 4N : Number {-# COMPILED_JS 4N 4 #-} postulate 8N : Number {-# COMPILED_JS 8N 8 #-} postulate 16N : Number {-# COMPILED_JS 16N 16 #-} postulate 32N : Number {-# COMPILED_JS 32N 32 #-} postulate 64N : Number {-# COMPILED_JS 64N 64 #-} postulate 128N : Number {-# COMPILED_JS 128N 128 #-} postulate 256N : Number {-# COMPILED_JS 256N 256 #-} postulate 512N : Number {-# COMPILED_JS 512N 512 #-} postulate 1024N : Number {-# COMPILED_JS 1024N 1024 #-} postulate 2048N : Number {-# COMPILED_JS 2048N 2048 #-} postulate 4096N : Number {-# COMPILED_JS 4096N 4096 #-} postulate _+_ : Number → Number → Number {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} postulate _−_ : Number → Number → Number {-# COMPILED_JS _−_ function(x) { return function(y) { return x - y; }; } #-} postulate _*_ : Number → Number → Number {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} postulate _/_ : Number → Number → Number {-# COMPILED_JS _/_ function(x) { return function(y) { return x / y; }; } #-} infixr 5 _++_ postulate _++_ : String → String → String {-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-} postulate _+JS_ : JSValue → JSValue → JSValue {-# COMPILED_JS _+JS_ function(x) { return function(y) { return x + y; }; } #-} postulate _≤JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≤JS_ function(x) { return function(y) { return x <= y; }; } #-} postulate _<JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _<JS_ function(x) { return function(y) { return x < y; }; } #-} postulate _>JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _>JS_ function(x) { return function(y) { return x > y; }; } #-} postulate _≥JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≥JS_ function(x) { return function(y) { return x >= y; }; } #-} postulate _===_ : JSValue → JSValue → Bool {-# COMPILED_JS _===_ function(x) { return function(y) { return x === y; }; } #-} postulate reverse : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS reverse function(ty) { return function(x) { return x.reverse(); }; } #-} postulate sort : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS sort function(ty) { return function(x) { return x.sort(); }; } #-} postulate split : (sep target : String) → JSArray String {-# COMPILED_JS split function(sep) { return function(target) { return target.split(sep); }; } #-} postulate join : (sep : String)(target : JSArray String) → String {-# COMPILED_JS join function(sep) { return function(target) { return target.join(sep); }; } #-} postulate fromList : {A B : Set}(xs : List A)(fromElt : A → B) → JSArray B {-# COMPILED_JS fromList require("libagda").fromList #-} postulate length : String → Number {-# COMPILED_JS length function(s) { return s.length; } #-} postulate JSON-stringify : JSValue → String {-# COMPILED_JS JSON-stringify JSON.stringify #-} postulate JSON-parse : String → JSValue {-# COMPILED_JS JSON-parse JSON.parse #-} postulate toString : JSValue → String {-# COMPILED_JS toString function(x) { return x.toString(); } #-} postulate fromBool : Bool → JSValue {-# COMPILED_JS fromBool function(x) { return x; } #-} postulate fromString : String → JSValue {-# COMPILED_JS fromString function(x) { return x; } #-} postulate fromChar : Char → JSValue {-# COMPILED_JS fromChar String #-} postulate Char▹String : Char → String {-# COMPILED_JS Char▹String String #-} postulate fromNumber : Number → JSValue {-# COMPILED_JS fromNumber function(x) { return x; } #-} postulate fromJSArray : {A : Set} → JSArray A → JSValue {-# COMPILED_JS fromJSArray function(ty) { return function(x) { return x; }; } #-} postulate fromJSObject : JSObject → JSValue {-# COMPILED_JS fromJSObject function(x) { return x; } #-} postulate objectFromList : {A : Set}(xs : List A)(fromKey : A → String)(fromVal : A → JSValue) → JSObject {-# COMPILED_JS objectFromList require("libagda").objectFromList #-} postulate decodeJSArray : {A B : Set}(arr : JSArray A)(fromElt : Number → A → B) → List B {-# COMPILED_JS decodeJSArray require("libagda").decodeJSArray #-} postulate castNumber : JSValue → Number {-# COMPILED_JS castNumber Number #-} postulate castString : JSValue → String {-# COMPILED_JS castString String #-} -- TODO dyn check of length 1? postulate castChar : JSValue → Char {-# COMPILED_JS castChar String #-} -- TODO dyn check of length 1? postulate String▹Char : String → Char {-# COMPILED_JS String▹Char String #-} -- TODO dyn check? postulate castJSArray : JSValue → JSArray JSValue {-# COMPILED_JS castJSArray function(x) { return x; } #-} -- TODO dyn check? postulate castJSObject : JSValue → JSObject {-# COMPILED_JS castJSObject function(x) { return x; } #-} postulate nullJS : JSValue {-# COMPILED_JS nullJS null #-} postulate _·[_] : JSValue → JSValue → JSValue {-# COMPILED_JS _·[_] require("libagda").readProp #-} postulate _Array[_] : {A : Set} → JSArray A → Number → A {-# COMPILED_JS _Array[_] function(ty) { return require("libagda").readProp; } #-} postulate onJSArray : {A : Set} (f : JSArray JSValue → A) → JSValue → A {-# COMPILED_JS onJSArray require("libagda").onJSArray #-} postulate onString : {A : Set} (f : String → A) → JSValue → A {-# COMPILED_JS onString require("libagda").onString #-} -- Writes 'msg' and 'inp' to the console and then returns `f inp` postulate trace : {A B : Set}(msg : String)(inp : A)(f : A → B) → B {-# COMPILED_JS trace require("libagda").trace #-} postulate throw : {A : Set} → String → A → A {-# COMPILED_JS throw require("libagda").throw #-} data Value : Set₀ where array : List Value → Value object : List (String × Value) → Value string : String → Value number : Number → Value bool : Bool → Value null : Value Object = List (String × JSValue) postulate fromValue : Value → JSValue {-# COMPILED_JS fromValue require("libagda").fromValue #-} -- TODO we could make it a COMPILED type and remove the encoding by using JSValue as the internal repr. data ValueView : Set₀ where array : JSArray JSValue → ValueView object : JSObject → ValueView string : String → ValueView number : Number → ValueView bool : Bool → ValueView null : ValueView -- TODO not yet tested postulate viewJSValue : JSValue → ValueView {-# COMPILED_JS viewJSValue require("libagda").viewJSValue #-} Bool▹String : Bool → String Bool▹String true = "true" Bool▹String false = "false" List▹String : List Char → String List▹String xs = join "" (fromList xs Char▹String) String▹List : String → List Char String▹List s = decodeJSArray (split "" s) (λ _ → String▹Char) Number▹String : Number → String Number▹String = castString ∘ fromNumber JSArray▹ListString : {A : Set} → JSArray A → List A JSArray▹ListString a = decodeJSArray a (λ _ → id) fromObject : Object → JSObject fromObject o = objectFromList o fst snd _≤Char_ : Char → Char → Bool x ≤Char y = fromChar x ≤JS fromChar y _<Char_ : Char → Char → Bool x <Char y = fromChar x <JS fromChar y _>Char_ : Char → Char → Bool x >Char y = fromChar x >JS fromChar y _≥Char_ : Char → Char → Bool x ≥Char y = fromChar x ≥JS fromChar y _≤String_ : String → String → Bool x ≤String y = fromString x ≤JS fromString y _<String_ : String → String → Bool x <String y = fromString x <JS fromString y _>String_ : String → String → Bool x >String y = fromString x >JS fromString y _≥String_ : String → String → Bool x ≥String y = fromString x ≥JS fromString y _≤Number_ : Number → Number → Bool x ≤Number y = fromNumber x ≤JS fromNumber y _<Number_ : Number → Number → Bool x <Number y = fromNumber x <JS fromNumber y _>Number_ : Number → Number → Bool x >Number y = fromNumber x >JS fromNumber y _≥Number_ : Number → Number → Bool x ≥Number y = fromNumber x ≥JS fromNumber y _·«_» : JSValue → String → JSValue v ·« s » = v ·[ fromString s ] _·«_»A : JSValue → String → JSArray JSValue v ·« s »A = castJSArray (v ·« s ») trace-call : {A B : Set} → String → (A → B) → A → B trace-call s f x = trace s (f x) id postulate JSCmd : Set → Set Callback1 : Set → Set Callback1 A = JSCmd ((A → 𝟘) → 𝟘) Callback0 : Set Callback0 = Callback1 𝟙 Callback2 : Set → Set → Set Callback2 A B = JSCmd ((A → B → 𝟘) → 𝟘) postulate assert : Bool → Callback0 {-# COMPILED_JS assert require("libagda").assert #-} check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A check true errmsg x = x check false errmsg x = throw (errmsg _) x warn-check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A warn-check true errmsg x = x warn-check false errmsg x = trace ("Warning: " ++ errmsg _) x id infixr 0 _>>_ _!₁_ _!₂_ data JS! : Set₁ where end : JS! _!₁_ : {A : Set}(cmd : Callback1 A)(cb : A → JS!) → JS! _!₂_ : {A B : Set}(cmd : JSCmd ((A → B → 𝟘) → 𝟘))(cb : A → B → JS!) → JS! _>>_ : Callback0 → JS! → JS! cmd >> cont = cmd !₁ λ _ → cont -- -} -- -} -- -} -- -} -- -}
module FFI.JS where open import Data.Empty public renaming (⊥ to 𝟘) open import Data.Unit.Base public renaming (⊤ to 𝟙) open import Data.Char.Base public using (Char) open import Data.String.Base public using (String) open import Data.Bool.Base public using (Bool; true; false) open import Data.List.Base using (List; []; _∷_) open import Data.Product using (_×_) renaming (proj₁ to fst; proj₂ to snd) open import Function using (id; _∘_) open import Control.Process.Type {-# COMPILED_JS Bool function (x,v) { return ((x)? v["true"]() : v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-} postulate Number : Set JSArray : Set → Set JSObject : Set JSValue : Set postulate readNumber : String → Number {-# COMPILED_JS readNumber Number #-} postulate 0N : Number {-# COMPILED_JS 0N 0 #-} postulate 1N : Number {-# COMPILED_JS 1N 1 #-} postulate 2N : Number {-# COMPILED_JS 2N 2 #-} postulate 4N : Number {-# COMPILED_JS 4N 4 #-} postulate 8N : Number {-# COMPILED_JS 8N 8 #-} postulate 16N : Number {-# COMPILED_JS 16N 16 #-} postulate 32N : Number {-# COMPILED_JS 32N 32 #-} postulate 64N : Number {-# COMPILED_JS 64N 64 #-} postulate 128N : Number {-# COMPILED_JS 128N 128 #-} postulate 256N : Number {-# COMPILED_JS 256N 256 #-} postulate 512N : Number {-# COMPILED_JS 512N 512 #-} postulate 1024N : Number {-# COMPILED_JS 1024N 1024 #-} postulate 2048N : Number {-# COMPILED_JS 2048N 2048 #-} postulate 4096N : Number {-# COMPILED_JS 4096N 4096 #-} postulate _+_ : Number → Number → Number {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} postulate _−_ : Number → Number → Number {-# COMPILED_JS _−_ function(x) { return function(y) { return x - y; }; } #-} postulate _*_ : Number → Number → Number {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} postulate _/_ : Number → Number → Number {-# COMPILED_JS _/_ function(x) { return function(y) { return x / y; }; } #-} infixr 5 _++_ postulate _++_ : String → String → String {-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-} postulate _+JS_ : JSValue → JSValue → JSValue {-# COMPILED_JS _+JS_ function(x) { return function(y) { return x + y; }; } #-} postulate _≤JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≤JS_ function(x) { return function(y) { return x <= y; }; } #-} postulate _<JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _<JS_ function(x) { return function(y) { return x < y; }; } #-} postulate _>JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _>JS_ function(x) { return function(y) { return x > y; }; } #-} postulate _≥JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≥JS_ function(x) { return function(y) { return x >= y; }; } #-} postulate _===_ : JSValue → JSValue → Bool {-# COMPILED_JS _===_ function(x) { return function(y) { return x === y; }; } #-} postulate reverse : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS reverse function(ty) { return function(x) { return x.reverse(); }; } #-} postulate sort : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS sort function(ty) { return function(x) { return x.sort(); }; } #-} postulate split : (sep target : String) → JSArray String {-# COMPILED_JS split function(sep) { return function(target) { return target.split(sep); }; } #-} postulate join : (sep : String)(target : JSArray String) → String {-# COMPILED_JS join function(sep) { return function(target) { return target.join(sep); }; } #-} postulate fromList : {A B : Set}(xs : List A)(fromElt : A → B) → JSArray B {-# COMPILED_JS fromList require("libagda").fromList #-} postulate length : String → Number {-# COMPILED_JS length function(s) { return s.length; } #-} postulate JSON-stringify : JSValue → String {-# COMPILED_JS JSON-stringify JSON.stringify #-} postulate JSON-parse : String → JSValue {-# COMPILED_JS JSON-parse JSON.parse #-} postulate toString : JSValue → String {-# COMPILED_JS toString function(x) { return x.toString(); } #-} postulate fromBool : Bool → JSValue {-# COMPILED_JS fromBool function(x) { return x; } #-} postulate fromString : String → JSValue {-# COMPILED_JS fromString function(x) { return x; } #-} postulate fromChar : Char → JSValue {-# COMPILED_JS fromChar String #-} postulate Char▹String : Char → String {-# COMPILED_JS Char▹String String #-} postulate fromNumber : Number → JSValue {-# COMPILED_JS fromNumber function(x) { return x; } #-} postulate fromJSArray : {A : Set} → JSArray A → JSValue {-# COMPILED_JS fromJSArray function(ty) { return function(x) { return x; }; } #-} postulate fromJSObject : JSObject → JSValue {-# COMPILED_JS fromJSObject function(x) { return x; } #-} postulate objectFromList : {A : Set}(xs : List A)(fromKey : A → String)(fromVal : A → JSValue) → JSObject {-# COMPILED_JS objectFromList require("libagda").objectFromList #-} postulate decodeJSArray : {A B : Set}(arr : JSArray A)(fromElt : Number → A → B) → List B {-# COMPILED_JS decodeJSArray require("libagda").decodeJSArray #-} postulate castNumber : JSValue → Number {-# COMPILED_JS castNumber Number #-} postulate castString : JSValue → String {-# COMPILED_JS castString String #-} -- TODO dyn check of length 1? postulate castChar : JSValue → Char {-# COMPILED_JS castChar String #-} -- TODO dyn check of length 1? postulate String▹Char : String → Char {-# COMPILED_JS String▹Char String #-} -- TODO dyn check? postulate castJSArray : JSValue → JSArray JSValue {-# COMPILED_JS castJSArray function(x) { return x; } #-} -- TODO dyn check? postulate castJSObject : JSValue → JSObject {-# COMPILED_JS castJSObject function(x) { return x; } #-} postulate nullJS : JSValue {-# COMPILED_JS nullJS null #-} postulate _·[_] : JSValue → JSValue → JSValue {-# COMPILED_JS _·[_] require("libagda").readProp #-} postulate _Array[_] : {A : Set} → JSArray A → Number → A {-# COMPILED_JS _Array[_] function(ty) { return require("libagda").readProp; } #-} postulate onJSArray : {A : Set} (f : JSArray JSValue → A) → JSValue → A {-# COMPILED_JS onJSArray require("libagda").onJSArray #-} postulate onString : {A : Set} (f : String → A) → JSValue → A {-# COMPILED_JS onString require("libagda").onString #-} -- Writes 'msg' and 'inp' to the console and then returns `f inp` postulate trace : {A B : Set}(msg : String)(inp : A)(f : A → B) → B {-# COMPILED_JS trace require("libagda").trace #-} postulate throw : {A : Set} → String → A → A {-# COMPILED_JS throw require("libagda").throw #-} postulate is-null : JSValue → Bool {-# COMPILED_JS is-null function(x) { return (x == null); } #-} data Value : Set₀ where array : List Value → Value object : List (String × Value) → Value string : String → Value number : Number → Value bool : Bool → Value null : Value Object = List (String × JSValue) postulate fromValue : Value → JSValue {-# COMPILED_JS fromValue require("libagda").fromValue #-} -- TODO we could make it a COMPILED type and remove the encoding by using JSValue as the internal repr. data ValueView : Set₀ where array : JSArray JSValue → ValueView object : JSObject → ValueView string : String → ValueView number : Number → ValueView bool : Bool → ValueView null : ValueView -- TODO not yet tested postulate viewJSValue : JSValue → ValueView {-# COMPILED_JS viewJSValue require("libagda").viewJSValue #-} Bool▹String : Bool → String Bool▹String true = "true" Bool▹String false = "false" List▹String : List Char → String List▹String xs = join "" (fromList xs Char▹String) String▹List : String → List Char String▹List s = decodeJSArray (split "" s) (λ _ → String▹Char) Number▹String : Number → String Number▹String = castString ∘ fromNumber JSArray▹ListString : {A : Set} → JSArray A → List A JSArray▹ListString a = decodeJSArray a (λ _ → id) fromObject : Object → JSObject fromObject o = objectFromList o fst snd _≤Char_ : Char → Char → Bool x ≤Char y = fromChar x ≤JS fromChar y _<Char_ : Char → Char → Bool x <Char y = fromChar x <JS fromChar y _>Char_ : Char → Char → Bool x >Char y = fromChar x >JS fromChar y _≥Char_ : Char → Char → Bool x ≥Char y = fromChar x ≥JS fromChar y _≤String_ : String → String → Bool x ≤String y = fromString x ≤JS fromString y _<String_ : String → String → Bool x <String y = fromString x <JS fromString y _>String_ : String → String → Bool x >String y = fromString x >JS fromString y _≥String_ : String → String → Bool x ≥String y = fromString x ≥JS fromString y _≤Number_ : Number → Number → Bool x ≤Number y = fromNumber x ≤JS fromNumber y _<Number_ : Number → Number → Bool x <Number y = fromNumber x <JS fromNumber y _>Number_ : Number → Number → Bool x >Number y = fromNumber x >JS fromNumber y _≥Number_ : Number → Number → Bool x ≥Number y = fromNumber x ≥JS fromNumber y _·«_» : JSValue → String → JSValue v ·« s » = v ·[ fromString s ] _·«_»A : JSValue → String → JSArray JSValue v ·« s »A = castJSArray (v ·« s ») trace-call : {A B : Set} → String → (A → B) → A → B trace-call s f x = trace s (f x) id postulate JSCmd : Set → Set Callback1 : Set → Set Callback1 A = JSCmd ((A → 𝟘) → 𝟘) Callback0 : Set Callback0 = Callback1 𝟙 Callback2 : Set → Set → Set Callback2 A B = JSCmd ((A → B → 𝟘) → 𝟘) postulate assert : Bool → Callback0 {-# COMPILED_JS assert require("libagda").assert #-} check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A check true errmsg x = x check false errmsg x = throw (errmsg _) x warn-check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A warn-check true errmsg x = x warn-check false errmsg x = trace ("Warning: " ++ errmsg _) x id infixr 0 _>>_ _!₁_ _!₂_ data JS! : Set₁ where end : JS! _!₁_ : {A : Set}(cmd : Callback1 A)(cb : A → JS!) → JS! _!₂_ : {A B : Set}(cmd : JSCmd ((A → B → 𝟘) → 𝟘))(cb : A → B → JS!) → JS! _>>_ : Callback0 → JS! → JS! cmd >> cont = cmd !₁ λ _ → cont -- -} -- -} -- -} -- -} -- -}
add is-null
JS: add is-null
Agda
bsd-3-clause
crypto-agda/agda-libjs
7b2c31fcd7415cecc448653df3d386001cbebf1b
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open import Syntax.Context {Type} data Term (Γ : Context) : (τ : Type) → Set where const : ∀ {τ} → (c : C τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
import Syntax.Type.Plotkin as Type module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open import Syntax.Context {Type} data Term (Γ : Context) : (τ : Type) → Set where const : ∀ {τ} → (c : C τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
Put constructor arguments on different lines.
Put constructor arguments on different lines. Old-commit-hash: 02f9c59c59ddef7050c2c035457c98ecb00464dc
Agda
mit
inc-lc/ilc-agda
fbbd955ba2c82259764f220c075ee5ab09f0a3c1
models/Desc.agda
models/Desc.agda
{-# OPTIONS --type-in-type --no-termination-check --no-positivity-check #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where record One : Set where --**************** -- Sum and friends --**************** data _+_ (A B : Set) : Set where l : A -> A + B r : B -> A + B --******************************************** -- Desc code --******************************************** -- Inductive types are implemented as a Universe. Hence, in this -- section, we implement their code. -- We can read this code as follow (see Conor's "Ornamental -- algebras"): a description in |Desc| is a program to read one node -- of the described tree. data Desc : Set where Arg : (X : Set) -> (X -> Desc) -> Desc -- Read a field in |X|; continue, given its value -- Often, |X| is an |EnumT|, hence allowing to choose a constructor -- among a finite set of constructors Ind : (H : Set) -> Desc -> Desc -- Read a field in H; read a recursive subnode given the field, -- continue regarless of the subnode -- Often, |H| is |1|, hence |Ind| simplifies to |Inf : Desc -> Desc|, -- meaning: read a recursive subnode and continue regardless Done : Desc -- Stop reading --******************************************** -- Desc decoder --******************************************** -- Provided the type of the recursive subnodes |R|, we decode a -- description as a record describing the node. [|_|]_ : Desc -> Set -> Set [| Arg A D |] R = Sigma A (\ a -> [| D a |] R) [| Ind H D |] R = (H -> R) * [| D |] R [| Done |] R = One --******************************************** -- Functions on codes --******************************************** -- Saying that a "predicate" |p| holds everywhere in |v| amounts to -- write something of the following type: Everywhere : (d : Desc) (D : Set) (bp : D -> Set) (V : [| d |] D) -> Set Everywhere (Arg A f) d p v = Everywhere (f (fst v)) d p (snd v) -- It must hold for this constructor Everywhere (Ind H x) d p v = ((y : H) -> p (fst v y)) * Everywhere x d p (snd v) -- It must hold for the subtrees Everywhere Done _ _ _ = _ -- It trivially holds at endpoints -- Then, we can build terms that inhabits this type. That is, a -- function that takes a "predicate" |bp| and makes it hold everywhere -- in the data-structure. It is the equivalent of a "map", but in a -- dependently-typed setting. everywhere : (d : Desc) (D : Set) (bp : D -> Set) -> ((y : D) -> bp y) -> (v : [| d |] D) -> Everywhere d D bp v everywhere (Arg a f) d bp p v = everywhere (f (fst v)) d bp p (snd v) -- It holds everywhere on this constructor everywhere (Ind H x) d bp p v = (\y -> p (fst v y)) , everywhere x d bp p (snd v) -- It holds here, and down in the recursive subtrees everywhere Done _ _ _ _ = One -- Nothing needs to be done on endpoints -- Looking at the decoder, a natural thing to do is to define its -- fixpoint |Mu D|, hence instantiating |R| with |Mu D| itself. data Mu (D : Desc) : Set where Con : [| D |] (Mu D) -> Mu D -- Using the "map" defined by |everywhere|, we can implement a "fold" -- over the |Mu| fixpoint: foldDesc : (D : Desc) (bp : Mu D -> Set) -> ((x : [| D |] (Mu D)) -> Everywhere D (Mu D) bp x -> bp (Con x)) -> (v : Mu D) -> bp v foldDesc D bp p (Con v) = p v (everywhere D (Mu D) bp (\x -> foldDesc D bp p x) v) --******************************************** -- Nat --******************************************** data NatConst : Set where ZE : NatConst SU : NatConst natc : NatConst -> Desc natc ZE = Done natc SU = Ind One Done natd : Desc natd = Arg NatConst natc nat : Set nat = Mu natd zero : nat zero = Con ( ZE , _ ) suc : nat -> nat suc n = Con ( SU , ( (\_ -> n) , _ ) ) two : nat two = suc (suc zero) four : nat four = suc (suc (suc (suc zero))) sum : nat -> ((x : Sigma NatConst (\ a -> [| natc a |] Mu (Arg NatConst natc))) -> Everywhere (natc (fst x)) (Mu (Arg NatConst natc)) (\ _ -> Mu (Arg NatConst natc)) (snd x) -> Mu (Arg NatConst natc)) sum n2 (ZE , _) p = n2 sum n2 (SU , f) p = suc ( fst p _) plus : nat -> nat -> nat plus n1 n2 = foldDesc natd (\_ -> nat) (sum n2) n1 x : nat x = plus two two
{-# OPTIONS --type-in-type #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** data Desc : Set where id : Desc const : Set -> Desc prod : Desc -> Desc -> Desc sigma : (S : Set) -> (S -> Desc) -> Desc pi : (S : Set) -> (S -> Desc) -> Desc --******************************************** -- Desc interpretation --******************************************** [|_|]_ : Desc -> Set -> Set [| id |] Z = Z [| const X |] Z = X [| prod D D' |] Z = [| D |] Z * [| D' |] Z [| sigma S T |] Z = Sigma S (\s -> [| T s |] Z) [| pi S T |] Z = (s : S) -> [| T s |] Z --******************************************** -- Fixpoint construction --******************************************** data Mu (D : Desc) : Set where con : [| D |] (Mu D) -> Mu D --******************************************** -- Predicate: All --******************************************** All : (D : Desc)(X : Set)(P : X -> Set) -> [| D |] X -> Set All id X P x = P x All (const Z) X P x = Z All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d') All (sigma S T) X P (a , b) = All (T a) X P b All (pi S T) X P f = (s : S) -> All (T s) X P (f s) all : (D : Desc)(X : Set)(P : X -> Set)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x all id X P R x = R x all (const Z) X P R z = z all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d' all (sigma S T) X P R (a , b) = all (T a) X P R b all (pi S T) X P R f = \ s -> all (T s) X P R (f s) --******************************************** -- Elimination principle: induction --******************************************** {- induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms (con xs) = ms xs (all D (Mu D) P (\x -> induction D P ms x) xs) -} module Elim (D : Desc) (P : Mu D -> Set) (ms : (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) where mutual induction : (x : Mu D) -> P x induction (con xs) = ms xs (hyps D xs) hyps : (D' : Desc) (xs : [| D' |] (Mu D)) -> All D' (Mu D) P xs hyps id x = induction x hyps (const Z) z = z hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (sigma S T) (a , b) = hyps (T a) b hyps (pi S T) f = \s -> hyps (T s) (f s) induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms x = Elim.induction D P ms x --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Suc : NatConst natCases : NatConst -> Desc natCases Ze = const Unit natCases Suc = id NatD : Desc NatD = sigma NatConst natCases Nat : Set Nat = Mu NatD ze : Nat ze = con (Ze , Void) suc : Nat -> Nat suc n = con (Suc , n) --**************** -- List --**************** data ListConst : Set where Nil : ListConst Cons : ListConst listCases : Set -> ListConst -> Desc listCases X Nil = const Unit listCases X Cons = sigma X (\_ -> id) ListD : Set -> Desc ListD X = sigma ListConst (listCases X) List : Set -> Set List X = Mu (ListD X) nil : {X : Set} -> List X nil = con ( Nil , Void ) cons : {X : Set} -> X -> List X -> List X cons x t = con ( Cons , ( x , t )) --**************** -- Tree --**************** data TreeConst : Set where Leaf : TreeConst Node : TreeConst treeCases : Set -> TreeConst -> Desc treeCases X Leaf = const Unit treeCases X Node = sigma X (\_ -> prod id id) TreeD : Set -> Desc TreeD X = sigma TreeConst (treeCases X) Tree : Set -> Set Tree X = Mu (TreeD X) leaf : {X : Set} -> Tree X leaf = con (Leaf , Void) node : {X : Set} -> X -> Tree X -> Tree X -> Tree X node x le ri = con (Node , (x , (le , ri))) --******************************************** -- Finite sets --******************************************** EnumU : Set EnumU = Nat nilE : EnumU nilE = ze consE : EnumU -> EnumU consE e = suc e {- data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU -} data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) casesSpi : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set) -> Set) xs -> (P' : EnumT (con xs) -> Set) -> Set casesSpi (Ze , Void) hs P' = Unit casesSpi (Suc , n) hs P' = P' EZe * hs (\e -> P' (ESu e)) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi e P = induction NatD (\e -> (P : EnumT e -> Set) -> Set) casesSpi e P {- spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) -} casesSwitch : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set)(b' : spi e P')(x' : EnumT e) -> P' x') xs -> (P' : EnumT (con xs) -> Set)(b' : spi (con xs) P')(x' : EnumT (con xs)) -> P' x' casesSwitch (Ze , Void) hs P' b' () casesSwitch (Suc , n) hs P' b' EZe = fst b' casesSwitch (Suc , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e' switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch e P b x = induction NatD (\e -> (P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x) casesSwitch e P b x {- switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n -} --******************************************** -- Tagged description --******************************************** TagDesc : Set TagDesc = Sigma EnumU (\e -> spi e (\_ -> Desc)) toDesc : TagDesc -> Desc toDesc (B , F) = sigma (EnumT B) (\e -> switch B (\_ -> Desc) F e) --******************************************** -- Catamorphism --******************************************** cata : (D : Desc) (T : Set) -> ([| D |] T -> T) -> (Mu D) -> T cata D T phi x = induction D (\_ -> T) (\x ms -> phi (replace D T x ms )) x where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T replace id T x y = y replace (const Z) T z z' = z' replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Free monad construction --******************************************** _**_ : TagDesc -> (X : Set) -> TagDesc (e , D) ** X = consE e , (const X , D) --******************************************** -- Substitution --******************************************** apply : (D : TagDesc)(X Y : Set) -> (X -> Mu (toDesc (D ** Y))) -> [| toDesc (D ** X) |] (Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) apply (E , B) X Y sig (EZe , x) = sig x apply (E , B) X Y sig (ESu n , t) = con (ESu n , t) subst : (D : TagDesc)(X Y : Set) -> Mu (toDesc (D ** X)) -> (X -> Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) subst D X Y x sig = cata (toDesc (D ** X)) (Mu (toDesc (D ** Y))) (apply D X Y sig) x
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Agda
mit
mietek/epigram2,larrytheliquid/pigit,mietek/epigram2
bb08669e1bdc2f7d2df9bb9289bda1b42f3dece8
lib/Algebra/FunctionProperties/Eq.agda
lib/Algebra/FunctionProperties/Eq.agda
{-# OPTIONS --without-K #-} -- Like Algebra.FunctionProperties but specialized to _≡_ and using implict arguments -- Moreover there is some extensions such as: -- * interchange -- * non-zero inversions -- * cancelation and non-zero cancelation -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Function using (flip) open import Data.Product open import Relation.Nullary open import Relation.Binary.NP open import Relation.Binary.PropositionalEquality.NP -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties.Eq {a} {A : Set a} where ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _·_ = ∀ {x y z} → ((x · y) · z) ≡ (x · (y · z)) Commutative : Op₂ A → Set _ Commutative _·_ = ∀ {x y} → (x · y) ≡ (y · x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _·_ = ∀ {x} → (e · x) ≡ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _·_ = ∀ {x} → (x · e) ≡ x Identity : A → Op₂ A → Set _ Identity e · = LeftIdentity e · × RightIdentity e · LeftZero : A → Op₂ A → Set _ LeftZero z _·_ = ∀ {x} → (z · x) ≡ z RightZero : A → Op₂ A → Set _ RightZero z _·_ = ∀ {x} → (x · z) ≡ z Zero : A → Op₂ A → Set _ Zero z · = LeftZero z · × RightZero z · LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _·_ = ∀ {x} → (x ⁻¹ · x) ≡ e LeftInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ LeftInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x ⁻¹ · x) ≡ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _·_ = ∀ {x} → (x · (x ⁻¹)) ≡ e RightInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ RightInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x · (x ⁻¹)) ≡ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · InverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ InverseNonZero zero e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ {x y z} → (x * (y + z)) ≡ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ {x y z} → ((y + z) * x) ≡ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _·_ IdempotentOn x = (x · x) ≡ x Idempotent : Op₂ A → Set _ Idempotent · = ∀ {x} → · IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ {x} → f (f x) ≡ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _·_ Absorbs _∘_ = ∀ {x y} → (x · (x ∘ y)) ≡ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive · ∘ = (· Absorbs ∘) × (∘ Absorbs ·) Involutive : Op₁ A → Set _ Involutive f = ∀ {x} → f (f x) ≡ x Interchange : Op₂ A → Op₂ A → Set _ Interchange _·_ _∘_ = ∀ {x y z t} → ((x · y) ∘ (z · t)) ≡ ((x ∘ z) · (y ∘ t)) LeftCancel : Op₂ A → Set _ LeftCancel _·_ = ∀ {c x y} → c · x ≡ c · y → x ≡ y RightCancel : Op₂ A → Set _ RightCancel _·_ = ∀ {c x y} → x · c ≡ y · c → x ≡ y LeftCancelNonZero : A → Op₂ A → Set _ LeftCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → c · x ≡ c · y → x ≡ y RightCancelNonZero : A → Op₂ A → Set _ RightCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → x · c ≡ y · c → x ≡ y module InterchangeFromAssocComm (_·_ : Op₂ A) (·-assoc : Associative _·_) (·-comm : Commutative _·_) where open ≡-Reasoning ·= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → (x · y) ≡ (x' · y') ·= refl refl = refl ·-interchange : Interchange _·_ _·_ ·-interchange {x} {y} {z} {t} = (x · y) · (z · t) ≡⟨ ·-assoc ⟩ x · (y · (z · t)) ≡⟨ ·= refl (! ·-assoc) ⟩ x · ((y · z) · t) ≡⟨ ·= refl (·= ·-comm refl) ⟩ x · ((z · y) · t) ≡⟨ ·= refl ·-assoc ⟩ x · (z · (y · t)) ≡⟨ ! ·-assoc ⟩ (x · z) · (y · t) ∎ module _ {b} {B : Set b} (f : A → B) where Injective : Set (b ⊔ a) Injective = ∀ {x y} → f x ≡ f y → x ≡ y Conflict : Set (b ⊔ a) Conflict = ∃ λ x → ∃ λ y → (x ≢ y) × f x ≡ f y module _ {b} {B : Set b} {f : A → B} where Injective-¬Conflict : Injective f → ¬ (Conflict f) Injective-¬Conflict inj (x , y , x≢y , fx≡fy) = x≢y (inj fx≡fy) Conflict-¬Injective : Conflict f → ¬ (Injective f) Conflict-¬Injective = flip Injective-¬Conflict -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} -- Like Algebra.FunctionProperties but specialized to _≡_ and using implict arguments -- Moreover there is some extensions such as: -- * interchange -- * non-zero inversions -- * cancelation and non-zero cancelation -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Function.NP using (_$⟨_⟩_; flip) open import Data.Nat.Base using (ℕ) open import Data.Product open import Relation.Nullary open import Relation.Binary.NP open import Relation.Binary.PropositionalEquality.NP -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties.Eq {a} {A : Set a} where ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _·_ = ∀ {x y z} → ((x · y) · z) ≡ (x · (y · z)) Commutative : Op₂ A → Set _ Commutative _·_ = ∀ {x y} → (x · y) ≡ (y · x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _·_ = ∀ {x} → (e · x) ≡ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _·_ = ∀ {x} → (x · e) ≡ x Identity : A → Op₂ A → Set _ Identity e · = LeftIdentity e · × RightIdentity e · LeftZero : A → Op₂ A → Set _ LeftZero z _·_ = ∀ {x} → (z · x) ≡ z RightZero : A → Op₂ A → Set _ RightZero z _·_ = ∀ {x} → (x · z) ≡ z Zero : A → Op₂ A → Set _ Zero z · = LeftZero z · × RightZero z · LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _·_ = ∀ {x} → (x ⁻¹ · x) ≡ e LeftInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ LeftInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x ⁻¹ · x) ≡ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _·_ = ∀ {x} → (x · (x ⁻¹)) ≡ e RightInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ RightInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x · (x ⁻¹)) ≡ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · InverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ InverseNonZero zero e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ {x y z} → (x * (y + z)) ≡ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ {x y z} → ((y + z) * x) ≡ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _·_ IdempotentOn x = (x · x) ≡ x Idempotent : Op₂ A → Set _ Idempotent · = ∀ {x} → · IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ {x} → f (f x) ≡ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _·_ Absorbs _∘_ = ∀ {x y} → (x · (x ∘ y)) ≡ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive · ∘ = (· Absorbs ∘) × (∘ Absorbs ·) Involutive : Op₁ A → Set _ Involutive f = ∀ {x} → f (f x) ≡ x Interchange : Op₂ A → Op₂ A → Set _ Interchange _·_ _∘_ = ∀ {x y z t} → ((x · y) ∘ (z · t)) ≡ ((x ∘ z) · (y ∘ t)) LeftCancel : Op₂ A → Set _ LeftCancel _·_ = ∀ {c x y} → c · x ≡ c · y → x ≡ y RightCancel : Op₂ A → Set _ RightCancel _·_ = ∀ {c x y} → x · c ≡ y · c → x ≡ y LeftCancelNonZero : A → Op₂ A → Set _ LeftCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → c · x ≡ c · y → x ≡ y RightCancelNonZero : A → Op₂ A → Set _ RightCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → x · c ≡ y · c → x ≡ y module InterchangeFromAssocComm (_·_ : Op₂ A) (·-assoc : Associative _·_) (·-comm : Commutative _·_) where open ≡-Reasoning ·= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → (x · y) ≡ (x' · y') ·= refl refl = refl ·-interchange : Interchange _·_ _·_ ·-interchange {x} {y} {z} {t} = (x · y) · (z · t) ≡⟨ ·-assoc ⟩ x · (y · (z · t)) ≡⟨ ·= refl (! ·-assoc) ⟩ x · ((y · z) · t) ≡⟨ ·= refl (·= ·-comm refl) ⟩ x · ((z · y) · t) ≡⟨ ·= refl ·-assoc ⟩ x · (z · (y · t)) ≡⟨ ! ·-assoc ⟩ (x · z) · (y · t) ∎ module _ {b} {B : Set b} (f : A → B) where Injective : Set (b ⊔ a) Injective = ∀ {x y} → f x ≡ f y → x ≡ y Conflict : Set (b ⊔ a) Conflict = ∃ λ x → ∃ λ y → (x ≢ y) × f x ≡ f y module _ {b} {B : Set b} {f : A → B} where Injective-¬Conflict : Injective f → ¬ (Conflict f) Injective-¬Conflict inj (x , y , x≢y , fx≡fy) = x≢y (inj fx≡fy) Conflict-¬Injective : Conflict f → ¬ (Injective f) Conflict-¬Injective = flip Injective-¬Conflict module Endo {f : A → A} where Cycle^ : ℕ → Set _ Cycle^ n = ∃ λ x → f $⟨ n ⟩ x ≡ x Cycle = ∃ Cycle^ -- -} -- -} -- -} -- -}
add Endo.Cycle
Alegbra.FunctionProperties.Eq: add Endo.Cycle
Agda
bsd-3-clause
crypto-agda/agda-nplib
675459709ff3563cde300754c35f229c6b963f10
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field ΔVal-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → ΔVal-base ι → Set apply-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ΔVal-base ι → ⟦ ι ⟧Base diff-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ΔVal-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-ΔVal-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-ΔVal-base ι v (diff-ΔVal-base ι u v) ≡ u --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set apply-ΔVal : ∀ τ → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ diff-ΔVal : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ infixl 6 apply-ΔVal diff-ΔVal -- as with + - in GHC.Num syntax apply-ΔVal τ v dv = v ⊞₍ τ ₎ dv syntax diff-ΔVal τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- ΔVal : Type → Set ΔVal (base ι) = ΔVal-base ι ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-ΔVal-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ m ⊟₍ base ι ₎ n = diff-ΔVal-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv-Entry : Type → Set ΔEnv-Entry τ = Triple ⟦ τ ⟧ (λ _ → ΔVal τ) (λ v dv → valid {τ} v dv) ΔEnv : Context → Set ΔEnv = DependentList ΔEnv-Entry ignore-entry : ΔEnv-Entry ⊆ ⟦_⟧ ignore-entry (cons v _ _) = v update-entry : ΔEnv-Entry ⊆ ⟦_⟧ update-entry {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-entry {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-entry {τ})
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field ΔVal-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → ΔVal-base ι → Set apply-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ΔVal-base ι → ⟦ ι ⟧Base diff-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ΔVal-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-ΔVal-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-ΔVal-base ι v (diff-ΔVal-base ι u v) ≡ u --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set apply-ΔVal : ∀ τ → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ diff-ΔVal : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ infixl 6 apply-ΔVal diff-ΔVal -- as with + - in GHC.Num syntax apply-ΔVal τ v dv = v ⊞₍ τ ₎ dv syntax diff-ΔVal τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- ΔVal : Type → Set ΔVal (base ι) = ΔVal-base ι ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-ΔVal-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ m ⊟₍ base ι ₎ n = diff-ΔVal-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → ΔVal τ) (λ v dv → valid {τ} v dv) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore-valid-change : ValidChange ⊆ ⟦_⟧ ignore-valid-change (cons v _ _) = v update-valid-change : ValidChange ⊆ ⟦_⟧ update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-valid-change {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-valid-change {τ})
Rename ΔEnv-Entry to ValidChange.
Rename ΔEnv-Entry to ValidChange. Also rename operations related to ΔEnv-Entry. Old-commit-hash: 35ab981b89bab6eced9a7b20753bb140f6caf7a8
Agda
mit
inc-lc/ilc-agda
0e5b51a126b354cb6a2c34c080deb1fdcc75c7cb
Denotational/Environments.agda
Denotational/Environments.agda
module Denotational.Environments (Type : Set) (⟦_⟧Type : Type → Set) where -- ENVIRONMENTS -- -- This module defines the meaning of contexts, that is, -- the type of environments that fit a context, together -- with operations and properties of these operations. -- -- This module is parametric in the syntax and semantics -- of types, so it can be reused for different calculi -- and models. open import Relation.Binary.PropositionalEquality open import Syntactic.Contexts Type open import Denotational.Notation private meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- TYPING CONTEXTS -- Denotational Semantics : Contexts Represent Environments data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B ⟦_⟧Context : Context → Set ⟦ ∅ ⟧Context = Empty ⟦ τ • Γ ⟧Context = Bind ⟦ τ ⟧ ⟦ Γ ⟧Context meaningOfContext : Meaning Context meaningOfContext = meaning ⟦_⟧Context -- VARIABLES -- Denotational Semantics ⟦_⟧Var : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ this ⟧Var (v • ρ) = v ⟦ that x ⟧Var (v • ρ) = ⟦ x ⟧Var ρ meaningOfVar : ∀ {Γ τ} → Meaning (Var Γ τ) meaningOfVar = meaning ⟦_⟧Var -- WEAKENING -- Remove a variable from an environment ⟦_⟧≼ : ∀ {Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) → ⟦ Γ₂ ⟧ → ⟦ Γ₁ ⟧ ⟦ ∅ ⟧≼ ∅ = ∅ ⟦ keep τ • Γ′ ⟧≼ (v • ρ) = v • ⟦ Γ′ ⟧≼ ρ ⟦ drop τ • Γ′ ⟧≼ (v • ρ) = ⟦ Γ′ ⟧≼ ρ meaningOf≼ : ∀ {Γ₁ Γ₂} → Meaning (Γ₁ ≼ Γ₂) meaningOf≼ = meaning ⟦_⟧≼ -- Properties ⟦⟧-≼-trans : ∀ {Γ₃ Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) (Γ″ : Γ₂ ≼ Γ₃) → ∀ (ρ : ⟦ Γ₃ ⟧) → ⟦ ≼-trans Γ′ Γ″ ⟧ ρ ≡ ⟦ Γ′ ⟧ (⟦ Γ″ ⟧ ρ) ⟦⟧-≼-trans Γ′ ∅ ∅ = refl ⟦⟧-≼-trans (keep τ • Γ′) (keep .τ • Γ″) (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-trans Γ′ Γ″ ρ) ⟦⟧-≼-trans (drop τ • Γ′) (keep .τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-trans Γ′ (drop τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-refl : ∀ {Γ : Context} → ∀ (ρ : ⟦ Γ ⟧) → ⟦ ≼-refl ⟧ ρ ≡ ρ ⟦⟧-≼-refl {∅} ∅ = refl ⟦⟧-≼-refl {τ • Γ} (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-refl ρ) -- SOUNDNESS of variable lifting lift-sound : ∀ {Γ₁ Γ₂ τ} (Γ′ : Γ₁ ≼ Γ₂) (x : Var Γ₁ τ) → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ lift Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (⟦ Γ′ ⟧ ρ) lift-sound ∅ () ρ lift-sound (keep τ • Γ′) this (v • ρ) = refl lift-sound (keep τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ x ρ lift-sound (drop τ • Γ′) this (v • ρ) = lift-sound Γ′ this ρ lift-sound (drop τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ (that x) ρ
module Denotational.Environments (Type : Set) {ℓ} (⟦_⟧Type : Type → Set ℓ) where -- ENVIRONMENTS -- -- This module defines the meaning of contexts, that is, -- the type of environments that fit a context, together -- with operations and properties of these operations. -- -- This module is parametric in the syntax and semantics -- of types, so it can be reused for different calculi -- and models. open import Relation.Binary.PropositionalEquality open import Syntactic.Contexts Type open import Denotational.Notation private meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- TYPING CONTEXTS -- Denotational Semantics : Contexts Represent Environments data Empty : Set ℓ where ∅ : Empty data Bind A B : Set ℓ where _•_ : (v : A) (ρ : B) → Bind A B ⟦_⟧Context : Context → Set ℓ ⟦ ∅ ⟧Context = Empty ⟦ τ • Γ ⟧Context = Bind ⟦ τ ⟧ ⟦ Γ ⟧Context meaningOfContext : Meaning Context meaningOfContext = meaning ⟦_⟧Context -- VARIABLES -- Denotational Semantics ⟦_⟧Var : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ this ⟧Var (v • ρ) = v ⟦ that x ⟧Var (v • ρ) = ⟦ x ⟧Var ρ meaningOfVar : ∀ {Γ τ} → Meaning (Var Γ τ) meaningOfVar = meaning ⟦_⟧Var -- WEAKENING -- Remove a variable from an environment ⟦_⟧≼ : ∀ {Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) → ⟦ Γ₂ ⟧ → ⟦ Γ₁ ⟧ ⟦ ∅ ⟧≼ ∅ = ∅ ⟦ keep τ • Γ′ ⟧≼ (v • ρ) = v • ⟦ Γ′ ⟧≼ ρ ⟦ drop τ • Γ′ ⟧≼ (v • ρ) = ⟦ Γ′ ⟧≼ ρ meaningOf≼ : ∀ {Γ₁ Γ₂} → Meaning (Γ₁ ≼ Γ₂) meaningOf≼ = meaning ⟦_⟧≼ -- Properties ⟦⟧-≼-trans : ∀ {Γ₃ Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) (Γ″ : Γ₂ ≼ Γ₃) → ∀ (ρ : ⟦ Γ₃ ⟧) → ⟦ ≼-trans Γ′ Γ″ ⟧ ρ ≡ ⟦ Γ′ ⟧ (⟦ Γ″ ⟧ ρ) ⟦⟧-≼-trans Γ′ ∅ ∅ = refl ⟦⟧-≼-trans (keep τ • Γ′) (keep .τ • Γ″) (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-trans Γ′ Γ″ ρ) ⟦⟧-≼-trans (drop τ • Γ′) (keep .τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-trans Γ′ (drop τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-refl : ∀ {Γ : Context} → ∀ (ρ : ⟦ Γ ⟧) → ⟦ ≼-refl ⟧ ρ ≡ ρ ⟦⟧-≼-refl {∅} ∅ = refl ⟦⟧-≼-refl {τ • Γ} (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-refl ρ) -- SOUNDNESS of variable lifting lift-sound : ∀ {Γ₁ Γ₂ τ} (Γ′ : Γ₁ ≼ Γ₂) (x : Var Γ₁ τ) → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ lift Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (⟦ Γ′ ⟧ ρ) lift-sound ∅ () ρ lift-sound (keep τ • Γ′) this (v • ρ) = refl lift-sound (keep τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ x ρ lift-sound (drop τ • Γ′) this (v • ρ) = lift-sound Γ′ this ρ lift-sound (drop τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ (that x) ρ
Generalize environments to values in higher universes.
Generalize environments to values in higher universes. Old-commit-hash: 4ff4102742306da9be77151d785aa608f8558977
Agda
mit
inc-lc/ilc-agda
0ab0b0012d2db6e26ec2716c2d95f3743111df4d
Parametric/Syntax/MType.agda
Parametric/Syntax/MType.agda
import Parametric.Syntax.Type as Type module Parametric.Syntax.MType where module Structure (Base : Type.Structure) where open Type.Structure Base mutual -- Derived from CBPV data ValType : Set where U : (c : CompType) → ValType B : (ι : Base) → ValType vUnit : ValType _v×_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType _v+_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType data CompType : Set where F : ValType → CompType _⇛_ : ValType → CompType → CompType -- We did not use this in CBPV, so dropped. -- _Π_ : CompType → CompType → CompType cbnToCompType : Type → CompType cbnToCompType (base ι) = F (B ι) cbnToCompType (σ ⇒ τ) = U (cbnToCompType σ) ⇛ cbnToCompType τ cbvToValType : Type → ValType cbvToValType (base ι) = B ι cbvToValType (σ ⇒ τ) = U (cbvToValType σ ⇛ F (cbvToValType τ)) open import Base.Syntax.Context ValType public using () renaming ( ∅ to ∅∅ ; _•_ to _••_ ; mapContext to mapValCtx ; Var to ValVar ; Context to ValContext ; this to vThis; that to vThat) cbnToValType : Type → ValType cbnToValType τ = U (cbnToCompType τ) cbvToCompType : Type → CompType cbvToCompType τ = F (cbvToValType τ) fromCBNCtx : Context → ValContext fromCBNCtx Γ = mapValCtx cbnToValType Γ fromCBVCtx : Context → ValContext fromCBVCtx Γ = mapValCtx cbvToValType Γ open import Data.List open Data.List using (List) public fromCBVToCompList : Context → List CompType fromCBVToCompList Γ = mapValCtx cbvToCompType Γ fromVar : ∀ {Γ τ} → (f : Type → ValType) → Var Γ τ → ValVar (mapValCtx f Γ) (f τ) fromVar {x • Γ} f this = vThis fromVar {x • Γ} f (that v) = vThat (fromVar f v)
import Parametric.Syntax.Type as Type module Parametric.Syntax.MType where module Structure (Base : Type.Structure) where open Type.Structure Base mutual -- Derived from CBPV data ValType : Set where U : (c : CompType) → ValType B : (ι : Base) → ValType vUnit : ValType _v×_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType _v+_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType -- Same associativity as the standard _×_ infixr 2 _v×_ data CompType : Set where F : ValType → CompType _⇛_ : ValType → CompType → CompType -- We did not use this in CBPV, so dropped. -- _Π_ : CompType → CompType → CompType cbnToCompType : Type → CompType cbnToCompType (base ι) = F (B ι) cbnToCompType (σ ⇒ τ) = U (cbnToCompType σ) ⇛ cbnToCompType τ cbvToValType : Type → ValType cbvToValType (base ι) = B ι cbvToValType (σ ⇒ τ) = U (cbvToValType σ ⇛ F (cbvToValType τ)) open import Base.Syntax.Context ValType public using () renaming ( ∅ to ∅∅ ; _•_ to _••_ ; mapContext to mapValCtx ; Var to ValVar ; Context to ValContext ; this to vThis; that to vThat) cbnToValType : Type → ValType cbnToValType τ = U (cbnToCompType τ) cbvToCompType : Type → CompType cbvToCompType τ = F (cbvToValType τ) fromCBNCtx : Context → ValContext fromCBNCtx Γ = mapValCtx cbnToValType Γ fromCBVCtx : Context → ValContext fromCBVCtx Γ = mapValCtx cbvToValType Γ open import Data.List open Data.List using (List) public fromCBVToCompList : Context → List CompType fromCBVToCompList Γ = mapValCtx cbvToCompType Γ fromVar : ∀ {Γ τ} → (f : Type → ValType) → Var Γ τ → ValVar (mapValCtx f Γ) (f τ) fromVar {x • Γ} f this = vThis fromVar {x • Γ} f (that v) = vThat (fromVar f v)
Fix arity of _v×_
MType: Fix arity of _v×_
Agda
mit
inc-lc/ilc-agda
dd73b5a36235448b400cd9d02d7983b1155617bc
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
Reorder definitions of Term and Terms.
Reorder definitions of Term and Terms. The order of definitions should follow the order of declaration, and this code seems easier to understand when one looks at Term first. Old-commit-hash: 517547b8eebe1b8803d9f30fa3945f02685b6cc5
Agda
mit
inc-lc/ilc-agda
8d03eb08a3d8dc237fc96cbdf430c73571ead581
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ {{ca}} x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil {{ca}} x) ≡⟨ update-nil {{ca}} x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ {{ca}} x) → x ⊞ dx ≡ x → _≙_ {{ca}} dx (nil {{ca}} x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil {{ca}} x) ⟩ x ⊞ nil {{ca}} x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff {{ca}} x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ {{ca}} x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : _⊞_ {{ca}} x (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff {{ca}} (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization; DerivativeAsChange) open FC.FunctionChange equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → _≙_ {{changeAlgebra}} df₁ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx : Δ x} {f : A → B} {df₁ df₂ : Δ f} → _≙_ {{changeAlgebra}} df₁ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx₁ dx₂ → _≙_ {{CA}} dx₁ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil {{CA}} x)) ≡⟨ ext (λ x → cong f (update-nil {{CA}} x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil {{CA}} v) ≙ nil {{CB}} (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil {{CB}} (f v) lemma = begin f v ⊞ df v (nil {{CA}} v) ≡⟨ proof v (nil {{CA}} v) ⟩ f (v ⊞ (nil {{CA}} v)) ≡⟨ cong f (update-nil {{CA}} v) ⟩ f v ≡⟨ sym (update-nil {{CB}} (f v)) ⟩ f v ⊞ nil {{CB}} (f v) ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ {{ca}} x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil {{ca}} x) ≡⟨ update-nil {{ca}} x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ {{ca}} x) → x ⊞ dx ≡ x → _≙_ {{ca}} dx (nil {{ca}} x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil {{ca}} x) ⟩ x ⊞ nil {{ca}} x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff {{ca}} x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ {{ca}} x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : _⊞_ {{ca}} x (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff {{ca}} (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization; DerivativeAsChange) open FC.FunctionChange equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → _≙_ {{changeAlgebra}} df₁ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx : Δ x} {f : A → B} {df₁ df₂ : Δ f} → _≙_ {{changeAlgebra}} df₁ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) derivative-doe-characterization : ∀ {a : A} {da : Δ a} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CB}} (df a da) (f (a ⊞ da) ⊟ f a) derivative-doe-characterization {a} {da} {f} {df} is-derivative = doe lemma where open ≡-Reasoning lemma : f a ⊞ df a da ≡ f a ⊞ (f (a ⊞ da) ⊟ f a) lemma = begin (f a ⊞ df a da) ≡⟨ is-derivative a da ⟩ (f (a ⊞ da)) ≡⟨ sym (update-diff (f (a ⊞ da)) (f a)) ⟩ (f a ⊞ (f (a ⊞ da) ⊟ f a)) ∎ derivative-respects-doe : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CA}} dx₁ dx₂ → _≙_ {{CB}} (df x dx₁) (df x dx₂) derivative-respects-doe {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = begin df x dx₁ ≙⟨ derivative-doe-characterization is-derivative ⟩ f (x ⊞ dx₁) ⊟ f x ≡⟨ cong (λ v → f v ⊟ f x) (proof dx₁≙dx₂) ⟩ f (x ⊞ dx₂) ⊟ f x ≙⟨ ≙-sym (derivative-doe-characterization is-derivative) ⟩ df x dx₂ ∎ where open ≙-Reasoning -- This is also a corollary of fun-changes-respect derivative-respects-doe-alt : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CA}} dx₁ dx₂ → _≙_ {{CB}} (df x dx₁) (df x dx₂) derivative-respects-doe-alt {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = fun-change-respects (DerivativeAsChange is-derivative) dx₁≙dx₂ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx₁ dx₂ → _≙_ {{CA}} dx₁ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil {{CA}} x)) ≡⟨ ext (λ x → cong f (update-nil {{CA}} x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil {{CA}} v) ≙ nil {{CB}} (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil {{CB}} (f v) lemma = begin f v ⊞ df v (nil {{CA}} v) ≡⟨ proof v (nil {{CA}} v) ⟩ f (v ⊞ (nil {{CA}} v)) ≡⟨ cong f (update-nil {{CA}} v) ⟩ f v ≡⟨ sym (update-nil {{CB}} (f v)) ⟩ f v ⊞ nil {{CB}} (f v) ∎
Add new lemmas on change equivalence
Add new lemmas on change equivalence
Agda
mit
inc-lc/ilc-agda
ca0490d3e647551767333fe1b8af760d98b01dfa
Syntax/Term/Popl14.agda
Syntax/Term/Popl14.agda
module Syntax.Term.Popl14 where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer data Term (Γ : Context) : Type -> Set where int : (n : ℤ) → Term Γ int add : (s : Term Γ int) (t : Term Γ int) → Term Γ int minus : (t : Term Γ int) → Term Γ int empty : Term Γ bag insert : (s : Term Γ int) (t : Term Γ bag) → Term Γ bag union : (s : Term Γ bag) → (t : Term Γ bag) → Term Γ bag negate : (t : Term Γ bag) → Term Γ bag flatmap : (s : Term Γ (int ⇒ bag)) (t : Term Γ bag) → Term Γ bag sum : (t : Term Γ bag) → Term Γ int var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} → (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} → (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (int x) = int x weaken Γ₁≼Γ₂ (add s t) = add (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (minus t) = minus (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ empty = empty weaken Γ₁≼Γ₂ (insert s t) = insert (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (union s t) = union (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (negate t) = negate (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (flatmap s t) = flatmap (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (sum t) = sum (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (var x) = var (weakenVar Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {τ} t) = abs (weaken (keep τ • Γ₁≼Γ₂) t) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) apply-term {int} = let Δx = var (that this) x = var this in abs (abs (add x Δx)) apply-term {bag} = let Δx = var (that this) x = var this in abs (abs (union x Δx)) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app (app apply-term (app (app Δf x) (app (app diff-term x) x))) (app f x)))) diff-term {int} = let x = var (that this) y = var this in abs (abs (add x (minus y))) diff-term {bag} = let x = var (that this) y = var this in abs (abs (union x (negate y))) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app (app diff-term (app g (app (app apply-term Δx) x))) (app f x))))) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t
module Syntax.Term.Popl14 where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer data Term (Γ : Context) : Type -> Set where int : (n : ℤ) → Term Γ int add : (s : Term Γ int) (t : Term Γ int) → Term Γ int minus : (t : Term Γ int) → Term Γ int empty : Term Γ bag insert : (s : Term Γ int) (t : Term Γ bag) → Term Γ bag union : (s : Term Γ bag) → (t : Term Γ bag) → Term Γ bag negate : (t : Term Γ bag) → Term Γ bag flatmap : (s : Term Γ (int ⇒ bag)) (t : Term Γ bag) → Term Γ bag sum : (t : Term Γ bag) → Term Γ int var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} → (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} → (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (int x) = int x weaken Γ₁≼Γ₂ (add s t) = add (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (minus t) = minus (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ empty = empty weaken Γ₁≼Γ₂ (insert s t) = insert (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (union s t) = union (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (negate t) = negate (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (flatmap s t) = flatmap (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (sum t) = sum (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (var x) = var (weakenVar Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {τ} t) = abs (weaken (keep τ • Γ₁≼Γ₂) t) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-term {int} = let Δx = var (that this) x = var this in abs (abs (add x Δx)) apply-term {bag} = let Δx = var (that this) x = var this in abs (abs (union x Δx)) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-term {int} = let x = var (that this) y = var this in abs (abs (add x (minus y))) diff-term {bag} = let x = var (that this) y = var this in abs (abs (union x (negate y))) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
use ⊕ and ⊝ also when defining diff-term and apply-term
agda: use ⊕ and ⊝ also when defining diff-term and apply-term Goal: make diff-term and apply-term themselves more readable. Old-commit-hash: fc206b02d6057172e7f49c02eb521abaaafcb1e8
Agda
mit
inc-lc/ilc-agda