commit
stringlengths 40
40
| old_file
stringlengths 2
205
| new_file
stringlengths 2
205
| old_contents
stringlengths 0
32.9k
| new_contents
stringlengths 1
38.9k
| subject
stringlengths 3
9.4k
| message
stringlengths 6
9.84k
| lang
stringlengths 3
13
| license
stringclasses 13
values | repos
stringlengths 6
115k
|
---|---|---|---|---|---|---|---|---|---|
a737167afb8fb406b75d8e0d52fdfb3fa6c50035
|
Parametric/Change/Specification.agda
|
Parametric/Change/Specification.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ ⟦ c ⟧Const
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
g = ⟦ s ⟧ (after-env dρ)
u = ⟦ t ⟧ ρ
v = ⟦ t ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f u ⊞₍ τ ₎ call-change {σ} {τ} Δf u Δu
≡⟨ sym (is-valid {σ} {τ} Δf u Δu) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ ⟦ c ⟧Const
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
Rename locals in proof for clarity
|
Rename locals in proof for clarity
Was re-reading this proof for the thesis.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
a06adfefda06e416bc4f111d7085cd3b5ad42568
|
Parametric/Change/Evaluation.agda
|
Parametric/Change/Evaluation.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
module Parametric.Change.Evaluation
{Base : Type.Structure}
{Const : Term.Structure Base}
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open import Relation.Binary.PropositionalEquality
open import Base.Denotation.Notation
open import Postulate.Extensionality
-- Relating `diff` with `diff-term`, `apply` with `apply-term`
ApplyStructure : Set
ApplyStructure = ∀ ι {Γ} →
{t : Term Γ (base ι)} {Δt : Term Γ (ΔType (base ι))} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ base ι ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ base ι ₎ Δt ⟧ ρ
DiffStructure : Set
DiffStructure = ∀ ι {Γ} →
{s : Term Γ (base ι)} {t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ base ι ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ base ι ₎ t ⟧ ρ
module Structure
(meaning-⊕-base : ApplyStructure)
(meaning-⊝-base : DiffStructure)
where
-- unique names with unambiguous types
-- to help type inference figure things out
private
module Disambiguation where
infixr 9 _⋆_
_⋆_ : Type → Context → Context
_⋆_ = _•_
meaning-⊕ : ∀ {τ Γ}
{t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ τ ₎ Δt ⟧ ρ
meaning-⊝ : ∀ {τ Γ}
{s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ τ ₎ t ⟧ ρ
meaning-⊕ {base ι} {Γ} {τ} {Δt} {ρ} = meaning-⊕-base ι {Γ} {τ} {Δt} {ρ}
meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v →
let
Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧
ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ
x : Term Γ′ σ
x = var this
f : Term Γ′ (σ ⇒ τ)
f = var (that this)
Δf : Term Γ′ (ΔType (σ ⇒ τ))
Δf = var (that (that this))
y = app f x
Δy = app (app Δf x) (x ⊝ x)
in
begin
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (v ⟦⊝₍ σ ₎⟧ v)
≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole)
(meaning-⊝ {s = x} {x} {ρ′}) ⟩
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′)
≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩
⟦ y ⊕₍ τ ₎ Δy ⟧ ρ′
∎)
where
open ≡-Reasoning
open Disambiguation
meaning-⊝ {base ι} {Γ} {s} {t} {ρ} = meaning-⊝-base ι {Γ} {s} {t} {ρ}
meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} =
ext (λ v → ext (λ Δv →
let
Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧Context
ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ
Δx : Term Γ′ (ΔType σ)
Δx = var this
x : Term Γ′ σ
x = var (that this)
f : Term Γ′ (σ ⇒ τ)
f = var (that (that this))
g : Term Γ′ (σ ⇒ τ)
g = var (that (that (that this)))
y = app f x
y′ = app g (x ⊕₍ σ ₎ Δx)
in
begin
⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v)
(meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩
⟦ s ⟧ ρ (⟦ x ⊕₍ σ ₎ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩
⟦ y′ ⊝ y ⟧ ρ′
∎))
where
open ≡-Reasoning
open Disambiguation
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Connecting Parametric.Change.Term and Parametric.Change.Value.
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
module Parametric.Change.Evaluation
{Base : Type.Structure}
{Const : Term.Structure Base}
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open import Relation.Binary.PropositionalEquality
open import Base.Denotation.Notation
open import Postulate.Extensionality
-- Extension point 1: Relating ⊝ and its value on base types
ApplyStructure : Set
ApplyStructure = ∀ ι {Γ} →
{t : Term Γ (base ι)} {Δt : Term Γ (ΔType (base ι))} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ base ι ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ base ι ₎ Δt ⟧ ρ
-- Extension point 2: Relating ⊕ and its value on base types
DiffStructure : Set
DiffStructure = ∀ ι {Γ} →
{s : Term Γ (base ι)} {t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ base ι ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ base ι ₎ t ⟧ ρ
module Structure
(meaning-⊕-base : ApplyStructure)
(meaning-⊝-base : DiffStructure)
where
-- unique names with unambiguous types
-- to help type inference figure things out
private
module Disambiguation where
infixr 9 _⋆_
_⋆_ : Type → Context → Context
_⋆_ = _•_
-- We provide: Relating ⊕ and ⊝ and their values on arbitrary types.
meaning-⊕ : ∀ {τ Γ}
{t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ τ ₎ Δt ⟧ ρ
meaning-⊝ : ∀ {τ Γ}
{s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} →
⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ τ ₎ t ⟧ ρ
meaning-⊕ {base ι} {Γ} {τ} {Δt} {ρ} = meaning-⊕-base ι {Γ} {τ} {Δt} {ρ}
meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v →
let
Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧
ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ
x : Term Γ′ σ
x = var this
f : Term Γ′ (σ ⇒ τ)
f = var (that this)
Δf : Term Γ′ (ΔType (σ ⇒ τ))
Δf = var (that (that this))
y = app f x
Δy = app (app Δf x) (x ⊝ x)
in
begin
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (v ⟦⊝₍ σ ₎⟧ v)
≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole)
(meaning-⊝ {s = x} {x} {ρ′}) ⟩
⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′)
≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩
⟦ y ⊕₍ τ ₎ Δy ⟧ ρ′
∎)
where
open ≡-Reasoning
open Disambiguation
meaning-⊝ {base ι} {Γ} {s} {t} {ρ} = meaning-⊝-base ι {Γ} {s} {t} {ρ}
meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} =
ext (λ v → ext (λ Δv →
let
Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ
ρ′ : ⟦ Γ′ ⟧Context
ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ
Δx : Term Γ′ (ΔType σ)
Δx = var this
x : Term Γ′ σ
x = var (that this)
f : Term Γ′ (σ ⇒ τ)
f = var (that (that this))
g : Term Γ′ (σ ⇒ τ)
g = var (that (that (that this)))
y = app f x
y′ = app g (x ⊕₍ σ ₎ Δx)
in
begin
⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v)
(meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩
⟦ s ⟧ ρ (⟦ x ⊕₍ σ ₎ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v
≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩
⟦ y′ ⊝ y ⟧ ρ′
∎))
where
open ≡-Reasoning
open Disambiguation
|
Document P.C.Evaluation.
|
Document P.C.Evaluation.
Old-commit-hash: d56cb423e28dc729478353d4e2d2c4fb422d2f8f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
61de78a178ea4a23092e726b277f92787528c970
|
Denotation/Specification/Canon-Popl14.agda
|
Denotation/Specification/Canon-Popl14.agda
|
module Denotation.Specification.Canon-Popl14 where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ
-- better name is: ⟦_⟧Δ reacts to future arguments
validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) →
valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
-- better name is: ⟦_⟧Δ reacts to free variables
correctness : ∀ {τ Γ} {t : Term Γ τ} {dρ : ΔEnv Γ}
→ ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ
⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv
⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (intlit n) dρ = + 0
⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ
⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ
⟦_⟧Δ empty dρ = emptyBag
⟦_⟧Δ (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ
⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (app {σ} {τ} s t) dρ =
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
(validity {σ} t dρ))
⟦_⟧Δ (abs t) dρ = λ v →
⟦ t ⟧Δ (v • dρ)
validVar : ∀ {τ Γ} (x : Var Γ τ) →
(dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ)
validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv]
validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ
validity (intlit n) dρ = tt
validity (add s t) dρ = tt
validity (minus t) dρ = tt
validity (empty) dρ = tt
validity (insert s t) dρ = tt
validity (union s t) dρ = tt
validity (negate t) dρ = tt
validity (flatmap s t) dρ = tt
validity (sum t) dρ = tt
validity {τ} (var x) dρ = validVar {τ} x dρ
validity (app s t) dρ =
let
v = ⟦ t ⟧ (ignore dρ)
Δv = ⟦ t ⟧Δ dρ
in
proj₁ (validity s dρ (cons v Δv (validity t dρ)))
validity {σ ⇒ τ} (abs t) dρ = λ v →
let
v′ = after {σ} v
Δv′ = v′ ⊟₍ σ ₎ v′
dρ₁ = v • dρ
dρ₂ = nil-valid-change σ v′ • dρ
in
validity t dρ₁
,
(begin
⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂
≡⟨ correctness {t = t} {dρ₂} ⟩
⟦ t ⟧ (update dρ₂)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (update dρ₁)
≡⟨ sym (correctness {t = t} {dρ₁}) ⟩
⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} →
⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ)
correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl
correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ}
correctness {t = intlit n} = right-id-int n
correctness {t = add s t} {dρ} = trans
(mn·pq=mp·nq
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _+_ (correctness {t = s}) (correctness {t = t}))
correctness {t = minus t} {dρ} = trans
(-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong -_ (correctness {t = t}))
correctness {t = empty} = right-id-bag emptyBag
correctness {t = insert s t} {dρ} =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness {t = s}))
(correctness {t = t}) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness {t = union s t} {dρ} = trans
(ab·cd=ac·bd
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _++_ (correctness {t = s}) (correctness {t = t}))
correctness {t = negate t} {dρ} = trans
(-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong negateBag (correctness {t = t}))
correctness {t = flatmap s t} {dρ} =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness {t = s}) (correctness {t = t}))
correctness {t = sum t} {dρ} =
let
b = ⟦ t ⟧ (ignore dρ)
Δb = ⟦ t ⟧Δ dρ
in
trans (sym homo-sum) (cong sumBag (correctness {t = t}))
correctness {τ} {t = var x} = correctVar {τ} {x = x}
correctness {t = app {σ} {τ} s t} {dρ} =
let
f = ⟦ s ⟧ (ignore dρ)
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ (ignore dρ)
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ dρ
Δu = ⟦ t ⟧Δ dρ
in
begin
f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ))
≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} {t = s} ⟨$⟩ correctness {σ} {t = t} ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} {abs t} {dρ} = ext (λ v →
let
dρ′ : ΔEnv (σ • Γ)
dρ′ = nil-valid-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′
≡⟨ correctness {τ} {t = t} {dρ′} ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} →
(⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ)
(⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ)
≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ))
⊞₍ τ ₎
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))
corollary {σ} {τ} s t {dρ} = proj₂
(validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ))
(⟦ t ⟧Δ dρ) (validity {σ} t dρ)))
corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)}
(v : ValidChange σ)
→ ⟦ t ⟧ ∅ (after {σ} v)
≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v
corollary-closed {σ} {τ} {t = t} v =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅
in
begin
f (after {σ} v)
≡⟨ cong (λ hole → hole (after {σ} v))
(sym (correctness {σ ⇒ τ} {t = t})) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v)
≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩
f (before {σ} v) ⊞₍ τ ₎ Δf v
∎ where open ≡-Reasoning
|
module Denotation.Specification.Canon-Popl14 where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ
-- better name is: ⟦_⟧Δ reacts to future arguments
validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) →
valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
-- better name is: ⟦_⟧Δ reacts to free variables
correctness : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ)
→ ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ
⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv
⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (intlit n) dρ = + 0
⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ
⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ
⟦_⟧Δ empty dρ = emptyBag
⟦_⟧Δ (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ
⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (app {σ} {τ} s t) dρ =
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
(validity {σ} t dρ))
⟦_⟧Δ (abs t) dρ = λ v →
⟦ t ⟧Δ (v • dρ)
validVar : ∀ {τ Γ} (x : Var Γ τ) →
(dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ)
validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv]
validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ
validity (intlit n) dρ = tt
validity (add s t) dρ = tt
validity (minus t) dρ = tt
validity (empty) dρ = tt
validity (insert s t) dρ = tt
validity (union s t) dρ = tt
validity (negate t) dρ = tt
validity (flatmap s t) dρ = tt
validity (sum t) dρ = tt
validity {τ} (var x) dρ = validVar {τ} x dρ
validity (app s t) dρ =
let
v = ⟦ t ⟧ (ignore dρ)
Δv = ⟦ t ⟧Δ dρ
in
proj₁ (validity s dρ (cons v Δv (validity t dρ)))
validity {σ ⇒ τ} (abs t) dρ = λ v →
let
v′ = after {σ} v
Δv′ = v′ ⊟₍ σ ₎ v′
dρ₁ = v • dρ
dρ₂ = nil-valid-change σ v′ • dρ
in
validity t dρ₁
,
(begin
⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂
≡⟨ correctness t dρ₂ ⟩
⟦ t ⟧ (update dρ₂)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (update dρ₁)
≡⟨ sym (correctness t dρ₁) ⟩
⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} →
⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ)
correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl
correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ}
correctness (intlit n) dρ = right-id-int n
correctness (add s t) dρ = trans
(mn·pq=mp·nq
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _+_ (correctness s dρ) (correctness t dρ))
correctness (minus t) dρ = trans
(-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong -_ (correctness t dρ))
correctness empty dρ = right-id-bag emptyBag
correctness (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness s dρ))
(correctness t dρ) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness (union s t) dρ = trans
(ab·cd=ac·bd
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _++_ (correctness s dρ) (correctness t dρ))
correctness (negate t) dρ = trans
(-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong negateBag (correctness t dρ))
correctness (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness s dρ) (correctness t dρ))
correctness (sum t) dρ =
let
b = ⟦ t ⟧ (ignore dρ)
Δb = ⟦ t ⟧Δ dρ
in
trans (sym homo-sum) (cong sumBag (correctness t dρ))
correctness {τ} (var x) dρ = correctVar {τ} {x = x}
correctness (app {σ} {τ} s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ (ignore dρ)
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ dρ
Δu = ⟦ t ⟧Δ dρ
in
begin
f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ))
≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s dρ ⟨$⟩ correctness {σ} t dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) dρ = ext (λ v →
let
dρ′ : ΔEnv (σ • Γ)
dρ′ = nil-valid-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′
≡⟨ correctness {τ} t dρ′ ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} →
(⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ)
(⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ)
≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ))
⊞₍ τ ₎
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))
corollary {σ} {τ} s t {dρ} = proj₂
(validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ))
(⟦ t ⟧Δ dρ) (validity {σ} t dρ)))
corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)}
(v : ValidChange σ)
→ ⟦ t ⟧ ∅ (after {σ} v)
≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v
corollary-closed {σ} {τ} {t = t} v =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅
in
begin
f (after {σ} v)
≡⟨ cong (λ hole → hole (after {σ} v))
(sym (correctness {σ ⇒ τ} t ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v)
≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩
f (before {σ} v) ⊞₍ τ ₎ Δf v
∎ where open ≡-Reasoning
|
Make some arguments of correctness explicit.
|
Make some arguments of correctness explicit.
Old-commit-hash: b8f4ff3d6b2f0ea72c79a94c10ae3ec1b545c2ca
|
Agda
|
mit
|
inc-lc/ilc-agda
|
80463c85413df224feab7c464101dbfd5ff7ec77
|
Syntax/Language/Atlas.agda
|
Syntax/Language/Atlas.agda
|
module Syntax.Language.Atlas where
-- Base types of the calculus Atlas
-- to be used with Plotkin-style language description
--
-- Atlas supports maps with neutral elements. The change type to
-- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the
-- ground type ι. Such a change to maps can support insertions
-- and deletions as well: Inserting `k -> v` means mapping `k` to
-- the change from the neutral element to `v`, and deleting
-- `k -> v` means mapping `k` to the change from `v` to the
-- neutral element.
open import Syntax.Language.Calculus
data Atlas-type : Set where
Bool : Atlas-type
Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type
data Atlas-const : Set where
true : Atlas-const
false : Atlas-const
xor : Atlas-const
empty : ∀ {κ ι : Atlas-type} → Atlas-const
update : ∀ {κ ι : Atlas-type} → Atlas-const
zip : ∀ {κ a b c : Atlas-type} → Atlas-const
Atlas-lookup : Atlas-const → Type Atlas-type
Atlas-lookup true = base Bool
Atlas-lookup false = base Bool
Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool
Atlas-lookup (empty {κ} {ι}) = base (Map κ ι)
-- `update key val my-map` would
-- - insert if `key` is not present in `my-map`
-- - delete if `val` is the neutral element
-- - make an update otherwise
Atlas-lookup (update {κ} {ι}) =
base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι)
-- Model of zip = Haskell Data.List.zipWith
-- zipWith :: (a → b → c) → [a] → [b] → [c]
Atlas-lookup (zip {κ} {a} {b} {c}) =
(base κ ⇒ base a ⇒ base b ⇒ base c) ⇒
base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c)
Atlas-Δbase : Atlas-type → Atlas-type
-- change to a boolean is a xor-rand
Atlas-Δbase Bool = Bool
-- change to a map is change to its values
Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val))
Atlas-Δtype : Type Atlas-type → Type Atlas-type
Atlas-Δtype = lift-Δtype₀ Atlas-Δbase
Atlas-context : Set
Atlas-context = Context {Type Atlas-type}
Atlas-term : Atlas-context → Type Atlas-type → Set
Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup}
-- Every base type has a known nil-change.
-- The nil-change of ι is also the neutral element of Map κ Δι.
neutral : ∀ {ι : Atlas-type} → Atlas-const
neutral {Bool} = false
neutral {Map κ ι} = empty {κ} {ι}
neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι)
neutral-term {Bool} = const (neutral {Bool})
neutral-term {Map κ ι} = const (neutral {Map κ ι})
nil-const : ∀ {ι : Atlas-type} → Atlas-const
nil-const {ι} = neutral {Atlas-Δbase ι}
nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι))
nil-term {Bool} = const (nil-const {Bool})
nil-term {Map κ ι} = const (nil-const {Map κ ι})
-- Shorthands of constants
--
-- There's probably a uniform way to lift constants
-- into term constructors.
--
-- TODO: write this and call it Syntax.Term.Plotkin.lift-term
zip! : ∀ {κ a b c Γ} →
Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) →
Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) →
Atlas-term Γ (base (Map κ c))
zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂
lookup! : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) →
Atlas-term Γ (base ι)
lookup! = {!!} -- TODO: add constant `lookup`
-- diff-term and apply-term
-- b₀ ⊝ b₁ = b₀ xor b₁
-- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁
Atlas-diff : ∀ {ι Γ} →
Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι))
Atlas-diff {Bool} = const xor
Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff)
-- b ⊕ Δb = b xor Δb
-- m ⊕ Δm = zip _⊕_ m Δm
Atlas-apply : ∀ {ι Γ} →
Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι)
Atlas-apply {Bool} = const xor
Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply)
-- Shorthands for working with diff-term and apply-term
diff : ∀ {τ Γ} →
Atlas-term Γ τ → Atlas-term Γ τ →
Atlas-term Γ (Atlas-Δtype τ)
diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t
apply : ∀ {τ Γ} →
Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ →
Atlas-term Γ τ
apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t
-- Shorthands for creating changes corresponding to
-- insertion/deletion.
update! : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
Atlas-term Γ (base (Map κ ι)) →
Atlas-term Γ (base (Map κ ι))
update! k v m = app (app (app (const update) k) v) m
insert : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
-- last argument is the change accumulator
Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι)))
delete : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι)))
insert k v acc = update! k (diff v neutral-term) acc
delete k v acc = update! k (diff neutral-term v) acc
-- The binary operator such that
-- union t t ≡ t
-- To implement union, we need for each non-map base-type
-- an operator such that `op v v = v` on all values `v`.
-- for Booleans, conjunction is good enough.
--
-- TODO (later): support conjunction, probably by Boolean
-- elimination form if-then-else
postulate
and! : ∀ {Γ} →
Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) →
Atlas-term Γ (base Bool)
union : ∀ {ι Γ} →
Atlas-term Γ (base ι) → Atlas-term Γ (base ι) →
Atlas-term Γ (base ι)
union {Bool} s t = and! s t
union {Map κ ι} s t =
let
union-term = abs (abs (union (var (that this)) (var this)))
in
zip! (abs union-term) s t
-- Shorthand for 4-way zip
zip4! : ∀ {κ a b c d e Γ} →
let
t:_ = λ ι → Atlas-term Γ (base ι)
in
Atlas-term Γ
(base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) →
t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e
zip4! f m₁ m₂ m₃ m₄ =
let
v₁ = var (that this)
v₂ = var this
v₃ = var (that this)
v₄ = var this
k₁₂ = var (that (that this))
k₃₄ = var (that (that this))
f₁₂ = abs (abs (abs (app (app (app (app (app
(weaken₃ f) k₁₂) v₁) v₂)
(lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄)))))
f₃₄ = abs (abs (abs (app (app (app (app (app
(weaken₃ f) k₃₄)
(lookup! k₃₄ (weaken₃ m₁)))
(lookup! k₃₄ (weaken₃ m₂))) v₃) v₄)))
in
-- A correct but inefficient implementation.
-- May want to speed it up after constants are finalized.
union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄)
-- Type signature of Atlas-Δconst is boilerplate.
Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) →
Atlas-term Γ (Atlas-Δtype (Atlas-lookup c))
Atlas-Δconst true = const false
Atlas-Δconst false = const false
-- Δxor = λ x Δx y Δy → Δx xor Δy
Atlas-Δconst xor =
let
Δx = var (that (that this))
Δy = var this
in abs (abs (abs (abs (app (app (const xor) Δx) Δy))))
Atlas-Δconst empty = const empty
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
Atlas-Δconst update =
let
k = var (that (that (that (that (that this)))))
Δk = var (that (that (that (that this))))
v = var (that (that (that this)))
Δv = var (that (that this))
-- m = var (that this) -- unused parameter
Δm = var this
in
abs (abs (abs (abs (abs (abs
(insert (apply Δk k) (apply Δv v)
(delete k v Δm)))))))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
Atlas-Δconst zip =
let
Δf = var (that (that (that (that this))))
m₁ = var (that (that (that this)))
Δm₁ = var (that (that this))
m₂ = var (that this)
Δm₂ = var this
g = abs (app (app (weaken₁ Δf) (var this)) nil-term)
in
abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂))))))
Atlas = calculus-with
Atlas-type
Atlas-const
Atlas-lookup
Atlas-Δtype
Atlas-Δconst
|
module Syntax.Language.Atlas where
-- Base types of the calculus Atlas
-- to be used with Plotkin-style language description
--
-- Atlas supports maps with neutral elements. The change type to
-- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the
-- ground type ι. Such a change to maps can support insertions
-- and deletions as well: Inserting `k -> v` means mapping `k` to
-- the change from the neutral element to `v`, and deleting
-- `k -> v` means mapping `k` to the change from `v` to the
-- neutral element.
open import Syntax.Language.Calculus
data Atlas-type : Set where
Bool : Atlas-type
Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type
data Atlas-const : Set where
true : Atlas-const
false : Atlas-const
xor : Atlas-const
empty : ∀ {κ ι : Atlas-type} → Atlas-const
update : ∀ {κ ι : Atlas-type} → Atlas-const
zip : ∀ {κ a b c : Atlas-type} → Atlas-const
Atlas-lookup : Atlas-const → Type Atlas-type
Atlas-lookup true = base Bool
Atlas-lookup false = base Bool
Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool
Atlas-lookup (empty {κ} {ι}) = base (Map κ ι)
-- `update key val my-map` would
-- - insert if `key` is not present in `my-map`
-- - delete if `val` is the neutral element
-- - make an update otherwise
Atlas-lookup (update {κ} {ι}) =
base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι)
-- Model of zip = Haskell Data.List.zipWith
-- zipWith :: (a → b → c) → [a] → [b] → [c]
Atlas-lookup (zip {κ} {a} {b} {c}) =
(base κ ⇒ base a ⇒ base b ⇒ base c) ⇒
base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c)
Atlas-Δbase : Atlas-type → Atlas-type
-- change to a boolean is a xor-rand
Atlas-Δbase Bool = Bool
-- change to a map is change to its values
Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val))
Atlas-Δtype : Type Atlas-type → Type Atlas-type
Atlas-Δtype = lift-Δtype₀ Atlas-Δbase
Atlas-context : Set
Atlas-context = Context {Type Atlas-type}
Atlas-term : Atlas-context → Type Atlas-type → Set
Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup}
-- Every base type has a known nil-change.
-- The nil-change of ι is also the neutral element of Map κ Δι.
neutral : ∀ {ι : Atlas-type} → Atlas-const
neutral {Bool} = false
neutral {Map κ ι} = empty {κ} {ι}
neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι)
neutral-term {Bool} = const (neutral {Bool})
neutral-term {Map κ ι} = const (neutral {Map κ ι})
nil-const : ∀ {ι : Atlas-type} → Atlas-const
nil-const {ι} = neutral {Atlas-Δbase ι}
nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι))
nil-term {Bool} = const (nil-const {Bool})
nil-term {Map κ ι} = const (nil-const {Map κ ι})
-- Shorthands of constants
--
-- There's probably a uniform way to lift constants
-- into term constructors.
--
-- TODO: write this and call it Syntax.Term.Plotkin.lift-term
zip! : ∀ {κ a b c Γ} →
Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) →
Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) →
Atlas-term Γ (base (Map κ c))
zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂
lookup! : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) →
Atlas-term Γ (base ι)
lookup! = {!!} -- TODO: add constant `lookup`
-- diff-term and apply-term
-- b₀ ⊝ b₁ = b₀ xor b₁
-- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁
Atlas-diff : ∀ {ι Γ} →
Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι))
Atlas-diff {Bool} = const xor
Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff)
-- b ⊕ Δb = b xor Δb
-- m ⊕ Δm = zip _⊕_ m Δm
Atlas-apply : ∀ {ι Γ} →
Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι)
Atlas-apply {Bool} = const xor
Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply)
-- Shorthands for working with diff-term and apply-term
diff : ∀ {τ Γ} →
Atlas-term Γ τ → Atlas-term Γ τ →
Atlas-term Γ (Atlas-Δtype τ)
diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t
apply : ∀ {τ Γ} →
Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ →
Atlas-term Γ τ
apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t
-- Shorthands for creating changes corresponding to
-- insertion/deletion.
update! : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
Atlas-term Γ (base (Map κ ι)) →
Atlas-term Γ (base (Map κ ι))
update! k v m = app (app (app (const update) k) v) m
insert : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
-- last argument is the change accumulator
Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι)))
delete : ∀ {κ ι Γ} →
Atlas-term Γ (base κ) → Atlas-term Γ (base ι) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) →
Atlas-term Γ (Atlas-Δtype (base (Map κ ι)))
insert k v acc = update! k (diff v neutral-term) acc
delete k v acc = update! k (diff neutral-term v) acc
-- union s t should be:
-- 1. equal to t if s is neutral
-- 2. equal to s if t is neutral
-- 3. equal to s if s == t
-- 4. whatever it wants to be otherwise
--
-- On Booleans, only conjunction can be union.
--
-- TODO (later): support conjunction, probably by Boolean
-- elimination form if-then-else
postulate
and! : ∀ {Γ} →
Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) →
Atlas-term Γ (base Bool)
union : ∀ {ι Γ} →
Atlas-term Γ (base ι) → Atlas-term Γ (base ι) →
Atlas-term Γ (base ι)
union {Bool} s t = and! s t
union {Map κ ι} s t =
let
union-term = abs (abs (union (var (that this)) (var this)))
in
zip! (abs union-term) s t
-- Shorthand for 4-way zip
zip4! : ∀ {κ a b c d e Γ} →
let
t:_ = λ ι → Atlas-term Γ (base ι)
in
Atlas-term Γ
(base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) →
t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e
zip4! f m₁ m₂ m₃ m₄ =
let
v₁ = var (that this)
v₂ = var this
v₃ = var (that this)
v₄ = var this
k₁₂ = var (that (that this))
k₃₄ = var (that (that this))
f₁₂ = abs (abs (abs (app (app (app (app (app
(weaken₃ f) k₁₂) v₁) v₂)
(lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄)))))
f₃₄ = abs (abs (abs (app (app (app (app (app
(weaken₃ f) k₃₄)
(lookup! k₃₄ (weaken₃ m₁)))
(lookup! k₃₄ (weaken₃ m₂))) v₃) v₄)))
in
-- A correct but inefficient implementation.
-- May want to speed it up after constants are finalized.
union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄)
-- Type signature of Atlas-Δconst is boilerplate.
Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) →
Atlas-term Γ (Atlas-Δtype (Atlas-lookup c))
Atlas-Δconst true = const false
Atlas-Δconst false = const false
-- Δxor = λ x Δx y Δy → Δx xor Δy
Atlas-Δconst xor =
let
Δx = var (that (that this))
Δy = var this
in abs (abs (abs (abs (app (app (const xor) Δx) Δy))))
Atlas-Δconst empty = const empty
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
Atlas-Δconst update =
let
k = var (that (that (that (that (that this)))))
Δk = var (that (that (that (that this))))
v = var (that (that (that this)))
Δv = var (that (that this))
-- m = var (that this) -- unused parameter
Δm = var this
in
abs (abs (abs (abs (abs (abs
(insert (apply Δk k) (apply Δv v)
(delete k v Δm)))))))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
Atlas-Δconst zip =
let
Δf = var (that (that (that (that this))))
m₁ = var (that (that (that this)))
Δm₁ = var (that (that this))
m₂ = var (that this)
Δm₂ = var this
g = abs (app (app (weaken₁ Δf) (var this)) nil-term)
in
abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂))))))
Atlas = calculus-with
Atlas-type
Atlas-const
Atlas-lookup
Atlas-Δtype
Atlas-Δconst
|
improve specification of union
|
Atlas: improve specification of union
Old-commit-hash: cda40f70859c26a48a9077ad39b93d3b9a0af045
|
Agda
|
mit
|
inc-lc/ilc-agda
|
2c54443576bbae481639179d8b3bc48566274aad
|
Syntax/FreeVars/Popl14.agda
|
Syntax/FreeVars/Popl14.agda
|
module Syntax.FreeVars.Popl14 where
-- Free variables of Calculus Popl14
--
-- Contents
-- FV: get the free variables of a term
-- closed?: test if a term is closed, producing a witness if yes.
open import Popl14.Syntax.Type
open import Popl14.Change.Term
open import Base.Syntax.Vars Type public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV {Γ = Γ} (intlit n) = none
FV (add s t) = FV s ∪ FV t
FV (minus t) = FV t
FV {Γ = Γ} empty = none
FV (insert s t) = FV s ∪ FV t
FV (union s t) = FV s ∪ FV t
FV (negate t) = FV t
FV (flatmap s t) = FV s ∪ FV t
FV (sum t) = FV t
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
|
module Syntax.FreeVars.Popl14 where
-- Free variables of Calculus Popl14
--
-- Contents
-- FV: get the free variables of a term
-- closed?: test if a term is closed, producing a witness if yes.
open import Popl14.Syntax.Type
open import Popl14.Change.Term
open import Base.Syntax.Vars Type public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ
FV (const ι ts) = FV-terms ts
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
FV-terms ∅ = none
FV-terms (t • ts) = FV t ∪ FV-terms ts
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
|
Implement FV more parametrically.
|
Implement FV more parametrically.
Old-commit-hash: 470f2fd7a3e73bb1ac01fce483f8aa80e4ec51e3
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e71e428c1e63d766e7896b94aa406645ef65a52e
|
ModalLogic.agda
|
ModalLogic.agda
|
module ModalLogic where
-- Implement Frank Pfenning's lambda calculus based on modal logic S4, as
-- described in "A Modal Analysis of Staged Computation".
open import Denotational.Notation
data BaseType : Set where
Base : BaseType
Next : BaseType → BaseType
data Type : Set where
base : BaseType → Type
_⇒_ : Type → Type → Type
□_ : Type → Type
-- Reuse contexts, variables and weakening from Tillmann's library.
open import Syntactic.Contexts Type
-- No semantics for these types.
data Term : Context → Context → Type → Set where
abs : ∀ {τ₁ τ₂ Γ Δ} → (t : Term (τ₁ • Γ) Δ τ₂) → Term Γ Δ (τ₁ ⇒ τ₂)
app : ∀ {τ₁ τ₂ Γ Δ} → (t₁ : Term Γ Δ (τ₁ ⇒ τ₂)) (t₂ : Term Γ Δ τ₁) → Term Γ Δ τ₂
ovar : ∀ {Γ Δ τ} → (x : Var Γ τ) → Term Γ Δ τ
mvar : ∀ {Γ Δ τ} → (u : Var Δ τ) → Term Γ Δ τ
-- Note the builtin weakening
box : ∀ {Γ Δ τ} → Term ∅ Δ τ → Term Γ Δ (□ τ)
let-box_in-_ : ∀ {τ₁ τ₂ Γ Δ} → (e₁ : Term Γ Δ (□ τ₁)) → (e₂ : Term Γ (τ₁ • Δ) τ₂) → Term Γ Δ τ₂
-- Lemma 1 includes weakening.
-- Most of the proof can be generated by C-c C-a, but syntax errors must then be fixed.
weaken : ∀ {Γ₁ Γ₂ Δ₁ Δ₂ τ} → (Γ′ : Γ₁ ≼ Γ₂) → (Δ′ : Δ₁ ≼ Δ₂) → Term Γ₁ Δ₁ τ → Term Γ₂ Δ₂ τ
weaken Γ′ Δ′ (abs {τ₁} t) = abs (weaken (keep τ₁ • Γ′) Δ′ t)
weaken Γ′ Δ′ (app t t₁) = app (weaken Γ′ Δ′ t) (weaken Γ′ Δ′ t₁)
weaken Γ′ Δ′ (ovar x) = ovar (lift Γ′ x)
weaken Γ′ Δ′ (mvar u) = mvar (lift Δ′ u)
weaken Γ′ Δ′ (box t) = box (weaken ∅ Δ′ t)
weaken Γ′ Δ′ (let-box_in-_ {τ₁} t t₁) =
let-box weaken Γ′ Δ′ t in-
weaken Γ′ (keep τ₁ • Δ′) t₁
|
module ModalLogic where
-- Implement Frank Pfenning's lambda calculus based on modal logic S4, as
-- described in "A Modal Analysis of Staged Computation".
open import Denotational.Notation
data BaseType : Set where
Base : BaseType
Next : BaseType → BaseType
data Type : Set where
base : BaseType → Type
_⇒_ : Type → Type → Type
□_ : Type → Type
-- Reuse contexts, variables and weakening from Tillmann's library.
open import Syntactic.Contexts Type
-- No semantics for these types.
data Term : Context → Context → Type → Set where
abs : ∀ {τ₁ τ₂ Γ Δ} → (t : Term (τ₁ • Γ) Δ τ₂) → Term Γ Δ (τ₁ ⇒ τ₂)
app : ∀ {τ₁ τ₂ Γ Δ} → (t₁ : Term Γ Δ (τ₁ ⇒ τ₂)) (t₂ : Term Γ Δ τ₁) → Term Γ Δ τ₂
ovar : ∀ {Γ Δ τ} → (x : Var Γ τ) → Term Γ Δ τ
mvar : ∀ {Γ Δ τ} → (u : Var Δ τ) → Term Γ Δ τ
-- Note the builtin weakening
box : ∀ {Γ Δ τ} → Term ∅ Δ τ → Term Γ Δ (□ τ)
let-box_in-_ : ∀ {τ₁ τ₂ Γ Δ} → (e₁ : Term Γ Δ (□ τ₁)) → (e₂ : Term Γ (τ₁ • Δ) τ₂) → Term Γ Δ τ₂
-- Lemma 1 includes weakening.
-- Attempt 1 at weakening, subcontext-based. This works, but it is not what we need later.
--
-- Most of the proof can be generated by C-c C-a, but syntax errors must then be
-- fixed and lift introduced by hand.
weaken : ∀ {Γ₁ Γ₂ Δ₁ Δ₂ τ} → (Γ′ : Γ₁ ≼ Γ₂) → (Δ′ : Δ₁ ≼ Δ₂) → Term Γ₁ Δ₁ τ → Term Γ₂ Δ₂ τ
weaken Γ′ Δ′ (abs {τ₁} t) = abs (weaken (keep τ₁ • Γ′) Δ′ t)
weaken Γ′ Δ′ (app t t₁) = app (weaken Γ′ Δ′ t) (weaken Γ′ Δ′ t₁)
weaken Γ′ Δ′ (ovar x) = ovar (lift Γ′ x)
weaken Γ′ Δ′ (mvar u) = mvar (lift Δ′ u)
weaken Γ′ Δ′ (box t) = box (weaken ∅ Δ′ t)
weaken Γ′ Δ′ (let-box_in-_ {τ₁} t t₁) =
let-box weaken Γ′ Δ′ t in-
weaken Γ′ (keep τ₁ • Δ′) t₁
open import Relation.Binary.PropositionalEquality
weaken-≼ : ∀ {Γ₁ Γ₂ Γ₃ Δ τ} → Term (Γ₁ ⋎ Γ₃) Δ τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) Δ τ
weaken-≼ {Γ₁} {Γ₂} {Γ₃} (abs {τ₁} t) = abs (weaken-≼ {τ₁ • Γ₁} {Γ₂} t)
weaken-≼ {Γ₁} {Γ₂} (app t t₁) = app (weaken-≼ {Γ₁} {Γ₂} t) (weaken-≼ {Γ₁} {Γ₂} t₁)
weaken-≼ {Γ₁} {Γ₂} (ovar x) = ovar (Prefixes.lift {Γ₁} {Γ₂} x)
weaken-≼ (mvar u) = mvar u
weaken-≼ (box t) = box t
weaken-≼ {Γ₁} {Γ₂} (let-box t in- t₁) = let-box weaken-≼ {Γ₁} {Γ₂} t in- weaken-≼ {Γ₁} {Γ₂} t₁
substVar : ∀ {Γ Γ′ Δ τ₁ τ₂} → (t : Term Γ′ Δ τ₁) → (v : Var (Γ ⋎ (τ₁ • Γ′)) τ₂) → Term (Γ ⋎ Γ′) Δ τ₂
substVar {∅} t this = t
substVar {∅} t (that v) = ovar v
substVar {τ • Γ} t this = ovar this
substVar {τ • Γ} t (that v) = weaken-≼ {∅} {τ • ∅} (substVar {Γ} t v)
substTerm : ∀ {Γ Γ′ Δ τ₁ τ₂} → (t₁ : Term Γ′ Δ τ₁) → (t₂ : Term (Γ ⋎ (τ₁ • Γ′)) Δ τ₂) → Term (Γ ⋎ Γ′) Δ τ₂
substTerm {Γ} {Γ′} t₁ (abs {τ₂} t₂) = abs ( substTerm {τ₂ • Γ} {Γ′} t₁ t₂ )
substTerm {Γ} {Γ′} t₁ (app t₂ t₃) = app (substTerm {Γ} {Γ′} t₁ t₂) (substTerm {Γ} {Γ′} t₁ t₃)
substTerm {Γ} {Γ′} t₁ (ovar v) = substVar {Γ} {Γ′} t₁ v
substTerm t₁ (mvar u) = mvar u
substTerm t₁ (box t₂) = box t₂
substTerm {Γ} {Γ′} t₁ (let-box_in-_ {τ₃} t₂ t₃) =
let-box substTerm {Γ} {Γ′} t₁ t₂ in-
substTerm {Γ} {Γ′}
(weaken ≼-refl (drop τ₃ • ≼-refl) t₁)
t₃
|
implement substitution for modal logic
|
Agda: implement substitution for modal logic
Old-commit-hash: e8580d4ac39e998fdf42c16064112cd2c0326763
|
Agda
|
mit
|
inc-lc/ilc-agda
|
d02c0c3ef60a8f1e0b8ace3fdea7c8bb38c61281
|
Syntax/Context.agda
|
Syntax/Context.agda
|
module Syntax.Context
{Type : Set}
where
-- CONTEXTS
--
-- This module defines the syntax of contexts, prefixes of
-- contexts and variables and properties of these notions.
--
-- This module is parametric in the syntax of types, so it
-- can be reused for different calculi.
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Specialized congruence rules
⟨∅⟩ : ∅ ≡ ∅
⟨∅⟩ = refl
_⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂
_⟨•⟩_ = cong₂ _•_
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- WEAKENING
-- CONTEXT PREFIXES
--
-- Useful for making lemmas strong enough to prove by induction.
--
-- Consider using the Subcontexts module instead.
module Prefixes where
-- Prefix of a context
data Prefix : Context → Set where
∅ : ∀ {Γ} → Prefix Γ
_•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ)
-- take only the prefix of a context
take : (Γ : Context) → Prefix Γ → Context
take Γ ∅ = ∅
take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′
-- drop the prefix of a context
drop : (Γ : Context) → Prefix Γ → Context
drop Γ ∅ = Γ
drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₂ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂)
take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ
take-drop ∅ ∅ = refl
take-drop (τ • Γ) ∅ = refl
take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl
or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ
or-unit ∅ = refl
or-unit (τ • Γ) rewrite or-unit Γ = refl
move-prefix : ∀ Γ τ Γ′ →
Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′
move-prefix ∅ τ Γ′ = refl
move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅)))
move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- SUBCONTEXTS
--
-- Useful as a reified weakening operation,
-- and for making theorems strong enough to prove by induction.
--
-- The contents of this module are currently exported at the end
-- of this file.
module Subcontexts where
infix 8 _≼_
data _≼_ : (Γ₁ Γ₂ : Context) → Set where
∅ : ∅ ≼ ∅
keep_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
τ • Γ₁ ≼ τ • Γ₂
drop_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
Γ₁ ≼ τ • Γ₂
-- Properties
∅≼Γ : ∀ {Γ} → ∅ ≼ Γ
∅≼Γ {∅} = ∅
∅≼Γ {τ • Γ} = drop τ • ∅≼Γ
≼-refl : Reflexive _≼_
≼-refl {∅} = ∅
≼-refl {τ • Γ} = keep τ • ≼-refl
≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂
≼-reflexive refl = ≼-refl
≼-trans : Transitive _≼_
≼-trans ≼₁ ∅ = ≼₁
≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂
≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-isPreorder : IsPreorder _≡_ _≼_
≼-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≼-reflexive
; trans = ≼-trans
}
≼-preorder : Preorder _ _ _
≼-preorder = record
{ Carrier = Context
; _≈_ = _≡_
; _∼_ = _≼_
; isPreorder = ≼-isPreorder
}
module ≼-Reasoning where
open import Relation.Binary.PreorderReasoning ≼-preorder public
renaming
( _≈⟨_⟩_ to _≡⟨_⟩_
; _∼⟨_⟩_ to _≼⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
lift (keep τ • ≼₁) this = this
lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x)
lift (drop τ • ≼₁) x = that (lift ≼₁ x)
-- Currently, we export the subcontext relation as well as the
-- definition of _⋎_.
open Subcontexts public
open Prefixes public using (_⋎_)
|
module Syntax.Context
{Type : Set}
where
-- CONTEXTS
--
-- This module defines the syntax of contexts, prefixes of
-- contexts and variables and properties of these notions.
--
-- This module is parametric in the syntax of types, so it
-- can be reused for different calculi.
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Specialized congruence rules
⟨∅⟩ : ∅ ≡ ∅
⟨∅⟩ = refl
_⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂
_⟨•⟩_ = cong₂ _•_
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ
-- WEAKENING
-- CONTEXT PREFIXES
--
-- Useful for making lemmas strong enough to prove by induction.
--
-- Consider using the Subcontexts module instead.
module Prefixes where
-- Prefix of a context
data Prefix : Context → Set where
∅ : ∀ {Γ} → Prefix Γ
_•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ)
-- take only the prefix of a context
take : (Γ : Context) → Prefix Γ → Context
take Γ ∅ = ∅
take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′
-- drop the prefix of a context
drop : (Γ : Context) → Prefix Γ → Context
drop Γ ∅ = Γ
drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₂ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂)
take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ
take-drop ∅ ∅ = refl
take-drop (τ • Γ) ∅ = refl
take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl
or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ
or-unit ∅ = refl
or-unit (τ • Γ) rewrite or-unit Γ = refl
move-prefix : ∀ Γ τ Γ′ →
Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′
move-prefix ∅ τ Γ′ = refl
move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅)))
move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- SUBCONTEXTS
--
-- Useful as a reified weakening operation,
-- and for making theorems strong enough to prove by induction.
--
-- The contents of this module are currently exported at the end
-- of this file.
module Subcontexts where
infix 8 _≼_
data _≼_ : (Γ₁ Γ₂ : Context) → Set where
∅ : ∅ ≼ ∅
keep_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
τ • Γ₁ ≼ τ • Γ₂
drop_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
Γ₁ ≼ τ • Γ₂
-- Properties
∅≼Γ : ∀ {Γ} → ∅ ≼ Γ
∅≼Γ {∅} = ∅
∅≼Γ {τ • Γ} = drop τ • ∅≼Γ
≼-refl : Reflexive _≼_
≼-refl {∅} = ∅
≼-refl {τ • Γ} = keep τ • ≼-refl
≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂
≼-reflexive refl = ≼-refl
≼-trans : Transitive _≼_
≼-trans ≼₁ ∅ = ≼₁
≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂
≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-isPreorder : IsPreorder _≡_ _≼_
≼-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≼-reflexive
; trans = ≼-trans
}
≼-preorder : Preorder _ _ _
≼-preorder = record
{ Carrier = Context
; _≈_ = _≡_
; _∼_ = _≼_
; isPreorder = ≼-isPreorder
}
module ≼-Reasoning where
open import Relation.Binary.PreorderReasoning ≼-preorder public
renaming
( _≈⟨_⟩_ to _≡⟨_⟩_
; _∼⟨_⟩_ to _≼⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
lift (keep τ • ≼₁) this = this
lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x)
lift (drop τ • ≼₁) x = that (lift ≼₁ x)
-- Currently, we export the subcontext relation as well as the
-- definition of _⋎_.
open Subcontexts public
open Prefixes public using (_⋎_)
|
rename type parameter of `that`
|
Agda: rename type parameter of `that`
Old-commit-hash: 0b30e5858214cb3ecab7a1661b7a2a79ac6bc871
|
Agda
|
mit
|
inc-lc/ilc-agda
|
cd132a2ada356a76c361341940070bcfccc2c571
|
lib/Explore/Zero.agda
|
lib/Explore/Zero.agda
|
open import Type
open import Type.Identities
open import Level.NP
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
open import Data.Zero
open import Function.NP
open import Function.Extensionality
open import Data.Product
open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; _∙_; !_)
open import HoTT
open Equivalences
import Explore.Monad
module Explore.Zero where
module _ {ℓ} where
𝟘ᵉ : Explore ℓ 𝟘
𝟘ᵉ = empty-explore
{- or
𝟘ᵉ ε _ _ = ε
-}
𝟘ⁱ : ∀ {p} → ExploreInd p 𝟘ᵉ
𝟘ⁱ = empty-explore-ind
{- or
𝟘ⁱ _ Pε _ _ = Pε
-}
module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟘 → 𝟘 → ★₀} where
⟦𝟘ᵉ⟧ : ⟦Explore⟧ᵤ ℓ₁ ℓ₂ ℓᵣ R 𝟘ᵉ 𝟘ᵉ
⟦𝟘ᵉ⟧ _ εᵣ _ _ = εᵣ
open Explorable₀ 𝟘ⁱ public using () renaming (sum to 𝟘ˢ; product to 𝟘ᵖ)
module _ {ℓ} where
open Explorableₛ {ℓ} 𝟘ⁱ public using () renaming (reify to 𝟘ʳ)
open Explorableₛₛ {ℓ} 𝟘ⁱ public using () renaming (unfocus to 𝟘ᵘ)
𝟘ˡ : Lookup {ℓ} 𝟘ᵉ
𝟘ˡ _ ()
𝟘ᶠ : Focus {ℓ} 𝟘ᵉ
𝟘ᶠ ((), _)
module _ {{_ : UA}} where
Σᵉ𝟘-ok : Adequate-Σᵉ {ℓ} 𝟘ᵉ
Σᵉ𝟘-ok _ = ! Σ𝟘-lift∘fst
module _ {{_ : UA}}{{_ : FunExt}} where
Πᵉ𝟘-ok : Adequate-Πᵉ {ℓ} 𝟘ᵉ
Πᵉ𝟘-ok _ = ! Π𝟘-uniq _
module _ {{_ : UA}} where
𝟘ˢ-ok : Adequate-sum 𝟘ˢ
𝟘ˢ-ok _ = Fin0≡𝟘 ∙ ! Σ𝟘-fst
module _ {{_ : UA}}{{_ : FunExt}} where
𝟘ᵖ-ok : Adequate-product 𝟘ᵖ
𝟘ᵖ-ok _ = Fin1≡𝟙 ∙ ! (Π𝟘-uniq₀ _)
explore𝟘 = 𝟘ᵉ
explore𝟘-ind = 𝟘ⁱ
lookup𝟘 = 𝟘ˡ
reify𝟘 = 𝟘ʳ
focus𝟘 = 𝟘ᶠ
unfocus𝟘 = 𝟘ᵘ
sum𝟘 = 𝟘ˢ
adequate-sum𝟘 = 𝟘ˢ-ok
product𝟘 = 𝟘ᵖ
adequate-product𝟘 = 𝟘ᵖ-ok
-- DEPRECATED
module _ {{_ : UA}} where
open ExplorableRecord
μ𝟘 : Explorable 𝟘
μ𝟘 = mk _ 𝟘ⁱ 𝟘ˢ-ok
-- -}
|
open import Type
open import Type.Identities
open import Level.NP
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
open import Data.Zero
open import Function.NP
open import Function.Extensionality
open import Data.Product
open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; _∙_; !_)
open import HoTT
open Equivalences
import Explore.Monad
open import Explore.Isomorphism
module Explore.Zero where
module _ {ℓ} where
𝟘ᵉ : Explore ℓ 𝟘
𝟘ᵉ = empty-explore
{- or
𝟘ᵉ ε _ _ = ε
-}
𝟘ⁱ : ∀ {p} → ExploreInd p 𝟘ᵉ
𝟘ⁱ = empty-explore-ind
{- or
𝟘ⁱ _ Pε _ _ = Pε
-}
module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟘 → 𝟘 → ★₀} where
⟦𝟘ᵉ⟧ : ⟦Explore⟧ᵤ ℓ₁ ℓ₂ ℓᵣ R 𝟘ᵉ 𝟘ᵉ
⟦𝟘ᵉ⟧ _ εᵣ _ _ = εᵣ
open Explorable₀ 𝟘ⁱ public using () renaming (sum to 𝟘ˢ; product to 𝟘ᵖ)
module _ {ℓ} where
open Explorableₛ {ℓ} 𝟘ⁱ public using () renaming (reify to 𝟘ʳ)
open Explorableₛₛ {ℓ} 𝟘ⁱ public using () renaming (unfocus to 𝟘ᵘ)
𝟘ˡ : Lookup {ℓ} 𝟘ᵉ
𝟘ˡ _ ()
𝟘ᶠ : Focus {ℓ} 𝟘ᵉ
𝟘ᶠ ((), _)
module _ {{_ : UA}} where
Σᵉ𝟘-ok : Adequate-Σᵉ {ℓ} 𝟘ᵉ
Σᵉ𝟘-ok _ = ! Σ𝟘-lift∘fst
module _ {{_ : UA}}{{_ : FunExt}} where
Πᵉ𝟘-ok : Adequate-Πᵉ {ℓ} 𝟘ᵉ
Πᵉ𝟘-ok _ = ! Π𝟘-uniq _
module _ {{_ : UA}} where
𝟘ˢ-ok : Adequate-sum 𝟘ˢ
𝟘ˢ-ok _ = Fin0≡𝟘 ∙ ! Σ𝟘-fst
module _ {{_ : UA}}{{_ : FunExt}} where
𝟘ᵖ-ok : Adequate-product 𝟘ᵖ
𝟘ᵖ-ok _ = Fin1≡𝟙 ∙ ! (Π𝟘-uniq₀ _)
explore𝟘 = 𝟘ᵉ
explore𝟘-ind = 𝟘ⁱ
lookup𝟘 = 𝟘ˡ
reify𝟘 = 𝟘ʳ
focus𝟘 = 𝟘ᶠ
unfocus𝟘 = 𝟘ᵘ
sum𝟘 = 𝟘ˢ
adequate-sum𝟘 = 𝟘ˢ-ok
product𝟘 = 𝟘ᵖ
adequate-product𝟘 = 𝟘ᵖ-ok
Lift𝟘ᵉ : ∀ {m} → Explore m (Lift 𝟘)
Lift𝟘ᵉ = explore-iso (≃-sym Lift≃id) 𝟘ᵉ
ΣᵉLift𝟘-ok : ∀ {{_ : UA}}{{_ : FunExt}}{m} → Adequate-Σᵉ {m} Lift𝟘ᵉ
ΣᵉLift𝟘-ok = Σ-iso-ok (≃-sym Lift≃id) {Aᵉ = 𝟘ᵉ} Σᵉ𝟘-ok
-- DEPRECATED
module _ {{_ : UA}} where
open ExplorableRecord
μ𝟘 : Explorable 𝟘
μ𝟘 = mk _ 𝟘ⁱ 𝟘ˢ-ok
-- -}
|
add explore function for Lift 𝟘
|
add explore function for Lift 𝟘
|
Agda
|
bsd-3-clause
|
crypto-agda/explore
|
8aefca99408c27e4a214ce4b0721a4e4794eeb87
|
Atlas/Change/Derivation.agda
|
Atlas/Change/Derivation.agda
|
module Atlas.Change.Derivation where
open import Atlas.Syntax.Type
open import Atlas.Syntax.Term
open import Atlas.Change.Type
open import Atlas.Change.Term
open import Base.Syntax.Context Type
open import Base.Change.Context ΔType
Atlas-Δconst : ∀ {Γ Σ τ} → (c : Const Σ τ) →
Term Γ (internalizeContext (ΔContext′ Σ) (ΔType τ))
Atlas-Δconst true = false!
Atlas-Δconst false = false!
Atlas-Δconst xor = abs₄ (λ x Δx y Δy → xor! Δx Δy)
Atlas-Δconst empty = empty!
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
Atlas-Δconst update = abs₆ (λ k Δk v Δv m Δm →
insert (apply Δk k) (apply Δv v) (delete k v Δm))
-- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k)
-- ... | true = lookup k Δm
-- ... | false =
-- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm)
-- ⊝ lookup k m
--
-- Only the false-branch is implemented.
Atlas-Δconst lookup = abs₄ (λ k Δk m Δm →
let
k′ = apply Δk k
in
(diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m))
(lookup! k m)))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
Atlas-Δconst zip = abs₆ (λ f Δf m₁ Δm₁ m₂ Δm₂ →
let
g = abs (app₂ (weaken₁ Δf) (var this) nil-term)
in
zip4! g m₁ Δm₁ m₂ Δm₂)
-- Δfold f Δf z Δz m Δm = proj₂
-- (fold (λ k [a,Δa] [b,Δb] →
-- uncurry (λ a Δa → uncurry (λ b Δb →
-- pair (f k a b) (Δf k nil a Δa b Δb))
-- [b,Δb]) [a,Δa])
-- (pair z Δz)
-- (zip-pair m Δm))
--
-- Δfold is efficient only if evaluation is lazy and Δf is
-- self-maintainable: it doesn't look at the argument
-- (b = fold f k a b₀) at all.
Atlas-Δconst (fold {κ} {α} {β}) =
let -- TODO (tedius): write weaken₇
f = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that (that this))))))))
Δf = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that this)))))))
z = var (that (that (that this)))
Δz = var (that (that this))
m = var (that this)
Δm = var this
k = weaken₃ (weaken₁ (var (that (that this))))
[a,Δa] = var (that this)
[b,Δb] = var this
a = var (that (that (that this)))
Δa = var (that (that this))
b = var (that this)
Δb = var this
g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs
(pair (app₃ f k a b)
(app₆ Δf k nil-term a Δa b Δb))))
(weaken₂ [b,Δb])))) [a,Δa])))
proj₂ = uncurry (abs (abs (var this)))
in
abs (abs (abs (abs (abs (abs
(proj₂ (fold! g (pair z Δz) (zip-pair m Δm))))))))
|
module Atlas.Change.Derivation where
open import Atlas.Syntax.Type
open import Atlas.Syntax.Term
open import Atlas.Change.Type
open import Atlas.Change.Term
open import Base.Syntax.Context Type
open import Base.Change.Context ΔType
ΔConst : ∀ {Γ Σ τ} → (c : Const Σ τ) →
Term Γ (internalizeContext (ΔContext′ Σ) (ΔType τ))
ΔConst true = false!
ΔConst false = false!
ΔConst xor = abs₄ (λ x Δx y Δy → xor! Δx Δy)
ΔConst empty = empty!
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
ΔConst update = abs₆ (λ k Δk v Δv m Δm →
insert (apply Δk k) (apply Δv v) (delete k v Δm))
-- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k)
-- ... | true = lookup k Δm
-- ... | false =
-- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm)
-- ⊝ lookup k m
--
-- Only the false-branch is implemented.
ΔConst lookup = abs₄ (λ k Δk m Δm →
let
k′ = apply Δk k
in
(diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m))
(lookup! k m)))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
ΔConst zip = abs₆ (λ f Δf m₁ Δm₁ m₂ Δm₂ →
let
g = abs (app₂ (weaken₁ Δf) (var this) nil-term)
in
zip4! g m₁ Δm₁ m₂ Δm₂)
-- Δfold f Δf z Δz m Δm = proj₂
-- (fold (λ k [a,Δa] [b,Δb] →
-- uncurry (λ a Δa → uncurry (λ b Δb →
-- pair (f k a b) (Δf k nil a Δa b Δb))
-- [b,Δb]) [a,Δa])
-- (pair z Δz)
-- (zip-pair m Δm))
--
-- Δfold is efficient only if evaluation is lazy and Δf is
-- self-maintainable: it doesn't look at the argument
-- (b = fold f k a b₀) at all.
ΔConst (fold {κ} {α} {β}) =
let -- TODO (tedius): write weaken₇
f = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that (that this))))))))
Δf = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that this)))))))
z = var (that (that (that this)))
Δz = var (that (that this))
m = var (that this)
Δm = var this
k = weaken₃ (weaken₁ (var (that (that this))))
[a,Δa] = var (that this)
[b,Δb] = var this
a = var (that (that (that this)))
Δa = var (that (that this))
b = var (that this)
Δb = var this
g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs
(pair (app₃ f k a b)
(app₆ Δf k nil-term a Δa b Δb))))
(weaken₂ [b,Δb])))) [a,Δa])))
proj₂ = uncurry (abs (abs (var this)))
in
abs (abs (abs (abs (abs (abs
(proj₂ (fold! g (pair z Δz) (zip-pair m Δm))))))))
|
Rename Atlas-Δconst to ΔConst.
|
Rename Atlas-Δconst to ΔConst.
Old-commit-hash: e7ed19ec0ca363e486fe72ac858facfcd192e057
|
Agda
|
mit
|
inc-lc/ilc-agda
|
af1d5371ab683fac0cfee48a20cabc40e4da7d41
|
program-distance.agda
|
program-distance.agda
|
module program-distance where
open import flipbased-implem
open import Data.Bits
open import Data.Bool
open import Data.Vec.NP using (Vec; count; countᶠ)
open import Data.Nat.NP
open import Data.Nat.Properties
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
import Data.Fin as Fin
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h
]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf))
]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf
= ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'}
((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g'))
breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b)
module HomImplem k where
-- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ]
-- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ]
-- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ]
-- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ]
_]-[_ : ∀ {n} (f g : ⅁ n) → Set
_]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k)
]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g
]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h
-- dist #g #h ≥ 2^(n ∸ k)
-- dist #f #h ≥ 2^(n ∸ k)
module Implem k where
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
_]-[_ {m} {n} f g = dist (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) ≥ 2^((m + n) ∸ k)
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) | ℕ°.+-comm m n = f]-[g
postulate
helper : ∀ x y z t → x + ((y + z) ∸ t) ≡ y + ((x + z) ∸ t)
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h
with 2^*-mono m g]-[h
... | q rewrite sym (dist-2^* m (⟨2^ o ⟩* (count↺ g)) (⟨2^ n ⟩* (count↺ h)))
| 2^-comm m o (count↺ g)
| sym f≈g
| 2^-comm o n (count↺ f)
| 2^-comm m n (count↺ h)
| dist-2^* n (⟨2^ o ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ h))
| 2^-+ m (n + o ∸ k) 1
| helper m n o k
| sym (2^-+ n (m + o ∸ k) 1)
= 2^*-mono′ n q
prgDist : PrgDist
prgDist = mk _]-[_ (λ {m n f g} x → ]-[-sym {m} {n} {f} {g} x) (λ {m n o f g h} x y → ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} x y)
|
module program-distance where
open import flipbased-implem
open import Data.Bits
open import Data.Bool
open import Data.Vec.NP using (Vec; count; countᶠ)
open import Data.Nat.NP
open import Data.Nat.Properties
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
import Data.Fin as Fin
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h
]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf))
]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf
= ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'}
((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g'))
breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b)
module HomImplem k where
-- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ]
-- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ]
-- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ]
-- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ]
_]-[_ : ∀ {n} (f g : ⅁ n) → Set
_]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k)
]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g
]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h
-- dist #g #h ≥ 2^(n ∸ k)
-- dist #f #h ≥ 2^(n ∸ k)
module Implem k where
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
_]-[_ {m} {n} f g = dist (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) ≥ 2^((m + n) ∸ k)
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) | ℕ°.+-comm m n = f]-[g
postulate
helper : ∀ x y z t → x + ((y + z) ∸ t) ≡ y + ((x + z) ∸ t)
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h
with 2^*-mono m g]-[h
-- 2ᵐ(dist 2ᵒ#g 2ⁿ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
... | q rewrite sym (dist-2^* m (⟨2^ o ⟩* (count↺ g)) (⟨2^ n ⟩* (count↺ h)))
-- dist 2ᵐ2ᵒ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m o (count↺ g)
-- dist 2ᵒ2ᵐ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| sym f≈g
-- dist 2ᵒ2ⁿ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm o n (count↺ f)
-- dist 2ⁿ2ᵒ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m n (count↺ h)
-- dist 2ⁿ2ᵒ#f 2ⁿ2ᵐ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| dist-2^* n (⟨2^ o ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ h))
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-+ m (n + o ∸ k) 1
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ⁺ⁿ⁺ᵒ⁻ᵏ
| helper m n o k
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ⁺ᵐ⁺ᵒ⁻ᵏ
| sym (2^-+ n (m + o ∸ k) 1)
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ2ᵐ⁺ᵒ⁻ᵏ
= 2^*-mono′ n q
-- dist 2ᵒ#f 2ᵐ#h ≤ 2ᵐ⁺ᵒ⁻ᵏ
prgDist : PrgDist
prgDist = mk _]-[_ (λ {m n f g} x → ]-[-sym {m} {n} {f} {g} x) (λ {m n o f g h} x y → ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} x y)
|
document a broken (so far) proof
|
document a broken (so far) proof
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
d0df7845258df353bcf850c309c4a494f9869248
|
Parametric/Denotation/CachingEvaluation.agda
|
Parametric/Denotation/CachingEvaluation.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Type semantics for this scenario.
⟦_⟧TypeHidCache : (τ : Type) → Set₁
⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧
⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ )
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧CtxHidCache : (Γ : Context) → Set₁
⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- It's questionable that this is not polymorphic enough.
⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦ this ⟧VarHidCache (v • ρ) = v
⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ
-- Now, let us define a caching semantics for terms.
-- This proves to be hard, because we need to insert and remove caches where
-- we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
--
-- Inserting and removing caches --
--
-- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time.
-- Indeed, both functions seem structurally recursive on τ.
dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧
extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache
dropCache {base ι} v = lower v
dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x))))
extend {base ι} v = lift v
extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt)
-- OK, this version is syntax-directed, luckily enough, except on primitives
-- (as expected). This reveals a bug of ours on higher-order primitives.
--
-- Moreover, we can somewhat safely assume that each call to extend and to
-- dropCache is bad: then we see that the handling of constants is bad. That's
-- correct, because constants will not return intermediate results in this
-- schema :-(.
⟦_⟧TermCache : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦_⟧TermCache (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ))
⟦_⟧TermCache (var x) ρ = ⟦ x ⟧VarHidCache ρ
-- It seems odd (a probable bug?) that the result of t needn't be stripped of
-- its cache.
⟦_⟧TermCache (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache ρ) (⟦ t ⟧TermCache ρ)))
-- Provide an empty cache!
⟦_⟧TermCache (abs t) ρ x = , (⟦ t ⟧TermCache (x • ρ) , tt)
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Type semantics for this scenario.
⟦_⟧TypeHidCache : (τ : Type) → Set₁
⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧
⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ )
-- Now, let us define a caching semantics for terms.
-- This proves to be hard, because we need to insert and remove caches where
-- we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
--
-- Inserting and removing caches --
--
-- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time.
-- Indeed, both functions seem structurally recursive on τ.
dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧
extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache
dropCache {base ι} v = lower v
dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x))))
extend {base ι} v = lift v
extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt)
⟦_⟧CtxHidCache : (Γ : Context) → Set₁
⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache
-- It's questionable that this is not polymorphic enough.
⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦ this ⟧VarHidCache (v • ρ) = v
⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ
-- OK, this version is syntax-directed, luckily enough, except on primitives
-- (as expected). This reveals a bug of ours on higher-order primitives.
--
-- Moreover, we can somewhat safely assume that each call to extend and to
-- dropCache is bad: then we see that the handling of constants is bad. That's
-- correct, because constants will not return intermediate results in this
-- schema :-(.
⟦_⟧TermCache : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦_⟧TermCache (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ))
⟦_⟧TermCache (var x) ρ = ⟦ x ⟧VarHidCache ρ
-- It seems odd (a probable bug?) that the result of t needn't be stripped of
-- its cache.
⟦_⟧TermCache (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache ρ) (⟦ t ⟧TermCache ρ)))
-- Provide an empty cache!
⟦_⟧TermCache (abs t) ρ x = , (⟦ t ⟧TermCache (x • ρ) , tt)
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
Reorder code
|
Reorder code
Separate non-CBPV and CBPV version of the code
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9654b48257da5d67093ffa9653ed62f10df0bfa4
|
composition-sem-sec-reduction.agda
|
composition-sem-sec-reduction.agda
|
module otp-sem-sec where
import Level as L
open import Function
open import Data.Nat.NP
open import Data.Bits
open import Data.Bool
open import Data.Bool.Properties
open import Data.Vec hiding (_>>=_)
open import Data.Product.NP hiding (_⟦×⟧_)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import flipbased-implem
open ≡-Reasoning
open import Data.Unit using (⊤)
open import composable
open import vcomp
open import forkable
open import flat-funs
open import program-distance
open import one-time-semantic-security
import bit-guessing-game
module BitsExtra where
splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n
splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) }
vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id
vnot∘vnot [] = refl
vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs)
open BitsExtra
module CompRed {t} {T : Set t}
{♭Funs : FlatFuns T}
(♭ops : FlatFunsOps ♭Funs)
(ep ep' : EncParams) where
open FlatFunsOps ♭ops
open AbsSemSec ♭Funs
open EncParams ep using (|M|; |C|)
open EncParams ep' using () renaming (|M| to |M|'; |C| to |C|')
M = `Bits |M|
C = `Bits |C|
M' = `Bits |M|'
C' = `Bits |C|'
comp-red : (pre-E : M' `→ M)
(post-E : C `→ C') → SemSecReduction ep' ep _
comp-red pre-E post-E (mk A₀ A₁) = mk (A₀ >>> (pre-E *** pre-E) *** idO) (post-E *** idO >>> A₁)
module Comp (ep : EncParams) (|M|' |C|' : ℕ) where
open EncParams ep
ep' : EncParams
ep' = EncParams.mk |M|' |C|' |R|e
open EncParams ep' using () renaming (Enc to Enc'; M to M'; C to C')
Tr = Enc → Enc'
open FlatFunsOps fun♭Ops
comp : (pre-E : M' → M) (post-E : C → C') → Tr
comp pre-E post-E E = pre-E >>> E >>> {-weaken≤ |R|e≤|R|e' ∘-} map↺ post-E
module CompSec (prgDist : PrgDist) (ep : EncParams) (|M|' |C|' : ℕ) where
open PrgDist prgDist
open FlatFunsOps fun♭Ops
open FunSemSec prgDist
open AbsSemSec fun♭Funs
open EncParams ep
ep' : EncParams
ep' = EncParams.mk |M|' |C|' |R|e
open EncParams ep' using () renaming (Enc to Enc'; M to M'; C to C')
module CompSec' (pre-E : M' → M) (post-E : C → C') where
open SemSecReductions ep ep'
open CompRed fun♭Ops ep ep' hiding (M; C)
open Comp ep |M|' |C|'
comp-pres-sem-sec : SemSecTr id (comp pre-E post-E)
comp-pres-sem-sec = comp-red pre-E post-E , λ E A → id
open SemSecReductions ep ep'
open CompRed fun♭Ops ep ep' hiding (M; C)
open CompSec' public
module Comp' {x y z} = Comp x y z
open Comp' hiding (Tr)
comp-pres-sem-sec⁻¹ : ∀ pre-E pre-E⁻¹
(pre-E-right-inv : pre-E ∘ pre-E⁻¹ ≗ id)
post-E post-E⁻¹
(post-E-left-inv : post-E⁻¹ ∘ post-E ≗ id)
→ SemSecTr⁻¹ id (comp pre-E post-E)
comp-pres-sem-sec⁻¹ pre-E pre-E⁻¹ pre-E-inv post-E post-E⁻¹ post-E-inv =
SemSecTr→SemSecTr⁻¹
(comp pre-E⁻¹ post-E⁻¹)
(comp pre-E post-E)
(λ E m R → trans (post-E-inv _) (cong (λ x → run↺ (E x) R) (pre-E-inv _)))
(comp-pres-sem-sec pre-E⁻¹ post-E⁻¹)
module PostNegSec (prgDist : PrgDist) ep where
open EncParams ep
open Comp ep |M| |C| hiding (Tr)
open CompSec prgDist ep |M| |C|
open FunSemSec prgDist
open SemSecReductions ep ep
post-neg : Tr
post-neg = comp id vnot
post-neg-pres-sem-sec : SemSecTr id post-neg
post-neg-pres-sem-sec = comp-pres-sem-sec id vnot
post-neg-pres-sem-sec⁻¹ : SemSecTr⁻¹ id post-neg
post-neg-pres-sem-sec⁻¹ = comp-pres-sem-sec⁻¹ id id (λ _ → refl) vnot vnot vnot∘vnot
module Concrete k where
open program-distance.Implem k
module Guess' = bit-guessing-game prgDist
module FunSemSec' = FunSemSec prgDist
module CompSec' = CompSec prgDist
|
module composition-sem-sec-reduction where
import Level as L
open import Function
open import Data.Nat.NP
open import Data.Bits
open import Data.Bool
open import Data.Vec hiding (_>>=_)
open import Data.Product.NP using (_,_)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import flipbased-implem
open ≡-Reasoning
open import Data.Unit using (⊤)
open import composable
open import vcomp
open import forkable
open import flat-funs
open import program-distance
open import one-time-semantic-security
import bit-guessing-game
-- One focuses on a particular kind of transformation
-- over a cipher, namely pre and post composing functions
-- to a given cipher E.
-- This transformation can change the size of input/output
-- of the given cipher.
module Comp (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where
open EncParams²-same-|R|ᵉ ep₀ |M|₁ |C|₁
open FlatFunsOps fun♭Ops
comp : (pre-E : M₁ → M₀) (post-E : C₀ → C₁) → Tr
comp pre-E post-E E = pre-E >>> E >>> map↺ post-E
-- This module shows how to adapt an adversary that is supposed to break
-- one time semantic security of some cipher E enhanced by pre and post
-- composition to an adversary breaking one time semantic security of the
-- original cipher E.
--
-- The adversary transformation works for any notion of function space
-- (FlatFuns) and the corresponding operations (FlatFunsOps).
-- Because of this abstraction the following construction can be safely
-- instantiated for at least three uses:
-- * When provided with a concrete notion of function like circuits
-- or at least functions over bit-vectors, one get a concrete circuit
-- transformation process.
-- * When provided with a high-level function space with real products
-- then proving properties about the code is made easy.
-- * When provided with a notion of cost such as time or space then
-- one get a the cost of the resulting adversary given the cost of
-- the inputs (adversary...).
module CompRed {t} {T : Set t}
{♭Funs : FlatFuns T}
(♭ops : FlatFunsOps ♭Funs)
(ep₀ ep₁ : EncParams) where
open FlatFuns ♭Funs
open FlatFunsOps ♭ops
open AbsSemSec ♭Funs
open ♭EncParams² ♭Funs ep₀ ep₁ using (`M₀; `C₀; `M₁; `C₁)
comp-red : (pre-E : `M₁ `→ `M₀)
(post-E : `C₀ `→ `C₁)
→ SemSecReduction ep₁ ep₀ _
comp-red pre-E post-E (mk A₀ A₁) =
mk (A₀ >>> (pre-E *** pre-E) *** idO) (post-E *** idO >>> A₁)
module CompSec (prgDist : PrgDist) (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where
open PrgDist prgDist
open FlatFunsOps fun♭Ops
open FunSemSec prgDist
open AbsSemSec fun♭Funs
open EncParams²-same-|R|ᵉ ep₀ |M|₁ |C|₁
open SemSecReductions ep₀ ep₁ id
open CompRed fun♭Ops ep₀ ep₁
private
module Comp-implicit {x y z} = Comp x y z
open Comp-implicit public
comp-pres-sem-sec : ∀ pre-E post-E → SemSecTr (comp pre-E post-E)
comp-pres-sem-sec pre-E post-E = comp-red pre-E post-E , λ E A → id
comp-pres-sem-sec⁻¹ : ∀ pre-E pre-E⁻¹
(pre-E-right-inv : pre-E ∘ pre-E⁻¹ ≗ id)
post-E post-E⁻¹
(post-E-left-inv : post-E⁻¹ ∘ post-E ≗ id)
→ SemSecTr⁻¹ (comp pre-E post-E)
comp-pres-sem-sec⁻¹ pre-E pre-E⁻¹ pre-E-inv post-E post-E⁻¹ post-E-inv =
SemSecTr→SemSecTr⁻¹
(comp pre-E⁻¹ post-E⁻¹)
(comp pre-E post-E)
(λ E m R → trans (post-E-inv _) (cong (λ x → run↺ (E x) R) (pre-E-inv _)))
(comp-pres-sem-sec pre-E⁻¹ post-E⁻¹)
module PostNegSec (prgDist : PrgDist) ep where
open EncParams ep
open EncParams² ep ep using (Tr)
open CompSec prgDist ep |M| |C|
open FunSemSec prgDist
open SemSecReductions ep ep id
post-neg : Tr
post-neg = comp id vnot
post-neg-pres-sem-sec : SemSecTr post-neg
post-neg-pres-sem-sec = comp-pres-sem-sec id vnot
post-neg-pres-sem-sec⁻¹ : SemSecTr⁻¹ post-neg
post-neg-pres-sem-sec⁻¹ = comp-pres-sem-sec⁻¹ id id (λ _ → refl) vnot vnot vnot∘vnot≗id
module Concrete k where
open program-distance.Implem k
module Guess-prgDist = bit-guessing-game prgDist
module FunSemSec-prgDist = FunSemSec prgDist
module CompSec-prgDist = CompSec prgDist
|
Rework composition-sem-sec-reduction.agda
|
Rework composition-sem-sec-reduction.agda
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
be0274dd27e35d690791eb80a7b4b66635414047
|
Thesis/ANormalDTerm.agda
|
Thesis/ANormalDTerm.agda
|
module Thesis.ANormalDTerm where
open import Thesis.ANormal
{-
Try defining an alternative syntax for differential terms. We'll need this for
cache terms. Maybe?
Options:
1. use standard untyped lambda calculus as a target language. This requires much
more weakening in the syntax, which is a nuisance in proofs. Maybe use de Bruijn
levels instead?
2. use a specialized syntax as a target language.
3. use separate namespaces, environments, and so on?
Also, caching uses quite a bit of sugar on top of lambda calculus, with pairs
and what not.
-}
{-
-- To define an alternative syntax for the derivation output, let's remember that:
derive (var x) = dvar dx
derive (let y = f x in t) = let y = f x ; dy = df x dx in derive t
-}
-- Attempt 1 leads to function calls in datatype indexes. That's very very bad!
module Try1 where
-- data DTerm : (Γ : Context) (τ : Type) → Set where
-- dvar : ∀ {Γ τ} (x : Var Γ τ) →
-- DTerm (ΔΓ Γ) (Δt τ)
-- dlett : ∀ {Γ σ τ₁ τ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → DTerm (Δt τ₁ • τ₁ • ΔΓ Γ) (Δt τ) → DTerm (ΔΓ Γ) (Δt τ)
-- derive-dterm : ∀ {Γ τ} → Term Γ τ → DTerm (ΔΓ Γ) (Δt τ)
-- derive-dterm (var x) = dvar x
-- derive-dterm (lett f x t) = dlett f x (derive-dterm t)
-- Case split on dt FAILS!
-- ⟦_⟧DTerm : ∀ {Γ τ} → DTerm (ΔΓ Γ) (Δt τ) → ⟦ ΔΓ Γ ⟧Context → ⟦ Δt τ ⟧Type
-- ⟦ dt ⟧DTerm ρ = {!dt!}
ΔΔ : Context → Context
ΔΔ ∅ = ∅
ΔΔ (τ • Γ) = Δt τ • ΔΔ Γ
Δτ = Δt
ChΔ : ∀ (Δ : Context) → Set
ChΔ Δ = ⟦ ΔΔ Δ ⟧Context
-- changeStructureΔ : ∀ Δ → ChangeStructure ⟦ Δ ⟧Context
-- changeStructureΔ = {!!}
-- ch_from_to_ {{changeStructureΔ Δ}}
-- [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set
-- [ ∅ ]Δ ∅ from ∅ to ∅ = ⊤
-- [ τ • Δ ]Δ dv • dρ from v1 • ρ1 to (v2 • ρ2) = [ τ ]τ dv from v1 to v2 × [ Δ ]Δ dρ from ρ1 to ρ2
-- Δ is bound to the change type! Not good!
data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where
v∅ : [ ∅ ]Δ ∅ from ∅ to ∅
_v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ]τ dv from v1 to v2) →
(dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) →
[ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2)
module Try3 where
derive-dvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔ Δ) (Δτ σ)
derive-dvar this = this
derive-dvar (that x) = that (derive-dvar x)
fromtoDeriveDVar : ∀ {Δ τ} → (x : Var Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dvar x ⟧Var dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveDVar this (dvv v• dρρ) = dvv
fromtoDeriveDVar (that x) (dvv v• dρρ) = fromtoDeriveDVar x dρρ
-- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces
-- a result of type (Δt τ).
data DTerm : (Δ : Context) (τ : Type) → Set where
dvar : ∀ {Δ τ} (x : Var (ΔΔ Δ) (Δt τ)) →
DTerm Δ τ
dlett : ∀ {Δ τ σ τ₁} →
(f : Var Δ (σ ⇒ τ₁)) →
(x : Var Δ σ) →
(t : Term (τ₁ • Δ) τ) →
(df : Var (ΔΔ Δ) (Δτ (σ ⇒ τ₁))) →
(dx : Var (ΔΔ Δ) (Δτ σ)) →
(dt : DTerm (τ₁ • Δ) τ) →
DTerm Δ τ
data DFun (Δ : Context) : (τ : Type) → Set where
dterm : ∀ {τ} → DTerm Δ τ → DFun Δ τ
dabs : ∀ {σ τ} → DFun (σ • Δ) τ → DFun Δ (σ ⇒ τ)
derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ
derive-dterm (var x) = dvar (derive-dvar x)
derive-dterm (lett f x t) =
dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t)
⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dvar x ⟧DTerm ρ dρ = ⟦ x ⟧Var dρ
⟦ dlett f x t df dx dt ⟧DTerm ρ dρ =
let v = (⟦ x ⟧Var ρ)
in
⟦ dt ⟧DTerm
(⟦ f ⟧Var ρ v • ρ)
(⟦ df ⟧Var dρ v (⟦ dx ⟧Var dρ) • dρ)
fromtoDeriveDTerm : ∀ {Δ τ} → (t : Term Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dterm t ⟧DTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDeriveDTerm (var x) dρρ = fromtoDeriveDVar x dρρ
fromtoDeriveDTerm (lett f x t) dρρ =
let fromToF = fromtoDeriveDVar f dρρ
fromToX = fromtoDeriveDVar x dρρ
fromToFX = fromToF _ _ _ fromToX
in fromtoDeriveDTerm t (fromToFX v• dρρ)
derive-dfun : ∀ {Δ σ} → (t : Fun Δ σ) → DFun Δ σ
derive-dfun (term t) = dterm (derive-dterm t)
derive-dfun (abs f) = dabs (derive-dfun f)
⟦_⟧DFun : ∀ {Δ τ} → DFun Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dterm t ⟧DFun = ⟦ t ⟧DTerm
⟦ dabs df ⟧DFun ρ dρ = λ v dv → ⟦ df ⟧DFun (v • ρ) (dv • dρ)
fromtoDeriveDFun : ∀ {Δ τ} → (f : Fun Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dfun f ⟧DFun ρ1 dρ) from (⟦ f ⟧Fun ρ1) to (⟦ f ⟧Fun ρ2)
fromtoDeriveDFun (term t) = fromtoDeriveDTerm t
fromtoDeriveDFun (abs f) dρρ = λ dv v1 v2 dvv → fromtoDeriveDFun f (dvv v• dρρ)
module Try2 where
-- This is literally isomorphic to the source type :-| derivation is part of erasure...
data DTerm : (Γ : Context) (τ : Type) → Set where
dvar : ∀ {Γ τ} (x : Var Γ τ) →
DTerm Γ τ
-- dlett : ∀ {Γ σ τ₁ τ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → DTerm (Δt τ₁ • τ₁ • ΔΓ Γ) (Δt τ) → DTerm (ΔΓ Γ) (Δt τ)
dlett : ∀ {Γ τ σ τ₁} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) →
DTerm (τ₁ • Γ) τ →
DTerm Γ τ
derive-dterm : ∀ {Γ τ} → Term Γ τ → DTerm Γ τ
derive-dterm (var x) = dvar x
derive-dterm (lett f x t) = dlett f x (derive-dterm t)
-- Incremental semantics over terms. Same results as base semantics over change
-- terms. But less weakening.
⟦_⟧DTerm : ∀ {Γ τ} → DTerm Γ τ → ⟦ ΔΓ Γ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dvar x ⟧DTerm dρ = ⟦ derive-var x ⟧Var dρ
⟦ dlett f x dt ⟧DTerm dρ =
let ρ = ⟦ Γ≼ΔΓ ⟧≼ dρ
in ⟦ dt ⟧DTerm
( ⟦ derive-var f ⟧Var dρ (⟦ x ⟧Var ρ) (⟦ derive-var x ⟧Var dρ)
• ⟦ f ⟧Var ρ (⟦ x ⟧Var ρ)
• dρ)
|
module Thesis.ANormalDTerm where
open import Thesis.ANormal
ΔΔ : Context → Context
ΔΔ ∅ = ∅
ΔΔ (τ • Γ) = Δt τ • ΔΔ Γ
Δτ = Δt
ChΔ : ∀ (Δ : Context) → Set
ChΔ Δ = ⟦ ΔΔ Δ ⟧Context
-- [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set
-- [ ∅ ]Δ ∅ from ∅ to ∅ = ⊤
-- [ τ • Δ ]Δ dv • dρ from v1 • ρ1 to (v2 • ρ2) = [ τ ]τ dv from v1 to v2 × [ Δ ]Δ dρ from ρ1 to ρ2
data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where
v∅ : [ ∅ ]Δ ∅ from ∅ to ∅
_v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ]τ dv from v1 to v2) →
(dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) →
[ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2)
derive-dvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔ Δ) (Δτ σ)
derive-dvar this = this
derive-dvar (that x) = that (derive-dvar x)
fromtoDeriveDVar : ∀ {Δ τ} → (x : Var Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dvar x ⟧Var dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveDVar this (dvv v• dρρ) = dvv
fromtoDeriveDVar (that x) (dvv v• dρρ) = fromtoDeriveDVar x dρρ
-- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces
-- a result of type (Δt τ).
data DTerm : (Δ : Context) (τ : Type) → Set where
dvar : ∀ {Δ τ} (x : Var (ΔΔ Δ) (Δt τ)) →
DTerm Δ τ
dlett : ∀ {Δ τ σ τ₁} →
(f : Var Δ (σ ⇒ τ₁)) →
(x : Var Δ σ) →
(t : Term (τ₁ • Δ) τ) →
(df : Var (ΔΔ Δ) (Δτ (σ ⇒ τ₁))) →
(dx : Var (ΔΔ Δ) (Δτ σ)) →
(dt : DTerm (τ₁ • Δ) τ) →
DTerm Δ τ
data DFun (Δ : Context) : (τ : Type) → Set where
dterm : ∀ {τ} → DTerm Δ τ → DFun Δ τ
dabs : ∀ {σ τ} → DFun (σ • Δ) τ → DFun Δ (σ ⇒ τ)
derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ
derive-dterm (var x) = dvar (derive-dvar x)
derive-dterm (lett f x t) =
dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t)
⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dvar x ⟧DTerm ρ dρ = ⟦ x ⟧Var dρ
⟦ dlett f x t df dx dt ⟧DTerm ρ dρ =
let v = (⟦ x ⟧Var ρ)
in
⟦ dt ⟧DTerm
(⟦ f ⟧Var ρ v • ρ)
(⟦ df ⟧Var dρ v (⟦ dx ⟧Var dρ) • dρ)
fromtoDeriveDTerm : ∀ {Δ τ} → (t : Term Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dterm t ⟧DTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDeriveDTerm (var x) dρρ = fromtoDeriveDVar x dρρ
fromtoDeriveDTerm (lett f x t) dρρ =
let fromToF = fromtoDeriveDVar f dρρ
fromToX = fromtoDeriveDVar x dρρ
fromToFX = fromToF _ _ _ fromToX
in fromtoDeriveDTerm t (fromToFX v• dρρ)
derive-dfun : ∀ {Δ σ} → (t : Fun Δ σ) → DFun Δ σ
derive-dfun (term t) = dterm (derive-dterm t)
derive-dfun (abs f) = dabs (derive-dfun f)
⟦_⟧DFun : ∀ {Δ τ} → DFun Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dterm t ⟧DFun = ⟦ t ⟧DTerm
⟦ dabs df ⟧DFun ρ dρ = λ v dv → ⟦ df ⟧DFun (v • ρ) (dv • dρ)
fromtoDeriveDFun : ∀ {Δ τ} → (f : Fun Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dfun f ⟧DFun ρ1 dρ) from (⟦ f ⟧Fun ρ1) to (⟦ f ⟧Fun ρ2)
fromtoDeriveDFun (term t) = fromtoDeriveDTerm t
fromtoDeriveDFun (abs f) dρρ = λ dv v1 v2 dvv → fromtoDeriveDFun f (dvv v• dρρ)
|
remove bad experiments
|
ANormalDTerm: remove bad experiments
|
Agda
|
mit
|
inc-lc/ilc-agda
|
3ef9b9505385dfad155ad9a494a161385271f576
|
ZK/GroupHom/ElGamal.agda
|
ZK/GroupHom/ElGamal.agda
|
{-# OPTIONS --without-K #-}
open import Type using (Type)
open import Function using (flip; _∘_)
open import Data.Product renaming (proj₁ to fst; proj₂ to snd)
open import Data.Two
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP using (_≡_; ap; ap₂; !_; _∙_; module ≡-Reasoning)
open import Algebra.Group
open import Algebra.Group.Constructions
open import Algebra.Group.Homomorphism
import ZK.SigmaProtocol.KnownStatement
import ZK.GroupHom
open import ZK.GroupHom.Types
module ZK.GroupHom.ElGamal
(G+ G* : Type)
(𝔾+ : Group G+)
(𝔾* : Group G*)
(_==_ : G* → G* → 𝟚)
(✓-== : ∀ {x y} → x ≡ y → ✓ (x == y))
(==-✓ : ∀ {x y} → ✓ (x == y) → x ≡ y)
(_^_ : G* → G+ → G*)
(^-hom : ∀ b → GroupHomomorphism 𝔾+ 𝔾* (_^_ b))
(g : G*)
where
open Additive-Group 𝔾+
open Multiplicative-Group 𝔾* hiding (_^_)
-- TODO: Re-use another module
module ElGamal-encryption where
record CipherText : Type where
constructor _,_
field
α β : G*
PubKey = G*
PrivKey = G+
EncRnd = G+ {- randomness used for encryption of ct -}
Message = G* {- plain text message -}
enc : PubKey → EncRnd → Message → CipherText
enc y r M = α , β where
α = g ^ r
β = (y ^ r) * M
dec : PrivKey → CipherText → Message
dec x ct = (α ^ x)⁻¹ * β where
open CipherText ct
open ElGamal-encryption
-- CP : (g₀ g₁ u₀ u₁ : G) (w : ℤq) → Type
-- CP g₀ g₁ u₀ u₁ w = (g₀ ^ w ≡ u₀) × (g₁ ^ w ≡ u₁)
-- CP : (g₀ g₁ u₀ u₁ : G*) (w : G+) → Type
-- CP g₀ g₁ u₀ u₁ w = ✓ (((g₀ ^ w) == u₀) ∧ ((g₁ ^ w) == u₁))
module _ (y : PubKey)
(M : Message)
(ct : CipherText)
where
module CT = CipherText ct
KnownEncRnd : EncRnd → Type
KnownEncRnd r = enc y r M ≡ ct
known-enc-rnd : GrpHom _ _ KnownEncRnd
known-enc-rnd = record
{ 𝔾+ = 𝔾+
; 𝔾* = Product.×-grp 𝔾* 𝔾*
; _==_ = λ x y → fst x == fst y ∧ snd x == snd y
; ✓-== = λ e → ✓∧ (✓-== (ap fst e)) (✓-== (ap snd e))
; ==-✓ = λ e → let p = ✓∧× e in
ap₂ _,_ (==-✓ (fst p))
(==-✓ (snd p))
; φ = _
; φ-hom = Pair.pair-hom _ _ _ (_^_ g) (^-hom g)
(_^_ y) (^-hom y)
; y = CT.α , CT.β / M
; φ⇒P = λ _ e → ap₂ (λ p q → fst p , q) e
(ap (flip _*_ M ∘ snd) e ∙ ! /-*)
; P⇒φ = λ _ e → ap₂ _,_ (ap CipherText.α e)
(*-/ ∙ ap (flip _/_ M) (ap CipherText.β e))
}
KnownDec : PrivKey → Type
KnownDec x = (g ^ x ≡ y) × (dec x ct ≡ M)
open ≡-Reasoning
/⁻¹-* : ∀ {x y} → (x / y)⁻¹ * x ≡ y
/⁻¹-* {x} {y} =
(x / y)⁻¹ * x ≡⟨ ap (λ z → z * x) ⁻¹-hom′ ⟩
y ⁻¹ ⁻¹ * x ⁻¹ * x ≡⟨ *-assoc ⟩
y ⁻¹ ⁻¹ * (x ⁻¹ * x) ≡⟨ ap₂ _*_ ⁻¹-involutive (fst ⁻¹-inverse) ⟩
y * 1# ≡⟨ *1-identity ⟩
y ∎
/-⁻¹* : ∀ {x y} → x / (y ⁻¹ * x) ≡ y
/-⁻¹* {x} {y} =
x * (y ⁻¹ * x) ⁻¹ ≡⟨ ap (_*_ x) ⁻¹-hom′ ⟩
x * (x ⁻¹ * y ⁻¹ ⁻¹) ≡⟨ ! *-assoc ⟩
(x * x ⁻¹) * y ⁻¹ ⁻¹ ≡⟨ *= (snd ⁻¹-inverse) ⁻¹-involutive ⟩
1# * y ≡⟨ 1*-identity ⟩
y ∎
known-dec : GrpHom _ _ KnownDec
known-dec = record
{ 𝔾+ = 𝔾+
; 𝔾* = Product.×-grp 𝔾* 𝔾*
; _==_ = λ x y → fst x == fst y ∧ snd x == snd y
; ✓-== = λ e → ✓∧ (✓-== (ap fst e)) (✓-== (ap snd e))
; ==-✓ = λ e → let p = ✓∧× e in
ap₂ _,_ (==-✓ (fst p))
(==-✓ (snd p))
; φ = _
; φ-hom = Pair.pair-hom _ _ _ (_^_ g) (^-hom g)
(_^_ CT.α) (^-hom CT.α)
; y = y , CT.β / M
; φ⇒P = λ x e → ap fst e , ap (λ z → z ⁻¹ * CT.β) (ap snd e) ∙ /⁻¹-*
; P⇒φ = λ x e → ap₂ _,_ (fst e) (! /-⁻¹* ∙ ap (_/_ CT.β) (snd e))
}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Type using (Type)
open import Type.Eq
open import Function.NP using (flip; _∘_; it)
open import Data.Product.NP
open import Data.Two hiding (_²)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP using (idp; _≡_; ap; ap₂; !_; _∙_; module ≡-Reasoning)
open import Algebra.Group
open import Algebra.Group.Constructions
open import Algebra.Group.Homomorphism
import ZK.GroupHom
open import ZK.GroupHom.Types
module ZK.GroupHom.ElGamal
(G+ G* : Type)
(𝔾+ : Group G+)
(𝔾* : Group G*)
(G*-eq? : Eq? G*)
(_^_ : G* → G+ → G*)
(^-hom : ∀ b → GroupHomomorphism 𝔾+ 𝔾* (_^_ b))
(g : G*)
where
module 𝔾* = Group 𝔾*
open Additive-Group 𝔾+
open module MG = Multiplicative-Group 𝔾* hiding (_^_; _²)
module ^ b = GroupHomomorphism (^-hom b)
_² : Type → Type
A ² = A × A
-- TODO: Re-use another module
module ElGamal-encryption where
PubKey = G*
PrivKey = G+
EncRnd = G+ {- randomness used for encryption of ct -}
Message = G* {- plain text message -}
CipherText = G* × G*
module CipherText (ct : CipherText) where
α β : G*
α = fst ct
β = snd ct
pub-of : PrivKey → PubKey
pub-of sk = g ^ sk
enc : PubKey → Message → EncRnd → CipherText
enc y M r = α , β
module enc where
α = g ^ r
β = (y ^ r) * M
dec : PrivKey → CipherText → Message
dec sk (α , β) = (α ^ sk)⁻¹ * β
open ElGamal-encryption
open Product
_²-grp : {A : Type} → Group A → Group (A ²)
𝔸 ²-grp = ×-grp 𝔸 𝔸
𝕄 : Group Message
𝕄 = 𝔾*
ℂ𝕋 : Group CipherText
ℂ𝕋 = ×-grp 𝔾* 𝔾*
-- CP : (g₀ g₁ u₀ u₁ : G) (w : ℤq) → Type
-- CP g₀ g₁ u₀ u₁ w = (g₀ ^ w ≡ u₀) × (g₁ ^ w ≡ u₁)
-- CP : (g₀ g₁ u₀ u₁ : G*) (w : G+) → Type
-- CP g₀ g₁ u₀ u₁ w = ✓ (((g₀ ^ w) == u₀) ∧ ((g₁ ^ w) == u₁))
module Known-enc-rnd
(y : PubKey)
(M : Message)
(ct : CipherText)
where
module ct = CipherText ct
Valid-witness : EncRnd → Type
Valid-witness r = enc y M r ≡ ct
zk-hom : ZK-hom _ _ Valid-witness
zk-hom = record
{ φ-hom = < ^-hom g , ^-hom y >-hom
; y = ct.α , ct.β / M
; φ⇒P = λ _ e → ap₂ (λ p q → fst p , q) e
(ap (flip _*_ M ∘ snd) e ∙ ! /-*)
; P⇒φ = λ _ e → ap₂ _,_ (ap fst e)
(*-/ ∙ ap (flip _/_ M) (ap snd e))
}
open ≡-Reasoning
/⁻¹-* : ∀ {x y} → (x / y)⁻¹ * x ≡ y
/⁻¹-* {x} {y} =
(x / y)⁻¹ * x ≡⟨ ap (λ z → z * x) ⁻¹-hom′ ⟩
y ⁻¹ ⁻¹ * x ⁻¹ * x ≡⟨ *-assoc ⟩
y ⁻¹ ⁻¹ * (x ⁻¹ * x) ≡⟨ ap₂ _*_ ⁻¹-involutive (fst ⁻¹-inverse) ⟩
y * 1# ≡⟨ *1-identity ⟩
y ∎
/-⁻¹* : ∀ {x y} → x / (y ⁻¹ * x) ≡ y
/-⁻¹* {x} {y} =
x * (y ⁻¹ * x) ⁻¹ ≡⟨ ap (_*_ x) ⁻¹-hom′ ⟩
x * (x ⁻¹ * y ⁻¹ ⁻¹) ≡⟨ ! *-assoc ⟩
(x * x ⁻¹) * y ⁻¹ ⁻¹ ≡⟨ *= (snd ⁻¹-inverse) ⁻¹-involutive ⟩
1# * y ≡⟨ 1*-identity ⟩
y ∎
x⁻¹y≡1→x≡y : ∀ {x y} → x ⁻¹ * y ≡ 1# → x ≡ y
x⁻¹y≡1→x≡y e = cancels-*-left (fst ⁻¹-inverse ∙ ! e)
module Known-dec
(y : PubKey)
(M : Message)
(ct : CipherText)
where
module ct = CipherText ct
Valid-witness : PrivKey → Type
Valid-witness sk = (g ^ sk ≡ y) × (dec sk ct ≡ M)
zk-hom : ZK-hom _ _ Valid-witness
zk-hom = record
{ φ-hom = < ^-hom g , ^-hom ct.α >-hom
; y = y , ct.β / M
; φ⇒P = λ x e → ap fst e , ap (λ z → z ⁻¹ * ct.β) (ap snd e) ∙ /⁻¹-*
; P⇒φ = λ x e → ap₂ _,_ (fst e) (! /-⁻¹* ∙ ap (_/_ ct.β) (snd e))
}
-- Inverse of ciphertexts
_⁻¹CT : CipherText → CipherText
(α , β)⁻¹CT = α ⁻¹ , β ⁻¹
-- Division of ciphertexts
_/CT_ : CipherText → CipherText → CipherText
(α₀ , β₀) /CT (α₁ , β₁) = (α₀ / α₁) , (β₀ / β₁)
-- TODO: Move this elsewhere (Cipher.ElGamal.Homomorphic)
import Algebra.FunctionProperties.Eq as FP
open FP.Implicits
open import Algebra.Group.Abelian
module From-*-comm
(*-comm : Commutative _*_)
where
private
module 𝔾*-comm = Abelian-Group-Struct (𝔾*.grp-struct , *-comm)
hom-enc : (y : PubKey) → GroupHomomorphism (×-grp 𝕄 𝔾+) ℂ𝕋 (uncurry (enc y))
hom-enc y = mk λ { {M₀ , r₀} {M₁ , r₁} →
ap₂ _,_ (^.hom _)
(enc.β y (M₀ * M₁) (r₀ + r₁) ≡⟨by-definition⟩
y ^ (r₀ + r₁) * (M₀ * M₁) ≡⟨ *= (^.hom y) idp ⟩
(y ^ r₀ * y ^ r₁) * (M₀ * M₁) ≡⟨ 𝔾*-comm.interchange ⟩
enc.β y M₀ r₀ * enc.β y M₁ r₁ ∎) }
module hom-enc y = GroupHomomorphism (hom-enc y)
-- The encryption of the inverse is the inverse of the encryption
-- (notice that the randomnesses seems to be negated only because we give an additive notation to our G+ group)
enc-⁻¹ : ∀ {y M r} → enc y (M ⁻¹) (0− r) ≡ enc y M r ⁻¹CT
enc-⁻¹ = hom-enc.pres-inv _
-- The encryption of the division is the division of the encryptions
-- (notice that the randomnesses seems to be subtracted only because we give an additive notation to our G+ group)
enc-/ : ∀ {y M₀ r₀ M₁ r₁} → enc y (M₀ / M₁) (r₀ − r₁) ≡ enc y M₀ r₀ /CT enc y M₁ r₁
enc-/ = hom-enc.−-/ _
-- Alice wants to prove to the public that she encrypted the
-- same message for two (potentially different) recepients
-- without revealing the content of the message or the randomness
-- used for the encryptions.
module Message-equality-enc
(y₀ y₁ : PubKey)
(ct₀ ct₁ : CipherText)
where
module ct₀ = CipherText ct₀
module ct₁ = CipherText ct₁
Witness = Message × EncRnd ²
Statement = CipherText ²
Valid-witness : Witness → Type
Valid-witness (M , r₀ , r₁) = enc y₀ M r₀ ≡ ct₀ × enc y₁ M r₁ ≡ ct₁
private
θ : Message × EncRnd ² → (Message × EncRnd)²
θ (M , r₀ , r₁) = ((M , r₀) , (M , r₁))
θ-hom : GroupHomomorphism (×-grp 𝕄 (𝔾+ ²-grp)) ((×-grp 𝕄 𝔾+)²-grp) θ
θ-hom = mk idp
φ-hom : GroupHomomorphism _ _ _
φ-hom = < hom-enc y₀ × hom-enc y₁ >-hom ∘-hom θ-hom
zk-hom : ZK-hom _ _ Valid-witness
zk-hom = record
{ φ-hom = φ-hom
; y = ct₀ , ct₁
; φ⇒P = λ _ e → ap fst e , ap snd e
; P⇒φ = λ x e → ap₂ _,_ (fst e) (snd e)
}
module From-flip-^-hom
(flip-^-hom : ∀ x → GroupHomomorphism 𝔾* 𝔾* (flip _^_ x))
where
module flip-^ x = GroupHomomorphism (flip-^-hom x)
hom-dec : (x : PrivKey) → GroupHomomorphism ℂ𝕋 𝕄 (dec x)
hom-dec x = mk λ { {α₀ , β₀} {α₁ , β₁} →
dec x (α₀ * α₁ , β₀ * β₁) ≡⟨by-definition⟩
((α₀ * α₁) ^ x)⁻¹ * (β₀ * β₁) ≡⟨ ap (λ z → _*_ (_⁻¹ z) (_*_ β₀ β₁)) (flip-^.hom x) ⟩
(α₀ ^ x * α₁ ^ x)⁻¹ * (β₀ * β₁) ≡⟨ *= 𝔾*-comm.⁻¹-hom idp ⟩
(α₀ ^ x)⁻¹ * (α₁ ^ x)⁻¹ * (β₀ * β₁) ≡⟨ 𝔾*-comm.interchange ⟩
dec x (α₀ , β₀) * dec x (α₁ , β₁) ∎ }
module hom-dec x = GroupHomomorphism (hom-dec x)
-- Bob wants to prove to the public that he decrypted two
-- ciphertexts which decrypt to the same message,
-- without revealing the content of the message or his
-- secret key.
-- The two ciphertexts are encrypted using the same public key.
module Message-equality-dec
(y : PubKey)
(ct₀ ct₁ : CipherText)
where
private
module ct₀ = CipherText ct₀
module ct₁ = CipherText ct₁
α/ = ct₀.α / ct₁.α
β/ = ct₀.β / ct₁.β
Valid-witness : PrivKey → Type
Valid-witness sk = pub-of sk ≡ y × dec sk ct₀ ≡ dec sk ct₁
zk-hom : ZK-hom _ _ Valid-witness
zk-hom = record
{ φ-hom = < ^-hom g , ^-hom (ct₀.α / ct₁.α) >-hom
; y = y , ct₀.β / ct₁.β
; φ⇒P = λ x e →
ap fst e ,
x/y≡1→x≡y
(dec x ct₀ / dec x ct₁ ≡⟨ ! hom-dec.−-/ x ⟩
dec x (ct₀ /CT ct₁) ≡⟨by-definition⟩
dec x (α/ , β/) ≡⟨ ! ap (λ z → dec x (α/ , snd z)) e ⟩
dec x (α/ , (α/)^ x) ≡⟨ fst ⁻¹-inverse ⟩
1# ∎)
; P⇒φ = λ x e → ap₂ _,_ (fst e)
(x⁻¹y≡1→x≡y
(dec x (α/ , β/) ≡⟨ hom-dec.−-/ x ⟩
dec x ct₀ / dec x ct₁ ≡⟨ /= (snd e) idp ⟩
dec x ct₁ / dec x ct₁ ≡⟨ snd ⁻¹-inverse ⟩
1# ∎))
}
-- -}
-- -}
-- -}
|
add proofs of equality of message (two styles)
|
ZK.GroupHom.ElGamal: add proofs of equality of message (two styles)
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
ccb724c55f5701acf132f0a3045f0a1c2d116f96
|
Denotational/ValidChanges.agda
|
Denotational/ValidChanges.agda
|
module Denotational.ValidChanges where
open import Data.Product
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Equivalence
open import Changes
-- DEFINITION of valid changes via a logical relation
{-
What I wanted to write:
data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where
base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv
fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) →
(∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) →
ValidΔ f df
-}
-- What I had to write:
-- Note: now I could go back to using a datatype, since the datatype is now strictly positive.
Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set
Valid-Δ {bool} v dv = ⊤
Valid-Δ {S ⇒ T} f df =
∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} →
Valid-Δ (f s) (df s ds) ×
(apply df f) (apply ds s) ≡ apply (df s ds) (f s)
diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v)
diff-is-valid {bool} v′ v = tt
diff-is-valid {τ ⇒ τ₁} v′ v =
λ s ds →
diff-is-valid (v′ (apply ds s)) (v s) , (
begin
apply (diff v′ v) v (apply ds s)
≡⟨ refl ⟩
apply
(diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s)))
(v (apply ds s))
≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩
apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s))
≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩
v′ (apply ds s)
≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩
apply ((diff v′ v) s ds) (v s)
∎) where open ≡-Reasoning
derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v)
derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v
-- This is a postulate elsewhere, but here I provide a proper proof.
diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) →
(Valid-Δ v dv) → diff (apply dv v) v ≡ dv
diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv →
begin
diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v)
≡⟨ ≡-cong
(λ x → diff x (f v))
(sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩
diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v)
≡⟨ ≡-cong
(λ x → diff (apply df f x) (f v))
(apply-derive (apply dv v)) ⟩
diff ((apply df f) (apply dv v)) (f v)
≡⟨ ≡-cong
(λ x → diff x (f v))
(proj₂ (df-valid v dv)) ⟩
diff (apply (df v dv) (f v)) (f v)
≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩
df v dv
∎)) where open ≡-Reasoning
diff-apply-proof {bool} db b _ = xor-cancellative b db
|
module Denotational.ValidChanges where
open import Data.Product
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Equivalence
open import Changes
-- DEFINITION of valid changes via a logical relation
{-
What I wanted to write:
data Valid-Δ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where
base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv
fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) →
(∀ (s : ⟦ S ⟧) ds → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) →
ValidΔ f df
-}
-- What I had to write:
-- Note: now I could go back to using a datatype, since the datatype is now strictly positive.
Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set
Valid-Δ {bool} v dv = ⊤
Valid-Δ {S ⇒ T} f df =
∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} →
Valid-Δ (f s) (df s ds) ×
(apply df f) (apply ds s) ≡ apply (df s ds) (f s)
diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v)
diff-is-valid {bool} v′ v = tt
diff-is-valid {τ ⇒ τ₁} v′ v =
λ s ds →
diff-is-valid (v′ (apply ds s)) (v s) , (
begin
apply (diff v′ v) v (apply ds s)
≡⟨ refl ⟩
apply
(diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s)))
(v (apply ds s))
≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩
apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s))
≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩
v′ (apply ds s)
≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩
apply ((diff v′ v) s ds) (v s)
∎) where open ≡-Reasoning
derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v)
derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v
-- This is a postulate elsewhere, but here I provide a proper proof.
diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) →
(Valid-Δ v dv) → diff (apply dv v) v ≡ dv
diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv →
begin
diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v)
≡⟨ ≡-cong
(λ x → diff x (f v))
(sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩
diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v)
≡⟨ ≡-cong
(λ x → diff (apply df f x) (f v))
(apply-derive (apply dv v)) ⟩
diff ((apply df f) (apply dv v)) (f v)
≡⟨ ≡-cong
(λ x → diff x (f v))
(proj₂ (df-valid v dv)) ⟩
diff (apply (df v dv) (f v)) (f v)
≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩
df v dv
∎)) where open ≡-Reasoning
diff-apply-proof {bool} db b _ = xor-cancellative b db
|
Update alternative definition of Valid-Δ
|
agda: Update alternative definition of Valid-Δ
Rationale for maintaining this alternative definition: If all proofs
go through with the current definition of Valid-Δ, which can be
expressed as a datatype, we'll switch to defining it with a datatype.
Old-commit-hash: a21df87af1c12f4d94d3710d37e6e4eedfcc83b0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
884a5f0cedea9599476b8420c36f53c0676e8551
|
arrow.agda
|
arrow.agda
|
data Bool : Set where
true : Bool
false : Bool
--------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
--------------------
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
--------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
modusponens : ℕ → Arrow → Arrow
modusponens n (⇒ q) = (⇒ q)
modusponens n (p ⇒ q) with (n ≡ p)
... | true = modusponens n q
... | false = p ⇒ (modusponens n q)
reduce : ℕ → List Arrow → List Arrow
reduce n ∘ = ∘
reduce n (arr ∷ rst) = (modusponens n arr) ∷ (reduce n rst)
search : List Arrow → List ℕ
search ∘ = ∘
search ((⇒ n) ∷ rst) = n ∷ (search (reduce n rst))
search ((n ⇒ q) ∷ rst) with (n ∈ (search rst))
... | true = search (q ∷ rst)
... | false = search rst
|
data Bool : Set where
true : Bool
false : Bool
--------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
--------------------
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
--------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
modusponens : ℕ → Arrow → Arrow
modusponens n (⇒ q) = (⇒ q)
modusponens n (p ⇒ q) with (n ≡ p)
... | true = modusponens n q
... | false = p ⇒ (modusponens n q)
reduce : ℕ → List Arrow → List Arrow
reduce n ∘ = ∘
reduce n (arr ∷ rst) = (modusponens n arr) ∷ (reduce n rst)
search : List Arrow → List ℕ
search ∘ = ∘
search ((⇒ n) ∷ rst) = n ∷ (search (reduce n rst))
search ((n ⇒ q) ∷ rst) with (n ∈ (search rst))
... | true = search (q ∷ rst)
... | false = search rst
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (search cs)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
|
Add turnstile
|
Add turnstile
|
Agda
|
mit
|
louisswarren/hieretikz
|
b5aa26aa273178564c9e3df4846793f1e96e2e81
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Level
-- Extension Point: Change algebras for base types
Structure : Set₁
Structure = ChangeAlgebraFamily ⟦_⟧Base
module Structure {{change-algebra-base : Structure}} where
-- change algebras
open CA public renaming
-- Constructors for All′
( [] to ∅
; _∷_ to _•_
)
-- We provide: change algebra for every type
instance
change-algebra : ∀ τ → ChangeAlgebra ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = changeAlgebraFun {{change-algebra τ₁}} {{change-algebra τ₂}}
change-algebra-family : ChangeAlgebraFamily ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
module _ {τ₁ τ₂ : Type} where
open FunctionChange {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- We also provide: change environments (aka. environment changes).
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebraListChanges to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍_₎ Γ
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Level
-- Extension Point: Change algebras for base types
Structure : Set₁
Structure = ChangeAlgebraFamily ⟦_⟧Base
module Structure {{change-algebra-base : Structure}} where
-- change algebras
open CA public renaming
-- Constructors for All′
( [] to ∅
; _∷_ to _•_
)
change-algebra : ∀ τ → ChangeAlgebra ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = changeAlgebraFun {{change-algebra τ₁}} {{change-algebra τ₂}}
-- We provide: change algebra for every type
instance
change-algebra-family : ChangeAlgebraFamily ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
module _ {τ₁ τ₂ : Type} where
open FunctionChange {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- We also provide: change environments (aka. environment changes).
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebraListChanges to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍_₎ Γ
|
Disable unused instance
|
Disable unused instance
Agda will not infer explicit arguments of instance arguments. On the
other hand, trying to make this into a proper instance (with an implicit
argument) makes typechecking too much slower or not terminating (more
precisely, on some modules typechecking took longer than I wanted to
wait and I didn't investigate further).
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e41ee7bc6a42348d7050206b8746f460ef632c69
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : Base → Set
valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set
apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base
diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι
R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v)
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
-- Change : Type → Set
Change (base ι) = Change-base ι
Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn
f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ})
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
m ⊟₍ base ι ₎ n = diff-change-base ι m n
g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v
-- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
valid {base ι} n Δn = valid-base {ι} n Δn
valid {σ ⇒ τ} f Δf =
∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv)
→ valid {τ} (f v) (Δf v Δv R[v,Δv])
-- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
× (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv]
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v}
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] →
let
w′ = w ⊞₍ σ ₎ Δw
in
R[v,u-v] {τ}
,
(begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩
v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw]
∎) where open ≡-Reasoning
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
ValidChange : Type → Set
ValidChange τ = Triple
⟦ τ ⟧
(λ _ → Change τ)
(λ v dv → valid {τ} v dv)
ΔEnv : Context → Set
ΔEnv = DependentList ValidChange
ignore-valid-change : ValidChange ⊆ ⟦_⟧
ignore-valid-change (cons v _ _) = v
update-valid-change : ValidChange ⊆ ⟦_⟧
update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv
ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
ignore = map (λ {τ} → ignore-valid-change {τ})
update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
update = map (λ {τ} → update-valid-change {τ})
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : Base → Set
valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set
apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base
diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι
R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v)
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
-- Change : Type → Set
ValidChange : Type → Set
ValidChange τ = Triple
⟦ τ ⟧
(λ _ → Change τ)
(λ v dv → valid {τ} v dv)
Change (base ι) = Change-base ι
Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn
f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ})
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
m ⊟₍ base ι ₎ n = diff-change-base ι m n
g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v
-- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
valid {base ι} n Δn = valid-base {ι} n Δn
valid {σ ⇒ τ} f Δf =
∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv)
→ valid {τ} (f v) (Δf v Δv R[v,Δv])
-- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
× (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv]
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v}
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] →
let
w′ = w ⊞₍ σ ₎ Δw
in
R[v,u-v] {τ}
,
(begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩
v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw]
∎) where open ≡-Reasoning
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
ΔEnv : Context → Set
ΔEnv = DependentList ValidChange
ignore-valid-change : ValidChange ⊆ ⟦_⟧
ignore-valid-change (cons v _ _) = v
update-valid-change : ValidChange ⊆ ⟦_⟧
update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv
ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
ignore = map (λ {τ} → ignore-valid-change {τ})
update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
update = map (λ {τ} → update-valid-change {τ})
|
Move ValidChange next to Change.
|
Move ValidChange next to Change.
This commit prepares for using ValidChange in the definition of Change.
Old-commit-hash: a90d85385de56e35cc3aba5821ddc4a2d3448247
|
Agda
|
mit
|
inc-lc/ilc-agda
|
6156984d33b98f39610ee7244b167632999b9b41
|
Parametric/Change/Correctness.agda
|
Parametric/Change/Correctness.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- That `derive t` implements ⟦ t ⟧Δ
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
derive-correct-closed : ∀ {τ} (t : Term ∅ τ) →
⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅
derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} →
{dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} →
⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧
main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} =
let
g = ⟦ f ⟧ ∅
Δg = ⟦ f ⟧Δ ∅ ∅
Δg′ = ⟦ derive f ⟧ ∅
v = ⟦ s ⟧ ∅
dv′ = ⟦ ds ⟧ ∅
u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅
-- Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
g u
≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩
g (v ⟦⊕₍ σ ₎⟧ dv′)
≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ corollary-closed {σ} {τ} f v dv ⟩
g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv
≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv)
(derive-correct f ∅ ∅ ∅ ∅ v dv dv′ erasure) ⟩
g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′
≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩
⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅
∎}) where open ≡-Reasoning
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- That `derive t` implements ⟦ t ⟧Δ
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
derive-correct-closed : ∀ {τ} (t : Term ∅ τ) →
⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅
derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} →
{dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} →
⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧
main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} =
let
g = ⟦ f ⟧ ∅
Δg = ⟦ f ⟧Δ ∅ ∅
Δg′ = ⟦ derive f ⟧ ∅
v = ⟦ s ⟧ ∅
dv′ = ⟦ ds ⟧ ∅
u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅
-- Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
g u
≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩
g (v ⟦⊕₍ σ ₎⟧ dv′)
≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ corollary-closed {σ} {τ} f v dv ⟩
g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv
≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv)
(derive-correct-closed f v dv dv′ erasure) ⟩
g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′
≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩
⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅
∎}) where open ≡-Reasoning
|
call derive-correct-closed instead of derive-correct in thm:main
|
call derive-correct-closed instead of derive-correct in thm:main
Old-commit-hash: 9fa1103b0ac110498ae8ab0d0c0f3320ff4b264f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
88a46de4b9496c0c6c4f861d964d90e3ae3cfd27
|
Syntax/Derive/Plotkin.agda
|
Syntax/Derive/Plotkin.agda
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
import Syntax.Term.Plotkin as Term
import Syntax.DeltaContext as DeltaContext
import Parametric.Change.Type as DeltaType
module Syntax.Derive.Plotkin
{Base : Set {- of base types -}}
{Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}}
(ΔBase : Base → Base)
(deriveConst :
∀ {Γ Σ τ} → Constant Σ τ →
Term.Terms
Constant
(DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Γ)
(DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Σ) →
Term.Term Constant (DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Γ) (DeltaType.ΔType ΔBase τ))
where
-- Terms of languages described in Plotkin style
open Type Base
open Context Type
open import Syntax.Context.Plotkin Base
open Term Constant
open DeltaType ΔBase
open DeltaContext ΔType
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (derive-terms ts)
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
import Syntax.Term.Plotkin as Term
import Syntax.DeltaContext as DeltaContext
import Parametric.Change.Type as ChangeType
module Syntax.Derive.Plotkin
{Base : Set {- of base types -}}
{Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}}
(ΔBase : Base → Base)
(deriveConst :
∀ {Γ Σ τ} → Constant Σ τ →
Term.Terms
Constant
(DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ)
(DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Σ) →
Term.Term Constant (DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ) (ChangeType.ΔType ΔBase τ))
where
-- Terms of languages described in Plotkin style
open Type Base
open Context Type
open import Syntax.Context.Plotkin Base
open Term Constant
open ChangeType ΔBase
open DeltaContext ΔType
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (derive-terms ts)
|
Update qualified import for new module name.
|
Update qualified import for new module name.
Old-commit-hash: 2cb47a8d412768ed582e8af1a042b51c3ca781be
|
Agda
|
mit
|
inc-lc/ilc-agda
|
92f785054b5dd55703ecbd7d5aec15af5e0d04d2
|
README.agda
|
README.agda
|
module README where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
-- The formalization is split across the following files.
-- TODO: document them more.
-- Note that we postulate function extensionality (in
-- `Denotational.ExtensionalityPostulate`), known to be consistent
-- with intensional type theory.
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.ChangeTypes.ChangesAreDerivatives
open import Syntactic.ChangeContexts
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.ExtensionalityPostulate
open import Denotational.EqualityLemmas
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Changes
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Denotational.WeakValidChanges
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- This finishes the correctness proof of the above work.
open import total
-- EXAMPLES
open import Examples.Examples1
-- NATURAL semantics
open import Syntactic.Closures
open import Denotational.Closures
open import Natural.Lookup
open import Natural.Evaluation
open import Natural.Soundness
-- Other calculi
open import partial
open import lambda
|
module README where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
--
-- XXX: fill in again other details.
-- 41e0f95d7fda7244a258b67f8a4255e4128a42c3 declares that the main theorems are
-- in these files:
open import Denotation.Derive.Canon-Popl14
open import Denotation.Derive.Optimized-Popl14
-- TODO: this file is intended to load all maintained Agda code; otherwise, a
-- better solution to issue #41 should be found.
--
-- Moreover, arguably it would be good if this file would list all relevant
-- imports, to highlight the structure of the development, as it did previously.
-- But I'm not sure what's the best structure.
|
Update a bit README.agda (#41)
|
Update a bit README.agda (#41)
README.agda was not up-to-date. Remaining issues are described inline.
Old-commit-hash: 93469332bbc849a2a13486a1bfae7d21dc9eb399
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9cdc324caee9ca0888f5f85d83d0727e04d6e654
|
incremental.agda
|
incremental.agda
|
module incremental where
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
infixr 5 _⇒_
-- Semantics
Dom⟦_⟧ : Type -> Set
Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Semantics
data Empty : Set where
∅ : Empty
data Bind A B : Set where
_•_ : (v : A) (ρ : B) → Bind A B
Env⟦_⟧ : Context → Set
Env⟦ ∅ ⟧ = Empty
Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- Semantics
lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
lookup⟦ this ⟧ (v • ρ) = v
lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
-- Semantics
eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ)
eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ)
eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ
-- WEAKENING
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₁ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
nil : ∀ {τ Γ} → Term Γ (Δ-Type τ)
nil {τ₁ ⇒ τ₂} =
abs nil
-- λx. nil
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ
-- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
Δ-term {Γ} (app t₁ t₂) = {!!}
Δ-term {Γ} (var x) = {!!}
|
module incremental where
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
infixr 5 _⇒_
-- Semantics
Dom⟦_⟧ : Type -> Set
Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Semantics
data Empty : Set where
∅ : Empty
data Bind A B : Set where
_•_ : (v : A) (ρ : B) → Bind A B
Env⟦_⟧ : Context → Set
Env⟦ ∅ ⟧ = Empty
Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- Semantics
lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
lookup⟦ this ⟧ (v • ρ) = v
lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
-- Semantics
eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ)
eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ)
eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ
-- WEAKENING
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₁ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
nil : ∀ {τ Γ} → Term Γ (Δ-Type τ)
nil {τ₁ ⇒ τ₂} =
abs nil
-- λx. nil
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ
-- CHANGE VARIABLES
-- changes 'x' to 'dx'
rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
rename this = that this
rename (that x) = that (that (rename x))
-- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound)
Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ)
Δ-var {∅} x = var (rename x)
Δ-var {τ • Γ} this = nil
Δ-var {τ • Γ} (that x) = Δ-var {Γ} x
-- CHANGE TERMS
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
Δ-term {Γ} (app t₁ t₂) = {!!}
Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
|
Implement 'Δ-term' for variables.
|
Implement 'Δ-term' for variables.
Old-commit-hash: dd0c2916cc4b7472353b0073fa6538f60e7325f5
|
Agda
|
mit
|
inc-lc/ilc-agda
|
f9aeb58a90443e04e8fd3afd4951c3d768d88d29
|
Syntax/Context/Plotkin.agda
|
Syntax/Context/Plotkin.agda
|
module Syntax.Context.Plotkin where
-- Context for Plotkin-stype language descriptions
--
-- Duplicates Syntax.Context to a large extent.
-- Consider having Syntax.Context import this module.
infixr 9 _•_
data Context {Type : Set} : Set where
∅ : Context {Type}
_•_ : (τ : Type) (Γ : Context {Type}) → Context {Type}
data Var {Type : Set} : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
|
module Syntax.Context.Plotkin where
-- Context for Plotkin-stype language descriptions
--
-- This module will tend to duplicate Syntax.Context to a large
-- extent. Consider having Syntax.Context specialize future
-- content of this module to maintain its interface.
infixr 9 _•_
data Context {Type : Set} : Set where
∅ : Context {Type}
_•_ : (τ : Type) (Γ : Context {Type}) → Context {Type}
data Var {Type : Set} : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
|
update description of Plotkin's context
|
Agda: update description of Plotkin's context
Reason: the previous description contains a modularization task
that is already partially carried out.
Reference:
https://github.com/ps-mr/ilc/commit/249e99d807e2382a37fb35aee78c235b98e427aa#commitcomment-3659727
Old-commit-hash: 3c52ba4a07600646db8de764b1460fa6b69c3014
|
Agda
|
mit
|
inc-lc/ilc-agda
|
63b0b983e562c4195da605874a1e5b1e379fa13c
|
UNDEFINED.agda
|
UNDEFINED.agda
|
-- Allow holes in modules to import, by introducing a single general postulate.
module UNDEFINED where
open import Data.Unit.NonEta using (Hidden)
open import Data.Unit.NonEta public using (reveal)
postulate
-- If this postulate would produce a T, it could be used as instance argument, triggering many ambiguities.
-- This postulate is named in capitals because it introduces an inconsistency.
-- Hence, this must be used through `reveal UNDEFINED`.
UNDEFINED : ∀ {ℓ} → {T : Set ℓ} → Hidden T
|
-- Allow holes in modules to import, by introducing a single general postulate.
module UNDEFINED where
postulate
UNDEFINED : ∀ {ℓ} → {T : Set ℓ} → T
|
Refactor UNDEFINED to simplify it (XXX untested)
|
Refactor UNDEFINED to simplify it (XXX untested)
Instance arguments changed behavior, so not every definition is
available anymore. Hence we can avoid the wrapping.
It typechecks, but not really tested on clients.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9c628f8fc4514a3379c8bb109b925c9a196d5571
|
Parametric/Syntax/MTerm.agda
|
Parametric/Syntax/MTerm.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Syntax.MType as MType
module Parametric.Syntax.MTerm
{Base : Type.Structure}
(Const : Term.Structure Base)
where
open Type.Structure Base
open MType.Structure Base
open Term.Structure Base Const
-- Our extension points are sets of primitives, indexed by the
-- types of their arguments and their return type.
-- We want different types of constants; some produce values, some produce
-- computations. In all cases, arguments are assumed to be values (though
-- individual primitives might require thunks).
ValConstStructure : Set₁
ValConstStructure = ValContext → ValType → Set
CompConstStructure : Set₁
CompConstStructure = ValContext → CompType → Set
module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where
mutual
-- Analogues of Terms
Vals : ValContext → ValContext → Set
Vals Γ = DependentList (Val Γ)
Comps : ValContext → List CompType → Set
Comps Γ = DependentList (Comp Γ)
data Val Γ : (τ : ValType) → Set where
vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ
-- XXX Do we need thunks? The draft in the paper doesn't have them.
-- However, they will start being useful if we deal with CBN source
-- languages.
vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ)
vConst : ∀ {Σ τ} →
(c : ValConst Σ τ) →
(args : Vals Γ Σ) →
Val Γ τ
data Comp Γ : (τ : CompType) → Set where
cConst : ∀ {Σ τ} →
(c : CompConst Σ τ) →
(args : Vals Γ Σ) →
Comp Γ τ
cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ
cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ)
{-
-- Originally, M to x in N. But here we have no names!
_into_ : ∀ {σ τ} →
(e₁ : Comp Γ (F σ)) →
(e₂ : Comp (σ •• Γ) τ) →
Comp Γ τ
-}
-- The following constructor is the main difference between CBPV and this
-- monadic calculus. This is better for the caching transformation.
_into_ : ∀ {σ τ} →
(e₁ : Comp Γ (F σ)) →
(e₂ : Comp (σ •• Γ) (F τ)) →
Comp Γ (F τ)
cAbs : ∀ {σ τ} →
(t : Comp (σ •• Γ) τ) →
Comp Γ (σ ⇛ τ)
cApp : ∀ {σ τ} →
(s : Comp Γ (σ ⇛ τ)) →
(t : Val Γ σ) →
Comp Γ τ
weaken-val : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Val Γ₁ τ →
Val Γ₂ τ
weaken-comp : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Comp Γ₁ τ →
Comp Γ₂ τ
weaken-vals : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Vals Γ₁ Σ →
Vals Γ₂ Σ
weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x)
weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x)
weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args)
weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args)
weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x)
weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v)
weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁)
weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c)
weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t)
weaken-vals Γ₁≼Γ₂ ∅ = ∅
weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts)
fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ)
fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ)
fromCBNTerms ∅ = ∅
fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts
open import UNDEFINED
-- This is really supposed to be part of the plugin interface.
cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ)
cbnToCompConst = reveal UNDEFINED
fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args)
fromCBN (var x) = cForce (vVar (fromVar cbnToValType x))
fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t))
fromCBN (abs t) = cAbs (fromCBN t)
-- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context.
-- But let's ignore that.
{-# NO_TERMINATION_CHECK #-}
fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ)
-- This is really supposed to be part of the plugin interface.
cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ)
cbvToCompConst = reveal UNDEFINED
cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ)
cbvTermsToComps ∅ = ∅
cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts
module _ where
dequeValContexts : ValContext → ValContext → ValContext
dequeValContexts ∅ Γ = Γ
dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ)
dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ
dequeValContexts≼≼ ∅ Γ = ≼≼-refl
dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) --
dequeContexts : Context → Context → ValContext
dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ)
fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ)
fromCBVArg t k = (fromCBV t) into k (vVar vThis)
fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ)
fromCBVArgs ∅ k = k ∅
fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs)))
-- Transform a constant application into
--
-- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))).
fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ)
-- pass that as a closure to compose with (_•_ x) for each new variable.
fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) -- fromCBVConstCPSDo ts {!cConst (cbvToCompConst c)!}
-- In the beginning, we should get a function that expects a whole set of
-- arguments (Vals Γ Σ) for c, in the initial context Γ.
-- Later, each call should match:
-- - Σ = τΣ • Σ′, then we recurse with Γ′ = τΣ • Γ and Σ′. Terms ought to be
-- weakened. The result of f (or the arguments) also ought to be weakened! So f should weaken
-- all arguments.
-- - Σ = ∅.
fromCBV (const c args) = fromCBVConstCPSRoot c args
fromCBV (app s t) =
(fromCBV s) into
((fromCBV (weaken (drop _ • ≼-refl) t)) into
cApp (cForce (vVar (vThat vThis))) (vVar vThis))
-- Values
fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x))
fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t)))
-- This reflects the CBV conversion of values in TLCA '99, but we can't write
-- this because it's partial on the Term type. Instead, we duplicate thunking
-- at the call site.
{-
fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ)
fromCBVToVal (var x) = vVar (fromVar cbvToValType x)
fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t))
fromCBVToVal (const c args) = {!!}
fromCBVToVal (app t t₁) = {!!} -- Not a value
-}
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Syntax.MType as MType
module Parametric.Syntax.MTerm
{Base : Type.Structure}
(Const : Term.Structure Base)
where
open Type.Structure Base
open MType.Structure Base
open Term.Structure Base Const
-- Our extension points are sets of primitives, indexed by the
-- types of their arguments and their return type.
-- We want different types of constants; some produce values, some produce
-- computations. In all cases, arguments are assumed to be values (though
-- individual primitives might require thunks).
ValConstStructure : Set₁
ValConstStructure = ValContext → ValType → Set
CompConstStructure : Set₁
CompConstStructure = ValContext → CompType → Set
module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where
mutual
-- Analogues of Terms
Vals : ValContext → ValContext → Set
Vals Γ = DependentList (Val Γ)
Comps : ValContext → List CompType → Set
Comps Γ = DependentList (Comp Γ)
data Val Γ : (τ : ValType) → Set where
vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ
-- XXX Do we need thunks? The draft in the paper doesn't have them.
-- However, they will start being useful if we deal with CBN source
-- languages.
vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ)
vConst : ∀ {Σ τ} →
(c : ValConst Σ τ) →
(args : Vals Γ Σ) →
Val Γ τ
data Comp Γ : (τ : CompType) → Set where
cConst : ∀ {Σ τ} →
(c : CompConst Σ τ) →
(args : Vals Γ Σ) →
Comp Γ τ
cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ
cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ)
{-
-- Originally, M to x in N. But here we have no names!
_into_ : ∀ {σ τ} →
(e₁ : Comp Γ (F σ)) →
(e₂ : Comp (σ •• Γ) τ) →
Comp Γ τ
-}
-- The following constructor is the main difference between CBPV and this
-- monadic calculus. This is better for the caching transformation.
_into_ : ∀ {σ τ} →
(e₁ : Comp Γ (F σ)) →
(e₂ : Comp (σ •• Γ) (F τ)) →
Comp Γ (F τ)
cAbs : ∀ {σ τ} →
(t : Comp (σ •• Γ) τ) →
Comp Γ (σ ⇛ τ)
cApp : ∀ {σ τ} →
(s : Comp Γ (σ ⇛ τ)) →
(t : Val Γ σ) →
Comp Γ τ
weaken-val : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Val Γ₁ τ →
Val Γ₂ τ
weaken-comp : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Comp Γ₁ τ →
Comp Γ₂ τ
weaken-vals : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) →
Vals Γ₁ Σ →
Vals Γ₂ Σ
weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x)
weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x)
weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args)
weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args)
weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x)
weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v)
weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁)
weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c)
weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t)
weaken-vals Γ₁≼Γ₂ ∅ = ∅
weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts)
fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ)
fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ)
fromCBNTerms ∅ = ∅
fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts
open import UNDEFINED
-- This is really supposed to be part of the plugin interface.
cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ)
cbnToCompConst = reveal UNDEFINED
fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args)
fromCBN (var x) = cForce (vVar (fromVar cbnToValType x))
fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t))
fromCBN (abs t) = cAbs (fromCBN t)
-- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context.
-- But let's ignore that.
{-# NO_TERMINATION_CHECK #-}
fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ)
-- This is really supposed to be part of the plugin interface.
cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ)
cbvToCompConst = reveal UNDEFINED
cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ)
cbvTermsToComps ∅ = ∅
cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts
module _ where
dequeValContexts : ValContext → ValContext → ValContext
dequeValContexts ∅ Γ = Γ
dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ)
dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ
dequeValContexts≼≼ ∅ Γ = ≼≼-refl
dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) --
dequeContexts : Context → Context → ValContext
dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ)
fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ)
fromCBVArg t k = (fromCBV t) into k (vVar vThis)
fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ)
fromCBVArgs ∅ k = k ∅
fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs)))
-- Transform a constant application into
--
-- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))).
fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ)
-- pass that as a closure to compose with (_•_ x) for each new variable.
fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) -- fromCBVConstCPSDo ts {!cConst (cbvToCompConst c)!}
-- In the beginning, we should get a function that expects a whole set of
-- arguments (Vals Γ Σ) for c, in the initial context Γ.
-- Later, each call should match:
-- - Σ = τΣ • Σ′, then we recurse with Γ′ = τΣ • Γ and Σ′. Terms ought to be
-- weakened. The result of f (or the arguments) also ought to be weakened! So f should weaken
-- all arguments.
-- - Σ = ∅.
fromCBV (const c args) = fromCBVConstCPSRoot c args
fromCBV (app s t) =
(fromCBV s) into
(fromCBV (weaken (drop _ • ≼-refl) t) into
cApp (cForce (vVar (vThat vThis))) (vVar vThis))
-- Values
fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x))
fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t)))
-- This reflects the CBV conversion of values in TLCA '99, but we can't write
-- this because it's partial on the Term type. Instead, we duplicate thunking
-- at the call site.
{-
fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ)
fromCBVToVal (var x) = vVar (fromVar cbvToValType x)
fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t))
fromCBVToVal (const c args) = {!!}
fromCBVToVal (app t t₁) = {!!} -- Not a value
-}
|
Drop extra parens
|
Drop extra parens
|
Agda
|
mit
|
inc-lc/ilc-agda
|
bf4c2374eee5aebf6d658c3c557a4233b3ba3172
|
flipbased.agda
|
flipbased.agda
|
module flipbased where
open import Algebra
import Level as L
open L using () renaming (_⊔_ to _L⊔_)
open import Function hiding (_⟨_⟩_)
open import Data.Nat.NP
open import Data.Nat.Properties
open import Data.Product using (proj₁; proj₂; _,_; swap; _×_)
open import Data.Bits hiding (replicateM)
open import Data.Bool
open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail)
open import Relation.Binary
import Relation.Binary.PropositionalEquality as ≡
open ≡ using (_≡_)
record M {a} n (A : Set a) : Set a where
constructor mk
field
run : Bits n → A
toss′ : M 1 Bit
toss′ = mk head
return′ : ∀ {a} {A : Set a} → A → M 0 A
return′ = mk ∘ const
pure′ : ∀ {a} {A : Set a} → A → M 0 A
pure′ = return′
comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A
comap f (mk g) = mk (g ∘ f)
weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A
weaken {m} = comap (drop m)
weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A
weaken′ = comap (take _)
private
take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n
take≤ z≤n _ = []
take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs
weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A
weaken≤ p = comap (take≤ p)
coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A
coerce ≡.refl = id
toss : ∀ {n} → M (1 + n) Bit
toss = weaken′ toss′
return : ∀ {n a} {A : Set a} → A → M n A
return = weaken′ ∘ return′
pure : ∀ {n a} {A : Set a} → A → M n A
pure = return
_>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B
_>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs))
_>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B
_>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_
_>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → M n₂ B → M (n₁ + n₂) B
_>>_ {n₁} x y = x >>= const y
map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B
map f x = mk (f ∘ M.run x)
-- map f x ≗ x >>=′ (return {0} ∘ f)
join : ∀ {n₁ n₂ a} {A : Set a} →
M n₁ (M n₂ A) → M (n₁ + n₂) A
join x = x >>= id
infixl 4 _⊛_
_⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B
_⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx
_⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} →
M m A → (A → B → C) → M n B → M (m + n) C
x ⟨ f ⟩ y = map f x ⊛ y
⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A
⟪_⟫ = pure
⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A
⟪_⟫′ = pure′
⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B
⟪ f · x ⟫ = map f x
⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} →
(A → B → C) → M m A → M n B → M (m + n) C
⟪ f · x · y ⟫ = map f x ⊛ y
⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} →
(A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D
⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z
_⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B)
x ⟨,⟩ y = ⟪ _,_ · x · y ⟫
_⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit
x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫
_⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m)
x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫
replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n)
replicateM {zero} _ = ⟪ [] ⟫
replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫
random : ∀ {n} → M n (Bits n)
-- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce
random {zero} = ⟪ [] ⟫
random {suc _} = ⟪ _∷_ · toss′ · random ⟫
randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m))
randomTbl m n = replicateM random
randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n)
randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫
randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A)
randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs)
2*_ : ℕ → ℕ
2* x = x + x
2^_ : ℕ → ℕ
2^ 0 = 1
2^ (suc n) = 2* (2^ n)
costRndFun : ℕ → ℕ → ℕ
costRndFun zero n = n
costRndFun (suc m) n = 2* (costRndFun m n)
lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n
lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl
lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl
randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n)
randomFun′ {zero} = ⟪ const · random ⟫
randomFun′ {suc m} = randomFunExt (randomFun′ {m})
record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where
infix 2 _≈_ _≋_
field
_≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ
refl : ∀ {n A} → Reflexive {A = M n A} _≈_
sym : ∀ {n A} → Symmetric {A = M n A} _≈_
-- not strictly transitive
reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A}
reflexive ≡.refl = refl
_≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ
_≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂)
where m≤n⊔m : ∀ m n → m ≤ n ⊔ m
m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n
-- Another name for _≋_
_looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ
_looks_ = _≋_
module WithEquiv (progEq : ProgEquiv L.zero L.zero) where
open ProgEquiv progEq
SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set
SecPRG prg = this looks random where this = ⟪ prg · random ⟫
record PRG k n : Set where
constructor _,_
field
prg : Bits k → Bits n
sec : SecPRG prg
OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set
OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in
this looks random
record PRF k m n : Set where
constructor _,_
field
prf : Bits k → Bits m → Bits n
sec : OneTimeSecPRF prf
OTP : ∀ {n} → Bits n → Bits n → Bits n
OTP key msg = key ⊕ msg
init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A
init f = ⟪ f · random ⟫
module Examples (progEq : ProgEquiv L.zero L.zero) where
open ProgEquiv progEq
open WithEquiv progEq
left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x
right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x
assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C}
→ (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g)
assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C}
→ (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g))
ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫
ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′
ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP
ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key)
ex₅ = ∀ {k n} → PRG k n → PRF k n n
|
module flipbased where
open import Algebra
import Level as L
open L using () renaming (_⊔_ to _L⊔_)
open import Function hiding (_⟨_⟩_)
open import Data.Nat.NP
open import Data.Bool
open import Data.Nat.Properties
open import Data.Product using (proj₁; proj₂; _,_; swap; _×_)
open import Data.Bits hiding (replicateM)
open import Data.Bool
open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail)
open import Relation.Binary
import Relation.Binary.PropositionalEquality as ≡
open ≡ using (_≡_)
record M {a} n (A : Set a) : Set a where
constructor mk
field
run : Bits n → A
toss′ : M 1 Bit
toss′ = mk head
return′ : ∀ {a} {A : Set a} → A → M 0 A
return′ = mk ∘ const
pure′ : ∀ {a} {A : Set a} → A → M 0 A
pure′ = return′
comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A
comap f (mk g) = mk (g ∘ f)
weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A
weaken {m} = comap (drop m)
weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A
weaken′ = comap (take _)
private
take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n
take≤ z≤n _ = []
take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs
weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A
weaken≤ p = comap (take≤ p)
coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A
coerce ≡.refl = id
toss : ∀ {n} → M (1 + n) Bit
toss = weaken′ toss′
return : ∀ {n a} {A : Set a} → A → M n A
return = weaken′ ∘ return′
pure : ∀ {n a} {A : Set a} → A → M n A
pure = return
_>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B
_>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs))
_>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B
_>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_
_>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ A → M n₂ B → M (n₁ + n₂) B
_>>_ {n₁} x y = x >>= const y
map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B
map f x = mk (f ∘ M.run x)
-- map f x ≗ x >>=′ (return {0} ∘ f)
join : ∀ {n₁ n₂ a} {A : Set a} →
M n₁ (M n₂ A) → M (n₁ + n₂) A
join x = x >>= id
infixl 4 _⊛_
_⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} →
M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B
_⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx
_⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} →
M m A → (A → B → C) → M n B → M (m + n) C
x ⟨ f ⟩ y = map f x ⊛ y
⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A
⟪_⟫ = pure
⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A
⟪_⟫′ = pure′
⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B
⟪ f · x ⟫ = map f x
⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} →
(A → B → C) → M m A → M n B → M (m + n) C
⟪ f · x · y ⟫ = map f x ⊛ y
⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} →
(A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D
⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z
choose : ∀ {n a} {A : Set a} → M n A → M n A → M (suc n) A
choose x y = ⟪ if_then_else_ · toss · x · y ⟫
_⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B)
x ⟨,⟩ y = ⟪ _,_ · x · y ⟫
_⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit
x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫
_⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m)
x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫
replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n)
replicateM {zero} _ = ⟪ [] ⟫
replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫
random : ∀ {n} → M n (Bits n)
-- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce
random {zero} = ⟪ [] ⟫
random {suc _} = ⟪ _∷_ · toss′ · random ⟫
randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m))
randomTbl m n = replicateM random
randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n)
randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫
randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A)
randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs)
2*_ : ℕ → ℕ
2* x = x + x
2^_ : ℕ → ℕ
2^ 0 = 1
2^ (suc n) = 2* (2^ n)
costRndFun : ℕ → ℕ → ℕ
costRndFun zero n = n
costRndFun (suc m) n = 2* (costRndFun m n)
lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n
lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl
lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl
randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n)
randomFun′ {zero} = ⟪ const · random ⟫
randomFun′ {suc m} = randomFunExt (randomFun′ {m})
record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where
infix 2 _≈_ _≋_
field
_≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ
refl : ∀ {n A} → Reflexive {A = M n A} _≈_
sym : ∀ {n A} → Symmetric {A = M n A} _≈_
-- not strictly transitive
reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A}
reflexive ≡.refl = refl
_≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ
_≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂)
where m≤n⊔m : ∀ m n → m ≤ n ⊔ m
m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n
-- Another name for _≋_
_looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ
_looks_ = _≋_
module WithEquiv (progEq : ProgEquiv L.zero L.zero) where
open ProgEquiv progEq
SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set
SecPRG prg = this looks random where this = ⟪ prg · random ⟫
record PRG k n : Set where
constructor _,_
field
prg : Bits k → Bits n
sec : SecPRG prg
OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set
OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in
this looks random
record PRF k m n : Set where
constructor _,_
field
prf : Bits k → Bits m → Bits n
sec : OneTimeSecPRF prf
OTP : ∀ {n} → Bits n → Bits n → Bits n
OTP key msg = key ⊕ msg
init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A
init f = ⟪ f · random ⟫
module Examples (progEq : ProgEquiv L.zero L.zero) where
open ProgEquiv progEq
open WithEquiv progEq
left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x
right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x
assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C}
→ (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g)
assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C}
→ (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g))
ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫
ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′
ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP
ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key)
ex₅ = ∀ {k n} → PRG k n → PRF k n n
|
add choose
|
flipbased: add choose
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
b2e5536ab47da9ade851c78e2d0e284fdaed9d6e
|
SymbolicDerivation.agda
|
SymbolicDerivation.agda
|
module SymbolicDerivation where
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Natural.Evaluation
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
-- SYMBOLIC DERIVATION
derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
derive-var {τ • Γ} this = this
derive-var {τ • Γ} (that x) = that (that (derive-var x))
derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ)
derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
where Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x))
derive-term {{Γ′}} true = false
derive-term {{Γ′}} false = false
derive-term {{Γ′}} (if c t e) =
if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c))
(diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t))
(if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c)))
(diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e))
(if (lift-term {{Γ′}} c)
(derive-term {{Γ′}} t)
(derive-term {{Γ′}} e)))
derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
|
module SymbolicDerivation where
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Natural.Evaluation
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
-- SYMBOLIC DERIVATION
derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
derive-var {τ • Γ} this = this
derive-var {τ • Γ} (that x) = that (that (derive-var x))
derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ)
derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
where Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x))
derive-term {{Γ′}} true = false
derive-term {{Γ′}} false = false
derive-term {{Γ′}} (if c t e) =
if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c))
(diff-term
(apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e))
(lift-term {{Γ′}} t))
(if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c)))
(diff-term
(apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t))
(lift-term {{Γ′}} e))
(if (lift-term {{Γ′}} c)
(derive-term {{Γ′}} t)
(derive-term {{Γ′}} e)))
derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
|
Break some lines.
|
Break some lines.
Old-commit-hash: f541af3f72f8831d3daba892d4230bda0bdb2cdf
|
Agda
|
mit
|
inc-lc/ilc-agda
|
789ee03b932a743e1b7f9832f09bd7efc37f4fa8
|
Popl14/Denotation/Value.agda
|
Popl14/Denotation/Value.agda
|
module Popl14.Denotation.Value where
open import Popl14.Syntax.Type public
open import Popl14.Change.Type public
open import Base.Denotation.Notation public
open import Structure.Bag.Popl14
open import Data.Integer
-- Values of Calculus Popl14
--
-- Contents
-- - Domains associated with types
-- - `diff` and `apply` in semantic domains
⟦_⟧Type : Type -> Set
⟦ int ⟧Type = ℤ
⟦ bag ⟧Type = Bag
⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type
meaningOfType : Meaning Type
meaningOfType = meaning ⟦_⟧Type
|
module Popl14.Denotation.Value where
open import Popl14.Syntax.Type public
open import Popl14.Change.Type public
open import Base.Denotation.Notation public
open import Structure.Bag.Popl14
open import Data.Integer
-- Values of Calculus Popl14
--
-- Contents
-- - Domains associated with types
-- - `diff` and `apply` in semantic domains
⟦_⟧Base : Base → Set
⟦ base-int ⟧Base = ℤ
⟦ base-bag ⟧Base = Bag
⟦_⟧Type : Type -> Set
⟦ base ι ⟧Type = ⟦ ι ⟧Base
⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type
meaningOfType : Meaning Type
meaningOfType = meaning ⟦_⟧Type
|
Split ⟦_⟧Base from ⟦_⟧Type (WIP).
|
Split ⟦_⟧Base from ⟦_⟧Type (WIP).
Needs fixes to type inference failures!
Old-commit-hash: 4f7d5e46e2d2a202dc2c672a08ae4deeebe589c2
|
Agda
|
mit
|
inc-lc/ilc-agda
|
3ef3b1f40e4b0b9e7308a67388ab552654f5feeb
|
lib/Data/Bits.agda
|
lib/Data/Bits.agda
|
{-# OPTIONS --without-K #-}
module Data.Bits where
open import Algebra
open import Level.NP
open import Type hiding (★)
open import Data.Nat.NP hiding (_==_) renaming (_<=_ to _ℕ<=_)
open import Data.Bit using (Bit)
open import Data.Two renaming (_==_ to _==ᵇ_)
open import Data.Fin.NP using (Fin; zero; suc; inject₁; inject+; raise; Fin▹ℕ)
open import Data.Vec.NP
open import Function.NP
import Data.List.NP as L
-- Re-export some vector functions, maybe they should be given
-- less generic types.
open Data.Vec.NP public using ([]; _∷_; _++_; head; tail; map; replicate; RewireTbl; rewire; rewireTbl; onᵢ)
Bits : ℕ → ★₀
Bits = Vec Bit
_→ᵇ_ : ℕ → ℕ → ★₀
i →ᵇ o = Bits i → Bits o
0ⁿ : ∀ {n} → Bits n
0ⁿ = replicate 0₂
-- Notice that all empty vectors are the same, hence 0ⁿ {0} ≡ 1ⁿ {0}
1ⁿ : ∀ {n} → Bits n
1ⁿ = replicate 1₂
0∷_ : ∀ {n} → Bits n → Bits (suc n)
0∷ xs = 0₂ ∷ xs
-- can't we make these pattern aliases?
1∷_ : ∀ {n} → Bits n → Bits (suc n)
1∷ xs = 1₂ ∷ xs
_!_ : ∀ {a n} {A : ★ a} → Vec A n → Fin n → A
_!_ = flip lookup
-- see Data.Bits.Properties
_==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bit
[] == [] = 1₂
(b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁
_<=_ : ∀ {n} (xs ys : Bits n) → Bit
[] <= [] = 1₂
(1₂ ∷ xs) <= (0₂ ∷ ys) = 0₂
(0₂ ∷ xs) <= (1₂ ∷ ys) = 1₂
(_ ∷ xs) <= (_ ∷ ys) = xs <= ys
infixr 5 _⊕_
_⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n
_⊕_ = zipWith _xor_
⊕-group : ℕ → Group ₀ ₀
⊕-group = LiftGroup.group Xor°.+-group
module ⊕-Group (n : ℕ) = Group (⊕-group n)
module ⊕-Monoid (n : ℕ) = Monoid (⊕-Group.monoid n)
-- Negate all bits, i.e. "xor"ing them by one.
vnot : ∀ {n} → Endo (Bits n)
vnot = _⊕_ 1ⁿ
-- Negate the i-th bit.
notᵢ : ∀ {n} (i : Fin n) → Bits n → Bits n
notᵢ = onᵢ not
msb : ∀ k {n} → Bits (k + n) → Bits k
msb = take
lsb : ∀ k {n} → Bits (n + k) → Bits k
lsb _ {n} = drop n
msb₂ : ∀ {n} → Bits (2 + n) → Bits 2
msb₂ = msb 2
lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2
lsb₂ = reverse ∘ msb 2 ∘ reverse
#1 : ∀ {n} → Bits n → Fin (suc n)
#1 [] = zero
#1 (0₂ ∷ bs) = inject₁ (#1 bs)
#1 (1₂ ∷ bs) = suc (#1 bs)
#0 : ∀ {n} → Bits n → Fin (suc n)
#0 = #1 ∘ map not
allBitsL : ∀ n → L.List (Bits n)
allBitsL _ = replicateM (toList (0₂ ∷ 1₂ ∷ []))
where open L.Monad
allBits : ∀ n → Vec (Bits n) (2^ n)
allBits zero = [] ∷ []
allBits (suc n) = map 0∷_ bs ++ map 1∷_ bs
where bs = allBits n
always : ∀ n → Bits n → Bit
always _ _ = 1₂
never : ∀ n → Bits n → Bit
never _ _ = 0₂
_∨°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit
_∨°_ f g x = f x ∨ g x
_∧°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit
_∧°_ f g x = f x ∧ g x
not° : ∀ {n} (f : Bits n → Bit) → Bits n → Bit
not° f = not ∘ f
view∷ : ∀ {n a b} {A : ★ a} {B : ★ b} → (A → Vec A n → B) → Vec A (suc n) → B
view∷ f (x ∷ xs) = f x xs
sucBCarry : ∀ {n} → Bits n → Bits (1 + n)
sucBCarry [] = 0₂ ∷ []
sucBCarry (0₂ ∷ xs) = 0₂ ∷ sucBCarry xs
sucBCarry (1₂ ∷ xs) = view∷ (λ x xs → x ∷ not x ∷ xs) (sucBCarry xs)
sucB : ∀ {n} → Bits n → Bits n
sucB = tail ∘ sucBCarry
--_[mod_] : ℕ → ℕ → ★₀
--a [mod b ] = DivMod' a b
module ReversedBits where
sucRB : ∀ {n} → Bits n → Bits n
sucRB [] = []
sucRB (0₂ ∷ xs) = 1₂ ∷ xs
sucRB (1₂ ∷ xs) = 0₂ ∷ sucRB xs
toFin : ∀ {n} → Bits n → Fin (2^ n)
toFin [] = zero
toFin (0₂ ∷ xs) = inject+ _ (toFin xs)
toFin {suc n} (1₂ ∷ xs) = raise (2^ n) (toFin xs)
Bits▹ℕ : ∀ {n} → Bits n → ℕ
Bits▹ℕ [] = zero
Bits▹ℕ (0₂ ∷ xs) = Bits▹ℕ xs
Bits▹ℕ {suc n} (1₂ ∷ xs) = 2^ n + Bits▹ℕ xs
ℕ▹Bits : ∀ {n} → ℕ → Bits n
ℕ▹Bits {zero} _ = []
ℕ▹Bits {suc n} x = [0: 0∷ ℕ▹Bits x
1: 1∷ ℕ▹Bits (x ∸ 2^ n)
]′ (2^ n ℕ<= x)
ℕ▹Bits′ : ∀ {n} → ℕ → Bits n
ℕ▹Bits′ = fold 0ⁿ sucB
fromFin : ∀ {n} → Fin (2^ n) → Bits n
fromFin = ℕ▹Bits ∘ Fin▹ℕ
lookupTbl : ∀ {n a} {A : ★ a} → Bits n → Vec A (2^ n) → A
lookupTbl [] (x ∷ []) = x
lookupTbl (0₂ ∷ key) tbl = lookupTbl key (take _ tbl)
lookupTbl {suc n} (1₂ ∷ key) tbl = lookupTbl key (drop (2^ n) tbl)
funFromTbl : ∀ {n a} {A : ★ a} → Vec A (2^ n) → (Bits n → A)
funFromTbl = flip lookupTbl
tblFromFun : ∀ {n a} {A : ★ a} → (Bits n → A) → Vec A (2^ n)
-- tblFromFun f = tabulate (f ∘ fromFin)
tblFromFun {zero} f = f [] ∷ []
tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_)
|
{-# OPTIONS --without-K #-}
module Data.Bits where
open import Algebra
open import Level.NP
open import Type hiding (★)
open import Data.Nat.NP hiding (_==_) renaming (_<=_ to _ℕ<=_)
open import Data.Bit using (Bit)
open import Data.Two renaming (_==_ to _==ᵇ_)
open import Data.Fin.NP using (Fin; zero; suc; inject₁; inject+; raise; Fin▹ℕ)
open import Data.Vec.NP
open import Function.NP
import Data.List.NP as L
-- Re-export some vector functions, maybe they should be given
-- less generic types.
open Data.Vec.NP public using ([]; _∷_; _++_; head; tail; map; replicate; RewireTbl; rewire; rewireTbl; onᵢ)
Bits : ℕ → ★₀
Bits = Vec Bit
_→ᵇ_ : ℕ → ℕ → ★₀
i →ᵇ o = Bits i → Bits o
0ⁿ : ∀ {n} → Bits n
0ⁿ = replicate 0₂
-- Notice that all empty vectors are the same, hence 0ⁿ {0} ≡ 1ⁿ {0}
1ⁿ : ∀ {n} → Bits n
1ⁿ = replicate 1₂
pattern 0∷_ xs = 0₂ ∷ xs
pattern 1∷_ xs = 1₂ ∷ xs
{-
0∷_ : ∀ {n} → Bits n → Bits (suc n)
0∷ xs = 0₂ ∷ xs
-- can't we make these pattern aliases?
1∷_ : ∀ {n} → Bits n → Bits (suc n)
1∷ xs = 1₂ ∷ xs
-}
_!_ : ∀ {a n} {A : ★ a} → Vec A n → Fin n → A
_!_ = flip lookup
-- see Data.Bits.Properties
_==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bit
[] == [] = 1₂
(b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁
_<=_ : ∀ {n} (xs ys : Bits n) → Bit
[] <= [] = 1₂
(1₂ ∷ xs) <= (0₂ ∷ ys) = 0₂
(0₂ ∷ xs) <= (1₂ ∷ ys) = 1₂
(_ ∷ xs) <= (_ ∷ ys) = xs <= ys
infixr 5 _⊕_
_⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n
_⊕_ = zipWith _xor_
⊕-group : ℕ → Group ₀ ₀
⊕-group = LiftGroup.group Xor°.+-group
module ⊕-Group (n : ℕ) = Group (⊕-group n)
module ⊕-Monoid (n : ℕ) = Monoid (⊕-Group.monoid n)
-- Negate all bits, i.e. "xor"ing them by one.
vnot : ∀ {n} → Endo (Bits n)
vnot = _⊕_ 1ⁿ
-- Negate the i-th bit.
notᵢ : ∀ {n} (i : Fin n) → Bits n → Bits n
notᵢ = onᵢ not
msb : ∀ k {n} → Bits (k + n) → Bits k
msb = take
lsb : ∀ k {n} → Bits (n + k) → Bits k
lsb _ {n} = drop n
msb₂ : ∀ {n} → Bits (2 + n) → Bits 2
msb₂ = msb 2
lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2
lsb₂ = reverse ∘ msb 2 ∘ reverse
#1 : ∀ {n} → Bits n → Fin (suc n)
#1 [] = zero
#1 (0∷ bs) = inject₁ (#1 bs)
#1 (1∷ bs) = suc (#1 bs)
#0 : ∀ {n} → Bits n → Fin (suc n)
#0 = #1 ∘ map not
allBitsL : ∀ n → L.List (Bits n)
allBitsL _ = replicateM (toList (0∷ 1∷ []))
where open L.Monad
allBits : ∀ n → Vec (Bits n) (2^ n)
allBits zero = [] ∷ []
allBits (suc n) = map 0∷_ bs ++ map 1∷_ bs
where bs = allBits n
always : ∀ n → Bits n → Bit
always _ _ = 1₂
never : ∀ n → Bits n → Bit
never _ _ = 0₂
_∨°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit
_∨°_ f g x = f x ∨ g x
_∧°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit
_∧°_ f g x = f x ∧ g x
not° : ∀ {n} (f : Bits n → Bit) → Bits n → Bit
not° f = not ∘ f
view∷ : ∀ {n a b} {A : ★ a} {B : ★ b} → (A → Vec A n → B) → Vec A (suc n) → B
view∷ f (x ∷ xs) = f x xs
sucBCarry : ∀ {n} → Bits n → Bits (1 + n)
sucBCarry [] = 0∷ []
sucBCarry (0∷ xs) = 0∷ sucBCarry xs
sucBCarry (1∷ xs) = view∷ (λ x xs → x ∷ not x ∷ xs) (sucBCarry xs)
sucB : ∀ {n} → Bits n → Bits n
sucB = tail ∘ sucBCarry
--_[mod_] : ℕ → ℕ → ★₀
--a [mod b ] = DivMod' a b
module ReversedBits where
sucRB : ∀ {n} → Bits n → Bits n
sucRB [] = []
sucRB (0∷ xs) = 1∷ xs
sucRB (1∷ xs) = 0∷ sucRB xs
toFin : ∀ {n} → Bits n → Fin (2^ n)
toFin [] = zero
toFin (0∷ xs) = inject+ _ (toFin xs)
toFin {suc n} (1∷ xs) = raise (2^ n) (toFin xs)
Bits▹ℕ : ∀ {n} → Bits n → ℕ
Bits▹ℕ [] = zero
Bits▹ℕ (0∷ xs) = Bits▹ℕ xs
Bits▹ℕ {suc n} (1∷ xs) = 2^ n + Bits▹ℕ xs
ℕ▹Bits : ∀ {n} → ℕ → Bits n
ℕ▹Bits {zero} _ = []
ℕ▹Bits {suc n} x = [0: 0∷ ℕ▹Bits x
1: 1∷ ℕ▹Bits (x ∸ 2^ n)
]′ (2^ n ℕ<= x)
ℕ▹Bits′ : ∀ {n} → ℕ → Bits n
ℕ▹Bits′ = fold 0ⁿ sucB
fromFin : ∀ {n} → Fin (2^ n) → Bits n
fromFin = ℕ▹Bits ∘ Fin▹ℕ
lookupTbl : ∀ {n a} {A : ★ a} → Bits n → Vec A (2^ n) → A
lookupTbl [] = head
lookupTbl (0∷ key) = lookupTbl key ∘ take _
lookupTbl {suc n} (1∷ key) = lookupTbl key ∘ drop (2^ n)
funFromTbl : ∀ {n a} {A : ★ a} → Vec A (2^ n) → (Bits n → A)
funFromTbl = flip lookupTbl
tblFromFun : ∀ {n a} {A : ★ a} → (Bits n → A) → Vec A (2^ n)
-- tblFromFun f = tabulate (f ∘ fromFin)
tblFromFun {zero} f = f [] ∷ []
tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_)
++ tblFromFun {n} (f ∘ 1∷_)
|
use patterns 0∷ and 1∷
|
Bits: use patterns 0∷ and 1∷
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
4cbed45974f3385d5c182dddefd1bb738b95c793
|
ChangeContexts.agda
|
ChangeContexts.agda
|
module ChangeContexts where
open import IlcModel
open import Changes
open import meaning
-- TYPING CONTEXTS, VARIABLES and WEAKENING
open import binding Type ⟦_⟧Type
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ
update : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧
update {∅} ∅ = ∅
update {τ • Γ} (dv • v • ρ) = apply dv v • update ρ
ignore : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧
ignore {∅} ∅ = ∅
ignore {τ • Γ} (dv • v • ρ) = v • ignore ρ
Δ-Context′ : (Γ : Context) → Prefix Γ → Context
Δ-Context′ Γ ∅ = Δ-Context Γ
Δ-Context′ (.τ • Γ) (τ • Γ′) = τ • Δ-Context′ Γ Γ′
update′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧
update′ ∅ ρ = update ρ
update′ (τ • Γ′) (v • ρ) = v • update′ Γ′ ρ
ignore′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧
ignore′ ∅ ρ = ignore ρ
ignore′ (τ • Γ′) (v • ρ) = v • ignore′ Γ′ ρ
|
module ChangeContexts where
open import IlcModel
open import Changes
open import meaning
-- TYPING CONTEXTS, VARIABLES and WEAKENING
open import binding Type ⟦_⟧Type
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ
update : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧
update {∅} ∅ = ∅
update {τ • Γ} (dv • v • ρ) = apply dv v • update ρ
ignore : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧
ignore {∅} ∅ = ∅
ignore {τ • Γ} (dv • v • ρ) = v • ignore ρ
-- Δ-Context′: behaves like Δ-Context, but has an extra argument Γ′, a
-- prefix of its first argument which should not be touched.
Δ-Context′ : (Γ : Context) → Prefix Γ → Context
Δ-Context′ Γ ∅ = Δ-Context Γ
Δ-Context′ (.τ • Γ) (τ • Γ′) = τ • Δ-Context′ Γ Γ′
update′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧
update′ ∅ ρ = update ρ
update′ (τ • Γ′) (v • ρ) = v • update′ Γ′ ρ
ignore′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧
ignore′ ∅ ρ = ignore ρ
ignore′ (τ • Γ′) (v • ρ) = v • ignore′ Γ′ ρ
|
document a function
|
agda: document a function
Old-commit-hash: c0550a6f2e84b20bc63a5c0f91a168988125b117
|
Agda
|
mit
|
inc-lc/ilc-agda
|
70907b2ea28e2d6559f103705f74a8fefbca6f63
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : (ι : Base) → ⟦ ι ⟧Base → Set
apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base
diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : (τ : Type) → ⟦ τ ⟧ → Set
nil-change : ∀ τ v → Change τ v
apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧
diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
-- Change : Type → Set
Change (base ι) v = Change-base ι v
Change (σ ⇒ τ) f = Pair
(∀ v → Change σ v → Change τ (f v))
(λ Δf → ∀ v dv →
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv)
before : ∀ {τ v} → Change τ v → ⟦ τ ⟧
before {τ} {v} _ = v
after : ∀ {τ v} → Change τ v → ⟦ τ ⟧
after {τ} {v} dv = v ⊞₍ τ ₎ dv
open Pair public using () renaming
( cdr to is-valid
; car to call-change
)
nil-change τ v = diff-change τ v v
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
apply-change (base ι) n Δn = apply-change-base ι n Δn
apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v)
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
diff-change (base ι) m n = diff-change-base ι m n
diff-change (σ ⇒ τ) g f = cons (λ v dv → g (after {σ} dv) ⊟₍ τ ₎ f v)
(λ v dv →
begin
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv))
≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv))))
(v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv))
≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩
f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v)
∎) where open ≡-Reasoning
-- call this lemma "replace"?
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where
∅ : ΔEnv ∅ ∅
_•_ : ∀ {τ Γ v ρ} →
(dv : Change τ v) →
(dρ : ΔEnv Γ ρ) →
ΔEnv (τ • Γ) (v • ρ)
ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧
ignore {Γ} {ρ} _ = ρ
update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧
update ∅ = ∅
update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : (ι : Base) → ⟦ ι ⟧Base → Set
apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base
diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : (τ : Type) → ⟦ τ ⟧ → Set
nil-change : ∀ τ v → Change τ v
apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧
diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
-- Change : Type → Set
Change (base ι) v = Change-base ι v
Change (σ ⇒ τ) f = Pair
(∀ v → Change σ v → Change τ (f v))
(λ Δf → ∀ v dv →
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv)
open Pair public using () renaming
( cdr to is-valid
; car to call-change
)
nil-change τ v = diff-change τ v v
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
apply-change (base ι) n Δn = apply-change-base ι n Δn
apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v)
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
diff-change (base ι) m n = diff-change-base ι m n
diff-change (σ ⇒ τ) g f = cons (λ v dv → g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v)
(λ v dv →
begin
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv))
≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv))))
(v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩
f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv))
≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩
f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v)
∎) where open ≡-Reasoning
-- call this lemma "replace"?
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
-- abbrevitations
before : ∀ {τ v} → Change τ v → ⟦ τ ⟧
before {τ} {v} _ = v
after : ∀ {τ v} → Change τ v → ⟦ τ ⟧
after {τ} {v} dv = v ⊞₍ τ ₎ dv
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where
∅ : ΔEnv ∅ ∅
_•_ : ∀ {τ Γ v ρ} →
(dv : Change τ v) →
(dρ : ΔEnv Γ ρ) →
ΔEnv (τ • Γ) (v • ρ)
ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧
ignore {Γ} {ρ} _ = ρ
update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧
update ∅ = ∅
update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ
|
Move before and after out of the mutually dependent block.
|
Move before and after out of the mutually dependent block.
Old-commit-hash: 1d7a74aa7d62457de4936eae9faaeb605d739bf3
|
Agda
|
mit
|
inc-lc/ilc-agda
|
6f7fde98554f01770bfdbd43711ab8e45eab8b9b
|
Control/Protocol.agda
|
Control/Protocol.agda
|
{-# OPTIONS --without-K #-}
open import Function.NP
open import Type
open import Level.NP
open import Data.Product.NP using (Σ; _×_; _,_) renaming (proj₁ to fst)
open import Data.One using (𝟙)
open import Relation.Binary.PropositionalEquality.NP using (_≡_; !_; _∙_; refl; ap; coe; coe!)
open import Function.Extensionality
open import HoTT
open import Data.ShapePolymorphism
open Equivalences
module Control.Protocol where
data InOut : ★ where
In Out : InOut
dualᴵᴼ : InOut → InOut
dualᴵᴼ In = Out
dualᴵᴼ Out = In
dualᴵᴼ-involutive : ∀ io → dualᴵᴼ (dualᴵᴼ io) ≡ io
dualᴵᴼ-involutive In = refl
dualᴵᴼ-involutive Out = refl
dualᴵᴼ-equiv : Is-equiv dualᴵᴼ
dualᴵᴼ-equiv = self-inv-is-equiv dualᴵᴼ-involutive
dualᴵᴼ-inj : ∀ {x y} → dualᴵᴼ x ≡ dualᴵᴼ y → x ≡ y
dualᴵᴼ-inj = Is-equiv.injective dualᴵᴼ-equiv
{-
module UniversalProtocols ℓ {U : ★_(ₛ ℓ)}(U⟦_⟧ : U → ★_ ℓ) where
-}
module _ ℓ where
U = ★_ ℓ
U⟦_⟧ = id
data Proto_ : ★_(ₛ ℓ) where
end : Proto_
com : (io : InOut){M : U}(P : U⟦ M ⟧ → Proto_) → Proto_
{-
module U★ ℓ = UniversalProtocols ℓ {★_ ℓ} id
open U★
-}
Proto : ★₁
Proto = Proto_ ₀
Proto₀ = Proto
Proto₁ = Proto_ ₁
pattern recv P = com In P
pattern send P = com Out P
module _ {{_ : FunExt}} where
com= : ∀ {io₀ io₁}(io= : io₀ ≡ io₁)
{M₀ M₁}(M= : M₀ ≡ M₁)
{P₀ : M₀ → Proto}{P₁ : M₁ → Proto}(P= : ∀ m₀ → P₀ m₀ ≡ P₁ (coe M= m₀))
→ com io₀ P₀ ≡ com io₁ P₁
com= refl refl P= = ap (com _) (λ= P=)
module _ {io₀ io₁}(io= : io₀ ≡ io₁)
{M₀ M₁}(M≃ : M₀ ≃ M₁)
{P₀ : M₀ → Proto}{P₁ : M₁ → Proto}
(P= : ∀ m₀ → P₀ m₀ ≡ P₁ (–> M≃ m₀))
{{_ : UA}} where
com≃ : com io₀ P₀ ≡ com io₁ P₁
com≃ = com= io= (ua M≃) λ m → P= m ∙ ap P₁ (! coe-β M≃ m)
module _ io {M N}(P : M × N → Proto)
where
com₂ : Proto
com₂ = com io λ m → com io λ n → P (m , n)
{- Proving this would be awesome...
module _ io
{M₀ M₁ N₀ N₁ : ★}
(M×N≃ : (M₀ × N₀) ≃ (M₁ × N₁))
{P₀ : M₀ × N₀ → Proto}{P₁ : M₁ × N₁ → Proto}
(P= : ∀ m,n₀ → P₀ m,n₀ ≡ P₁ (–> M×N≃ m,n₀))
{{_ : UA}} where
com₂≃ : com₂ io P₀ ≡ com₂ io P₁
com₂≃ = {!com=!}
-}
send= = com= {Out} refl
send≃ = com≃ {Out} refl
recv= = com= {In} refl
recv≃ = com≃ {In} refl
com=′ : ∀ io {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → com io P₀ ≡ com io P₁
com=′ io = com= refl refl
send=′ : ∀ {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → send P₀ ≡ send P₁
send=′ = send= refl
recv=′ : ∀ {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → recv P₀ ≡ recv P₁
recv=′ = recv= refl
pattern recvE M P = com In {M} P
pattern sendE M P = com Out {M} P
recv☐ : {M : ★}(P : ..(_ : M) → Proto) → Proto
recv☐ P = recv (λ { [ m ] → P m })
send☐ : {M : ★}(P : ..(_ : M) → Proto) → Proto
send☐ P = send (λ { [ m ] → P m })
{-
dual : Proto → Proto
dual end = end
dual (send P) = recv λ m → dual (P m)
dual (recv P) = send λ m → dual (P m)
-}
dual : Proto → Proto
dual end = end
dual (com io P) = com (dualᴵᴼ io) λ m → dual (P m)
source-of : Proto → Proto
source-of end = end
source-of (com _ P) = send λ m → source-of (P m)
sink-of : Proto → Proto
sink-of = dual ∘ source-of
data IsSource : Proto → ★₁ where
end : IsSource end
send' : ∀ {M P} (PT : (m : M) → IsSource (P m)) → IsSource (send P)
data IsSink : Proto → ★₁ where
end : IsSink end
recv' : ∀ {M P} (PT : (m : M) → IsSink (P m)) → IsSink (recv P)
data Proto☐ : Proto → ★₁ where
end : Proto☐ end
com : ∀ io {M P} (P☐ : ∀ (m : ☐ M) → Proto☐ (P m)) → Proto☐ (com io P)
record End_ ℓ : ★_ ℓ where
constructor end
End : ∀ {ℓ} → ★_ ℓ
End = End_ _
End-equiv : End ≃ 𝟙
End-equiv = equiv {₀} _ _ (λ _ → refl) (λ _ → refl)
End-uniq : {{_ : UA}} → End ≡ 𝟙
End-uniq = ua End-equiv
⟦_⟧ᴵᴼ : InOut → ∀{ℓ}(M : ★_ ℓ)(P : M → ★_ ℓ) → ★_ ℓ
⟦_⟧ᴵᴼ In = Π
⟦_⟧ᴵᴼ Out = Σ
⟦_⟧ : ∀ {ℓ} → Proto_ ℓ → ★_ ℓ
⟦ end ⟧ = End
⟦ com io P ⟧ = ⟦ io ⟧ᴵᴼ _ λ m → ⟦ P m ⟧
⟦_⊥⟧ : Proto → ★
⟦ P ⊥⟧ = ⟦ dual P ⟧
Log : Proto → ★
Log P = ⟦ source-of P ⟧
Sink : Proto → ★
Sink P = ⟦ sink-of P ⟧
sink : ∀ P → Sink P
sink end = _
sink (com _ P) x = sink (P x)
telecom : ∀ P → ⟦ P ⟧ → ⟦ P ⊥⟧ → Log P
telecom end _ _ = _
telecom (recv P) p (m , q) = m , telecom (P m) (p m) q
telecom (send P) (m , p) q = m , telecom (P m) p (q m)
send′ : ★ → Proto → Proto
send′ M P = send λ (_ : M) → P
recv′ : ★ → Proto → Proto
recv′ M P = recv λ (_ : M) → P
module _ {{_ : FunExt}} where
dual-involutive : ∀ P → dual (dual P) ≡ P
dual-involutive end = refl
dual-involutive (com io P) = com= (dualᴵᴼ-involutive io) refl λ m → dual-involutive (P m)
dual-equiv : Is-equiv dual
dual-equiv = self-inv-is-equiv dual-involutive
dual-inj : ∀ {P Q} → dual P ≡ dual Q → P ≡ Q
dual-inj = Is-equiv.injective dual-equiv
source-of-idempotent : ∀ P → source-of (source-of P) ≡ source-of P
source-of-idempotent end = refl
source-of-idempotent (com _ P) = com= refl refl λ m → source-of-idempotent (P m)
source-of-dual-oblivious : ∀ P → source-of (dual P) ≡ source-of P
source-of-dual-oblivious end = refl
source-of-dual-oblivious (com _ P) = com= refl refl λ m → source-of-dual-oblivious (P m)
module _ {{_ : FunExt}} where
sink-contr : ∀ P s → sink P ≡ s
sink-contr end s = refl
sink-contr (com _ P) s = λ= λ m → sink-contr (P m) (s m)
Sink-is-contr : ∀ P → Is-contr (Sink P)
Sink-is-contr P = sink P , sink-contr P
𝟙≃Sink : ∀ P → 𝟙 ≃ Sink P
𝟙≃Sink P = Is-contr-to-Is-equiv.𝟙≃ (Sink-is-contr P)
dual-Log : ∀ P → Log (dual P) ≡ Log P
dual-Log = ap ⟦_⟧ ∘ source-of-dual-oblivious
|
module Control.Protocol where
open import Control.Protocol.InOut public
open import Control.Protocol.End public
open import Control.Protocol.Core public
|
Split Control.Protocol
|
Split Control.Protocol
|
Agda
|
bsd-3-clause
|
crypto-agda/protocols
|
81eecc922c3dc4fc227770d378988bd4c8881616
|
ZK/GroupHom.agda
|
ZK/GroupHom.agda
|
{-# OPTIONS --without-K #-}
open import Type using (Type)
open import Type.Eq using (Eq?; _==_; ≡⇒==; ==⇒≡)
open import Function using (case_of_)
open import Data.Sum renaming (inj₁ to inl; inj₂ to inr)
open import Data.Product renaming (proj₁ to fst; proj₂ to snd)
open import Relation.Binary.PropositionalEquality.Base using (_≡_; _≢_; idp; ap; ap₂; !_; _∙_; module ≡-Reasoning)
open import Algebra.Group
open import Algebra.Group.Homomorphism
import ZK.SigmaProtocol.KnownStatement
module ZK.GroupHom
{G+ G* : Type} (grp-G+ : Group G+) (grp-G* : Group G*)
{{eq?-G* : Eq? G*}}
(open Additive-Group grp-G+ hiding (_⊗_))
(open Multiplicative-Group grp-G* hiding (_^_))
{C : Type} -- e.g. C ⊆ ℕ
(_>_ : C → C → Type)
(swap? : {c₀ c₁ : C} → c₀ ≢ c₁ → (c₀ > c₁) ⊎ (c₁ > c₀))
(_⊗_ : G+ → C → G+)
(_^_ : G* → C → G*)
(_−ᶜ_ : C → C → C)
(1/ : C → C)
(φ : G+ → G*) -- For instance φ(x) = g^x
(φ-hom : GroupHomomorphism grp-G+ grp-G* φ)
(φ-hom-iterated : ∀ {x c} → φ (x ⊗ c) ≡ φ x ^ c)
(Y : G*)
(^-−ᶜ : ∀ {c₀ c₁}(c> : c₀ > c₁) → Y ^(c₀ −ᶜ c₁) ≡ (Y ^ c₀) / (Y ^ c₁))
(^-^-1/ : ∀ {c₀ c₁}(c> : c₀ > c₁) → (Y ^(c₀ −ᶜ c₁))^(1/(c₀ −ᶜ c₁)) ≡ Y)
where
Commitment = G*
Challenge = C
Response = G+
Witness = G+
Randomness = G+
_∈y : Witness → Type
x ∈y = φ x ≡ Y
open ZK.SigmaProtocol.KnownStatement Commitment Challenge Response Randomness Witness _∈y public
prover : Prover
prover a x = φ a , response
where response : Challenge → Response
response c = (x ⊗ c) + a
verifier : Verifier
verifier (mk A c s) = φ s == ((Y ^ c) * A)
-- We still call it Schnorr since essentially not much changed.
-- The scheme abstracts away g^ as an homomorphism called φ
-- and one get to distinguish between the types C vs G+ and
-- their operations _⊗_ vs _*_.
Schnorr : Σ-Protocol
Schnorr = (prover , verifier)
-- The simulator shows why it is so important for the
-- challenge to be picked once the commitment is known.
-- To fake a transcript, the challenge and response can
-- be arbitrarily chosen. However to be indistinguishable
-- from a valid proof they need to be picked at random.
simulator : Simulator
simulator c s = A
where
-- Compute A, such that the verifier accepts!
A = (Y ^ c)⁻¹ * φ s
swap-t²? : Transcript²[ _≢_ ] verifier → Transcript²[ _>_ ] verifier
swap-t²? t² = t²'
module Swap? where
open Transcript² t² public
using (verify₀; verify₁; c₀≢c₁)
renaming ( get-A to A
; get-f₀ to r₀; get-f₁ to r₁
; get-c₀ to c₀; get-c₁ to c₁
)
t²' = case swap? c₀≢c₁ of λ
{ (inl c₀>c₁) → mk A c₀ c₁ c₀>c₁ r₀ r₁ verify₀ verify₁
; (inr c₀<c₁) → mk A c₁ c₀ c₀<c₁ r₁ r₀ verify₁ verify₀
}
-- The extractor shows the importance of never reusing a
-- commitment. If the prover answers to two different challenges
-- comming from the same commitment then the knowledge of the
-- prover (the witness) can be extracted.
extractor : Extractor verifier
extractor t² = x'
module Witness-extractor where
open Transcript² (swap-t²? t²) public
using (verify₀; verify₁)
renaming ( get-A to A
; get-f₀ to r₀; get-f₁ to r₁
; get-c₀ to c₀; get-c₁ to c₁
; c₀≢c₁ to c₀>c₁
)
rd = r₀ − r₁
cd = c₀ −ᶜ c₁
1/cd = 1/ cd
x' = rd ⊗ 1/cd
open ≡-Reasoning
open GroupHomomorphism φ-hom
correct : Correct Schnorr
correct x a c w
= ≡⇒== (φ((x ⊗ c) + a) ≡⟨ hom ⟩
φ(x ⊗ c) * A ≡⟨ *= φ-hom-iterated idp ⟩
(φ x ^ c) * A ≡⟨ ap (λ z → (z ^ c) * A) w ⟩
(Y ^ c) * A ∎)
where
A = φ a
shvzk : Special-Honest-Verifier-Zero-Knowledge Schnorr
shvzk = record { simulator = simulator
; correct-simulator =
λ _ _ → ≡⇒== (! elim-*-!assoc= (snd ⁻¹-inverse)) }
module _ (t² : Transcript² verifier) where
open Witness-extractor t²
φrd≡ycd : _
φrd≡ycd
= φ rd ≡⟨by-definition⟩
φ (r₀ − r₁) ≡⟨ −-/ ⟩
φ r₀ / φ r₁ ≡⟨ /= (==⇒≡ verify₀) (==⇒≡ verify₁) ⟩
(Y ^ c₀ * A) / (Y ^ c₁ * A) ≡⟨ elim-*-right-/ ⟩
Y ^ c₀ / Y ^ c₁ ≡⟨ ! ^-−ᶜ c₀>c₁ ⟩
Y ^(c₀ −ᶜ c₁) ≡⟨by-definition⟩
Y ^ cd ∎
-- The extracted x is correct
extractor-ok : φ x' ≡ Y
extractor-ok
= φ(rd ⊗ 1/cd) ≡⟨ φ-hom-iterated ⟩
φ rd ^ 1/cd ≡⟨ ap₂ _^_ φrd≡ycd idp ⟩
(Y ^ cd)^ 1/cd ≡⟨ ^-^-1/ c₀>c₁ ⟩
Y ∎
special-soundness : Special-Soundness Schnorr
special-soundness = record { extractor = extractor
; extract-valid-witness = extractor-ok }
special-Σ-protocol : Special-Σ-Protocol
special-Σ-protocol = record { Σ-protocol = Schnorr ; correct = correct ; shvzk = shvzk ; ssound = special-soundness }
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Type using (Type)
open import Type.Eq using (Eq?; _==_; ≡⇒==; ==⇒≡)
open import Function using (case_of_)
open import Data.Sum renaming (inj₁ to inl; inj₂ to inr)
open import Data.Product renaming (proj₁ to fst; proj₂ to snd)
open import Relation.Binary.PropositionalEquality.Base using (_≡_; _≢_; idp; ap; ap₂; !_; _∙_; module ≡-Reasoning)
open import Algebra.Group
open import Algebra.Group.Homomorphism
import ZK.SigmaProtocol.KnownStatement
module ZK.GroupHom
{G+ G* : Type} (grp-G+ : Group G+) (grp-G* : Group G*)
{{eq?-G* : Eq? G*}}
(open Additive-Group grp-G+ hiding (_⊗_))
(open Multiplicative-Group grp-G* hiding (_^_))
{C : Type} -- e.g. C ⊆ ℕ
(_>_ : C → C → Type)
(swap? : {c₀ c₁ : C} → c₀ ≢ c₁ → (c₀ > c₁) ⊎ (c₁ > c₀))
(_⊗_ : G+ → C → G+)
(_^_ : G* → C → G*)
(_−ᶜ_ : C → C → C)
(1/ : C → C)
(φ : G+ → G*) -- For instance φ(x) = g^x
(φ-hom : GroupHomomorphism grp-G+ grp-G* φ)
(φ-hom-iterated : ∀ {x c} → φ (x ⊗ c) ≡ φ x ^ c)
(Y : G*)
(^-−ᶜ : ∀ {c₀ c₁}(c> : c₀ > c₁) → Y ^(c₀ −ᶜ c₁) ≡ (Y ^ c₀) / (Y ^ c₁))
(^-^-1/ : ∀ {c₀ c₁}(c> : c₀ > c₁) → (Y ^(c₀ −ᶜ c₁))^(1/(c₀ −ᶜ c₁)) ≡ Y)
where
Commitment = G*
Challenge = C
Response = G+
Witness = G+
Randomness = G+
_∈y : Witness → Type
x ∈y = φ x ≡ Y
open ZK.SigmaProtocol.KnownStatement Commitment Challenge Response Randomness Witness _∈y public
prover : Prover
prover a x = φ a , response
where response : Challenge → Response
response c = (x ⊗ c) + a
verifier' : (A : Commitment)(c : Challenge)(s : Response) → _
verifier' A c s = φ s == ((Y ^ c) * A)
verifier : Verifier
verifier (mk A c s) = verifier' A c s
-- We still call it Schnorr since essentially not much changed.
-- The scheme abstracts away g^ as an homomorphism called φ
-- and one get to distinguish between the types C vs G+ and
-- their operations _⊗_ vs _*_.
Schnorr : Σ-Protocol
Schnorr = (prover , verifier)
-- The simulator shows why it is so important for the
-- challenge to be picked once the commitment is known.
-- To fake a transcript, the challenge and response can
-- be arbitrarily chosen. However to be indistinguishable
-- from a valid proof they need to be picked at random.
simulator : Simulator
simulator c s = A
where
-- Compute A, such that the verifier accepts!
A = (Y ^ c)⁻¹ * φ s
swap-t²? : Transcript²[ _≢_ ] verifier → Transcript²[ _>_ ] verifier
swap-t²? t² = t²'
module Swap? where
open Transcript² t² public
using (verify₀; verify₁; c₀≢c₁)
renaming ( get-A to A
; get-f₀ to r₀; get-f₁ to r₁
; get-c₀ to c₀; get-c₁ to c₁
)
t²' = case swap? c₀≢c₁ of λ
{ (inl c₀>c₁) → mk A c₀ c₁ c₀>c₁ r₀ r₁ verify₀ verify₁
; (inr c₀<c₁) → mk A c₁ c₀ c₀<c₁ r₁ r₀ verify₁ verify₀
}
-- The extractor shows the importance of never reusing a
-- commitment. If the prover answers to two different challenges
-- comming from the same commitment then the knowledge of the
-- prover (the witness) can be extracted.
extractor : Extractor verifier
extractor t² = x'
module Witness-extractor where
open Transcript² (swap-t²? t²) public
using (verify₀; verify₁)
renaming ( get-A to A
; get-f₀ to r₀; get-f₁ to r₁
; get-c₀ to c₀; get-c₁ to c₁
; c₀≢c₁ to c₀>c₁
)
rd = r₀ − r₁
cd = c₀ −ᶜ c₁
1/cd = 1/ cd
x' = rd ⊗ 1/cd
open ≡-Reasoning
open GroupHomomorphism φ-hom
correct : Correct Schnorr
correct x a c w
= ≡⇒== (φ((x ⊗ c) + a) ≡⟨ hom ⟩
φ(x ⊗ c) * A ≡⟨ *= φ-hom-iterated idp ⟩
(φ x ^ c) * A ≡⟨ ap (λ z → (z ^ c) * A) w ⟩
(Y ^ c) * A ∎)
where
A = φ a
shvzk : Special-Honest-Verifier-Zero-Knowledge Schnorr
shvzk = record { simulator = simulator
; correct-simulator =
λ _ _ → ≡⇒== (! elim-*-!assoc= (snd ⁻¹-inverse)) }
module _ (t² : Transcript² verifier) where
open Witness-extractor t²
φrd≡ycd : _
φrd≡ycd
= φ rd ≡⟨by-definition⟩
φ (r₀ − r₁) ≡⟨ −-/ ⟩
φ r₀ / φ r₁ ≡⟨ /= (==⇒≡ verify₀) (==⇒≡ verify₁) ⟩
(Y ^ c₀ * A) / (Y ^ c₁ * A) ≡⟨ elim-*-right-/ ⟩
Y ^ c₀ / Y ^ c₁ ≡⟨ ! ^-−ᶜ c₀>c₁ ⟩
Y ^(c₀ −ᶜ c₁) ≡⟨by-definition⟩
Y ^ cd ∎
-- The extracted x is correct
extractor-ok : φ x' ≡ Y
extractor-ok
= φ(rd ⊗ 1/cd) ≡⟨ φ-hom-iterated ⟩
φ rd ^ 1/cd ≡⟨ ap₂ _^_ φrd≡ycd idp ⟩
(Y ^ cd)^ 1/cd ≡⟨ ^-^-1/ c₀>c₁ ⟩
Y ∎
special-soundness : Special-Soundness Schnorr
special-soundness = record { extractor = extractor
; extract-valid-witness = extractor-ok }
special-Σ-protocol : Special-Σ-Protocol
special-Σ-protocol = record { Σ-protocol = Schnorr ; correct = correct ; shvzk = shvzk ; ssound = special-soundness }
-- -}
-- -}
-- -}
-- -}
|
split the verifier function
|
GroupHom: split the verifier function
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
90aff21d03b068f50fef74f2c22666b5ea68c76b
|
Control/Strategy.agda
|
Control/Strategy.agda
|
module Control.Strategy where
open import Function
open import Type using (★)
open import Category.Monad
open import Relation.Binary.PropositionalEquality.NP
data Strategy (Q R A : ★) : ★ where
ask : (q? : Q) (cont : R → Strategy Q R A) → Strategy Q R A
done : A → Strategy Q R A
infix 2 _≈_
data _≈_ {Q R A} : (s₀ s₁ : Strategy Q R A) → ★ where
ask-ask : ∀ {k₀ k₁} → (q? : Q) (cont : ∀ r → k₀ r ≈ k₁ r) → ask q? k₀ ≈ ask q? k₁
done-done : ∀ x → done x ≈ done x
≈-refl : ∀ {Q R A} {s : Strategy Q R A} → s ≈ s
≈-refl {s = ask q? cont} = ask-ask q? (λ r → ≈-refl)
≈-refl {s = done x} = done-done x
module _ {Q R : ★} where
private
M : ★ → ★
M = Strategy Q R
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< ask q? cont = ask q? (λ r → f =<< cont r)
f =<< done x = f x
return : ∀ {A} → A → M A
return = done
map : ∀ {A B} → (A → B) → M A → M B
map f s = (done ∘ f) =<< s
join : ∀ {A} → M (M A) → M A
join s = id =<< s
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>=_ = flip _=<<_
rawMonad : RawMonad M
rawMonad = record { return = return; _>>=_ = _>>=_ }
return-=<< : ∀ {A} (m : M A) → return =<< m ≈ m
return-=<< (ask q? cont) = ask-ask q? (λ r → return-=<< (cont r))
return-=<< (done x) = done-done x
return->>= : ∀ {A B} (x : A) (f : A → M B) → return x >>= f ≡ f x
return->>= _ _ = refl
>>=-assoc : ∀ {A B C} (mx : M A) (my : A → M B) (f : B → M C) → (mx >>= λ x → (my x >>= f)) ≈ (mx >>= my) >>= f
>>=-assoc (ask q? cont) my f = ask-ask q? (λ r → >>=-assoc (cont r) my f)
>>=-assoc (done x) my f = ≈-refl
map-id : ∀ {A} (s : M A) → map id s ≈ s
map-id = return-=<<
map-∘ : ∀ {A B C} (f : A → B) (g : B → C) s → map (g ∘ f) s ≈ (map g ∘ map f) s
map-∘ f g s = >>=-assoc s (done ∘ f) (done ∘ g)
module EffectfulRun
(E : ★ → ★)
(_>>=E_ : ∀ {A B} → E A → (A → E B) → E B)
(returnE : ∀ {A} → A → E A)
(Oracle : Q → E R) where
runE : ∀ {A} → M A → E A
runE (ask q? cont) = Oracle q? >>=E (λ r → runE (cont r))
runE (done x) = returnE x
module _ (Oracle : Q → R) where
run : ∀ {A} → M A → A
run (ask q? cont) = run (cont (Oracle q?))
run (done x) = x
module _ {A B : ★} (f : A → M B) where
run->>= : (s : M A) → run (s >>= f) ≡ run (f (run s))
run->>= (ask q? cont) = run->>= (cont (Oracle q?))
run->>= (done x) = refl
module _ {A B : ★} (f : A → B) where
run-map : (s : M A) → run (map f s) ≡ f (run s)
run-map = run->>= (return ∘ f)
module _ {A B : ★} where
run-≈ : {s₀ s₁ : M A} → s₀ ≈ s₁ → run s₀ ≡ run s₁
run-≈ (ask-ask q? cont) = run-≈ (cont (Oracle q?))
run-≈ (done-done x) = refl
|
module Control.Strategy where
open import Function
open import Type using (★)
open import Category.Monad
open import Data.Product hiding (map)
open import Relation.Binary.PropositionalEquality.NP
data Strategy (Q : ★) (R : Q → ★) (A : ★) : ★ where
ask : (q? : Q) (cont : R q? → Strategy Q R A) → Strategy Q R A
done : A → Strategy Q R A
infix 2 _≈_
data _≈_ {Q R A} : (s₀ s₁ : Strategy Q R A) → ★ where
ask-ask : ∀ (q? : Q) {k₀ k₁} (cont : ∀ r → k₀ r ≈ k₁ r) → ask q? k₀ ≈ ask q? k₁
done-done : ∀ x → done x ≈ done x
≈-refl : ∀ {Q R A} {s : Strategy Q R A} → s ≈ s
≈-refl {s = ask q? cont} = ask-ask q? (λ r → ≈-refl)
≈-refl {s = done x} = done-done x
module _ {Q : ★} {R : Q → ★} where
private
M : ★ → ★
M = Strategy Q R
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< ask q? cont = ask q? (λ r → f =<< cont r)
f =<< done x = f x
return : ∀ {A} → A → M A
return = done
map : ∀ {A B} → (A → B) → M A → M B
map f s = (done ∘ f) =<< s
join : ∀ {A} → M (M A) → M A
join s = id =<< s
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>=_ = flip _=<<_
rawMonad : RawMonad M
rawMonad = record { return = return; _>>=_ = _>>=_ }
return-=<< : ∀ {A} (m : M A) → return =<< m ≈ m
return-=<< (ask q? cont) = ask-ask q? (λ r → return-=<< (cont r))
return-=<< (done x) = done-done x
return->>= : ∀ {A B} (x : A) (f : A → M B) → return x >>= f ≡ f x
return->>= _ _ = refl
>>=-assoc : ∀ {A B C} (mx : M A) (my : A → M B) (f : B → M C) → (mx >>= λ x → (my x >>= f)) ≈ (mx >>= my) >>= f
>>=-assoc (ask q? cont) my f = ask-ask q? (λ r → >>=-assoc (cont r) my f)
>>=-assoc (done x) my f = ≈-refl
map-id : ∀ {A} (s : M A) → map id s ≈ s
map-id = return-=<<
map-∘ : ∀ {A B C} (f : A → B) (g : B → C) s → map (g ∘ f) s ≈ (map g ∘ map f) s
map-∘ f g s = >>=-assoc s (done ∘ f) (done ∘ g)
module EffectfulRun
(E : ★ → ★)
(_>>=E_ : ∀ {A B} → E A → (A → E B) → E B)
(returnE : ∀ {A} → A → E A)
(Oracle : (q : Q) → E (R q)) where
runE : ∀ {A} → M A → E A
runE (ask q? cont) = Oracle q? >>=E (λ r → runE (cont r))
runE (done x) = returnE x
module _ (Oracle : (q : Q) → R q) where
run : ∀ {A} → M A → A
run (ask q? cont) = run (cont (Oracle q?))
run (done x) = x
module _ {A B : ★} (f : A → M B) where
run->>= : (s : M A) → run (s >>= f) ≡ run (f (run s))
run->>= (ask q? cont) = run->>= (cont (Oracle q?))
run->>= (done x) = refl
module _ {A B : ★} (f : A → B) where
run-map : (s : M A) → run (map f s) ≡ f (run s)
run-map = run->>= (return ∘ f)
module _ {A B : ★} where
run-≈ : {s₀ s₁ : M A} → s₀ ≈ s₁ → run s₀ ≡ run s₁
run-≈ (ask-ask q? cont) = run-≈ (cont (Oracle q?))
run-≈ (done-done x) = refl
private
State : (S A : ★) → ★
State S A = S → A × S
-- redundant since we have EffectfulRun, but...
module StatefulRun {S : ★} (Oracle : (q : Q) → State S (R q)) where
runS : ∀ {A} → M A → State S A
runS (ask q? cont) s = case Oracle q? s of λ { (x , s') → runS (cont x) s' }
runS (done x) s = x , s
evalS : ∀ {A} → M A → S → A
evalS x s = proj₁ (runS x s)
execS : ∀ {A} → M A → S → S
execS x s = proj₂ (runS x s)
-- -}
-- -}
-- -}
-- -}
|
Improve Strategy to have a the response type depend on the query type
|
Improve Strategy to have a the response type depend on the query type
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
f1f55119854a27617ba6d8786230e7ca527ff616
|
agda2/Text/Greek/Smyth.agda
|
agda2/Text/Greek/Smyth.agda
|
module Text.Greek.Smyth where
open import Data.Char
open import Data.Maybe
open import Relation.Nullary using (¬_)
-- Smyth §1
data Letter : Set where
α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ τ υ φ χ ψ ω : Letter
data LetterCase : Set where
capital small : LetterCase
form : Letter → LetterCase → Char
form α capital = 'Α'
form α small = 'α'
form β capital = 'Β'
form β small = 'β'
form γ capital = 'Γ'
form γ small = 'γ'
form δ capital = 'Δ'
form δ small = 'δ'
form ε capital = 'Ε'
form ε small = 'ε'
form ζ capital = 'Ζ'
form ζ small = 'ζ'
form η capital = 'Η'
form η small = 'η'
form θ capital = 'Θ'
form θ small = 'θ'
form ι capital = 'Ι'
form ι small = 'ι'
form κ capital = 'Κ'
form κ small = 'κ'
form λ′ capital = 'Λ'
form λ′ small = 'λ'
form μ capital = 'Μ'
form μ small = 'μ'
form ν capital = 'Ν'
form ν small = 'ν'
form ξ capital = 'Ξ'
form ξ small = 'ξ'
form ο capital = 'Ο'
form ο small = 'ο'
form π capital = 'Π'
form π small = 'π'
form ρ capital = 'Ρ'
form ρ small = 'ρ'
form σ capital = 'Σ'
form σ small = 'σ'
form τ capital = 'Τ'
form τ small = 'τ'
form υ capital = 'Υ'
form υ small = 'υ'
form φ capital = 'Φ'
form φ small = 'φ'
form χ capital = 'Χ'
form χ small = 'χ'
form ψ capital = 'Ψ'
form ψ small = 'ψ'
form ω capital = 'Ω'
form ω small = 'ω'
-- Smyth §1 a
data PositionInWord : Set where
start-of-word : PositionInWord
middle-of-word : PositionInWord
end-of-word : PositionInWord
data FinalForm : Set where
final-form not-final-form : FinalForm
get-final-form : Letter → LetterCase → PositionInWord → FinalForm
get-final-form σ′ small end-of-word = final-form
get-final-form _ _ _ = not-final-form
-- Smyth §3
data OlderLetter : Set where
Ϝ′ : OlderLetter
Ϙ′ : OlderLetter
ϡ′ : OlderLetter
-- Smyth §4
data Vowel : Letter → Set where
α : Vowel α
ε : Vowel ε
η : Vowel η
ι : Vowel ι
ο : Vowel ο
υ : Vowel υ
ω : Vowel ω
data AlwaysShort : Letter → Set where
ε : AlwaysShort ε
ο : AlwaysShort ο
data AlwaysLong : Letter → Set where
η : AlwaysLong η
ω : AlwaysLong ω
data VowelLength : Set where
short long : VowelLength
data VowelWithLength : ∀ {v} → Vowel v → VowelLength → Set where
always-short : ∀ {ℓ} → (v : Vowel ℓ) → AlwaysShort ℓ → VowelWithLength v short
always-long : ∀ {ℓ} → (v : Vowel ℓ) → AlwaysLong ℓ → VowelWithLength v long
α-with-length : (vl : VowelLength) → VowelWithLength α vl
ι-with-length : (vl : VowelLength) → VowelWithLength ι vl
υ-with-length : (vl : VowelLength) → VowelWithLength υ vl
alwaysShort-Vowel : ∀ {ℓ} → AlwaysShort ℓ → Vowel ℓ
alwaysShort-Vowel ε = ε
alwaysShort-Vowel ο = ο
alwaysLong-Vowel : ∀ {ℓ} → AlwaysLong ℓ → Vowel ℓ
alwaysLong-Vowel η = η
alwaysLong-Vowel ω = ω
-- Smyth §5
data Diphthong : Letter → Letter → Set where
αι : Diphthong α ι
ει : Diphthong ε ι
οι : Diphthong ο ι
ᾱͅ : Diphthong α ι
ῃ : Diphthong η ι
ῳ : Diphthong ω ι
αυ : Diphthong α υ
ευ : Diphthong ε υ
ου : Diphthong ο υ
ηυ : Diphthong η υ
υι : Diphthong υ ι
-- Smyth §6
data SpuriousDiphthong : ∀ {v₁ v₂} → Diphthong v₁ v₂ → Set where
ει-sp : SpuriousDiphthong ει
ου-sp : SpuriousDiphthong ου
-- Smyth §7
data TonguePosition : Set where
closed closed-medium open-medium open′ closing opening : TonguePosition
tongue-position-vowel : ∀ {ℓ} → Vowel ℓ → TonguePosition
tongue-position-vowel α = open′
tongue-position-vowel ε = closed-medium
tongue-position-vowel η = open-medium
tongue-position-vowel ι = closed
tongue-position-vowel ο = closed-medium
tongue-position-vowel υ = closed
tongue-position-vowel ω = open-medium
tongue-position-diphthong : ∀ {ℓ₁ ℓ₂} → Diphthong ℓ₁ ℓ₂ → TonguePosition
tongue-position-diphthong d = closing
data RoundedLips : Set where
rounded-lips not-rounded-lips : RoundedLips
rounded-lips-vowel : ∀ {ℓ} → Vowel ℓ → RoundedLips
rounded-lips-vowel ο = rounded-lips
rounded-lips-vowel υ = rounded-lips
rounded-lips-vowel ω = rounded-lips
rounded-lips-vowel _ = not-rounded-lips
rounded-lips-diphthong : ∀ {ℓ₁ ℓ₂} → Diphthong ℓ₁ ℓ₂ → RoundedLips
rounded-lips-diphthong ου = rounded-lips
rounded-lips-diphthong _ = not-rounded-lips
-- Smyth §9
data Breathing : Set where
῾ ᾿ : Breathing
-- Smyth §15
data Consonant : Letter → Set where
β : Consonant β
γ : Consonant γ
δ : Consonant δ
ζ : Consonant ζ
θ : Consonant θ
κ : Consonant κ
λ′ : Consonant λ′
μ : Consonant μ
ν : Consonant ν
ξ : Consonant ξ
π : Consonant π
ρ : Consonant ρ
σ : Consonant σ
τ : Consonant τ
φ : Consonant φ
χ : Consonant χ
ψ : Consonant ψ
data LetterCategory : Letter → Set where
vowel : ∀ {ℓ} → Vowel ℓ → LetterCategory ℓ
consonant : ∀ {ℓ} → Consonant ℓ → LetterCategory ℓ
Letter-to-LetterCategory : (ℓ : Letter) → LetterCategory ℓ
Letter-to-LetterCategory α = vowel α
Letter-to-LetterCategory β = consonant β
Letter-to-LetterCategory γ = consonant γ
Letter-to-LetterCategory δ = consonant δ
Letter-to-LetterCategory ε = vowel ε
Letter-to-LetterCategory ζ = consonant ζ
Letter-to-LetterCategory η = vowel η
Letter-to-LetterCategory θ = consonant θ
Letter-to-LetterCategory ι = vowel ι
Letter-to-LetterCategory κ = consonant κ
Letter-to-LetterCategory λ′ = consonant λ′
Letter-to-LetterCategory μ = consonant μ
Letter-to-LetterCategory ν = consonant ν
Letter-to-LetterCategory ξ = consonant ξ
Letter-to-LetterCategory ο = vowel ο
Letter-to-LetterCategory π = consonant π
Letter-to-LetterCategory ρ = consonant ρ
Letter-to-LetterCategory σ = consonant σ
Letter-to-LetterCategory τ = consonant τ
Letter-to-LetterCategory υ = vowel υ
Letter-to-LetterCategory φ = consonant φ
Letter-to-LetterCategory χ = consonant χ
Letter-to-LetterCategory ψ = consonant ψ
Letter-to-LetterCategory ω = vowel ω
LetterCategory-to-Letter : ∀ {ℓ} → LetterCategory ℓ → Letter
LetterCategory-to-Letter {ℓ} _ = ℓ
data ConsonantSound : Letter → Set where
β : ConsonantSound β
γ : ConsonantSound γ
δ : ConsonantSound δ
ζ : ConsonantSound ζ
θ : ConsonantSound θ
κ : ConsonantSound κ
λ′ : ConsonantSound λ′
μ : ConsonantSound μ
ν : ConsonantSound ν
ξ : ConsonantSound ξ
π : ConsonantSound π
ρ : ConsonantSound ρ
σ : ConsonantSound σ
τ : ConsonantSound τ
φ : ConsonantSound φ
χ : ConsonantSound χ
ψ : ConsonantSound ψ
γ-nasal : ConsonantSound γ
ῥ : ConsonantSound ρ
data VocalChords : Set where
voiced voiceless : VocalChords
-- Smyth §15 a
data Voiced : ∀ {ℓ} → ConsonantSound ℓ → Set where
β : Voiced β
δ : Voiced δ
γ : Voiced γ
λ′ : Voiced λ′
ρ : Voiced ρ
μ : Voiced μ
ν : Voiced ν
γ-nasal : Voiced γ-nasal
ζ : Voiced ζ
-- Smyth §15 a, b
data Voiceless : ∀ {ℓ} → ConsonantSound ℓ → Set where
ῥ : Voiceless ῥ
π : Voiceless π
τ : Voiceless τ
κ : Voiceless κ
φ : Voiceless φ
θ : Voiceless θ
χ : Voiceless χ
σ : Voiceless σ
ψ : Voiceless ψ
ξ : Voiceless ξ
-- TODO (needs a unified model)
-- Accent
-- Smyth §4 All vowels with the circumflex (149) are long.
-- Diaeresis
-- Smyth §8 Diaeresis.—A double dot, the mark of diaeresis, may be written over ι or υ when these do not form a diphthong with the preceding vowel
-- Breathing
-- Smyth §9. Every initial vowel or diphthong has either the rough (῾) or the smooth (᾿) breathing.
-- Smyth §10. Initial υ (ῠ and ῡ) always has the rough breathing.
-- Smyth §11. Diphthongs take the breathing, as the accent (152), over the second vowel: αἱρέω hairéo I seize, αἴρω aíro I lift.
-- Smyth §11. But ᾳ, ῃ, ῳ take both the breathing and the accent on the first vowel, even when ι is written in the line (5): ᾄδω = Ἄιδω I sing… The writing ἀίδηλος (Ἀίδηλος) destroying shows that αι does not here form a diphthong
-- Smyth §12. In compound words (as in προορᾶν to foresee, from πρό + ὁρᾶν) the rough breathing is not written, though it must often have been pronounced
-- Smyth §13. Every initial ρ has the rough breathing
-- Smyth §13. Medial ρρ is written ῤῥ in some texts
-- Consonants
-- Smyth §15 c. ι̯ υ̯
|
module Text.Greek.Smyth where
open import Data.Char
open import Data.Maybe
open import Relation.Nullary using (¬_)
-- Smyth §1
data Letter : Set where
α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ τ υ φ χ ψ ω : Letter
data LetterCase : Set where
capital small : LetterCase
form : Letter → LetterCase → Char
form α capital = 'Α'
form α small = 'α'
form β capital = 'Β'
form β small = 'β'
form γ capital = 'Γ'
form γ small = 'γ'
form δ capital = 'Δ'
form δ small = 'δ'
form ε capital = 'Ε'
form ε small = 'ε'
form ζ capital = 'Ζ'
form ζ small = 'ζ'
form η capital = 'Η'
form η small = 'η'
form θ capital = 'Θ'
form θ small = 'θ'
form ι capital = 'Ι'
form ι small = 'ι'
form κ capital = 'Κ'
form κ small = 'κ'
form λ′ capital = 'Λ'
form λ′ small = 'λ'
form μ capital = 'Μ'
form μ small = 'μ'
form ν capital = 'Ν'
form ν small = 'ν'
form ξ capital = 'Ξ'
form ξ small = 'ξ'
form ο capital = 'Ο'
form ο small = 'ο'
form π capital = 'Π'
form π small = 'π'
form ρ capital = 'Ρ'
form ρ small = 'ρ'
form σ capital = 'Σ'
form σ small = 'σ'
form τ capital = 'Τ'
form τ small = 'τ'
form υ capital = 'Υ'
form υ small = 'υ'
form φ capital = 'Φ'
form φ small = 'φ'
form χ capital = 'Χ'
form χ small = 'χ'
form ψ capital = 'Ψ'
form ψ small = 'ψ'
form ω capital = 'Ω'
form ω small = 'ω'
-- Smyth §1 a
data PositionInWord : Set where
start-of-word : PositionInWord
middle-of-word : PositionInWord
end-of-word : PositionInWord
data FinalForm : Set where
final-form not-final-form : FinalForm
get-final-form : Letter → LetterCase → PositionInWord → FinalForm
get-final-form σ′ small end-of-word = final-form
get-final-form _ _ _ = not-final-form
-- Smyth §3
data OlderLetter : Set where
Ϝ : OlderLetter
Ϙ : OlderLetter
ϡ : OlderLetter
-- Smyth §4
data Vowel : Letter → Set where
α : Vowel α
ε : Vowel ε
η : Vowel η
ι : Vowel ι
ο : Vowel ο
υ : Vowel υ
ω : Vowel ω
data AlwaysShort : Letter → Set where
ε : AlwaysShort ε
ο : AlwaysShort ο
data AlwaysLong : Letter → Set where
η : AlwaysLong η
ω : AlwaysLong ω
data VowelLength : Set where
short long : VowelLength
data VowelWithLength : ∀ {v} → Vowel v → VowelLength → Set where
always-short : ∀ {ℓ} → (v : Vowel ℓ) → AlwaysShort ℓ → VowelWithLength v short
always-long : ∀ {ℓ} → (v : Vowel ℓ) → AlwaysLong ℓ → VowelWithLength v long
α-with-length : (vl : VowelLength) → VowelWithLength α vl
ι-with-length : (vl : VowelLength) → VowelWithLength ι vl
υ-with-length : (vl : VowelLength) → VowelWithLength υ vl
alwaysShort-Vowel : ∀ {ℓ} → AlwaysShort ℓ → Vowel ℓ
alwaysShort-Vowel ε = ε
alwaysShort-Vowel ο = ο
alwaysLong-Vowel : ∀ {ℓ} → AlwaysLong ℓ → Vowel ℓ
alwaysLong-Vowel η = η
alwaysLong-Vowel ω = ω
-- Smyth §5
data Diphthong : Letter → Letter → Set where
αι : Diphthong α ι
ει : Diphthong ε ι
οι : Diphthong ο ι
ᾱͅ : Diphthong α ι
ῃ : Diphthong η ι
ῳ : Diphthong ω ι
αυ : Diphthong α υ
ευ : Diphthong ε υ
ου : Diphthong ο υ
ηυ : Diphthong η υ
υι : Diphthong υ ι
-- Smyth §6
data SpuriousDiphthong : ∀ {v₁ v₂} → Diphthong v₁ v₂ → Set where
ει-sp : SpuriousDiphthong ει
ου-sp : SpuriousDiphthong ου
-- Smyth §7
data TonguePosition : Set where
closed closed-medium open-medium open′ closing opening : TonguePosition
tongue-position-vowel : ∀ {ℓ} → Vowel ℓ → TonguePosition
tongue-position-vowel α = open′
tongue-position-vowel ε = closed-medium
tongue-position-vowel η = open-medium
tongue-position-vowel ι = closed
tongue-position-vowel ο = closed-medium
tongue-position-vowel υ = closed
tongue-position-vowel ω = open-medium
tongue-position-diphthong : ∀ {ℓ₁ ℓ₂} → Diphthong ℓ₁ ℓ₂ → TonguePosition
tongue-position-diphthong d = closing
data RoundedLips : Set where
rounded-lips not-rounded-lips : RoundedLips
rounded-lips-vowel : ∀ {ℓ} → Vowel ℓ → RoundedLips
rounded-lips-vowel ο = rounded-lips
rounded-lips-vowel υ = rounded-lips
rounded-lips-vowel ω = rounded-lips
rounded-lips-vowel _ = not-rounded-lips
rounded-lips-diphthong : ∀ {ℓ₁ ℓ₂} → Diphthong ℓ₁ ℓ₂ → RoundedLips
rounded-lips-diphthong ου = rounded-lips
rounded-lips-diphthong _ = not-rounded-lips
-- Smyth §9
data Breathing : Set where
῾ ᾿ : Breathing
-- Smyth §15
data Consonant : Letter → Set where
β : Consonant β
γ : Consonant γ
δ : Consonant δ
ζ : Consonant ζ
θ : Consonant θ
κ : Consonant κ
λ′ : Consonant λ′
μ : Consonant μ
ν : Consonant ν
ξ : Consonant ξ
π : Consonant π
ρ : Consonant ρ
σ : Consonant σ
τ : Consonant τ
φ : Consonant φ
χ : Consonant χ
ψ : Consonant ψ
data LetterCategory : Letter → Set where
vowel : ∀ {ℓ} → Vowel ℓ → LetterCategory ℓ
consonant : ∀ {ℓ} → Consonant ℓ → LetterCategory ℓ
Letter-to-LetterCategory : (ℓ : Letter) → LetterCategory ℓ
Letter-to-LetterCategory α = vowel α
Letter-to-LetterCategory β = consonant β
Letter-to-LetterCategory γ = consonant γ
Letter-to-LetterCategory δ = consonant δ
Letter-to-LetterCategory ε = vowel ε
Letter-to-LetterCategory ζ = consonant ζ
Letter-to-LetterCategory η = vowel η
Letter-to-LetterCategory θ = consonant θ
Letter-to-LetterCategory ι = vowel ι
Letter-to-LetterCategory κ = consonant κ
Letter-to-LetterCategory λ′ = consonant λ′
Letter-to-LetterCategory μ = consonant μ
Letter-to-LetterCategory ν = consonant ν
Letter-to-LetterCategory ξ = consonant ξ
Letter-to-LetterCategory ο = vowel ο
Letter-to-LetterCategory π = consonant π
Letter-to-LetterCategory ρ = consonant ρ
Letter-to-LetterCategory σ = consonant σ
Letter-to-LetterCategory τ = consonant τ
Letter-to-LetterCategory υ = vowel υ
Letter-to-LetterCategory φ = consonant φ
Letter-to-LetterCategory χ = consonant χ
Letter-to-LetterCategory ψ = consonant ψ
Letter-to-LetterCategory ω = vowel ω
LetterCategory-to-Letter : ∀ {ℓ} → LetterCategory ℓ → Letter
LetterCategory-to-Letter {ℓ} _ = ℓ
data ConsonantSound : Letter → Set where
β : ConsonantSound β
γ : ConsonantSound γ
δ : ConsonantSound δ
ζ : ConsonantSound ζ
θ : ConsonantSound θ
κ : ConsonantSound κ
λ′ : ConsonantSound λ′
μ : ConsonantSound μ
ν : ConsonantSound ν
ξ : ConsonantSound ξ
π : ConsonantSound π
ρ : ConsonantSound ρ
σ : ConsonantSound σ
τ : ConsonantSound τ
φ : ConsonantSound φ
χ : ConsonantSound χ
ψ : ConsonantSound ψ
γ-nasal : ConsonantSound γ
ῥ : ConsonantSound ρ
data VocalChords : Set where
voiced voiceless : VocalChords
-- Smyth §15 a
data Voiced : ∀ {ℓ} → ConsonantSound ℓ → Set where
β : Voiced β
δ : Voiced δ
γ : Voiced γ
λ′ : Voiced λ′
ρ : Voiced ρ
μ : Voiced μ
ν : Voiced ν
γ-nasal : Voiced γ-nasal
ζ : Voiced ζ
-- Smyth §15 a, b
data Voiceless : ∀ {ℓ} → ConsonantSound ℓ → Set where
ῥ : Voiceless ῥ
π : Voiceless π
τ : Voiceless τ
κ : Voiceless κ
φ : Voiceless φ
θ : Voiceless θ
χ : Voiceless χ
σ : Voiceless σ
ψ : Voiceless ψ
ξ : Voiceless ξ
-- Smyth §16
data PartOfMouthClass : Set where
labial dental palatal : PartOfMouthClass
data Labial : ∀ {ℓ} → ConsonantSound ℓ → Set where
π : Labial π
β : Labial β
φ : Labial φ
data Dental : ∀ {ℓ} → ConsonantSound ℓ → Set where
τ : Dental τ
δ : Dental δ
θ : Dental θ
data Palatal : ∀ {ℓ} → ConsonantSound ℓ → Set where
κ : Palatal κ
γ : Palatal γ
χ : Palatal χ
data SmoothStop : ∀ {ℓ} → ConsonantSound ℓ → Set where
π : SmoothStop π
τ : SmoothStop τ
κ : SmoothStop κ
data MiddleStop : ∀ {ℓ} → ConsonantSound ℓ → Set where
β : MiddleStop β
δ : MiddleStop δ
γ : MiddleStop γ
data RoughStop : ∀ {ℓ} → ConsonantSound ℓ → Set where
φ : RoughStop φ
θ : RoughStop θ
χ : RoughStop χ
-- Smyth §17
data Spirant : ∀ {ℓ} → ConsonantSound ℓ → Set where
σ : Spirant σ
-- Smyth §18
data Liquid : ∀ {ℓ} → ConsonantSound ℓ → Set where
λ′ : Liquid λ′
ρ : Liquid ρ
-- Smyth §19
data Nasal : ∀ {ℓ} → ConsonantSound ℓ → Set where
μ : Nasal μ
ν : Nasal ν
γ-nasal : Nasal γ-nasal
-- Smyth §20
data Semivowel : ∀ {ℓ} → Vowel ℓ → Set where
ι̯ : Semivowel ι
υ̯ : Semivowel υ
-- Smyth §20 b
data Sonant : ∀ {ℓ} → ConsonantSound ℓ → Set where
λ̥ : Sonant λ′
μ̥ : Sonant μ
ν̥ : Sonant γ
ρ̥ : Sonant ρ
σ̥ : Sonant σ
-- Smyth §21
data DoubleConsonant : ∀ {ℓ} → ConsonantSound ℓ → Set where
ζ : DoubleConsonant ζ
ξ : DoubleConsonant ξ
ψ : DoubleConsonant ψ
data _+_⇒DoubleConsonant_ : ∀ {ℓ₁ ℓ₂ ℓ₃} → ConsonantSound ℓ₁ → ConsonantSound ℓ₂ → ConsonantSound ℓ₃ → Set where
σ+δ⇒DoubleConsonantζ : σ + δ ⇒DoubleConsonant ζ -- Smyth §26 D. Aeolic has σδ for ζ
δ+σ⇒DoubleConsonantζ : δ + σ ⇒DoubleConsonant ζ
κ+σ⇒DoubleConsonantξ : κ + σ ⇒DoubleConsonant ξ
γ+σ⇒DoubleConsonantξ : γ + σ ⇒DoubleConsonant ξ
χ+σ⇒DoubleConsonantξ : χ + σ ⇒DoubleConsonant ξ
π+σ⇒DoubleConsonantψ : π + σ ⇒DoubleConsonant ψ
β+σ⇒DoubleConsonantψ : β + σ ⇒DoubleConsonant ψ
φ+σ⇒DoubleConsonantψ : φ + σ ⇒DoubleConsonant ψ
-- TODO (needs a unified model)
-- Accent
-- Smyth §4. All vowels with the circumflex (149) are long.
-- Diaeresis
-- Smyth §8. Diaeresis.—A double dot, the mark of diaeresis, may be written over ι or υ when these do not form a diphthong with the preceding vowel
-- Breathing
-- Smyth §9. Every initial vowel or diphthong has either the rough (῾) or the smooth (᾿) breathing.
-- Smyth §10. Initial υ (ῠ and ῡ) always has the rough breathing.
-- Smyth §11. Diphthongs take the breathing, as the accent (152), over the second vowel: αἱρέω hairéo I seize, αἴρω aíro I lift.
-- Smyth §11. But ᾳ, ῃ, ῳ take both the breathing and the accent on the first vowel, even when ι is written in the line (5): ᾄδω = Ἄιδω I sing… The writing ἀίδηλος (Ἀίδηλος) destroying shows that αι does not here form a diphthong
-- Smyth §12. In compound words (as in προορᾶν to foresee, from πρό + ὁρᾶν) the rough breathing is not written, though it must often have been pronounced
-- Smyth §13. Every initial ρ has the rough breathing
-- Smyth §13. Medial ρρ is written ῤῥ in some texts
-- Consonants
-- Smyth §15 c. ι̯ υ̯
-- Smyth §19 a. Gamma before κ, γ, χ, ξ is called γ-nasal
-- Smyth §20 a. When ι and υ correspond to y and w (cp. minion, persuade) they are said to be unsyllabic; and, with a following vowel, make one syllable out of two.
-- Smyth §20 a. Initial ι̯ passed into ̔ (h), as in ἧπαρ liver, Lat. jecur; and into ζ in ζυγόν yoke
-- Smyth §20 a. Initial υ̯ was written ϝ
-- Smyth §20 a. Medial ι̯, υ̯ before vowels were often lost, as in τῑμά-(ι̯)ω I honour, βο (υ̯)-ός, gen. of βοῦ-ς ox, cow
-- Smyth §26. σ was usually like our sharp s; but before voiced consonants (15 a) it probably was soft, like z; thus we find both κόζμος and κόσμος on inscriptions.
|
Add more Smyth encoding.
|
Add more Smyth encoding.
|
Agda
|
mit
|
scott-fleischman/greek-grammar,scott-fleischman/greek-grammar
|
f6544cdf2b41aa0730418c4d5d83b346e2b74f2e
|
Base/Change/Equivalence.agda
|
Base/Change/Equivalence.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Function
open import Base.Change.Equivalence.Base public
open import Base.Change.Equivalence.EqReasoning public
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ proof dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x = doe $
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- Let's show that nil x is d.o.e. to x ⊟ x
nil-x-is-x⊟x : nil x ≙ x ⊟ x
nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff x x))
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = doe lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
-- This is Lemma 2.5 in the paper. Note that the statement in the paper uses
-- (incorrectly) normal equality instead of delta-observational equivalence.
deriv-zero :
(f : A → B) → (df : (a : A) (da : Δ a) → Δ (f a)) → Derivative f df →
∀ v → df v (nil v) ≙ nil (f v)
deriv-zero f df proof v = doe lemma
where
open ≡-Reasoning
lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil (f v)
lemma =
begin
f v ⊞ df v (nil v)
≡⟨ proof v (nil v) ⟩
f (v ⊞ (nil v))
≡⟨ cong f (update-nil v) ⟩
f v
≡⟨ sym (update-nil (f v)) ⟩
f v ⊞ nil (f v) ∎
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Function
open import Base.Change.Equivalence.Base public
open import Base.Change.Equivalence.EqReasoning public
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ proof dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x = doe $
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- Let's show that nil x is d.o.e. to x ⊟ x
nil-x-is-x⊟x : nil x ≙ x ⊟ x
nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff x x))
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = doe lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- You could think that the function should relate equivalent changes, but
-- that's a stronger hypothesis, which doesn't give you extra guarantees. But
-- here's the statement and proof, for completeness:
delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx₁ dx₂ → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg
delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl)
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
-- This is Lemma 2.5 in the paper. Note that the statement in the paper uses
-- (incorrectly) normal equality instead of delta-observational equivalence.
deriv-zero :
(f : A → B) → (df : (a : A) (da : Δ a) → Δ (f a)) → Derivative f df →
∀ v → df v (nil v) ≙ nil (f v)
deriv-zero f df proof v = doe lemma
where
open ≡-Reasoning
lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil (f v)
lemma =
begin
f v ⊞ df v (nil v)
≡⟨ proof v (nil v) ⟩
f (v ⊞ (nil v))
≡⟨ cong f (update-nil v) ⟩
f v
≡⟨ sym (update-nil (f v)) ⟩
f v ⊞ nil (f v) ∎
|
add variant of delta-ext
|
Base.Change.Equivalence: add variant of delta-ext
Since I was confused myself for a while on the correct statement for
delta-ext, clarify it explicitly.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
8f017c6136524d1546c71e1484d6011f82180f52
|
otp-sem-sec.agda
|
otp-sem-sec.agda
|
module otp-sem-sec where
import Level as L
open import Function
open import Data.Nat.NP
open import Data.Bits
open import Data.Bool
open import Data.Bool.Properties
open import Data.Vec hiding (_>>=_)
open import Data.Product.NP hiding (_⟦×⟧_)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import flipbased-implem
open ≡-Reasoning
open import Data.Unit using (⊤)
open import composable
open import vcomp
open import forkable
proj : ∀ {a} {A : Set a} → A × A → Bit → A
proj (x₀ , x₁) 0b = x₀
proj (x₀ , x₁) 1b = x₁
module FunctionExtra where
_***_ : ∀ {A B C D : Set} → (A → B) → (C → D) → A × C → B × D
(f *** g) (x , y) = (f x , g y)
-- Fanout
_&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C
(f &&& g) x = (f x , g x)
_>>>_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A → B) → (B → C) → (A → C)
f >>> g = g ∘ f
infixr 1 _>>>_
module BitsExtra where
splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n
splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) }
vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id
vnot∘vnot [] = refl
vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs)
open BitsExtra
Coins = ℕ
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {c} (f g : ↺ c Bit) → Set
]-[-cong : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
breaks : ∀ {c} (EXP : Bit → ↺ c Bit) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
_≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ↺ c Bit) → Set
⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b
≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c})
≗⅁-trans p q b R = trans (p b R) (q b R)
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ↺ c₀ Bit) (⅁₁ : Bit → ↺ c₁ Bit) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ↺ c Bit}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong (same-games 0b) (same-games 1b)
module Guess (Power : Set) (coins : Power → Coins) (prgDist : PrgDist) where
open PrgDist prgDist
GuessAdv : Coins → Set
GuessAdv c = ↺ c Bit
runGuess⅁ : ∀ {ca} (A : GuessAdv ca) (b : Bit) → ↺ ca Bit
runGuess⅁ A _ = A
-- An oracle: an adversary who can break the guessing game.
Oracle : Power → Set
Oracle power = ∃ (λ (A : GuessAdv (coins power)) → breaks (runGuess⅁ A))
-- Any adversary cannot do better than a random guess.
GuessSec : Power → Set
GuessSec power = ∀ (A : GuessAdv (coins power)) → ¬(breaks (runGuess⅁ A))
record FlatFuns (Power : Set) {t} (T : Set t) : Set (L.suc t) where
constructor mk
field
`Bits : ℕ → T
`Bit : T
_`×_ : T → T → T
⟨_⟩_↝_ : Power → T → T → Set
infixr 2 _`×_
infix 0 ⟨_⟩_↝_
record PowerOps (Power : Set) : Set where
constructor mk
infixr 1 _>>>ᵖ_
infixr 3 _***ᵖ_
field
idᵖ : Power
_>>>ᵖ_ _***ᵖ_ : Power → Power → Power
constPowerOps : PowerOps ⊤
constPowerOps = _
record FlatFunsOps {P t} {T : Set t} (powerOps : PowerOps P) (♭Funs : FlatFuns P T) : Set t where
constructor mk
open FlatFuns ♭Funs
open PowerOps powerOps
field
idO : ∀ {A p} → ⟨ p ⟩ A ↝ A
isIComposable : IComposable {I = ⊤} _>>>ᵖ_ ⟨_⟩_↝_
isVIComposable : VIComposable {I = ⊤} _***ᵖ_ _`×_ ⟨_⟩_↝_
open FlatFuns ♭Funs public
open PowerOps powerOps public
open IComposable isIComposable public
open VIComposable isVIComposable public
fun♭Funs : FlatFuns ⊤ Set
fun♭Funs = mk Bits Bit _×_ (λ _ A B → A → B)
fun♭Ops : FlatFunsOps _ fun♭Funs
fun♭Ops = mk id funComp funVComp
module AbsSemSec (|M| |C| : ℕ) {FunPower : Set} {t} {T : Set t}
(♭Funs : FlatFuns FunPower T) where
record Power : Set where
constructor mk
field
p₀ p₁ : FunPower
|R| : Coins
coins = Power.|R|
open FlatFuns ♭Funs
M = `Bits |M|
C = `Bits |C|
record AbsSemSecAdv (p : Power) : Set where
constructor mk
open Power p
field
{|S|} : ℕ
S = `Bits |S|
R = `Bits |R|
field
step₀ : ⟨ p₀ ⟩ R ↝ (M `× M) `× S
step₁ : ⟨ p₁ ⟩ C `× S ↝ `Bit
SemSecReduction : ∀ (f : Power → Power) → Set
SemSecReduction f = ∀ {p} → AbsSemSecAdv p → AbsSemSecAdv (f p)
-- Here we use Agda functions for FlatFuns and ⊤ for power.
module FunSemSec (prgDist : PrgDist) (|M| |C| : ℕ) where
open PrgDist prgDist
open AbsSemSec |M| |C| fun♭Funs
open PowerOps constPowerOps
open FlatFunsOps fun♭Ops
M² = Bit → M
Enc : ∀ cc → Set
Enc cc = M → ↺ cc C
Tr : (cc₀ cc₁ : Coins) → Set
Tr cc₀ cc₁ = Enc cc₀ → Enc cc₁
FunSemSecAdv : Coins → Set
FunSemSecAdv |R| = AbsSemSecAdv (mk _ _ |R|)
module FunSemSecAdv {|R|} (A : FunSemSecAdv |R|) where
open AbsSemSecAdv A public
step₀F : R → (M² × S)
step₀F = step₀ >>> proj *** idO
step₀↺ : ↺ |R| (M² × S)
step₀↺ = mk step₀F
step₁F : S → C → Bit
step₁F s c = step₁ (c , s)
-- Returing 0 means Chal wins, Adv looses
-- 1 means Adv wins, Chal looses
runSemSec : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit
runSemSec E A b
= A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) }
where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁)
_⇄_ : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit
_⇄_ = runSemSec
runAdv : ∀ {|R|} → FunSemSecAdv |R| → C → Bits |R| → (M × M) × Bit
runAdv (mk A-step₀ A-step₁) C = A-step₀ >>> id *** (const C &&& id >>> A-step₁)
where open FunctionExtra using (_&&&_)
_≗A_ : ∀ {p} (A₁ A₂ : FunSemSecAdv p) → Set
A₀ ≗A A₁ = ∀ C R → runAdv A₀ C R ≡ runAdv A₁ C R
change-adv : ∀ {cc ca} {E : Enc cc} {A₁ A₂ : FunSemSecAdv ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂)
change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R
change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , refl = trans (cong proj₂ (helper₀ A₁)) helper₂
where open FunSemSecAdv
helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post) pre
helper₂ = cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre)))
(helper₀ A₂)
SafeSemSecReduction : ∀ (f : Power → Power) {cc₀ cc₁} (E₀ : Enc cc₀) (E₁ : Enc cc₁) → Set
SafeSemSecReduction f E₀ E₁ =
∃ λ (red : SemSecReduction f) →
∀ {p} A → (E₀ ⇄ A) ⇓ (E₁ ⇄ red {p} A)
SemSecTr : ∀ {cc₀ cc₁} (f : Power → Power) (tr : Tr cc₀ cc₁) → Set
SemSecTr {cc₀} f tr = ∀ {E : Enc cc₀} → SafeSemSecReduction f (tr E) E
module PostCompSec (prgDist : PrgDist) (|M| |C| : ℕ) where
module PostCompRed {FunPower : Set} {t} {T : Set t}
{♭Funs : FlatFuns FunPower T}
{funPowerOps : PowerOps FunPower}
(♭ops : FlatFunsOps funPowerOps ♭Funs) where
open FlatFunsOps ♭ops
open AbsSemSec |M| |C| ♭Funs
post-comp-red-power : FunPower → Power → Power
post-comp-red-power p (mk p₀ p₁ |R|) = mk p₀ (p ***ᵖ idᵖ >>>ᵖ p₁) |R|
post-comp-red : ∀ {p} (post-E : ⟨ p ⟩ C ↝ C) → SemSecReduction (post-comp-red-power p)
post-comp-red post-E (mk A₀ A₁) = mk A₀ (post-E *** idO >>> A₁)
open PrgDist prgDist
open PostCompRed fun♭Ops
open FlatFunsOps fun♭Ops
open FunSemSec prgDist |M| |C|
open AbsSemSec |M| |C| fun♭Funs
post-comp : ∀ {cc} (post-E : C → C) → Tr cc cc
post-comp post-E E = E >>> map↺ post-E
post-comp-pres-sem-sec : ∀ {cc} (post-E : C → C)
→ SemSecTr id (post-comp {cc} post-E)
post-comp-pres-sem-sec post-E = post-comp-red post-E , (λ _ → id)
post-comp-pres-sem-sec' : ∀ (post-E post-E⁻¹ : C → C)
(post-E-inv : post-E⁻¹ ∘ post-E ≗ id)
{cc} {E : Enc cc}
→ SafeSemSecReduction id E (post-comp post-E E)
post-comp-pres-sem-sec' post-E post-E⁻¹ post-E-inv {cc} {E} = red , helper where
E' = post-comp post-E E
red : SemSecReduction id
red = post-comp-red post-E⁻¹
helper : ∀ {p} A → (E ⇄ A) ⇓ (E' ⇄ red {p} A)
helper {p} A A-breaks-E = A'-breaks-E'
where open FunSemSecAdv A renaming (step₀F to A₀F)
A' = red {p} A
same-games : (E ⇄ A) ≗⅁ (E' ⇄ A')
same-games b R
rewrite post-E-inv (run↺ (E (proj₁ (A₀F (take (coins p) R)) b))
(drop (coins p) R)) = refl
A'-breaks-E' : breaks (E' ⇄ A')
A'-breaks-E' = extensional-reduction same-games A-breaks-E
post-neg : ∀ {cc} → Tr cc cc
post-neg = post-comp vnot
post-neg-pres-sem-sec : ∀ {cc} → SemSecTr id (post-neg {cc})
post-neg-pres-sem-sec {cc} {E} = post-comp-pres-sem-sec vnot {E}
post-neg-pres-sem-sec' : ∀ {cc} {E : Enc cc}
→ SafeSemSecReduction id E (post-neg E)
post-neg-pres-sem-sec' {cc} {E} = post-comp-pres-sem-sec' vnot vnot vnot∘vnot {cc} {E}
open import diff
import Data.Fin as Fin
_]-_-[_ : ∀ {c} (f : ↺ c Bit) k (g : ↺ c Bit) → Set
_]-_-[_ {c} f k g = diff (Fin.toℕ #⟨ run↺ f ⟩) (Fin.toℕ #⟨ run↺ g ⟩) ≥ 2^(c ∸ k)
-- diff (#1 f) (#1 g) ≥ 2^(-k) * 2^ c
-- diff (#1 f) (#1 g) ≥ ε * 2^ c
-- dist (#1 f) (#1 g) ≥ ε * 2^ c
-- where ε = 2^ -k
-- {!dist (#1 f / 2^ c) (#1 g / 2^ c) > ε !}
open import Data.Vec.NP using (count)
ext-count : ∀ {n a} {A : Set a} {f g : A → Bool} → f ≗ g → (xs : Vec A n) → count f xs ≡ count g xs
ext-count f≗g [] = refl
ext-count f≗g (x ∷ xs) rewrite ext-count f≗g xs | f≗g x = refl
ext-# : ∀ {c} {f g : Bits c → Bit} → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩
ext-# f≗g = ext-count f≗g (allBits _)
]-[-cong : ∀ {k c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]- k -[ f' → g ]- k -[ g'
]-[-cong f≗g f'≗g' f]-[f' rewrite ext-# f≗g | ext-# f'≗g' = f]-[f'
module Concrete k where
_]-[_ : ∀ {c} (f g : ↺ c Bit) → Set
_]-[_ f g = f ]- k -[ g
cong' : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
cong' = ]-[-cong {k}
prgDist : PrgDist
prgDist = mk _]-[_ cong'
module Guess' = Guess Coins id prgDist
module FunSemSec' = FunSemSec prgDist
module PostCompSec' = PostCompSec prgDist
|
module otp-sem-sec where
import Level as L
open import Function
open import Data.Nat.NP
open import Data.Bits
open import Data.Bool
open import Data.Bool.Properties
open import Data.Vec hiding (_>>=_)
open import Data.Product.NP hiding (_⟦×⟧_)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import flipbased-implem
open ≡-Reasoning
open import Data.Unit using (⊤)
open import composable
open import vcomp
open import forkable
open import flat-funs
proj : ∀ {a} {A : Set a} → A × A → Bit → A
proj (x₀ , x₁) 0b = x₀
proj (x₀ , x₁) 1b = x₁
module BitsExtra where
splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n
splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) }
vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id
vnot∘vnot [] = refl
vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs)
open BitsExtra
Coins = ℕ
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {c} (f g : ↺ c Bit) → Set
]-[-cong : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
breaks : ∀ {c} (EXP : Bit → ↺ c Bit) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
_≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ↺ c Bit) → Set
⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b
≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c})
≗⅁-trans p q b R = trans (p b R) (q b R)
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ↺ c₀ Bit) (⅁₁ : Bit → ↺ c₁ Bit) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ↺ c Bit}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong (same-games 0b) (same-games 1b)
module Guess (Power : Set) (coins : Power → Coins) (prgDist : PrgDist) where
open PrgDist prgDist
GuessAdv : Coins → Set
GuessAdv c = ↺ c Bit
runGuess⅁ : ∀ {ca} (A : GuessAdv ca) (b : Bit) → ↺ ca Bit
runGuess⅁ A _ = A
-- An oracle: an adversary who can break the guessing game.
Oracle : Power → Set
Oracle power = ∃ (λ (A : GuessAdv (coins power)) → breaks (runGuess⅁ A))
-- Any adversary cannot do better than a random guess.
GuessSec : Power → Set
GuessSec power = ∀ (A : GuessAdv (coins power)) → ¬(breaks (runGuess⅁ A))
module AbsSemSec (|M| |C| : ℕ) {t} {T : Set t}
(♭Funs : FlatFuns T) where
open FlatFuns ♭Funs
M = `Bits |M|
C = `Bits |C|
record AbsSemSecAdv (|R| : Coins) : Set where
constructor mk
field
{|S|} : ℕ
S = `Bits |S|
R = `Bits |R|
field
step₀ : R `→ (M `× M) `× S
step₁ : C `× S `→ `Bit
-- step₀ : ⟨ p₀ ⟩ R ↝ (M `× M) `× S
-- step₁ : ⟨ p₁ ⟩ C `× S ↝ `Bit
SemSecReduction : ∀ (f : Coins → Coins) → Set
SemSecReduction f = ∀ {c} → AbsSemSecAdv c → AbsSemSecAdv (f c)
-- Here we use Agda functions for FlatFuns.
module FunSemSec (prgDist : PrgDist) (|M| |C| : ℕ) where
open PrgDist prgDist
open AbsSemSec |M| |C| fun♭Funs
open FlatFunsOps fun♭Ops
M² = Bit → M
Enc : ∀ cc → Set
Enc cc = M → ↺ cc C
Tr : (cc₀ cc₁ : Coins) → Set
Tr cc₀ cc₁ = Enc cc₀ → Enc cc₁
FunSemSecAdv : Coins → Set
FunSemSecAdv = AbsSemSecAdv
module FunSemSecAdv {|R|} (A : FunSemSecAdv |R|) where
open AbsSemSecAdv A public
step₀F : R → (M² × S)
step₀F = step₀ >>> proj *** idO
step₀↺ : ↺ |R| (M² × S)
step₀↺ = mk step₀F
step₁F : S → C → Bit
step₁F s c = step₁ (c , s)
-- Returing 0 means Chal wins, Adv looses
-- 1 means Adv wins, Chal looses
runSemSec : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit
runSemSec E A b
= A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) }
where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁)
_⇄_ : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit
_⇄_ = runSemSec
runAdv : ∀ {|R|} → FunSemSecAdv |R| → C → Bits |R| → (M × M) × Bit
runAdv (mk A-step₀ A-step₁) C = A-step₀ >>> id *** (const C &&& id >>> A-step₁)
_≗A_ : ∀ {p} (A₁ A₂ : FunSemSecAdv p) → Set
A₀ ≗A A₁ = ∀ C R → runAdv A₀ C R ≡ runAdv A₁ C R
change-adv : ∀ {cc ca} {E : Enc cc} {A₁ A₂ : FunSemSecAdv ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂)
change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R
change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , refl = trans (cong proj₂ (helper₀ A₁)) helper₂
where open FunSemSecAdv
helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post) pre
helper₂ = cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre)))
(helper₀ A₂)
SafeSemSecReduction : ∀ (f : Coins → Coins) {cc₀ cc₁} (E₀ : Enc cc₀) (E₁ : Enc cc₁) → Set
SafeSemSecReduction f E₀ E₁ =
∃ λ (red : SemSecReduction f) →
∀ {c} A → (E₀ ⇄ A) ⇓ (E₁ ⇄ red {c} A)
SemSecTr : ∀ {cc₀ cc₁} (f : Coins → Coins) (tr : Tr cc₀ cc₁) → Set
SemSecTr {cc₀} f tr = ∀ {E : Enc cc₀} → SafeSemSecReduction f (tr E) E
module PostCompSec (prgDist : PrgDist) (|M| |C| : ℕ) where
module PostCompRed {t} {T : Set t}
{♭Funs : FlatFuns T}
(♭ops : FlatFunsOps ♭Funs) where
open FlatFunsOps ♭ops
open AbsSemSec |M| |C| ♭Funs
post-comp-red : (post-E : C `→ C) → SemSecReduction _
post-comp-red post-E (mk A₀ A₁) = mk A₀ (post-E *** idO >>> A₁)
open PrgDist prgDist
open PostCompRed fun♭Ops
open FlatFunsOps fun♭Ops
open FunSemSec prgDist |M| |C|
open AbsSemSec |M| |C| fun♭Funs
post-comp : ∀ {cc} (post-E : C → C) → Tr cc cc
post-comp post-E E = E >>> map↺ post-E
post-comp-pres-sem-sec : ∀ {cc} (post-E : C → C)
→ SemSecTr id (post-comp {cc} post-E)
post-comp-pres-sem-sec post-E = post-comp-red post-E , (λ _ → id)
post-comp-pres-sem-sec' : ∀ (post-E post-E⁻¹ : C → C)
(post-E-inv : post-E⁻¹ ∘ post-E ≗ id)
{cc} {E : Enc cc}
→ SafeSemSecReduction id E (post-comp post-E E)
post-comp-pres-sem-sec' post-E post-E⁻¹ post-E-inv {cc} {E} = red , helper where
E' = post-comp post-E E
red : SemSecReduction id
red = post-comp-red post-E⁻¹
helper : ∀ {p} A → (E ⇄ A) ⇓ (E' ⇄ red {p} A)
helper {c} A A-breaks-E = A'-breaks-E'
where open FunSemSecAdv A renaming (step₀F to A₀F)
A' = red {c} A
same-games : (E ⇄ A) ≗⅁ (E' ⇄ A')
same-games b R
rewrite post-E-inv (run↺ (E (proj₁ (A₀F (take c R)) b))
(drop c R)) = refl
A'-breaks-E' : breaks (E' ⇄ A')
A'-breaks-E' = extensional-reduction same-games A-breaks-E
post-neg : ∀ {cc} → Tr cc cc
post-neg = post-comp vnot
post-neg-pres-sem-sec : ∀ {cc} → SemSecTr id (post-neg {cc})
post-neg-pres-sem-sec {cc} {E} = post-comp-pres-sem-sec vnot {E}
post-neg-pres-sem-sec' : ∀ {cc} {E : Enc cc}
→ SafeSemSecReduction id E (post-neg E)
post-neg-pres-sem-sec' {cc} {E} = post-comp-pres-sem-sec' vnot vnot vnot∘vnot {cc} {E}
open import diff
import Data.Fin as Fin
_]-_-[_ : ∀ {c} (f : ↺ c Bit) k (g : ↺ c Bit) → Set
_]-_-[_ {c} f k g = diff (Fin.toℕ #⟨ run↺ f ⟩) (Fin.toℕ #⟨ run↺ g ⟩) ≥ 2^(c ∸ k)
-- diff (#1 f) (#1 g) ≥ 2^(-k) * 2^ c
-- diff (#1 f) (#1 g) ≥ ε * 2^ c
-- dist (#1 f) (#1 g) ≥ ε * 2^ c
-- where ε = 2^ -k
-- {!dist (#1 f / 2^ c) (#1 g / 2^ c) > ε !}
open import Data.Vec.NP using (count)
ext-count : ∀ {n a} {A : Set a} {f g : A → Bool} → f ≗ g → (xs : Vec A n) → count f xs ≡ count g xs
ext-count f≗g [] = refl
ext-count f≗g (x ∷ xs) rewrite ext-count f≗g xs | f≗g x = refl
ext-# : ∀ {c} {f g : Bits c → Bit} → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩
ext-# f≗g = ext-count f≗g (allBits _)
]-[-cong : ∀ {k c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]- k -[ f' → g ]- k -[ g'
]-[-cong f≗g f'≗g' f]-[f' rewrite ext-# f≗g | ext-# f'≗g' = f]-[f'
module Concrete k where
_]-[_ : ∀ {c} (f g : ↺ c Bit) → Set
_]-[_ f g = f ]- k -[ g
cong' : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
cong' = ]-[-cong {k}
prgDist : PrgDist
prgDist = mk _]-[_ cong'
module Guess' = Guess Coins id prgDist
module FunSemSec' = FunSemSec prgDist
module PostCompSec' = PostCompSec prgDist
|
Cut out power
|
Cut out power
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
f97ff6f67a4cac4360ae09731c7f0ab22eca83b7
|
src/Holes/Test/Limited.agda
|
src/Holes/Test/Limited.agda
|
module Holes.Test.Limited where
open import Holes.Prelude hiding (_⊛_)
open import Holes.Util
open import Holes.Term
open import Holes.Cong.Limited
open import Agda.Builtin.Equality using (_≡_; refl)
module Contrived where
infixl 5 _⊕_
infixl 6 _⊛_
infix 4 _≈_
-- A type of expression trees for natural number calculations
data Expr : Set where
zero : Expr
succ : Expr → Expr
_⊕_ _⊛_ : Expr → Expr → Expr
-- An unsophisticated 'equality' relation on the expression trees
data _≈_ : Expr → Expr → Set where
zero-cong : zero ≈ zero
succ-cong : ∀ {m n} → m ≈ n → succ m ≈ succ n
⊕-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊕ b ≈ a′ ⊕ b′
⊛-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊛ b ≈ a′ ⊛ b′
⊕-comm : ∀ a b → a ⊕ b ≈ b ⊕ a
-- Some lemmas that are necessary to proceed
≈-refl : ∀ {n} → n ≈ n
≈-refl {zero} = zero-cong
≈-refl {succ n} = succ-cong ≈-refl
≈-refl {m ⊕ n} = ⊕-cong ≈-refl ≈-refl
≈-refl {m ⊛ n} = ⊛-cong ≈-refl ≈-refl
{-
Each congruence in the database must have a type with the same shape as the
below, following these rules:
- A congruence `c` is for a single _top-level_ function `f`
- `c` may only be a congruence for _one_ of `f`'s arguments
- Each explicit argument to `f` must be an explicit argument to `c`
- The 'rewritten' version of the changing argument must follow as an implicit
argument to `c`
- The equation to do the local rewriting must be the next explicit argument
-}
open CongSplit _≈_ ≈-refl
⊕-cong₁ = two→one₁ ⊕-cong
⊕-cong₂ = two→one₂ ⊕-cong
⊛-cong₁ = two→one₁ ⊛-cong
⊛-cong₂ = two→one₂ ⊛-cong
succ-cong′ : ∀ n {n′} → n ≈ n′ → succ n ≈ succ n′
succ-cong′ _ = succ-cong
{-
Create the database of congruences.
- This is a list of (Name × ArgPlace × Congruence) triples.
- The `Name` is the (reflected) name of the function to which the congruence
applies.
- The `ArgPlace` is the index of the argument place that the congruence can
rewrite at.
- The `Congruence` is a reflected copy of the congruence function, of type `Term`
-}
database
= (quote _⊕_ , 0 , quote ⊕-cong₁)
∷ (quote _⊕_ , 1 , quote ⊕-cong₂)
∷ (quote _⊛_ , 0 , quote ⊛-cong₁)
∷ (quote _⊛_ , 1 , quote ⊛-cong₂)
∷ (quote succ , 0 , quote succ-cong′)
∷ []
open AutoCong database
test1 : ∀ a b → succ ⌞ a ⊕ b ⌟ ≈ succ (b ⊕ a)
test1 a b = cong! (⊕-comm a b)
test2 : ∀ a b c → succ (⌞ a ⊕ b ⌟ ⊕ c) ≈ succ (b ⊕ a ⊕ c)
test2 a b c = cong! (⊕-comm a b)
test3 : ∀ a b c → succ (a ⊕ ⌞ b ⊕ c ⌟) ≈ succ (a ⊕ (c ⊕ b))
test3 a b c = cong! (⊕-comm b c)
-- We can use a proof obtained by pattern matching for `cong!`
test5 : ∀ a b c → a ≈ b ⊕ c × b ≈ succ c → succ (⌞ b ⌟ ⊕ c ⊛ a) ≈ succ (succ c ⊕ c ⊛ a)
test5 a b c (eq1 , eq2) = cong! eq2
record ∃ {a p} {A : Set a} (P : A → Set p) : Set (a ⊔ p) where
constructor _,_
field
evidence : A
proof : P evidence
-- We can use `cong!` to prove some part of the result even when it depends on
-- other parts of the result
test6 : ∀ a b c → b ⊕ c ≈ a × b ≈ succ c → ∃ λ x → succ (⌞ b ⊕ x ⌟ ⊕ a) ≈ succ (a ⊕ a)
test6 a b c (eq1 , eq2) = c , cong! eq1
module Propositional (+-comm : ∀ a b → a + b ≡ b + a) where
+-cong₁ : ∀ a b {a′} → a ≡ a′ → a + b ≡ a′ + b
+-cong₁ _ _ refl = refl
+-cong₂ : ∀ a b {b′} → b ≡ b′ → a + b ≡ a + b′
+-cong₂ _ _ refl = refl
suc-cong : ∀ n {n′} → n ≡ n′ → suc n ≡ suc n′
suc-cong _ refl = refl
database
= (quote _+_ , 0 , quote +-cong₁)
∷ (quote _+_ , 1 , quote +-cong₂)
∷ (quote suc , 0 , quote suc-cong)
∷ []
open AutoCong database
test1 : ∀ a b → suc ⌞ a + b ⌟ ≡ suc (b + a)
test1 a b = cong! (+-comm a b)
test2 : ∀ a b c → suc (⌞ a + b ⌟ + c) ≡ suc (b + a + c)
test2 a b c = cong! (+-comm a b)
test3 : ∀ a b c → suc (a + ⌞ b + c ⌟) ≡ suc (a + (c + b))
test3 a b c = cong! (+-comm b c)
test4 : ∀ a b c a′ → a ≡ a′ → suc (⌞ a ⌟ + b + c) ≡ suc (a′ + b + c)
test4 _ _ _ _ eq = cong! eq
|
module Holes.Test.Limited where
open import Holes.Prelude hiding (_⊛_)
open import Holes.Util
open import Holes.Term
open import Holes.Cong.Limited
open import Agda.Builtin.Equality using (_≡_; refl)
module Contrived where
infixl 5 _⊕_
infixl 6 _⊛_
infix 4 _≈_
-- A type of expression trees for natural number calculations
data Expr : Set where
zero : Expr
succ : Expr → Expr
_⊕_ _⊛_ : Expr → Expr → Expr
-- An unsophisticated 'equality' relation on the expression trees
data _≈_ : Expr → Expr → Set where
zero-cong : zero ≈ zero
succ-cong : ∀ {m n} → m ≈ n → succ m ≈ succ n
⊕-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊕ b ≈ a′ ⊕ b′
⊛-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊛ b ≈ a′ ⊛ b′
⊕-comm : ∀ a b → a ⊕ b ≈ b ⊕ a
-- Some lemmas that are necessary to proceed
≈-refl : ∀ {n} → n ≈ n
≈-refl {zero} = zero-cong
≈-refl {succ n} = succ-cong ≈-refl
≈-refl {m ⊕ n} = ⊕-cong ≈-refl ≈-refl
≈-refl {m ⊛ n} = ⊛-cong ≈-refl ≈-refl
{-
Each congruence in the database must have a type with the same shape as the
below, following these rules:
- A congruence `c` is for a single _top-level_ function `f`
- `c` may only be a congruence for _one_ of `f`'s arguments
- Each explicit argument to `f` must be an explicit argument to `c`
- The 'rewritten' version of the changing argument must follow as an implicit
argument to `c`
- The equation to do the local rewriting must be the next explicit argument
-}
open CongSplit _≈_ ≈-refl
⊕-cong₁ = two→one₁ ⊕-cong
⊕-cong₂ = two→one₂ ⊕-cong
⊛-cong₁ = two→one₁ ⊛-cong
⊛-cong₂ = two→one₂ ⊛-cong
succ-cong′ : ∀ n {n′} → n ≈ n′ → succ n ≈ succ n′
succ-cong′ _ = succ-cong
{-
Create the database of congruences.
- This is a list of (Name × ArgPlace × Congruence) triples.
- The `Name` is the (reflected) name of the function to which the congruence
applies.
- The `ArgPlace` is the index of the argument place that the congruence can
rewrite at.
- The `Congruence` is a reflected copy of the congruence function, of type `Term`
-}
database
= (quote _⊕_ , 0 , quote ⊕-cong₁)
∷ (quote _⊕_ , 1 , quote ⊕-cong₂)
∷ (quote _⊛_ , 0 , quote ⊛-cong₁)
∷ (quote _⊛_ , 1 , quote ⊛-cong₂)
∷ (quote succ , 0 , quote succ-cong′)
∷ []
open AutoCong database
test1 : ∀ a b → succ ⌞ a ⊕ b ⌟ ≈ succ (b ⊕ a)
test1 a b = cong! (⊕-comm a b)
test2 : ∀ a b c → succ (⌞ a ⊕ b ⌟ ⊕ c) ≈ succ (b ⊕ a ⊕ c)
test2 a b c = cong! (⊕-comm a b)
test3 : ∀ a b c → succ (a ⊕ ⌞ b ⊕ c ⌟) ≈ succ (a ⊕ (c ⊕ b))
test3 a b c = cong! (⊕-comm b c)
-- We can use a proof obtained by pattern matching for `cong!`
test5 : ∀ a b c → a ≈ b ⊕ c × b ≈ succ c → succ (⌞ b ⌟ ⊕ c ⊛ a) ≈ succ (succ c ⊕ c ⊛ a)
test5 a b c (eq1 , eq2) = cong! eq2
record ∃ {a p} {A : Set a} (P : A → Set p) : Set (a ⊔ p) where
constructor _,_
field
evidence : A
proof : P evidence
-- We can use `cong!` to prove some part of the result even when it depends on
-- other parts of the result
test6 : ∀ a b c → b ⊕ c ≈ a × b ≈ succ c → ∃ λ x → succ (⌞ b ⊕ x ⌟ ⊕ a) ≈ succ (a ⊕ a)
test6 a b c (eq1 , eq2) = c , cong! eq1
-- Deep nesting
test7 : ∀ a b c
→ succ (a ⊕ succ (b ⊕ succ (c ⊕ succ (a ⊕ succ ⌞ b ⊕ c ⌟))))
≈ succ (a ⊕ succ (b ⊕ succ (c ⊕ succ (a ⊕ succ ⌞ c ⊕ b ⌟))))
test7 _ b c = cong! (⊕-comm b c)
module Propositional (+-comm : ∀ a b → a + b ≡ b + a) where
+-cong₁ : ∀ a b {a′} → a ≡ a′ → a + b ≡ a′ + b
+-cong₁ _ _ refl = refl
+-cong₂ : ∀ a b {b′} → b ≡ b′ → a + b ≡ a + b′
+-cong₂ _ _ refl = refl
suc-cong : ∀ n {n′} → n ≡ n′ → suc n ≡ suc n′
suc-cong _ refl = refl
database
= (quote _+_ , 0 , quote +-cong₁)
∷ (quote _+_ , 1 , quote +-cong₂)
∷ (quote suc , 0 , quote suc-cong)
∷ []
open AutoCong database
test1 : ∀ a b → suc ⌞ a + b ⌟ ≡ suc (b + a)
test1 a b = cong! (+-comm a b)
test2 : ∀ a b c → suc (⌞ a + b ⌟ + c) ≡ suc (b + a + c)
test2 a b c = cong! (+-comm a b)
test3 : ∀ a b c → suc (a + ⌞ b + c ⌟) ≡ suc (a + (c + b))
test3 a b c = cong! (+-comm b c)
test4 : ∀ a b c a′ → a ≡ a′ → suc (⌞ a ⌟ + b + c) ≡ suc (a′ + b + c)
test4 _ _ _ _ eq = cong! eq
|
Add a new test
|
Add a new test
|
Agda
|
mit
|
bch29/agda-holes
|
ee97a3e6749a3dd5f7faa559198900ab683eb47d
|
README.agda
|
README.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
-- We claim that this formalization
--
-- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper,
-- (2) formally specifies the interface between our incrementalization
-- framework and potential plugins, and
-- (3) shows that the plugin interface can be instantiated.
--
-- The first claim is the main reason for a machine-checked
-- proof: We want to be sure that we got the proofs right.
--
-- The second claim is about reusability and applicability: Only
-- a clearly defined interface allows other researchers to
-- provide plugins for our framework.
--
-- The third claim is to show that the plugin interface is
-- consistent: An inconsistent plugin interface would allow to
-- prove arbitrary results in the framework.
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda, the Agda standard library (version 0.7), generate Everything.agda
-- with the attached Haskell helper, and finally run Agda on this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but
-- has some bugs with serialization of code using some recent syntactic sugar
-- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it
-- might work or not. When it does not, removing Agda caches (.agdai files)
-- appears to often help. You can use "find . -name '*.agdai' | xargs rm" to do
-- that.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- (This import is also important to ensure that if we typecheck
-- README.agda, we also typecheck every other file of our
-- formalization).
-- THE AGDA CODE
-- =============
import Postulate.Extensionality
import Base.Data.DependentList
-- Variables and contexts
import Base.Syntax.Context
-- Sets of variables
import Base.Syntax.Vars
import Base.Denotation.Notation
-- Environments
import Base.Denotation.Environment
-- Change contexts
import Base.Change.Context
-- # Base, parametric proof.
--
-- This is for a parametric calculus where:
-- types are parametric in base types
-- terms are parametric in constants
--
--
-- Modules are ordered and grouped according to what they represent.
-- ## Definitions
import Parametric.Syntax.Type
import Parametric.Syntax.Term
import Parametric.Denotation.Value
import Parametric.Denotation.Evaluation
import Parametric.Change.Type
import Parametric.Change.Term
import Parametric.Change.Derive
import Parametric.Change.Value
import Parametric.Change.Evaluation
-- ## Proofs
import Parametric.Change.Validity
import Parametric.Change.Specification
import Parametric.Change.Implementation
import Parametric.Change.Correctness
-- # Nehemiah plugin
--
-- The structure is the same as the parametric proof (down to the
-- order and the grouping of modules), except for the postulate module.
-- Postulate an abstract data type for integer Bags.
import Postulate.Bag-Nehemiah
-- ## Definitions
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- ## Proofs
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
-- We claim that this formalization
--
-- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper,
-- (2) formally specifies the interface between our incrementalization
-- framework and potential plugins, and
-- (3) shows that the plugin interface can be instantiated.
--
-- The first claim is the main reason for a machine-checked
-- proof: We want to be sure that we got the proofs right.
--
-- The second claim is about reusability and applicability: Only
-- a clearly defined interface allows other researchers to
-- provide plugins for our framework.
--
-- The third claim is to show that the plugin interface is
-- consistent: An inconsistent plugin interface would allow to
-- prove arbitrary results in the framework.
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda, the Agda standard library (version 0.7), generate Everything.agda
-- with the attached Haskell helper, and finally run Agda on this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but
-- has some bugs with serialization of code using some recent syntactic sugar
-- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it
-- might work or not. When it does not, removing Agda caches (.agdai files)
-- appears to often help. You can use "find . -name '*.agdai' | xargs rm" to do
-- that.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- (This import is also important to ensure that if we typecheck
-- README.agda, we also typecheck every other file of our
-- formalization).
-- THE AGDA CODE
-- =============
--
-- The formalization has four parts:
--
-- 1. A formalization of change structures. This lives in
-- Base.Change.Algebra. (What we call "change structure" in the
-- paper, we call "change algebra" in the Agda code. We changed
-- the name when writing the paper, and never got around to
-- updating the name in the Agda code).
--
-- 2. Incrementalization framework for first-class functions,
-- with extension points for plugging in data types and their
-- incrementalization. This lives in the Parametric.*
-- hierarchy.
--
-- 3. An example plugin that provides integers and bags
-- with negative multiplicity. This lives in the Nehemiah.*
-- hierarchy. (For some reason, we choose to call this
-- particular incarnation of the plugin Nehemiah).
--
-- 4. Other material that is unrelated to the framework/plugin
-- distinction. This is all other files.
-- FORMALIZATION OF CHANGE STRUCTURES
-- ==================================
--
-- Section 2 of the paper, and Base.Change.Algebra in Agda.
import Base.Change.Algebra
-- INCREMENTALIZATION FRAMEWORK
-- ============================
--
-- Section 3 of the paper, and Parametric.* hierarchy in Agda.
--
-- The extension points are implemented as module parameters. See
-- detailed explanation in Parametric.Syntax.Type and
-- Parametric.Syntax.Term. Some extension points are for types,
-- some for values, and some for proof fragments. In Agda, these
-- three kinds of entities are unified anyway, so we can encode
-- all of them as module parameters.
--
-- Every module in the Parametric.* hierarchy adds at least one
-- extension point, so the module hierarchy of a plugin will
-- typically mirror the Parametric.* hierarchy, defining the
-- values for these extension points.
--
-- Firstly, we have the syntax of types and terms, the erased
-- change structure for function types and incrementalization as
-- a term-to-term transformation. The contents of these modules
-- formalizes Sec. 3.1 and 3.2 of the paper, except for the
-- second and third line of Figure 3, which is formalized further
-- below.
import Parametric.Syntax.Type -- syntax of types
import Parametric.Syntax.Term -- syntax of terms
import Parametric.Change.Type -- simply-typed changes
import Parametric.Change.Derive -- incrementalization
-- Secondly, we define the usual denotational semantics of the
-- simply-typed lambda calculus in terms of total functions, and
-- the change semantics in terms of a change structure on total
-- functions. The contents of these modules formalize Sec. 3.3,
-- 3.4 and 3.5 of the paper.
import Parametric.Denotation.Value -- standard values
import Parametric.Denotation.Evaluation -- standard evaluation
import Parametric.Change.Validity -- dependently-typed changes
import Parametric.Change.Specification -- change evaluation
-- Thirdly, we define terms that operate on simply-typed changes,
-- and connect them to their values. The concents of these
-- modules formalize the second and third line of Figure 3, as
-- well as the semantics of these lines.
import Parametric.Change.Term -- terms that operate on simply-typed changes
import Parametric.Change.Value -- the values of these terms
import Parametric.Change.Evaluation -- connecting the terms and their values
-- Finally, we prove correctness by connecting the (syntactic)
-- incrementalization to the (semantic) change evaluation by a
-- logical relation, and a proof that the values of terms
-- produced by the incrementalization transformation are related
-- to the change values of the original terms. The contents of
-- these modules formalize Sec. 3.6.
import Parametric.Change.Implementation -- logical relation
import Parametric.Change.Correctness -- main correctness proof
-- EXAMPLE PLUGIN
-- ==============
--
-- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda.
--
-- The module structure of the plugin follows the structure of
-- the Parametric.* hierarchy. For example, the extension point
-- defined in Parametric.Syntax.Term is instantiated in
-- Nehemiah.Syntax.Term.
--
-- As discussed in Sec. 3.7 of the paper, the point of this
-- plugin is not to speed up any real programs, but to show "that
-- the interface for proof plugins can be implemented". As a
-- first step towards proving correctness of the more complicated
-- plugin with integers, bags and finite maps we implement in
-- Scala, we choose to define plugin with integers and bags in
-- Agda. Instead of implementing bags (with negative
-- multiplicities, like in the paper) in Agda, though, we
-- postulate that a group of such bags exist. Note that integer
-- bags with integer multiplicities are actually the free group
-- given a singleton operation `Integer -> Bag`, so this should
-- be easy to formalize in principle.
-- Before we start with the plugin, we postulate an abstract data
-- type for integer bags.
import Postulate.Bag-Nehemiah
-- Firstly, we extend the syntax of types and terms, the erased
-- change structure for function types, and incrementalization as
-- a term-to-term transformation to account for the data types of
-- the Nehemiah language. The contents of these modules
-- instantiate the extension points in Sec. 3.1 and 3.2 of the
-- paper, except for the second and third line of Figure 3, which
-- is instantiated further below.
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
-- Secondly, we extend the usual denotational semantics and the
-- change semantics to account for the data types of the Nehemiah
-- language. The contents of these modules instantiate the
-- extension points in Sec. 3.3, 3.4 and 3.5 of the paper.
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
-- Thirdly, we extend the terms that operate on simply-typed
-- changes, and the connection to their values to account for the
-- data types of the Nehemiah language. The concents of these
-- modules instantiate the extension points in the second and
-- third line of Figure 3.
import Nehemiah.Change.Term
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- Finally, we extend the logical relation and the main
-- correctness proof to account for the data types in the
-- Nehemiah language. The contents of these modules instantiate
-- the extension points defined in Sec. 3.6.
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
-- OTHER MATERIAL
-- ==============
--
-- We postulate extensionality of Agda functions. This postulate
-- is well known to be compatible with Agda's type theory.
import Postulate.Extensionality
-- For historical reasons, we reexport Data.List.All from the
-- standard library under the name DependentList.
import Base.Data.DependentList
-- This module supports overloading the ⟦_⟧ notation based on
-- Agda's instance arguments.
import Base.Denotation.Notation
-- These modules implement contexts including typed de Bruijn
-- indices to represent bound variables, sets of bound variables,
-- and environments. These modules are parametric in the set of
-- types (that are stored in contexts) and the set of values
-- (that are stored in environments). So these modules are even
-- more parametric than the Parametric.* hierarchy.
import Base.Syntax.Context
import Base.Syntax.Vars
import Base.Denotation.Environment
-- This module contains some helper definitions to merge a
-- context of values and a context of changes.
import Base.Change.Context
|
Revise walkthrough in README.agda (for #275).
|
Revise walkthrough in README.agda (for #275).
Old-commit-hash: 97b77b8c0bb96fc3d4df29ee914a158019dd3cdd
|
Agda
|
mit
|
inc-lc/ilc-agda
|
11413469714bba635b972f40607b808e31925650
|
Syntax/Term/Plotkin.agda
|
Syntax/Term/Plotkin.agda
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Denotation.Environment Type
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
|
Remove spurious imports
|
Remove spurious imports
Old-commit-hash: fc57d2d6ee3ff6f548c16e7073aeb6ae12646d85
|
Agda
|
mit
|
inc-lc/ilc-agda
|
1832c6af3f90a6b9fc8c06181cccfcb95932c5fc
|
lib/Relation/Binary/NP.agda
|
lib/Relation/Binary/NP.agda
|
{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.NP where
open import Level
open import Relation.Binary public
import Relation.Binary.PropositionalEquality as PropEq
-- could this be moved in place of Trans is Relation.Binary.Core
Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} →
REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k
substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'}
→ Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈
substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl
substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_
substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl
record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where
field
isEquivalence : IsEquivalence _≡_
subst : Substitutive _≡_ a
open IsEquivalence isEquivalence public
to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈
to-reflexive = substitutive-to-reflexive subst
to-propositional : _≡_ ⇒ PropEq._≡_
to-propositional = substitutive⇒≡ subst
-- Equational reasoning combinators.
module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where
infix 2 finally
infixr 2 _≈⟨_⟩_
_≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z
_ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z
-- When there is no reflexivty available this
-- combinator can be used to end the reasoning.
finally : ∀ (x y : A) → x ≈ y → x ≈ y
finally _ _ x≈y = x≈y
syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎
module Equivalence-Reasoning
{a ℓ} {A : Set a} {_≈_ : Rel A ℓ}
(E : IsEquivalence _≈_) where
open IsEquivalence E
open Trans-Reasoning _≈_ trans public hiding (finally)
infix 2 _∎
_∎ : ∀ x → x ≈ x
_ ∎ = refl
module Preorder-Reasoning
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
open Equivalence-Reasoning isEquivalence public renaming (_≈⟨_⟩_ to _∼⟨_⟩_)
module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where
open Preorder-Reasoning (Setoid.preorder s) public renaming (_∼⟨_⟩_ to _≈⟨_⟩_)
|
{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.NP where
open import Level
open import Relation.Binary public
import Relation.Binary.PropositionalEquality as PropEq
-- could this be moved in place of Trans is Relation.Binary.Core
Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} →
REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k
substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'}
→ Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈
substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl
substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_
substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl
record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where
field
isEquivalence : IsEquivalence _≡_
subst : Substitutive _≡_ a
open IsEquivalence isEquivalence public
to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈
to-reflexive = substitutive-to-reflexive subst
to-propositional : _≡_ ⇒ PropEq._≡_
to-propositional = substitutive⇒≡ subst
-- Equational reasoning combinators.
module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where
infix 2 finally
infixr 2 _≈⟨_⟩_
_≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z
_ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z
-- When there is no reflexivty available this
-- combinator can be used to end the reasoning.
finally : ∀ (x y : A) → x ≈ y → x ≈ y
finally _ _ x≈y = x≈y
syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎
module Equivalence-Reasoning
{a ℓ} {A : Set a} {_≈_ : Rel A ℓ}
(E : IsEquivalence _≈_) where
open IsEquivalence E
open Trans-Reasoning _≈_ trans public hiding (finally)
infix 2 _∎
_∎ : ∀ x → x ≈ x
_ ∎ = refl
module Preorder-Reasoning
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
open Trans-Reasoning _∼_ trans public hiding (finally) renaming (_≈⟨_⟩_ to _∼⟨_⟩_)
open Equivalence-Reasoning isEquivalence public renaming (_∎ to _☐)
infix 2 _∎
_∎ : ∀ x → x ∼ x
_ ∎ = refl
module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where
open Equivalence-Reasoning (Setoid.isEquivalence s) public
|
Fix Preorder-Reasoning and Setoid-Reasoning
|
Fix Preorder-Reasoning and Setoid-Reasoning
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
7257505604e7df0478b8f19eb563905418431bcb
|
Parametric/Change/Specification.agda
|
Parametric/Change/Specification.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(validity-structure : Validity.Structure ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
-- Denotation-as-specification
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
-- open import Data.Integer
-- open import Theorem.Groups-Nehemiah
open import Theorem.CongApp
open import Postulate.Extensionality
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
⟦_⟧ΔConst : ∀ {Σ τ} → (c : Const Σ τ) (ρ : ⟦ Σ ⟧) → Δ₍ Σ ₎ ρ → Δ₍ τ ₎ (⟦ c ⟧Const ρ)
correctness-const : ∀ {Σ τ} (c : Const Σ τ) →
Derivative₍ Σ , τ ₎ ⟦ c ⟧Const ⟦ c ⟧ΔConst
---------------
-- Interface --
---------------
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
⟦_⟧ΔTerms : ∀ {Σ Γ} → (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ Σ ₎ (⟦ ts ⟧Terms ρ)
correctness : ∀ {τ Γ} (t : Term Γ τ) →
Derivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
correctness-terms : ∀ {Σ Γ} (ts : Terms Γ Σ) →
Derivative₍ Γ , Σ ₎ ⟦ ts ⟧Terms ⟦ ts ⟧ΔTerms
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const c ts) ρ dρ = ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = cons
(λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ))
(λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎) where open ≡-Reasoning
⟦ ∅ ⟧ΔTerms ρ dρ = ∅
⟦ t • ts ⟧ΔTerms ρ dρ = ⟦ t ⟧Δ ρ dρ • ⟦ ts ⟧ΔTerms ρ dρ
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
Derivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness-terms ∅ ρ dρ = refl
correctness-terms (t • ts) ρ dρ =
cong₂ _•_
(correctness t ρ dρ)
(correctness-terms ts ρ dρ)
correctness (const {Σ} {τ} c ts) ρ dρ =
begin
after₍ τ ₎ (⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ))
≡⟨ correctness-const c (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ⟩
⟦ c ⟧Const (after-env (⟦ ts ⟧ΔTerms ρ dρ))
≡⟨ cong ⟦ c ⟧Const (correctness-terms ts ρ dρ) ⟩
⟦ c ⟧Const (⟦ ts ⟧Terms (after-env dρ))
∎ where open ≡-Reasoning
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
g = ⟦ s ⟧ (after-env dρ)
u = ⟦ t ⟧ ρ
v = ⟦ t ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f u ⊞₍ τ ₎ call-change {σ} {τ} Δf u Δu
≡⟨ sym (is-valid {σ} {τ} Δf u Δu) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(validity-structure : Validity.Structure ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
-- This module defines two extension points, so to avoid some of
-- the boilerplate, we use record notation.
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
-- Extension point 1: Derivatives of constants.
⟦_⟧ΔConst : ∀ {Σ τ} → (c : Const Σ τ) (ρ : ⟦ Σ ⟧) → Δ₍ Σ ₎ ρ → Δ₍ τ ₎ (⟦ c ⟧Const ρ)
-- Extension point 2: Correctness of the instantiation of extension point 1.
correctness-const : ∀ {Σ τ} (c : Const Σ τ) →
Derivative₍ Σ , τ ₎ ⟦ c ⟧Const ⟦ c ⟧ΔConst
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms and lists of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
⟦_⟧ΔTerms : ∀ {Σ Γ} → (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ Σ ₎ (⟦ ts ⟧Terms ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
Derivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
correctness-terms : ∀ {Σ Γ} (ts : Terms Γ Σ) →
Derivative₍ Γ , Σ ₎ ⟦ ts ⟧Terms ⟦ ts ⟧ΔTerms
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const c ts) ρ dρ = ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = cons
(λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ))
(λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎) where open ≡-Reasoning
⟦ ∅ ⟧ΔTerms ρ dρ = ∅
⟦ t • ts ⟧ΔTerms ρ dρ = ⟦ t ⟧Δ ρ dρ • ⟦ ts ⟧ΔTerms ρ dρ
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
Derivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness-terms ∅ ρ dρ = refl
correctness-terms (t • ts) ρ dρ =
cong₂ _•_
(correctness t ρ dρ)
(correctness-terms ts ρ dρ)
correctness (const {Σ} {τ} c ts) ρ dρ =
begin
after₍ τ ₎ (⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ))
≡⟨ correctness-const c (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ⟩
⟦ c ⟧Const (after-env (⟦ ts ⟧ΔTerms ρ dρ))
≡⟨ cong ⟦ c ⟧Const (correctness-terms ts ρ dρ) ⟩
⟦ c ⟧Const (⟦ ts ⟧Terms (after-env dρ))
∎ where open ≡-Reasoning
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
g = ⟦ s ⟧ (after-env dρ)
u = ⟦ t ⟧ ρ
v = ⟦ t ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f u ⊞₍ τ ₎ call-change {σ} {τ} Δf u Δu
≡⟨ sym (is-valid {σ} {τ} Δf u Δu) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
Document P.C.Specification.
|
Document P.C.Specification.
Old-commit-hash: e6e682df0d2f25bc8c50a5872acd4540f0116289
|
Agda
|
mit
|
inc-lc/ilc-agda
|
351737b9010e4a14a8b06675017e628dfb7d6269
|
PTT/Translation.agda
|
PTT/Translation.agda
|
open import Function
open import Data.Product hiding (zip)
renaming (_,_ to ⟨_,_⟩; proj₁ to fst; proj₂ to snd;
map to ×map)
open import Data.Zero
open import Data.One
open import Data.Two
open import PTT.Dom
import PTT.Session as Session
import PTT.Map as Map
import PTT.Env as Env
import PTT.Proto as Proto
open Session hiding (Ended)
open Env hiding (_/₀_; _/₁_; Ended)
open Proto hiding ()
open import PTT.Term
open import PTT.Split
open import Relation.Binary.PropositionalEquality.NP hiding (J)
S-⅋-inp : ∀ {c c₀ c₁ δI S₀ S₁}{I : Proto δI}(l : [ c ↦ S₀ ⅋ S₁ ]∈ I)
→ S⟨ I [/] l ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩ → S⟨ I ⟩
S-⅋-inp l P = {!!}
translate : ∀ {δI}{I : Proto δI} → ⟨ I ⟩ → S⟨ I ⟩
translate (end x) = S-T (TC-end x)
translate (⅋-inp l P) = S-⅋-inp l (translate (P c₀ c₁))
where postulate c₀ c₁ : URI
translate (⊗-out l P) = {!!}
translate (split σs A1 P P₁) = {!!}
translate (nu D P) = {!!}
{-
module PTT.Translation where
module Translation
{t}
(T⟨_⟩ : ∀ {δI} → Proto δI → Set t)
(T-⊗-out :
∀ {δI I c S₀ S₁}
(l : [ c ↦ S₀ ⊗ S₁ …]∈ I)
(σs : Selections δI)
(σE : Selection ([↦…]∈.δE l))
(A0 : AtMost 0 σs)
(P₀ : ∀ c₀ → T⟨ I [/…] l /₀ σs ,[ E/ l Env./₀ σE , c₀ ↦ « S₀ » ] ⟩)
(P₁ : ∀ c₁ → T⟨ I [/…] l /₁ σs ,[ E/ l Env./₁ σE , c₁ ↦ « S₁ » ] ⟩)
→ T⟨ I ⟩)
(T-⅋-inp :
∀ {δI}{I : Proto δI}{c S₀ S₁}
(l : [ c ↦ S₀ ⅋ S₁ ]∈ I)
(P : ∀ c₀ c₁ → T⟨ I [/] l ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩)
→ T⟨ I ⟩)
(T-end :
∀ {δI}{I : Proto δI}
(E : Ended I)
→ T⟨ I ⟩)
(T-split :
∀ {δI}{I : Proto δI}
(σs : Selections δI)
(A1 : AtMost 1 σs)
(P₀ : T⟨ I /₀ σs ⟩)
(P₁ : T⟨ I /₁ σs ⟩)
→ T⟨ I ⟩)
(T-cut :
∀ {δI}{I : Proto δI}{S₀ S₁}
(D : Dual S₀ S₁)
(σs : Selections δI)
(A0 : AtMost 0 σs)
(P₀ : ∀ c₀ → T⟨ I /₀ σs ,[ c₀ ↦ S₀ ] ⟩)
(P₁ : ∀ c₁ → T⟨ I /₁ σs ,[ c₁ ↦ S₁ ] ⟩)
→ T⟨ I ⟩)
(T-⊗-reorg :
∀ {δI δE c c₀ c₁ S₀ S₁}{J : Proto δI}{E : Env δE}
(l : [ E ]∈ J)
(l₀ : c₀ ↦ « S₀ » ∈ E)
(l₁ : c₁ ↦ « S₁ » ∈ E)
(P : T⟨ J ⟩)
→ T⟨ J Proto./ l ,[ (E Env./' l₀ /D (↦∈.lA l₁) , c ↦ « S₀ ⊗ S₁ ») ] ⟩)
(T-conv : ∀ {δI δJ}{I : Proto δI}{J : Proto δJ} → I ≈ J → T⟨ I ⟩ → T⟨ J ⟩)
where
T-fwd : ∀ {S₀ S₁} (S : Dual S₀ S₁) c₀ c₁ → T⟨ · ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩
T-fwd 𝟙⊥ c₀ c₁ = {!!}
T-fwd ⊥𝟙 c₀ c₁ = {!!}
T-fwd (act (?! S S₁)) c₀ c₁ = {!!}
T-fwd (act (!? S S₁)) c₀ c₁ = {!!}
T-fwd (⊗⅋ S₀ S₁ S₂ S₃) c₀ c₁ =
T-⅋-inp here[]' λ c₂ c₃ →
T-⊗-out (there…' (there…' (there…' here…')))
((((· ,[ (ε , c₀ ↦ 0₂) ]) ,[ (ε , c₁ ↦ 0₂) ]) ,[ (ε , c₂ ↦ 0₂) ]) ,[ (ε , c₃ ↦ 1₂) ])
(ε , c₀ ↦ 0₂)
((((· ,[ {!!} ]) ,[ {!!} ]) ,[ {!!} ]) ,[ {!!} ])
(λ c₄ → T-conv (≈,[] (≈-! (≈,[swap] ≈-∙ {!≈,[] ≈-refl ?!})) (∼,↦ (∼-! ∼,↦end))) (T-fwd S₁ c₃ c₄))
(λ c₄ → T-conv (≈,[] (≈,[] (≈-! (≈,[end] _ ≈-∙ (≈,[end] _ ≈-∙ ≈,[end] _))) ∼-refl) (∼,↦ (∼-! ∼,↦end))) (T-fwd S₃ c₃ c₄))
T-fwd (⅋⊗ S S₁ S₂ S₃) c₀ c₁ = {!!}
{-
-}
go : ∀ {δI}{I : Proto δI} → ⟨ I ⟩ → T⟨ I ⟩
go (end x) = T-end x
go (⅋-inp l P) = T-⅋-inp l (λ c₀ c₁ → go (P c₀ c₁))
go {I = I}(⊗-out {c} {S₀} {S₁} l P) = T-conv e rPP
where postulate c0 c1 : URI
open [↦…]∈ l
F = E Env./' lE , c0 ↦ « S₀ » , c1 ↦ « S₁ »
J = I Proto./ lI ,[ F ]
G = F /D there here /D here , c ↦ « S₀ ⊗ S₁ »
K = J Proto./ heRe[] ,[ G ]
rPP : T⟨ K ⟩
rPP = T-⊗-reorg heRe[] (theRe here) heRe (go (P c0 c1))
e : K ≈ I
e = ≈,[] (≈,[end] (Ended-/* F)) (∼,↦ (∼,↦end ∼-∙ ∼,↦end)) ≈-∙ (≈-! (≈-/…,[…] l))
go {I = I}(nu {S₀} {S₁} D P) = T-conv {!!} (T-cut {I = I'} D (sel₀ _ ,[ (ε , c ↦ 0₂) ] ,[ (ε , c' ↦ 1₂) ]) {!!} (λ c₀' → {!cPP!}) (λ c₁' → {!T-fwd!}))
where postulate c c' c0 c1 : URI
E = ε , c0 ↦ « S₀ » , c1 ↦ « S₁ »
E/* = ε , c0 ↦ end , c1 ↦ end
J = I ,[ E ]
-- K = J / here ,[ E/* , c ↦ S₀ ⊗ S₁ ]
K = I ,[ E/* ] ,[ E/* , c ↦ « S₀ ⊗ S₁ » ]
gP : T⟨ J ⟩
gP = go (P c0 c1)
rPP : T⟨ K ⟩
rPP = T-⊗-reorg {c = c} heRe[] (theRe here) heRe gP
e : K ≈ I ,[ c ↦ S₀ ⊗ S₁ ]
e = ≈,[] (≈,[end] _) (∼,↦ (∼,↦end ∼-∙ ∼,↦end))
cPP : T⟨ I ,[ c ↦ S₀ ⊗ S₁ ] ⟩
cPP = T-conv e rPP
I' = I ,[ c ↦ S₀ ⊗ S₁ ] ,[ c' ↦ {!!} ]
go (split σs A P₀ P₁) = T-split σs A (go P₀) (go P₁)
-}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
-- UNFINISHED
open import Function
open import Data.Product hiding (zip)
renaming (_,_ to ⟨_,_⟩; proj₁ to fst; proj₂ to snd;
map to ×map)
open import Data.Zero
open import Data.One
open import Data.Two
open import PTT.Dom
import PTT.Session as Session
import PTT.Map as Map
import PTT.Env as Env
import PTT.Proto as Proto
open Session hiding (Ended)
open Env hiding (_/₀_; _/₁_; Ended)
open Proto hiding ()
open import PTT.Term
open import PTT.Split
open import Relation.Binary.PropositionalEquality.NP hiding (J)
S-⅋-inp : ∀ {c c₀ c₁ δI S₀ S₁}{I : Proto δI}(l : [ c ↦ S₀ ⅋ S₁ ]∈ I)
→ S⟨ I [/] l ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩ → S⟨ I ⟩
S-⅋-inp l P = {!!}
translate : ∀ {δI}{I : Proto δI} → ⟨ I ⟩ → S⟨ I ⟩
translate (end x) = S-T (TC-end x)
translate (⅋-inp l P) = S-⅋-inp l (translate (P c₀ c₁))
where postulate c₀ c₁ : URI
translate (⊗-out l P) = {!!}
translate (split σs A1 P P₁) = {!!}
translate (nu D P) = {!!}
{-
module PTT.Translation where
module Translation
{t}
(T⟨_⟩ : ∀ {δI} → Proto δI → Set t)
(T-⊗-out :
∀ {δI I c S₀ S₁}
(l : [ c ↦ S₀ ⊗ S₁ …]∈ I)
(σs : Selections δI)
(σE : Selection ([↦…]∈.δE l))
(A0 : AtMost 0 σs)
(P₀ : ∀ c₀ → T⟨ I [/…] l /₀ σs ,[ E/ l Env./₀ σE , c₀ ↦ « S₀ » ] ⟩)
(P₁ : ∀ c₁ → T⟨ I [/…] l /₁ σs ,[ E/ l Env./₁ σE , c₁ ↦ « S₁ » ] ⟩)
→ T⟨ I ⟩)
(T-⅋-inp :
∀ {δI}{I : Proto δI}{c S₀ S₁}
(l : [ c ↦ S₀ ⅋ S₁ ]∈ I)
(P : ∀ c₀ c₁ → T⟨ I [/] l ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩)
→ T⟨ I ⟩)
(T-end :
∀ {δI}{I : Proto δI}
(E : Ended I)
→ T⟨ I ⟩)
(T-split :
∀ {δI}{I : Proto δI}
(σs : Selections δI)
(A1 : AtMost 1 σs)
(P₀ : T⟨ I /₀ σs ⟩)
(P₁ : T⟨ I /₁ σs ⟩)
→ T⟨ I ⟩)
(T-cut :
∀ {δI}{I : Proto δI}{S₀ S₁}
(D : Dual S₀ S₁)
(σs : Selections δI)
(A0 : AtMost 0 σs)
(P₀ : ∀ c₀ → T⟨ I /₀ σs ,[ c₀ ↦ S₀ ] ⟩)
(P₁ : ∀ c₁ → T⟨ I /₁ σs ,[ c₁ ↦ S₁ ] ⟩)
→ T⟨ I ⟩)
(T-⊗-reorg :
∀ {δI δE c c₀ c₁ S₀ S₁}{J : Proto δI}{E : Env δE}
(l : [ E ]∈ J)
(l₀ : c₀ ↦ « S₀ » ∈ E)
(l₁ : c₁ ↦ « S₁ » ∈ E)
(P : T⟨ J ⟩)
→ T⟨ J Proto./ l ,[ (E Env./' l₀ /D (↦∈.lA l₁) , c ↦ « S₀ ⊗ S₁ ») ] ⟩)
(T-conv : ∀ {δI δJ}{I : Proto δI}{J : Proto δJ} → I ≈ J → T⟨ I ⟩ → T⟨ J ⟩)
where
T-fwd : ∀ {S₀ S₁} (S : Dual S₀ S₁) c₀ c₁ → T⟨ · ,[ c₀ ↦ S₀ ] ,[ c₁ ↦ S₁ ] ⟩
T-fwd 𝟙⊥ c₀ c₁ = {!!}
T-fwd ⊥𝟙 c₀ c₁ = {!!}
T-fwd (act (?! S S₁)) c₀ c₁ = {!!}
T-fwd (act (!? S S₁)) c₀ c₁ = {!!}
T-fwd (⊗⅋ S₀ S₁ S₂ S₃) c₀ c₁ =
T-⅋-inp here[]' λ c₂ c₃ →
T-⊗-out (there…' (there…' (there…' here…')))
((((· ,[ (ε , c₀ ↦ 0₂) ]) ,[ (ε , c₁ ↦ 0₂) ]) ,[ (ε , c₂ ↦ 0₂) ]) ,[ (ε , c₃ ↦ 1₂) ])
(ε , c₀ ↦ 0₂)
((((· ,[ {!!} ]) ,[ {!!} ]) ,[ {!!} ]) ,[ {!!} ])
(λ c₄ → T-conv (≈,[] (≈-! (≈,[swap] ≈-∙ {!≈,[] ≈-refl ?!})) (∼,↦ (∼-! ∼,↦end))) (T-fwd S₁ c₃ c₄))
(λ c₄ → T-conv (≈,[] (≈,[] (≈-! (≈,[end] _ ≈-∙ (≈,[end] _ ≈-∙ ≈,[end] _))) ∼-refl) (∼,↦ (∼-! ∼,↦end))) (T-fwd S₃ c₃ c₄))
T-fwd (⅋⊗ S S₁ S₂ S₃) c₀ c₁ = {!!}
go : ∀ {δI}{I : Proto δI} → ⟨ I ⟩ → T⟨ I ⟩
go (end x) = T-end x
go (⅋-inp l P) = T-⅋-inp l (λ c₀ c₁ → go (P c₀ c₁))
go {I = I}(⊗-out {c} {S₀} {S₁} l P) = T-conv e rPP
where postulate c0 c1 : URI
open [↦…]∈ l
F = E Env./' lE , c0 ↦ « S₀ » , c1 ↦ « S₁ »
J = I Proto./ lI ,[ F ]
G = F /D there here /D here , c ↦ « S₀ ⊗ S₁ »
K = J Proto./ heRe[] ,[ G ]
rPP : T⟨ K ⟩
rPP = T-⊗-reorg heRe[] (theRe here) heRe (go (P c0 c1))
e : K ≈ I
e = ≈,[] (≈,[end] (Ended-/* F)) (∼,↦ (∼,↦end ∼-∙ ∼,↦end)) ≈-∙ (≈-! (≈-/…,[…] l))
go {I = I}(nu {S₀} {S₁} D P) = T-conv {!!} (T-cut {I = I'} D (sel₀ _ ,[ (ε , c ↦ 0₂) ] ,[ (ε , c' ↦ 1₂) ]) {!!} (λ c₀' → {!cPP!}) (λ c₁' → {!T-fwd!}))
where postulate c c' c0 c1 : URI
E = ε , c0 ↦ « S₀ » , c1 ↦ « S₁ »
E/* = ε , c0 ↦ end , c1 ↦ end
J = I ,[ E ]
-- K = J / here ,[ E/* , c ↦ S₀ ⊗ S₁ ]
K = I ,[ E/* ] ,[ E/* , c ↦ « S₀ ⊗ S₁ » ]
gP : T⟨ J ⟩
gP = go (P c0 c1)
rPP : T⟨ K ⟩
rPP = T-⊗-reorg {c = c} heRe[] (theRe here) heRe gP
e : K ≈ I ,[ c ↦ S₀ ⊗ S₁ ]
e = ≈,[] (≈,[end] _) (∼,↦ (∼,↦end ∼-∙ ∼,↦end))
cPP : T⟨ I ,[ c ↦ S₀ ⊗ S₁ ] ⟩
cPP = T-conv e rPP
I' = I ,[ c ↦ S₀ ⊗ S₁ ] ,[ c' ↦ {!!} ]
go (split σs A P₀ P₁) = T-split σs A (go P₀) (go P₁)
-}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Mark the Translation module as unfinished
|
Mark the Translation module as unfinished
|
Agda
|
bsd-3-clause
|
crypto-agda/protocols
|
c5b9953cdc3f8a48882f01493714cec1f0d16c61
|
arrow.agda
|
arrow.agda
|
open import Agda.Builtin.Bool
_or_ : Bool → Bool → Bool
true or _ = true
_ or true = true
false or false = false
_and_ : Bool → Bool → Bool
false and _ = false
_ and false = false
true and true = true
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
infixr 5 _∷_
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL ∘ #-}
{-# BUILTIN CONS _∷_ #-}
any : {A : Set} → (A → Bool) → List A → Bool
any _ ∘ = false
any f (x ∷ xs) = (f x) or (any f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q ≡ s
(p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ ∘ = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure ∘ found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs ∘)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ ∘ ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ ∘
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷
(model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷
(model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷
(model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘
testp : Arrow
testp = (5 ⇒ (⇒ 10))
testd : Arrow
testd = (5 ⇒ (⇒ 4))
tests : Arrow
tests = (5 ⇒ (⇒ 3))
testu : Arrow
testu = (6 ⇒ (⇒ 1))
main = (closure proofs (5 ∷ ∘))
|
data Bool : Set where
true : Bool
false : Bool
_or_ : Bool → Bool → Bool
true or _ = true
_ or true = true
false or false = false
_and_ : Bool → Bool → Bool
false and _ = false
_ and false = false
true and true = true
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
infixr 5 _∷_
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
any : {A : Set} → (A → Bool) → List A → Bool
any _ ∘ = false
any f (x ∷ xs) = (f x) or (any f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q ≡ s
(p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ ∘ = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure ∘ found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs ∘)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ ∘ ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ ∘
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷
(model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷
(model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷
(model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘
testp : Arrow
testp = (5 ⇒ (⇒ 10))
testd : Arrow
testd = (5 ⇒ (⇒ 4))
tests : Arrow
tests = (5 ⇒ (⇒ 3))
testu : Arrow
testu = (6 ⇒ (⇒ 1))
|
Revert "Import bool" - The agda stdlib is too slow to be worthwhile
|
Revert "Import bool" - The agda stdlib is too slow to be worthwhile
This reverts commit e449e00f2c1e586ddf5a78a508185eb30347d0fc.
|
Agda
|
mit
|
louisswarren/hieretikz
|
c6df8251b159a6d5d0490726b27d486890c82882
|
Neglible.agda
|
Neglible.agda
|
{-# OPTIONS --copatterns #-}
open import Algebra
open import Function
open import Data.Nat.NP
open import Data.Nat.Distance
open import Data.Nat.Properties
open import Data.Two
open import Data.Zero
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import HoTT
open Equivalences
open import Explore.Core
open import Explore.Universe.Type {𝟘}
open import Explore.Universe.Base
module Neglible where
module prop = CommutativeSemiring commutativeSemiring
module OR = Poset (DecTotalOrder.poset decTotalOrder)
≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n
≤-*-cancel {suc x} {m} {n} (s≤s le) mn
rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn
record ℕ→ℚ : Set where
constructor _/_[_]
field
εN : (n : ℕ) → ℕ
εD : (n : ℕ) → ℕ
εD-pos : ∀ n → εD n > 0
record Is-Neg (ε : ℕ→ℚ) : Set where
constructor mk
open ℕ→ℚ ε
field
cₙ : (c : ℕ) → ℕ
prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n
open Is-Neg
0ℕℚ : ℕ→ℚ
ℕ→ℚ.εN 0ℕℚ _ = 0
ℕ→ℚ.εD 0ℕℚ _ = 1
ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n
0ℕℚ-neg : Is-Neg 0ℕℚ
cₙ 0ℕℚ-neg _ = 0
prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n
_+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ
ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n
ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n
ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n
+ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ)
cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n
prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma
where
open ≤-Reasoning
open ℕ→ℚ εM
open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos)
lemma = n * (n ^ c * (εN n * μD n + μN n * εD n))
≡⟨ ! prop.*-assoc n (n ^ c) _
∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n)
∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n))
(! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩
n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n
≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎))
+-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩
εD n * μD n + μD n * εD n
≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩
2 * (εD n * μD n)
≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩
n * (εD n * μD n)
∎
module _ (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where
# : ∀ {n} → Count (R n)
# {n} = count (Rᵁ n)
record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where
constructor mk
field
ε : ℕ→ℚ
open ℕ→ℚ ε
field
ε-neg : Is-Neg ε
bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k
~-trans : Transitive _~_
_~_.ε (~-trans x x₁) = _
_~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁)
_~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k
= (b * d) * dist #f #h
≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩
(b * d) * (dist #f #g + dist #g #h)
≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h)
∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl
∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h))
⟩
d * (b * dist #f #g) + b * (d * dist #g #h)
≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩
d * (|R| * a) + b * (|R| * c)
≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩
|R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k
∎
where
open ≤-Reasoning
rot : ∀ x y z → x * (y * z) ≡ y * (z * x)
rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x
|R| = Card (Rᵁ k)
#f = # (f k)
#g = # (g k)
#h = # (h k)
a = ℕ→ℚ.εN ε₀ k
b = ℕ→ℚ.εD ε₀ k
c = ℕ→ℚ.εN ε₁ k
d = ℕ→ℚ.εD ε₁ k
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --copatterns #-}
open import Algebra
open import Function
open import Data.Nat.NP
open import Data.Nat.Distance
open import Data.Nat.Properties
open import Data.Two
open import Data.Zero
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
open import HoTT
open Equivalences
open import Explore.Core
open import Explore.Universe.Type {𝟘}
open import Explore.Universe.Base
module Neglible where
module prop = CommutativeSemiring commutativeSemiring
module OR = Poset (DecTotalOrder.poset decTotalOrder)
≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n
≤-*-cancel {suc x} {m} {n} (s≤s le) mn
rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn
record ℕ→ℚ : Set where
constructor _/_[_]
field
εN : (n : ℕ) → ℕ
εD : (n : ℕ) → ℕ
εD-pos : ∀ n → εD n > 0
record Is-Neg (ε : ℕ→ℚ) : Set where
constructor mk
open ℕ→ℚ ε
field
cₙ : (c : ℕ) → ℕ
prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n
open Is-Neg
0ℕℚ : ℕ→ℚ
ℕ→ℚ.εN 0ℕℚ _ = 0
ℕ→ℚ.εD 0ℕℚ _ = 1
ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n
0ℕℚ-neg : Is-Neg 0ℕℚ
cₙ 0ℕℚ-neg _ = 0
prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n
_+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ
ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n
ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n
ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n
+ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ)
cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n
prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma
where
open ≤-Reasoning
open ℕ→ℚ εM
open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos)
lemma = n * (n ^ c * (εN n * μD n + μN n * εD n))
≡⟨ ! prop.*-assoc n (n ^ c) _
∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n)
∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n))
(! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩
n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n
≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎))
+-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩
εD n * μD n + μD n * εD n
≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩
2 * (εD n * μD n)
≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩
n * (εD n * μD n)
∎
infix 4 _≤→_
record _≤→_ (f g : ℕ→ℚ) : Set where
constructor mk
open ℕ→ℚ f renaming (εN to fN; εD to fD)
open ℕ→ℚ g renaming (εN to gN; εD to gD)
field
-- fN k / fD k ≤ gN k / gD k
≤→ : ∀ k → fN k * gD k ≤ gN k * fD k
≤→-trans : ∀ {f g h} → f ≤→ g → g ≤→ h → f ≤→ h
_≤→_.≤→ (≤→-trans {fN / fD [ fD-pos ]} {gN / gD [ gD-pos ]} {hN / hD [ hD-pos ]} (mk fg) (mk gh)) k
= ≤-*-cancel (gD-pos k) lemma
where
open ≤-Reasoning
lemma : gD k * (fN k * hD k) ≤ gD k * (hN k * fD k)
lemma = gD k * (fN k * hD k)
≡⟨ ! prop.*-assoc (gD k) (fN k) (hD k)
∙ ap (flip _*_ (hD k)) (prop.*-comm (gD k) (fN k))
⟩
(fN k * gD k) * hD k
≤⟨ fg k *-mono OR.refl ⟩
(gN k * fD k) * hD k
≡⟨ prop.*-assoc (gN k) (fD k) (hD k)
∙ ap (_*_ (gN k)) (prop.*-comm (fD k) (hD k))
∙ ! prop.*-assoc (gN k) (hD k) (fD k)
⟩
(gN k * hD k) * fD k
≤⟨ gh k *-mono OR.refl ⟩
(hN k * gD k) * fD k
≡⟨ ap (flip _*_ (fD k)) (prop.*-comm (hN k) (gD k))
∙ prop.*-assoc (gD k) (hN k) (fD k)
⟩
gD k * (hN k * fD k)
∎
+ℕℚ-mono : ∀ {f f' g g'} → f ≤→ f' → g ≤→ g' → f +ℕℚ g ≤→ f' +ℕℚ g'
_≤→_.≤→ (+ℕℚ-mono {fN / fD [ _ ]} {f'N / f'D [ _ ]} {gN / gD [ _ ]} {g'N / g'D [ _ ]} (mk ff) (mk gg)) k
= (fN k * gD k + gN k * fD k) * (f'D k * g'D k)
≡⟨ proj₂ prop.distrib (f'D k * g'D k) (fN k * gD k) (gN k * fD k) ⟩
fN k * gD k * (f'D k * g'D k) + gN k * fD k * (f'D k * g'D k)
≡⟨ ap₂ _+_ (*-interchange (fN k) (gD k) (f'D k) (g'D k) ∙ ap (_*_ (fN k * f'D k)) (prop.*-comm (gD k) (g'D k)))
(ap (_*_ (gN k * fD k)) (prop.*-comm (f'D k) (g'D k)) ∙ *-interchange (gN k) (fD k) (g'D k) (f'D k))
⟩
fN k * f'D k * (g'D k * gD k) + gN k * g'D k * (fD k * f'D k)
≤⟨ (ff k *-mono OR.refl) +-mono (gg k *-mono OR.refl) ⟩
f'N k * fD k * (g'D k * gD k) + g'N k * gD k * (fD k * f'D k)
≡⟨ ap₂ _+_ (*-interchange (f'N k) (fD k) (g'D k) (gD k))
(ap (_*_ (g'N k * gD k)) (prop.*-comm (fD k) (f'D k))
∙ *-interchange (g'N k) (gD k) (f'D k) (fD k)
∙ ap (_*_ (g'N k * f'D k)) (prop.*-comm (gD k) (fD k)))
⟩
f'N k * g'D k * (fD k * gD k) + g'N k * f'D k * (fD k * gD k)
≡⟨ ! proj₂ prop.distrib (fD k * gD k) (f'N k * g'D k) (g'N k * f'D k) ⟩
(f'N k * g'D k + g'N k * f'D k) * (fD k * gD k)
∎
where
open ≤-Reasoning
record NegBounded (f : ℕ→ℚ) : Set where
constructor mk
field
ε : ℕ→ℚ
ε-neg : Is-Neg ε
bounded : f ≤→ ε
module _ where
open NegBounded
≤-NB : {f g : ℕ→ℚ} → f ≤→ g → NegBounded g → NegBounded f
ε (≤-NB le nb) = ε nb
ε-neg (≤-NB le nb) = ε-neg nb
bounded (≤-NB le nb) = ≤→-trans le (bounded nb)
_+NB_ : {f g : ℕ→ℚ} → NegBounded f → NegBounded g → NegBounded (f +ℕℚ g)
ε (fNB +NB gNB) = ε fNB +ℕℚ ε gNB
ε-neg (fNB +NB gNB) = +ℕℚ-neg (ε-neg fNB) (ε-neg gNB)
bounded (fNB +NB gNB) = +ℕℚ-mono (bounded fNB) (bounded gNB)
module ~-NegBounded (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n))(inh : ∀ x → 0 < Card (Rᵁ x)) where
# : ∀ {n} → Count (R n)
# {n} = count (Rᵁ n)
~dist : (f g : (x : ℕ) → R x → 𝟚) → ℕ→ℚ
ℕ→ℚ.εN (~dist f g) n = dist (# (f n)) (# (g n))
ℕ→ℚ.εD (~dist f g) n = Card (Rᵁ n)
ℕ→ℚ.εD-pos (~dist f g) n = inh n
~dist-sum : ∀ f g h → ~dist f h ≤→ ~dist f g +ℕℚ ~dist g h
_≤→_.≤→ (~dist-sum f g h) k
= #fh * (|R| * |R|)
≤⟨ dist-sum #f #g #h *-mono OR.refl ⟩
(#fg + #gh) * (|R| * |R|)
≡⟨ ! prop.*-assoc (#fg + #gh) |R| |R| ∙ ap (flip _*_ |R|) (proj₂ prop.distrib |R| #fg #gh) ⟩
(#fg * |R| + #gh * |R|) * |R|
∎
where
open ≤-Reasoning
|R| = Card (Rᵁ k)
#f = # (f k)
#g = # (g k)
#h = # (h k)
#fh = dist #f #h
#fg = dist #f #g
#gh = dist #g #h
record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where
constructor mk
field
~ : NegBounded (~dist f g)
~-trans : Transitive _~_
_~_.~ (~-trans {f}{g}{h} fg gh) = ≤-NB (~dist-sum f g h) (_~_.~ fg +NB _~_.~ gh)
module ~-Inlined (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where
# : ∀ {n} → Count (R n)
# {n} = count (Rᵁ n)
record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where
constructor mk
field
ε : ℕ→ℚ
open ℕ→ℚ ε
field
ε-neg : Is-Neg ε
bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k
~-trans : Transitive _~_
_~_.ε (~-trans x x₁) = _
_~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁)
_~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k
= (b * d) * dist #f #h
≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩
(b * d) * (dist #f #g + dist #g #h)
≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h)
∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl
∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h))
⟩
d * (b * dist #f #g) + b * (d * dist #g #h)
≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩
d * (|R| * a) + b * (|R| * c)
≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩
|R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k
∎
where
open ≤-Reasoning
rot : ∀ x y z → x * (y * z) ≡ y * (z * x)
rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x
|R| = Card (Rᵁ k)
#f = # (f k)
#g = # (g k)
#h = # (h k)
a = ℕ→ℚ.εN ε₀ k
b = ℕ→ℚ.εD ε₀ k
c = ℕ→ℚ.εN ε₁ k
d = ℕ→ℚ.εD ε₁ k
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Update to Neglible
|
Update to Neglible
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
905379564a50f91a3435bb015a582178b9bc39e2
|
README.agda
|
README.agda
|
module README where
----------------------------
-- INCREMENTAL λ-CALCULUS --
----------------------------
--
--
-- IMPORTANT FILES
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda formalization.
--
-- PLDI14-List-of-Theorems.agda
-- For each theorem, lemma or definition in the PLDI 2014 submission,
-- it points to the corresponding Agda object.
--
--
-- LOCATION OF AGDA MODULES
--
-- To find the file containing an Agda module, replace the dots in its
-- full name by directory separators. The result is the file's path relative
-- to this directory. For example, Parametric.Syntax.Type is defined in
-- Parametric/Syntax/Type.agda.
--
--
-- HOW TO TYPE CHECK EVERYTHING
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda, the Agda standard library (version 0.7), generate Everything.agda
-- with the attached Haskell helper, and finally run Agda on this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but
-- has some bugs with serialization of code using some recent syntactic sugar
-- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it
-- might work or not. When it does not, removing Agda caches (.agdai files)
-- appears to often help. You can use "find . -name '*.agdai' | xargs rm" to do
-- that.
import Postulate.Extensionality
import Base.Data.DependentList
-- Variables and contexts
import Base.Syntax.Context
-- Sets of variables
import Base.Syntax.Vars
import Base.Denotation.Notation
-- Environments
import Base.Denotation.Environment
-- Change contexts
import Base.Change.Context
-- # Base, parametric proof.
--
-- This is for a parametric calculus where:
-- types are parametric in base types
-- terms are parametric in constants
--
--
-- Modules are ordered and grouped according to what they represent.
-- ## Definitions
import Parametric.Syntax.Type
import Parametric.Syntax.Term
import Parametric.Denotation.Value
import Parametric.Denotation.Evaluation
import Parametric.Change.Type
import Parametric.Change.Term
import Parametric.Change.Derive
import Parametric.Change.Value
import Parametric.Change.Evaluation
-- ## Proofs
import Parametric.Change.Validity
import Parametric.Change.Specification
import Parametric.Change.Implementation
import Parametric.Change.Correctness
-- # Nehemiah plugin
--
-- The structure is the same as the parametric proof (down to the
-- order and the grouping of modules), except for the postulate module.
-- Postulate an abstract data type for integer Bags.
import Postulate.Bag-Nehemiah
-- ## Definitions
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- ## Proofs
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
-- Import everything else. This ensures that typechecking README.agda typechecks
-- the entire codebase, because Everything.agda is auto-generated.
import Everything
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda, the Agda standard library (version 0.7), generate Everything.agda
-- with the attached Haskell helper, and finally run Agda on this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but
-- has some bugs with serialization of code using some recent syntactic sugar
-- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it
-- might work or not. When it does not, removing Agda caches (.agdai files)
-- appears to often help. You can use "find . -name '*.agdai' | xargs rm" to do
-- that.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- THE AGDA CODE
-- =============
import Postulate.Extensionality
import Base.Data.DependentList
-- Variables and contexts
import Base.Syntax.Context
-- Sets of variables
import Base.Syntax.Vars
import Base.Denotation.Notation
-- Environments
import Base.Denotation.Environment
-- Change contexts
import Base.Change.Context
-- # Base, parametric proof.
--
-- This is for a parametric calculus where:
-- types are parametric in base types
-- terms are parametric in constants
--
--
-- Modules are ordered and grouped according to what they represent.
-- ## Definitions
import Parametric.Syntax.Type
import Parametric.Syntax.Term
import Parametric.Denotation.Value
import Parametric.Denotation.Evaluation
import Parametric.Change.Type
import Parametric.Change.Term
import Parametric.Change.Derive
import Parametric.Change.Value
import Parametric.Change.Evaluation
-- ## Proofs
import Parametric.Change.Validity
import Parametric.Change.Specification
import Parametric.Change.Implementation
import Parametric.Change.Correctness
-- # Nehemiah plugin
--
-- The structure is the same as the parametric proof (down to the
-- order and the grouping of modules), except for the postulate module.
-- Postulate an abstract data type for integer Bags.
import Postulate.Bag-Nehemiah
-- ## Definitions
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- ## Proofs
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
|
Revise agda/README.md (for #275).
|
Revise agda/README.md (for #275).
Old-commit-hash: 88f72736101147e9754ea68565ed89d6702452bb
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5e28e95336edd7da4ef18ee12d86f53112e719a2
|
Denotational/Evaluation/Total.agda
|
Denotational/Evaluation/Total.agda
|
module Denotational.Evaluation.Total where
-- EVALUATION with a primitive for TOTAL DERIVATIVES
--
-- This module defines the semantics of terms that support a
-- primitive (Δ e) for computing the total derivative according
-- to all free variables in e and all future arguments of e if e
-- is a function.
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Changes
open import ChangeContexts
-- TERMS
-- Denotational Semantics
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ)
⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ
⟦ true ⟧Term ρ = true
⟦ false ⟧Term ρ = false
⟦ if t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ
... | true = ⟦ t₂ ⟧Term ρ
... | false = ⟦ t₃ ⟧Term ρ
⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ)))
meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ)
meaningOfTerm = meaning ⟦_⟧Term
-- PROPERTIES of WEAKENING
weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} →
∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ)
weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ))
weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ)
weaken-sound (var x) ρ = lift-sound _ x ρ
weaken-sound true ρ = refl
weaken-sound false ρ = refl
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ
... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ)
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ
weaken-sound (Δ {{Γ′}} t) {Γ″} ρ =
cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
|
module Denotational.Evaluation.Total where
-- EVALUATION with a primitive for TOTAL DERIVATIVES
--
-- This module defines the semantics of terms that support a
-- primitive (Δ e) for computing the total derivative according
-- to all free variables in e and all future arguments of e if e
-- is a function.
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Changes
open import ChangeContexts
-- TERMS
-- Denotational Semantics
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ)
⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ
⟦ true ⟧Term ρ = true
⟦ false ⟧Term ρ = false
⟦ if t₁ t₂ t₃ ⟧Term ρ = if ⟦ t₁ ⟧Term ρ then ⟦ t₂ ⟧Term ρ else ⟦ t₃ ⟧Term ρ
⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ)))
meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ)
meaningOfTerm = meaning ⟦_⟧Term
-- PROPERTIES of WEAKENING
weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} →
∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ)
weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ))
weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ)
weaken-sound (var x) ρ = lift-sound _ x ρ
weaken-sound true ρ = refl
weaken-sound false ρ = refl
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ
... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ)
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ
weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ
weaken-sound (Δ {{Γ′}} t) {Γ″} ρ =
cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
|
Use if_then_else in ⟦_⟧Term.
|
Use if_then_else in ⟦_⟧Term.
Old-commit-hash: f469e7f3aa20a7cdade4976d8bea10180b56dedb
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e8b0a2064d7927030a67be90fa6130d3a7099cf3
|
Parametric/Denotation/CachingMValue.agda
|
Parametric/Denotation/CachingMValue.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Values for caching evaluation of MTerm
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.MType as MType
import Parametric.Denotation.Value as Value
import Parametric.Denotation.MValue as MValue
module Parametric.Denotation.CachingMValue
(Base : Type.Structure)
(⟦_⟧Base : Value.Structure Base)
where
open import Base.Denotation.Notation
open Type.Structure Base
open MType.Structure Base
open Value.Structure Base ⟦_⟧Base
open MValue.Structure Base ⟦_⟧Base
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
open import Function hiding (const)
module Structure where
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Values for caching evaluation of MTerm
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.MType as MType
import Parametric.Denotation.Value as Value
import Parametric.Denotation.MValue as MValue
module Parametric.Denotation.CachingMValue
(Base : Type.Structure)
(⟦_⟧Base : Value.Structure Base)
where
open import Base.Denotation.Notation
open Type.Structure Base
open MType.Structure Base
open Value.Structure Base ⟦_⟧Base
open MValue.Structure Base ⟦_⟧Base
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
open import Function hiding (const)
module Structure where
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCacheWrong × ⟦ τ₁ ⟧ValTypeHidCacheWrong )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
|
Maintain ⟦_⟧CompTypeHidCacheWrong
|
Maintain ⟦_⟧CompTypeHidCacheWrong
This got out of sync with the other version. Probably this belongs to
history though.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
bce471b3be844f987aa2bd3e748f542683de4829
|
Base/Change/Products.agda
|
Base/Change/Products.agda
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
-- The following is probably bullshit:
-- Does not handle products of functions - more accurately, writing the
-- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-nil : (v : A × B) → PChange v
p-nil (a , b) = (nil a , nil b)
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v
p-update-nil (a , b) =
let v = (a , b)
in
begin
v ⊕ (p-nil v)
≡⟨⟩
(a ⊞ nil a , b ⊞ nil b)
≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩
(a , b)
≡⟨⟩
v
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; nil = p-nil
; isChangeAlgebra = record
{ update-diff = p-update-diff
; update-nil = p-update-nil
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
-- We should do the same for uncurry instead.
-- What one could wrongly expect to be the derivative of the constructor:
_,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′ a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof
-- As a consequence, proving that's a derivative seems too insanely hard. We
-- might want to provide a proof schema for curried functions at once,
-- starting from the right correctness equation.
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
_,_′-real : Δ _,_
_,_′-real = nil _,_
_,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real)
_,_′-real-Derivative =
FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_
_,_′′ : (a : A) → Δ a →
Δ {{B→A×B}} (λ b → (a , b))
_,_′′ a da = record
{ apply = _,_′ a da
; correct = λ b db →
begin
(a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′ a da) b db
∎
}
{-
_,_′′′ : Δ {{A→B→A×B}} _,_
_,_′′′ = record
{ apply = _,_′′
; correct = λ a da →
begin
update
(_,_ (a ⊞ da))
(_,_′′ (a ⊞ da) (nil (a ⊞ da)))
≡⟨ {!!} ⟩
update (_,_ a) (_,_′′ a da)
∎
}
where
-- This is needed to use update above.
-- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly.
open ChangeAlgebra B→A×B hiding (nil)
{-
{!
begin
(_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da))
{- ≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -}
≡⟨ ? ⟩
{-a ⊞ da , b ⊞ db
≡⟨⟩-}
(_,_ a) ⊞ (_,_′′ a da)
∎!}
}
-}
open import Postulate.Extensionality
_,_′Derivative :
Derivative {{CA}} {{B→A×B}} _,_ _,_′′
_,_′Derivative a da =
begin
_⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da)
≡⟨⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
--ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b))
≡⟨ {!!} ⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩
--FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!}
_,_ (a ⊞ da)
∎
-}
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
-- An interesting alternative definition allows omitting the nil change of a
-- component when that nil change can be computed from the type. For instance, the nil change for integers is always the same.
-- However, the nil change for function isn't always the same (unless we
-- defunctionalize them first), so nil changes for functions can't be omitted.
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-nil : (v : A × B) → PChange v
p-nil (a , b) = (nil a , nil b)
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v
p-update-nil (a , b) =
let v = (a , b)
in
begin
v ⊕ (p-nil v)
≡⟨⟩
(a ⊞ nil a , b ⊞ nil b)
≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩
(a , b)
≡⟨⟩
v
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; nil = p-nil
; isChangeAlgebra = record
{ update-diff = p-update-diff
; update-nil = p-update-nil
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
-- We should do the same for uncurry instead.
-- What one could wrongly expect to be the derivative of the constructor:
_,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′ a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof
-- As a consequence, proving that's a derivative seems too insanely hard. We
-- might want to provide a proof schema for curried functions at once,
-- starting from the right correctness equation.
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
_,_′-real : Δ _,_
_,_′-real = nil _,_
_,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real)
_,_′-real-Derivative =
FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_
_,_′′ : (a : A) → Δ a →
Δ {{B→A×B}} (λ b → (a , b))
_,_′′ a da = record
{ apply = _,_′ a da
; correct = λ b db →
begin
(a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′ a da) b db
∎
}
{-
_,_′′′ : Δ {{A→B→A×B}} _,_
_,_′′′ = record
{ apply = _,_′′
; correct = λ a da →
begin
update
(_,_ (a ⊞ da))
(_,_′′ (a ⊞ da) (nil (a ⊞ da)))
≡⟨ {!!} ⟩
update (_,_ a) (_,_′′ a da)
∎
}
where
-- This is needed to use update above.
-- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly.
open ChangeAlgebra B→A×B hiding (nil)
{-
{!
begin
(_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da))
{- ≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -}
≡⟨ ? ⟩
{-a ⊞ da , b ⊞ db
≡⟨⟩-}
(_,_ a) ⊞ (_,_′′ a da)
∎!}
}
-}
open import Postulate.Extensionality
_,_′Derivative :
Derivative {{CA}} {{B→A×B}} _,_ _,_′′
_,_′Derivative a da =
begin
_⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da)
≡⟨⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
--ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b))
≡⟨ {!!} ⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩
--FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!}
_,_ (a ⊞ da)
∎
-}
|
Correct wrong comment on changes of products
|
Correct wrong comment on changes of products
|
Agda
|
mit
|
inc-lc/ilc-agda
|
30936886bb410fbf699a91bd25fbf51d2878e09f
|
New/NewNew.agda
|
New/NewNew.agda
|
module New.NewNew where
open import New.Changes
open import New.LangChanges
open import New.Lang
open import New.Derive
[_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
[ σ ⇒ τ ] df from f1 to f2 =
∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2
[ int ] dv from v1 to v2 = v2 ≡ v1 + dv
[ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2
data [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ] dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ
⟦Γ≼ΔΓ⟧ v∅ = refl
⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ)
fit-sound : ∀ {Γ τ} → (t : Term Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ
fit-sound t dρρ = trans
(cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ))
(sym (weaken-sound t _))
fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveVar this (dvv v• dρρ) = dvv
fromtoDeriveVar (that x) (dvv v• dρρ) = fromtoDeriveVar x dρρ
fromtoDeriveConst : ∀ {τ} c →
[ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const
fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db}
fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db}
fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb
fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa
fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb
fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) →
{dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c
fromtoDerive τ (var x) dρρ = fromtoDeriveVar x dρρ
fromtoDerive τ (app {σ} s t) dρρ rewrite sym (fit-sound t dρρ) =
let fromToF = fromtoDerive (σ ⇒ τ) s dρρ
in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB
fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ dv v1 v2 dvv →
fromtoDerive τ t (dvv v• dρρ)
-- Now relate this validity with ⊕. To know that nil and so on are valid, also
-- relate it to the other definition.
open import Postulate.Extensionality
fromto→⊕ : ∀ {τ} dv v1 v2 →
[ τ ] dv from v1 to v2 →
v1 ⊕ dv ≡ v2
⊝-fromto : ∀ {τ} (v1 v2 : ⟦ τ ⟧Type) → [ τ ] v2 ⊝ v1 from v1 to v2
⊝-fromto {σ ⇒ τ} f1 f2 da a1 a2 daa rewrite sym (fromto→⊕ _ _ _ daa) = ⊝-fromto (f1 a1) (f2 (a1 ⊕ da))
⊝-fromto {int} v1 v2 = sym (update-diff v2 v1)
⊝-fromto {pair σ τ} (a1 , b1) (a2 , b2) = ⊝-fromto a1 a2 , ⊝-fromto b1 b2
nil-fromto : ∀ {τ} (v : ⟦ τ ⟧Type) → [ τ ] nil v from v to v
nil-fromto v = ⊝-fromto v v
fromto→⊕ {σ ⇒ τ} df f1 f2 dff =
ext (λ v → fromto→⊕ {τ} (df v (nil v)) (f1 v) (f2 v) (dff (nil v) v v (nil-fromto v)))
fromto→⊕ {int} dn n1 n2 refl = refl
fromto→⊕ {pair σ τ} (da , db) (a1 , b1) (a2 , b2) (daa , dbb) =
cong₂ _,_ (fromto→⊕ _ _ _ daa) (fromto→⊕ _ _ _ dbb)
open ≡-Reasoning
-- If df is valid, prove (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da.
-- This statement uses a ⊕ da instead of a2, which is not the style of this formalization but fits better with the other one.
-- Instead, WellDefinedFunChangeFromTo (without prime) fits this formalization.
WellDefinedFunChangeFromTo′ : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo′ f1 df = ∀ da a → [ _ ] da from a to (a ⊕ da) → WellDefinedFunChangePoint f1 df a da
fromto→WellDefined′ : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo′ f1 df
fromto→WellDefined′ {f1 = f1} {f2} {df} dff da a daa =
begin
(f1 ⊕ df) (a ⊕ da)
≡⟨⟩
f1 (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))
≡⟨ (fromto→⊕
(df (a ⊕ da) (nil (a ⊕ da))) _ _
(dff (nil (a ⊕ da)) _ _ (nil-fromto (a ⊕ da))))
⟩
f2 (a ⊕ da)
≡⟨ sym (fromto→⊕ _ _ _ (dff da _ _ daa)) ⟩
f1 a ⊕ df a da
∎
WellDefinedFunChangeFromTo : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo f1 df = ∀ da a1 a2 → [ _ ] da from a1 to a2 → WellDefinedFunChangePoint f1 df a1 da
fromto→WellDefined : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo f1 df
fromto→WellDefined {f1 = f1} {f2} {df} dff da a1 a2 daa =
fromto→WellDefined′ dff da a1 daa′
where
daa′ : [ _ ] da from a1 to (a1 ⊕ da)
daa′ rewrite fromto→⊕ da a1 a2 daa = daa
-- Recursive isomorphism between the two validities.
--
-- Among other things, valid→fromto proves that a validity-preserving function,
-- with validity defined via (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da, is also valid
-- in the "fromto" sense.
--
-- We can't hope for a better statement, since we need the equation to be
-- satisfied also by returned or argument functions.
fromto→valid : ∀ {τ} →
∀ v1 v2 dv → [ τ ] dv from v1 to v2 →
valid v1 dv
valid→fromto : ∀ {τ} v (dv : Cht τ) → valid v dv → [ τ ] dv from v to (v ⊕ dv)
fromto→valid {int} = λ v1 v2 dv x → tt
fromto→valid {pair σ τ} (a1 , b1) (a2 , b2) (da , db) (daa , dbb) = (fromto→valid _ _ _ daa) , (fromto→valid _ _ _ dbb)
fromto→valid {σ ⇒ τ} f1 f2 df dff = λ a da ada →
fromto→valid _ _ _ (dff da a (a ⊕ da) (valid→fromto a da ada)) ,
fromto→WellDefined′ dff da a (valid→fromto _ _ ada)
valid→fromto {int} v dv tt = refl
valid→fromto {pair σ τ} (a , b) (da , db) (ada , bdb) = valid→fromto a da ada , valid→fromto b db bdb
valid→fromto {σ ⇒ τ} f df fdf da a1 a2 daa = body
where
fa1da-valid :
valid (f a1) (df a1 da) ×
WellDefinedFunChangePoint f df a1 da
fa1da-valid = fdf a1 da (fromto→valid _ _ _ daa)
body : [ τ ] df a1 da from f a1 to (f ⊕ df) a2
body rewrite sym (fromto→⊕ _ _ _ daa) | proj₂ fa1da-valid = valid→fromto (f a1) (df a1 da) (proj₁ fa1da-valid)
|
module New.NewNew where
open import New.Changes
open import New.LangChanges
open import New.Lang
open import New.Derive
[_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
[ σ ⇒ τ ] df from f1 to f2 =
∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2
[ int ] dv from v1 to v2 = v2 ≡ v1 + dv
[ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2
data [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ] dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ
⟦Γ≼ΔΓ⟧ v∅ = refl
⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ)
fit-sound : ∀ {Γ τ} → (t : Term Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ
fit-sound t dρρ = trans
(cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ))
(sym (weaken-sound t _))
fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveVar this (dvv v• dρρ) = dvv
fromtoDeriveVar (that x) (dvv v• dρρ) = fromtoDeriveVar x dρρ
fromtoDeriveConst : ∀ {τ} c →
[ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const
fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db}
fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db}
fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb
fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa
fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb
fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) →
{dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c
fromtoDerive τ (var x) dρρ = fromtoDeriveVar x dρρ
fromtoDerive τ (app {σ} s t) dρρ rewrite sym (fit-sound t dρρ) =
let fromToF = fromtoDerive (σ ⇒ τ) s dρρ
in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB
fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ dv v1 v2 dvv →
fromtoDerive τ t (dvv v• dρρ)
-- Now relate this validity with ⊕. To know that nil and so on are valid, also
-- relate it to the other definition.
open import Postulate.Extensionality
fromto→⊕ : ∀ {τ} dv v1 v2 →
[ τ ] dv from v1 to v2 →
v1 ⊕ dv ≡ v2
⊝-fromto : ∀ {τ} (v1 v2 : ⟦ τ ⟧Type) → [ τ ] v2 ⊝ v1 from v1 to v2
⊝-fromto {σ ⇒ τ} f1 f2 da a1 a2 daa rewrite sym (fromto→⊕ _ _ _ daa) = ⊝-fromto (f1 a1) (f2 (a1 ⊕ da))
⊝-fromto {int} v1 v2 = sym (update-diff v2 v1)
⊝-fromto {pair σ τ} (a1 , b1) (a2 , b2) = ⊝-fromto a1 a2 , ⊝-fromto b1 b2
nil-fromto : ∀ {τ} (v : ⟦ τ ⟧Type) → [ τ ] nil v from v to v
nil-fromto v = ⊝-fromto v v
fromto→⊕ {σ ⇒ τ} df f1 f2 dff =
ext (λ v → fromto→⊕ {τ} (df v (nil v)) (f1 v) (f2 v) (dff (nil v) v v (nil-fromto v)))
fromto→⊕ {int} dn n1 n2 refl = refl
fromto→⊕ {pair σ τ} (da , db) (a1 , b1) (a2 , b2) (daa , dbb) =
cong₂ _,_ (fromto→⊕ _ _ _ daa) (fromto→⊕ _ _ _ dbb)
open ≡-Reasoning
-- If df is valid, prove (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da.
-- This statement uses a ⊕ da instead of a2, which is not the style of this formalization but fits better with the other one.
-- Instead, WellDefinedFunChangeFromTo (without prime) fits this formalization.
WellDefinedFunChangeFromTo′ : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo′ f1 df = ∀ da a → [ _ ] da from a to (a ⊕ da) → WellDefinedFunChangePoint f1 df a da
fromto→WellDefined′ : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo′ f1 df
fromto→WellDefined′ {f1 = f1} {f2} {df} dff da a daa =
begin
(f1 ⊕ df) (a ⊕ da)
≡⟨⟩
f1 (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))
≡⟨ (fromto→⊕
(df (a ⊕ da) (nil (a ⊕ da))) _ _
(dff (nil (a ⊕ da)) _ _ (nil-fromto (a ⊕ da))))
⟩
f2 (a ⊕ da)
≡⟨ sym (fromto→⊕ _ _ _ (dff da _ _ daa)) ⟩
f1 a ⊕ df a da
∎
WellDefinedFunChangeFromTo : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo f1 df = ∀ da a1 a2 → [ _ ] da from a1 to a2 → WellDefinedFunChangePoint f1 df a1 da
fromto→WellDefined : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo f1 df
fromto→WellDefined {f1 = f1} {f2} {df} dff da a1 a2 daa =
fromto→WellDefined′ dff da a1 daa′
where
daa′ : [ _ ] da from a1 to (a1 ⊕ da)
daa′ rewrite fromto→⊕ da a1 a2 daa = daa
-- Recursive isomorphism between the two validities.
--
-- Among other things, valid→fromto proves that a validity-preserving function,
-- with validity defined via (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da, is also valid
-- in the "fromto" sense.
--
-- We can't hope for a better statement, since we need the equation to be
-- satisfied also by returned or argument functions.
fromto→valid : ∀ {τ} →
∀ dv v1 v2 → [ τ ] dv from v1 to v2 →
valid v1 dv
valid→fromto : ∀ {τ} v (dv : Cht τ) → valid v dv → [ τ ] dv from v to (v ⊕ dv)
fromto→valid {int} = λ dv v1 v2 x → tt
fromto→valid {pair σ τ} (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = (fromto→valid da _ _ daa) , (fromto→valid db _ _ dbb)
fromto→valid {σ ⇒ τ} df f1 f2 dff = λ a da ada →
fromto→valid (df a da) (f1 a) (f2 (a ⊕ da)) (dff da a (a ⊕ da) (valid→fromto a da ada)) ,
fromto→WellDefined′ dff da a (valid→fromto a da ada)
valid→fromto {int} v dv tt = refl
valid→fromto {pair σ τ} (a , b) (da , db) (ada , bdb) = valid→fromto a da ada , valid→fromto b db bdb
valid→fromto {σ ⇒ τ} f df fdf da a1 a2 daa = body
where
fa1da-valid :
valid (f a1) (df a1 da) ×
WellDefinedFunChangePoint f df a1 da
fa1da-valid = fdf a1 da (fromto→valid da _ _ daa)
body : [ τ ] df a1 da from f a1 to (f ⊕ df) a2
body rewrite sym (fromto→⊕ da _ _ daa) | proj₂ fa1da-valid = valid→fromto (f a1) (df a1 da) (proj₁ fa1da-valid)
|
Fix argument order for fromto→valid
|
Fix argument order for fromto→valid
Also make some arguments explicit where it's going to be required soon.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9806377d17063141d1be0d07fda712feb086d8b0
|
Syntactic/Changes.agda
|
Syntactic/Changes.agda
|
module Syntactic.Changes where
-- TERMS that operate on CHANGES
--
-- This module defines terms that correspond to the basic change
-- operations, as well as some other helper terms.
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Changes
_and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a and b = if a b false
!_ : ∀ {Γ} → Term Γ bool → Term Γ bool
! x = if x false true
-- Term xor
_xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a xor-term b = if a (! b) b
diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
-- XXX: to finish this, we just need to call lift-term, like in
-- derive-term. Should be easy, just a bit boring.
-- Other problem: in fact, Δ t is not the nil change of t, in this context. That's a problem.
apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply-pure-term {bool} = abs (abs (var this xor-term var (that this)))
apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) (diff-term (var this) (var this)))) (app (var (that this)) (var this)))))
--abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x (Δx)) ( f x )
apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply-term {τ ⇒ τ₁} = λ df f → app (app apply-pure-term df) f
apply-term {bool} = _xor-term_
diff-term {τ ⇒ τ₁} =
λ f₁ f₂ →
--λx. λdx. diff ( f₁ (apply dx x)) (f₂ x)
abs (abs (diff-term {τ₁} (app (weaken ≼-in-body f₁) (apply-term (var this) (var (that this)))) (app (weaken ≼-in-body f₂) (var (that this)))))
where
≼-in-body = drop (Δ-Type τ) • (drop τ • ≼-refl)
diff-term {bool} = _xor-term_
|
module Syntactic.Changes where
-- TERMS that operate on CHANGES
--
-- This module defines terms that correspond to the basic change
-- operations, as well as some other helper terms.
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Changes
_and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a and b = if a b false
!_ : ∀ {Γ} → Term Γ bool → Term Γ bool
! x = if x false true
-- Term xor
_xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a xor-term b = if a (! b) b
diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
-- XXX: to finish this, we just need to call lift-term, like in
-- derive-term. Should be easy, just a bit boring.
-- Other problem: in fact, Δ t is not the nil change of t, in this context. That's a problem.
apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply-pure-term {bool} = abs (abs (var this xor-term var (that this)))
apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) (diff-term (var this) (var this)))) (app (var (that this)) (var this)))))
--abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x (Δx)) ( f x )
apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply-term {τ ⇒ τ₁} = λ df f → app (app apply-pure-term df) f
apply-term {bool} = _xor-term_
diff-term {τ ⇒ τ₁} =
λ f₁ f₂ →
-- The following can be written as:
-- * Using Unicode symbols for change operations:
-- λ x dx. (f1 (dx ⊝ x)) ⊝ (f2 x)
-- * In lambda calculus with names:
--λx. λdx. diff ( f₁ (apply dx x)) (f₂ x)
-- * As a deBrujin-encoded term in Agda:
abs (abs (diff-term {τ₁} (app (weaken ≼-in-body f₁) (apply-term (var this) (var (that this)))) (app (weaken ≼-in-body f₂) (var (that this)))))
where
≼-in-body = drop (Δ-Type τ) • (drop τ • ≼-refl)
diff-term {bool} = _xor-term_
|
clarify implementation of diff-term by adding pseudocode
|
agda: clarify implementation of diff-term by adding pseudocode
Old-commit-hash: 531f469c648998b9b89cff66da12e2dbc01a3aea
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9df1056695e49ba8d199081681450dbf409ca429
|
Parametric/Change/Term.agda
|
Parametric/Change/Term.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply {base ι} = diff-base , apply-base
lift-diff-apply {σ ⇒ τ} =
let
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ})
_⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t
_⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t
_⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t
in
abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)
,
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))
diff-term :
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
diff-term = λ {τ Γ} →
proj₁ (lift-diff-apply {τ} {Γ})
lift-apply :
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply = λ {τ Γ} →
proj₂ (lift-diff-apply {τ} {Γ})
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ diff-term
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ lift-apply
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply {base ι} = diff-base , apply-base
lift-diff-apply {σ ⇒ τ} =
let
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ})
_⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t
_⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t
_⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t
in
abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)
,
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))
diff-term :
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
diff-term = λ {τ Γ} →
proj₁ (lift-diff-apply {τ} {Γ})
apply-term :
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
apply-term = λ {τ Γ} →
proj₂ (lift-diff-apply {τ} {Γ})
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ diff-term
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ apply-term
|
Rename lift-apply to apply-term.
|
Rename lift-apply to apply-term.
Old-commit-hash: b02f9113ba8fab93ce132d5a8abe88b8d4ce471c
|
Agda
|
mit
|
inc-lc/ilc-agda
|
a1b1e5915214625b81e1399a850d92f16cf11d05
|
Base/Change/Equivalence.agda
|
Base/Change/Equivalence.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
_≙_ : ∀ dx dy → Set a
dx ≙ dy = x ⊞ dx ≡ x ⊞ dy
-- Same priority as ≡
infix 4 _≙_
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = refl
≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-symm ≙ = sym ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-symm
; trans = ≙-trans
}
≙-setoid : Setoid ℓ a
≙-setoid = record
{ Carrier = Δ x
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
-- Relation.Binary.EqReasoning is more convenient to use with _≡_ if
-- the combinators take the type argument (a) as a hidden argument,
-- instead of being locked to a fixed type at module instantiation
-- time.
module ≙-Reasoning where
open EqR ≙-setoid public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x =
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ = df-x-dx≙dg-x-dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
{-
lemma : nil f ≙ dg
-- Goes through
--lemma = sym (derivative-is-nil dg fdg)
-- Generates tons of crazy yellow ambiguities of equality type. Apparently, unifying against ≙ does not work so well.
lemma = ≙-symm {{changeAlgebra}} {f} {dg} {nil f} (derivative-is-nil dg fdg)
-}
-- We could also use derivative-is-⊞-unit, but the proof above matches better
-- with the text above.
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
_≙_ : ∀ dx dy → Set a
dx ≙ dy = x ⊞ dx ≡ x ⊞ dy
-- Same priority as ≡
infix 4 _≙_
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = refl
≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-symm ≙ = sym ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-symm
; trans = ≙-trans
}
≙-setoid : Setoid ℓ a
≙-setoid = record
{ Carrier = Δ x
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
module ≙-Reasoning where
open EqR ≙-setoid public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x =
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ = df-x-dx≙dg-x-dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
{-
lemma : nil f ≙ dg
-- Goes through
--lemma = sym (derivative-is-nil dg fdg)
-- Generates tons of crazy yellow ambiguities of equality type. Apparently, unifying against ≙ does not work so well.
lemma = ≙-symm {{changeAlgebra}} {f} {dg} {nil f} (derivative-is-nil dg fdg)
-}
-- We could also use derivative-is-⊞-unit, but the proof above matches better
-- with the text above.
|
Delete copy-n-pasted-by-mistake comment
|
Delete copy-n-pasted-by-mistake comment
This comes directly from Relation.Binary.PropositionalEquality, and is
totally irrelevant here.
Old-commit-hash: d8c5accf1966a913db36fefe149720366811965c
|
Agda
|
mit
|
inc-lc/ilc-agda
|
71d3cf829a84e65c7c028a11e8b02c35297f9f49
|
experiments/Coerce.agda
|
experiments/Coerce.agda
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
-- Agda specification of `coerce`
--
-- Incomplete: too much work just to make type system happy.
-- Conversions between morally identical types obscure
-- the operational content.
open import Data.Product
open import Data.Maybe
open import Data.Bool
open import Data.Sum
open import Data.Fin hiding (_+_)
open import Data.Vec
import Data.Nat as ℕ
open ℕ using (ℕ ; suc ; zero)
open import Coinduction renaming (Rec to Fix ; fold to roll ; unfold to unroll)
data Data (ℓ : ℕ) : Set where
base : ℕ → Data ℓ
pair : Data ℓ → Data ℓ → Data ℓ
plus : Data ℓ → Data ℓ → Data ℓ
var : Fin ℓ → Data ℓ -- de Bruijn index
fix : Data (suc ℓ) → Data ℓ
try : ∀ {ℓ m} {A : Set ℓ} {B : Set m} → B → B → A → A
try a b b₂ = b₂
weaken-fin : ∀{n} (m : ℕ) → Fin n → Fin (m ℕ.+ n)
weaken-fin zero x = x
weaken-fin (suc m) x = suc (weaken-fin m x)
-- this terminates for sure
{-# NO_TERMINATION_CHECK #-}
weaken : ∀ {n} → (m : ℕ) → Data n → Data (m ℕ.+ n)
weaken 0 t = t
weaken m (base x) = base x
weaken m (pair S T) = pair (weaken m S) (weaken m T)
weaken m (plus S T) = plus (weaken m S) (weaken m T)
weaken m (var x) = var (weaken-fin m x)
weaken 1 (fix T) = fix (weaken 1 T)
weaken (suc m) (fix T) = weaken 1 (weaken m (fix T))
-- universe construction; always terminating.
{-# NO_TERMINATION_CHECK #-}
uc : ∀ {ℓ} → Data ℓ → Vec Set ℓ → Set
uc (base n) _ = Fin n
uc (pair σ τ) ρ = uc σ ρ × uc τ ρ
uc (plus σ τ) ρ = uc σ ρ ⊎ uc τ ρ
uc (var i) ρ = lookup i ρ
uc (fix τ) ρ = set where set = Fix (♯ (uc τ (set ∷ ρ)))
my-nat-data : Data 0
my-nat-data = fix (plus (base 1) (var zero))
My-nat : Set
My-nat = uc my-nat-data []
my-zero : My-nat
my-zero = roll (inj₁ zero)
my-one : My-nat
my-one = roll (inj₂ (roll (inj₁ zero)))
-- nonterminating stuff
botData : Data 0
botData = fix (var zero)
botType : Set
botType = uc botData []
{-# NON_TERMINATING #-}
⋯ : botType
⋯ = roll (roll (roll (roll (roll (roll ⋯)))))
-- object language: STLC with fix
infixr 3 _⇒_
-- is a coinductive datatype
data Type : Set₁ where
base : (ι : Set) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type
_*_ : ∞ Type → ∞ Type → Type
_+_ : ∞ Type → ∞ Type → Type
-- is generative on coinductive data
{-# NO_TERMINATION_CHECK #-}
val : Type → Set
val (base ι) = ι
val (σ ⇒ τ) = val σ → val τ
val (σ * τ) = val (♭ σ) × val (♭ τ)
val (σ + τ) = val (♭ σ) ⊎ val (♭ τ)
Context : ℕ → Set₁
Context = Vec Type
data Term {n} (Γ : Context n) : Type → Set₁ where
var : (i : Fin n) → Term Γ (lookup i Γ)
app : ∀ {σ τ} → (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ
abs : ∀ {σ τ} → (t : Term (σ ∷ Γ) τ) → Term Γ (σ ⇒ τ)
fix : ∀ {τ} → Term Γ (τ ⇒ τ) → Term Γ τ
-- intro/elim products
pair : ∀ {σ τ} → Term Γ σ → Term Γ τ → Term Γ (♯ σ * ♯ τ)
uncr : ∀ {σ τ β} → Term Γ (σ ⇒ τ ⇒ β) → Term Γ (♯ σ * ♯ τ) → Term Γ β
-- intro/elim sums
left : ∀ {σ τ} → Term Γ σ → Term Γ (♯ σ + ♯ τ)
rite : ∀ {σ τ} → Term Γ τ → Term Γ (♯ σ + ♯ τ)
mach : ∀ {σ τ β} →
Term Γ (σ ⇒ β) → Term Γ (τ ⇒ β) → Term Γ (♯ σ + ♯ τ) → Term Γ β
-- intro/elim base types
base : ∀ {S : Set} → S → Term Γ (base S)
call : ∀ {S T : Set} → Term Γ (base (S → T)) → Term Γ (base S) → Term Γ (base T)
data Env : ∀ {n} (Γ : Context n) → Set₁ where
[] : Env []
_∷_ : ∀ {n τ} {Γ : Context n} → val τ → Env Γ → Env (τ ∷ Γ)
seek : ∀ {n} {Γ : Context n} → (i : Fin n) → Env Γ → val (lookup i Γ)
seek zero (v ∷ _) = v
seek (suc i) (_ ∷ ρ) = seek i ρ
{-# NON_TERMINATING #-}
eval : ∀ {n} {Γ : Context n} {τ} → Term Γ τ → Env Γ → val τ
eval (var x) ρ = seek x ρ
eval (app s t) ρ = eval s ρ (eval t ρ)
eval (abs t) ρ = λ v → eval t (v ∷ ρ)
eval (fix f) ρ = eval (app f (fix f)) ρ
eval (pair s t) ρ = eval s ρ , eval t ρ
eval (uncr f p) ρ = uncurry (eval f ρ) (eval p ρ)
eval (left x) ρ = inj₁ (eval x ρ)
eval (rite y) ρ = inj₂ (eval y ρ)
eval (mach f g t) ρ = [ eval f ρ , eval g ρ ]′ (eval t ρ)
eval (base v) ρ = v
eval (call f x) ρ = eval f ρ (eval x ρ)
nat-eq : ℕ → ℕ → Bool
nat-eq zero zero = true
nat-eq (suc m) (suc n) = nat-eq m n
nat-eq _ _ = false
fin-eq : ∀ {n} → Fin n → Fin n → Bool
fin-eq m n = nat-eq (toℕ m) (toℕ n)
infix 7 _==_
_==_ : ∀ {n} → Data n → Data n → Bool
base x == base y = nat-eq x y
pair σ₁ τ₁ == pair σ₂ τ₂ = σ₁ == σ₂ ∧ τ₁ == τ₂
plus σ₁ τ₁ == plus σ₂ τ₂ = σ₁ == σ₂ ∧ τ₁ == τ₂
var x == var y = fin-eq x y
fix σ == fix τ = σ == τ
_ == _ = false
-- this is nonterminating for sure (because we use equirecursion)
-- but it's generative (as in coinduction)
-- we want it to expand a couple times during type checking
{-# NO_TERMINATION_CHECK #-}
type-of : ∀ {n} → Context n → Data n → Type
type-of _ (base n) = base (Fin n)
type-of Γ (pair σ τ) = ♯ (type-of Γ σ) * ♯ (type-of Γ τ)
type-of Γ (plus σ τ) = ♯ (type-of Γ σ) + ♯ (type-of Γ τ)
type-of Γ (var x) = lookup x Γ
type-of Γ (fix τ) = type-of (type-of Γ (fix τ) ∷ Γ) τ
inject-fin : ∀ {m n} → m ℕ.≤ n → Fin m → Fin n
inject-fin {zero} {zero} pf ()
inject-fin {zero} {suc n} pf ()
inject-fin {suc m} {zero} () i
inject-fin {suc m} {suc n} pf zero = zero
inject-fin {suc m} {suc n} (ℕ.s≤s pf) (suc i) = suc (inject-fin pf i)
mapMaybe : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Maybe A → Maybe B
mapMaybe f (just x) = just (f x)
mapMaybe f nothing = nothing
{- have to do weakening properly...
weak : ∀ {n} {Γ : Context n} {σ τ} → Term Γ τ → Term (σ ∷ Γ) τ
weak (var i) = var (suc i)
weak (app t t₁) = app (weak t) (weak t₁)
weak {Γ = []} (abs t) = abs (try t {!!} {!!})
weak {Γ = x ∷ Γ} (abs t) = {!!}
weak (fix t) = fix (weak t)
weak (pair t t₁) = pair (weak t) (weak t₁)
weak (uncr t t₁) = uncr (weak t) (weak t₁)
weak (left t) = left (weak t)
weak (rite t) = rite (weak t)
weak (mach t t₁ t₂) = mach (weak t) (weak t₁) (weak t₂)
weak (base x) = base x
weak (call t t₁) = call (weak t) (weak t₁)
-}
Src : ∀ {n} → Context n → Data n → Data n → Set₁
Src Γ S T = Term Γ (type-of Γ S ⇒ type-of Γ T)
Witness : ∀ {n} → Context n → Set₁
Witness {n} Γ = (S : Data n) → (T : Data n) → Maybe (Src Γ S T)
Result : ∀ {n} → Data n → Data n → Set₁
Result {n} S T =
Σ ℕ
(λ m′ → let m = m′ ℕ.+ n in
Σ (Context m) (λ Γ′ → Witness Γ′ × Src Γ′ (weaken m′ S) (weaken m′ T)))
coerce-src : ∀ {n} {Γ : Context n} →
Witness Γ → (S : Data n) → (T : Data n) →
Maybe (Result S T)
coerce-src {n} {Γ} A S T = match (A S T) where
σ→τ : Type
σ→τ = type-of Γ S ⇒ type-of Γ T
A₀ : Witness (σ→τ ∷ Γ)
A₀ S' T' =
if S' == weaken 1 S ∧ T' == weaken 1 T then
{!!} -- just (var zero) -- error due to lack of awareness of equality
else
weaken-witness A S' T'
where
weaken-witness : Witness Γ → Witness (σ→τ ∷ Γ)
weaken-witness = {!!} -- some form of fmap'ed weeakening
inspect : (S : Data n) → (T : Data n) → Maybe (Result S T)
inspect (base m) (base n) = {!!}
{-
inj (m ℕ.≤? n) where
open import Relation.Nullary.Core
inj : Dec (m ℕ.≤ n) → Maybe (Witness Γ × Src Γ (base m) (base n))
inj (yes m≤n) = just ({!!} , abs (call (base (inject-fin m≤n)) (var zero)))
inj (no _) = nothing
-}
inspect (pair S₁ S₂) (pair T₁ T₂) = {!!}
inspect (plus S₁ S₂) (plus T₁ T₂) = {!!}
inspect (var x) T = {!!}
inspect (fix S) T = {!!}
inspect _ _ = nothing
match : Maybe (Src Γ S T) → Maybe (Result S T)
match (just t) = just (0 , Γ , A , t)
match nothing = inspect S T
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
-- Agda specification of `coerce`
--
-- Incomplete: too much work just to make type system happy.
-- Conversions between morally identical types obscure
-- the operational content.
open import Function
open import Data.Product
open import Data.Maybe
open import Data.Bool hiding (_≟_)
open import Data.Sum
open import Data.Nat
import Data.Fin as Fin
open Fin using (Fin ; zero ; suc)
open import Relation.Nullary using (Dec ; yes ; no)
open import Coinduction renaming (Rec to Fix ; fold to roll ; unfold to unroll)
-- Things fail sometimes
postulate fail : ∀ {ℓ} {A : Set ℓ} → A
-- I know what I'm doing
postulate unsafeCast : ∀ {A B : Set} → A → B
data Data : Set where
base : ℕ → Data
pair : Data → Data → Data
plus : Data → Data → Data
var : ℕ → Data
fix : Data → Data
-- infinite environments
Env : ∀ {ℓ} → Set ℓ → Set ℓ
Env A = ℕ → A
infixr 0 decide_then_else_
decide_then_else_ : ∀ {p ℓ} {P : Set p} {A : Set ℓ} → Dec P → A → A → A
decide yes p then x else y = x
decide no ¬p then x else y = y
--update : ∀ {ℓ} {A : Set ℓ} → ℕ → A → Env A → Env A
--update n v env = λ m → decide n ≟ m then v else env m
prepend : ∀ {ℓ} {A : Set ℓ} → A → Env A → Env A
prepend v env zero = v
prepend v env (suc m) = env m
-- universe construction; always terminating.
{-# NO_TERMINATION_CHECK #-}
uc : Data → Env Set → Set
uc (base x) ρ = Fin x
uc (pair S T) ρ = uc S ρ × uc T ρ
uc (plus S T) ρ = uc S ρ ⊎ uc T ρ
uc (var x) ρ = ρ x
uc (fix D) ρ = set where set = Fix (♯ (uc D (prepend set ρ)))
∅ : ∀ {ℓ} {A : Set ℓ} → Env A
∅ = fail
my-nat-data : Data
my-nat-data = fix (plus (base 1) (var zero))
My-nat : Set
My-nat = uc my-nat-data ∅
my-zero : My-nat
my-zero = roll (inj₁ zero)
my-one : My-nat
my-one = roll (inj₂ (roll (inj₁ zero)))
-- nonterminating stuff
botData : Data
botData = fix (var zero)
botType : Set
botType = uc botData ∅
{-# NON_TERMINATING #-}
⋯ : botType
⋯ = roll (roll (roll (roll (roll (roll ⋯)))))
shift : ℕ → ℕ → Data → Data
shift c d (base x) = base x
shift c d (pair S T) = pair (shift c d S) (shift c d T)
shift c d (plus S T) = plus (shift c d S) (shift c d T)
shift c d (var k) = decide suc k ≤? c then var k else var (k + d)
shift c d (fix D) = fix (shift c d D)
_[_↦_] : Data → ℕ → Data → Data
base x [ n ↦ S ] = base x
pair T T₁ [ n ↦ S ] = pair (T [ n ↦ S ]) (T₁ [ n ↦ S ])
plus T T₁ [ n ↦ S ] = plus (T [ n ↦ S ]) (T₁ [ n ↦ S ])
var k [ n ↦ S ] = decide k ≟ n then S else var k
fix T [ n ↦ S ] = fix (T [ n + 1 ↦ shift 0 1 S ])
import Level
open import Category.Monad
open RawMonad {Level.zero} monad
{-# NON_TERMINATING #-}
coerce : (S : Data) → (T : Data) → Maybe (uc S ∅ → (uc T ∅))
coerce (base m) (base n) with m ≤? n
... | yes m≤n = just (λ s → Fin.inject≤ s m≤n)
... | no m>n = nothing
coerce (pair S₁ S₂) (pair T₁ T₂) =
coerce S₁ T₁ >>= (λ f₁ →
coerce S₂ T₂ >>= (λ f₂ →
return (λ s → f₁ (proj₁ s) , f₂ (proj₂ s))))
coerce (plus S₁ S₂) (plus T₁ T₂) =
coerce S₁ T₁ >>= (λ f₁ →
coerce S₂ T₂ >>= (λ f₂ →
return [ inj₁ ∘ f₁ , inj₂ ∘ f₂ ]))
coerce (var j) T =
nothing -- should not happen
coerce (fix S) T =
let
S′ = S [ 0 ↦ fix S ]
in
coerce S′ T >>= (λ f →
return (λ { (roll x) → f (unsafeCast x) }))
coerce S (fix T) =
let
T′ = T [ 0 ↦ fix T ]
in
coerce S T′ >>= (λ f →
return (λ x → (roll (unsafeCast (f x)))))
coerce _ _ = nothing
|
make the Agda specification of `coerce` useful for humans
|
make the Agda specification of `coerce` useful for humans
Type-safety is sacrificed to describe `coerce` without prohibitive
administrative overhead. Unfortunately, `coerce` calls a postulate
on every encounter of a recursive type. It is only good for humans
to read right now; it is not executable.
|
Agda
|
mit
|
yfcai/CREG
|
c4286bde265ec051c1ed0b2dc4b3f95ba028710d
|
Denotation/Implementation/Popl14.agda
|
Denotation/Implementation/Popl14.agda
|
module Denotation.Implementation.Popl14 where
-- Notions of programs being implementations of specifications
-- for Calculus Popl14
open import Denotation.Specification.Canon-Popl14 public
open import Popl14.Syntax.Type
open import Popl14.Syntax.Term
open import Popl14.Change.Derive
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Postulate.Extensionality
open import Popl14.Denotation.WeakenSound
-- Better name for v ≈ ⟦ t ⟧:
-- t implements v.
infix 4 _≈_
_≈_ : ∀ {τ} → ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≈_ {int} u v = u ≡ v
_≈_ {bag} u v = u ≡ v
_≈_ {σ ⇒ τ} u v =
(w : ⟦ σ ⟧) (Δw : ΔVal σ) (Δw′ : ⟦ ΔType σ ⟧)
(R[w,Δw] : valid w Δw) (Δw≈Δw′ : Δw ≈ Δw′) →
u w Δw R[w,Δw] ≈ v w Δw′
module Disambiguation (τ : Type) where
_✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_✚_ = _⟦⊕⟧_ {τ}
_−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_−_ = _⟦⊝⟧_ {τ}
infixl 6 _✚_ _−_
_≃_ : ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≃_ = _≈_ {τ}
infix 4 _≃_
module FunctionDisambiguation (σ : Type) (τ : Type) where
open Disambiguation (σ ⇒ τ) public
_✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_✚₁_ = _⟦⊕⟧_ {τ}
_−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_−₁_ = _⟦⊝⟧_ {τ}
infixl 6 _✚₁_ _−₁_
_≃₁_ : ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≃₁_ = _≈_ {τ}
infix 4 _≃₁_
_✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧
_✚₀_ = _⟦⊕⟧_ {σ}
_−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧
_−₀_ = _⟦⊝⟧_ {σ}
infixl 6 _✚₀_ _−₀_
_≃₀_ : ΔVal σ → ⟦ ΔType σ ⟧ → Set
_≃₀_ = _≈_ {σ}
infix 4 _≃₀_
compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set
compatible {∅} ∅ ∅ = ⊤
compatible {τ • Γ} (cons v Δv _ ρ) (Δv′ • v′ • ρ′) =
Triple (v ≡ v′) (λ _ → Δv ≈ Δv′) (λ _ _ → compatible ρ ρ′)
-- If a program implements a specification, then certain things
-- proven about the specification carry over to the programs.
carry-over : ∀ {τ}
{v : ⟦ τ ⟧} {Δv : ΔVal τ} {Δv′ : ⟦ ΔType τ ⟧}
(R[v,Δv] : valid v Δv) (Δv≈Δv′ : Δv ≈ Δv′) →
let open Disambiguation τ in
v ⊞ Δv ≡ v ✚ Δv′
u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
let open Disambiguation τ in
u ⊟ v ≃ u − v
u⊟v≈u⊝v {int} = refl
u⊟v≈u⊝v {bag} = refl
u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where
open FunctionDisambiguation σ τ
result : (w : ⟦ σ ⟧) (Δw : ΔVal σ) (Δw′ : ⟦ ΔType σ ⟧) →
valid w Δw → Δw ≈ Δw′ →
g (w ⊞ Δw) ⊟ f w ≃₁ g (w ✚₀ Δw′) −₁ f w
result w Δw Δw′ R[w,Δw] Δw≈Δw′
rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ =
u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w}
carry-over {int} {v} tt Δv≈Δv′ = cong (_+_ v) Δv≈Δv′
carry-over {bag} {v} tt Δv≈Δv′ = cong (_++_ v) Δv≈Δv′
carry-over {σ ⇒ τ} {f} {Δf} {Δf′} R[f,Δf] Δf≈Δf′ =
ext (λ v →
let
open FunctionDisambiguation σ τ
V = R[v,u-v] {σ} {v} {v}
S = u⊟v≈u⊝v {σ} {v} {v}
in
carry-over {τ} {f v}
{Δf v (v ⊟ v) V} {Δf′ v (v −₀ v)}
(proj₁ (R[f,Δf] v (v ⊟ v) V))
(Δf≈Δf′ v (v ⊟ v) (v −₀ v) V S))
-- A property relating `ignore` and the subcontext relation Γ≼ΔΓ
⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧}
(C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′
⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl
⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ ρ} {dv′ • v′ • ρ′}
(cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C)
-- A specialization of the soundness of weakening
⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ)
{ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) →
⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′
⟦fit⟧ t {ρ} {ρ′} C =
trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
|
module Denotation.Implementation.Popl14 where
-- Notions of programs being implementations of specifications
-- for Calculus Popl14
open import Denotation.Specification.Canon-Popl14 public
open import Popl14.Syntax.Type
open import Popl14.Syntax.Term
open import Popl14.Change.Derive
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Postulate.Extensionality
open import Popl14.Denotation.WeakenSound
infix 4 implements
syntax implements τ u v = u ≈₍ τ ₎ v
implements : ∀ (τ : Type) → ΔVal τ → ⟦ ΔType τ ⟧ → Set
u ≈₍ int ₎ v = u ≡ v
u ≈₍ bag ₎ v = u ≡ v
u ≈₍ σ ⇒ τ ₎ v =
(w : ⟦ σ ⟧) (Δw : ΔVal σ) (Δw′ : ⟦ ΔType σ ⟧)
(R[w,Δw] : valid {σ} w Δw) (Δw≈Δw′ : implements σ Δw Δw′) →
implements τ (u w Δw R[w,Δw]) (v w Δw′)
infix 4 _≈_
_≈_ : ∀ {τ} → ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≈_ {τ} = implements τ
module Disambiguation (τ : Type) where
_✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_✚_ = _⟦⊕⟧_ {τ}
_−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_−_ = _⟦⊝⟧_ {τ}
infixl 6 _✚_ _−_
_≃_ : ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≃_ = _≈_ {τ}
infix 4 _≃_
module FunctionDisambiguation (σ : Type) (τ : Type) where
open Disambiguation (σ ⇒ τ) public
_✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_✚₁_ = _⟦⊕⟧_ {τ}
_−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_−₁_ = _⟦⊝⟧_ {τ}
infixl 6 _✚₁_ _−₁_
_≃₁_ : ΔVal τ → ⟦ ΔType τ ⟧ → Set
_≃₁_ = _≈_ {τ}
infix 4 _≃₁_
_✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧
_✚₀_ = _⟦⊕⟧_ {σ}
_−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧
_−₀_ = _⟦⊝⟧_ {σ}
infixl 6 _✚₀_ _−₀_
_≃₀_ : ΔVal σ → ⟦ ΔType σ ⟧ → Set
_≃₀_ = _≈_ {σ}
infix 4 _≃₀_
compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set
compatible {∅} ∅ ∅ = ⊤
compatible {τ • Γ} (cons v Δv _ ρ) (Δv′ • v′ • ρ′) =
Triple (v ≡ v′) (λ _ → Δv ≈ Δv′) (λ _ _ → compatible ρ ρ′)
-- If a program implements a specification, then certain things
-- proven about the specification carry over to the programs.
carry-over : ∀ {τ}
{v : ⟦ τ ⟧} {Δv : ΔVal τ} {Δv′ : ⟦ ΔType τ ⟧}
(R[v,Δv] : valid v Δv) (Δv≈Δv′ : Δv ≈ Δv′) →
let open Disambiguation τ in
v ⊞ Δv ≡ v ✚ Δv′
u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
let open Disambiguation τ in
u ⊟ v ≃ u − v
u⊟v≈u⊝v {int} = refl
u⊟v≈u⊝v {bag} = refl
u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where
open FunctionDisambiguation σ τ
result : (w : ⟦ σ ⟧) (Δw : ΔVal σ) (Δw′ : ⟦ ΔType σ ⟧) →
valid w Δw → Δw ≈ Δw′ →
g (w ⊞ Δw) ⊟ f w ≃₁ g (w ✚₀ Δw′) −₁ f w
result w Δw Δw′ R[w,Δw] Δw≈Δw′
rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ =
u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w}
carry-over {int} {v} tt Δv≈Δv′ = cong (_+_ v) Δv≈Δv′
carry-over {bag} {v} tt Δv≈Δv′ = cong (_++_ v) Δv≈Δv′
carry-over {σ ⇒ τ} {f} {Δf} {Δf′} R[f,Δf] Δf≈Δf′ =
ext (λ v →
let
open FunctionDisambiguation σ τ
V = R[v,u-v] {σ} {v} {v}
S = u⊟v≈u⊝v {σ} {v} {v}
in
carry-over {τ} {f v}
{Δf v (v ⊟ v) V} {Δf′ v (v −₀ v)}
(proj₁ (R[f,Δf] v (v ⊟ v) V))
(Δf≈Δf′ v (v ⊟ v) (v −₀ v) V S))
-- A property relating `ignore` and the subcontext relation Γ≼ΔΓ
⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧}
(C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′
⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl
⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ ρ} {dv′ • v′ • ρ′}
(cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C)
-- A specialization of the soundness of weakening
⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ)
{ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) →
⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′
⟦fit⟧ t {ρ} {ρ′} C =
trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
|
Support type arguments for infix ≈.
|
Support type arguments for infix ≈.
Old-commit-hash: e96c855b72f3792e2bc0279596338ed2c82c4c8b
|
Agda
|
mit
|
inc-lc/ilc-agda
|
be5009e736f000abc308cda35f51ca8c075da427
|
Parametric/Change/Correctness.agda
|
Parametric/Change/Correctness.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- That `derive t` implements ⟦ t ⟧Δ
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app s t) ρ dρ ρ′ dρ≈ρ′
rewrite sym (⟦fit⟧ t ρ ρ′) =
derive-correct s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct t ρ dρ ρ′ dρ≈ρ′)
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {y : Term ∅ σ}
→ ⟦ app f y ⟧
≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧
main-theorem {σ} {τ} {f} {x} {y} =
let
h = ⟦ f ⟧ ∅
Δh = ⟦ f ⟧Δ ∅ ∅
Δh′ = ⟦ derive f ⟧ ∅
v = ⟦ x ⟧ ∅
u = ⟦ y ⟧ ∅
Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
h u
≡⟨ cong h (sym (v+[u-v]=u {σ})) ⟩
h (v ⊞₍ σ ₎ (u ⊟₍ σ ₎ v))
≡⟨ corollary-closed {σ} {τ} f v (u ⊟₍ σ ₎ v) ⟩
h v ⊞₍ τ ₎ call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v)
≡⟨ carry-over {τ}
(call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v))
(derive-correct f
∅ ∅ ∅ ∅ v (u ⊟₍ σ ₎ v) (u ⟦⊝₍ σ ₎⟧ v) (u⊟v≈u⊝v {σ} {u} {v})) ⟩
h v ⟦⊕₍ τ ₎⟧ Δh′ v (u ⟦⊝₍ σ ₎⟧ v)
≡⟨ trans
(cong (λ hole → h v ⟦⊕₍ τ ₎⟧ Δh′ v hole) (meaning-⊝ {σ} {s = y} {x}))
(meaning-⊕ {t = app f x} {Δt = Δoutput-term}) ⟩
⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ ∅
∎}) where open ≡-Reasoning
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- That `derive t` implements ⟦ t ⟧Δ
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {y : Term ∅ σ}
→ ⟦ app f y ⟧
≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧
main-theorem {σ} {τ} {f} {x} {y} =
let
h = ⟦ f ⟧ ∅
Δh = ⟦ f ⟧Δ ∅ ∅
Δh′ = ⟦ derive f ⟧ ∅
v = ⟦ x ⟧ ∅
u = ⟦ y ⟧ ∅
Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
h u
≡⟨ cong h (sym (v+[u-v]=u {σ})) ⟩
h (v ⊞₍ σ ₎ (u ⊟₍ σ ₎ v))
≡⟨ corollary-closed {σ} {τ} f v (u ⊟₍ σ ₎ v) ⟩
h v ⊞₍ τ ₎ call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v)
≡⟨ carry-over {τ}
(call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v))
(derive-correct f
∅ ∅ ∅ ∅ v (u ⊟₍ σ ₎ v) (u ⟦⊝₍ σ ₎⟧ v) (u⊟v≈u⊝v {σ} {u} {v})) ⟩
h v ⟦⊕₍ τ ₎⟧ Δh′ v (u ⟦⊝₍ σ ₎⟧ v)
≡⟨ trans
(cong (λ hole → h v ⟦⊕₍ τ ₎⟧ Δh′ v hole) (meaning-⊝ {σ} {s = y} {x}))
(meaning-⊕ {t = app f x} {Δt = Δoutput-term}) ⟩
⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ ∅
∎}) where open ≡-Reasoning
|
Use subst instead of rewrite.
|
Use subst instead of rewrite.
For unknown reasons, this seems to play better with type inference.
Old-commit-hash: 55d911c0be0ad7f2ae6e77af9d5250bf4e4932b2
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5c780ccbd5c829ffabcb3aa2ec8905291fcbc87a
|
Base/Change/Algebra.agda
|
Base/Change/Algebra.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change Structures.
--
-- This module defines the notion of change structures,
-- as well as change structures for groups, functions and lists.
--
-- This module corresponds to Section 2 of the PLDI paper.
------------------------------------------------------------------------
module Base.Change.Algebra where
open import Relation.Binary.PropositionalEquality
open import Level
-- Change Algebras
-- ===============
--
-- In the paper, change algebras are called "change structures"
-- and they are described in Section 2.1. We follow the design of
-- the Agda standard library and define change algebras as two
-- records, so Definition 2.1 from the PLDI paper maps to the
-- records IsChangeAlgebra and ChangeAlgebra.
--
-- A value of type (IsChangeAlgebra Change update diff) proves that
-- Change, update and diff together form a change algebra.
--
-- A value of type (ChangeAlgebra Carrier) contains the necessary
-- ingredients to create a change algebra for a carrier set.
--
-- In the paper, Carrier is called V (Def. 2.1a),
-- Change is called Δ (Def. 2.1b),
-- update is written as infix ⊕ (Def. 2.1c),
-- diff is written as infix ⊝ (Def. 2.1d),
-- and update-diff is specified in Def. 2.1e.
record IsChangeAlgebra
{c} {d}
{Carrier : Set c}
(Change : Carrier → Set d)
(update : (v : Carrier) (dv : Change v) → Carrier)
(diff : (u v : Carrier) → Change v)
(nil : (u : Carrier) → Change u) : Set (c ⊔ d) where
field
update-diff : ∀ u v → update v (diff u v) ≡ u
-- This corresponds to Lemma 2.3 from the paper.
update-nil : ∀ v → update v (nil v) ≡ v
-- abbreviations
before : ∀ {v} → Change v → Carrier
before {v} _ = v
after : ∀ {v} → Change v → Carrier
after {v} dv = update v dv
record ChangeAlgebra {c} ℓ
(Carrier : Set c) : Set (c ⊔ suc ℓ) where
field
Change : Carrier → Set ℓ
update : (v : Carrier) (dv : Change v) → Carrier
diff : (u v : Carrier) → Change v
-- This generalizes Def. 2.2. from the paper.
nil : (u : Carrier) → Change u
isChangeAlgebra : IsChangeAlgebra Change update diff nil
infixl 6 update diff
open IsChangeAlgebra isChangeAlgebra public
-- The following open ... public statement lets us use infix ⊞
-- and ⊟ for update and diff. In the paper, we use infix ⊕ and
-- ⊝.
open ChangeAlgebra {{...}} public
using
( update-diff
; update-nil
; nil
; before
; after
)
renaming
( Change to Δ
; update to _⊞_
; diff to _⊟_
)
-- Families of Change Algebras
-- ===========================
--
-- This is some Agda machinery to allow subscripting change
-- algebra operations to avoid ambiguity. In the paper,
-- we simply write (in the paragraph after Def. 2.1):
--
-- We overload operators ∆, ⊝ and ⊕ to refer to the
-- corresponding operations of different change structures; we
-- will subscript these symbols when needed to prevent
-- ambiguity.
--
-- The following definitions implement this idea formally.
record ChangeAlgebraFamily {a p} ℓ {A : Set a} (P : A → Set p): Set (suc ℓ ⊔ p ⊔ a) where
constructor
family
field
change-algebra : ∀ x → ChangeAlgebra ℓ (P x)
module _ x where
open ChangeAlgebra (change-algebra x) public
module Family = ChangeAlgebraFamily {{...}}
open Family public
using
(
)
renaming
( Change to Δ₍_₎
; nil to nil₍_₎
; update-diff to update-diff₍_₎
; update-nil to update-nil₍_₎
; change-algebra to change-algebra₍_₎
; before to before₍_₎
; after to after₍_₎
)
infixl 6 update′ diff′
update′ = Family.update
syntax update′ x v dv = v ⊞₍ x ₎ dv
diff′ = Family.diff
syntax diff′ x u v = u ⊟₍ x ₎ v
-- Derivatives
-- ===========
--
-- This corresponds to Def. 2.4 in the paper.
Derivative : ∀ {a b c d} {A : Set a} {B : Set b} →
{{CA : ChangeAlgebra c A}} →
{{CB : ChangeAlgebra d B}} →
(f : A → B) →
(df : (a : A) (da : Δ a) → Δ (f a)) →
Set (a ⊔ b ⊔ c)
Derivative f df = ∀ a da → f a ⊞ df a da ≡ f (a ⊞ da)
-- This is a variant of Derivative for change algebra families.
Derivative₍_,_₎ : ∀ {a b p q c d} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} →
{{CP : ChangeAlgebraFamily c P}} →
{{CQ : ChangeAlgebraFamily d Q}} →
(x : A) →
(y : B) →
(f : P x → Q y) →
(df : (px : P x) (dpx : Δ₍ x ₎ px) → Δ₍ y ₎ (f px)) →
Set (p ⊔ q ⊔ c)
Derivative₍ x , y ₎ f df = Derivative f df where
CPx = change-algebra₍ x ₎
CQy = change-algebra₍ y ₎
-- Lemma 2.5 appears in Base.Change.Equivalence.
-- Abelian Groups Induce Change Algebras
-- =====================================
--
-- In the paper, as the first example for change structures after
-- Def. 2.1, we mention that "each abelian group ... induces a
-- change structure". This is the formalization of this result.
--
-- The module GroupChanges below takes a proof that A forms an
-- abelian group and provides a changeAlgebra for A. The proof of
-- Def 2.1e is by equational reasoning using the group axioms, in
-- the definition of changeAlgebra.isChangeAlgebra.update-diff.
open import Algebra.Structures
open import Data.Product
open import Function
module GroupChanges
{a} (A : Set a) {_⊕_} {ε} {_⁻¹}
{{isAbelianGroup : IsAbelianGroup {A = A} _≡_ _⊕_ ε _⁻¹}}
where
open IsAbelianGroup isAbelianGroup
hiding
( refl
)
renaming
( _-_ to _⊝_
; ∙-cong to _⟨⊕⟩_
)
open ≡-Reasoning
changeAlgebra : ChangeAlgebra a A
changeAlgebra = record
{ Change = const A
; update = _⊕_
; diff = _⊝_
; nil = const ε
; isChangeAlgebra = record
{ update-diff = λ u v →
begin
v ⊕ (u ⊝ v)
≡⟨ comm _ _ ⟩
(u ⊝ v ) ⊕ v
≡⟨⟩
(u ⊕ (v ⁻¹)) ⊕ v
≡⟨ assoc _ _ _ ⟩
u ⊕ ((v ⁻¹) ⊕ v)
≡⟨ refl ⟨⊕⟩ proj₁ inverse v ⟩
u ⊕ ε
≡⟨ proj₂ identity u ⟩
u
∎
; update-nil = proj₂ identity
}
}
-- Function Changes
-- ================
--
-- This is one of our most important results: Change structures
-- can be lifted to function spaces. We formalize this as a module
-- FunctionChanges that takes the change algebras for A and B as
-- arguments, and provides a changeAlgebra for (A → B). The proofs
-- are by equational reasoning using 2.1e for A and B.
module FunctionChanges
{a} {b} {c} {d} (A : Set a) (B : Set b) {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}}
where
-- This corresponds to Definition 2.6 in the paper.
record FunctionChange (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
constructor
cons
field
-- Definition 2.6a
apply : (a : A) (da : Δ a) →
Δ (f a)
-- Definition 2.6b.
-- (for some reason, the version in the paper has the arguments of ≡
-- flipped. Since ≡ is symmetric, this doesn't matter).
correct : (a : A) (da : Δ a) →
f (a ⊞ da) ⊞ apply (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ apply a da
open FunctionChange public
open ≡-Reasoning
open import Postulate.Extensionality
funDiff : (g f : A → B) → FunctionChange f
funDiff = λ g f → record
{ apply = λ a da → g (a ⊞ da) ⊟ f a
-- the proof of correct is the first half of what we
-- have to prove for Theorem 2.7.
; correct = λ a da →
begin
f (a ⊞ da) ⊞ (g ((a ⊞ da) ⊞ nil (a ⊞ da)) ⊟ f (a ⊞ da))
≡⟨ cong (λ □ → f (a ⊞ da) ⊞ (g □ ⊟ f (a ⊞ da)))
(update-nil (a ⊞ da)) ⟩
f (a ⊞ da) ⊞ (g (a ⊞ da) ⊟ f (a ⊞ da))
≡⟨ update-diff (g (a ⊞ da)) (f (a ⊞ da)) ⟩
g (a ⊞ da)
≡⟨ sym (update-diff (g (a ⊞ da)) (f a)) ⟩
f a ⊞ (g (a ⊞ da) ⊟ f a)
∎
}
funUpdate : ∀ (f : A → B) (df : FunctionChange f) → A → B
funUpdate = λ f df a → f a ⊞ apply df a (nil a)
funNil = λ f → funDiff f f
mutual
-- I have to write the type of funUpdateDiff without using changeAlgebra,
-- so I just use the underlying implementations.
funUpdateDiff : ∀ u v → funUpdate v (funDiff u v) ≡ u
changeAlgebra : ChangeAlgebra (a ⊔ b ⊔ c ⊔ d) (A → B)
changeAlgebra = record
{ Change = FunctionChange
-- in the paper, update and diff below are in Def. 2.7
; update = funUpdate
; diff = funDiff
; nil = funNil
; isChangeAlgebra = record
-- the proof of update-diff is the second half of what
-- we have to prove for Theorem 2.8.
{ update-diff = funUpdateDiff
; update-nil = λ v → funUpdateDiff v v
}
}
-- XXX remove mutual recursion by inlining the algebra in here?
funUpdateDiff = λ g f → ext (λ a →
begin
f a ⊞ (g (a ⊞ nil a) ⊟ f a)
≡⟨ cong (λ □ → f a ⊞ (g □ ⊟ f a)) (update-nil a) ⟩
f a ⊞ (g a ⊟ f a)
≡⟨ update-diff (g a) (f a) ⟩
g a
∎)
-- This is Theorem 2.9 in the paper.
incrementalization : ∀ (f : A → B) df a da →
(f ⊞ df) (a ⊞ da) ≡ f a ⊞ apply df a da
incrementalization f df a da = correct df a da
-- This is Theorem 2.10 in the paper.
nil-is-derivative : ∀ (f : A → B) →
Derivative f (apply (nil f))
nil-is-derivative f a da =
begin
f a ⊞ apply (nil f) a da
≡⟨ sym (incrementalization f (nil f) a da) ⟩
(f ⊞ nil f) (a ⊞ da)
≡⟨ cong (λ □ → □ (a ⊞ da))
(update-nil f) ⟩
f (a ⊞ da)
∎
-- List (== Environment) Changes
-- =============================
--
-- Here, we define a change structure on environments, given a
-- change structure on the values in the environments. In the
-- paper, we describe this in Definition 3.5. But note that this
-- Agda formalization uses de Bruijn indices instead of names, so
-- environments are just lists. Therefore, when we use Definition
-- 3.5 in the paper, in this formalization, we use the list-like
-- change structure defined here.
open import Data.List
open import Data.List.All
data All′ {a p q} {A : Set a}
{P : A → Set p}
(Q : {x : A} → P x → Set q)
: {xs : List A} (pxs : All P xs) → Set (p ⊔ q ⊔ a) where
[] : All′ Q []
_∷_ : ∀ {x xs} {px : P x} {pxs : All P xs} (qx : Q px) (qxs : All′ Q pxs) → All′ Q (px ∷ pxs)
module ListChanges
{a} {c} {A : Set a} (P : A → Set) {{C : ChangeAlgebraFamily c P}}
where
update-all : ∀ {xs} → (pxs : All P xs) → All′ (Δ₍ _ ₎) pxs → All P xs
update-all {[]} [] [] = []
update-all {x ∷ xs} (px ∷ pxs) (dpx ∷ dpxs) = (px ⊞₍ x ₎ dpx) ∷ update-all pxs dpxs
diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → All′ (Δ₍ _ ₎) pxs
diff-all [] [] = []
diff-all (px′ ∷ pxs′) (px ∷ pxs) = (px′ ⊟₍ _ ₎ px) ∷ diff-all pxs′ pxs
update-diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → update-all pxs (diff-all pxs′ pxs) ≡ pxs′
update-diff-all [] [] = refl
update-diff-all (px′ ∷ pxs′) (px ∷ pxs) = cong₂ _∷_ (update-diff₍ _ ₎ px′ px) (update-diff-all pxs′ pxs)
changeAlgebra : ChangeAlgebraFamily (c ⊔ a) (All P)
changeAlgebra = record
{ change-algebra = λ xs → record
{ Change = All′ Δ₍ _ ₎
; update = update-all
; diff = diff-all
; nil = λ xs → diff-all xs xs
; isChangeAlgebra = record
{ update-diff = update-diff-all
; update-nil = λ xs₁ → update-diff-all xs₁ xs₁
}
}
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change Structures.
--
-- This module defines the notion of change structures,
-- as well as change structures for groups, functions and lists.
--
-- This module corresponds to Section 2 of the PLDI paper.
------------------------------------------------------------------------
module Base.Change.Algebra where
open import Relation.Binary.PropositionalEquality
open import Level
-- Change Algebras
-- ===============
--
-- In the paper, change algebras are called "change structures"
-- and they are described in Section 2.1. We follow the design of
-- the Agda standard library and define change algebras as two
-- records, so Definition 2.1 from the PLDI paper maps to the
-- records IsChangeAlgebra and ChangeAlgebra.
--
-- A value of type (IsChangeAlgebra Change update diff) proves that
-- Change, update and diff together form a change algebra.
--
-- A value of type (ChangeAlgebra Carrier) contains the necessary
-- ingredients to create a change algebra for a carrier set.
--
-- In the paper, Carrier is called V (Def. 2.1a),
-- Change is called Δ (Def. 2.1b),
-- update is written as infix ⊕ (Def. 2.1c),
-- diff is written as infix ⊝ (Def. 2.1d),
-- and update-diff is specified in Def. 2.1e.
record IsChangeAlgebra
{c} {d}
{Carrier : Set c}
(Change : Carrier → Set d)
(update : (v : Carrier) (dv : Change v) → Carrier)
(diff : (u v : Carrier) → Change v)
(nil : (u : Carrier) → Change u) : Set (c ⊔ d) where
field
update-diff : ∀ u v → update v (diff u v) ≡ u
-- This corresponds to Lemma 2.3 from the paper.
update-nil : ∀ v → update v (nil v) ≡ v
-- abbreviations
before : ∀ {v} → Change v → Carrier
before {v} _ = v
after : ∀ {v} → Change v → Carrier
after {v} dv = update v dv
record ChangeAlgebra {c} ℓ
(Carrier : Set c) : Set (c ⊔ suc ℓ) where
field
Change : Carrier → Set ℓ
update : (v : Carrier) (dv : Change v) → Carrier
diff : (u v : Carrier) → Change v
-- This generalizes Def. 2.2. from the paper.
nil : (u : Carrier) → Change u
isChangeAlgebra : IsChangeAlgebra Change update diff nil
infixl 6 update diff
open IsChangeAlgebra isChangeAlgebra public
-- The following open ... public statement lets us use infix ⊞
-- and ⊟ for update and diff. In the paper, we use infix ⊕ and
-- ⊝.
open ChangeAlgebra {{...}} public
using
( update-diff
; update-nil
; nil
; before
; after
)
renaming
( Change to Δ
; update to _⊞_
; diff to _⊟_
)
-- Families of Change Algebras
-- ===========================
--
-- This is some Agda machinery to allow subscripting change
-- algebra operations to avoid ambiguity. In the paper,
-- we simply write (in the paragraph after Def. 2.1):
--
-- We overload operators ∆, ⊝ and ⊕ to refer to the
-- corresponding operations of different change structures; we
-- will subscript these symbols when needed to prevent
-- ambiguity.
--
-- The following definitions implement this idea formally.
record ChangeAlgebraFamily {a p} ℓ {A : Set a} (P : A → Set p): Set (suc ℓ ⊔ p ⊔ a) where
constructor
family
field
change-algebra : ∀ x → ChangeAlgebra ℓ (P x)
{-
instance
change-algebra-extractor : ∀ {x} → ChangeAlgebra ℓ (P x)
change-algebra-extractor {x} = change-algebra x
-}
module _ x where
open ChangeAlgebra (change-algebra x) public
module Family = ChangeAlgebraFamily {{...}}
open Family public
using
(
)
renaming
( Change to Δ₍_₎
; nil to nil₍_₎
; update-diff to update-diff₍_₎
; update-nil to update-nil₍_₎
; change-algebra to change-algebra₍_₎
; before to before₍_₎
; after to after₍_₎
)
-- XXX not clear this is ever used
instance
change-algebra-family-inst = change-algebra₍_₎
infixl 6 update′ diff′
update′ = Family.update
syntax update′ x v dv = v ⊞₍ x ₎ dv
diff′ = Family.diff
syntax diff′ x u v = u ⊟₍ x ₎ v
-- Derivatives
-- ===========
--
-- This corresponds to Def. 2.4 in the paper.
Derivative : ∀ {a b c d} {A : Set a} {B : Set b} →
{{CA : ChangeAlgebra c A}} →
{{CB : ChangeAlgebra d B}} →
(f : A → B) →
(df : (a : A) (da : Δ a) → Δ (f a)) →
Set (a ⊔ b ⊔ c)
Derivative f df = ∀ a da → f a ⊞ df a da ≡ f (a ⊞ da)
-- This is a variant of Derivative for change algebra families.
Derivative₍_,_₎ : ∀ {a b p q c d} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} →
{{CP : ChangeAlgebraFamily c P}} →
{{CQ : ChangeAlgebraFamily d Q}} →
(x : A) →
(y : B) →
(f : P x → Q y) →
(df : (px : P x) (dpx : Δ₍ x ₎ px) → Δ₍ y ₎ (f px)) →
Set (p ⊔ q ⊔ c)
Derivative₍ x , y ₎ f df = Derivative {{change-algebra₍ _ ₎}} {{change-algebra₍ _ ₎}} f df where
CPx = change-algebra₍ x ₎
CQy = change-algebra₍ y ₎
-- Lemma 2.5 appears in Base.Change.Equivalence.
-- Abelian Groups Induce Change Algebras
-- =====================================
--
-- In the paper, as the first example for change structures after
-- Def. 2.1, we mention that "each abelian group ... induces a
-- change structure". This is the formalization of this result.
--
-- The module GroupChanges below takes a proof that A forms an
-- abelian group and provides a changeAlgebra for A. The proof of
-- Def 2.1e is by equational reasoning using the group axioms, in
-- the definition of changeAlgebra.isChangeAlgebra.update-diff.
open import Algebra.Structures
open import Data.Product
open import Function
module GroupChanges
{a} (A : Set a) {_⊕_} {ε} {_⁻¹}
{{isAbelianGroup : IsAbelianGroup {A = A} _≡_ _⊕_ ε _⁻¹}}
where
open IsAbelianGroup isAbelianGroup
hiding
( refl
)
renaming
( _-_ to _⊝_
; ∙-cong to _⟨⊕⟩_
)
open ≡-Reasoning
changeAlgebra : ChangeAlgebra a A
changeAlgebra = record
{ Change = const A
; update = _⊕_
; diff = _⊝_
; nil = const ε
; isChangeAlgebra = record
{ update-diff = λ u v →
begin
v ⊕ (u ⊝ v)
≡⟨ comm _ _ ⟩
(u ⊝ v ) ⊕ v
≡⟨⟩
(u ⊕ (v ⁻¹)) ⊕ v
≡⟨ assoc _ _ _ ⟩
u ⊕ ((v ⁻¹) ⊕ v)
≡⟨ refl ⟨⊕⟩ proj₁ inverse v ⟩
u ⊕ ε
≡⟨ proj₂ identity u ⟩
u
∎
; update-nil = proj₂ identity
}
}
-- Function Changes
-- ================
--
-- This is one of our most important results: Change structures
-- can be lifted to function spaces. We formalize this as a module
-- FunctionChanges that takes the change algebras for A and B as
-- arguments, and provides a changeAlgebra for (A → B). The proofs
-- are by equational reasoning using 2.1e for A and B.
module FunctionChanges
{a} {b} {c} {d} (A : Set a) (B : Set b) {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}}
where
-- This corresponds to Definition 2.6 in the paper.
record FunctionChange (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
constructor
cons
field
-- Definition 2.6a
apply : (a : A) (da : Δ a) →
Δ (f a)
-- Definition 2.6b.
-- (for some reason, the version in the paper has the arguments of ≡
-- flipped. Since ≡ is symmetric, this doesn't matter).
correct : (a : A) (da : Δ a) →
f (a ⊞ da) ⊞ apply (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ apply a da
open FunctionChange public
open ≡-Reasoning
open import Postulate.Extensionality
funDiff : (g f : A → B) → FunctionChange f
funDiff = λ g f → record
{ apply = λ a da → g (a ⊞ da) ⊟ f a
-- the proof of correct is the first half of what we
-- have to prove for Theorem 2.7.
; correct = λ a da →
begin
f (a ⊞ da) ⊞ (g ((a ⊞ da) ⊞ nil (a ⊞ da)) ⊟ f (a ⊞ da))
≡⟨ cong (λ □ → f (a ⊞ da) ⊞ (g □ ⊟ f (a ⊞ da)))
(update-nil (a ⊞ da)) ⟩
f (a ⊞ da) ⊞ (g (a ⊞ da) ⊟ f (a ⊞ da))
≡⟨ update-diff (g (a ⊞ da)) (f (a ⊞ da)) ⟩
g (a ⊞ da)
≡⟨ sym (update-diff (g (a ⊞ da)) (f a)) ⟩
f a ⊞ (g (a ⊞ da) ⊟ f a)
∎
}
funUpdate : ∀ (f : A → B) (df : FunctionChange f) → A → B
funUpdate = λ f df a → f a ⊞ apply df a (nil a)
funNil = λ f → funDiff f f
mutual
-- I have to write the type of funUpdateDiff without using changeAlgebra,
-- so I just use the underlying implementations.
funUpdateDiff : ∀ u v → funUpdate v (funDiff u v) ≡ u
instance
changeAlgebra : ChangeAlgebra (a ⊔ b ⊔ c ⊔ d) (A → B)
changeAlgebra = record
{ Change = FunctionChange
-- in the paper, update and diff below are in Def. 2.7
; update = funUpdate
; diff = funDiff
; nil = funNil
; isChangeAlgebra = record
-- the proof of update-diff is the second half of what
-- we have to prove for Theorem 2.8.
{ update-diff = funUpdateDiff
; update-nil = λ v → funUpdateDiff v v
}
}
-- XXX remove mutual recursion by inlining the algebra in here?
funUpdateDiff = λ g f → ext (λ a →
begin
f a ⊞ (g (a ⊞ nil a) ⊟ f a)
≡⟨ cong (λ □ → f a ⊞ (g □ ⊟ f a)) (update-nil a) ⟩
f a ⊞ (g a ⊟ f a)
≡⟨ update-diff (g a) (f a) ⟩
g a
∎)
-- This is Theorem 2.9 in the paper.
incrementalization : ∀ (f : A → B) df a da →
(f ⊞ df) (a ⊞ da) ≡ f a ⊞ apply df a da
incrementalization f df a da = correct df a da
-- This is Theorem 2.10 in the paper.
nil-is-derivative : ∀ (f : A → B) →
Derivative f (apply (nil f))
nil-is-derivative f a da =
begin
f a ⊞ apply (nil f) a da
≡⟨ sym (incrementalization f (nil f) a da) ⟩
(f ⊞ nil f) (a ⊞ da)
≡⟨ cong (λ □ → □ (a ⊞ da))
(update-nil f) ⟩
f (a ⊞ da)
∎
-- List (== Environment) Changes
-- =============================
--
-- Here, we define a change structure on environments, given a
-- change structure on the values in the environments. In the
-- paper, we describe this in Definition 3.5. But note that this
-- Agda formalization uses de Bruijn indices instead of names, so
-- environments are just lists. Therefore, when we use Definition
-- 3.5 in the paper, in this formalization, we use the list-like
-- change structure defined here.
open import Data.List
open import Data.List.All
data All′ {a p q} {A : Set a}
{P : A → Set p}
(Q : {x : A} → P x → Set q)
: {xs : List A} (pxs : All P xs) → Set (p ⊔ q ⊔ a) where
[] : All′ Q []
_∷_ : ∀ {x xs} {px : P x} {pxs : All P xs} (qx : Q px) (qxs : All′ Q pxs) → All′ Q (px ∷ pxs)
module ListChanges
{a} {c} {A : Set a} (P : A → Set) {{C : ChangeAlgebraFamily c P}}
where
update-all : ∀ {xs} → (pxs : All P xs) → All′ (Δ₍ _ ₎) pxs → All P xs
update-all {[]} [] [] = []
update-all {x ∷ xs} (px ∷ pxs) (dpx ∷ dpxs) = (px ⊞₍ x ₎ dpx) ∷ update-all pxs dpxs
diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → All′ (Δ₍ _ ₎) pxs
diff-all [] [] = []
diff-all (px′ ∷ pxs′) (px ∷ pxs) = (px′ ⊟₍ _ ₎ px) ∷ diff-all pxs′ pxs
update-diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → update-all pxs (diff-all pxs′ pxs) ≡ pxs′
update-diff-all [] [] = refl
update-diff-all (px′ ∷ pxs′) (px ∷ pxs) = cong₂ _∷_ (update-diff₍ _ ₎ px′ px) (update-diff-all pxs′ pxs)
instance
changeAlgebra : ChangeAlgebraFamily (c ⊔ a) (All P)
changeAlgebra = record
{ change-algebra = λ xs → record
{ Change = All′ Δ₍ _ ₎
; update = update-all
; diff = diff-all
; nil = λ xs → diff-all xs xs
; isChangeAlgebra = record
{ update-diff = update-diff-all
; update-nil = λ xs₁ → update-diff-all xs₁ xs₁
}
}
}
|
Convert Base.Change.Algebra to Agda 2.4.2
|
Convert Base.Change.Algebra to Agda 2.4.2
|
Agda
|
mit
|
inc-lc/ilc-agda
|
1fd25d4aff13f116be831b1d538e1df362ba14e5
|
experimental/Embed62.agda
|
experimental/Embed62.agda
|
module Embed62 where
open import TaggedDeltaTypes
open import ExplicitNil using (ext³)
open import Relation.Binary.PropositionalEquality
open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Unit using (⊤ ; tt)
open import Data.Nat
Δ-Type : Type → Type
Δ-Type nats = (nats ⇒ nats ⇒ nats) ⇒ nats -- Church pairs
Δ-Type bags = bags
Δ-Type (σ ⇒ τ) = σ ⇒ Δ-Type σ ⇒ Δ-Type τ
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ Δ-Context Γ
Γ≼ΔΓ {∅} = ∅≼∅
Γ≼ΔΓ {τ • Γ} = drop Δ-Type τ • keep τ • Γ≼ΔΓ
weak : ∀ {τ Γ} → Term Γ τ → Term (Δ-Context Γ) τ
weak = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
absurd! : ∀ {A B : Set} → A → A → B → B
absurd! _ _ b = b
fst : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ τ)
fst = abs (abs (var (that this)))
snd : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ τ)
snd = abs (abs (var this))
difff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply {nats} dt t = app dt snd
apply {bags} dt t = union t dt
apply {σ ⇒ τ} dt t = abs (apply
(app (app (weaken (drop _ • Γ≼Γ) dt)
(var this)) (difff (var this) (var this)))
(app (weaken (drop _ • Γ≼Γ) t) (var this)))
difff {nats} s t = abs (app (app (var this)
(weaken (drop _ • Γ≼Γ) s)) (weaken (drop _ • Γ≼Γ) t))
difff {bags} s t = diff s t
difff {σ ⇒ τ} s t = abs (abs (difff
(app (weaken (drop _ • drop _ • Γ≼Γ) s)
(apply (var this) (var (that this))))
(app (weaken (drop _ • drop _ • Γ≼Γ) t) (var (that this)))))
embed : ∀ {τ Γ} → ΔTerm Γ τ → Term (Δ-Context Γ) (Δ-Type τ)
embed (Δnat old new) = abs (app (app (var this) (nat old)) (nat new))
embed (Δbag db) = bag db
embed (Δvar x) = var (deriveVar x)
embed (Δabs dt) = abs (abs (embed dt))
embed (Δapp ds t dt) = app (app (embed ds) (weak t)) (embed dt)
embed (Δadd ds dt) = abs (app (app (var this)
(add (app (weaken (drop _ • Γ≼Γ) (embed ds)) fst)
(app (weaken (drop _ • Γ≼Γ) (embed dt)) fst)))
(add (app (weaken (drop _ • Γ≼Γ) (embed ds)) snd)
(app (weaken (drop _ • Γ≼Γ) (embed dt)) snd)))
embed (Δmap₀ s ds t dt) = diff
(map (apply (embed ds) (weak s)) (apply (embed dt) (weak t)))
(weak (map s t))
embed (Δmap₁ s dt) = map (weak s) (embed dt)
embed (Δunion ds dt) = union (embed ds) (embed dt)
embed (Δdiff ds dt) = diff (embed ds) (embed dt)
⟦fst⟧ : ∀ {A : Set} → A → A → A
⟦fst⟧ a b = a
⟦snd⟧ : ∀ {A : Set} → A → A → A
⟦snd⟧ a b = b
_≈_ : ∀ {τ} → ΔVal τ → ⟦ Δ-Type τ ⟧ → Set
_≈_ {nats} (old , new) v = old ≡ v ⟦fst⟧ × new ≡ v ⟦snd⟧
_≈_ {bags} u v = u ≡ v
_≈_ {σ ⇒ τ} u v =
(w : ⟦ σ ⟧) (dw : ΔVal σ) (dw′ : ⟦ Δ-Type σ ⟧)
(R[w,dw] : valid w dw) (eq : dw ≈ dw′) →
u w dw R[w,dw] ≈ v w dw′
infix 4 _≈_
compatible : ∀ {Γ} → ΔEnv Γ → ⟦ Δ-Context Γ ⟧ → Set
compatible {∅} ∅ ∅ = EmptySet
compatible {τ • Γ} (cons v dv _ ρ) (dv′ • v′ • ρ′) =
triple (v ≡ v′) (dv ≈ dv′) (compatible ρ ρ′)
deriveVar-correct : ∀ {τ Γ} {x : Var Γ τ}
{ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧} {C : compatible ρ ρ′} →
⟦ x ⟧ΔVar ρ ≈ ⟦ deriveVar x ⟧ ρ′
deriveVar-correct {x = this} -- pattern-matching on ρ, ρ′ NOT optional
{cons _ _ _ _} {_ • _ • _} {cons _ dv≈dv′ _ _} = dv≈dv′
deriveVar-correct {x = that y}
{cons _ _ _ ρ} {_ • _ • ρ′} {cons _ _ C _} =
deriveVar-correct {x = y} {ρ} {ρ′} {C}
weak-id : ∀ {Γ} {ρ : ⟦ Γ ⟧} → ⟦ Γ≼Γ {Γ} ⟧ ρ ≡ ρ
weak-id {∅} {∅} = refl
weak-id {τ • Γ} {v • ρ} = cong₂ _•_ {x = v} refl (weak-id {Γ} {ρ})
weak-eq : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧}
(C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′
weak-eq {∅} {∅} {∅} _ = refl
weak-eq {τ • Γ} {cons v dv _ ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C _) =
cong₂ _•_ v≡v′ (weak-eq C)
weak-eq-term : ∀ {τ Γ} (t : Term Γ τ)
{ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧} (C : compatible ρ ρ′) →
⟦ t ⟧ (ignore ρ) ≡ ⟦ weaken Γ≼ΔΓ t ⟧ ρ′
weak-eq-term t {ρ} {ρ′} C =
trans (cong ⟦ t ⟧ (weak-eq C)) (sym (weaken-sound t ρ′))
weaken-once : ∀ {τ Γ σ} {t : Term Γ τ} {v : ⟦ σ ⟧} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ≡ ⟦ weaken (drop σ • Γ≼Γ) t ⟧ (v • ρ)
weaken-once {t = t} {v} {ρ} = trans
(cong ⟦ t ⟧ (sym weak-id))
(sym (weaken-sound t (v • ρ)))
embed-correct : ∀ {τ Γ}
{dt : ΔTerm Γ τ}
{ρ : ΔEnv Γ} {V : dt is-valid-for ρ}
{ρ′ : ⟦ Δ-Context Γ ⟧} {C : compatible ρ ρ′} →
⟦ dt ⟧Δ ρ V ≈ ⟦ embed dt ⟧ ρ′
embed-correct {dt = Δnat old new} = refl , refl
embed-correct {dt = Δbag db} = refl
embed-correct {dt = Δvar x} {ρ} {ρ′ = ρ′} {C} =
deriveVar-correct {x = x} {ρ} {ρ′} {C}
embed-correct {dt = Δadd ds dt} {ρ} {V} {ρ′} {C} =
let
s00 , s01 = ⟦ ds ⟧Δ ρ (car V)
t00 , t01 = ⟦ dt ⟧Δ ρ (cadr V)
s10 = ⟦ embed ds ⟧ ρ′ ⟦fst⟧
s11 = ⟦ embed ds ⟧ ρ′ ⟦snd⟧
t10 = ⟦ embed dt ⟧ ρ′ ⟦fst⟧
t11 = ⟦ embed dt ⟧ ρ′ ⟦snd⟧
rec-s = embed-correct {dt = ds} {ρ} {car V} {ρ′} {C}
rec-t = embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C}
in
(begin
s00 + t00
≡⟨ cong₂ _+_ (proj₁ rec-s) (proj₁ rec-t) ⟩
s10 + t10
≡⟨ cong₂ _+_
(cong (λ x → ⟦ embed ds ⟧ x ⟦fst⟧) (sym weak-id))
(cong (λ x → ⟦ embed dt ⟧ x ⟦fst⟧) (sym weak-id)) ⟩
⟦ embed ds ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦fst⟧ {ℕ} • ρ′)) ⟦fst⟧ +
⟦ embed dt ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦fst⟧ {ℕ} • ρ′)) ⟦fst⟧
≡⟨ cong₂ _+_
(cong (λ f → f ⟦fst⟧) (sym (weaken-sound (embed ds) (⟦fst⟧ • ρ′))))
(cong (λ f → f ⟦fst⟧) (sym (weaken-sound (embed dt) (⟦fst⟧ • ρ′)))) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (⟦fst⟧ • ρ′) ⟦fst⟧ +
⟦ weaken (drop _ • Γ≼Γ) (embed dt) ⟧ (⟦fst⟧ • ρ′) ⟦fst⟧
∎)
,
(begin
s01 + t01
≡⟨ cong₂ _+_ (proj₂ rec-s) (proj₂ rec-t) ⟩
s11 + t11
≡⟨ cong₂ _+_
(cong (λ x → ⟦ embed ds ⟧ x ⟦snd⟧) (sym weak-id))
(cong (λ x → ⟦ embed dt ⟧ x ⟦snd⟧) (sym weak-id)) ⟩
⟦ embed ds ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦snd⟧ {ℕ} • ρ′)) ⟦snd⟧ +
⟦ embed dt ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦snd⟧ {ℕ} • ρ′)) ⟦snd⟧
≡⟨ cong₂ _+_
(cong (λ f → f ⟦snd⟧) (sym (weaken-sound (embed ds) (⟦snd⟧ • ρ′))))
(cong (λ f → f ⟦snd⟧) (sym (weaken-sound (embed dt) (⟦snd⟧ • ρ′)))) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (⟦snd⟧ • ρ′) ⟦snd⟧ +
⟦ weaken (drop _ • Γ≼Γ) (embed dt) ⟧ (⟦snd⟧ • ρ′) ⟦snd⟧
∎)
where open ≡-Reasoning
embed-correct {dt = Δunion ds dt} {ρ} {V} {ρ′} {C} = cong₂ _++_
(embed-correct {dt = ds} {ρ} {car V} {ρ′} {C})
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})
embed-correct {dt = Δdiff ds dt} {ρ} {V} {ρ′} {C} = cong₂ _\\_
(embed-correct {dt = ds} {ρ} {car V} {ρ′} {C})
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})
embed-correct {dt = Δmap₁ s dt} {ρ} {V} {ρ′} {C} = cong₂ mapBag
(weak-eq-term s C)
(embed-correct {dt = dt} {ρ} {car V} {ρ′} {C})
embed-correct {dt = Δmap₀ s ds t dt} {ρ} {V} {ρ′} {C} = cong₂ _\\_
(cong₂ mapBag
(extensionality (λ v →
begin
proj₂ (⟦ ds ⟧Δ ρ (car V) v (v , v) refl)
≡⟨ proj₂ (embed-correct {dt = ds} {ρ} {car V} {ρ′} {C}
v (v , v) (λ f → f v v) refl (refl , refl)) ⟩
⟦ embed ds ⟧ ρ′ v (λ f → f v v) ⟦snd⟧
≡⟨ cong (λ hole → hole v (λ f → f v v) ⟦snd⟧)
(weaken-once {t = embed ds} {v} {ρ′}) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (v • ρ′) v (λ f → f v v) ⟦snd⟧
∎))
(cong₂ _++_
(weak-eq-term t C)
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})))
(cong₂ mapBag (weak-eq-term s C) (weak-eq-term t C))
where open ≡-Reasoning
embed-correct {dt = Δapp ds t dt} {ρ} {cons vds vdt R[t,dt] _} {ρ′} {C}
rewrite sym (weak-eq-term t C) =
embed-correct {dt = ds} {ρ} {vds} {ρ′} {C}
(⟦ t ⟧Term (ignore ρ)) (⟦ dt ⟧Δ ρ vdt) (⟦ embed dt ⟧Term ρ′)
R[t,dt] (embed-correct {dt = dt} {ρ} {vdt} {ρ′} {C})
embed-correct {dt = Δabs dt} {ρ} {V} {ρ′} {C} = λ w dw dw′ R[w,dw] dw≈dw′ →
embed-correct {dt = dt}
{cons w dw R[w,dw] ρ} {V w dw R[w,dw]}
{dw′ • w • ρ′} {cons refl dw≈dw′ C tt}
|
module Embed62 where
open import TaggedDeltaTypes
open import ExplicitNil using (ext³)
open import Relation.Binary.PropositionalEquality
open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Unit using (⊤ ; tt)
open import Data.Nat
natPairVisitor : Type
natPairVisitor = nats ⇒ nats ⇒ nats
Δ-Type : Type → Type
Δ-Type nats = natPairVisitor ⇒ nats -- Church pairs
Δ-Type bags = bags
Δ-Type (σ ⇒ τ) = σ ⇒ Δ-Type σ ⇒ Δ-Type τ
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ Δ-Context Γ
Γ≼ΔΓ {∅} = ∅≼∅
Γ≼ΔΓ {τ • Γ} = drop Δ-Type τ • keep τ • Γ≼ΔΓ
weak : ∀ {τ Γ} → Term Γ τ → Term (Δ-Context Γ) τ
weak = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
absurd! : ∀ {A B : Set} → A → A → B → B
absurd! _ _ b = b
fst : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ τ)
fst = abs (abs (var (that this)))
snd : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ τ)
snd = abs (abs (var this))
oldFrom newFrom : ∀ {Γ} → Term Γ (Δ-Type nats) → Term Γ nats
oldFrom d = app d fst
newFrom d = app d snd
difff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply {nats} dt t = app dt snd
apply {bags} dt t = union t dt
apply {σ ⇒ τ} dt t = abs (apply
(app (app (weaken (drop _ • Γ≼Γ) dt)
(var this)) (difff (var this) (var this)))
(app (weaken (drop _ • Γ≼Γ) t) (var this)))
difff {nats} s t = abs (app (app (var this)
(weaken (drop _ • Γ≼Γ) s)) (weaken (drop _ • Γ≼Γ) t))
difff {bags} s t = diff s t
difff {σ ⇒ τ} s t = abs (abs (difff
(app (weaken (drop _ • drop _ • Γ≼Γ) s)
(apply (var this) (var (that this))))
(app (weaken (drop _ • drop _ • Γ≼Γ) t) (var (that this)))))
natPair : ∀ {Γ} → (old new : Term (natPairVisitor • Γ) nats) → Term Γ (Δ-Type nats)
natPair old new = abs (app (app (var this) old) new)
embed : ∀ {τ Γ} → ΔTerm Γ τ → Term (Δ-Context Γ) (Δ-Type τ)
embed (Δnat old new) = natPair (nat old) (nat new)
embed (Δbag db) = bag db
embed (Δvar x) = var (deriveVar x)
embed (Δabs dt) = abs (abs (embed dt))
embed (Δapp ds t dt) = app (app (embed ds) (weak t)) (embed dt)
embed (Δadd ds dt) = natPair
(add (oldFrom (embedWeaken ds))
(oldFrom (embedWeaken dt)))
(add (newFrom (embedWeaken ds))
(newFrom (embedWeaken dt)))
where
embedWeaken : ∀ {Γ τ} → (d : ΔTerm Γ nats) →
Term (τ • Δ-Context Γ) (natPairVisitor ⇒ nats)
embedWeaken d = (weaken (drop _ • Γ≼Γ) (embed d))
embed (Δmap₀ s ds t dt) = diff
(map (apply (embed ds) (weak s)) (apply (embed dt) (weak t)))
(weak (map s t))
embed (Δmap₁ s dt) = map (weak s) (embed dt)
embed (Δunion ds dt) = union (embed ds) (embed dt)
embed (Δdiff ds dt) = diff (embed ds) (embed dt)
⟦fst⟧ : ∀ {A : Set} → A → A → A
⟦fst⟧ a b = a
⟦snd⟧ : ∀ {A : Set} → A → A → A
⟦snd⟧ a b = b
_≈_ : ∀ {τ} → ΔVal τ → ⟦ Δ-Type τ ⟧ → Set
_≈_ {nats} (old , new) v = old ≡ v ⟦fst⟧ × new ≡ v ⟦snd⟧
_≈_ {bags} u v = u ≡ v
_≈_ {σ ⇒ τ} u v =
(w : ⟦ σ ⟧) (dw : ΔVal σ) (dw′ : ⟦ Δ-Type σ ⟧)
(R[w,dw] : valid w dw) (eq : dw ≈ dw′) →
u w dw R[w,dw] ≈ v w dw′
infix 4 _≈_
compatible : ∀ {Γ} → ΔEnv Γ → ⟦ Δ-Context Γ ⟧ → Set
compatible {∅} ∅ ∅ = EmptySet
compatible {τ • Γ} (cons v dv _ ρ) (dv′ • v′ • ρ′) =
triple (v ≡ v′) (dv ≈ dv′) (compatible ρ ρ′)
deriveVar-correct : ∀ {τ Γ} {x : Var Γ τ}
{ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧} {C : compatible ρ ρ′} →
⟦ x ⟧ΔVar ρ ≈ ⟦ deriveVar x ⟧ ρ′
deriveVar-correct {x = this} -- pattern-matching on ρ, ρ′ NOT optional
{cons _ _ _ _} {_ • _ • _} {cons _ dv≈dv′ _ _} = dv≈dv′
deriveVar-correct {x = that y}
{cons _ _ _ ρ} {_ • _ • ρ′} {cons _ _ C _} =
deriveVar-correct {x = y} {ρ} {ρ′} {C}
weak-id : ∀ {Γ} {ρ : ⟦ Γ ⟧} → ⟦ Γ≼Γ {Γ} ⟧ ρ ≡ ρ
weak-id {∅} {∅} = refl
weak-id {τ • Γ} {v • ρ} = cong₂ _•_ {x = v} refl (weak-id {Γ} {ρ})
weak-eq : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧}
(C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′
weak-eq {∅} {∅} {∅} _ = refl
weak-eq {τ • Γ} {cons v dv _ ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C _) =
cong₂ _•_ v≡v′ (weak-eq C)
weak-eq-term : ∀ {τ Γ} (t : Term Γ τ)
{ρ : ΔEnv Γ} {ρ′ : ⟦ Δ-Context Γ ⟧} (C : compatible ρ ρ′) →
⟦ t ⟧ (ignore ρ) ≡ ⟦ weaken Γ≼ΔΓ t ⟧ ρ′
weak-eq-term t {ρ} {ρ′} C =
trans (cong ⟦ t ⟧ (weak-eq C)) (sym (weaken-sound t ρ′))
weaken-once : ∀ {τ Γ σ} {t : Term Γ τ} {v : ⟦ σ ⟧} {ρ : ⟦ Γ ⟧} →
⟦ t ⟧ ρ ≡ ⟦ weaken (drop σ • Γ≼Γ) t ⟧ (v • ρ)
weaken-once {t = t} {v} {ρ} = trans
(cong ⟦ t ⟧ (sym weak-id))
(sym (weaken-sound t (v • ρ)))
embed-correct : ∀ {τ Γ}
{dt : ΔTerm Γ τ}
{ρ : ΔEnv Γ} {V : dt is-valid-for ρ}
{ρ′ : ⟦ Δ-Context Γ ⟧} {C : compatible ρ ρ′} →
⟦ dt ⟧Δ ρ V ≈ ⟦ embed dt ⟧ ρ′
embed-correct {dt = Δnat old new} = refl , refl
embed-correct {dt = Δbag db} = refl
embed-correct {dt = Δvar x} {ρ} {ρ′ = ρ′} {C} =
deriveVar-correct {x = x} {ρ} {ρ′} {C}
embed-correct {dt = Δadd ds dt} {ρ} {V} {ρ′} {C} =
let
s00 , s01 = ⟦ ds ⟧Δ ρ (car V)
t00 , t01 = ⟦ dt ⟧Δ ρ (cadr V)
s10 = ⟦ embed ds ⟧ ρ′ ⟦fst⟧
s11 = ⟦ embed ds ⟧ ρ′ ⟦snd⟧
t10 = ⟦ embed dt ⟧ ρ′ ⟦fst⟧
t11 = ⟦ embed dt ⟧ ρ′ ⟦snd⟧
rec-s = embed-correct {dt = ds} {ρ} {car V} {ρ′} {C}
rec-t = embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C}
in
(begin
s00 + t00
≡⟨ cong₂ _+_ (proj₁ rec-s) (proj₁ rec-t) ⟩
s10 + t10
≡⟨ cong₂ _+_
(cong (λ x → ⟦ embed ds ⟧ x ⟦fst⟧) (sym weak-id))
(cong (λ x → ⟦ embed dt ⟧ x ⟦fst⟧) (sym weak-id)) ⟩
⟦ embed ds ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦fst⟧ {ℕ} • ρ′)) ⟦fst⟧ +
⟦ embed dt ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦fst⟧ {ℕ} • ρ′)) ⟦fst⟧
≡⟨ cong₂ _+_
(cong (λ f → f ⟦fst⟧) (sym (weaken-sound (embed ds) (⟦fst⟧ • ρ′))))
(cong (λ f → f ⟦fst⟧) (sym (weaken-sound (embed dt) (⟦fst⟧ • ρ′)))) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (⟦fst⟧ • ρ′) ⟦fst⟧ +
⟦ weaken (drop _ • Γ≼Γ) (embed dt) ⟧ (⟦fst⟧ • ρ′) ⟦fst⟧
∎)
,
(begin
s01 + t01
≡⟨ cong₂ _+_ (proj₂ rec-s) (proj₂ rec-t) ⟩
s11 + t11
≡⟨ cong₂ _+_
(cong (λ x → ⟦ embed ds ⟧ x ⟦snd⟧) (sym weak-id))
(cong (λ x → ⟦ embed dt ⟧ x ⟦snd⟧) (sym weak-id)) ⟩
⟦ embed ds ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦snd⟧ {ℕ} • ρ′)) ⟦snd⟧ +
⟦ embed dt ⟧ (⟦ drop _ • Γ≼Γ ⟧ (⟦snd⟧ {ℕ} • ρ′)) ⟦snd⟧
≡⟨ cong₂ _+_
(cong (λ f → f ⟦snd⟧) (sym (weaken-sound (embed ds) (⟦snd⟧ • ρ′))))
(cong (λ f → f ⟦snd⟧) (sym (weaken-sound (embed dt) (⟦snd⟧ • ρ′)))) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (⟦snd⟧ • ρ′) ⟦snd⟧ +
⟦ weaken (drop _ • Γ≼Γ) (embed dt) ⟧ (⟦snd⟧ • ρ′) ⟦snd⟧
∎)
where open ≡-Reasoning
embed-correct {dt = Δunion ds dt} {ρ} {V} {ρ′} {C} = cong₂ _++_
(embed-correct {dt = ds} {ρ} {car V} {ρ′} {C})
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})
embed-correct {dt = Δdiff ds dt} {ρ} {V} {ρ′} {C} = cong₂ _\\_
(embed-correct {dt = ds} {ρ} {car V} {ρ′} {C})
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})
embed-correct {dt = Δmap₁ s dt} {ρ} {V} {ρ′} {C} = cong₂ mapBag
(weak-eq-term s C)
(embed-correct {dt = dt} {ρ} {car V} {ρ′} {C})
embed-correct {dt = Δmap₀ s ds t dt} {ρ} {V} {ρ′} {C} = cong₂ _\\_
(cong₂ mapBag
(extensionality (λ v →
begin
proj₂ (⟦ ds ⟧Δ ρ (car V) v (v , v) refl)
≡⟨ proj₂ (embed-correct {dt = ds} {ρ} {car V} {ρ′} {C}
v (v , v) (λ f → f v v) refl (refl , refl)) ⟩
⟦ embed ds ⟧ ρ′ v (λ f → f v v) ⟦snd⟧
≡⟨ cong (λ hole → hole v (λ f → f v v) ⟦snd⟧)
(weaken-once {t = embed ds} {v} {ρ′}) ⟩
⟦ weaken (drop _ • Γ≼Γ) (embed ds) ⟧ (v • ρ′) v (λ f → f v v) ⟦snd⟧
∎))
(cong₂ _++_
(weak-eq-term t C)
(embed-correct {dt = dt} {ρ} {cadr V} {ρ′} {C})))
(cong₂ mapBag (weak-eq-term s C) (weak-eq-term t C))
where open ≡-Reasoning
embed-correct {dt = Δapp ds t dt} {ρ} {cons vds vdt R[t,dt] _} {ρ′} {C}
rewrite sym (weak-eq-term t C) =
embed-correct {dt = ds} {ρ} {vds} {ρ′} {C}
(⟦ t ⟧Term (ignore ρ)) (⟦ dt ⟧Δ ρ vdt) (⟦ embed dt ⟧Term ρ′)
R[t,dt] (embed-correct {dt = dt} {ρ} {vdt} {ρ′} {C})
embed-correct {dt = Δabs dt} {ρ} {V} {ρ′} {C} = λ w dw dw′ R[w,dw] dw≈dw′ →
embed-correct {dt = dt}
{cons w dw R[w,dw] ρ} {V w dw R[w,dw]}
{dw′ • w • ρ′} {cons refl dw≈dw′ C tt}
|
refactor proof of embed (#62)
|
Agda: refactor proof of embed (#62)
This refactoring makes the code of embed readable to humans (say, me).
(One should remember that programming should be about communicating with
humans).
Old-commit-hash: bf8e0402fab99cc5be02c0d14d407dd6c8123e06
|
Agda
|
mit
|
inc-lc/ilc-agda
|
46ea55a1cff1a55f5e77fd87b7af72362e358405
|
Syntax/Derive/Plotkin.agda
|
Syntax/Derive/Plotkin.agda
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
import Parametric.Syntax.Term as Term
import Base.Change.Context as DeltaContext
import Parametric.Change.Type as ChangeType
module Syntax.Derive.Plotkin
{Base : Set {- of base types -}}
{Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}}
(ΔBase : Base → Base)
(deriveConst :
∀ {Γ Σ τ} → Constant Σ τ →
Term.Terms
Constant
(DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ)
(DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Σ) →
Term.Term Constant (DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ) (ChangeType.ΔType ΔBase τ))
where
-- Terms of languages described in Plotkin style
open Type Base
open Context Type
open Term Constant
open ChangeType ΔBase
open DeltaContext ΔType
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (derive-terms ts)
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
import Parametric.Syntax.Term as Term
import Base.Change.Context as ChangeContext
import Parametric.Change.Type as ChangeType
module Syntax.Derive.Plotkin
{Base : Set {- of base types -}}
{Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}}
(ΔBase : Base → Base)
(deriveConst :
∀ {Γ Σ τ} → Constant Σ τ →
Term.Terms
Constant
(ChangeContext.ΔContext (ChangeType.ΔType ΔBase) Γ)
(ChangeContext.ΔContext (ChangeType.ΔType ΔBase) Σ) →
Term.Term Constant (ChangeContext.ΔContext (ChangeType.ΔType ΔBase) Γ) (ChangeType.ΔType ΔBase τ))
where
-- Terms of languages described in Plotkin style
open Type Base
open Context Type
open Term Constant
open ChangeType ΔBase
open ChangeContext ΔType
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (derive-terms ts)
|
Update qualified import for new module name.
|
Update qualified import for new module name.
Old-commit-hash: d14bfe564331d1fd643bdd11a759bb2a5c9338dc
|
Agda
|
mit
|
inc-lc/ilc-agda
|
f0143fea39cd9ef10ecc18c39c4bcb147cf3dc0f
|
total.agda
|
total.agda
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Data.Product
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Changes
open import ChangeContexts
-- DEFINITION of valid changes via a logical relation
{-
What I wanted to write:
data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where
base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv
fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) →
(∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) →
ValidΔ f df
-}
-- What I had to write:
valid-Δ : {T : Type} → ⟦ T ⟧ → ⟦ Δ-Type T ⟧ → Set
valid-Δ {bool} v dv = ⊤
valid-Δ {S ⇒ T} f df =
∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) →
valid-Δ (f s) (df s ds) ×
(apply df f) (apply ds s) ≡ apply (df s ds) (f s)
-- LIFTING terms into Δ-Contexts
lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ
lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′)
-- PROPERTIES of lift-term
lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) →
⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ))
lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in
begin
⟦ lift-term {{Γ′}} t ⟧ ρ
≡⟨⟩
⟦ weaken Γ″ t ⟧ ρ
≡⟨ weaken-sound t ρ ⟩
⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ)
≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩
⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ))
≡⟨⟩
⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ))
∎ where open ≡-Reasoning
-- PROPERTIES of Δ
Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) →
let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in
Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t))
Δ-abs t = ext-t (λ ρ → refl)
Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) →
Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in
begin
⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′
≡⟨⟩
diff
(⟦ t₁ ⟧ (update ρ)
(apply
(diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ)))
(⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)))
(⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))
≡⟨ ≡-cong
(λ x →
diff
(⟦ t₁ ⟧ (update ρ)
(apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x))
(⟦ t₁ ⟧ (ignore ρ) x))
(lift-term-ignore {{Γ′}} t₂) ⟩
diff
(⟦ t₁ ⟧ (update ρ)
(apply
(diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ)))
(⟦ t₂ ⟧ (ignore ρ))))
(⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))
≡⟨ ≡-cong
(λ x →
diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))))
(apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩
diff
(⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ)))
(⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))
≡⟨⟩
⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′
∎)) where open ≡-Reasoning
-- SYMBOLIC DERIVATION
derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
derive-var {τ • Γ} this = this
derive-var {τ • Γ} (that x) = that (that (derive-var x))
_and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a and b = if a b false
!_ : ∀ {Γ} → Term Γ bool → Term Γ bool
! x = if x false true
-- Term xor
_xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a xor-term b = if a (! b) b
-- XXX: to finish this, we just need to call lift-term, like in
-- derive-term. Should be easy, just a bit boring.
-- Other problem: in fact, Δ t is not the nil change of t, in this context. That's a problem.
apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply-pure-term {bool} = abs (abs (var this xor-term var (that this)))
apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) ({!Δ {Γ} (var this)!}))) (app (var (that this)) (var this)))))
--abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x (Δx)) ( f x )
apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply-term {τ ⇒ τ₁} = λ df f → app (app apply-pure-term df) f
apply-term {bool} = _xor-term_
diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
diff-term {τ ⇒ τ₁} =
λ f₁ f₂ →
--λx. λdx. diff ( f₁ (apply dx x)) (f₂ x)
abs (abs (diff-term {τ₁} (app (weaken ≼-in-body f₁) (apply-term (var this) (var (that this)))) (app (weaken ≼-in-body f₂) (var (that this)))))
where
≼-in-body = drop (Δ-Type τ) • (drop τ • ≼-refl)
diff-term {bool} = _xor-term_
derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ)
derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
where Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x))
derive-term {{Γ′}} true = false
derive-term {{Γ′}} false = false
derive-term {{Γ′}} (if c t e) =
if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c))
(diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t))
(if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c)))
(diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e))
(if (lift-term {{Γ′}} c)
(derive-term {{Γ′}} t)
(derive-term {{Γ′}} e)))
derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ (abs t)
≈⟨ Δ-abs t ⟩
abs (abs (Δ {τ • Γ₁} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩
abs (abs (derive-term {τ • Γ₁} t))
≡⟨⟩
derive-term (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ (app t₁ t₂)
≈⟨ Δ-app t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧Var ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct (if t₁ t₂ t₃) = {!!}
derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Data.Product
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Changes
open import ChangeContexts
-- DEFINITION of valid changes via a logical relation
{-
What I wanted to write:
data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where
base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv
fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) →
(∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) →
ValidΔ f df
-}
-- What I had to write:
valid-Δ : {T : Type} → ⟦ T ⟧ → ⟦ Δ-Type T ⟧ → Set
valid-Δ {bool} v dv = ⊤
valid-Δ {S ⇒ T} f df =
∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) →
valid-Δ (f s) (df s ds) ×
(apply df f) (apply ds s) ≡ apply (df s ds) (f s)
-- LIFTING terms into Δ-Contexts
lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ
lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′)
-- PROPERTIES of lift-term
lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) →
⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ))
lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in
begin
⟦ lift-term {{Γ′}} t ⟧ ρ
≡⟨⟩
⟦ weaken Γ″ t ⟧ ρ
≡⟨ weaken-sound t ρ ⟩
⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ)
≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩
⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ))
≡⟨⟩
⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ))
∎ where open ≡-Reasoning
-- PROPERTIES of Δ
Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) →
let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in
Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t))
Δ-abs t = ext-t (λ ρ → refl)
Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) →
Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in
begin
⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′
≡⟨⟩
diff
(⟦ t₁ ⟧ (update ρ)
(apply
(diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ)))
(⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)))
(⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))
≡⟨ ≡-cong
(λ x →
diff
(⟦ t₁ ⟧ (update ρ)
(apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x))
(⟦ t₁ ⟧ (ignore ρ) x))
(lift-term-ignore {{Γ′}} t₂) ⟩
diff
(⟦ t₁ ⟧ (update ρ)
(apply
(diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ)))
(⟦ t₂ ⟧ (ignore ρ))))
(⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))
≡⟨ ≡-cong
(λ x →
diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))))
(apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩
diff
(⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ)))
(⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))
≡⟨⟩
⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′
∎)) where open ≡-Reasoning
-- SYMBOLIC DERIVATION
derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
derive-var {τ • Γ} this = this
derive-var {τ • Γ} (that x) = that (that (derive-var x))
_and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a and b = if a b false
!_ : ∀ {Γ} → Term Γ bool → Term Γ bool
! x = if x false true
-- Term xor
_xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool
a xor-term b = if a (! b) b
diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ)
-- XXX: to finish this, we just need to call lift-term, like in
-- derive-term. Should be easy, just a bit boring.
-- Other problem: in fact, Δ t is not the nil change of t, in this context. That's a problem.
apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply-pure-term {bool} = abs (abs (var this xor-term var (that this)))
apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) (diff-term (var this) (var this)))) (app (var (that this)) (var this)))))
--abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x (Δx)) ( f x )
apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ
apply-term {τ ⇒ τ₁} = λ df f → app (app apply-pure-term df) f
apply-term {bool} = _xor-term_
diff-term {τ ⇒ τ₁} =
λ f₁ f₂ →
--λx. λdx. diff ( f₁ (apply dx x)) (f₂ x)
abs (abs (diff-term {τ₁} (app (weaken ≼-in-body f₁) (apply-term (var this) (var (that this)))) (app (weaken ≼-in-body f₂) (var (that this)))))
where
≼-in-body = drop (Δ-Type τ) • (drop τ • ≼-refl)
diff-term {bool} = _xor-term_
derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ)
derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
where Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x))
derive-term {{Γ′}} true = false
derive-term {{Γ′}} false = false
derive-term {{Γ′}} (if c t e) =
if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c))
(diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t))
(if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c)))
(diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e))
(if (lift-term {{Γ′}} c)
(derive-term {{Γ′}} t)
(derive-term {{Γ′}} e)))
derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ (abs t)
≈⟨ Δ-abs t ⟩
abs (abs (Δ {τ • Γ₁} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩
abs (abs (derive-term {τ • Γ₁} t))
≡⟨⟩
derive-term (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ (app t₁ t₂)
≈⟨ Δ-app t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧Var ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct (if t₁ t₂ t₃) = {!!}
derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
|
implement apply-term (see #25)
|
agda: implement apply-term (see #25)
The mutual recursion is accepted by Agda.
Old-commit-hash: 22f8cd2f280a41e9e8e4578726267f3f2a199d3f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
cbe1ca6e8fe8ab815052c5862ecc57d1c11fd7f7
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
open import Level
Structure : Set₁
Structure = ChangeAlgebraFamily zero ⟦_⟧Base
module Structure (change-algebra-base : Structure) where
-- change algebras
open CA public renaming
( [] to ∅
; _∷_ to _•_
)
-- change algebra for every type
change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}}
change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
open FunctionChanges public using (cons)
module _ {τ₁ τ₂ : Type} where
open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- environment changes
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebra to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍ Γ ₎
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
open import Level
-- Extension Point: Change algebras for base types
Structure : Set₁
Structure = ChangeAlgebraFamily zero ⟦_⟧Base
module Structure (change-algebra-base : Structure) where
-- change algebras
open CA public renaming
( [] to ∅
; _∷_ to _•_
)
-- We provide: change algebra for every type
change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}}
change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
open FunctionChanges public using (cons)
module _ {τ₁ τ₂ : Type} where
open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- We also provide: change environments (aka. environment changes).
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebra to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍ Γ ₎
|
Document P.C.Validity.
|
Document P.C.Validity.
Old-commit-hash: 35c83b38382aa41cf8d8162e7cb4e14ec2cd75f0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
50819fad2a9bd8093c7722e7d88f99deb1ca7fc2
|
Parametric/Change/Term.agda
|
Parametric/Change/Term.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply diff-base apply-base {base ι} = diff-base , apply-base
lift-diff-apply diff-base apply-base {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply-base {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply-base {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply-base {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply-base {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
lift-diff diff-base apply-base = λ {τ Γ} →
proj₁ (lift-diff-apply diff-base apply-base {τ} {Γ})
lift-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply diff-base apply-base = λ {τ Γ} →
proj₂ (lift-diff-apply diff-base apply-base {τ} {Γ})
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply {base ι} = diff-base , apply-base
lift-diff-apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff :
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
lift-diff = λ {τ Γ} →
proj₁ (lift-diff-apply {τ} {Γ})
lift-apply :
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply = λ {τ Γ} →
proj₂ (lift-diff-apply {τ} {Γ})
|
Move parameter to module level.
|
Move parameter to module level.
Old-commit-hash: 46e0ad74c26c053c33e0317365ac3c7047809529
|
Agda
|
mit
|
inc-lc/ilc-agda
|
d109d6a26c2ede68c53dd2c7f83ec7f6e6508725
|
Syntax/Context/Popl14.agda
|
Syntax/Context/Popl14.agda
|
module Syntax.Context.Popl14 where
-- Context specific to Popl14 version of the calculus
--
-- This module exports Syntax.Context specialized to
-- Syntax.Type.Popl14.Type and declares ΔContext appropriate
-- to Popl14 version of the incrementalization system.
-- This ΔContext may not make sense for other systems.
open import Syntax.Type.Popl14 public
open import Syntax.Context Type as Ctx
open Ctx public hiding (lift)
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- Aliasing of lemmas in Calculus Popl14
Γ≼Γ : ∀ {Γ} → Γ ≼ Γ
Γ≼Γ = ≼-refl
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
-- Aliasing of weakening of variables
weakenVar : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
weakenVar = Ctx.lift
|
module Syntax.Context.Popl14 where
-- Context specific to Popl14 version of the calculus
--
-- This module exports Syntax.Context specialized to
-- Syntax.Type.Popl14.Type and declares ΔContext appropriate
-- to Popl14 version of the incrementalization system.
-- This ΔContext may not make sense for other systems.
open import Syntax.Type.Popl14 public
import Syntax.Context Type as Ctx
open Ctx public hiding (lift)
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- Aliasing of lemmas in Calculus Popl14
Γ≼Γ : ∀ {Γ} → Γ ≼ Γ
Γ≼Γ = ≼-refl
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
-- Aliasing of weakening of variables
weakenVar : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
weakenVar = Ctx.lift
|
remove redundant 'open' in Syntax.Context.Popl14
|
Agda: remove redundant 'open' in Syntax.Context.Popl14
https://github.com/ps-mr/ilc/commit/02bb5ef8bf31b80d9b640a440b4ec1801aa500fe#commitcomment-3645919
Old-commit-hash: 97db5813bea3cc8a973f051efb3b6d3f075681d0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
ac5970524f01ba1d4dfda134c9486fe83efe0e35
|
lib/Data/Bool/NP.agda
|
lib/Data/Bool/NP.agda
|
{-# OPTIONS --universe-polymorphism #-}
module Data.Bool.NP where
open import Data.Bool using (Bool; true; false; T; if_then_else_; not)
import Algebra
import Data.Bool.Properties
open import Data.Unit using (⊤)
open import Data.Sum
open import Function
open import Relation.Binary.NP
open import Relation.Binary.Logical
open import Relation.Nullary
open import Relation.Nullary.Decidable
import Relation.Binary.PropositionalEquality as ≡
open ≡ using (_≡_)
module Xor° = Algebra.CommutativeRing Data.Bool.Properties.commutativeRing-xor-∧
module Bool° = Algebra.CommutativeSemiring Data.Bool.Properties.commutativeSemiring-∧-∨
check : ∀ b → {pf : T b} → ⊤
check = _
If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B
If_then_else_ true x _ = x _
If_then_else_ false _ x = x _
If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B
If′_then_else_ true x _ = x
If′_then_else_ false _ x = x
If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) →
if b then A else B → if b then C else D
If-map true f _ = f _
If-map false _ f = f _
If-elim : ∀ {A B : Set} {P : Bool → Set}
b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b
If-elim true f _ = f _
If-elim false _ f = f _
If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A
If-true {b = true} _ = ≡.refl
If-true {b = false} ()
If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B
If-false {b = true} ()
If-false {b = false} _ = ≡.refl
cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁)
cong-if true _ = ≡.refl
cong-if false _ = ≡.refl
data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where
⟦true⟧ : ⟦Bool⟧ true true
⟦false⟧ : ⟦Bool⟧ false false
private
module ⟦Bool⟧-Internals where
refl : Reflexive ⟦Bool⟧
refl {true} = ⟦true⟧
refl {false} = ⟦false⟧
sym : Symmetric ⟦Bool⟧
sym ⟦true⟧ = ⟦true⟧
sym ⟦false⟧ = ⟦false⟧
trans : Transitive ⟦Bool⟧
trans ⟦true⟧ = id
trans ⟦false⟧ = id
subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ
subst _ ⟦true⟧ = id
subst _ ⟦false⟧ = id
_≟_ : Decidable ⟦Bool⟧
true ≟ true = yes ⟦true⟧
false ≟ false = yes ⟦false⟧
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence ⟦Bool⟧
isEquivalence = record { refl = refl; sym = sym; trans = trans }
isDecEquivalence : IsDecEquivalence ⟦Bool⟧
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence }
equality : Equality ⟦Bool⟧
equality = record { isEquivalence = isEquivalence; subst = subst }
module ⟦Bool⟧-Props where
open ⟦Bool⟧-Internals public using (subst; decSetoid; equality)
open DecSetoid decSetoid public
open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans)
⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_
⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ
⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ
⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} →
(∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧
⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧)
If′_then_else_ If′_then_else_
⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ
⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ
_==_ : (x y : Bool) → Bool
true == true = true
true == false = false
false == true = false
false == false = true
module == where
_≈_ : (x y : Bool) → Set
x ≈ y = T (x == y)
refl : Reflexive _≈_
refl {true} = _
refl {false} = _
subst : ∀ {ℓ} → Substitutive _≈_ ℓ
subst _ {true} {true} _ = id
subst _ {false} {false} _ = id
subst _ {true} {false} ()
subst _ {false} {true} ()
sym : Symmetric _≈_
sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x})
trans : Transitive _≈_
trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y
_≟_ : Decidable _≈_
true ≟ true = yes _
false ≟ false = yes _
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence _≈_
isEquivalence = record { refl = λ {x} → refl {x}
; sym = λ {x} {y} → sym {x} {y}
; trans = λ {x} {y} {z} → trans {x} {y} {z} }
isDecEquivalence : IsDecEquivalence _≈_
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence }
module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid
open Data.Bool public
⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b
⟦true⟧′ {true} _ = ⟦true⟧
⟦true⟧′ {false} ()
⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b
⟦false⟧′ {true} ()
⟦false⟧′ {false} _ = ⟦false⟧
T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂)
T∧ {true} {true} _ _ = _
T∧ {false} {_} () _
T∧ {true} {false} _ ()
T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁
T∧₁ {true} {true} _ = _
T∧₁ {false} {_} ()
T∧₁ {true} {false} ()
T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂
T∧₂ {true} {true} _ = _
T∧₂ {false} {_} ()
T∧₂ {true} {false} ()
T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂
T∨'⊎ {true} _ = inj₁ _
T∨'⊎ {false} {true} _ = inj₂ _
T∨'⊎ {false} {false} ()
T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂)
T∨₁ {true} _ = _
T∨₁ {false} {true} _ = _
T∨₁ {false} {false} ()
T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂)
T∨₂ {true} _ = _
T∨₂ {false} {true} _ = _
T∨₂ {false} {false} ()
T'not'¬ : ∀ {b} → T (not b) → ¬ (T b)
T'not'¬ {false} _ = λ()
T'not'¬ {true} ()
T'¬'not : ∀ {b} → ¬ (T b) → T (not b)
T'¬'not {true} f = f _
T'¬'not {false} _ = _
Tdec : ∀ b → Dec (T b)
Tdec true = yes _
Tdec false = no λ()
|
{-# OPTIONS --universe-polymorphism #-}
module Data.Bool.NP where
open import Data.Bool using (Bool; true; false; T; if_then_else_; not)
import Algebra
import Data.Bool.Properties as B
open import Data.Unit using (⊤)
open import Data.Product
open import Data.Sum
open import Function
open import Relation.Binary.NP
open import Relation.Binary.Logical
open import Relation.Nullary
open import Relation.Nullary.Decidable
import Relation.Binary.PropositionalEquality as ≡
import Function.Equivalence as E
open E.Equivalence using (to; from)
open import Function.Equality using (_⟨$⟩_)
open ≡ using (_≡_)
module Xor° = Algebra.CommutativeRing B.commutativeRing-xor-∧
module Bool° = Algebra.CommutativeSemiring B.commutativeSemiring-∧-∨
check : ∀ b → {pf : T b} → ⊤
check = _
If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B
If_then_else_ true x _ = x _
If_then_else_ false _ x = x _
If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B
If′_then_else_ true x _ = x
If′_then_else_ false _ x = x
If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) →
if b then A else B → if b then C else D
If-map true f _ = f _
If-map false _ f = f _
If-elim : ∀ {A B : Set} {P : Bool → Set}
b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b
If-elim true f _ = f _
If-elim false _ f = f _
If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A
If-true {b = true} _ = ≡.refl
If-true {b = false} ()
If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B
If-false {b = true} ()
If-false {b = false} _ = ≡.refl
cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁)
cong-if true _ = ≡.refl
cong-if false _ = ≡.refl
data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where
⟦true⟧ : ⟦Bool⟧ true true
⟦false⟧ : ⟦Bool⟧ false false
private
module ⟦Bool⟧-Internals where
refl : Reflexive ⟦Bool⟧
refl {true} = ⟦true⟧
refl {false} = ⟦false⟧
sym : Symmetric ⟦Bool⟧
sym ⟦true⟧ = ⟦true⟧
sym ⟦false⟧ = ⟦false⟧
trans : Transitive ⟦Bool⟧
trans ⟦true⟧ = id
trans ⟦false⟧ = id
subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ
subst _ ⟦true⟧ = id
subst _ ⟦false⟧ = id
_≟_ : Decidable ⟦Bool⟧
true ≟ true = yes ⟦true⟧
false ≟ false = yes ⟦false⟧
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence ⟦Bool⟧
isEquivalence = record { refl = refl; sym = sym; trans = trans }
isDecEquivalence : IsDecEquivalence ⟦Bool⟧
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence }
equality : Equality ⟦Bool⟧
equality = record { isEquivalence = isEquivalence; subst = subst }
module ⟦Bool⟧-Props where
open ⟦Bool⟧-Internals public using (subst; decSetoid; equality)
open DecSetoid decSetoid public
open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans)
⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_
⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ
⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ
⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} →
(∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧
⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧)
If′_then_else_ If′_then_else_
⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ
⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ
_==_ : (x y : Bool) → Bool
true == true = true
true == false = false
false == true = false
false == false = true
module == where
_≈_ : (x y : Bool) → Set
x ≈ y = T (x == y)
refl : Reflexive _≈_
refl {true} = _
refl {false} = _
subst : ∀ {ℓ} → Substitutive _≈_ ℓ
subst _ {true} {true} _ = id
subst _ {false} {false} _ = id
subst _ {true} {false} ()
subst _ {false} {true} ()
sym : Symmetric _≈_
sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x})
trans : Transitive _≈_
trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y
_≟_ : Decidable _≈_
true ≟ true = yes _
false ≟ false = yes _
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence _≈_
isEquivalence = record { refl = λ {x} → refl {x}
; sym = λ {x} {y} → sym {x} {y}
; trans = λ {x} {y} {z} → trans {x} {y} {z} }
isDecEquivalence : IsDecEquivalence _≈_
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence }
module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid
open Data.Bool public
⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b
⟦true⟧′ {true} _ = ⟦true⟧
⟦true⟧′ {false} ()
⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b
⟦false⟧′ {true} ()
⟦false⟧′ {false} _ = ⟦false⟧
T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂)
T∧ p q = _⟨$⟩_ (from B.T-∧) (p , q)
T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁
T∧₁ = proj₁ ∘ _⟨$⟩_ (to B.T-∧)
T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂
T∧₂ {b₁} = proj₂ ∘ _⟨$⟩_ (to (B.T-∧ {b₁}))
T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂
T∨'⊎ {b₁} = _⟨$⟩_ (to (B.T-∨ {b₁}))
T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂)
T∨₁ = _⟨$⟩_ (from B.T-∨) ∘ inj₁
T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂)
T∨₂ {b₁} = _⟨$⟩_ (from (B.T-∨ {b₁})) ∘ inj₂
T'not'¬ : ∀ {b} → T (not b) → ¬ (T b)
T'not'¬ {false} _ = λ()
T'not'¬ {true} ()
T'¬'not : ∀ {b} → ¬ (T b) → T (not b)
T'¬'not {true} f = f _
T'¬'not {false} _ = _
Tdec : ∀ b → Dec (T b)
Tdec true = yes _
Tdec false = no λ()
|
Use more the stdlib
|
Use more the stdlib
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
23b3e5376bd66a7bc1239a94dff9d2749e9a1aee
|
lib/Function/Extensionality.agda
|
lib/Function/Extensionality.agda
|
{-# OPTIONS --without-K #-}
module Function.Extensionality where
open import Relation.Binary.PropositionalEquality renaming (subst to tr)
postulate
FunExt : Set
λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}(f= : ∀ x → f₀ x ≡ f₁ x){{fe : FunExt}} → f₀ ≡ f₁
-- This should be derivable if I had a proper proof of λ=
tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p)
{f g : (x : A) → B x}(fg : (x : A) → f x ≡ g x){{fe : FunExt}}
→ tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x)
|
{-# OPTIONS --without-K #-}
module Function.Extensionality where
open import Relation.Binary.PropositionalEquality renaming (subst to tr)
postulate
FunExt : Set
λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}}
(f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁
-- This should be derivable if I had a proper proof of λ=
tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p)
{f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x)
→ tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x)
|
change argument order
|
FunExt: change argument order
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
89f99238ec73533604712e27553bd981c818d86a
|
Parametric/Syntax/Term.agda
|
Parametric/Syntax/Term.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The syntax of terms (Fig. 1a and 1b).
------------------------------------------------------------------------
-- The syntax of terms depends on the syntax of simple types
-- (because terms are indexed by types in order to rule out
-- ill-typed terms). But we are in the Parametric.* hierarchy, so
-- we don't know the full syntax of types, only how to lift the
-- syntax of base types into the syntax of simple types. This
-- means that we have to be parametric in the syntax of base
-- types, too.
--
-- In such parametric modules that depend on other parametric
-- modules, we first import our dependencies under a more
-- convenient name.
import Parametric.Syntax.Type as Type
-- Then we start the module proper, with parameters for all
-- extension points of our dependencies. Note that here, the
-- "Structure" naming convenion makes some sense, because we can
-- say that we need some "Type.Structure" in order to define the
-- "Term.Structure".
module Parametric.Syntax.Term
(Base : Type.Structure)
where
-- Now inside the module, we can open our dependencies with the
-- parameters for their extension points. Again, here the name
-- "Structure" makes some sense, because we can say that we want
-- to access the "Type.Structure" that is induced by Base.
open Type.Structure Base
-- At this point, we have dealt with the extension points of our
-- dependencies, and we have all the definitions about simple
-- types, contexts, variables, and variable sets in scope that we
-- provided in Parametric.Syntax.Type. Now we can proceed to
-- define our own extension point, following the pattern
-- explained in Parametric.Syntax.Type.
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import Data.Unit
open import Data.Sum
-- Our extension point is a set of primitives, indexed by the
-- types of their arguments and their return type. In general, if
-- you're confused about what an extension point means, you might
-- want to open the corresponding module in the Nehemiah
-- hierarchy to see how it is implemented in the example
-- plugin. In this case, that would be the Nehemiah.Syntax.Term
-- module.
Structure : Set₁
Structure = Context → Type → Set
module Structure (Const : Structure) where
import Base.Data.DependentList as DependentList
open DependentList public using (∅ ; _•_)
open DependentList
-- Declarations of Term and Terms to enable mutual recursion.
--
-- Note that terms are indexed by contexts and types. In the
-- paper, we define the abstract syntax of terms in Fig 1a and
-- then define a type system in Fig 1b. All lemmas and theorems
-- then explicitly specify that they only hold for well-typed
-- terms. Here, we use the indices to define a type that can
-- only hold well-typed terms in the first place.
data Term
(Γ : Context) :
(τ : Type) → Set
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
Terms : Context → Context → Set
Terms Γ = DependentList (Term Γ)
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
-- constants aka. primitives can only occur fully applied.
const : ∀ {Σ τ} →
(c : Const Σ τ) →
(args : Terms Γ Σ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Free variables
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ
FV (const ι ts) = FV-terms ts
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
FV-terms ∅ = none
FV-terms (t • ts) = FV t ∪ FV-terms ts
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken-terms : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weaken-terms Γ₁≼Γ₂ ∅ = ∅
weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
abs₁ :
∀ {Γ τ₁ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → (x : Term Γ′ τ₁) → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁ {Γ} {τ₁} = λ f → abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
abs₂ :
∀ {Γ τ₁ τ₂ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ))
abs₂ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₁ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₃ :
∀ {Γ τ₁ τ₂ τ₃ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ))
abs₃ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₂ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₄ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ))
abs₄ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₃ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₅ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ))
abs₅ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₄ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₆ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ₆ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ₆ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ₆ ⇒ τ))
abs₆ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₅ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The syntax of terms (Fig. 1a and 1b).
------------------------------------------------------------------------
-- The syntax of terms depends on the syntax of simple types
-- (because terms are indexed by types in order to rule out
-- ill-typed terms). But we are in the Parametric.* hierarchy, so
-- we don't know the full syntax of types, only how to lift the
-- syntax of base types into the syntax of simple types. This
-- means that we have to be parametric in the syntax of base
-- types, too.
--
-- In such parametric modules that depend on other parametric
-- modules, we first import our dependencies under a more
-- convenient name.
import Parametric.Syntax.Type as Type
-- Then we start the module proper, with parameters for all
-- extension points of our dependencies. Note that here, the
-- "Structure" naming convenion makes some sense, because we can
-- say that we need some "Type.Structure" in order to define the
-- "Term.Structure".
module Parametric.Syntax.Term
(Base : Type.Structure)
where
-- Now inside the module, we can open our dependencies with the
-- parameters for their extension points. Again, here the name
-- "Structure" makes some sense, because we can say that we want
-- to access the "Type.Structure" that is induced by Base.
open Type.Structure Base
-- At this point, we have dealt with the extension points of our
-- dependencies, and we have all the definitions about simple
-- types, contexts, variables, and variable sets in scope that we
-- provided in Parametric.Syntax.Type. Now we can proceed to
-- define our own extension point, following the pattern
-- explained in Parametric.Syntax.Type.
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import Data.Unit
open import Data.Sum
-- Our extension point is a set of primitives, indexed by the
-- types of their arguments and their return type. In general, if
-- you're confused about what an extension point means, you might
-- want to open the corresponding module in the Nehemiah
-- hierarchy to see how it is implemented in the example
-- plugin. In this case, that would be the Nehemiah.Syntax.Term
-- module.
Structure : Set₁
Structure = Context → Type → Set
module Structure (Const : Structure) where
import Base.Data.DependentList as DependentList
open DependentList public using (∅ ; _•_)
open DependentList
-- Declarations of Term and Terms to enable mutual recursion.
--
-- Note that terms are indexed by contexts and types. In the
-- paper, we define the abstract syntax of terms in Fig 1a and
-- then define a type system in Fig 1b. All lemmas and theorems
-- then explicitly specify that they only hold for well-typed
-- terms. Here, we use the indices to define a type that can
-- only hold well-typed terms in the first place.
data Term
(Γ : Context) :
(τ : Type) → Set
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
Terms : Context → Context → Set
Terms Γ = DependentList (Term Γ)
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
-- constants aka. primitives can only occur fully applied.
const : ∀ {Σ τ} →
(c : Const Σ τ) →
(args : Terms Γ Σ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Free variables
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ
FV (const ι ts) = FV-terms ts
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
FV-terms ∅ = none
FV-terms (t • ts) = FV t ∪ FV-terms ts
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken-terms : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weaken-terms Γ₁≼Γ₂ ∅ = ∅
weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
-- We could also write this:
module NamespaceForBadAbs₁ where
abs₁′ :
∀ {Γ τ₁ τ} →
(Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁′ {Γ} {τ₁} = λ f → abs (f (var this))
-- However, this is less general, and it is harder to reuse. In particular,
-- this cannot be used inside abs₂, ..., abs₆.
-- Now, let's write other variants with a loop!
open import Data.Vec using (_∷_; []; Vec; foldr)
open import Data.Nat
module AbsNHelpers where
open import Function
hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set
hoasArgType Γ τ = foldr _ (λ a b → a → b) (Term Γ τ) ∘ Data.Vec.map (Term Γ)
-- That is,
--hoasArgType Γ τ [] = Term Γ τ
--hoasArgType Γ τ (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τ τs
hoasResType : ∀ {n} → Type → Vec Type n → Type
hoasResType τ = foldr _ _⇒_ τ
absNType : {n : ℕ} → Vec _ n → Set
absNType τs = ∀ {Γ τ} →
(f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τ τs) →
Term Γ (hoasResType τ τs)
-- A better type for absN but a mess to use due to the proofs (which aren't synthesized, even though maybe they should be?)
-- absN : (n : ℕ) → {_ : n > 0} → absNType n
-- XXX See "how to keep your neighbours in order" for tricks.
-- Please the termination checker by keeping this case separate.
absNBase : ∀ {τ₁} → absNType (τ₁ ∷ [])
absNBase {τ₁} f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
-- Otherwise, the recursive step of absN would invoke absN twice, and the
-- termination checker does not figure out that the calls are in fact
-- terminating.
open AbsNHelpers using (absNType; absNBase)
-- XXX: could we be using the same trick as above to take the N implicit
-- arguments individually, rather than in a vector? I can't figure out how,
-- at least not without trying it. But it seems that's what's shown in Agda 2.4.0 release notes!
absN : {n : ℕ} → (τs : Vec _ (suc n)) → absNType τs
absN {zero} (τ₁ ∷ []) = absNBase
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absNBase (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-- What I'd like to write, avoiding the need for absNBase, but can't because of the termination checker.
{-
absN {zero} (τ₁ ∷ []) f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absN (τ₁ ∷ []) (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-}
-- Declare abs₁ .. abs₆ wrappers for more convenient use, allowing implicit
-- type arguments to be synthesized. Somehow, Agda does not manage to
-- synthesize τs by unification.
-- Implicit arguments are reversed when assembling the list, but that's no real problem.
module _ {τ₁ : Type} where
τs₁ = τ₁ ∷ []
abs₁ : absNType τs₁
abs₁ = absN τs₁
module _ {τ₂ : Type} where
τs₂ = τ₂ ∷ τs₁
abs₂ : absNType τs₂
abs₂ = absN τs₂
module _ {τ₃ : Type} where
τs₃ = τ₃ ∷ τs₂
abs₃ : absNType τs₃
abs₃ = absN τs₃
module _ {τ₄ : Type} where
τs₄ = τ₄ ∷ τs₃
abs₄ : absNType τs₄
abs₄ = absN τs₄
module _ {τ₅ : Type} where
τs₅ = τ₅ ∷ τs₄
abs₅ : absNType τs₅
abs₅ = absN τs₅
module _ {τ₆ : Type} where
τs₆ = τ₆ ∷ τs₅
abs₆ : absNType τs₆
abs₆ = absN τs₆
|
Remove lots of duplication across abs₁ .. abs₆
|
Remove lots of duplication across abs₁ .. abs₆
The new code is much more clever. Still not perfect, with varying
arities we can probably do better.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
30e1935a87b6ee45bd8266999805c80b80dd4bd0
|
lib/Relation/Nullary/NP.agda
|
lib/Relation/Nullary/NP.agda
|
module Relation.Nullary.NP where
open import Type
open import Data.Sum
open import Relation.Nullary public
module _ {a b} {A : ★_ a} {B : ★_ b} where
Dec-⊎ : Dec A → Dec B → Dec (A ⊎ B)
Dec-⊎ (yes p) _ = yes (inj₁ p)
Dec-⊎ (no ¬p) (yes p) = yes (inj₂ p)
Dec-⊎ (no ¬p) (no ¬q) = no [ ¬p , ¬q ]
|
module Relation.Nullary.NP where
open import Type
open import Data.Sum
open import Relation.Nullary public
module _ {a b} {A : ★_ a} {B : ★_ b} where
Dec-⊎ : Dec A → Dec B → Dec (A ⊎ B)
Dec-⊎ (yes p) _ = yes (inj₁ p)
Dec-⊎ (no ¬p) (yes p) = yes (inj₂ p)
Dec-⊎ (no ¬p) (no ¬q) = no [ ¬p , ¬q ]
module _ (to : A → B)(from : B → A) where
map-Dec : Dec A → Dec B
map-Dec (yes p) = yes (to p)
map-Dec (no ¬p) = no (λ z → ¬p (from z))
|
add map-Dec
|
add map-Dec
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
bd3c7e9ede5e1077663b478e2d90ba337c971567
|
lib/FFI/JS/BigI.agda
|
lib/FFI/JS/BigI.agda
|
{-# OPTIONS --without-K #-}
open import FFI.JS hiding (toString)
module FFI.JS.BigI where
postulate BigI : Set
postulate BigI▹JSValue : BigI → JSValue
{-# COMPILED_JS BigI▹JSValue function(x) { return x; } #-}
postulate unsafe-JSValue▹BigI : JSValue → BigI
{-# COMPILED_JS unsafe-JSValue▹BigI function(x) { return x; } #-}
postulate bigI : (x base : String) → BigI
{-# COMPILED_JS bigI function(x) { return function (y) { return require("bigi")(x,y); }; } #-}
postulate negate : (x : BigI) → BigI
{-# COMPILED_JS negate function(x) { return x.negate(); } #-}
postulate add : (x y : BigI) → BigI
{-# COMPILED_JS add function(x) { return function (y) { return x.add(y); }; } #-}
postulate subtract : (x y : BigI) → BigI
{-# COMPILED_JS subtract function(x) { return function (y) { return x.subtract(y); }; } #-}
postulate multiply : (x y : BigI) → BigI
{-# COMPILED_JS multiply function(x) { return function (y) { return x.multiply(y); }; } #-}
postulate divide : (x y : BigI) → BigI
{-# COMPILED_JS divide function(x) { return function (y) { return x.divide(y); }; } #-}
postulate remainder : (x y : BigI) → BigI
{-# COMPILED_JS remainder function(x) { return function (y) { return x.remainder(y); }; } #-}
postulate mod : (x y : BigI) → BigI
{-# COMPILED_JS mod function(x) { return function (y) { return x.mod(y); }; } #-}
postulate modPow : (this e m : BigI) → BigI
{-# COMPILED_JS modPow function(x) { return function (y) { return function (z) { return x.modPow(y,z); }; }; } #-}
postulate modInv : (this m : BigI) → BigI
{-# COMPILED_JS modInv function(x) { return function (y) { return x.modInverse(y); }; } #-}
postulate gcd : (this m : BigI) → BigI
{-# COMPILED_JS gcd function(x) { return function (y) { return x.gcd(y); }; } #-}
-- test primality with certainty >= 1-.5^t
postulate isProbablePrime : (this : BigI)(t : Number) → Bool
{-# COMPILED_JS isProbablePrime function(x) { return function (y) { return x.isProbablePrime(y); }; } #-}
postulate signum : (this : BigI) → Number
{-# COMPILED_JS signum function(x) { return x.signum(); } #-}
postulate equals : (x y : BigI) → Bool
{-# COMPILED_JS equals function(x) { return function (y) { return x.equals(y); }; } #-}
postulate compareTo : (this x : BigI) → Number
{-# COMPILED_JS compareTo function(x) { return function (y) { return x.compareTo(y); }; } #-}
postulate toString : (x : BigI) → String
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
postulate fromHex : String → BigI
{-# COMPILED_JS fromHex require("bigi").fromHex #-}
postulate toHex : BigI → String
{-# COMPILED_JS toHex function(x) { return x.toHex(); } #-}
postulate byteLength : BigI → Number
{-# COMPILED_JS byteLength function(x) { return x.byteLength(); } #-}
0I 1I 2I : BigI
0I = bigI "0" "10"
1I = bigI "1" "10"
2I = bigI "2" "10"
_≤I_ : BigI → BigI → Bool
x ≤I y = compareTo x y ≤Number 0N
_<I_ : BigI → BigI → Bool
x <I y = compareTo x y <Number 0N
_>I_ : BigI → BigI → Bool
x >I y = compareTo x y >Number 0N
_≥I_ : BigI → BigI → Bool
x ≥I y = compareTo x y ≥Number 0N
|
{-# OPTIONS --without-K #-}
open import FFI.JS hiding (toString)
open import Type.Eq using (Eq?)
open import Data.Bool.Base using (Bool; true; false) renaming (T to ✓)
open import Relation.Binary.Core using (_≡_; refl)
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe)
module FFI.JS.BigI where
postulate BigI : Set
postulate BigI▹JSValue : BigI → JSValue
{-# COMPILED_JS BigI▹JSValue function(x) { return x; } #-}
postulate unsafe-JSValue▹BigI : JSValue → BigI
{-# COMPILED_JS unsafe-JSValue▹BigI function(x) { return x; } #-}
postulate bigI : (x base : String) → BigI
{-# COMPILED_JS bigI function(x) { return function (y) { return require("bigi")(x,y); }; } #-}
postulate negate : (x : BigI) → BigI
{-# COMPILED_JS negate function(x) { return x.negate(); } #-}
postulate add : (x y : BigI) → BigI
{-# COMPILED_JS add function(x) { return function (y) { return x.add(y); }; } #-}
postulate subtract : (x y : BigI) → BigI
{-# COMPILED_JS subtract function(x) { return function (y) { return x.subtract(y); }; } #-}
postulate multiply : (x y : BigI) → BigI
{-# COMPILED_JS multiply function(x) { return function (y) { return x.multiply(y); }; } #-}
postulate divide : (x y : BigI) → BigI
{-# COMPILED_JS divide function(x) { return function (y) { return x.divide(y); }; } #-}
postulate remainder : (x y : BigI) → BigI
{-# COMPILED_JS remainder function(x) { return function (y) { return x.remainder(y); }; } #-}
postulate mod : (x y : BigI) → BigI
{-# COMPILED_JS mod function(x) { return function (y) { return x.mod(y); }; } #-}
postulate modPow : (this e m : BigI) → BigI
{-# COMPILED_JS modPow function(x) { return function (y) { return function (z) { return x.modPow(y,z); }; }; } #-}
postulate modInv : (this m : BigI) → BigI
{-# COMPILED_JS modInv function(x) { return function (y) { return x.modInverse(y); }; } #-}
postulate gcd : (this m : BigI) → BigI
{-# COMPILED_JS gcd function(x) { return function (y) { return x.gcd(y); }; } #-}
-- test primality with certainty >= 1-.5^t
postulate isProbablePrime : (this : BigI)(t : Number) → Bool
{-# COMPILED_JS isProbablePrime function(x) { return function (y) { return x.isProbablePrime(y); }; } #-}
postulate signum : (this : BigI) → Number
{-# COMPILED_JS signum function(x) { return x.signum(); } #-}
postulate equals : (x y : BigI) → Bool
{-# COMPILED_JS equals function(x) { return function (y) { return x.equals(y); }; } #-}
postulate compareTo : (this x : BigI) → Number
{-# COMPILED_JS compareTo function(x) { return function (y) { return x.compareTo(y); }; } #-}
postulate toString : (x : BigI) → String
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
postulate fromHex : String → BigI
{-# COMPILED_JS fromHex require("bigi").fromHex #-}
postulate toHex : BigI → String
{-# COMPILED_JS toHex function(x) { return x.toHex(); } #-}
postulate byteLength : BigI → Number
{-# COMPILED_JS byteLength function(x) { return x.byteLength(); } #-}
0I 1I 2I : BigI
0I = bigI "0" "10"
1I = bigI "1" "10"
2I = bigI "2" "10"
_≤I_ : BigI → BigI → Bool
x ≤I y = compareTo x y ≤Number 0N
_<I_ : BigI → BigI → Bool
x <I y = compareTo x y <Number 0N
_>I_ : BigI → BigI → Bool
x >I y = compareTo x y >Number 0N
_≥I_ : BigI → BigI → Bool
x ≥I y = compareTo x y ≥Number 0N
-- This is a postulates which computes as much as it needs
equals-refl : ∀ {x : BigI} → ✓ (equals x x)
equals-refl {x} with equals x x
... | true = _
... | false = STUCK where postulate STUCK : _
instance
BigI-Eq? : Eq? BigI
BigI-Eq? = record
{ _==_ = _==_
; ≡⇒== = ≡⇒==
; ==⇒≡ = ==⇒≡ }
module BigI-Eq? where
_==_ : BigI → BigI → Bool
_==_ = equals
≡⇒== : ∀ {x y} → x ≡ y → ✓ (x == y)
≡⇒== refl = equals-refl
==⇒≡ : ∀ {x y} → ✓ (x == y) → x ≡ y
==⇒≡ _ = trustMe
|
add Eq? instance, thus depends on nplib
|
FFI.JS.BigI: add Eq? instance, thus depends on nplib
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-libjs
|
68af677d56d4f0a4c1aaa95134ae06f0813500c1
|
arrow.agda
|
arrow.agda
|
open import Agda.Builtin.Bool
_or_ : Bool → Bool → Bool
true or _ = true
_ or true = true
false or false = false
_and_ : Bool → Bool → Bool
false and _ = false
_ and false = false
true and true = true
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
infixr 5 _∷_
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL ∘ #-}
{-# BUILTIN CONS _∷_ #-}
any : {A : Set} → (A → Bool) → List A → Bool
any _ ∘ = false
any f (x ∷ xs) = (f x) or (any f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q ≡ s
(p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ ∘ = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure ∘ found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs ∘)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ ∘ ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ ∘
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷
(model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷
(model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷
(model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷
(model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘
testp : Arrow
testp = (5 ⇒ (⇒ 10))
testd : Arrow
testd = (5 ⇒ (⇒ 4))
tests : Arrow
tests = (5 ⇒ (⇒ 3))
testu : Arrow
testu = (6 ⇒ (⇒ 1))
main = (closure proofs (5 ∷ ∘))
|
open import Data.Bool
open import Data.List
open import Data.Nat
----------------------------------------
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
_∈_ : ℕ → List ℕ → Bool
x ∈ [] = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q ≡ s
(p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) ∧ (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ [] = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure [] found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs [])
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ []))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ [] ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ []
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷
(model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷
(model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷
(model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷
(model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ []
testp : Arrow
testp = (5 ⇒ (⇒ 10))
testd : Arrow
testd = (5 ⇒ (⇒ 4))
tests : Arrow
tests = (5 ⇒ (⇒ 3))
testu : Arrow
testu = (6 ⇒ (⇒ 1))
main = (closure proofs (5 ∷ []))
|
Convert to stdlib
|
Convert to stdlib
|
Agda
|
mit
|
louisswarren/hieretikz
|
fed88a10935d042bd79da68f2e7233104f1a0536
|
program-distance.agda
|
program-distance.agda
|
module program-distance where
open import flipbased-implem
open import Data.Bits
open import Data.Bool
open import Data.Vec.NP using (Vec; count; countᶠ)
open import Data.Nat.NP
open import Data.Nat.Properties
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
import Data.Fin as Fin
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h
]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf))
]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf
= ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'}
((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g'))
breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b)
module HomImplem k where
-- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ]
-- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ]
-- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ]
-- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ]
_]-[_ : ∀ {n} (f g : ⅁ n) → Set
_]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k)
]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g
]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h
-- dist #g #h ≥ 2^(n ∸ k)
-- dist #f #h ≥ 2^(n ∸ k)
module Implem k where
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
_]-[_ {m} {n} f g = dist (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) ≥ 2^((m + n) ∸ k)
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) | ℕ°.+-comm m n = f]-[g
postulate
helper : ∀ x y z t → x + ((y + z) ∸ t) ≡ y + ((x + z) ∸ t)
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h
with 2^*-mono m g]-[h
-- 2ᵐ(dist 2ᵒ#g 2ⁿ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
... | q rewrite sym (dist-2^* m (⟨2^ o ⟩* (count↺ g)) (⟨2^ n ⟩* (count↺ h)))
-- dist 2ᵐ2ᵒ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m o (count↺ g)
-- dist 2ᵒ2ᵐ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| sym f≈g
-- dist 2ᵒ2ⁿ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm o n (count↺ f)
-- dist 2ⁿ2ᵒ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m n (count↺ h)
-- dist 2ⁿ2ᵒ#f 2ⁿ2ᵐ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| dist-2^* n (⟨2^ o ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ h))
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-+ m (n + o ∸ k) 1
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ⁺ⁿ⁺ᵒ⁻ᵏ
| helper m n o k
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ⁺ᵐ⁺ᵒ⁻ᵏ
| sym (2^-+ n (m + o ∸ k) 1)
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ2ᵐ⁺ᵒ⁻ᵏ
= 2^*-mono′ n q
-- dist 2ᵒ#f 2ᵐ#h ≤ 2ᵐ⁺ᵒ⁻ᵏ
prgDist : PrgDist
prgDist = mk _]-[_ (λ {m n f g} x → ]-[-sym {m} {n} {f} {g} x) (λ {m n o f g h} x y → ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} x y)
|
module program-distance where
open import flipbased-implem
open import Data.Bits
open import Data.Bool
open import Data.Vec.NP using (Vec; count; countᶠ)
open import Data.Nat.NP
open import Data.Nat.Properties
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.NP
import Data.Fin as Fin
record PrgDist : Set₁ where
constructor mk
field
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
]-[-antisym : ∀ {n} (f : ⅁ n) → ¬ (f ]-[ f)
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h
]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf))
]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g'
]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf
= ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'}
((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g'))
breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set
breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b
-- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁
_⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set
⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁
extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c}
→ ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁
extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b)
private
2^_≥1 : ∀ n → 2^ n ≥ 1
2^ zero ≥1 = s≤s z≤n
2^ suc n ≥1 = z≤n {2^ n} +-mono 2^ n ≥1
module HomImplem k where
-- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ]
-- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ]
-- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ]
-- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ]
-- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ]
_]-[_ : ∀ {n} (f g : ⅁ n) → Set
_]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k)
]-[-antisym : ∀ {n} (f : ⅁ n) → ¬ (f ]-[ f)
]-[-antisym {n} f f]-[g rewrite dist-refl (count↺ f) with ℕ≤.trans (2^ (n ∸ k) ≥1) f]-[g
... | ()
]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g
]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h
-- dist #g #h ≥ 2^(n ∸ k)
-- dist #f #h ≥ 2^(n ∸ k)
module Implem k where
_]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set
_]-[_ {m} {n} f g = dist ⟨2^ n * count↺ f ⟩ ⟨2^ m * count↺ g ⟩ ≥ 2^((m + n) ∸ k)
]-[-antisym : ∀ {n} (f : ⅁ n) → ¬ (f ]-[ f)
]-[-antisym {n} f f]-[g rewrite dist-refl ⟨2^ n * count↺ f ⟩ with ℕ≤.trans (2^ (n + n ∸ k) ≥1) f]-[g
... | ()
]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f
]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym ⟨2^ n * count↺ f ⟩ ⟨2^ m * count↺ g ⟩ | ℕ°.+-comm m n = f]-[g
postulate
helper : ∀ m n o k → m + ((n + o) ∸ k) ≡ n + ((m + o) ∸ k)
helper′ : ∀ m n o k → ⟨2^ m * (2^((n + o) ∸ k))⟩ ≡ ⟨2^ n * (2^((m + o) ∸ k))⟩
]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h
]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h
with 2^*-mono m g]-[h
-- 2ᵐ(dist 2ᵒ#g 2ⁿ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
... | q rewrite sym (dist-2^* m ⟨2^ o * count↺ g ⟩ ⟨2^ n * count↺ h ⟩)
-- dist 2ᵐ2ᵒ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m o (count↺ g)
-- dist 2ᵒ2ᵐ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| sym f≈g
-- dist 2ᵒ2ⁿ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm o n (count↺ f)
-- dist 2ⁿ2ᵒ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-comm m n (count↺ h)
-- dist 2ⁿ2ᵒ#f 2ⁿ2ᵐ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| dist-2^* n ⟨2^ o * count↺ f ⟩ ⟨2^ m * count↺ h ⟩
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ
| 2^-+ m (n + o ∸ k) 1
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ⁺ⁿ⁺ᵒ⁻ᵏ
| helper m n o k
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ⁺ᵐ⁺ᵒ⁻ᵏ
| sym (2^-+ n (m + o ∸ k) 1)
-- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ2ᵐ⁺ᵒ⁻ᵏ
= 2^*-mono′ n q
-- dist 2ᵒ#f 2ᵐ#h ≤ 2ᵐ⁺ᵒ⁻ᵏ
prgDist : PrgDist
prgDist = mk _]-[_
]-[-antisym
(λ {m n f g} → ]-[-sym {f = f} {g})
(λ {m n o f g h} → ]-[-cong-left-≈↺ {f = f} {g} {h})
|
upgrade count, and add antisym
|
distance: upgrade count, and add antisym
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
74ad4a9a6900f8062300b3ca1cc4b318038c4af5
|
Popl14/Change/Term.agda
|
Popl14/Change/Term.agda
|
module Popl14.Change.Term where
-- Terms Calculus Popl14
--
-- Contents
-- - Term constructors
-- - Weakening on terms
-- - `fit`: weaken a term to its ΔContext
-- - diff-term, apply-term and their syntactic sugars
open import Data.Integer
open import Popl14.Syntax.Type public
open import Popl14.Syntax.Term public
open import Popl14.Change.Type public
import Parametric.Change.Term Const ΔBase as ChangeTerm
diff-base : ChangeTerm.DiffStructure
diff-base {base-int} = abs₂ (λ x y → add x (minus y))
diff-base {base-bag} = abs₂ (λ x y → union x (negate y))
apply-base : ChangeTerm.ApplyStructure
apply-base {base-int} = abs₂ (λ Δx x → add x Δx)
apply-base {base-bag} = abs₂ (λ Δx x → union x Δx)
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
-- Sugars for diff-term and apply-term
infixl 6 _⊕_ _⊝_
_⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ
_⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ)
t ⊕ Δt = app (app apply-term Δt) t
s ⊝ t = app (app diff-term s) t
apply-term {base ι} = apply-base {ι}
apply-term {σ ⇒ τ} =
let
Δf = var (that (that this))
f = var (that this)
x = var this
in
-- Δf f x
abs (abs (abs
(app f x ⊕ app (app Δf x) (x ⊝ x))))
diff-term {base ι} = diff-base {ι}
diff-term {σ ⇒ τ} =
let
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
in
-- g f x Δx
abs (abs (abs (abs
(app g (x ⊕ Δx) ⊝ app f x))))
|
module Popl14.Change.Term where
-- Terms Calculus Popl14
--
-- Contents
-- - Term constructors
-- - Weakening on terms
-- - `fit`: weaken a term to its ΔContext
-- - diff-term, apply-term and their syntactic sugars
open import Data.Integer
open import Popl14.Syntax.Type public
open import Popl14.Syntax.Term public
open import Popl14.Change.Type public
import Parametric.Change.Term Const ΔBase as ChangeTerm
diff-base : ChangeTerm.DiffStructure
diff-base {base-int} = abs₂ (λ x y → add x (minus y))
diff-base {base-bag} = abs₂ (λ x y → union x (negate y))
apply-base : ChangeTerm.ApplyStructure
apply-base {base-int} = abs₂ (λ Δx x → add x Δx)
apply-base {base-bag} = abs₂ (λ Δx x → union x Δx)
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
-- Sugars for diff-term and apply-term
infixl 6 _⊕_ _⊝_
_⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ
_⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ)
t ⊕ Δt = app (app apply-term Δt) t
s ⊝ t = app (app diff-term s) t
apply-term {base ι} = apply-base {ι}
apply-term {σ ⇒ τ} =
abs₃ (λ Δf f x →
app f x ⊕ app (app Δf x) (x ⊝ x))
diff-term {base ι} = diff-base {ι}
diff-term {σ ⇒ τ} =
abs₄ (λ g f x Δx →
app g (x ⊕ Δx) ⊝ app f x)
|
Use HOAS-enabled helpers for nested abstractions.
|
Use HOAS-enabled helpers for nested abstractions.
Old-commit-hash: 4efbb3abc5e02e14285a2e9c6998ee6f663cbc2d
|
Agda
|
mit
|
inc-lc/ilc-agda
|
b1fdb10a5e323a77a174af8dfdcaab062c73405f
|
flat-funs-implem.agda
|
flat-funs-implem.agda
|
module flat-funs-implem where
open import Data.Unit using (⊤)
open import Data.Fin using (Fin)
open import Data.Nat.NP using (ℕ)
open import Data.Bool using (if_then_else_)
import Data.Vec.NP as V
import Function as F
import Data.Product as ×
open F using (const; _∘′_)
open V using (Vec; []; _∷_; _++_; [_])
open × using (_×_; _,_; proj₁; proj₂; uncurry)
open import Data.Bits using (_→ᵇ_; 0b; 1b)
open import data-universe
open import flat-funs
-→- : Set → Set → Set
-→- A B = A → B
_→ᶠ_ : ℕ → ℕ → Set
_→ᶠ_ i o = Fin i → Fin o
fun♭Funs : FlatFuns Set
fun♭Funs = mk Set-U -→-
module FunTypes = FlatFuns fun♭Funs
bitsFun♭Funs : FlatFuns ℕ
bitsFun♭Funs = mk Bits-U _→ᵇ_
module BitsFunTypes = FlatFuns bitsFun♭Funs
finFun♭Funs : FlatFuns ℕ
finFun♭Funs = mk Fin-U _→ᶠ_
module FinFunTypes = FlatFuns finFun♭Funs
fun♭Ops : FlatFunsOps fun♭Funs
fun♭Ops = mk F.id _∘′_
(F.const 0b) (F.const 1b) (λ { (b , x , y) → if b then x else y })
(λ { f g (b , x) → (if b then f else g) x }) _
×.<_,_> proj₁ proj₂ (λ x → x , x) (λ f → ×.map f F.id)
×.swap (λ {((x , y) , z) → x , (y , z) }) (λ x → _ , x) proj₂
(λ f g → ×.map f g) (λ f → ×.map F.id f)
(F.const []) (uncurry _∷_) V.uncons
module FunOps = FlatFunsOps fun♭Ops
bitsFun♭Ops : FlatFunsOps bitsFun♭Funs
bitsFun♭Ops = mk id _∘_
(const [ 0b ]) (const [ 1b ]) cond forkᵇ (const [])
<_,_>ᵇ fstᵇ (λ {x} → sndᵇ x) dup first
(λ {x} → swap {x}) (λ {x} → assoc {x}) id id
<_×_> (λ {x} → second {x}) (const []) id id
where
open BitsFunTypes
open FunOps using (id; _∘_)
fstᵇ : ∀ {A B} → A `× B `→ A
fstᵇ {A} = V.take A
sndᵇ : ∀ {B} A → A `× B `→ B
sndᵇ A = V.drop A
<_,_>ᵇ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
<_,_>ᵇ f g x = f x ++ g x
forkᵇ : ∀ {A B} (f g : A `→ B) → `Bit `× A `→ B
forkᵇ f g (b ∷ xs) = (if b then f else g) xs
open Defaults bitsFun♭Funs
open DefaultsGroup2 id _∘_ (const []) <_,_>ᵇ fstᵇ (λ {x} → sndᵇ x)
open DefaultCond forkᵇ fstᵇ (λ {x} → sndᵇ x)
module BitsFunOps = FlatFunsOps bitsFun♭Ops
constFuns : Set → FlatFuns ⊤
constFuns A = mk ⊤-U (λ _ _ → A)
module ConstFunTypes A = FlatFuns (constFuns A)
|
module flat-funs-implem where
open import Data.Unit using (⊤)
open import Data.Fin using (Fin)
open import Data.Nat.NP using (ℕ)
open import Data.Bool using (if_then_else_)
import Data.Vec.NP as V
import Function as F
import Data.Product as ×
open F using (const; _∘′_)
open V using (Vec; []; _∷_; _++_; [_])
open × using (_×_; _,_; proj₁; proj₂; uncurry)
open import Data.Bits using (_→ᵇ_; 0b; 1b)
open import data-universe
open import flat-funs
-→- : Set → Set → Set
-→- A B = A → B
_→ᶠ_ : ℕ → ℕ → Set
_→ᶠ_ i o = Fin i → Fin o
fun♭Funs : FlatFuns Set
fun♭Funs = mk Set-U -→-
module FunTypes = FlatFuns fun♭Funs
bitsFun♭Funs : FlatFuns ℕ
bitsFun♭Funs = mk Bits-U _→ᵇ_
module BitsFunTypes = FlatFuns bitsFun♭Funs
finFun♭Funs : FlatFuns ℕ
finFun♭Funs = mk Fin-U _→ᶠ_
module FinFunTypes = FlatFuns finFun♭Funs
funLin : LinRewiring fun♭Funs
funLin = mk F.id _∘′_
(λ f → ×.map f F.id)
×.swap (λ {((x , y) , z) → x , (y , z) }) (λ x → _ , x) proj₂
(λ f g → ×.map f g) (λ f → ×.map F.id f)
(F.const []) _ (uncurry _∷_) V.uncons
funRewiring : Rewiring fun♭Funs
funRewiring = mk funLin _ (λ x → x , x) (F.const []) ×.<_,_> proj₁ proj₂
fun♭Ops : FlatFunsOps fun♭Funs
fun♭Ops = mk funRewiring (F.const 0b) (F.const 1b) (λ { (b , x , y) → if b then x else y })
(λ { f g (b , x) → (if b then f else g) x })
module FunOps = FlatFunsOps fun♭Ops
bitsFun♭Ops : FlatFunsOps bitsFun♭Funs
bitsFun♭Ops = mk rewiring (const [ 0b ]) (const [ 1b ]) cond forkᵇ
where
open BitsFunTypes
open FunOps using (id; _∘_)
fstᵇ : ∀ {A B} → A `× B `→ A
fstᵇ {A} = V.take A
sndᵇ : ∀ {B} A → A `× B `→ B
sndᵇ A = V.drop A
<_,_>ᵇ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
<_,_>ᵇ f g x = f x ++ g x
forkᵇ : ∀ {A B} (f g : A `→ B) → `Bit `× A `→ B
forkᵇ f g (b ∷ xs) = (if b then f else g) xs
open Defaults bitsFun♭Funs
open DefaultsGroup2 id _∘_ (const []) <_,_>ᵇ fstᵇ (λ {x} → sndᵇ x)
open DefaultCond forkᵇ fstᵇ (λ {x} → sndᵇ x)
lin : LinRewiring bitsFun♭Funs
lin = mk id _∘_ first (λ {x} → swap {x}) (λ {x} → assoc {x}) id id
<_×_> (λ {x} → second {x}) id id id id
rewiring : Rewiring bitsFun♭Funs
rewiring = mk lin (const []) dup (const []) <_,_>ᵇ fstᵇ (λ {x} → sndᵇ x)
bitsFunRewiring : Rewiring bitsFun♭Funs
bitsFunRewiring = FlatFunsOps.rewiring bitsFun♭Ops
bitsFunLin : LinRewiring bitsFun♭Funs
bitsFunLin = Rewiring.linRewiring bitsFunRewiring
module BitsFunOps = FlatFunsOps bitsFun♭Ops
constFuns : Set → FlatFuns ⊤
constFuns A = mk ⊤-U (λ _ _ → A)
module ConstFunTypes A = FlatFuns (constFuns A)
⊤-FunOps : FlatFunsOps (constFuns ⊤)
⊤-FunOps = _
|
Upgrade flat-funs-implem
|
Upgrade flat-funs-implem
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
9b763493d067a9d574644c9fdbeec64fc16872f0
|
ZK/JSChecker/Proof.agda
|
ZK/JSChecker/Proof.agda
|
{-# OPTIONS --without-K #-}
open import ZK.JSChecker using (verify-PoK-CP-EG-rnd; PoK-CP-EG-rnd; module PoK-CP-EG-rnd)
open import FFI.JS.BigI using (BigI)
open import Data.Product using (_,_)
open import Crypto.JS.BigI.FiniteField
open import Crypto.JS.BigI.CyclicGroup
open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl)
import ZK.GroupHom.ElGamal.JS
module ZK.JSChecker.Proof (p q : BigI) (pok : PoK-CP-EG-rnd ℤ[ q ] ℤ[ p ]★) where
open module ^-h = ^-hom p {q} using (_^_)
open module pok = PoK-CP-EG-rnd pok
pf : ZK.GroupHom.ElGamal.JS.known-enc-rnd.verify-transcript p q g y (g ^ m) (α , β) (A , B) (ℤq▹BigI q c) s
≡ verify-PoK-CP-EG-rnd p q pok
pf = refl
|
{-# OPTIONS --without-K #-}
open import ZK.Types using (PoK-CP-EG-rnd; module PoK-CP-EG-rnd)
open import FFI.JS.BigI using (BigI)
open import Data.Product using (_,_)
open import Crypto.JS.BigI.FiniteField
open import Crypto.JS.BigI.CyclicGroup
open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl)
import ZK.JSChecker
import ZK.GroupHom.ElGamal.JS
module ZK.JSChecker.Proof (p q : BigI) (pok : PoK-CP-EG-rnd ℤ[ q ] ℤ[ p ]★) where
open module ^-h = ^-hom p {q} using (_^_)
open module pok = PoK-CP-EG-rnd pok
pf : ZK.GroupHom.ElGamal.JS.known-enc-rnd.verify-transcript p q g y (g ^ m) (α , β) (A , B) (ℤq▹BigI q c) s
≡ ZK.JSChecker.verify-PoK-CP-EG-rnd p q pok
pf = refl
|
Fix imports
|
ZK.JSChecker.Proof: Fix imports
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
7e41bea4c8fdf5515c5d163b86c4b01ce7e0e399
|
arrow.agda
|
arrow.agda
|
data Bool : Set where
true : Bool
false : Bool
_or_ : Bool → Bool → Bool
true or true = true
true or false = true
false or true = true
false or false = false
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
any : {A : Set} → (A → Bool) → List A → Bool
any _ ∘ = false
any f (x ∷ xs) = (f x) or (any f xs)
apply : {A B : Set} → (A → B) → List A → List B
apply _ ∘ = ∘
apply f (x ∷ xs) = (f x) ∷ (apply f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
closure : List Arrow → List ℕ → List ℕ
closure ∘ found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs ∘)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails
_,_,_¬⊨_ : List Separation → List Arrow → List ℕ → ℕ → Bool
--(m ∷ ms) , cs , ps ¬⊨ n with (modelsupports m cs
_,_¬⊨_ : List Separation → List Arrow → Arrow → Bool
|
data Bool : Set where
true : Bool
false : Bool
_or_ : Bool → Bool → Bool
true or _ = true
_ or true = true
false or false = false
_and_ : Bool → Bool → Bool
false and _ = false
_ and false = false
true and true = true
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_≡_ : ℕ → ℕ → Bool
zero ≡ zero = true
suc n ≡ suc m = n ≡ m
_ ≡ _ = false
----------------------------------------
data List (A : Set) : Set where
∘ : List A
_∷_ : A → List A → List A
any : {A : Set} → (A → Bool) → List A → Bool
any _ ∘ = false
any f (x ∷ xs) = (f x) or (any f xs)
apply : {A B : Set} → (A → B) → List A → List B
apply _ ∘ = ∘
apply f (x ∷ xs) = (f x) ∷ (apply f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ ∘ = false
x ∈ (y ∷ ys) with x ≡ y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q ≡ s
(p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ ∘ = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure ∘ found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs ∘)
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ ∘ ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
|
Add classification
|
Add classification
|
Agda
|
mit
|
louisswarren/hieretikz
|
5e583450a3104dc6cb3ffb9b3876a297c6a9baf8
|
Parametric/Change/Value.agda
|
Parametric/Change/Value.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Change.Type as ChangeType
module Parametric.Change.Value
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open ChangeType.Structure Base ΔBase
open import Base.Denotation.Notation
-- `diff` and `apply`, without validity proofs
ApplyStructure : Set
ApplyStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base → ⟦ ι ⟧Base
DiffStructure : Set
DiffStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base
module Structure
(⟦apply-base⟧ : ApplyStructure)
(⟦diff-base⟧ : DiffStructure)
where
⟦apply⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
⟦diff⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
infixl 6 ⟦apply⟧ ⟦diff⟧
syntax ⟦apply⟧ τ v dv = v ⟦⊕₍ τ ₎⟧ dv
syntax ⟦diff⟧ τ u v = u ⟦⊝₍ τ ₎⟧ v
v ⟦⊕₍ base ι ₎⟧ Δv = ⟦apply-base⟧ ι v Δv
f ⟦⊕₍ σ ⇒ τ ₎⟧ Δf = λ v → f v ⟦⊕₍ τ ₎⟧ Δf v (v ⟦⊝₍ σ ₎⟧ v)
u ⟦⊝₍ base ι ₎⟧ v = ⟦diff-base⟧ ι u v
g ⟦⊝₍ σ ⇒ τ ₎⟧ f = λ v Δv → (g (v ⟦⊕₍ σ ₎⟧ Δv)) ⟦⊝₍ τ ₎⟧ (f v)
_⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_⟦⊕⟧_ {τ} = ⟦apply⟧ τ
_⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_⟦⊝⟧_ {τ} = ⟦diff⟧ τ
alternate : ∀ {Γ} → ⟦ Γ ⟧ → ⟦ mapContext ΔType Γ ⟧ → ⟦ ΔContext Γ ⟧
alternate {∅} ∅ ∅ = ∅
alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The values of terms in Parametric.Change.Term.
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Change.Type as ChangeType
module Parametric.Change.Value
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open ChangeType.Structure Base ΔBase
open import Base.Denotation.Notation
-- Extension point 1: The value of ⊕ for base types.
ApplyStructure : Set
ApplyStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base → ⟦ ι ⟧Base
-- Extension point 2: The value of ⊝ for base types.
DiffStructure : Set
DiffStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base
module Structure
(⟦apply-base⟧ : ApplyStructure)
(⟦diff-base⟧ : DiffStructure)
where
-- We provide: The value of ⊕ and ⊝ for arbitrary types.
⟦apply⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
⟦diff⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
infixl 6 ⟦apply⟧ ⟦diff⟧
syntax ⟦apply⟧ τ v dv = v ⟦⊕₍ τ ₎⟧ dv
syntax ⟦diff⟧ τ u v = u ⟦⊝₍ τ ₎⟧ v
v ⟦⊕₍ base ι ₎⟧ Δv = ⟦apply-base⟧ ι v Δv
f ⟦⊕₍ σ ⇒ τ ₎⟧ Δf = λ v → f v ⟦⊕₍ τ ₎⟧ Δf v (v ⟦⊝₍ σ ₎⟧ v)
u ⟦⊝₍ base ι ₎⟧ v = ⟦diff-base⟧ ι u v
g ⟦⊝₍ σ ⇒ τ ₎⟧ f = λ v Δv → (g (v ⟦⊕₍ σ ₎⟧ Δv)) ⟦⊝₍ τ ₎⟧ (f v)
_⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_⟦⊕⟧_ {τ} = ⟦apply⟧ τ
_⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_⟦⊝⟧_ {τ} = ⟦diff⟧ τ
alternate : ∀ {Γ} → ⟦ Γ ⟧ → ⟦ mapContext ΔType Γ ⟧ → ⟦ ΔContext Γ ⟧
alternate {∅} ∅ ∅ = ∅
alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ
|
Document P.C.Value.
|
Document P.C.Value.
Old-commit-hash: 1a3643a6990f5380e0a80e97aa83d76b6a2e2244
|
Agda
|
mit
|
inc-lc/ilc-agda
|
1d37d5dc7cf104062e0fa00000b3b1486d05ea34
|
Parametric/Syntax/Term.agda
|
Parametric/Syntax/Term.agda
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
module Parametric.Syntax.Term
{Base : Set}
(C : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -})
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type Base
open Context Type
open import Syntax.Context.Plotkin Base
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
abs₁ :
∀ {Γ τ₁ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → (x : Term Γ′ τ₁) → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁ {Γ} {τ₁} = λ f → abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
abs₂ :
∀ {Γ τ₁ τ₂ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ))
abs₂ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₁ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₃ :
∀ {Γ τ₁ τ₂ τ₃ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ))
abs₃ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₂ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₄ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ))
abs₄ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₃ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₅ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ))
abs₅ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₄ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₆ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ₆ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ₆ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ₆ ⇒ τ))
abs₆ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₅ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
|
import Parametric.Syntax.Type as Type
import Base.Syntax.Context as Context
module Parametric.Syntax.Term
{Base : Set}
(Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -})
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type Base
open Context Type
open import Syntax.Context.Plotkin Base
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : Constant Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : Base → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → Constant Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → Constant Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
abs₁ :
∀ {Γ τ₁ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → (x : Term Γ′ τ₁) → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁ {Γ} {τ₁} = λ f → abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
abs₂ :
∀ {Γ τ₁ τ₂ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ))
abs₂ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₁ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₃ :
∀ {Γ τ₁ τ₂ τ₃ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ))
abs₃ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₂ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₄ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ))
abs₄ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₃ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₅ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ))
abs₅ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₄ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₆ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ₆ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ₆ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ₆ ⇒ τ))
abs₆ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₅ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
|
Rename C to Const.
|
Rename C to Const.
Old-commit-hash: ed6d806588b71d4c3272db594c241e23d0c12a79
|
Agda
|
mit
|
inc-lc/ilc-agda
|
3d721fa8ec4e3e2ec1bf00e4dc87ad1cc5a00225
|
lib/Data/Bits.agda
|
lib/Data/Bits.agda
|
module Data.Bits where
-- cleanup
open import Category.Applicative
open import Category.Monad
open import Data.Nat.NP hiding (_≤_; _==_)
open import Data.Nat.DivMod
open import Data.Bool.NP hiding (_==_)
open import Data.Maybe
import Data.Fin as Fin
open Fin using (Fin; zero; suc; #_; inject₁; inject+; raise)
open import Data.Vec.NP hiding (_⊛_) renaming (map to vmap)
open import Data.Vec.N-ary.NP
open import Data.Unit using (⊤)
open import Data.Empty using (⊥)
open import Data.Product using (_×_; _,_; uncurry; proj₁; proj₂)
open import Function.NP hiding (_→⟨_⟩_)
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡
open import Algebra.FunctionProperties
import Data.List as L
open import Data.Bool.NP public using (_xor_)
open import Data.Vec.NP public using ([]; _∷_; head; tail; replicate)
Bit : Set
Bit = Bool
pattern 0b = false
pattern 1b = true
Bits : ℕ → Set
Bits = Vec Bit
0ⁿ : ∀ {n} → Bits n
0ⁿ = replicate 0b
-- Warning: 0ⁿ {0} ≡ 1ⁿ {0}
1ⁿ : ∀ {n} → Bits n
1ⁿ = replicate 1b
0∷_ : ∀ {n} → Bits n → Bits (suc n)
0∷ xs = 0b ∷ xs
-- can't we make these pattern aliases?
1∷_ : ∀ {n} → Bits n → Bits (suc n)
1∷ xs = 1b ∷ xs
_!_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A
_!_ = flip lookup
_==ᵇ_ : (b₀ b₁ : Bit) → Bool
b₀ ==ᵇ b₁ = not (b₀ xor b₁)
_==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bool
[] == [] = true
(b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁
infixr 5 _⊕_
_⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n
_⊕_ = zipWith _xor_
vnot : ∀ {n} → Endo (Bits n)
vnot = _⊕_ 1ⁿ
⊕-assoc : ∀ {n} → Associative _≡_ (_⊕_ {n})
⊕-assoc [] [] [] = refl
⊕-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite ⊕-assoc xs ys zs | Xor°.+-assoc x y z = refl
⊕-comm : ∀ {n} → Commutative _≡_ (_⊕_ {n})
⊕-comm [] [] = refl
⊕-comm (x ∷ xs) (y ∷ ys) rewrite ⊕-comm xs ys | Xor°.+-comm x y = refl
⊕-left-identity : ∀ {n} → LeftIdentity _≡_ 0ⁿ (_⊕_ {n})
⊕-left-identity [] = refl
⊕-left-identity (x ∷ xs) rewrite ⊕-left-identity xs = refl
⊕-right-identity : ∀ {n} → RightIdentity _≡_ 0ⁿ (_⊕_ {n})
⊕-right-identity [] = refl
⊕-right-identity (x ∷ xs) rewrite ⊕-right-identity xs | proj₂ Xor°.+-identity x = refl
⊕-≡ : ∀ {n} (x : Bits n) → x ⊕ x ≡ 0ⁿ
⊕-≡ [] = refl
⊕-≡ (x ∷ xs) rewrite ⊕-≡ xs | proj₂ Xor°.-‿inverse x = refl
⊕-≢ : ∀ {n} (x : Bits n) → x ⊕ vnot x ≡ 1ⁿ
⊕-≢ x = x ⊕ vnot x ≡⟨ refl ⟩
x ⊕ (1ⁿ ⊕ x) ≡⟨ cong (_⊕_ x) (⊕-comm 1ⁿ x) ⟩
x ⊕ (x ⊕ 1ⁿ) ≡⟨ sym (⊕-assoc x x 1ⁿ) ⟩
(x ⊕ x) ⊕ 1ⁿ ≡⟨ cong (flip _⊕_ 1ⁿ) (⊕-≡ x) ⟩
0ⁿ ⊕ 1ⁿ ≡⟨ ⊕-left-identity 1ⁿ ⟩
1ⁿ ∎ where open ≡-Reasoning
msb : ∀ k {n} → Bits (k + n) → Bits k
msb = take
lsb : ∀ {n} k → Bits (n + k) → Bits k
lsb {n} k rewrite ℕ°.+-comm n k = reverse ∘ msb k ∘ reverse
msb₂ : ∀ {n} → Bits (2 + n) → Bits 2
msb₂ = msb 2
lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2
lsb₂ = reverse ∘ msb 2 ∘ reverse
#1 : ∀ {n} → Bits n → Fin (suc n)
#1 [] = zero
#1 (0b ∷ bs) = inject₁ (#1 bs)
#1 (1b ∷ bs) = suc (#1 bs)
#0 : ∀ {n} → Bits n → Fin (suc n)
#0 = #1 ∘ vmap not
private
module M {a} {A : Set a} {M} (appl : RawApplicative M) where
open RawApplicative appl
replicateM : ∀ {n} → M A → M (Vec A n)
replicateM {n = zero} _ = pure []
replicateM {n = suc n} x = pure _∷_ ⊛ x ⊛ replicateM x
open M public
allBitsL : ∀ n → L.List (Bits n)
allBitsL _ = replicateM rawIApplicative (toList (0b ∷ 1b ∷ []))
where open RawMonad L.monad
allBits : ∀ n → Vec (Bits n) (2 ^ n)
allBits zero = [] ∷ []
allBits (suc n) rewrite ℕ°.+-comm (2 ^ n) 0 = vmap 0∷_ bs ++ vmap 1∷_ bs
where bs = allBits n
#⟨_⟩ : ∀ {n} → (Bits n → Bool) → Fin (suc (2 ^ n))
#⟨ pred ⟩ = count pred (allBits _)
sucBCarry : ∀ {n} → Bits n → Bits (1 + n)
sucBCarry [] = 0b ∷ []
sucBCarry (0b ∷ xs) = 0b ∷ sucBCarry xs
sucBCarry (1b ∷ xs) with sucBCarry xs
... | 0b ∷ bs = 0b ∷ 1b ∷ bs
... | 1b ∷ bs = 1b ∷ 0b ∷ bs
sucB : ∀ {n} → Bits n → Bits n
sucB = tail ∘ sucBCarry
_[mod_] : ℕ → ℕ → Set
a [mod b ] = DivMod' a b
module ReversedBits where
sucRB : ∀ {n} → Bits n → Bits n
sucRB [] = []
sucRB (0b ∷ xs) = 1b ∷ xs
sucRB (1b ∷ xs) = 0b ∷ sucRB xs
toFin : ∀ {n} → Bits n → Fin (2 ^ n)
toFin [] = zero
toFin (0b ∷ xs) = inject+ _ (toFin xs)
toFin {suc n} (1b ∷ xs) = raise (2 ^ n) (inject+ 0 (toFin xs))
{-
toℕ : ∀ {n} → Bits n → ℕ
toℕ = Fin.toℕ ∘ toFin
-}
toℕ : ∀ {n} → Bits n → ℕ
toℕ [] = zero
toℕ (0b ∷ xs) = toℕ xs
toℕ {suc n} (1b ∷ xs) = 2 ^ n + toℕ xs
fromℕ : ∀ {n} → ℕ → Bits n
fromℕ = fold 0ⁿ sucB
fromFin : ∀ {n} → Fin (2 ^ n) → Bits n
fromFin = fromℕ ∘ Fin.toℕ
lookupTbl : ∀ {n a} {A : Set a} → Bits n → Vec A (2 ^ n) → A
lookupTbl [] (x ∷ []) = x
lookupTbl (0b ∷ key) tbl = lookupTbl key (take _ tbl)
lookupTbl {suc n} (1b ∷ key) tbl = lookupTbl key (take (2 ^ n) (drop (2 ^ n) tbl))
funFromTbl : ∀ {n a} {A : Set a} → Vec A (2 ^ n) → (Bits n → A)
funFromTbl = flip lookupTbl
tblFromFun : ∀ {n a} {A : Set a} → (Bits n → A) → Vec A (2 ^ n)
-- tblFromFun f = tabulate (f ∘ fromFin)
tblFromFun {zero} f = f [] ∷ []
tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_) ++ []
funFromTbl∘tblFromFun : ∀ {n a} {A : Set a} (fun : Bits n → A) → funFromTbl (tblFromFun fun) ≗ fun
funFromTbl∘tblFromFun {zero} f [] = refl
funFromTbl∘tblFromFun {suc n} f (0b ∷ xs)
rewrite take-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) =
funFromTbl∘tblFromFun {n} (f ∘ 0∷_) xs
funFromTbl∘tblFromFun {suc n} f (1b ∷ xs)
rewrite drop-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ [])
| take-++ (2 ^ n) (tblFromFun {n} (f ∘ 1∷_)) [] =
funFromTbl∘tblFromFun {n} (f ∘ 1∷_) xs
tblFromFun∘funFromTbl : ∀ {n a} {A : Set a} (tbl : Vec A (2 ^ n)) → tblFromFun {n} (funFromTbl tbl) ≡ tbl
tblFromFun∘funFromTbl {zero} (x ∷ []) = refl
tblFromFun∘funFromTbl {suc n} tbl
rewrite tblFromFun∘funFromTbl {n} (take _ tbl)
| tblFromFun∘funFromTbl {n} (take (2 ^ n) (drop (2 ^ n) tbl))
| take-them-all (2 ^ n) (drop (2 ^ n) tbl)
| take-drop-lem (2 ^ n) tbl
= refl
{-
sucB-lem : ∀ {n} x → toℕ {2 ^ n} (sucB x) [mod 2 ^ n ] ≡ (suc (toℕ x)) [mod 2 ^ n ]
sucB-lem x = {!!}
-- sucB-lem : ∀ {n} x → (sucB (fromℕ x)) [mod 2 ^ n ] ≡ fromℕ ((suc x) [mod 2 ^ n ])
toℕ∘fromℕ : ∀ {n} x → toℕ (fromℕ {n} x) ≡ x
toℕ∘fromℕ zero = {!!}
toℕ∘fromℕ (suc x) = {!toℕ∘fromℕ x!}
toℕ∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toℕ (fromFin x) ≡ Fin.toℕ x
toℕ∘fromFin x = {!!}
toFin∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toFin (fromFin x) ≡ x
toFin∘fromFin x = {!!}
-- _ᴮ : (s : String) {pf : IsBitString s} → Bits (length s)
-- _ᴮ =
-}
|
module Data.Bits where
-- cleanup
open import Category.Applicative
open import Category.Monad
open import Data.Nat.NP hiding (_≤_; _==_)
open import Data.Nat.DivMod
open import Data.Bool.NP hiding (_==_)
open import Data.Maybe
import Data.Fin as Fin
open Fin using (Fin; zero; suc; #_; inject₁; inject+; raise)
open import Data.Vec.NP hiding (_⊛_) renaming (map to vmap)
open import Data.Vec.N-ary.NP
open import Data.Unit using (⊤)
open import Data.Empty using (⊥)
open import Data.Product using (_×_; _,_; uncurry; proj₁; proj₂)
open import Function.NP hiding (_→⟨_⟩_)
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡
open import Algebra.FunctionProperties
import Data.List as L
open import Data.Bool.NP public using (_xor_)
open import Data.Vec.NP public using ([]; _∷_; head; tail; replicate)
Bit : Set
Bit = Bool
pattern 0b = false
pattern 1b = true
Bits : ℕ → Set
Bits = Vec Bit
0ⁿ : ∀ {n} → Bits n
0ⁿ = replicate 0b
-- Warning: 0ⁿ {0} ≡ 1ⁿ {0}
1ⁿ : ∀ {n} → Bits n
1ⁿ = replicate 1b
0∷_ : ∀ {n} → Bits n → Bits (suc n)
0∷ xs = 0b ∷ xs
-- can't we make these pattern aliases?
1∷_ : ∀ {n} → Bits n → Bits (suc n)
1∷ xs = 1b ∷ xs
_!_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A
_!_ = flip lookup
_==ᵇ_ : (b₀ b₁ : Bit) → Bool
b₀ ==ᵇ b₁ = not (b₀ xor b₁)
_==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bool
[] == [] = true
(b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁
infixr 5 _⊕_
_⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n
_⊕_ = zipWith _xor_
vnot : ∀ {n} → Endo (Bits n)
vnot = _⊕_ 1ⁿ
⊕-assoc : ∀ {n} → Associative _≡_ (_⊕_ {n})
⊕-assoc [] [] [] = refl
⊕-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite ⊕-assoc xs ys zs | Xor°.+-assoc x y z = refl
⊕-comm : ∀ {n} → Commutative _≡_ (_⊕_ {n})
⊕-comm [] [] = refl
⊕-comm (x ∷ xs) (y ∷ ys) rewrite ⊕-comm xs ys | Xor°.+-comm x y = refl
⊕-left-identity : ∀ {n} → LeftIdentity _≡_ 0ⁿ (_⊕_ {n})
⊕-left-identity [] = refl
⊕-left-identity (x ∷ xs) rewrite ⊕-left-identity xs = refl
⊕-right-identity : ∀ {n} → RightIdentity _≡_ 0ⁿ (_⊕_ {n})
⊕-right-identity [] = refl
⊕-right-identity (x ∷ xs) rewrite ⊕-right-identity xs | proj₂ Xor°.+-identity x = refl
⊕-≡ : ∀ {n} (x : Bits n) → x ⊕ x ≡ 0ⁿ
⊕-≡ [] = refl
⊕-≡ (x ∷ xs) rewrite ⊕-≡ xs | proj₂ Xor°.-‿inverse x = refl
⊕-≢ : ∀ {n} (x : Bits n) → x ⊕ vnot x ≡ 1ⁿ
⊕-≢ x = x ⊕ vnot x ≡⟨ refl ⟩
x ⊕ (1ⁿ ⊕ x) ≡⟨ cong (_⊕_ x) (⊕-comm 1ⁿ x) ⟩
x ⊕ (x ⊕ 1ⁿ) ≡⟨ sym (⊕-assoc x x 1ⁿ) ⟩
(x ⊕ x) ⊕ 1ⁿ ≡⟨ cong (flip _⊕_ 1ⁿ) (⊕-≡ x) ⟩
0ⁿ ⊕ 1ⁿ ≡⟨ ⊕-left-identity 1ⁿ ⟩
1ⁿ ∎ where open ≡-Reasoning
msb : ∀ k {n} → Bits (k + n) → Bits k
msb = take
lsb : ∀ {n} k → Bits (n + k) → Bits k
lsb {n} k rewrite ℕ°.+-comm n k = reverse ∘ msb k ∘ reverse
msb₂ : ∀ {n} → Bits (2 + n) → Bits 2
msb₂ = msb 2
lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2
lsb₂ = reverse ∘ msb 2 ∘ reverse
#1 : ∀ {n} → Bits n → Fin (suc n)
#1 [] = zero
#1 (0b ∷ bs) = inject₁ (#1 bs)
#1 (1b ∷ bs) = suc (#1 bs)
#0 : ∀ {n} → Bits n → Fin (suc n)
#0 = #1 ∘ vmap not
private
module M {a} {A : Set a} {M : Set a → Set a} (appl : RawApplicative M) where
open RawApplicative appl
replicateM : ∀ {n} → M A → M (Vec A n)
replicateM {n = zero} _ = pure []
replicateM {n = suc n} x = pure _∷_ ⊛ x ⊛ replicateM x
open M public
allBitsL : ∀ n → L.List (Bits n)
allBitsL _ = replicateM rawIApplicative (toList (0b ∷ 1b ∷ []))
where open RawMonad L.monad
allBits : ∀ n → Vec (Bits n) (2 ^ n)
allBits zero = [] ∷ []
allBits (suc n) rewrite ℕ°.+-comm (2 ^ n) 0 = vmap 0∷_ bs ++ vmap 1∷_ bs
where bs = allBits n
#⟨_⟩ : ∀ {n} → (Bits n → Bool) → Fin (suc (2 ^ n))
#⟨ pred ⟩ = count pred (allBits _)
sucBCarry : ∀ {n} → Bits n → Bits (1 + n)
sucBCarry [] = 0b ∷ []
sucBCarry (0b ∷ xs) = 0b ∷ sucBCarry xs
sucBCarry (1b ∷ xs) with sucBCarry xs
... | 0b ∷ bs = 0b ∷ 1b ∷ bs
... | 1b ∷ bs = 1b ∷ 0b ∷ bs
sucB : ∀ {n} → Bits n → Bits n
sucB = tail ∘ sucBCarry
_[mod_] : ℕ → ℕ → Set
a [mod b ] = DivMod' a b
module ReversedBits where
sucRB : ∀ {n} → Bits n → Bits n
sucRB [] = []
sucRB (0b ∷ xs) = 1b ∷ xs
sucRB (1b ∷ xs) = 0b ∷ sucRB xs
toFin : ∀ {n} → Bits n → Fin (2 ^ n)
toFin [] = zero
toFin (0b ∷ xs) = inject+ _ (toFin xs)
toFin {suc n} (1b ∷ xs) = raise (2 ^ n) (inject+ 0 (toFin xs))
{-
toℕ : ∀ {n} → Bits n → ℕ
toℕ = Fin.toℕ ∘ toFin
-}
toℕ : ∀ {n} → Bits n → ℕ
toℕ [] = zero
toℕ (0b ∷ xs) = toℕ xs
toℕ {suc n} (1b ∷ xs) = 2 ^ n + toℕ xs
fromℕ : ∀ {n} → ℕ → Bits n
fromℕ = fold 0ⁿ sucB
fromFin : ∀ {n} → Fin (2 ^ n) → Bits n
fromFin = fromℕ ∘ Fin.toℕ
lookupTbl : ∀ {n a} {A : Set a} → Bits n → Vec A (2 ^ n) → A
lookupTbl [] (x ∷ []) = x
lookupTbl (0b ∷ key) tbl = lookupTbl key (take _ tbl)
lookupTbl {suc n} (1b ∷ key) tbl = lookupTbl key (take (2 ^ n) (drop (2 ^ n) tbl))
funFromTbl : ∀ {n a} {A : Set a} → Vec A (2 ^ n) → (Bits n → A)
funFromTbl = flip lookupTbl
tblFromFun : ∀ {n a} {A : Set a} → (Bits n → A) → Vec A (2 ^ n)
-- tblFromFun f = tabulate (f ∘ fromFin)
tblFromFun {zero} f = f [] ∷ []
tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_) ++ []
funFromTbl∘tblFromFun : ∀ {n a} {A : Set a} (fun : Bits n → A) → funFromTbl (tblFromFun fun) ≗ fun
funFromTbl∘tblFromFun {zero} f [] = refl
funFromTbl∘tblFromFun {suc n} f (0b ∷ xs)
rewrite take-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) =
funFromTbl∘tblFromFun {n} (f ∘ 0∷_) xs
funFromTbl∘tblFromFun {suc n} f (1b ∷ xs)
rewrite drop-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ [])
| take-++ (2 ^ n) (tblFromFun {n} (f ∘ 1∷_)) [] =
funFromTbl∘tblFromFun {n} (f ∘ 1∷_) xs
tblFromFun∘funFromTbl : ∀ {n a} {A : Set a} (tbl : Vec A (2 ^ n)) → tblFromFun {n} (funFromTbl tbl) ≡ tbl
tblFromFun∘funFromTbl {zero} (x ∷ []) = refl
tblFromFun∘funFromTbl {suc n} tbl
rewrite tblFromFun∘funFromTbl {n} (take _ tbl)
| tblFromFun∘funFromTbl {n} (take (2 ^ n) (drop (2 ^ n) tbl))
| take-them-all (2 ^ n) (drop (2 ^ n) tbl)
| take-drop-lem (2 ^ n) tbl
= refl
{-
sucB-lem : ∀ {n} x → toℕ {2 ^ n} (sucB x) [mod 2 ^ n ] ≡ (suc (toℕ x)) [mod 2 ^ n ]
sucB-lem x = {!!}
-- sucB-lem : ∀ {n} x → (sucB (fromℕ x)) [mod 2 ^ n ] ≡ fromℕ ((suc x) [mod 2 ^ n ])
toℕ∘fromℕ : ∀ {n} x → toℕ (fromℕ {n} x) ≡ x
toℕ∘fromℕ zero = {!!}
toℕ∘fromℕ (suc x) = {!toℕ∘fromℕ x!}
toℕ∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toℕ (fromFin x) ≡ Fin.toℕ x
toℕ∘fromFin x = {!!}
toFin∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toFin (fromFin x) ≡ x
toFin∘fromFin x = {!!}
-- _ᴮ : (s : String) {pf : IsBitString s} → Bits (length s)
-- _ᴮ =
-}
|
Update to stdlib
|
Update to stdlib
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
4c58b009165ce674a87c1d45177df0c30d306d41
|
lib/Explore/Summable.agda
|
lib/Explore/Summable.agda
|
module Explore.Summable where
open import Type
open import Function.NP
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_ ; _≗_ ; _≗₂_)
open import Explore.Type
open import Explore.Product
open import Data.Product
open import Data.Nat.NP
open import Data.Nat.Properties
open import Data.Bool.NP renaming (Bool to 𝟚; true to 1b; false to 0b; toℕ to 𝟚▹ℕ)
open Data.Bool.NP.Indexed
module FromSum {A : ★} (sum : Sum A) where
Card : ℕ
Card = sum (const 1)
count : Count A
count f = sum (𝟚▹ℕ ∘ f)
module FromSumInd {A : ★}
{sum : Sum A}
(sum-ind : SumInd sum) where
open FromSum sum public
sum-ext : SumExt sum
sum-ext = sum-ind (λ s → s _ ≡ s _) (≡.cong₂ _+_)
sum-zero : SumZero sum
sum-zero = sum-ind (λ s → s (const 0) ≡ 0) (≡.cong₂ _+_) (λ _ → ≡.refl)
sum-hom : SumHom sum
sum-hom f g = sum-ind (λ s → s (f +° g) ≡ s f + s g)
(λ {s₀} {s₁} p₀ p₁ → ≡.trans (≡.cong₂ _+_ p₀ p₁) (+-interchange (s₀ _) (s₀ _) _ _))
(λ _ → ≡.refl)
sum-mono : SumMono sum
sum-mono = sum-ind (λ s → s _ ≤ s _) _+-mono_
sum-lin : SumLin sum
sum-lin f zero = sum-zero
sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.cong₂ _+_ (≡.refl {x = sum f}) (sum-lin f k))
module _ (f g : A → ℕ) where
open ≡.≡-Reasoning
sum-⊓-∸ : sum f ≡ sum (f ⊓° g) + sum (f ∸° g)
sum-⊓-∸ = sum f ≡⟨ sum-ext (f ⟨ a≡a⊓b+a∸b ⟩° g) ⟩
sum ((f ⊓° g) +° (f ∸° g)) ≡⟨ sum-hom (f ⊓° g) (f ∸° g) ⟩
sum (f ⊓° g) + sum (f ∸° g) ∎
sum-⊔-⊓ : sum f + sum g ≡ sum (f ⊔° g) + sum (f ⊓° g)
sum-⊔-⊓ = sum f + sum g ≡⟨ ≡.sym (sum-hom f g) ⟩
sum (f +° g) ≡⟨ sum-ext (f ⟨ a+b≡a⊔b+a⊓b ⟩° g) ⟩
sum (f ⊔° g +° f ⊓° g) ≡⟨ sum-hom (f ⊔° g) (f ⊓° g) ⟩
sum (f ⊔° g) + sum (f ⊓° g) ∎
sum-⊔ : sum (f ⊔° g) ≤ sum f + sum g
sum-⊔ = ℕ≤.trans (sum-mono (f ⟨ ⊔≤+ ⟩° g)) (ℕ≤.reflexive (sum-hom f g))
count-ext : CountExt count
count-ext f≗g = sum-ext (≡.cong 𝟚▹ℕ ∘ f≗g)
sum-const : ∀ k → sum (const k) ≡ Card * k
sum-const k
rewrite ℕ°.*-comm Card k
| ≡.sym (sum-lin (const 1) k)
| proj₂ ℕ°.*-identity k = ≡.refl
module _ f g where
count-∧-not : count f ≡ count (f ∧° g) + count (f ∧° not° g)
count-∧-not rewrite sum-⊓-∸ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g)
| sum-ext (f ⟨ toℕ-⊓ ⟩° g)
| sum-ext (f ⟨ toℕ-∸ ⟩° g)
= ≡.refl
count-∨-∧ : count f + count g ≡ count (f ∨° g) + count (f ∧° g)
count-∨-∧ rewrite sum-⊔-⊓ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g)
| sum-ext (f ⟨ toℕ-⊔ ⟩° g)
| sum-ext (f ⟨ toℕ-⊓ ⟩° g)
= ≡.refl
count-∨≤+ : count (f ∨° g) ≤ count f + count g
count-∨≤+ = ℕ≤.trans (ℕ≤.reflexive (sum-ext (≡.sym ∘ (f ⟨ toℕ-⊔ ⟩° g))))
(sum-⊔ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g))
module FromSum×
{A B}
{sumᴬ : Sum A}
(sum-indᴬ : SumInd sumᴬ)
{sumᴮ : Sum B}
(sum-indᴮ : SumInd sumᴮ) where
module |A| = FromSumInd sum-indᴬ
module |B| = FromSumInd sum-indᴮ
sumᴬᴮ = sumᴬ ×-sum sumᴮ
sum-∘proj₁≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₁) ≡ |B|.Card * sumᴬ f
sum-∘proj₁≡Card* f
rewrite |A|.sum-ext (|B|.sum-const ∘ f)
= |A|.sum-lin f |B|.Card
sum-∘proj₂≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₂) ≡ |A|.Card * sumᴮ f
sum-∘proj₂≡Card* = |A|.sum-const ∘ sumᴮ
sum-∘proj₁ : ∀ {f} {g} → sumᴬ f ≡ sumᴬ g → sumᴬᴮ (f ∘ proj₁) ≡ sumᴬᴮ (g ∘ proj₁)
sum-∘proj₁ {f} {g} sumf≡sumg
rewrite sum-∘proj₁≡Card* f
| sum-∘proj₁≡Card* g
| sumf≡sumg = ≡.refl
sum-∘proj₂ : ∀ {f} {g} → sumᴮ f ≡ sumᴮ g → sumᴬᴮ (f ∘ proj₂) ≡ sumᴬᴮ (g ∘ proj₂)
sum-∘proj₂ sumf≡sumg = |A|.sum-ext (const sumf≡sumg)
-- -}
-- -}
-- -}
-- -}
|
module Explore.Summable where
open import Type
open import Function.NP
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_ ; _≗_ ; _≗₂_)
open import Explore.Type
open import Explore.Product
open import Data.Product
open import Data.Nat.NP
open import Data.Nat.Properties
open import Data.Bool.NP renaming (Bool to 𝟚; true to 1b; false to 0b; toℕ to 𝟚▹ℕ)
open Data.Bool.NP.Indexed
module FromSum {A : ★} (sum : Sum A) where
Card : ℕ
Card = sum (const 1)
count : Count A
count f = sum (𝟚▹ℕ ∘ f)
module FromSumInd {A : ★}
{sum : Sum A}
(sum-ind : SumInd sum) where
open FromSum sum public
sum-ext : SumExt sum
sum-ext = sum-ind (λ s → s _ ≡ s _) (≡.cong₂ _+_)
sum-zero : SumZero sum
sum-zero = sum-ind (λ s → s (const 0) ≡ 0) (≡.cong₂ _+_) (λ _ → ≡.refl)
sum-hom : SumHom sum
sum-hom f g = sum-ind (λ s → s (f +° g) ≡ s f + s g)
(λ {s₀} {s₁} p₀ p₁ → ≡.trans (≡.cong₂ _+_ p₀ p₁) (+-interchange (s₀ _) (s₀ _) _ _))
(λ _ → ≡.refl)
sum-mono : SumMono sum
sum-mono = sum-ind (λ s → s _ ≤ s _) _+-mono_
sum-lin : SumLin sum
sum-lin f zero = sum-zero
sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.cong₂ _+_ (≡.refl {x = sum f}) (sum-lin f k))
module _ (f g : A → ℕ) where
open ≡.≡-Reasoning
sum-⊓-∸ : sum f ≡ sum (f ⊓° g) + sum (f ∸° g)
sum-⊓-∸ = sum f ≡⟨ sum-ext (f ⟨ a≡a⊓b+a∸b ⟩° g) ⟩
sum ((f ⊓° g) +° (f ∸° g)) ≡⟨ sum-hom (f ⊓° g) (f ∸° g) ⟩
sum (f ⊓° g) + sum (f ∸° g) ∎
sum-⊔-⊓ : sum f + sum g ≡ sum (f ⊔° g) + sum (f ⊓° g)
sum-⊔-⊓ = sum f + sum g ≡⟨ ≡.sym (sum-hom f g) ⟩
sum (f +° g) ≡⟨ sum-ext (f ⟨ a+b≡a⊔b+a⊓b ⟩° g) ⟩
sum (f ⊔° g +° f ⊓° g) ≡⟨ sum-hom (f ⊔° g) (f ⊓° g) ⟩
sum (f ⊔° g) + sum (f ⊓° g) ∎
sum-⊔ : sum (f ⊔° g) ≤ sum f + sum g
sum-⊔ = ℕ≤.trans (sum-mono (f ⟨ ⊔≤+ ⟩° g)) (ℕ≤.reflexive (sum-hom f g))
count-ext : CountExt count
count-ext f≗g = sum-ext (≡.cong 𝟚▹ℕ ∘ f≗g)
sum-const : ∀ k → sum (const k) ≡ Card * k
sum-const k
rewrite ℕ°.*-comm Card k
| ≡.sym (sum-lin (const 1) k)
| proj₂ ℕ°.*-identity k = ≡.refl
module _ f g where
count-∧-not : count f ≡ count (f ∧° g) + count (f ∧° not° g)
count-∧-not rewrite sum-⊓-∸ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g)
| sum-ext (f ⟨ toℕ-⊓ ⟩° g)
| sum-ext (f ⟨ toℕ-∸ ⟩° g)
= ≡.refl
count-∨-∧ : count f + count g ≡ count (f ∨° g) + count (f ∧° g)
count-∨-∧ rewrite sum-⊔-⊓ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g)
| sum-ext (f ⟨ toℕ-⊔ ⟩° g)
| sum-ext (f ⟨ toℕ-⊓ ⟩° g)
= ≡.refl
count-∨≤+ : count (f ∨° g) ≤ count f + count g
count-∨≤+ = ℕ≤.trans (ℕ≤.reflexive (sum-ext (≡.sym ∘ (f ⟨ toℕ-⊔ ⟩° g))))
(sum-⊔ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g))
module FromSum×
{A B}
{sumᴬ : Sum A}
(sum-indᴬ : SumInd sumᴬ)
{sumᴮ : Sum B}
(sum-indᴮ : SumInd sumᴮ) where
module |A| = FromSumInd sum-indᴬ
module |B| = FromSumInd sum-indᴮ
open Operators
sumᴬᴮ = sumᴬ ×ˢ sumᴮ
sum-∘proj₁≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₁) ≡ |B|.Card * sumᴬ f
sum-∘proj₁≡Card* f
rewrite |A|.sum-ext (|B|.sum-const ∘ f)
= |A|.sum-lin f |B|.Card
sum-∘proj₂≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₂) ≡ |A|.Card * sumᴮ f
sum-∘proj₂≡Card* = |A|.sum-const ∘ sumᴮ
sum-∘proj₁ : ∀ {f} {g} → sumᴬ f ≡ sumᴬ g → sumᴬᴮ (f ∘ proj₁) ≡ sumᴬᴮ (g ∘ proj₁)
sum-∘proj₁ {f} {g} sumf≡sumg
rewrite sum-∘proj₁≡Card* f
| sum-∘proj₁≡Card* g
| sumf≡sumg = ≡.refl
sum-∘proj₂ : ∀ {f} {g} → sumᴮ f ≡ sumᴮ g → sumᴬᴮ (f ∘ proj₂) ≡ sumᴬᴮ (g ∘ proj₂)
sum-∘proj₂ sumf≡sumg = |A|.sum-ext (const sumf≡sumg)
-- -}
-- -}
-- -}
-- -}
|
Make Explore.Summable typecheck
|
Make Explore.Summable typecheck
|
Agda
|
bsd-3-clause
|
crypto-agda/explore
|
818dfccaa5b7e626b635720fbf80318263d4c8d9
|
New/Changes.agda
|
New/Changes.agda
|
module New.Changes where
open import Relation.Binary.PropositionalEquality
open import Level
open import Data.Unit
open import Data.Product
record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where
field
_⊕_ : A → Ch → A
_⊝_ : A → A → Ch
valid : A → Ch → Set ℓ
⊝-valid : ∀ (a b : A) → valid a (b ⊝ a)
⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b
infixl 6 _⊕_ _⊝_
nil : A → Ch
nil a = a ⊝ a
nil-valid : (a : A) → valid a (nil a)
nil-valid a = ⊝-valid a a
Δ : A → Set ℓ
Δ a = Σ[ da ∈ Ch ] (valid a da)
update-diff = ⊕-⊝
update-nil : (a : A) → a ⊕ nil a ≡ a
update-nil a = update-diff a a
record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where
field
Ch : Set ℓ
isChAlg : IsChAlg A Ch
open IsChAlg isChAlg public
open ChAlg {{...}} public hiding (Ch)
Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ
Ch A {{CA}} = ChAlg.Ch CA
-- Huge hack, but it does gives the output you want to see in all cases I've seen.
{-# DISPLAY IsChAlg.valid x = valid #-}
{-# DISPLAY ChAlg.valid x = valid #-}
{-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY ChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY IsChAlg.nil x = nil #-}
{-# DISPLAY ChAlg.nil x = nil #-}
{-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-}
{-# DISPLAY ChAlg._⊝_ x = _⊝_ #-}
module _ {ℓ₁} {ℓ₂}
{A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where
private
fCh = A → Ch A → Ch B
_f⊕_ : (A → B) → fCh → A → B
_f⊕_ = λ f df a → f a ⊕ df a (nil a)
_f⊝_ : (g f : A → B) → fCh
_f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a
open ≡-Reasoning
open import Postulate.Extensionality
IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂)
IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da
instance
funCA : ChAlg (A → B)
private
funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a
funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a)
funCA = record
{ Ch = A → Ch A → Ch B
; isChAlg = record
{ _⊕_ = _f⊕_
; _⊝_ = _f⊝_
; valid = λ f df → ∀ a da (v : valid a da) →
valid (f a) (df a da) ×
(f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da
; ⊝-valid = λ f g a da (v : valid a da) →
⊝-valid (f a) (g (a ⊕ da))
, ( begin
f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da))
≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da)))
(update-nil (a ⊕ da)) ⟩
f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da))
≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩
g (a ⊕ da)
≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩
f a ⊕ (g (a ⊕ da) ⊝ f a)
∎)
; ⊕-⊝ = λ g f → ext (funUpdateDiff g f)
} }
nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f)
nil-is-derivative f a da v =
begin
f (a ⊕ da)
≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩
(f ⊕ nil f) (a ⊕ da)
≡⟨ proj₂ (nil-valid f a da v) ⟩
f a ⊕ (nil f a da)
∎
-- instance
-- pairCA : ChAlg (A × B)
-- pairCA = record
-- { Ch = Ch CA × Ch CB ; isChAlg = record { _⊕_ = {!!} ; _⊝_ = {!!} ; valid = {!!} ; ⊝-valid = {!!} ; ⊕-⊝ = {!!} } }
open import Data.Integer
open import Theorem.Groups-Nehemiah
instance
intCA : ChAlg ℤ
intCA = record
{ Ch = ℤ
; isChAlg = record
{ _⊕_ = _+_
; _⊝_ = _-_
; valid = λ a b → ⊤
; ⊝-valid = λ a b → tt
; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
|
module New.Changes where
open import Relation.Binary.PropositionalEquality
open import Level
open import Data.Unit
open import Data.Product
record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where
field
_⊕_ : A → Ch → A
_⊝_ : A → A → Ch
valid : A → Ch → Set ℓ
⊝-valid : ∀ (a b : A) → valid a (b ⊝ a)
⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b
infixl 6 _⊕_ _⊝_
nil : A → Ch
nil a = a ⊝ a
nil-valid : (a : A) → valid a (nil a)
nil-valid a = ⊝-valid a a
Δ : A → Set ℓ
Δ a = Σ[ da ∈ Ch ] (valid a da)
update-diff = ⊕-⊝
update-nil : (a : A) → a ⊕ nil a ≡ a
update-nil a = update-diff a a
record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where
field
Ch : Set ℓ
isChAlg : IsChAlg A Ch
open IsChAlg isChAlg public
open ChAlg {{...}} public hiding (Ch)
Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ
Ch A {{CA}} = ChAlg.Ch CA
-- Huge hack, but it does gives the output you want to see in all cases I've seen.
{-# DISPLAY IsChAlg.valid x = valid #-}
{-# DISPLAY ChAlg.valid x = valid #-}
{-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY ChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY IsChAlg.nil x = nil #-}
{-# DISPLAY ChAlg.nil x = nil #-}
{-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-}
{-# DISPLAY ChAlg._⊝_ x = _⊝_ #-}
module _ {ℓ₁} {ℓ₂}
{A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where
private
fCh = A → Ch A → Ch B
_f⊕_ : (A → B) → fCh → A → B
_f⊕_ = λ f df a → f a ⊕ df a (nil a)
_f⊝_ : (g f : A → B) → fCh
_f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a
open ≡-Reasoning
open import Postulate.Extensionality
IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂)
IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da
instance
funCA : ChAlg (A → B)
private
funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a
funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a)
funCA = record
{ Ch = A → Ch A → Ch B
; isChAlg = record
{ _⊕_ = _f⊕_
; _⊝_ = _f⊝_
; valid = λ f df → ∀ a da (v : valid a da) →
valid (f a) (df a da) ×
(f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da
; ⊝-valid = λ f g a da (v : valid a da) →
⊝-valid (f a) (g (a ⊕ da))
, ( begin
f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da))
≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da)))
(update-nil (a ⊕ da)) ⟩
f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da))
≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩
g (a ⊕ da)
≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩
f a ⊕ (g (a ⊕ da) ⊝ f a)
∎)
; ⊕-⊝ = λ g f → ext (funUpdateDiff g f)
} }
nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f)
nil-is-derivative f a da v =
begin
f (a ⊕ da)
≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩
(f ⊕ nil f) (a ⊕ da)
≡⟨ proj₂ (nil-valid f a da v) ⟩
f a ⊕ (nil f a da)
∎
private
_p⊕_ : A × B → Ch A × Ch B → A × B
_p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db
_p⊝_ : A × B → A × B → Ch A × Ch B
_p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1
pvalid : A × B → Ch A × Ch B → Set (ℓ₂ ⊔ ℓ₁)
pvalid (a , b) (da , db) = valid a da × valid b db
p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1)
p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2
p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2
p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1)
instance
pairCA : ChAlg (A × B)
pairCA = record
{ Ch = Ch A × Ch B
; isChAlg = record
{ _⊕_ = _p⊕_
; _⊝_ = _p⊝_
; valid = pvalid
; ⊝-valid = p⊝-valid
; ⊕-⊝ = p⊕-⊝
} }
open import Data.Integer
open import Theorem.Groups-Nehemiah
instance
intCA : ChAlg ℤ
intCA = record
{ Ch = ℤ
; isChAlg = record
{ _⊕_ = _+_
; _⊝_ = _-_
; valid = λ a b → ⊤
; ⊝-valid = λ a b → tt
; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
|
Change strucure for products
|
Change strucure for products
|
Agda
|
mit
|
inc-lc/ilc-agda
|
da063111bdead7bc9476b14520d957b8057cba93
|
formalization/agda/Spire/Operational.agda
|
formalization/agda/Spire/Operational.agda
|
module Spire.Operational where
----------------------------------------------------------------------
data Level : Set where
zero : Level
suc : Level → Level
----------------------------------------------------------------------
data Context : Set
data Type (Γ : Context) : Set
data Value (Γ : Context) : Type Γ → Set
data Neutral (Γ : Context) : Type Γ → Set
----------------------------------------------------------------------
data Context where
∅ : Context
_,_ : (Γ : Context) → Type Γ → Context
data Type Γ where
`⊥ `⊤ `Bool : Type Γ
`Desc `Type : (ℓ : Level) → Type Γ
`Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ
`⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ
----------------------------------------------------------------------
⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ
postulate
wknT : ∀{Γ A} → Type Γ → Type (Γ , A)
subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ
subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x)
data Var : (Γ : Context) (A : Type Γ) → Set where
here : ∀{Γ A} → Var (Γ , A) (wknT A)
there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A)
----------------------------------------------------------------------
data Value Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Desc `Type : ∀{ℓ} → Value Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ))
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Value Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Value Γ (`Type ℓ))
(B : Value (Γ , ⟦ A ⟧) (`Desc (suc ℓ)))
→ Value Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Value Γ `⊤
`true `false : Value Γ `Bool
_`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B)
`λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B)
`neut : ∀{A} → Neutral Γ A → Value Γ A
----------------------------------------------------------------------
data Neutral Γ where
{- Value elimination -}
`var : ∀{A} → Var Γ A → Neutral Γ A
`if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C
`elim⊥ : ∀{A} → Neutral Γ `⊥ → Neutral Γ A
`elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b))
`proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A
`proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab)))
_`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a)
----------------------------------------------------------------------
⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧
⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧
⟦ `⊥ ⟧ = `⊥
⟦ `⊤ ⟧ = `⊤
⟦ `Bool ⟧ = `Bool
⟦ `Type {zero} ⟧ = `⊥
⟦ `Type {suc ℓ} ⟧ = `Type ℓ
⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧
⟦ `Desc {ℓ} ⟧ = `Desc ℓ
⟦ `neut A ⟧ = `⟦ A ⟧
----------------------------------------------------------------------
elim⊥ : ∀{Γ A} → Value Γ `⊥ → Value Γ A
elim⊥ (`neut bot) = `neut (`elim⊥ bot)
----------------------------------------------------------------------
if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C
if `true then c₁ else c₂ = c₁
if `false then c₁ else c₂ = c₂
if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂)
elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Value Γ `Bool)
→ Value Γ (subT ⟦ P ⟧ b)
elimBool P pt pf `true = pt
elimBool P pt pf `false = pf
elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b)
----------------------------------------------------------------------
proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A
proj₁ (a `, b) = a
proj₁ (`neut ab) = `neut (`proj₁ ab)
proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab))
proj₂ (a `, b) = b
proj₂ (`neut ab) = `neut (`proj₂ ab)
----------------------------------------------------------------------
_$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a)
`λ b $ a = subV b a
`neut f $ a = `neut (f `$ a)
----------------------------------------------------------------------
data Term (Γ : Context) : Type Γ → Set
eval : ∀{Γ A} → Term Γ A → Value Γ A
data Term Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ))
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Term Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Term Γ (`Type ℓ))
(D : Term (Γ , ⟦ eval A ⟧) (`Desc (suc ℓ)))
→ Term Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Term Γ `⊤
`true `false : Term Γ `Bool
_`,_ : ∀{A B}
(a : Term Γ A) (b : Term Γ (subT B (eval a)))
→ Term Γ (`Σ A B)
`λ : ∀{A B}
(b : Term (Γ , A) B)
→ Term Γ (`Π A B)
{- Value elimination -}
`var : ∀{A} → Var Γ A → Term Γ A
`if_`then_`else_ : ∀{C}
(b : Term Γ `Bool)
(c₁ c₂ : Term Γ C)
→ Term Γ C
_`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a))
`proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A
`proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab)))
`elim⊥ : ∀{A} → Term Γ `⊥ → Term Γ A
`elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ))
(pt : Term Γ (subT ⟦ eval P ⟧ `true))
(pf : Term Γ (subT ⟦ eval P ⟧ `false))
(b : Term Γ `Bool)
→ Term Γ (subT ⟦ eval P ⟧ (eval b))
----------------------------------------------------------------------
{- Type introduction -}
eval `⊥ = `⊥
eval `⊤ = `⊤
eval `Bool = `Bool
eval `Type = `Type
eval (`Π A B) = `Π (eval A) (eval B)
eval (`Σ A B) = `Σ (eval A) (eval B)
eval `⟦ A ⟧ = `⟦ eval A ⟧
{- Desc introduction -}
eval `⊤ᵈ = `⊤ᵈ
eval `Xᵈ = `Xᵈ
eval (`Πᵈ A D) = `Πᵈ (eval A) (eval D)
eval (`Σᵈ A D) = `Σᵈ (eval A) (eval D)
{- Value introduction -}
eval `tt = `tt
eval `true = `true
eval `false = `false
eval (a `, b) = eval a `, eval b
eval (`λ b) = `λ (eval b)
{- Value elimination -}
eval (`var i) = `neut (`var i)
eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂
eval (f `$ a) = eval f $ eval a
eval (`proj₁ ab) = proj₁ (eval ab)
eval (`proj₂ ab) = proj₂ (eval ab)
eval (`elim⊥ bot) = elim⊥ (eval bot)
eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b)
----------------------------------------------------------------------
|
module Spire.Operational where
----------------------------------------------------------------------
data Level : Set where
zero : Level
suc : Level → Level
----------------------------------------------------------------------
data Context : Set
data Type (Γ : Context) : Set
data Value (Γ : Context) : Type Γ → Set
data Neutral (Γ : Context) : Type Γ → Set
----------------------------------------------------------------------
data Context where
∅ : Context
_,_ : (Γ : Context) → Type Γ → Context
data Type Γ where
`⊥ `⊤ `Bool : Type Γ
`Desc `Type : (ℓ : Level) → Type Γ
`Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Type Γ
`⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ
`⟦_⟧ᵈ : ∀{ℓ} → Neutral Γ (`Desc ℓ) → Type Γ → Type Γ
----------------------------------------------------------------------
⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ
⟦_⟧ᵈ : ∀{Γ ℓ} → Value Γ (`Desc ℓ) → Type Γ → Type Γ
postulate
wknT : ∀{Γ A} → Type Γ → Type (Γ , A)
subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ
subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x)
data Var : (Γ : Context) (A : Type Γ) → Set where
here : ∀{Γ A} → Var (Γ , A) (wknT A)
there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A)
----------------------------------------------------------------------
data Value Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Desc `Type : ∀{ℓ} → Value Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ)
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ) → Value Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Value Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Value Γ (`Type ℓ))
(B : Value (Γ , ⟦ A ⟧) (`Desc (suc ℓ)))
→ Value Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Value Γ `⊤
`true `false : Value Γ `Bool
_`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B)
`λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (⟦ D ⟧ᵈ (`μ D)) → Value Γ (`μ D)
`neut : ∀{A} → Neutral Γ A → Value Γ A
----------------------------------------------------------------------
data Neutral Γ where
{- Value elimination -}
`var : ∀{A} → Var Γ A → Neutral Γ A
`if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C
`elim⊥ : ∀{A} → Neutral Γ `⊥ → Neutral Γ A
`elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b))
`proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A
`proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab)))
_`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a)
----------------------------------------------------------------------
⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧
⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧
⟦ `⊥ ⟧ = `⊥
⟦ `⊤ ⟧ = `⊤
⟦ `Bool ⟧ = `Bool
⟦ `μ D ⟧ = `μ D
⟦ `Type {zero} ⟧ = `⊥
⟦ `Type {suc ℓ} ⟧ = `Type ℓ
⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧
⟦ `Desc {ℓ} ⟧ = `Desc ℓ
⟦ `⟦ D ⟧ᵈ X ⟧ = ⟦ D ⟧ᵈ ⟦ X ⟧
⟦ `neut A ⟧ = `⟦ A ⟧
----------------------------------------------------------------------
⟦ `⊤ᵈ ⟧ᵈ X = `⊤
⟦ `Xᵈ ⟧ᵈ X = X
⟦ `Πᵈ A D ⟧ᵈ X = `Π ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `Σᵈ A D ⟧ᵈ X = `Σ ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `neut D ⟧ᵈ X = `⟦ D ⟧ᵈ X
----------------------------------------------------------------------
elim⊥ : ∀{Γ A} → Value Γ `⊥ → Value Γ A
elim⊥ (`neut bot) = `neut (`elim⊥ bot)
----------------------------------------------------------------------
if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C
if `true then c₁ else c₂ = c₁
if `false then c₁ else c₂ = c₂
if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂)
elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Value Γ `Bool)
→ Value Γ (subT ⟦ P ⟧ b)
elimBool P pt pf `true = pt
elimBool P pt pf `false = pf
elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b)
----------------------------------------------------------------------
proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A
proj₁ (a `, b) = a
proj₁ (`neut ab) = `neut (`proj₁ ab)
proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab))
proj₂ (a `, b) = b
proj₂ (`neut ab) = `neut (`proj₂ ab)
----------------------------------------------------------------------
_$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a)
`λ b $ a = subV b a
`neut f $ a = `neut (f `$ a)
----------------------------------------------------------------------
data Term (Γ : Context) : Type Γ → Set
eval : ∀{Γ A} → Term Γ A → Value Γ A
data Term Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ)
`μ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ) → Term Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Term Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Term Γ (`Type ℓ))
(D : Term (Γ , ⟦ eval A ⟧) (`Desc (suc ℓ)))
→ Term Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Term Γ `⊤
`true `false : Term Γ `Bool
_`,_ : ∀{A B}
(a : Term Γ A) (b : Term Γ (subT B (eval a)))
→ Term Γ (`Σ A B)
`λ : ∀{A B}
(b : Term (Γ , A) B)
→ Term Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (⟦ D ⟧ᵈ (`μ D)) → Term Γ (`μ D)
{- Value elimination -}
`var : ∀{A} → Var Γ A → Term Γ A
`if_`then_`else_ : ∀{C}
(b : Term Γ `Bool)
(c₁ c₂ : Term Γ C)
→ Term Γ C
_`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a))
`proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A
`proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab)))
`elim⊥ : ∀{A} → Term Γ `⊥ → Term Γ A
`elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ))
(pt : Term Γ (subT ⟦ eval P ⟧ `true))
(pf : Term Γ (subT ⟦ eval P ⟧ `false))
(b : Term Γ `Bool)
→ Term Γ (subT ⟦ eval P ⟧ (eval b))
----------------------------------------------------------------------
{- Type introduction -}
eval `⊥ = `⊥
eval `⊤ = `⊤
eval `Bool = `Bool
eval `Type = `Type
eval (`Π A B) = `Π (eval A) (eval B)
eval (`Σ A B) = `Σ (eval A) (eval B)
eval (`μ D) = `μ (eval D)
eval `⟦ A ⟧ = `⟦ eval A ⟧
eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X)
{- Desc introduction -}
eval `⊤ᵈ = `⊤ᵈ
eval `Xᵈ = `Xᵈ
eval (`Πᵈ A D) = `Πᵈ (eval A) (eval D)
eval (`Σᵈ A D) = `Σᵈ (eval A) (eval D)
{- Value introduction -}
eval `tt = `tt
eval `true = `true
eval `false = `false
eval (a `, b) = eval a `, eval b
eval (`λ b) = `λ (eval b)
eval (`con x) = `con (eval x)
{- Value elimination -}
eval (`var i) = `neut (`var i)
eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂
eval (f `$ a) = eval f $ eval a
eval (`proj₁ ab) = proj₁ (eval ab)
eval (`proj₂ ab) = proj₂ (eval ab)
eval (`elim⊥ bot) = elim⊥ (eval bot)
eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b)
----------------------------------------------------------------------
|
Add Description introductions to operational semantics.
|
Add Description introductions to operational semantics.
|
Agda
|
bsd-3-clause
|
spire/spire
|
5d7647a9747da1890100da0dfd670ed16f37961a
|
Parametric/Change/Term.agda
|
Parametric/Change/Term.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply diff-base apply {base ι} = diff-base , apply
lift-diff-apply diff-base apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
lift-diff diff-base apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff-base apply {τ} {Γ})
lift-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply diff-base apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff-base apply {τ} {Γ})
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply diff-base apply-base {base ι} = diff-base , apply-base
lift-diff-apply diff-base apply-base {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply-base {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply-base {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply-base {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply-base {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
lift-diff diff-base apply-base = λ {τ Γ} →
proj₁ (lift-diff-apply diff-base apply-base {τ} {Γ})
lift-apply :
DiffStructure →
ApplyStructure →
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply diff-base apply-base = λ {τ Γ} →
proj₂ (lift-diff-apply diff-base apply-base {τ} {Γ})
|
Rename apply to apply-base.
|
Rename apply to apply-base.
Old-commit-hash: d8eae9079296e08a6b1db1db97ac5c9722947b28
|
Agda
|
mit
|
inc-lc/ilc-agda
|
abeda4b342c437d506e6e55cef2e20b34d09e7dd
|
Atlas/Change/Derive.agda
|
Atlas/Change/Derive.agda
|
module Atlas.Change.Derive where
open import Atlas.Syntax.Type
open import Atlas.Syntax.Term
open import Atlas.Change.Type
open import Atlas.Change.Term
ΔConst : ∀ {Γ Σ τ} → (c : Const Σ τ) →
Term Γ (internalizeContext (ΔContext′ Σ) (ΔType τ))
ΔConst true = false!
ΔConst false = false!
ΔConst xor = abs₄ (λ x Δx y Δy → xor! Δx Δy)
ΔConst empty = empty!
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
ΔConst update = abs₆ (λ k Δk v Δv m Δm →
insert (apply Δk k) (apply Δv v) (delete k v Δm))
-- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k)
-- ... | true = lookup k Δm
-- ... | false =
-- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm)
-- ⊝ lookup k m
--
-- Only the false-branch is implemented.
ΔConst lookup = abs₄ (λ k Δk m Δm →
let
k′ = apply Δk k
in
(diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m))
(lookup! k m)))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
ΔConst zip = abs₆ (λ f Δf m₁ Δm₁ m₂ Δm₂ →
let
g = abs (app₂ (weaken₁ Δf) (var this) nil-term)
in
zip4! g m₁ Δm₁ m₂ Δm₂)
-- Δfold f Δf z Δz m Δm = proj₂
-- (fold (λ k [a,Δa] [b,Δb] →
-- uncurry (λ a Δa → uncurry (λ b Δb →
-- pair (f k a b) (Δf k nil a Δa b Δb))
-- [b,Δb]) [a,Δa])
-- (pair z Δz)
-- (zip-pair m Δm))
--
-- Δfold is efficient only if evaluation is lazy and Δf is
-- self-maintainable: it doesn't look at the argument
-- (b = fold f k a b₀) at all.
ΔConst (fold {κ} {α} {β}) =
let -- TODO (tedius): write weaken₇
f = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that (that this))))))))
Δf = weaken₃ (weaken₃ (weaken₁
(var (that (that (that (that this)))))))
z = var (that (that (that this)))
Δz = var (that (that this))
m = var (that this)
Δm = var this
k = weaken₃ (weaken₁ (var (that (that this))))
[a,Δa] = var (that this)
[b,Δb] = var this
a = var (that (that (that this)))
Δa = var (that (that this))
b = var (that this)
Δb = var this
g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs
(pair (app₃ f k a b)
(app₆ Δf k nil-term a Δa b Δb))))
(weaken₂ [b,Δb])))) [a,Δa])))
proj₂ = uncurry (abs (abs (var this)))
in
abs (abs (abs (abs (abs (abs
(proj₂ (fold! g (pair z Δz) (zip-pair m Δm))))))))
|
module Atlas.Change.Derive where
open import Atlas.Syntax.Type
open import Atlas.Syntax.Term
open import Atlas.Change.Type
open import Atlas.Change.Term
ΔConst : ∀ {Γ Σ τ} →
Const Σ τ →
Terms (ΔContext Γ) (ΔContext Σ) →
Term (ΔContext Γ) (ΔType τ)
ΔConst true ∅ = false!
ΔConst false ∅ = false!
ΔConst xor (Δx • x • Δy • y • ∅) = xor! Δx Δy
ΔConst empty ∅ = empty!
-- If k ⊕ Δk ≡ k, then
-- Δupdate k Δk v Δv m Δm = update k Δv Δm
-- else it is a deletion followed by insertion:
-- Δupdate k Δk v Δv m Δm =
-- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm)
--
-- We implement the else-branch only for the moment.
ΔConst (update {κ} {ι}) (Δk • k • Δv • v • Δm • m • ∅) =
insert (apply {base κ} Δk k) (apply {base ι} Δv v) (delete k v Δm)
-- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k)
-- ... | true = lookup k Δm
-- ... | false =
-- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm)
-- ⊝ lookup k m
--
-- Only the false-branch is implemented.
ΔConst (lookup {κ} {ι}) (Δk • k • Δm • m • ∅) =
let
k′ = apply {base κ} Δk k
in
(diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m))
(lookup! k m))
-- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f)
--
-- ... | true =
-- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂)
-- Δm₁ Δm₂
--
-- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂
--
-- we implement the false-branch for the moment.
ΔConst zip (Δf • f • Δm₁ • m₁ • Δm₂ • m₂ • ∅) =
let
g = abs (app₂ (weaken₁ Δf) (var this) nil-term)
in
zip4! g m₁ Δm₁ m₂ Δm₂
-- Δfold f Δf z Δz m Δm = proj₂
-- (fold (λ k [a,Δa] [b,Δb] →
-- uncurry (λ a Δa → uncurry (λ b Δb →
-- pair (f k a b) (Δf k nil a Δa b Δb))
-- [b,Δb]) [a,Δa])
-- (pair z Δz)
-- (zip-pair m Δm))
--
-- Δfold is efficient only if evaluation is lazy and Δf is
-- self-maintainable: it doesn't look at the argument
-- (b = fold f k a b₀) at all.
ΔConst (fold {κ} {α} {β}) (Δf′ • f′ • Δz • z • Δm • m • ∅) =
let -- TODO (tedius): write weaken₇
f = weaken₃ (weaken₃ (weaken₁
f′))
Δf = weaken₃ (weaken₃ (weaken₁
Δf′))
k = weaken₃ (weaken₁ (var (that (that this))))
[a,Δa] = var (that this)
[b,Δb] = var this
a = var (that (that (that this)))
Δa = var (that (that this))
b = var (that this)
Δb = var this
g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs
(pair (app₃ f k a b)
(app₆ Δf k nil-term a Δa b Δb))))
(weaken₂ [b,Δb])))) [a,Δa])))
proj₂ = uncurry (abs (abs (var this)))
in
proj₂ (fold! g (pair z Δz) (zip-pair m Δm))
|
Convert ΔConst to new derivation interface.
|
Convert ΔConst to new derivation interface.
Old-commit-hash: 7b59661ce496b2c2659e20c6f9c4f528ddbd6102
|
Agda
|
mit
|
inc-lc/ilc-agda
|
6d4ce38ab949f2a79c7caa46d5283b91888d5b61
|
FunUniverse/Fin.agda
|
FunUniverse/Fin.agda
|
{-# OPTIONS --without-K #-}
module FunUniverse.Fin where
open import Type
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import FunUniverse.Data
open import FunUniverse.Core
_→ᶠ_ : ℕ → ℕ → ★
_→ᶠ_ i o = Fin i → Fin o
finFunU : FunUniverse ℕ
finFunU = Fin-U , _→ᶠ_
module FinFunUniverse = FunUniverse finFunU
|
{-# OPTIONS --without-K #-}
module FunUniverse.Fin where
open import Type
open import Function
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import FunUniverse.Data
open import FunUniverse.Core
open import FunUniverse.Category
open import FunUniverse.Rewiring.Linear
_→ᶠ_ : ℕ → ℕ → ★
_→ᶠ_ i o = Fin i → Fin o
finFunU : FunUniverse ℕ
finFunU = Fin-U , _→ᶠ_
module FinFunUniverse = FunUniverse finFunU
finCat : Category _→ᶠ_
finCat = id , _∘′_
{-
finLin : LinRewiring finFunU
finLin = mk finCat {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}
-}
|
add finCat
|
FunUniverse.Fin: add finCat
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
f53c070dcba6e92a79746f5762bb453a510cf059
|
README.agda
|
README.agda
|
module README where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
-- The formalization is split across the following files.
-- Note that we use two postulates currently:
-- 1. function extensionality (in
-- `Denotational.ExtensionalityPostulate`), known to be consistent
-- with intensional type theory.
--
-- 2. Temporarily, we use `diff-apply` as a postulate, which is only
-- true in a slightly weaker form, `diff-apply-proof` - we are
-- adapting the proofs to use the latter.
-- TODO: document them more.
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.ExtensionalityPostulate
open import Denotational.EqualityLemmas
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- This finishes the correctness proof of the above work.
open import total
-- EXAMPLES
open import Examples.Examples1
-- NATURAL semantics
open import Syntactic.Closures
open import Denotational.Closures
open import Natural.Lookup
open import Natural.Evaluation
open import Natural.Soundness
-- Other calculi
open import partial
open import lambda
|
module README where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
-- The formalization is split across the following files.
-- TODO: document them more.
-- Note that we use two postulates currently:
-- 1. function extensionality (in
-- `Denotational.ExtensionalityPostulate`), known to be consistent
-- with intensional type theory.
--
-- 2. Temporarily, we use `diff-apply` as a postulate, which is only
-- true in a slightly weaker form, `diff-apply-proof` - we are
-- adapting the proofs to use the latter.
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.ExtensionalityPostulate
open import Denotational.EqualityLemmas
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- This finishes the correctness proof of the above work.
open import total
-- EXAMPLES
open import Examples.Examples1
-- NATURAL semantics
open import Syntactic.Closures
open import Denotational.Closures
open import Natural.Lookup
open import Natural.Evaluation
open import Natural.Soundness
-- Other calculi
open import partial
open import lambda
|
comment fix
|
agda: comment fix
Old-commit-hash: d5ff611d7aaf67a4b7821fedb255e43d07c53504
|
Agda
|
mit
|
inc-lc/ilc-agda
|
2cf425c915364c989a28b50e75f8d096d98a2b30
|
total.agda
|
total.agda
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ (abs t)
≈⟨ Δ-abs t ⟩
abs (abs (Δ {τ • Γ₁} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩
abs (abs (derive-term {τ • Γ₁} t))
≡⟨⟩
derive-term (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ (app t₁ t₂)
≈⟨ Δ-app t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧Var ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = ext-t (λ ρ →
begin
⟦ Δ (if t₁ t₂ t₃) ⟧Term ρ
≡⟨⟩
diff
(⟦ if t₁ t₂ t₃ ⟧Term (update (⟦ Γ′ ⟧ ρ)))
(⟦ if t₁ t₂ t₃ ⟧Term (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ {!!} ⟩
⟦ derive-term (if t₁ t₂ t₃) ⟧ ρ
∎) where open ≡-Reasoning
derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ (abs t)
≈⟨ Δ-abs t ⟩
abs (abs (Δ {τ • Γ₁} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩
abs (abs (derive-term {τ • Γ₁} t))
≡⟨⟩
derive-term (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ (app t₁ t₂)
≈⟨ Δ-app t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧Var ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct {{Γ′}} (if t₁ t₂ t₃) =
begin
Δ (if t₁ t₂ t₃)
≈⟨ {!!} ⟩
if (derive-term t₁ and lift-term {{Γ′}} t₁)
(diff-term
(apply-term (derive-term t₃)
(lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂))
(if (derive-term t₁ and (lift-term {{Γ′}} (! t₁)))
(diff-term
(apply-term (derive-term t₂)
(lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))
(if (lift-term {{Γ′}} t₁)
(derive-term t₂)
(derive-term t₃)))
≡⟨⟩
derive-term {{Γ′}} (if t₁ t₂ t₃)
∎ where open ≈-Reasoning
derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
|
Prepare for using ≈-Reasoning to prove derive-term-correct (see #25).
|
Prepare for using ≈-Reasoning to prove derive-term-correct (see #25).
Old-commit-hash: b0ca315e1dcaa44e39fdfa67bb29e1da512641a6
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5084db0b3e01eca253b247da48daf55234039968
|
derivation.agda
|
derivation.agda
|
module derivation where
open import lambda
-- KO: Is it correct that this file is supposed to contain the syntactic
-- variants of the operations in Changes.agda?
-- If so, why does it have a different (and rather strange) Δ-Type definition?
-- Why are the base cases (bool) all missing? The inductive cases look
-- boring since they don't actually do anything (which explains why compose and apply are the same)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
Δ-Type bool = {!!}
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
apply {bool} = {!!}
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app (compose {τ₂}) (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
compose {bool} = {!!}
nil : ∀ {τ Γ} → Term Γ (Δ-Type τ)
nil {τ₁ ⇒ τ₂} =
abs (nil {τ₂})
-- λx. nil
nil {bool} = {!!}
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ
-- CHANGE VARIABLES
-- changes 'x' to 'dx'
rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
rename this = that this
rename (that x) = that (that (rename x))
-- Weakening of a term needed during derivation - change x to x in a context which also includes dx.
-- The actual specification is more complicated, study the type signature.
adaptVar : ∀ {τ} Γ₁ Γ₂ → Var (Γ₁ ⋎ Γ₂) τ → Var (Γ₁ ⋎ Δ-Context Γ₂) τ
adaptVar ∅ (τ₂ • Γ₂) this = this
adaptVar ∅ (τ₂ • Γ₂) (that x) = that (that (adaptVar ∅ Γ₂ x))
adaptVar (τ₁ • Γ₁) Γ₂ this = this
adaptVar (τ₁ • Γ₁) Γ₂ (that x) = that (adaptVar Γ₁ Γ₂ x)
adapt : ∀ {τ} Γ₁ Γ₂ → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) τ
adapt {τ₁ ⇒ τ₂} Γ₁ Γ₂ (abs t) = abs (adapt (τ₁ • Γ₁) Γ₂ t)
adapt Γ₁ Γ₂ (app t₁ t₂) = app (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂)
adapt Γ₁ Γ₂ (var t) = var (adaptVar Γ₁ Γ₂ t)
adapt Γ₁ Γ₂ true = true
adapt Γ₁ Γ₂ false = false
adapt Γ₁ Γ₂ (cond tc t₁ t₂) = cond (adapt Γ₁ Γ₂ tc) (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂)
-- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound)
Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ)
Δ-var {∅} x = var (rename x)
Δ-var {τ • Γ} this = nil {τ}
Δ-var {τ • Γ} (that x) = Δ-var {Γ} x
-- Note: this should be the derivative with respect to the first variable.
nabla : ∀ {Γ τ₁ τ₂} → (t₀ : Term Γ (τ₁ ⇒ τ₂)) → Term Γ (τ₁ ⇒ Δ-Type τ₁ ⇒ Δ-Type τ₂)
nabla = {!!}
-- CHANGE TERMS
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
-- To recheck: which is the order in which to apply the changes? When I did my live proof to Klaus, I came up with this order:
-- (Δ-term t₁) (t₂ ⊕ (Δ-term t₂)) ∘ (∇ t₁) t₂ (Δ-term t₂)
-- corresponding to:
Δ-term {Γ₁} {Γ₂} {τ} (app t₁ t₂) = app (app (compose {τ}) (app (Δ-term {Γ₁} t₁) (app (app apply (Δ-term {Γ₁} {Γ₂} t₂)) (adapt Γ₁ Γ₂ t₂))))
(app (adapt Γ₁ Γ₂ (app (nabla {Γ₁ ⋎ Γ₂} t₁) t₂)) (Δ-term {Γ₁} {Γ₂} t₂))
Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
Δ-term {Γ} true = {!!}
Δ-term {Γ} false = {!!}
Δ-term {Γ} (cond t₁ t₂ t₃) = {!!}
|
module derivation where
open import lambda
-- KO: Is it correct that this file is supposed to contain the syntactic
-- variants of the operations in Syntactic.Changes.agda?
-- If so, why does it have a different (and rather strange) Δ-Type definition?
-- Why are the base cases (bool) all missing? The inductive cases look
-- boring since they don't actually do anything (which explains why compose and apply are the same)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
Δ-Type bool = {!!}
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
apply {bool} = {!!}
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app (compose {τ₂}) (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
compose {bool} = {!!}
nil : ∀ {τ Γ} → Term Γ (Δ-Type τ)
nil {τ₁ ⇒ τ₂} =
abs (nil {τ₂})
-- λx. nil
nil {bool} = {!!}
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ
-- CHANGE VARIABLES
-- changes 'x' to 'dx'
rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ)
rename this = that this
rename (that x) = that (that (rename x))
-- Weakening of a term needed during derivation - change x to x in a context which also includes dx.
-- The actual specification is more complicated, study the type signature.
adaptVar : ∀ {τ} Γ₁ Γ₂ → Var (Γ₁ ⋎ Γ₂) τ → Var (Γ₁ ⋎ Δ-Context Γ₂) τ
adaptVar ∅ (τ₂ • Γ₂) this = this
adaptVar ∅ (τ₂ • Γ₂) (that x) = that (that (adaptVar ∅ Γ₂ x))
adaptVar (τ₁ • Γ₁) Γ₂ this = this
adaptVar (τ₁ • Γ₁) Γ₂ (that x) = that (adaptVar Γ₁ Γ₂ x)
adapt : ∀ {τ} Γ₁ Γ₂ → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) τ
adapt {τ₁ ⇒ τ₂} Γ₁ Γ₂ (abs t) = abs (adapt (τ₁ • Γ₁) Γ₂ t)
adapt Γ₁ Γ₂ (app t₁ t₂) = app (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂)
adapt Γ₁ Γ₂ (var t) = var (adaptVar Γ₁ Γ₂ t)
adapt Γ₁ Γ₂ true = true
adapt Γ₁ Γ₂ false = false
adapt Γ₁ Γ₂ (cond tc t₁ t₂) = cond (adapt Γ₁ Γ₂ tc) (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂)
-- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound)
Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ)
Δ-var {∅} x = var (rename x)
Δ-var {τ • Γ} this = nil {τ}
Δ-var {τ • Γ} (that x) = Δ-var {Γ} x
-- Note: this should be the derivative with respect to the first variable.
nabla : ∀ {Γ τ₁ τ₂} → (t₀ : Term Γ (τ₁ ⇒ τ₂)) → Term Γ (τ₁ ⇒ Δ-Type τ₁ ⇒ Δ-Type τ₂)
nabla = {!!}
-- CHANGE TERMS
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
-- To recheck: which is the order in which to apply the changes? When I did my live proof to Klaus, I came up with this order:
-- (Δ-term t₁) (t₂ ⊕ (Δ-term t₂)) ∘ (∇ t₁) t₂ (Δ-term t₂)
-- corresponding to:
Δ-term {Γ₁} {Γ₂} {τ} (app t₁ t₂) = app (app (compose {τ}) (app (Δ-term {Γ₁} t₁) (app (app apply (Δ-term {Γ₁} {Γ₂} t₂)) (adapt Γ₁ Γ₂ t₂))))
(app (adapt Γ₁ Γ₂ (app (nabla {Γ₁ ⋎ Γ₂} t₁) t₂)) (Δ-term {Γ₁} {Γ₂} t₂))
Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
Δ-term {Γ} true = {!!}
Δ-term {Γ} false = {!!}
Δ-term {Γ} (cond t₁ t₂ t₃) = {!!}
|
Update derivation.agda
|
Update derivation.agda
typo
Old-commit-hash: 719b7f355a6ddb5cacf3f0d3a90f563748f921a0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
0ea931fffedcc73acbb0013981dff55d1c0d69ce
|
Thesis/LangChanges.agda
|
Thesis/LangChanges.agda
|
module Thesis.LangChanges where
open import Thesis.Changes
open import Thesis.IntChanges
open import Thesis.Lang
open import Relation.Binary.PropositionalEquality
Chτ : (τ : Type) → Set
Chτ τ = ⟦ Δt τ ⟧Type
ΔΓ : Context → Context
ΔΓ ∅ = ∅
ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ
ChΓ : ∀ (Γ : Context) → Set
ChΓ Γ = ⟦ ΔΓ Γ ⟧Context
[_]τ_from_to_ : ∀ (τ : Type) → (dv : Chτ τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
isCompChangeStructureτ : ∀ τ → IsCompChangeStructure ⟦ τ ⟧Type ⟦ Δt τ ⟧Type [ τ ]τ_from_to_
changeStructureτ : ∀ τ → ChangeStructure ⟦ τ ⟧Type
changeStructureτ τ = record { isCompChangeStructure = isCompChangeStructureτ τ }
instance
ichangeStructureτ : ∀ {τ} → ChangeStructure ⟦ τ ⟧Type
ichangeStructureτ {τ} = changeStructureτ τ
[ σ ⇒ τ ]τ df from f1 to f2 =
∀ (da : Chτ σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ]τ da from a1 to a2 → [ τ ]τ df a1 da from f1 a1 to f2 a2
[ int ]τ dv from v1 to v2 = v1 + dv ≡ v2
[ pair σ τ ]τ (da , db) from (a1 , b1) to (a2 , b2) = [ σ ]τ da from a1 to a2 × [ τ ]τ db from b1 to b2
[ sum σ τ ]τ dv from v1 to v2 = sch_from_to_ dv v1 v2
isCompChangeStructureτ (σ ⇒ τ) = ChangeStructure.isCompChangeStructure (funCS {{changeStructureτ σ}} {{changeStructureτ τ}})
isCompChangeStructureτ int = ChangeStructure.isCompChangeStructure intCS
isCompChangeStructureτ (pair σ τ) = ChangeStructure.isCompChangeStructure (pairCS {{changeStructureτ σ}} {{changeStructureτ τ}})
isCompChangeStructureτ (sum σ τ) = ChangeStructure.isCompChangeStructure ((sumCS {{changeStructureτ σ}} {{changeStructureτ τ}}))
open import Data.Unit
-- We can define an alternative semantics for contexts, that defines environments as nested products:
⟦_⟧Context-prod : Context → Set
⟦ ∅ ⟧Context-prod = ⊤
⟦ τ • Γ ⟧Context-prod = ⟦ τ ⟧Type × ⟦ Γ ⟧Context-prod
-- And define a change structure for such environments, reusing the change
-- structure constructor for pairs. However, this change structure does not
-- duplicate base values in the environment. We probably *could* define a
-- different change structure for pairs that gives the right result.
changeStructureΓ-old : ∀ Γ → ChangeStructure ⟦ Γ ⟧Context-prod
changeStructureΓ-old ∅ = unitCS
changeStructureΓ-old (τ • Γ) = pairCS {{changeStructureτ τ}} {{changeStructureΓ-old Γ}}
data [_]Γ_from_to_ : ∀ Γ → ChΓ Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ]τ dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
module _ where
_e⊕_ : ∀ {Γ} → ⟦ Γ ⟧Context → ChΓ Γ → ⟦ Γ ⟧Context
_e⊕_ ∅ ∅ = ∅
_e⊕_ (_ • ρ) (dv • v • dρ) = v ⊕ dv • ρ e⊕ dρ
_e⊝_ : ∀ {Γ} → ⟦ Γ ⟧Context → ⟦ Γ ⟧Context → ChΓ Γ
_e⊝_ ∅ ∅ = ∅
_e⊝_ (v₂ • ρ₂) (v₁ • ρ₁) = v₂ ⊝ v₁ • v₁ • ρ₂ e⊝ ρ₁
isEnvCompCS : ∀ Γ → IsCompChangeStructure ⟦ Γ ⟧Context (ChΓ Γ) [ Γ ]Γ_from_to_
efromto→⊕ : ∀ {Γ} (dρ : ChΓ Γ) (ρ1 ρ2 : ⟦ Γ ⟧Context) →
[ Γ ]Γ dρ from ρ1 to ρ2 → (ρ1 e⊕ dρ) ≡ ρ2
efromto→⊕ .∅ .∅ .∅ v∅ = refl
efromto→⊕ .(_ • _ • _) .(_ • _) .(_ • _) (dvv v• dρρ) =
cong₂ _•_ (fromto→⊕ _ _ _ dvv) (efromto→⊕ _ _ _ dρρ)
e⊝-fromto : ∀ {Γ} → (ρ1 ρ2 : ⟦ Γ ⟧Context) → [ Γ ]Γ ρ2 e⊝ ρ1 from ρ1 to ρ2
e⊝-fromto ∅ ∅ = v∅
e⊝-fromto (v1 • ρ1) (v2 • ρ2) = ⊝-fromto v1 v2 v• e⊝-fromto ρ1 ρ2
_e⊚[_]_ : ∀ {Γ} → ChΓ Γ → ⟦ Γ ⟧Context → ChΓ Γ → ChΓ Γ
_e⊚[_]_ {∅} ∅ ∅ ∅ = ∅
_e⊚[_]_ {τ • Γ} (dv1 • _ • dρ1) (v1 • ρ1) (dv2 • _ • dρ2) = (dv1 ⊚[ v1 ] dv2) • v1 • (dρ1 e⊚[ ρ1 ] dρ2)
e⊚-fromto : ∀ Γ → (ρ1 ρ2 ρ3 : ⟦ Γ ⟧Context) (dρ1 dρ2 : ChΓ Γ) →
[ Γ ]Γ dρ1 from ρ1 to ρ2 →
[ Γ ]Γ dρ2 from ρ2 to ρ3 → [ Γ ]Γ (dρ1 e⊚[ ρ1 ] dρ2) from ρ1 to ρ3
e⊚-fromto ∅ ∅ ∅ ∅ ∅ ∅ v∅ v∅ = v∅
e⊚-fromto (τ • Γ) (v1 • ρ1) (v2 • ρ2) (v3 • ρ3)
(dv1 • (.v1 • dρ1)) (dv2 • (.v2 • dρ2))
(dvv1 v• dρρ1) (dvv2 v• dρρ2) =
⊚-fromto v1 v2 v3 dv1 dv2 dvv1 dvv2
v•
e⊚-fromto Γ ρ1 ρ2 ρ3 dρ1 dρ2 dρρ1 dρρ2
isEnvCompCS Γ = record
{ isChangeStructure = record
{ _⊕_ = _e⊕_
; fromto→⊕ = efromto→⊕
; _⊝_ = _e⊝_
; ⊝-fromto = e⊝-fromto
}
; _⊚[_]_ = _e⊚[_]_
; ⊚-fromto = e⊚-fromto Γ
}
changeStructureΓ : ∀ Γ → ChangeStructure ⟦ Γ ⟧Context
changeStructureΓ Γ = record { isCompChangeStructure = isEnvCompCS Γ }
instance
ichangeStructureΓ : ∀ {Γ} → ChangeStructure ⟦ Γ ⟧Context
ichangeStructureΓ {Γ} = changeStructureΓ Γ
changeStructureΓτ : ∀ Γ τ → ChangeStructure (⟦ Γ ⟧Context → ⟦ τ ⟧Type)
changeStructureΓτ Γ τ = funCS
instance
ichangeStructureΓτ : ∀ {Γ τ} → ChangeStructure (⟦ Γ ⟧Context → ⟦ τ ⟧Type)
ichangeStructureΓτ {Γ} {τ} = changeStructureΓτ Γ τ
|
module Thesis.LangChanges where
open import Thesis.Changes
open import Thesis.IntChanges
open import Thesis.Lang
open import Relation.Binary.PropositionalEquality
Chτ : (τ : Type) → Set
Chτ τ = ⟦ Δt τ ⟧Type
ΔΓ : Context → Context
ΔΓ ∅ = ∅
ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ
ChΓ : ∀ (Γ : Context) → Set
ChΓ Γ = ⟦ ΔΓ Γ ⟧Context
[_]τ_from_to_ : ∀ (τ : Type) → (dv : Chτ τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
isCompChangeStructureτ : ∀ τ → IsCompChangeStructure ⟦ τ ⟧Type ⟦ Δt τ ⟧Type [ τ ]τ_from_to_
changeStructureτ : ∀ τ → ChangeStructure ⟦ τ ⟧Type
changeStructureτ τ = record { isCompChangeStructure = isCompChangeStructureτ τ }
instance
ichangeStructureτ : ∀ {τ} → ChangeStructure ⟦ τ ⟧Type
ichangeStructureτ {τ} = changeStructureτ τ
[ σ ⇒ τ ]τ df from f1 to f2 =
∀ (da : Chτ σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ]τ da from a1 to a2 → [ τ ]τ df a1 da from f1 a1 to f2 a2
[ int ]τ dv from v1 to v2 = v1 + dv ≡ v2
[ pair σ τ ]τ (da , db) from (a1 , b1) to (a2 , b2) = [ σ ]τ da from a1 to a2 × [ τ ]τ db from b1 to b2
[ sum σ τ ]τ dv from v1 to v2 = sch_from_to_ dv v1 v2
isCompChangeStructureτ (σ ⇒ τ) = ChangeStructure.isCompChangeStructure (funCS {{changeStructureτ σ}} {{changeStructureτ τ}})
isCompChangeStructureτ int = ChangeStructure.isCompChangeStructure intCS
isCompChangeStructureτ (pair σ τ) = ChangeStructure.isCompChangeStructure (pairCS {{changeStructureτ σ}} {{changeStructureτ τ}})
isCompChangeStructureτ (sum σ τ) = ChangeStructure.isCompChangeStructure ((sumCS {{changeStructureτ σ}} {{changeStructureτ τ}}))
open import Data.Unit
-- We can define an alternative semantics for contexts, that defines environments as nested products:
⟦_⟧Context-prod : Context → Set
⟦ ∅ ⟧Context-prod = ⊤
⟦ τ • Γ ⟧Context-prod = ⟦ τ ⟧Type × ⟦ Γ ⟧Context-prod
-- And define a change structure for such environments, reusing the change
-- structure constructor for pairs. However, this change structure does not
-- duplicate base values in the environment. We probably *could* define a
-- different change structure for pairs that gives the right result.
changeStructureΓ-old : ∀ Γ → ChangeStructure ⟦ Γ ⟧Context-prod
changeStructureΓ-old ∅ = unitCS
changeStructureΓ-old (τ • Γ) = pairCS {{changeStructureτ τ}} {{changeStructureΓ-old Γ}}
data [_]Γ_from_to_ : ∀ Γ → ChΓ Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ]τ dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
module _ where
_e⊕_ : ∀ {Γ} → ⟦ Γ ⟧Context → ChΓ Γ → ⟦ Γ ⟧Context
_e⊕_ ∅ ∅ = ∅
_e⊕_ (v • ρ) (dv • _ • dρ) = v ⊕ dv • ρ e⊕ dρ
_e⊝_ : ∀ {Γ} → ⟦ Γ ⟧Context → ⟦ Γ ⟧Context → ChΓ Γ
_e⊝_ ∅ ∅ = ∅
_e⊝_ (v₂ • ρ₂) (v₁ • ρ₁) = v₂ ⊝ v₁ • v₁ • ρ₂ e⊝ ρ₁
isEnvCompCS : ∀ Γ → IsCompChangeStructure ⟦ Γ ⟧Context (ChΓ Γ) [ Γ ]Γ_from_to_
efromto→⊕ : ∀ {Γ} (dρ : ChΓ Γ) (ρ1 ρ2 : ⟦ Γ ⟧Context) →
[ Γ ]Γ dρ from ρ1 to ρ2 → (ρ1 e⊕ dρ) ≡ ρ2
efromto→⊕ .∅ .∅ .∅ v∅ = refl
efromto→⊕ .(_ • _ • _) .(_ • _) .(_ • _) (dvv v• dρρ) =
cong₂ _•_ (fromto→⊕ _ _ _ dvv) (efromto→⊕ _ _ _ dρρ)
e⊝-fromto : ∀ {Γ} → (ρ1 ρ2 : ⟦ Γ ⟧Context) → [ Γ ]Γ ρ2 e⊝ ρ1 from ρ1 to ρ2
e⊝-fromto ∅ ∅ = v∅
e⊝-fromto (v1 • ρ1) (v2 • ρ2) = ⊝-fromto v1 v2 v• e⊝-fromto ρ1 ρ2
_e⊚[_]_ : ∀ {Γ} → ChΓ Γ → ⟦ Γ ⟧Context → ChΓ Γ → ChΓ Γ
_e⊚[_]_ {∅} ∅ ∅ ∅ = ∅
_e⊚[_]_ {τ • Γ} (dv1 • _ • dρ1) (v1 • ρ1) (dv2 • _ • dρ2) = (dv1 ⊚[ v1 ] dv2) • v1 • (dρ1 e⊚[ ρ1 ] dρ2)
e⊚-fromto : ∀ Γ → (ρ1 ρ2 ρ3 : ⟦ Γ ⟧Context) (dρ1 dρ2 : ChΓ Γ) →
[ Γ ]Γ dρ1 from ρ1 to ρ2 →
[ Γ ]Γ dρ2 from ρ2 to ρ3 → [ Γ ]Γ (dρ1 e⊚[ ρ1 ] dρ2) from ρ1 to ρ3
e⊚-fromto ∅ ∅ ∅ ∅ ∅ ∅ v∅ v∅ = v∅
e⊚-fromto (τ • Γ) (v1 • ρ1) (v2 • ρ2) (v3 • ρ3)
(dv1 • (.v1 • dρ1)) (dv2 • (.v2 • dρ2))
(dvv1 v• dρρ1) (dvv2 v• dρρ2) =
⊚-fromto v1 v2 v3 dv1 dv2 dvv1 dvv2
v•
e⊚-fromto Γ ρ1 ρ2 ρ3 dρ1 dρ2 dρρ1 dρρ2
isEnvCompCS Γ = record
{ isChangeStructure = record
{ _⊕_ = _e⊕_
; fromto→⊕ = efromto→⊕
; _⊝_ = _e⊝_
; ⊝-fromto = e⊝-fromto
}
; _⊚[_]_ = _e⊚[_]_
; ⊚-fromto = e⊚-fromto Γ
}
changeStructureΓ : ∀ Γ → ChangeStructure ⟦ Γ ⟧Context
changeStructureΓ Γ = record { isCompChangeStructure = isEnvCompCS Γ }
instance
ichangeStructureΓ : ∀ {Γ} → ChangeStructure ⟦ Γ ⟧Context
ichangeStructureΓ {Γ} = changeStructureΓ Γ
changeStructureΓτ : ∀ Γ τ → ChangeStructure (⟦ Γ ⟧Context → ⟦ τ ⟧Type)
changeStructureΓτ Γ τ = funCS
instance
ichangeStructureΓτ : ∀ {Γ τ} → ChangeStructure (⟦ Γ ⟧Context → ⟦ τ ⟧Type)
ichangeStructureΓτ {Γ} {τ} = changeStructureΓτ Γ τ
|
Revert "Show we can define e⊕ using base values in changes"
|
Revert "Show we can define e⊕ using base values in changes"
That was a demonstration, but the old definition is the one I prefer.
This reverts commit 47190645cc58ddea24ef59e6877fda0473ae4818.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
4c8990f1323496415af84ce8c49e276f0c366745
|
Base/Syntax/Context.agda
|
Base/Syntax/Context.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Variables and contexts
--
-- This module defines the syntax of contexts, prefixes of
-- contexts and variables and properties of these notions.
--
-- This module is parametric in the syntax of types, so it
-- can be reused for different calculi.
--
------------------------------------------------------------------------
module Base.Syntax.Context
(Type : Set)
where
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- TYPING CONTEXTS
-- Syntax
import Data.List as List
open List public
using ()
renaming
( [] to ∅ ; _∷_ to _•_
; map to mapContext
)
Context : Set
Context = List.List Type
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ
-- WEAKENING
-- CONTEXT PREFIXES
--
-- Useful for making lemmas strong enough to prove by induction.
--
-- Consider using the Subcontexts module instead.
module Prefixes where
-- Prefix of a context
data Prefix : Context → Set where
∅ : ∀ {Γ} → Prefix Γ
_•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ)
-- take only the prefix of a context
take : (Γ : Context) → Prefix Γ → Context
take Γ ∅ = ∅
take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′
-- drop the prefix of a context
drop : (Γ : Context) → Prefix Γ → Context
drop Γ ∅ = Γ
drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₂ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂)
take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ
take-drop ∅ ∅ = refl
take-drop (τ • Γ) ∅ = refl
take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl
or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ
or-unit ∅ = refl
or-unit (τ • Γ) rewrite or-unit Γ = refl
move-prefix : ∀ Γ τ Γ′ →
Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′
move-prefix ∅ τ Γ′ = refl
move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅)))
move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- SUBCONTEXTS
--
-- Useful as a reified weakening operation,
-- and for making theorems strong enough to prove by induction.
--
-- The contents of this module are currently exported at the end
-- of this file.
module Subcontexts where
infix 4 _≼_
data _≼_ : (Γ₁ Γ₂ : Context) → Set where
∅ : ∅ ≼ ∅
keep_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
τ • Γ₁ ≼ τ • Γ₂
drop_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
Γ₁ ≼ τ • Γ₂
-- Properties
∅≼Γ : ∀ {Γ} → ∅ ≼ Γ
∅≼Γ {∅} = ∅
∅≼Γ {τ • Γ} = drop τ • ∅≼Γ
≼-refl : Reflexive _≼_
≼-refl {∅} = ∅
≼-refl {τ • Γ} = keep τ • ≼-refl
≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂
≼-reflexive refl = ≼-refl
≼-trans : Transitive _≼_
≼-trans ≼₁ ∅ = ≼₁
≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂
≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-isPreorder : IsPreorder _≡_ _≼_
≼-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≼-reflexive
; trans = ≼-trans
}
≼-preorder : Preorder _ _ _
≼-preorder = record
{ Carrier = Context
; _≈_ = _≡_
; _∼_ = _≼_
; isPreorder = ≼-isPreorder
}
module ≼-Reasoning where
open import Relation.Binary.PreorderReasoning ≼-preorder public
renaming
( _≈⟨_⟩_ to _≡⟨_⟩_
; _∼⟨_⟩_ to _≼⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
-- Lift a variable to a super context
weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
weaken-var (keep τ • ≼₁) this = this
weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x)
weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x)
-- Currently, we export the subcontext relation as well as the
-- definition of _⋎_.
open Subcontexts public
open Prefixes public using (_⋎_)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Variables and contexts
--
-- This module defines the syntax of contexts, prefixes of
-- contexts and variables and properties of these notions.
--
-- This module is parametric in the syntax of types, so it
-- can be reused for different calculi.
------------------------------------------------------------------------
module Base.Syntax.Context
(Type : Set)
where
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- Typing Contexts
-- ===============
import Data.List as List
open List public
using ()
renaming
( [] to ∅ ; _∷_ to _•_
; map to mapContext
)
Context : Set
Context = List.List Type
-- Variables
-- =========
--
-- Here it is clear that we are using de Bruijn indices,
-- encoded as natural numbers, more or less.
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ
-- Weakening
-- =========
--
-- We provide two approaches for weakening: context prefixes and
-- and subcontext relationship. In this formalization, we mostly
-- (maybe exclusively?) use the latter.
-- Context Prefixes
-- ----------------
--
-- Useful for making lemmas strong enough to prove by induction.
--
-- Consider using the Subcontexts module instead.
module Prefixes where
-- Prefix of a context
data Prefix : Context → Set where
∅ : ∀ {Γ} → Prefix Γ
_•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ)
-- take only the prefix of a context
take : (Γ : Context) → Prefix Γ → Context
take Γ ∅ = ∅
take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′
-- drop the prefix of a context
drop : (Γ : Context) → Prefix Γ → Context
drop Γ ∅ = Γ
drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₂ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂)
take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ
take-drop ∅ ∅ = refl
take-drop (τ • Γ) ∅ = refl
take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl
or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ
or-unit ∅ = refl
or-unit (τ • Γ) rewrite or-unit Γ = refl
move-prefix : ∀ Γ τ Γ′ →
Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′
move-prefix ∅ τ Γ′ = refl
move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅)))
move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Subcontexts
-- -----------
--
-- Useful as a reified weakening operation,
-- and for making theorems strong enough to prove by induction.
--
-- The contents of this module are currently exported at the end
-- of this file.
module Subcontexts where
infix 4 _≼_
data _≼_ : (Γ₁ Γ₂ : Context) → Set where
∅ : ∅ ≼ ∅
keep_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
τ • Γ₁ ≼ τ • Γ₂
drop_•_ : ∀ {Γ₁ Γ₂} →
(τ : Type) →
Γ₁ ≼ Γ₂ →
Γ₁ ≼ τ • Γ₂
-- Properties
∅≼Γ : ∀ {Γ} → ∅ ≼ Γ
∅≼Γ {∅} = ∅
∅≼Γ {τ • Γ} = drop τ • ∅≼Γ
≼-refl : Reflexive _≼_
≼-refl {∅} = ∅
≼-refl {τ • Γ} = keep τ • ≼-refl
≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂
≼-reflexive refl = ≼-refl
≼-trans : Transitive _≼_
≼-trans ≼₁ ∅ = ≼₁
≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂
≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂
≼-isPreorder : IsPreorder _≡_ _≼_
≼-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≼-reflexive
; trans = ≼-trans
}
≼-preorder : Preorder _ _ _
≼-preorder = record
{ Carrier = Context
; _≈_ = _≡_
; _∼_ = _≼_
; isPreorder = ≼-isPreorder
}
module ≼-Reasoning where
open import Relation.Binary.PreorderReasoning ≼-preorder public
renaming
( _≈⟨_⟩_ to _≡⟨_⟩_
; _∼⟨_⟩_ to _≼⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
-- Lift a variable to a super context
weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ
weaken-var (keep τ • ≼₁) this = this
weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x)
weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x)
-- Currently, we export the subcontext relation as well as the
-- definition of _⋎_.
open Subcontexts public
open Prefixes public using (_⋎_)
|
Improve commentary in Base.Syntax.Context.
|
Improve commentary in Base.Syntax.Context.
Old-commit-hash: 4886ab0c5f6e2cdc47142a8ae0c717890f449f93
|
Agda
|
mit
|
inc-lc/ilc-agda
|
a3b1db76fbdbf97e5638eca08c0475817ff1afca
|
lib/Algebra/Monoid.agda
|
lib/Algebra/Monoid.agda
|
{-# OPTIONS --without-K #-}
open import Type using () renaming (Type_ to Type)
open import Level.NP
open import Function.NP
open import Data.Product.NP
open import Data.Nat
using (ℕ; zero)
renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; suc to 1+_)
import Data.Nat.Properties.Simple as ℕ°
open import Data.Integer.NP
using (ℤ; +_; -[1+_]; _⊖_; -_; module ℤ°)
renaming ( _+_ to _+ℤ_; _-_ to _−ℤ_; _*_ to _*ℤ_
; suc to sucℤ; pred to predℤ
)
open import Relation.Binary.PropositionalEquality.NP renaming (_∙_ to _♦_)
import Algebra.FunctionProperties.Eq
open Algebra.FunctionProperties.Eq.Implicits
open ≡-Reasoning
module Algebra.Monoid where
record Monoid-Ops {ℓ} (M : Type ℓ) : Type ℓ where
constructor _,_
infixl 7 _∙_
field
_∙_ : M → M → M
ε : M
open From-Op₂ _∙_ public renaming (op= to ∙=)
open From-Monoid-Ops ε _∙_ public
record Monoid-Struct {ℓ} {M : Type ℓ} (mon-ops : Monoid-Ops M) : Type ℓ where
constructor _,_
open Monoid-Ops mon-ops
-- laws
field
assocs : Associative _∙_ × Associative (flip _∙_)
identity : Identity ε _∙_
ε∙-identity : LeftIdentity ε _∙_
ε∙-identity = fst identity
∙ε-identity : RightIdentity ε _∙_
∙ε-identity = snd identity
assoc = fst assocs
!assoc = snd assocs
open From-Assoc assoc public hiding (assocs)
open From-Assoc-LeftIdentity assoc ε∙-identity public
open From-Assoc-RightIdentity assoc ∙ε-identity public
record Monoid {ℓ}(M : Type ℓ) : Type ℓ where
constructor _,_
field
mon-ops : Monoid-Ops M
mon-struct : Monoid-Struct mon-ops
open Monoid-Ops mon-ops public
open Monoid-Struct mon-struct public
-- A renaming of Monoid-Ops with additive notation
module Additive-Monoid-Ops {ℓ}{M : Set ℓ} (mon : Monoid-Ops M) where
private
module M = Monoid-Ops mon
using ()
renaming ( _∙_ to _+_
; ε to 0#
; _² to 2⊗_
; _³ to 3⊗_
; _⁴ to 4⊗_
; _^¹⁺_ to _⊗¹⁺_
; _^⁺_ to _⊗⁺_
; ∙= to +=
)
open M public using (0#; +=)
infixl 6 _+_
infixl 7 _⊗¹⁺_ _⊗⁺_ 2⊗_ 3⊗_ 4⊗_
_+_ = M._+_
_⊗¹⁺_ = M._⊗¹⁺_
_⊗⁺_ = M._⊗⁺_
2⊗_ = M.2⊗_
3⊗_ = M.3⊗_
4⊗_ = M.4⊗_
-- A renaming of Monoid-Struct with additive notation
module Additive-Monoid-Struct {ℓ}{M : Type ℓ}{mon-ops : Monoid-Ops M}
(mon-struct : Monoid-Struct mon-ops)
= Monoid-Struct mon-struct
renaming ( identity to +-identity
; ε∙-identity to 0+-identity
; ∙ε-identity to +0-identity
; assocs to +-assocs
; assoc to +-assoc
; !assoc to +-!assoc
; assoc= to +-assoc=
; !assoc= to +-!assoc=
; inner= to +-inner=
)
-- A renaming of Monoid with additive notation
module Additive-Monoid {ℓ}{M : Type ℓ} (mon : Monoid M) where
open Additive-Monoid-Ops (Monoid.mon-ops mon) public
open Additive-Monoid-Struct (Monoid.mon-struct mon) public
-- A renaming of Monoid-Ops with multiplicative notation
module Multiplicative-Monoid-Ops {ℓ}{M : Type ℓ} (mon-ops : Monoid-Ops M)
= Monoid-Ops mon-ops
renaming ( _∙_ to _*_
; ε to 1#
; ∙= to *=
)
-- A renaming of Monoid-Struct with multiplicative notation
module Multiplicative-Monoid-Struct {ℓ}{M : Type ℓ}{mon-ops : Monoid-Ops M}
(mon-struct : Monoid-Struct mon-ops)
= Monoid-Struct mon-struct
renaming ( identity to *-identity
; ε∙-identity to 1*-identity
; ∙ε-identity to *1-identity
; assocs to *-assocs
; assoc to *-assoc
; !assoc to *-!assoc
; assoc= to *-assoc=
; !assoc= to *-!assoc=
; inner= to *-inner=
)
-- A renaming of Monoid with multiplicative notation
module Multiplicative-Monoid {ℓ}{M : Type ℓ} (mon : Monoid M) where
open Multiplicative-Monoid-Ops (Monoid.mon-ops mon) public
open Multiplicative-Monoid-Struct (Monoid.mon-struct mon) public
module Monoidᵒᵖ {ℓ}{M : Type ℓ} where
_ᵒᵖ-ops : Monoid-Ops M → Monoid-Ops M
(_∙_ , ε) ᵒᵖ-ops = flip _∙_ , ε
_ᵒᵖ-struct : {mon : Monoid-Ops M} → Monoid-Struct mon → Monoid-Struct (mon ᵒᵖ-ops)
(assocs , identities) ᵒᵖ-struct = (swap assocs , swap identities)
_ᵒᵖ : Monoid M → Monoid M
(ops , struct)ᵒᵖ = _ , struct ᵒᵖ-struct
ᵒᵖ∘ᵒᵖ-id : ∀ {mon} → (mon ᵒᵖ) ᵒᵖ ≡ mon
ᵒᵖ∘ᵒᵖ-id = idp
module _ {a}{A : Type a}(_∙_ : Op₂ A)(assoc : Associative _∙_) where
from-assoc = From-Op₂.From-Assoc.assocs _∙_ assoc
--import Data.Vec.NP as V
{-
module _ {A B : Type} where
(f : Vec : Vec M n) → f ⊛ x (∀ i → )
module VecMonoid {M : Type} (mon : Monoid M) where
open V
open Monoid mon
module _ n where
×-mon-ops : Monoid-Ops (Vec M n)
×-mon-ops = zipWith _∙_ , replicate ε
×-mon-struct : Monoid-Struct ×-mon-ops
×-mon-struct = (λ {x}{y}{z} → {!replicate ? ⊛ ?!}) , {!!} , {!!}
-}
module MonoidProduct {a}{A : Type a}{b}{B : Type b}
(monA0+ : Monoid A)(monB1* : Monoid B) where
open Additive-Monoid monA0+
open Multiplicative-Monoid monB1*
×-mon-ops : Monoid-Ops (A × B)
×-mon-ops = zip _+_ _*_ , 0# , 1#
×-mon-struct : Monoid-Struct ×-mon-ops
×-mon-struct = (ap₂ _,_ +-assoc *-assoc , ap₂ _,_ +-!assoc *-!assoc)
, ap₂ _,_ (fst +-identity) (fst *-identity)
, ap₂ _,_ (snd +-identity) (snd *-identity)
×-mon : Monoid (A × B)
×-mon = ×-mon-ops , ×-mon-struct
open Monoid ×-mon public
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Type using (Type_)
open import Function.NP
open import Function.Extensionality
open import Data.Product.NP
open import Relation.Binary.PropositionalEquality.NP using (_≡_; idp; ap; ap₂)
import Algebra.FunctionProperties.Eq
open Algebra.FunctionProperties.Eq.Implicits
module Algebra.Monoid where
record Monoid-Ops {ℓ} (M : Type ℓ) : Type ℓ where
constructor _,_
infixl 7 _∙_
field
_∙_ : M → M → M
ε : M
open From-Op₂ _∙_ public renaming (op= to ∙=)
open From-Monoid-Ops ε _∙_ public
record Monoid-Struct {ℓ} {M : Type ℓ} (mon-ops : Monoid-Ops M) : Type ℓ where
constructor _,_
open Monoid-Ops mon-ops
-- laws
field
assocs : Associative _∙_ × Associative (flip _∙_)
identity : Identity ε _∙_
ε∙-identity : LeftIdentity ε _∙_
ε∙-identity = fst identity
∙ε-identity : RightIdentity ε _∙_
∙ε-identity = snd identity
assoc = fst assocs
!assoc = snd assocs
open From-Assoc assoc public hiding (assocs)
open From-Assoc-LeftIdentity assoc ε∙-identity public
open From-Assoc-RightIdentity assoc ∙ε-identity public
record Monoid {ℓ}(M : Type ℓ) : Type ℓ where
constructor _,_
field
mon-ops : Monoid-Ops M
mon-struct : Monoid-Struct mon-ops
open Monoid-Ops mon-ops public
open Monoid-Struct mon-struct public
-- A renaming of Monoid-Ops with additive notation
module Additive-Monoid-Ops {ℓ}{M : Set ℓ} (mon : Monoid-Ops M) where
private
module M = Monoid-Ops mon
using ()
renaming ( _∙_ to _+_
; ε to 0#
; _² to 2⊗_
; _³ to 3⊗_
; _⁴ to 4⊗_
; _^¹⁺_ to _⊗¹⁺_
; _^⁺_ to _⊗⁺_
; ∙= to +=
)
open M public using (0#; +=)
infixl 6 _+_
infixl 7 _⊗¹⁺_ _⊗⁺_ 2⊗_ 3⊗_ 4⊗_
_+_ = M._+_
_⊗¹⁺_ = M._⊗¹⁺_
_⊗⁺_ = M._⊗⁺_
2⊗_ = M.2⊗_
3⊗_ = M.3⊗_
4⊗_ = M.4⊗_
-- A renaming of Monoid-Struct with additive notation
module Additive-Monoid-Struct {ℓ}{M : Type ℓ}{mon-ops : Monoid-Ops M}
(mon-struct : Monoid-Struct mon-ops)
= Monoid-Struct mon-struct
renaming ( identity to +-identity
; ε∙-identity to 0+-identity
; ∙ε-identity to +0-identity
; assocs to +-assocs
; assoc to +-assoc
; !assoc to +-!assoc
; assoc= to +-assoc=
; !assoc= to +-!assoc=
; inner= to +-inner=
)
-- A renaming of Monoid with additive notation
module Additive-Monoid {ℓ}{M : Type ℓ} (mon : Monoid M) where
open Additive-Monoid-Ops (Monoid.mon-ops mon) public
open Additive-Monoid-Struct (Monoid.mon-struct mon) public
-- A renaming of Monoid-Ops with multiplicative notation
module Multiplicative-Monoid-Ops {ℓ}{M : Type ℓ} (mon-ops : Monoid-Ops M)
= Monoid-Ops mon-ops
renaming ( _∙_ to _*_
; ε to 1#
; ∙= to *=
)
-- A renaming of Monoid-Struct with multiplicative notation
module Multiplicative-Monoid-Struct {ℓ}{M : Type ℓ}{mon-ops : Monoid-Ops M}
(mon-struct : Monoid-Struct mon-ops)
= Monoid-Struct mon-struct
renaming ( identity to *-identity
; ε∙-identity to 1*-identity
; ∙ε-identity to *1-identity
; assocs to *-assocs
; assoc to *-assoc
; !assoc to *-!assoc
; assoc= to *-assoc=
; !assoc= to *-!assoc=
; inner= to *-inner=
)
-- A renaming of Monoid with multiplicative notation
module Multiplicative-Monoid {ℓ}{M : Type ℓ} (mon : Monoid M) where
open Multiplicative-Monoid-Ops (Monoid.mon-ops mon) public
open Multiplicative-Monoid-Struct (Monoid.mon-struct mon) public
module Monoidᵒᵖ {ℓ}{M : Type ℓ} where
_ᵒᵖ-ops : Monoid-Ops M → Monoid-Ops M
(_∙_ , ε) ᵒᵖ-ops = flip _∙_ , ε
_ᵒᵖ-struct : {mon : Monoid-Ops M} → Monoid-Struct mon → Monoid-Struct (mon ᵒᵖ-ops)
(assocs , identities) ᵒᵖ-struct = (swap assocs , swap identities)
_ᵒᵖ : Monoid M → Monoid M
(ops , struct)ᵒᵖ = _ , struct ᵒᵖ-struct
ᵒᵖ∘ᵒᵖ-id : ∀ {mon} → (mon ᵒᵖ) ᵒᵖ ≡ mon
ᵒᵖ∘ᵒᵖ-id = idp
module _ {a}{A : Type a}(_∙_ : Op₂ A)(assoc : Associative _∙_) where
from-assoc = From-Op₂.From-Assoc.assocs _∙_ assoc
--import Data.Vec.NP as V
{-
module _ {A B : Type} where
(f : Vec : Vec M n) → f ⊛ x (∀ i → )
module VecMonoid {M : Type} (mon : Monoid M) where
open V
open Monoid mon
module _ n where
×-mon-ops : Monoid-Ops (Vec M n)
×-mon-ops = zipWith _∙_ , replicate ε
×-mon-struct : Monoid-Struct ×-mon-ops
×-mon-struct = (λ {x}{y}{z} → {!replicate ? ⊛ ?!}) , {!!} , {!!}
-}
-- The monoidal structure of endomorphisms
module _ {a}(A : Type a) where
∘-mon-ops : Monoid-Ops (Endo A)
∘-mon-ops = _∘′_ , id
∘-mon-struct : Monoid-Struct ∘-mon-ops
∘-mon-struct = (idp , idp) , (idp , idp)
∘-mon : Monoid (Endo A)
∘-mon = ∘-mon-ops , ∘-mon-struct
module Product {a}{A : Type a}{b}{B : Type b}
(𝔸 : Monoid A)(𝔹 : Monoid B) where
open Additive-Monoid 𝔸
open Multiplicative-Monoid 𝔹
×-mon-ops : Monoid-Ops (A × B)
×-mon-ops = zip _+_ _*_ , 0# , 1#
×-mon-struct : Monoid-Struct ×-mon-ops
×-mon-struct = (ap₂ _,_ +-assoc *-assoc , ap₂ _,_ +-!assoc *-!assoc)
, ap₂ _,_ (fst +-identity) (fst *-identity)
, ap₂ _,_ (snd +-identity) (snd *-identity)
×-mon : Monoid (A × B)
×-mon = ×-mon-ops , ×-mon-struct
open Monoid ×-mon public
{-
This module shows how properties of a monoid 𝕄 are carried on
functions from any type A to 𝕄.
However since the function type can be dependent, this also generalises
the product of monoids (since Π 𝟚 [ A , B ] ≃ A × B).
-}
module Pointwise {{_ : FunExt}}{a}(A : Type a){m}{M : A → Type m}
(𝕄 : (x : A) → Monoid (M x)) where
private
module 𝕄 {x} = Monoid (𝕄 x)
open 𝕄 hiding (mon-ops; mon-struct)
⟨ε⟩ : Π A M
⟨ε⟩ = λ _ → ε
_⟨∙⟩_ : Op₂ (Π A M)
(f ⟨∙⟩ g) x = f x ∙ g x
mon-ops : Monoid-Ops (Π A M)
mon-ops = _⟨∙⟩_ , ⟨ε⟩
mon-struct : Monoid-Struct mon-ops
mon-struct = (λ=ⁱ assoc , λ=ⁱ !assoc) , λ=ⁱ ε∙-identity , λ=ⁱ ∙ε-identity
mon : Monoid (Π A M)
mon = mon-ops , mon-struct
open Monoid mon public hiding (mon-ops; mon-struct)
-- Non-dependent version of Pointwise′
module Pointwise′ {{_ : FunExt}}{a}(A : Type a){m}{M : Type m}(𝕄 : Monoid M) =
Pointwise A (λ _ → 𝕄)
{- OR
open Monoid 𝕄 hiding (mon-ops; mon-struct)
⟨ε⟩ : A → M
⟨ε⟩ = λ _ → ε
_⟨∙⟩_ : Op₂ (A → M)
(f ⟨∙⟩ g) x = f x ∙ g x
mon-ops : Monoid-Ops (A → M)
mon-ops = _⟨∙⟩_ , ⟨ε⟩
mon-struct : Monoid-Struct mon-ops
mon-struct = (λ=ⁱ assoc , λ=ⁱ !assoc) , λ=ⁱ ε∙-identity , λ=ⁱ ∙ε-identity
mon : Monoid (A → M)
mon = mon-ops , mon-struct
open Monoid mon public hiding (mon-ops; mon-struct)
-}
-- -}
-- -}
-- -}
-- -}
|
add the Pointwise construction
|
Monoid: add the Pointwise construction
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
b6915db12b7c450d87def9967c9830d36ca626b4
|
Parametric/Change/Specification.agda
|
Parametric/Change/Specification.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ (⟦ const c ⟧Term ρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ (⟦ c ⟧Const)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
Simplify change semantics
|
Simplify change semantics
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5c76b2f48299a010ec3ccf23921c0a130d17d754
|
New/NewNew.agda
|
New/NewNew.agda
|
module New.NewNew where
open import New.Changes
open import New.LangChanges
open import New.Lang
open import New.Types
open import New.Derive
[_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
[ σ ⇒ τ ] df from f1 to f2 =
∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2
[ int ] dv from v1 to v2 = v2 ≡ v1 + dv
[ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2
data [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ] dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ
⟦Γ≼ΔΓ⟧ v∅ = refl
⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ)
fit-sound : ∀ {Γ τ} → (t : Term Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ
fit-sound t dρρ = trans
(cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ))
(sym (weaken-sound t _))
fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveVar this (dvv v• dρρ) = dvv
fromtoDeriveVar (that x) (dvv v• dρρ) = fromtoDeriveVar x dρρ
fromtoDeriveConst : ∀ {τ} c →
[ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const
fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db}
fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db}
fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb
fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa
fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb
fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) →
{dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c
fromtoDerive τ (var x) dρρ = fromtoDeriveVar x dρρ
fromtoDerive τ (app {σ} s t) dρρ rewrite sym (fit-sound t dρρ) =
let fromToF = fromtoDerive (σ ⇒ τ) s dρρ
in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB
fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ dv v1 v2 dvv →
fromtoDerive τ t (dvv v• dρρ)
-- Now relate this validity with ⊕. To know that nil and so on are valid, also
-- relate it to the other definition.
open import Postulate.Extensionality
fromto→⊕ : ∀ {τ} dv v1 v2 →
[ τ ] dv from v1 to v2 →
v1 ⊕ dv ≡ v2
⊝-fromto : ∀ {τ} (v1 v2 : ⟦ τ ⟧Type) → [ τ ] v2 ⊝ v1 from v1 to v2
⊝-fromto {σ ⇒ τ} f1 f2 da a1 a2 daa rewrite sym (fromto→⊕ _ _ _ daa) = ⊝-fromto (f1 a1) (f2 (a1 ⊕ da))
⊝-fromto {int} v1 v2 = sym (update-diff v2 v1)
⊝-fromto {pair σ τ} (a1 , b1) (a2 , b2) = ⊝-fromto a1 a2 , ⊝-fromto b1 b2
nil-fromto : ∀ {τ} (v : ⟦ τ ⟧Type) → [ τ ] nil v from v to v
nil-fromto v = ⊝-fromto v v
fromto→⊕ {σ ⇒ τ} df f1 f2 dff =
ext (λ v → fromto→⊕ {τ} (df v (nil v)) (f1 v) (f2 v) (dff (nil v) v v (nil-fromto v)))
fromto→⊕ {int} dn n1 n2 refl = refl
fromto→⊕ {pair σ τ} (da , db) (a1 , b1) (a2 , b2) (daa , dbb) =
cong₂ _,_ (fromto→⊕ _ _ _ daa) (fromto→⊕ _ _ _ dbb)
open ≡-Reasoning
-- If df is valid, prove (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da.
-- This statement uses a ⊕ da instead of a2, which is not the style of this formalization but fits better with the other one.
-- Instead, WellDefinedFunChangeFromTo (without prime) fits this formalization.
WellDefinedFunChangeFromTo′ : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo′ f1 df = ∀ da a → [ _ ] da from a to (a ⊕ da) → WellDefinedFunChangePoint f1 df a da
fromto→WellDefined′ : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo′ f1 df
fromto→WellDefined′ {f1 = f1} {f2} {df} dff da a daa =
begin
(f1 ⊕ df) (a ⊕ da)
≡⟨⟩
f1 (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))
≡⟨ (fromto→⊕
(df (a ⊕ da) (nil (a ⊕ da))) _ _
(dff (nil (a ⊕ da)) _ _ (nil-fromto (a ⊕ da))))
⟩
f2 (a ⊕ da)
≡⟨ sym (fromto→⊕ _ _ _ (dff da _ _ daa)) ⟩
f1 a ⊕ df a da
∎
WellDefinedFunChangeFromTo : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo f1 df = ∀ da a1 a2 → [ _ ] da from a1 to a2 → WellDefinedFunChangePoint f1 df a1 da
fromto→WellDefined : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo f1 df
fromto→WellDefined {f1 = f1} {f2} {df} dff da a1 a2 daa =
fromto→WellDefined′ dff da a1 daa′
where
daa′ : [ _ ] da from a1 to (a1 ⊕ da)
daa′ rewrite fromto→⊕ da a1 a2 daa = daa
-- Recursive isomorphism between the two validities.
--
-- Among other things, valid→fromto proves that a validity-preserving function,
-- with validity defined via (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da, is also valid
-- in the "fromto" sense.
--
-- We can't hope for a better statement, since we need the equation to be
-- satisfied also by returned or argument functions.
fromto→valid : ∀ {τ} →
∀ v1 v2 dv → [ τ ] dv from v1 to v2 →
valid v1 dv
valid→fromto : ∀ {τ} v (dv : Cht τ) → valid v dv → [ τ ] dv from v to (v ⊕ dv)
fromto→valid {int} = λ v1 v2 dv x → tt
fromto→valid {pair σ τ} (a1 , b1) (a2 , b2) (da , db) (daa , dbb) = (fromto→valid _ _ _ daa) , (fromto→valid _ _ _ dbb)
fromto→valid {σ ⇒ τ} f1 f2 df dff = λ a da ada →
fromto→valid _ _ _ (dff da a (a ⊕ da) (valid→fromto a da ada)) ,
fromto→WellDefined′ dff da a (valid→fromto _ _ ada)
valid→fromto {int} v dv tt = refl
valid→fromto {pair σ τ} (a , b) (da , db) (ada , bdb) = valid→fromto a da ada , valid→fromto b db bdb
valid→fromto {σ ⇒ τ} f df fdf da a1 a2 daa = body
where
fa1da-valid :
valid (f a1) (df a1 da) ×
WellDefinedFunChangePoint f df a1 da
fa1da-valid = fdf a1 da (fromto→valid _ _ _ daa)
body : [ τ ] df a1 da from f a1 to (f ⊕ df) a2
body rewrite sym (fromto→⊕ _ _ _ daa) | proj₂ fa1da-valid = valid→fromto (f a1) (df a1 da) (proj₁ fa1da-valid)
|
module New.NewNew where
open import New.Changes
open import New.LangChanges
open import New.Lang
open import New.Derive
[_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set
[ σ ⇒ τ ] df from f1 to f2 =
∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) →
[ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2
[ int ] dv from v1 to v2 = v2 ≡ v1 + dv
[ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2
data [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set where
v∅ : [ ∅ ]Γ ∅ from ∅ to ∅
_v•_ : ∀ {τ Γ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ] dv from v1 to v2) →
(dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
[ τ • Γ ]Γ (dv • v1 • dρ) from (v1 • ρ1) to (v2 • ρ2)
⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) →
ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ
⟦Γ≼ΔΓ⟧ v∅ = refl
⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ)
fit-sound : ∀ {Γ τ} → (t : Term Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ
fit-sound t dρρ = trans
(cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ))
(sym (weaken-sound t _))
fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) →
∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveVar this (dvv v• dρρ) = dvv
fromtoDeriveVar (that x) (dvv v• dρρ) = fromtoDeriveVar x dρρ
fromtoDeriveConst : ∀ {τ} c →
[ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const
fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db}
fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db}
fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb
fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa
fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb
fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) →
{dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 →
[ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c
fromtoDerive τ (var x) dρρ = fromtoDeriveVar x dρρ
fromtoDerive τ (app {σ} s t) dρρ rewrite sym (fit-sound t dρρ) =
let fromToF = fromtoDerive (σ ⇒ τ) s dρρ
in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB
fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ dv v1 v2 dvv →
fromtoDerive τ t (dvv v• dρρ)
-- Now relate this validity with ⊕. To know that nil and so on are valid, also
-- relate it to the other definition.
open import Postulate.Extensionality
fromto→⊕ : ∀ {τ} dv v1 v2 →
[ τ ] dv from v1 to v2 →
v1 ⊕ dv ≡ v2
⊝-fromto : ∀ {τ} (v1 v2 : ⟦ τ ⟧Type) → [ τ ] v2 ⊝ v1 from v1 to v2
⊝-fromto {σ ⇒ τ} f1 f2 da a1 a2 daa rewrite sym (fromto→⊕ _ _ _ daa) = ⊝-fromto (f1 a1) (f2 (a1 ⊕ da))
⊝-fromto {int} v1 v2 = sym (update-diff v2 v1)
⊝-fromto {pair σ τ} (a1 , b1) (a2 , b2) = ⊝-fromto a1 a2 , ⊝-fromto b1 b2
nil-fromto : ∀ {τ} (v : ⟦ τ ⟧Type) → [ τ ] nil v from v to v
nil-fromto v = ⊝-fromto v v
fromto→⊕ {σ ⇒ τ} df f1 f2 dff =
ext (λ v → fromto→⊕ {τ} (df v (nil v)) (f1 v) (f2 v) (dff (nil v) v v (nil-fromto v)))
fromto→⊕ {int} dn n1 n2 refl = refl
fromto→⊕ {pair σ τ} (da , db) (a1 , b1) (a2 , b2) (daa , dbb) =
cong₂ _,_ (fromto→⊕ _ _ _ daa) (fromto→⊕ _ _ _ dbb)
open ≡-Reasoning
-- If df is valid, prove (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da.
-- This statement uses a ⊕ da instead of a2, which is not the style of this formalization but fits better with the other one.
-- Instead, WellDefinedFunChangeFromTo (without prime) fits this formalization.
WellDefinedFunChangeFromTo′ : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo′ f1 df = ∀ da a → [ _ ] da from a to (a ⊕ da) → WellDefinedFunChangePoint f1 df a da
fromto→WellDefined′ : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo′ f1 df
fromto→WellDefined′ {f1 = f1} {f2} {df} dff da a daa =
begin
(f1 ⊕ df) (a ⊕ da)
≡⟨⟩
f1 (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))
≡⟨ (fromto→⊕
(df (a ⊕ da) (nil (a ⊕ da))) _ _
(dff (nil (a ⊕ da)) _ _ (nil-fromto (a ⊕ da))))
⟩
f2 (a ⊕ da)
≡⟨ sym (fromto→⊕ _ _ _ (dff da _ _ daa)) ⟩
f1 a ⊕ df a da
∎
WellDefinedFunChangeFromTo : ∀ {σ τ} (f1 : ⟦ σ ⇒ τ ⟧Type) → (df : Cht (σ ⇒ τ)) → Set
WellDefinedFunChangeFromTo f1 df = ∀ da a1 a2 → [ _ ] da from a1 to a2 → WellDefinedFunChangePoint f1 df a1 da
fromto→WellDefined : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ] df from f1 to f2 →
WellDefinedFunChangeFromTo f1 df
fromto→WellDefined {f1 = f1} {f2} {df} dff da a1 a2 daa =
fromto→WellDefined′ dff da a1 daa′
where
daa′ : [ _ ] da from a1 to (a1 ⊕ da)
daa′ rewrite fromto→⊕ da a1 a2 daa = daa
-- Recursive isomorphism between the two validities.
--
-- Among other things, valid→fromto proves that a validity-preserving function,
-- with validity defined via (f1 ⊕ df) (a ⊕ da) ≡ f1 a ⊕ df a da, is also valid
-- in the "fromto" sense.
--
-- We can't hope for a better statement, since we need the equation to be
-- satisfied also by returned or argument functions.
fromto→valid : ∀ {τ} →
∀ v1 v2 dv → [ τ ] dv from v1 to v2 →
valid v1 dv
valid→fromto : ∀ {τ} v (dv : Cht τ) → valid v dv → [ τ ] dv from v to (v ⊕ dv)
fromto→valid {int} = λ v1 v2 dv x → tt
fromto→valid {pair σ τ} (a1 , b1) (a2 , b2) (da , db) (daa , dbb) = (fromto→valid _ _ _ daa) , (fromto→valid _ _ _ dbb)
fromto→valid {σ ⇒ τ} f1 f2 df dff = λ a da ada →
fromto→valid _ _ _ (dff da a (a ⊕ da) (valid→fromto a da ada)) ,
fromto→WellDefined′ dff da a (valid→fromto _ _ ada)
valid→fromto {int} v dv tt = refl
valid→fromto {pair σ τ} (a , b) (da , db) (ada , bdb) = valid→fromto a da ada , valid→fromto b db bdb
valid→fromto {σ ⇒ τ} f df fdf da a1 a2 daa = body
where
fa1da-valid :
valid (f a1) (df a1 da) ×
WellDefinedFunChangePoint f df a1 da
fa1da-valid = fdf a1 da (fromto→valid _ _ _ daa)
body : [ τ ] df a1 da from f a1 to (f ⊕ df) a2
body rewrite sym (fromto→⊕ _ _ _ daa) | proj₂ fa1da-valid = valid→fromto (f a1) (df a1 da) (proj₁ fa1da-valid)
|
Drop redundant import
|
Drop redundant import
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e6b366592e727138ab845e5190ed6c35fa3d28d4
|
js-experiment/prelude.agda
|
js-experiment/prelude.agda
|
module _ where
open import Agda.Primitive public
using (Level; _⊔_)
renaming (lzero to ₀; lsuc to ₛ)
-- open import Function.NP
id : ∀ {a} {A : Set a} (x : A) → A
id x = x
infixr 9 _∘_
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
infixr 0 _$_
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_$′_ : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → (A → B)
f $′ x = f x
data 𝟘 : Set where
-- open import Data.One
record 𝟙 : Set₀ where
constructor <>
open 𝟙
data Bool : Set where
true false : Bool
[true:_,false:_] : ∀ {c} {C : Bool → Set c} →
C true → C false →
((x : Bool) → C x)
[true: f ,false: g ] true = f
[true: f ,false: g ] false = g
data LR : Set where L R : LR
[L:_,R:_] : ∀ {c}{C : LR → Set c} →
C L → C R → (x : LR) → C x
[L: f ,R: g ] L = f
[L: f ,R: g ] R = g
-- open import Data.Product.NP
record Σ {a b}(A : Set a)(B : A → Set b) : Set(a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
_×_ : (A B : Set) → Set
A × B = Σ A (λ _ → B)
-- open import Data.Sum.NP
data _⊎_ (A B : Set) : Set where
inl : A → A ⊎ B
inr : B → A ⊎ B
[inl:_,inr:_] : ∀ {c} {A B : Set} {C : A ⊎ B → Set c} →
((x : A) → C (inl x)) → ((x : B) → C (inr x)) →
((x : A ⊎ B) → C x)
[inl: f ,inr: g ] (inl x) = f x
[inl: f ,inr: g ] (inr y) = g y
-- open import Data.List using (List; []; _∷_)
infixr 5 _∷_
data List {a} (A : Set a) : Set a where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
[_] : ∀ {a}{A : Set a} → A → List A
[ x ] = x ∷ []
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
reverse : {A : Set} → List A → List A
reverse {A} = go []
where
go : List A → List A → List A
go acc [] = acc
go acc (x ∷ xs) = go (x ∷ acc) xs
module _ {A : Set} (_≤_ : A → A → Bool) where
merge-sort-list : (l₀ l₁ : List A) → List A
merge-sort-list [] l₁ = l₁
merge-sort-list l₀ [] = l₀
merge-sort-list (x₀ ∷ l₀) (x₁ ∷ l₁) with x₀ ≤ x₁
... | true = x₀ ∷ merge-sort-list l₀ (x₁ ∷ l₁)
... | false = x₁ ∷ merge-sort-list (x₀ ∷ l₀) l₁
-- open import Relation.Binary.PropositionalEquality
infix 0 _≡_
data _≡_ {a}{A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
_≢_ : ∀ {a}{A : Set a}(x y : A) → Set a
x ≢ y = x ≡ y → 𝟘
ap : ∀{a b}{A : Set a}{B : Set b} (f : A → B) {x y : A} (p : x ≡ y) → f x ≡ f y
ap f refl = refl
sym : ∀{a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
! : ∀{a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
! refl = refl
subst : ∀{a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y
subst P refl px = px
tr = subst
ap₂ : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c}(f : A → B → C){x x' y y'} → x ≡ x' → y ≡ y'
→ f x y ≡ f x' y'
ap₂ f refl refl = refl
infixr 6 _∙_
_∙_ : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
refl ∙ p = p
postulate
String : Set
Char : Set
{-# BUILTIN STRING String #-}
{-# BUILTIN CHAR Char #-}
data Error (A : Set) : Set where
succeed : A → Error A
fail : (err : String) → Error A
[succeed:_,fail:_] : ∀ {c} {A : Set} {C : Error A → Set c} →
((x : A) → C (succeed x)) → ((x : String) → C (fail x)) →
((x : Error A) → C x)
[succeed: f ,fail: g ] (succeed x) = f x
[succeed: f ,fail: g ] (fail y) = g y
mapE : {A B : Set} → (A → B) → Error A → Error B
mapE f (fail err) = fail err
mapE f (succeed x) = succeed (f x)
data All {A : Set} (P : A → Set) : Error A → Set where
fail : ∀ s → All P (fail s)
succeed : ∀ {x} → P x → All P (succeed x)
record _≃?_ (A B : Set) : Set where
field
serialize : A → B
parse : B → Error A
linv : ∀ x → All (_≡_ x ∘ serialize) (parse x)
rinv : ∀ x → parse (serialize x) ≡ succeed x
open _≃?_ {{...}} public
{-
open import Category.Profunctor
Prism : (S T A B : Set) → Set₁
Prism S T A B = ∀ {_↝_}{{_ : Choice {₀} _↝_}} → (A ↝ B) → (S ↝ T)
Prism' : (S A : Set) → Set₁
Prism' S A = Prism S S A A
module _ {S T A B : Set} where
prism : (B → T) → (S → T ⊎ A) → Prism S T A B
prism bt sta = dimap sta [inl: id ,inr: bt ] ∘ right
where open Choice {{...}}
-}
Prism : (S T A B : Set) → Set
Prism S T A B = (B → T) × (S → T ⊎ A)
Prism' : (S A : Set) → Set
Prism' S A = Prism S S A A
module _ {S T A B : Set} where
prism : (B → T) → (S → T ⊎ A) → Prism S T A B
prism = _,_
-- This is particular case of lens' _#_
_#_ : Prism S T A B → B → T
_#_ = fst
-- This is particular case of lens' review
review = _#_
-- _^._ : Prism S T A B → S → ...
module _ {S A : Set} where
prism' : (A → S) → (S → S ⊎ A) → Prism' S A
prism' = prism
module _ {a b}{A : Set a}{B : A → Set b} where
case_of_ : (x : A) → ((y : A) → B y) → B x
case x of f = f x
module _ {a b}{A : Set a}{B : Set b} where
case_of′_ : A → (A → B) → B
case_of′_ = case_of_
… : {A : Set}{{x : A}} → A
… {{x}} = x
|
module _ where
open import Agda.Primitive public
using (Level; _⊔_)
renaming (lzero to ₀; lsuc to ₛ)
-- open import Function.NP
id : ∀ {a} {A : Set a} (x : A) → A
id x = x
infixr 9 _∘_
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
infixr 0 _$_
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_$′_ : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → (A → B)
f $′ x = f x
data 𝟘 : Set where
-- open import Data.One
record 𝟙 : Set₀ where
constructor <>
open 𝟙
data Bool : Set where
true false : Bool
[true:_,false:_] : ∀ {c} {C : Bool → Set c} →
C true → C false →
((x : Bool) → C x)
[true: f ,false: g ] true = f
[true: f ,false: g ] false = g
data LR : Set where L R : LR
[L:_,R:_] : ∀ {c}{C : LR → Set c} →
C L → C R → (x : LR) → C x
[L: f ,R: g ] L = f
[L: f ,R: g ] R = g
-- open import Data.Product.NP
record Σ {a b}(A : Set a)(B : A → Set b) : Set(a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
_×_ : ∀{a b}(A : Set a)(B : Set b) → Set _
A × B = Σ A (λ _ → B)
-- open import Data.Sum.NP
data _⊎_ (A B : Set) : Set where
inl : A → A ⊎ B
inr : B → A ⊎ B
[inl:_,inr:_] : ∀ {c} {A B : Set} {C : A ⊎ B → Set c} →
((x : A) → C (inl x)) → ((x : B) → C (inr x)) →
((x : A ⊎ B) → C x)
[inl: f ,inr: g ] (inl x) = f x
[inl: f ,inr: g ] (inr y) = g y
-- open import Data.List using (List; []; _∷_)
infixr 5 _∷_
data List {a} (A : Set a) : Set a where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
[_] : ∀ {a}{A : Set a} → A → List A
[ x ] = x ∷ []
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
reverse : {A : Set} → List A → List A
reverse {A} = go []
where
go : List A → List A → List A
go acc [] = acc
go acc (x ∷ xs) = go (x ∷ acc) xs
module _ {A : Set} (_≤_ : A → A → Bool) where
merge-sort-list : (l₀ l₁ : List A) → List A
merge-sort-list [] l₁ = l₁
merge-sort-list l₀ [] = l₀
merge-sort-list (x₀ ∷ l₀) (x₁ ∷ l₁) with x₀ ≤ x₁
... | true = x₀ ∷ merge-sort-list l₀ (x₁ ∷ l₁)
... | false = x₁ ∷ merge-sort-list (x₀ ∷ l₀) l₁
-- open import Relation.Binary.PropositionalEquality
infix 0 _≡_
data _≡_ {a}{A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
_≢_ : ∀ {a}{A : Set a}(x y : A) → Set a
x ≢ y = x ≡ y → 𝟘
ap : ∀{a b}{A : Set a}{B : Set b} (f : A → B) {x y : A} (p : x ≡ y) → f x ≡ f y
ap f refl = refl
sym : ∀{a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
! : ∀{a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
! refl = refl
subst : ∀{a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y
subst P refl px = px
tr = subst
ap₂ : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c}(f : A → B → C){x x' y y'} → x ≡ x' → y ≡ y'
→ f x y ≡ f x' y'
ap₂ f refl refl = refl
infixr 6 _∙_
_∙_ : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
refl ∙ p = p
postulate
String : Set
Char : Set
{-# BUILTIN STRING String #-}
{-# BUILTIN CHAR Char #-}
data Error (A : Set) : Set where
succeed : A → Error A
fail : (err : String) → Error A
[succeed:_,fail:_] : ∀ {c} {A : Set} {C : Error A → Set c} →
((x : A) → C (succeed x)) → ((x : String) → C (fail x)) →
((x : Error A) → C x)
[succeed: f ,fail: g ] (succeed x) = f x
[succeed: f ,fail: g ] (fail y) = g y
mapE : {A B : Set} → (A → B) → Error A → Error B
mapE f (fail err) = fail err
mapE f (succeed x) = succeed (f x)
data All {A : Set} (P : A → Set) : Error A → Set where
fail : ∀ s → All P (fail s)
succeed : ∀ {x} → P x → All P (succeed x)
record _≃?_ (A B : Set) : Set where
field
serialize : A → B
parse : B → Error A
linv : ∀ x → All (_≡_ x ∘ serialize) (parse x)
rinv : ∀ x → parse (serialize x) ≡ succeed x
open _≃?_ {{...}} public
{-
open import Category.Profunctor
Prism : (S T A B : Set) → Set₁
Prism S T A B = ∀ {_↝_}{{_ : Choice {₀} _↝_}} → (A ↝ B) → (S ↝ T)
Prism' : (S A : Set) → Set₁
Prism' S A = Prism S S A A
module _ {S T A B : Set} where
prism : (B → T) → (S → T ⊎ A) → Prism S T A B
prism bt sta = dimap sta [inl: id ,inr: bt ] ∘ right
where open Choice {{...}}
-}
Prism : (S T A B : Set) → Set
Prism S T A B = (B → T) × (S → T ⊎ A)
Prism' : (S A : Set) → Set
Prism' S A = Prism S S A A
module _ {S T A B : Set} where
prism : (B → T) → (S → T ⊎ A) → Prism S T A B
prism = _,_
-- This is particular case of lens' _#_
_#_ : Prism S T A B → B → T
_#_ = fst
-- This is particular case of lens' review
review = _#_
-- _^._ : Prism S T A B → S → ...
module _ {S A : Set} where
prism' : (A → S) → (S → S ⊎ A) → Prism' S A
prism' = prism
module _ {a b}{A : Set a}{B : A → Set b} where
case_of_ : (x : A) → ((y : A) → B y) → B x
case x of f = f x
module _ {a b}{A : Set a}{B : Set b} where
case_of′_ : A → (A → B) → B
case_of′_ = case_of_
… : {A : Set}{{x : A}} → A
… {{x}} = x
|
make × universe polymorphic
|
make × universe polymorphic
|
Agda
|
bsd-3-clause
|
crypto-agda/protocols
|
5760ecf94ca99d0cf810abe16aba48c31d177ad8
|
Structure/Bag/Nehemiah.agda
|
Structure/Bag/Nehemiah.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Bags of integers, for Nehemiah plugin.
--
-- This module imports postulates about bags of integers
-- with negative multiplicities as a group under additive union.
------------------------------------------------------------------------
module Structure.Bag.Nehemiah where
open import Postulate.Bag-Nehemiah public
open import Relation.Binary.PropositionalEquality
open import Algebra using (CommutativeRing)
open import Algebra.Structures
open import Data.Integer
open import Data.Integer.Properties
using ()
renaming (commutativeRing to ℤ-is-commutativeRing)
open import Data.Product
infixl 9 _\\_ -- same as Data.Map.(\\)
_\\_ : Bag → Bag → Bag
d \\ b = d ++ (negateBag b)
-- Useful properties of abelian groups
commutative : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (m n : A) → f m n ≡ f n m
commutative = IsAbelianGroup.comm
associative : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (k m n : A) → f (f k m) n ≡ f k (f m n)
associative abelian = IsAbelianGroup.assoc abelian
left-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f (neg n) n ≡ z
left-inverse abelian = proj₁ (IsAbelianGroup.inverse abelian)
right-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n (neg n) ≡ z
right-inverse abelian = proj₂ (IsAbelianGroup.inverse abelian)
left-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f z n ≡ n
left-identity abelian = proj₁ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
right-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n z ≡ n
right-identity abelian = proj₂ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
instance
abelian-int : IsAbelianGroup _≡_ _+_ (+ 0) (-_)
abelian-int =
IsRing.+-isAbelianGroup
(IsCommutativeRing.isRing
(CommutativeRing.isCommutativeRing
ℤ-is-commutativeRing))
commutative-int : (m n : ℤ) → m + n ≡ n + m
commutative-int = commutative abelian-int
associative-int : (k m n : ℤ) → (k + m) + n ≡ k + (m + n)
associative-int = associative abelian-int
right-inv-int : (n : ℤ) → n - n ≡ + 0
right-inv-int = right-inverse abelian-int
left-id-int : (n : ℤ) → (+ 0) + n ≡ n
left-id-int = left-identity abelian-int
right-id-int : (n : ℤ) → n + (+ 0) ≡ n
right-id-int = right-identity abelian-int
commutative-bag : (a b : Bag) → a ++ b ≡ b ++ a
commutative-bag = commutative abelian-bag
associative-bag : (a b c : Bag) → (a ++ b) ++ c ≡ a ++ (b ++ c)
associative-bag = associative abelian-bag
right-inv-bag : (b : Bag) → b \\ b ≡ emptyBag
right-inv-bag = right-inverse abelian-bag
left-id-bag : (b : Bag) → emptyBag ++ b ≡ b
left-id-bag = left-identity abelian-bag
right-id-bag : (b : Bag) → b ++ emptyBag ≡ b
right-id-bag = right-identity abelian-bag
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Bags of integers, for Nehemiah plugin.
--
-- This module imports postulates about bags of integers
-- with negative multiplicities as a group under additive union.
------------------------------------------------------------------------
module Structure.Bag.Nehemiah where
open import Postulate.Bag-Nehemiah public
open import Relation.Binary.PropositionalEquality
open import Algebra using (CommutativeRing)
open import Algebra.Structures
open import Data.Integer
open import Data.Integer.Properties
using ()
renaming (commutativeRing to ℤ-is-commutativeRing)
open import Data.Product
infixl 9 _\\_ -- same as Data.Map.(\\)
_\\_ : Bag → Bag → Bag
d \\ b = d ++ (negateBag b)
-- Useful properties of abelian groups
commutative : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (m n : A) → f m n ≡ f n m
commutative = IsAbelianGroup.comm
associative : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (k m n : A) → f (f k m) n ≡ f k (f m n)
associative abelian = IsAbelianGroup.assoc abelian
left-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f (neg n) n ≡ z
left-inverse abelian = proj₁ (IsAbelianGroup.inverse abelian)
right-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n (neg n) ≡ z
right-inverse abelian = proj₂ (IsAbelianGroup.inverse abelian)
left-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f z n ≡ n
left-identity abelian = proj₁ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
right-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n z ≡ n
right-identity abelian = proj₂ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
instance
abelian-int : IsAbelianGroup _≡_ _+_ (+ 0) (-_)
abelian-int =
CommutativeRing.+-isAbelianGroup ℤ-is-commutativeRing
commutative-int : (m n : ℤ) → m + n ≡ n + m
commutative-int = commutative abelian-int
associative-int : (k m n : ℤ) → (k + m) + n ≡ k + (m + n)
associative-int = associative abelian-int
right-inv-int : (n : ℤ) → n - n ≡ + 0
right-inv-int = right-inverse abelian-int
left-id-int : (n : ℤ) → (+ 0) + n ≡ n
left-id-int = left-identity abelian-int
right-id-int : (n : ℤ) → n + (+ 0) ≡ n
right-id-int = right-identity abelian-int
commutative-bag : (a b : Bag) → a ++ b ≡ b ++ a
commutative-bag = commutative abelian-bag
associative-bag : (a b c : Bag) → (a ++ b) ++ c ≡ a ++ (b ++ c)
associative-bag = associative abelian-bag
right-inv-bag : (b : Bag) → b \\ b ≡ emptyBag
right-inv-bag = right-inverse abelian-bag
left-id-bag : (b : Bag) → emptyBag ++ b ≡ b
left-id-bag = left-identity abelian-bag
right-id-bag : (b : Bag) → b ++ emptyBag ≡ b
right-id-bag = right-identity abelian-bag
|
Simplify code
|
Simplify code
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5013dd25be51aea4374492d685bcc066ae526e82
|
Base/Change/Equivalence.agda
|
Base/Change/Equivalence.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
_≙_ : ∀ dx dy → Set a
dx ≙ dy = x ⊞ dx ≡ x ⊞ dy
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = refl
≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-symm ≙ = sym ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x =
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ = df-x-dx≙dg-x-dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
f ⊞ df
≡⟨ derivative-is-nil df fdf ⟩
f ⊞ nil f
≡⟨ sym (derivative-is-nil dg fdg) ⟩
f ⊞ dg
∎
where
open ≡-Reasoning
-- We could also use derivative-is-⊞-unit, but the proof above matches better
-- with the text above.
--
-- Small TODO: It could be even more elegant to define a setoid for ≙ and
-- use equational reasoning on it directly.
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
_≙_ : ∀ dx dy → Set a
dx ≙ dy = x ⊞ dx ≡ x ⊞ dy
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = refl
≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-symm ≙ = sym ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-symm
; trans = ≙-trans
}
≙-setoid : Setoid ℓ a
≙-setoid = record
{ Carrier = Δ x
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
-- Relation.Binary.EqReasoning is more convenient to use with _≡_ if
-- the combinators take the type argument (a) as a hidden argument,
-- instead of being locked to a fixed type at module instantiation
-- time.
module ≙-Reasoning where
open EqR ≙-setoid public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x =
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ = df-x-dx≙dg-x-dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
{-
lemma : nil f ≙ dg
-- Goes through
--lemma = sym (derivative-is-nil dg fdg)
-- Generates tons of crazy yellow ambiguities of equality type. Apparently, unifying against ≙ does not work so well.
lemma = ≙-symm {{changeAlgebra}} {f} {dg} {nil f} (derivative-is-nil dg fdg)
-}
-- We could also use derivative-is-⊞-unit, but the proof above matches better
-- with the text above.
|
Define setoid for d.o.e. (not very succesfully)
|
Agda: Define setoid for d.o.e. (not very succesfully)
This setoid can be defined, but using it for equational reasoning seems
not so convenient. I guess a reason is that unifying against _≙_ might
be harder (see comments at the end).
The other, bigger problem is that most reasonings here need to rewrite
dx₁ ≙ dx₂ into x ⊞ dx₁ ≡ x ⊞ dx₂ to perform other transformations, so
this setoid is not powerful enough.
Maybe, however, other files can make more use of this setoid.
Old-commit-hash: a37b3b7baeb5c99c881dcf6dc7dced39f9311ed3
|
Agda
|
mit
|
inc-lc/ilc-agda
|
57da8ab233fdca3b992d585fa703f2c305a61295
|
sha1.agda
|
sha1.agda
|
{-# OPTIONS --without-K #-}
-- https://upload.wikimedia.org/wikipedia/commons/e/e2/SHA-1.svg
-- http://www.faqs.org/rfcs/rfc3174.html
open import Type
open import Data.Nat.NP
open import Data.Bool using (if_then_else_)
import Data.Vec as V
open V using (Vec; []; _∷_)
--open import Data.Product
open import Function.NP hiding (id)
open import FunUniverse.Core hiding (_,_)
open import Data.Fin using (Fin; zero; suc; #_; inject+; raise) renaming (toℕ to Fin▹ℕ)
module sha1 where
module FunSHA1
{t}
{T : ★_ t}
{funU : FunUniverse T}
(funOps : FunOps funU)
where
open FunUniverse funU
open FunOps funOps renaming (_∘_ to _`∘_)
Word : T
Word = `Bits 32
map²ʷ : (`𝟚 `× `𝟚 `→ `𝟚) → Word `× Word `→ Word
map²ʷ = zipWith
mapʷ : (`𝟚 `→ `𝟚) → Word `→ Word
mapʷ = map
lift : ∀ {Γ A B} → (A `→ B) → Γ `→ A → Γ `→ B
lift f g = g ⁏ f
lift₂ : ∀ {Γ A B C} → (A `× B `→ C) → Γ `→ A → Γ `→ B → Γ `→ C
lift₂ op₂ f₀ f₁ = < f₀ , f₁ > ⁏ op₂
`not : ∀ {Γ} (f : Γ `→ Word) → Γ `→ Word
`not = lift (mapʷ not)
infixr 3 _`⊕_
_`⊕_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`⊕_ = lift₂ (map²ʷ <xor>)
infixr 3 _`∧_
_`∧_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`∧_ = lift₂ (map²ʷ <and>)
infixr 2 _`∨_
_`∨_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`∨_ = lift₂ (map²ʷ <or>)
open import Solver.Linear
module LinSolver = Syntaxᶠ linRewiring
--iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ `Vec B n
iter : ∀ {n A B C D} → (D `× A `× B `→ D `× C) → D `× `Vec A n `× `Vec B n `→ `Vec C n
iter {zero} F = <[]>
iter {suc n} F = < id × < uncons × uncons > >
⁏ (helper ⁏ < F × id > ⁏ < swap × id > ⁏ assoc ⁏ < id × iter F >)
⁏ <∷>
where
open LinSolver
helper = λ {A} {B} {D} {VA} {VB} →
rewireᶠ (A ∷ B ∷ D ∷ VA ∷ VB ∷ [])
(λ a b d va vb → (d , (a , va) , (b , vb)) ↦ (d , a , b) , (va , vb))
<⊞> adder : Word `× Word `→ Word
adder = <tt⁏ <0₂> , id > ⁏ iter full-adder
<⊞> = adder
infixl 4 _`⊞_
_`⊞_ : ∀ {A} (f g : A `→ Word) → A `→ Word
_`⊞_ = lift₂ <⊞>
<_,_,_> : ∀ {Γ A B C} → Γ `→ A → Γ `→ B → Γ `→ C → Γ `→ (A `× B `× C)
< f₀ , f₁ , f₂ > = < f₀ , < f₁ , f₂ > >
<_,_,_,_,_> : ∀ {Γ A B C D E} → Γ `→ A → Γ `→ B → Γ `→ C
→ Γ `→ D → Γ `→ E
→ Γ `→ (A `× B `× C `× D `× E)
< f₀ , f₁ , f₂ , f₃ , f₄ > = < f₀ , < f₁ , < f₂ , f₃ , f₄ > > >
<<<₅ : `Endo Word
<<<₅ = rot-left 5
<<<₃₀ : `Endo Word
<<<₃₀ = rot-left 30
Word² = Word `× Word
Word³ = Word `× Word²
Word⁴ = Word `× Word³
Word⁵ = Word `× Word⁴
open import Data.Digit
bits : ∀ ℓ → ℕ → `𝟙 `→ `Bits ℓ
bits ℓ n₀ = constBits (L▹V (L.map F▹𝟚 (proj₁ (toDigits 2 n₀))))
where open import Data.List as L
open import Data.Product
open import Data.Two
L▹V : ∀ {n} → List 𝟚 → Vec 𝟚 n
L▹V {zero} xs = []
L▹V {suc n} [] = V.replicate 0₂
L▹V {suc n} (x ∷ xs) = x ∷ L▹V xs
F▹𝟚 : Fin 2 → 𝟚
F▹𝟚 zero = 0₂
F▹𝟚 (suc _) = 1₂
{-
[_-_mod_] : ℕ → ℕ → ℕ → ℕ
[ m - n mod p ] = {!!}
[_+_mod_] : ℕ → ℕ → ℕ → ℕ
[ m + n mod p ] = {!!}
-}
#ʷ = bits 32
<⊞⁵> : Word⁵ `× Word⁵ `→ Word⁵
<⊞⁵> = < <⊞> `zip` < <⊞> `zip` < <⊞> `zip` < <⊞> `zip` <⊞> > > > >
iterateⁿ : ∀ {A} n → (Fin n → `Endo A) → `Endo A
iterateⁿ zero f = id
iterateⁿ (suc n) f = f zero ⁏ iterateⁿ n (f ∘ suc)
_²⁰ : ∀ {A} → (Fin 20 → `Endo A) → `Endo A
_²⁰ = iterateⁿ 20
module _ where
K₀ = #ʷ 0x5A827999
K₂ = #ʷ 0x6ED9EBA1
K₄ = #ʷ 0x8F1BBCDC
K₆ = #ʷ 0xCA62C1D6
H0 = #ʷ 0x67452301
H1 = #ʷ 0xEFCDAB89
H2 = #ʷ 0x98BADCFE
H3 = #ʷ 0x10325476
H4 = #ʷ 0xC3D2E1F0
A B C D E : Word⁵ `→ Word
A = fst
B = snd ⁏ fst
C = snd ⁏ snd ⁏ fst
D = snd ⁏ snd ⁏ snd ⁏ fst
E = snd ⁏ snd ⁏ snd ⁏ snd
F₀ = B `∧ C `∨ `not B `∧ D
F₂ = B `⊕ C `⊕ D
F₄ = B `∧ C `∨ B `∧ D `∨ C `∧ D
F₆ = F₂
module _ (F : Word⁵ `→ Word)
(K : `𝟙 `→ Word)
(W : `𝟙 `→ Word) where
Iteration = < A' , A , (B ⁏ <<<₃₀) , C , D >
where A' = F `⊞ E `⊞ (A ⁏ <<<₅) `⊞ (tt ⁏ W) `⊞ (tt ⁏ K)
module _ (W : Fin 80 → `𝟙 `→ Word) where
W₀ W₂ W₄ W₆ : Fin 20 → `𝟙 `→ Word
W₀ = W ∘ inject+ 60 ∘ raise 0
W₂ = W ∘ inject+ 40 ∘ raise 20
W₄ = W ∘ inject+ 20 ∘ raise 40
W₆ = W ∘ inject+ 0 ∘ raise 60
Iteration⁸⁰ : `Endo Word⁵
Iteration⁸⁰ =
(Iteration F₀ K₀ ∘ W₀)²⁰ ⁏
(Iteration F₂ K₂ ∘ W₂)²⁰ ⁏
(Iteration F₄ K₄ ∘ W₄)²⁰ ⁏
(Iteration F₆ K₆ ∘ W₆)²⁰
pad0s : ℕ → ℕ
pad0s zero = 512 ∸ 65
pad0s (suc _) = STUCK where postulate STUCK : ℕ
-- pad0s n = [ 512 - [ n + 65 mod 512 ] mod 512 ]
paddedLength : ℕ → ℕ
paddedLength n = n + (1 + pad0s n + 64)
padding : ∀ {n} → `Bits n `→ `Bits (paddedLength n)
padding {n} = < id ,tt⁏ <1∷ < <0ⁿ> {pad0s n} ++ bits 64 n > > > ⁏ append
ite : Endo (`Endo Word⁵)
ite f = dup ⁏ first f ⁏ <⊞⁵>
hash-block : `Endo Word⁵
hash-block = ite Iteration⁸⁰
ite' : ∀ n (W : Fin n → Fin 80 → `𝟙 `→ Word)
→ ((Fin 80 → `𝟙 `→ Word) → `Endo Word⁵) → `Endo Word⁵
ite' zero W f = id
ite' (suc n) W f = f (W zero) ⁏ ite' n (W ∘ suc) f
SHA1 : ∀ n (W : Fin n → Fin 80 → `𝟙 `→ Word) → `𝟙 `→ Word⁵
SHA1 n W = < H0 , H1 , H2 , H3 , H4 >
⁏ ite' n W hash-block
SHA1-on-0s : `𝟙 `→ Word⁵
SHA1-on-0s = SHA1 1 (λ _ _ → <0ⁿ>)
module AgdaSHA1 where
open import FunUniverse.Agda
open FunSHA1 agdaFunOps
open import Data.Two
open import IO
import IO.Primitive
open import Data.One
open import Data.Two
open import Data.Product
open import Coinduction
putBit : 𝟚 → IO 𝟙
putBit 1₂ = putStr "1"
putBit 0₂ = putStr "0"
putBits : ∀ {n} → Vec 𝟚 n → IO 𝟙
putBits [] = return _
putBits (x ∷ bs) = ♯ putBit x >> ♯ putBits bs
put× : ∀ {A B : Set} → (A → IO 𝟙) → (B → IO 𝟙) → (A × B) → IO 𝟙
put× pA pB (x , y) = ♯ pA x >> ♯ pB y
{-
main : IO.Primitive.IO 𝟙
main = IO.run (put× putBits (put× putBits (put× putBits (put× putBits
putBits))) AgdaSHA1.SHA1-on-0s)
-}
firstBit : ∀ {A : Set} → (V.Vec 𝟚 32 × A) → 𝟚
firstBit ((b ∷ _) , _) = b
import FunUniverse.Cost as Cost
open import Data.Nat.Show
sha1-cost : ℕ
sha1-cost = FunSHA1.SHA1-on-0s Cost.timeOps
main : IO.Primitive.IO 𝟙
--main = IO.run (putBit (firstBit (AgdaSHA1.SHA1-on-0s _)))
main = IO.run (putStrLn (show sha1-cost))
-- -}
|
{-# OPTIONS --without-K #-}
-- https://upload.wikimedia.org/wikipedia/commons/e/e2/SHA-1.svg
-- http://www.faqs.org/rfcs/rfc3174.html
open import Data.Nat.NP using (ℕ; zero; suc; _+_; _∸_)
import Data.Vec as V
open V using (Vec; []; _∷_)
open import Function.NP using (Endo; _∘_)
open import FunUniverse.Core hiding (_,_)
open import Data.Fin using (Fin; zero; suc; #_; inject+; raise) renaming (toℕ to Fin▹ℕ)
open import Solver.Linear
module sha1 where
module FunSHA1
{t}
{T : Set t}
{funU : FunUniverse T}
(funOps : FunOps funU)
where
open FunUniverse funU
open FunOps funOps renaming (_∘_ to _`∘_)
module LinSolver = Syntaxᶠ linRewiring
Word : T
Word = `Bits 32
map²ʷ : (`𝟚 `× `𝟚 `→ `𝟚) → Word `× Word `→ Word
map²ʷ = zipWith
mapʷ : (`𝟚 `→ `𝟚) → Word `→ Word
mapʷ = map
lift : ∀ {Γ A B} → (A `→ B) → Γ `→ A → Γ `→ B
lift f g = g ⁏ f
lift₂ : ∀ {Γ A B C} → (A `× B `→ C) → Γ `→ A → Γ `→ B → Γ `→ C
lift₂ op₂ f₀ f₁ = < f₀ , f₁ > ⁏ op₂
`not : ∀ {Γ} (f : Γ `→ Word) → Γ `→ Word
`not = lift (mapʷ not)
infixr 3 _`⊕_
_`⊕_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`⊕_ = lift₂ (map²ʷ <xor>)
infixr 3 _`∧_
_`∧_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`∧_ = lift₂ (map²ʷ <and>)
infixr 2 _`∨_
_`∨_ : ∀ {Γ} (f₀ f₁ : Γ `→ Word) → Γ `→ Word
_`∨_ = lift₂ (map²ʷ <or>)
--iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ `Vec B n
iter : ∀ {n A B C D} → (D `× A `× B `→ D `× C) → D `× `Vec A n `× `Vec B n `→ `Vec C n
iter {zero} F = <[]>
iter {suc n} F = < id × < uncons × uncons > >
⁏ (helper ⁏ < F × id > ⁏ < swap × id > ⁏ assoc ⁏ < id × iter F >)
⁏ <∷>
where
open LinSolver
helper = λ {A} {B} {D} {VA} {VB} →
rewireᶠ (A ∷ B ∷ D ∷ VA ∷ VB ∷ [])
(λ a b d va vb → (d , (a , va) , (b , vb)) ↦ (d , a , b) , (va , vb))
<⊞> adder : Word `× Word `→ Word
adder = <tt⁏ <0₂> , id > ⁏ iter full-adder
<⊞> = adder
infixl 4 _`⊞_
_`⊞_ : ∀ {A} (f g : A `→ Word) → A `→ Word
_`⊞_ = lift₂ <⊞>
<_,_,_> : ∀ {Γ A B C} → Γ `→ A → Γ `→ B → Γ `→ C → Γ `→ (A `× B `× C)
< f₀ , f₁ , f₂ > = < f₀ , < f₁ , f₂ > >
<_,_,_,_,_> : ∀ {Γ A B C D E} → Γ `→ A → Γ `→ B → Γ `→ C
→ Γ `→ D → Γ `→ E
→ Γ `→ (A `× B `× C `× D `× E)
< f₀ , f₁ , f₂ , f₃ , f₄ > = < f₀ , < f₁ , < f₂ , f₃ , f₄ > > >
<<<₅ : `Endo Word
<<<₅ = rot-left 5
<<<₃₀ : `Endo Word
<<<₃₀ = rot-left 30
Word² = Word `× Word
Word³ = Word `× Word²
Word⁴ = Word `× Word³
Word⁵ = Word `× Word⁴
open import Data.Digit
bits : ∀ ℓ → ℕ → `𝟙 `→ `Bits ℓ
bits ℓ n₀ = constBits (L▹V (L.map F▹𝟚 (proj₁ (toDigits 2 n₀))))
where open import Data.List as L
open import Data.Product
open import Data.Two
L▹V : ∀ {n} → List 𝟚 → Vec 𝟚 n
L▹V {zero} xs = []
L▹V {suc n} [] = V.replicate 0₂
L▹V {suc n} (x ∷ xs) = x ∷ L▹V xs
F▹𝟚 : Fin 2 → 𝟚
F▹𝟚 zero = 0₂
F▹𝟚 (suc _) = 1₂
{-
[_-_mod_] : ℕ → ℕ → ℕ → ℕ
[ m - n mod p ] = {!!}
[_+_mod_] : ℕ → ℕ → ℕ → ℕ
[ m + n mod p ] = {!!}
-}
#ʷ = bits 32
<⊞⁵> : Word⁵ `× Word⁵ `→ Word⁵
<⊞⁵> = < <⊞> `zip` < <⊞> `zip` < <⊞> `zip` < <⊞> `zip` <⊞> > > > >
iterateⁿ : ∀ {A} n → (Fin n → `Endo A) → `Endo A
iterateⁿ zero f = id
iterateⁿ (suc n) f = f zero ⁏ iterateⁿ n (f ∘ suc)
_²⁰ : ∀ {A} → (Fin 20 → `Endo A) → `Endo A
_²⁰ = iterateⁿ 20
module _ where
K₀ = #ʷ 0x5A827999
K₂ = #ʷ 0x6ED9EBA1
K₄ = #ʷ 0x8F1BBCDC
K₆ = #ʷ 0xCA62C1D6
H0 = #ʷ 0x67452301
H1 = #ʷ 0xEFCDAB89
H2 = #ʷ 0x98BADCFE
H3 = #ʷ 0x10325476
H4 = #ʷ 0xC3D2E1F0
A B C D E : Word⁵ `→ Word
A = fst
B = snd ⁏ fst
C = snd ⁏ snd ⁏ fst
D = snd ⁏ snd ⁏ snd ⁏ fst
E = snd ⁏ snd ⁏ snd ⁏ snd
F₀ = B `∧ C `∨ `not B `∧ D
F₂ = B `⊕ C `⊕ D
F₄ = B `∧ C `∨ B `∧ D `∨ C `∧ D
F₆ = F₂
module _ (F : Word⁵ `→ Word)
(K : `𝟙 `→ Word)
(W : `𝟙 `→ Word) where
Iteration = < A' , A , (B ⁏ <<<₃₀) , C , D >
where A' = F `⊞ E `⊞ (A ⁏ <<<₅) `⊞ (tt ⁏ W) `⊞ (tt ⁏ K)
module _ (W : Fin 80 → `𝟙 `→ Word) where
W₀ W₂ W₄ W₆ : Fin 20 → `𝟙 `→ Word
W₀ = W ∘ inject+ 60 ∘ raise 0
W₂ = W ∘ inject+ 40 ∘ raise 20
W₄ = W ∘ inject+ 20 ∘ raise 40
W₆ = W ∘ inject+ 0 ∘ raise 60
Iteration⁸⁰ : `Endo Word⁵
Iteration⁸⁰ =
(Iteration F₀ K₀ ∘ W₀)²⁰ ⁏
(Iteration F₂ K₂ ∘ W₂)²⁰ ⁏
(Iteration F₄ K₄ ∘ W₄)²⁰ ⁏
(Iteration F₆ K₆ ∘ W₆)²⁰
pad0s : ℕ → ℕ
pad0s zero = 512 ∸ 65
pad0s (suc _) = STUCK where postulate STUCK : ℕ
-- pad0s n = [ 512 - [ n + 65 mod 512 ] mod 512 ]
paddedLength : ℕ → ℕ
paddedLength n = n + (1 + pad0s n + 64)
padding : ∀ {n} → `Bits n `→ `Bits (paddedLength n)
padding {n} = < id ,tt⁏ <1∷ < <0ⁿ> {pad0s n} ++ bits 64 n > > > ⁏ append
ite : Endo (`Endo Word⁵)
ite f = dup ⁏ first f ⁏ <⊞⁵>
hash-block : `Endo Word⁵
hash-block = ite Iteration⁸⁰
ite' : ∀ n (W : Fin n → Fin 80 → `𝟙 `→ Word)
→ ((Fin 80 → `𝟙 `→ Word) → `Endo Word⁵) → `Endo Word⁵
ite' zero W f = id
ite' (suc n) W f = f (W zero) ⁏ ite' n (W ∘ suc) f
SHA1 : ∀ n (W : Fin n → Fin 80 → `𝟙 `→ Word) → `𝟙 `→ Word⁵
SHA1 n W = < H0 , H1 , H2 , H3 , H4 >
⁏ ite' n W hash-block
SHA1-on-0s : `𝟙 `→ Word⁵
SHA1-on-0s = SHA1 1 (λ _ _ → <0ⁿ>)
module AgdaSHA1 where
open import FunUniverse.Agda
open FunSHA1 agdaFunOps
open import Data.Two
open import IO
import IO.Primitive
open import Data.One
open import Data.Two
open import Data.Product
open import Coinduction
putBit : 𝟚 → IO 𝟙
putBit 1₂ = putStr "1"
putBit 0₂ = putStr "0"
putBits : ∀ {n} → Vec 𝟚 n → IO 𝟙
putBits [] = return _
putBits (x ∷ bs) = ♯ putBit x >> ♯ putBits bs
put× : ∀ {A B : Set} → (A → IO 𝟙) → (B → IO 𝟙) → (A × B) → IO 𝟙
put× pA pB (x , y) = ♯ pA x >> ♯ pB y
{-
main : IO.Primitive.IO 𝟙
main = IO.run (put× putBits (put× putBits (put× putBits (put× putBits
putBits))) AgdaSHA1.SHA1-on-0s)
-}
firstBit : ∀ {A : Set} → (V.Vec 𝟚 32 × A) → 𝟚
firstBit ((b ∷ _) , _) = b
import FunUniverse.Cost as Cost
open import Data.Nat.Show
sha1-cost : ℕ
sha1-cost = FunSHA1.SHA1-on-0s Cost.timeOps
main : IO.Primitive.IO 𝟙
--main = IO.run (putBit (firstBit (AgdaSHA1.SHA1-on-0s _)))
main = IO.run (putStrLn (show sha1-cost))
-- -}
|
Fix sha1...
|
Fix sha1...
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
bfcd2eb5d4fab7bcb698719c3f02fc2aea768cf3
|
lib/Data/Tree/Binary.agda
|
lib/Data/Tree/Binary.agda
|
{-# OPTIONS --without-K #-}
open import Type hiding (★)
module Data.Tree.Binary where
data BinTree {a} (A : ★ a) : ★ a where
empty : BinTree A
leaf : A → BinTree A
fork : (ℓ r : BinTree A) → BinTree A
|
{-# OPTIONS --without-K #-}
open import Type hiding (★)
open import Level
open import Data.Zero
open import Data.Sum
module Data.Tree.Binary where
data BinTree {a} (A : ★ a) : ★ a where
empty : BinTree A
leaf : A → BinTree A
fork : (ℓ r : BinTree A) → BinTree A
Any : ∀ {a p}{A : ★ a}(P : A → ★ p) → BinTree A → ★ p
Any P empty = Lift 𝟘
Any P (leaf x) = P x
Any P (fork ts ts₁) = Any P ts ⊎ Any P ts₁
|
Add Any predicate for binary tree
|
Add Any predicate for binary tree
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
5c1ef9d73912d2e59b329ff1866bf20c6dddefc2
|
Crypto/JS/BigI/CyclicGroup.agda
|
Crypto/JS/BigI/CyclicGroup.agda
|
{-# OPTIONS --without-K #-}
open import Type.Eq
open import FFI.JS using (Bool; trace-call; _++_)
open import FFI.JS.Check
renaming (check to check?)
--renaming (warn-check to check?)
open import FFI.JS.BigI
open import Data.List.Base using (List; foldr)
open import Data.Two hiding (_==_)
open import Relation.Binary.PropositionalEquality
open import Algebra.Raw
open import Algebra.Group
-- TODO carry on a primality proof of p
module Crypto.JS.BigI.CyclicGroup (p : BigI) where
abstract
ℤ[_]★ : Set
ℤ[_]★ = BigI
private
ℤp★ : Set
ℤp★ = BigI
mod-p : BigI → ℤp★
mod-p x = mod x p
-- There are two ways to go from BigI to ℤp★: check and mod-p
-- Use check for untrusted input data and mod-p for internal
-- computation.
BigI▹ℤ[_]★ : BigI → ℤp★
BigI▹ℤ[_]★ = -- trace-call "BigI▹ℤ[_]★ "
λ x →
(check? (x <I p)
(λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x)
(check? (x >I 0I)
(λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x))
check-non-zero : ℤp★ → BigI
check-non-zero = -- trace-call "check-non-zero "
λ x → check? (x >I 0I) (λ _ → "Should be non zero") x
repr : ℤp★ → BigI
repr x = x
1# : ℤp★
1# = 1I
1/_ : ℤp★ → ℤp★
1/ x = modInv (check-non-zero x) p
_^_ : ℤp★ → BigI → ℤp★
x ^ y = modPow x y p
_*_ _/_ : ℤp★ → ℤp★ → ℤp★
x * y = mod-p (multiply (repr x) (repr y))
x / y = x * 1/ y
instance
ℤ[_]★-Eq? : Eq? ℤp★
ℤ[_]★-Eq? = record
{ _==_ = _=='_
; ≡⇒== = ≡⇒=='
; ==⇒≡ = ==⇒≡' }
where
_=='_ : ℤp★ → ℤp★ → 𝟚
x ==' y = equals (repr x) (repr y)
postulate
≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y)
==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y
prod : List ℤp★ → ℤp★
prod = foldr _*_ 1#
mon-ops : Monoid-Ops ℤp★
mon-ops = _*_ , 1#
grp-ops : Group-Ops ℤp★
grp-ops = mon-ops , 1/_
postulate
grp-struct : Group-Struct grp-ops
grp : Group ℤp★
grp = grp-ops , grp-struct
module grp = Group grp
-- -}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Type.Eq
open import FFI.JS using (Bool; trace-call; _++_)
open import FFI.JS.Check
renaming (check to check?)
--renaming (warn-check to check?)
open import FFI.JS.BigI
open import Data.List.Base using (List; foldr)
open import Data.Two hiding (_==_)
open import Relation.Binary.PropositionalEquality
open import Algebra.Raw
open import Algebra.Group
-- TODO carry on a primality proof of p
module Crypto.JS.BigI.CyclicGroup (p : BigI) where
abstract
ℤ[_]★ : Set
ℤ[_]★ = BigI
private
ℤp★ : Set
ℤp★ = BigI
mod-p : BigI → ℤp★
mod-p x = mod x p
-- There are two ways to go from BigI to ℤp★: check and mod-p
-- Use check for untrusted input data and mod-p for internal
-- computation.
BigI▹ℤ[_]★ : BigI → ℤp★
BigI▹ℤ[_]★ = -- trace-call "BigI▹ℤ[_]★ "
λ x →
(check? (x <I p)
(λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x)
(check? (x >I 0I)
(λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x))
repr : ℤp★ → BigI
repr x = x
1# : ℤp★
1# = 1I
1/_ : ℤp★ → ℤp★
1/ x = modInv x p
_^_ : ℤp★ → BigI → ℤp★
x ^ y = modPow x y p
_*_ _/_ : ℤp★ → ℤp★ → ℤp★
x * y = mod-p (multiply (repr x) (repr y))
x / y = x * 1/ y
instance
ℤ[_]★-Eq? : Eq? ℤp★
ℤ[_]★-Eq? = record
{ _==_ = _=='_
; ≡⇒== = ≡⇒=='
; ==⇒≡ = ==⇒≡' }
where
_=='_ : ℤp★ → ℤp★ → 𝟚
x ==' y = equals (repr x) (repr y)
postulate
≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y)
==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y
prod : List ℤp★ → ℤp★
prod = foldr _*_ 1#
mon-ops : Monoid-Ops ℤp★
mon-ops = _*_ , 1#
grp-ops : Group-Ops ℤp★
grp-ops = mon-ops , 1/_
postulate
grp-struct : Group-Struct grp-ops
grp : Group ℤp★
grp = grp-ops , grp-struct
module grp = Group grp
-- -}
-- -}
-- -}
-- -}
-- -}
|
Remove a useless check: the point of ℤp★ is to not have 0
|
Remove a useless check: the point of ℤp★ is to not have 0
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
e6dc4b68e44d8d340a5227f0ad0a4240a5f086a9
|
Attack/Compression.agda
|
Attack/Compression.agda
|
{-# OPTIONS --copatterns #-}
-- Compression can be used an an Oracle to defeat encryption.
-- Here we show how compressing before encrypting lead to a
-- NOT semantically secure construction (IND-CPA).
module Attack.Compression where
open import Type using (★)
open import Function
open import Data.Nat.NP
open import Data.Two renaming (_==_ to _==ᵇ_)
open import Data.Product
open import Data.Zero
open import Relation.Binary.PropositionalEquality.NP
import Game.IND-CPA
record Sized (A : ★) : ★ where
field
size : A → ℕ
open Sized {{...}}
module _ {A B} {{_ : Sized A}} {{_ : Sized B}} where
-- Same size
_==ˢ_ : A → B → 𝟚
x ==ˢ y = size x == size y
-- Same size
_≡ˢ_ : A → B → ★
x ≡ˢ y = size x ≡ size y
≡ˢ→==ˢ : ∀ {x y} → x ≡ˢ y → (x ==ˢ y) ≡ 1₂
≡ˢ→==ˢ {x} {y} x≡ˢy rewrite x≡ˢy = ✓→≡ (==.refl {size y})
==ˢ→≡ˢ : ∀ {x y} → (x ==ˢ y) ≡ 1₂ → x ≡ˢ y
==ˢ→≡ˢ p = ==.sound _ _ (≡→✓ p)
module _ {PubKey Message CipherText Rₑ : ★}
(Enc : PubKey → Message → Rₑ → CipherText)
{{_ : Sized Message}}
{{_ : Sized CipherText}}
where
-- Encryption size is independant of the randomness
EncSizeRndInd =
∀ {pk m r₀ r₁} → Enc pk m r₀ ≡ˢ Enc pk m r₁
-- Encrypted ciphertexts of the same size, will lead to messages of the same size
EncLeakSize =
∀ {pk m₀ m₁ r₀ r₁} → Enc pk m₀ r₀ ≡ˢ Enc pk m₁ r₁ → m₀ ≡ˢ m₁
module M
{Message CompressedMessage : ★}
{{_ : Sized CompressedMessage}}
(compress : Message → CompressedMessage)
-- 2 messages which have different size after compression
(m₀ m₁ : Message)
(different-compression
: size (compress m₀) ≢ size (compress m₁))
(PubKey : ★)
(SecKey : ★)
(CipherText : ★)
{{_ : Sized CipherText}}
(Rₑ Rₖ Rₓ : ★)
(KeyGen : Rₖ → PubKey × SecKey)
(Enc : PubKey → CompressedMessage → Rₑ → CipherText)
(EncSizeRndInd : EncSizeRndInd Enc)
(EncLeakSize : EncLeakSize Enc)
where
-- Our adversary runs one encryption
Rₐ = Rₑ
CEnc : PubKey → Message → Rₑ → CipherText
CEnc pk m rₑ = Enc pk (compress m) rₑ
module IND-CPA = Game.IND-CPA PubKey SecKey Message CipherText
Rₑ Rₖ Rₐ Rₓ KeyGen CEnc
open IND-CPA.Adversary
A : IND-CPA.Adversary
m A = λ _ _ → [0: m₀ 1: m₁ ]
b′ A = λ rₑ pk c → c ==ˢ CEnc pk m₁ rₑ
-- The adversary A is always winning.
A-always-wins : ∀ b r → IND-CPA.EXP b A r ≡ b
A-always-wins 0₂ _ = ≢1→≡0 (different-compression ∘ EncLeakSize ∘ ==ˢ→≡ˢ)
A-always-wins 1₂ _ = ≡ˢ→==ˢ EncSizeRndInd
lem : ∀ x y → (x ==ᵇ y) ≡ 0₂ → not (x ==ᵇ y) ≡ 1₂
lem 1₂ 1₂ = λ ()
lem 1₂ 0₂ = λ _ → refl
lem 0₂ 1₂ = λ _ → refl
lem 0₂ 0₂ = λ ()
{-
A-always-wins' : ∀ r → IND-CPA.game A r ≡ 1₂
A-always-wins' (0₂ , r) = {!lem (not (IND-CPA.EXP 0₂ {!A!} r)) (IND-CPA.EXP 1₂ A r) (A-always-wins 0₂ r)!}
A-always-wins' (1₂ , r) = A-always-wins 1₂ r
-}
|
{-# OPTIONS --copatterns #-}
-- Compression can be used an an Oracle to defeat encryption.
-- Here we show how compressing before encrypting lead to a
-- NOT semantically secure construction (IND-CPA).
module Attack.Compression where
open import Type using (★)
open import Function.NP
open import Data.Nat.NP
open import Data.Two renaming (_==_ to _==ᵇ_)
open import Data.Product
open import Data.Zero
open import Relation.Binary.PropositionalEquality.NP
import Game.IND-CPA
record Sized (A : ★) : ★ where
field
size : A → ℕ
open Sized {{...}}
module EqSized {A B : ★} {{_ : Sized A}} {{_ : Sized B}} where
-- Same size
_==ˢ_ : A → B → 𝟚
x ==ˢ y = size x == size y
-- Same size
_≡ˢ_ : A → B → ★
x ≡ˢ y = size x ≡ size y
≡ˢ→==ˢ : ∀ {x y} → x ≡ˢ y → (x ==ˢ y) ≡ 1₂
≡ˢ→==ˢ {x} {y} x≡ˢy rewrite x≡ˢy = ✓→≡ (==.refl {size y})
==ˢ→≡ˢ : ∀ {x y} → (x ==ˢ y) ≡ 1₂ → x ≡ˢ y
==ˢ→≡ˢ p = ==.sound _ _ (≡→✓ p)
module EncSized
{PubKey Message CipherText Rₑ : ★}
(enc : PubKey → Message → Rₑ → CipherText)
{{_ : Sized Message}}
{{_ : Sized CipherText}}
where
open EqSized
-- Encryption size is independant of the randomness
EncSizeRndInd =
∀ {pk m r₀ r₁} → enc pk m r₀ ≡ˢ enc pk m r₁
-- Encrypted ciphertexts of the same size, will lead to messages of the same size
EncLeakSize =
∀ {pk m₀ m₁ r₀ r₁} → enc pk m₀ r₀ ≡ˢ enc pk m₁ r₁ → m₀ ≡ˢ m₁
module M
{Message CompressedMessage : ★}
{{_ : Sized CompressedMessage}}
(compress : Message → CompressedMessage)
-- 2 messages which have different size after compression
(m₀ m₁ : Message)
(different-compression
: size (compress m₀) ≢ size (compress m₁))
(PubKey : ★)
(SecKey : ★)
(CipherText : ★)
{{_ : Sized CipherText}}
(Rₑ Rₖ Rₓ : ★)
(KeyGen : Rₖ → PubKey × SecKey)
(enc : PubKey → CompressedMessage → Rₑ → CipherText)
(open EncSized enc)
(encSizeRndInd : EncSizeRndInd)
(encLeakSize : EncLeakSize)
where
-- Our adversary runs one encryption
Rₐ = Rₑ
CEnc : PubKey → Message → Rₑ → CipherText
CEnc pk m rₑ = enc pk (compress m) rₑ
module IND-CPA = Game.IND-CPA PubKey SecKey Message CipherText
Rₑ Rₖ Rₐ Rₓ KeyGen CEnc
open IND-CPA.Adversary
open EqSized {CipherText}{CipherText} {{it}} {{it}}
A : IND-CPA.Adversary
m A = λ _ _ → [0: m₀ 1: m₁ ]
b′ A = λ rₑ pk c → c ==ˢ CEnc pk m₁ rₑ
-- The adversary A is always winning.
A-always-wins : ∀ b r → IND-CPA.EXP b A r ≡ b
A-always-wins 0₂ _ = ≢1→≡0 (different-compression ∘′ encLeakSize ∘′ ==ˢ→≡ˢ)
A-always-wins 1₂ _ = ≡ˢ→==ˢ encSizeRndInd
-- One should be able to derive this one from A-always-wins and the game-flipping general lemma in the exploration lib
{-
A-always-wins' : ∀ r → IND-CPA.game A r ≡ 1₂
A-always-wins' (0₂ , r) = {!lem (not (IND-CPA.EXP 0₂ {!A!} r)) (IND-CPA.EXP 1₂ A r) (A-always-wins 0₂ r)!}
where
lem : ∀ x y → (x ==ᵇ y) ≡ 0₂ → not (x ==ᵇ y) ≡ 1₂
lem 1₂ 1₂ = λ ()
lem 1₂ 0₂ = λ _ → refl
lem 0₂ 1₂ = λ _ → refl
lem 0₂ 0₂ = λ ()
A-always-wins' (1₂ , r) = A-always-wins 1₂ r
-}
|
work around the instance argument becoming weaker...
|
Attack.Compression: work around the instance argument becoming weaker...
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
eb332321cb55523e6068bacced76b6f0bc2f6f7b
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra as CA using
( ChangeAlgebra
; ChangeAlgebraFamily
; change-algebra₍_₎
; family
; Δ₍_₎
)
open import Level
Structure : Set₁
Structure = ChangeAlgebraFamily zero ⟦_⟧Base
module Structure (change-algebra-base : Structure) where
change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}}
change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type
change-algebra-family = family change-algebra
---------------
-- Interface --
---------------
open CA public
using
( Δ₍_₎
; update′
; diff′
; nil₍_₎
; update-diff₍_₎
; update-nil₍_₎
)
--------------------
-- Implementation --
--------------------
module _ {τ₁ τ₂ : Type} where
open CA.FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public
using
(
)
renaming
( correct to is-valid
; apply to call-change
)
open CA public using
( before
; after
; before₍_₎
; after₍_₎
)
------------------
-- Environments --
------------------
open CA.FunctionChanges public using (cons)
open CA public using () renaming
( [] to ∅
; _∷_ to _•_
)
open CA.ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebra to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍ Γ ₎
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
open import Level
Structure : Set₁
Structure = ChangeAlgebraFamily zero ⟦_⟧Base
module Structure (change-algebra-base : Structure) where
-- change algebras
open CA public renaming
( [] to ∅
; _∷_ to _•_
)
-- change algebra for every type
change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}}
change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
open FunctionChanges public using (cons)
module _ {τ₁ τ₂ : Type} where
open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- environment changes
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebra to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍ Γ ₎
|
Simplify reexports.
|
Simplify reexports.
Merge open declarations, reexport everything.
Old-commit-hash: 69a4b0415ae43f3db65282495914ddf7a6fe06fd
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9e4e42995f871b15f24591bd95cac30bfecb1bda
|
Game/Transformation/CPAd-CPA.agda
|
Game/Transformation/CPAd-CPA.agda
|
{-# OPTIONS --without-K --copatterns #-}
open import Type
open import Data.Bit
open import Data.Maybe
open import Data.Product
open import Data.One
open import Control.Strategy renaming (run to runStrategy; map to mapStrategy)
open import Function
open import Relation.Binary.PropositionalEquality
import Game.IND-CPA-dagger
import Game.IND-CPA
module Game.Transformation.CPAd-CPA
(PubKey : ★)
(SecKey : ★)
(Message : ★)
(CipherText : ★)
-- randomness supply for, encryption, key-generation, adversary, adversary state
(Rₑ Rₖ Rₐ : ★)
(KeyGen : Rₖ → PubKey × SecKey)
(Enc : PubKey → Message → Rₑ → CipherText)
(Dec : SecKey → CipherText → Message)
where
module CPA† = Game.IND-CPA-dagger PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc
module CPA = Game.IND-CPA PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc
{-
f : (Message × Message) × (CipherText → DecRound Bit)
→ (Message × Message) × (CipherText → CipherText → DecRound Bit)
f (m , g) = m , λ c _ → g c
-}
R-transform : CPA†.R → CPA.R
R-transform (rₐ , rₖ , rₑ , _ , _) = rₐ , rₖ , rₑ , _
module _ (A : CPA.Adversary) where
open CPA.Adversary
A† : CPA†.Adversary
m A† = m A
b′ A† rₐ pk c₀ c₁ = b′ A rₐ pk c₀
lemma : ∀ b t r
→ CPA.EXP b A (R-transform r)
≡ CPA†.EXP b t A† r
lemma _ _ _ = refl
-- If we are able to do the transformation, then we get the same advantage
correct : ∀ b r
→ CPA.EXP b A (R-transform r)
≡ CPA†.EXP b (not b) A† r
correct _ _ = refl
-- -}
|
{-# OPTIONS --without-K --copatterns #-}
open import Type
open import Data.Bit
open import Data.Maybe
open import Data.Product
open import Data.One
open import Control.Strategy renaming (run to runStrategy; map to mapStrategy)
open import Function
open import Relation.Binary.PropositionalEquality
import Game.IND-CPA-dagger
import Game.IND-CPA
module Game.Transformation.CPAd-CPA
(PubKey : ★)
(SecKey : ★)
(Message : ★)
(CipherText : ★)
-- randomness supply for, encryption, key-generation, adversary, adversary state
(Rₑ Rₖ Rₐ : ★)
(KeyGen : Rₖ → PubKey × SecKey)
(Enc : PubKey → Message → Rₑ → CipherText)
(Dec : SecKey → CipherText → Message)
where
module CPA† = Game.IND-CPA-dagger PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc
module CPA = Game.IND-CPA PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc
R-transform : CPA†.R → CPA.R
R-transform (rₐ , rₖ , rₑ , _ , _) = rₐ , rₖ , rₑ , _
module _ (A : CPA.Adversary) where
open CPA†.Adversary
module A = CPA.Adversary A
A† : CPA†.Adversary
m A† = A.m
b′ A† rₐ pk c₀ c₁ = A.b′ rₐ pk c₀
lemma : ∀ b t r
→ CPA.EXP b A (R-transform r)
≡ CPA†.EXP b t A† r
lemma _ _ _ = refl
-- If we are able to do the transformation, then we get the same advantage
correct : ∀ b r
→ CPA.EXP b A (R-transform r)
≡ CPA†.EXP b (not b) A† r
correct _ _ = refl
-- -}
|
fix copattern error in CPAd-CPA
|
fix copattern error in CPAd-CPA
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.