commit
stringlengths 40
40
| old_file
stringlengths 2
205
| new_file
stringlengths 2
205
| old_contents
stringlengths 0
32.9k
| new_contents
stringlengths 1
38.9k
| subject
stringlengths 3
9.4k
| message
stringlengths 6
9.84k
| lang
stringlengths 3
13
| license
stringclasses 13
values | repos
stringlengths 6
115k
|
---|---|---|---|---|---|---|---|---|---|
0b848c7f1bc49d5ae50193b8abe25a13694ce804
|
experiments/Coerce.agda
|
experiments/Coerce.agda
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
-- Agda specification of `coerce`
--
-- Incomplete: too much work just to make type system happy.
-- Conversions between morally identical types obscure
-- the operational content.
open import Function
open import Data.Product
open import Data.Maybe
open import Data.Bool hiding (_≟_)
open import Data.Sum
open import Data.Nat
import Data.Fin as Fin
open Fin using (Fin ; zero ; suc)
open import Relation.Nullary using (Dec ; yes ; no)
open import Coinduction renaming (Rec to Fix ; fold to roll ; unfold to unroll)
-- Things fail sometimes
postulate fail : ∀ {ℓ} {A : Set ℓ} → A
-- I know what I'm doing
postulate unsafeCast : ∀ {A B : Set} → A → B
data Data : Set where
base : ℕ → Data
pair : Data → Data → Data
plus : Data → Data → Data
var : ℕ → Data
fix : Data → Data
-- infinite environments
Env : ∀ {ℓ} → Set ℓ → Set ℓ
Env A = ℕ → A
infixr 0 decide_then_else_
decide_then_else_ : ∀ {p ℓ} {P : Set p} {A : Set ℓ} → Dec P → A → A → A
decide yes p then x else y = x
decide no ¬p then x else y = y
--update : ∀ {ℓ} {A : Set ℓ} → ℕ → A → Env A → Env A
--update n v env = λ m → decide n ≟ m then v else env m
prepend : ∀ {ℓ} {A : Set ℓ} → A → Env A → Env A
prepend v env zero = v
prepend v env (suc m) = env m
-- universe construction; always terminating.
{-# NO_TERMINATION_CHECK #-}
uc : Data → Env Set → Set
uc (base x) ρ = Fin x
uc (pair S T) ρ = uc S ρ × uc T ρ
uc (plus S T) ρ = uc S ρ ⊎ uc T ρ
uc (var x) ρ = ρ x
uc (fix D) ρ = set where set = Fix (♯ (uc D (prepend set ρ)))
∅ : ∀ {ℓ} {A : Set ℓ} → Env A
∅ = fail
my-nat-data : Data
my-nat-data = fix (plus (base 1) (var zero))
My-nat : Set
My-nat = uc my-nat-data ∅
my-zero : My-nat
my-zero = roll (inj₁ zero)
my-one : My-nat
my-one = roll (inj₂ (roll (inj₁ zero)))
-- nonterminating stuff
botData : Data
botData = fix (var zero)
botType : Set
botType = uc botData ∅
{-# NON_TERMINATING #-}
⋯ : botType
⋯ = roll (roll (roll (roll (roll (roll ⋯)))))
shift : ℕ → ℕ → Data → Data
shift c d (base x) = base x
shift c d (pair S T) = pair (shift c d S) (shift c d T)
shift c d (plus S T) = plus (shift c d S) (shift c d T)
shift c d (var k) = decide suc k ≤? c then var k else var (k + d)
shift c d (fix D) = fix (shift c d D)
_[_↦_] : Data → ℕ → Data → Data
base x [ n ↦ S ] = base x
pair T T₁ [ n ↦ S ] = pair (T [ n ↦ S ]) (T₁ [ n ↦ S ])
plus T T₁ [ n ↦ S ] = plus (T [ n ↦ S ]) (T₁ [ n ↦ S ])
var k [ n ↦ S ] = decide k ≟ n then S else var k
fix T [ n ↦ S ] = fix (T [ n + 1 ↦ shift 0 1 S ])
import Level
open import Category.Monad
open RawMonad {Level.zero} monad
{-# NON_TERMINATING #-}
coerce : (S : Data) → (T : Data) → Maybe (uc S ∅ → (uc T ∅))
coerce (base m) (base n) with m ≤? n
... | yes m≤n = just (λ s → Fin.inject≤ s m≤n)
... | no m>n = nothing
coerce (pair S₁ S₂) (pair T₁ T₂) =
coerce S₁ T₁ >>= (λ f₁ →
coerce S₂ T₂ >>= (λ f₂ →
return (λ s → f₁ (proj₁ s) , f₂ (proj₂ s))))
coerce (plus S₁ S₂) (plus T₁ T₂) =
coerce S₁ T₁ >>= (λ f₁ →
coerce S₂ T₂ >>= (λ f₂ →
return [ inj₁ ∘ f₁ , inj₂ ∘ f₂ ]))
coerce (var j) T =
nothing -- should not happen
coerce (fix S) T =
let
S′ = S [ 0 ↦ fix S ]
in
coerce S′ T >>= (λ f →
return (λ { (roll x) → f (unsafeCast x) }))
coerce S (fix T) =
let
T′ = T [ 0 ↦ fix T ]
in
coerce S T′ >>= (λ f →
return (λ x → (roll (unsafeCast (f x)))))
coerce _ _ = nothing
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
-- Agda specification of `coerce`
--
-- Incomplete: too much work just to make type system happy.
-- Conversions between morally identical types obscure
-- the operational content.
open import Function
open import Data.Product
open import Data.Maybe
open import Data.Bool hiding (_≟_)
open import Data.Sum
open import Data.Nat
import Data.Fin as Fin
open Fin using (Fin ; zero ; suc)
open import Relation.Nullary using (Dec ; yes ; no)
open import Coinduction renaming (Rec to Fix ; fold to roll ; unfold to unroll)
-- Things fail sometimes
postulate fail : ∀ {ℓ} {A : Set ℓ} → A
-- I know what I'm doing
postulate unsafeCast : ∀ {A B : Set} → A → B
data Data : Set where
base : ℕ → Data
pair : Data → Data → Data
plus : Data → Data → Data
var : ℕ → Data
fix : Data → Data
-- infinite environments
Env : ∀ {ℓ} → Set ℓ → Set ℓ
Env A = ℕ → A
infixr 0 decide_then_else_
decide_then_else_ : ∀ {p ℓ} {P : Set p} {A : Set ℓ} → Dec P → A → A → A
decide yes p then x else y = x
decide no ¬p then x else y = y
--update : ∀ {ℓ} {A : Set ℓ} → ℕ → A → Env A → Env A
--update n v env = λ m → decide n ≟ m then v else env m
prepend : ∀ {ℓ} {A : Set ℓ} → A → Env A → Env A
prepend v env zero = v
prepend v env (suc m) = env m
-- universe construction; always terminating.
{-# NO_TERMINATION_CHECK #-}
uc : Data → Env Set → Set
uc (base x) ρ = Fin x
uc (pair S T) ρ = uc S ρ × uc T ρ
uc (plus S T) ρ = uc S ρ ⊎ uc T ρ
uc (var x) ρ = ρ x
uc (fix D) ρ = set where set = Fix (♯ (uc D (prepend set ρ)))
∅ : ∀ {ℓ} {A : Set ℓ} → Env A
∅ = fail
my-nat-data : Data
my-nat-data = fix (plus (base 1) (var zero))
My-nat : Set
My-nat = uc my-nat-data ∅
my-zero : My-nat
my-zero = roll (inj₁ zero)
my-one : My-nat
my-one = roll (inj₂ (roll (inj₁ zero)))
-- nonterminating stuff
botData : Data
botData = fix (var zero)
botType : Set
botType = uc botData ∅
{-# NON_TERMINATING #-}
⋯ : botType
⋯ = roll (roll (roll (roll (roll (roll ⋯)))))
shift : ℕ → ℕ → Data → Data
shift c d (base x) = base x
shift c d (pair S T) = pair (shift c d S) (shift c d T)
shift c d (plus S T) = plus (shift c d S) (shift c d T)
shift c d (var k) = decide suc k ≤? c then var k else var (k + d)
shift c d (fix D) = fix (shift c d D)
_[_↦_] : Data → ℕ → Data → Data
base x [ n ↦ S ] = base x
pair T T₁ [ n ↦ S ] = pair (T [ n ↦ S ]) (T₁ [ n ↦ S ])
plus T T₁ [ n ↦ S ] = plus (T [ n ↦ S ]) (T₁ [ n ↦ S ])
var k [ n ↦ S ] = decide k ≟ n then S else var k
fix T [ n ↦ S ] = fix (T [ n + 1 ↦ shift 0 1 S ])
import Level
open import Category.Monad
open RawMonad {Level.zero} monad
-- terminating specification of `coerce`
-- it is terminating because:
--
-- 1. if `fix T` is contractive (i. e., fix T != μX. X),
-- then the `fix T` case will trigger one of the other cases.
--
-- 2. in every other case, the input data `s` is stripped of
-- a constructor.
--
-- This `coerce` is an interpreter.
-- The Scala `coerce` is the corresponding compiler.
--
{-# NON_TERMINATING #-}
coerce : (S : Data) → (T : Data) → uc S ∅ → Maybe (uc T ∅)
coerce (base m) (base n) s with m ≤? n
... | yes m≤n = just (Fin.inject≤ s m≤n)
... | no m>n = nothing
coerce (pair S₁ S₂) (pair T₁ T₂) (s₁ , s₂) =
coerce S₁ T₁ s₁ >>= (λ t₁ →
coerce S₂ T₂ s₂ >>= (λ t₂ →
return (t₁ , t₂)))
coerce (plus S₁ S₂) (plus T₁ T₂) (inj₁ s₁) =
coerce S₁ T₁ s₁ >>= (λ t₁ → just (inj₁ t₁))
coerce (plus S₁ S₂) (plus T₁ T₂) (inj₂ s₂) =
coerce S₂ T₂ s₂ >>= (λ t₂ → just (inj₂ t₂))
coerce (var j) T s =
nothing -- should not happen
coerce (fix S) T (roll x) =
let
S′ = S [ 0 ↦ fix S ]
in
coerce S′ T (unsafeCast x)
coerce S (fix T) s =
let
T′ = T [ 0 ↦ fix T ]
in
coerce S T′ s >>= (λ t → just (roll (unsafeCast t)))
coerce _ _ _ = nothing
|
make agda spec of `coerce` terminating for contractive types
|
make agda spec of `coerce` terminating for contractive types
|
Agda
|
mit
|
yfcai/CREG
|
634f458ffffacc3e5bc977bed4de2be936703233
|
New/Lang.agda
|
New/Lang.agda
|
module New.Lang where
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
open import New.Types public
open import Base.Syntax.Context Type public
open import Base.Syntax.Vars Type public
open import Base.Data.DependentList public
module _ where
data Const : (τ : Type) → Set where
data Term (Γ : Context) :
(τ : Type) → Set where
-- constants aka. primitives
const : ∀ {τ} →
(c : Const τ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken Γ₁≼Γ₂ (const c) = const c
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
open import Base.Denotation.Environment Type ⟦_⟧Type public
⟦_⟧Const : ∀ {τ} → Const τ → ⟦ τ ⟧Type
⟦_⟧Const ()
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦ const c ⟧Term ρ = ⟦ c ⟧Const
⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ
⟦ app s t ⟧Term ρ = ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ)
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
open import Theorem.CongApp
open import Postulate.Extensionality
weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂}
(t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧Context) → ⟦ weaken Γ₁≼Γ₂ t ⟧Term ρ ≡ ⟦ t ⟧Term (⟦ Γ₁≼Γ₂ ⟧≼ ρ)
weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ
weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ
weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ))
weaken-sound (const c) ρ = refl
|
module New.Lang where
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
open import New.Types public
open import Base.Syntax.Context Type public
open import Base.Syntax.Vars Type public
open import Base.Data.DependentList public
module _ where
data Const : (τ : Type) → Set where
data Term (Γ : Context) :
(τ : Type) → Set where
-- constants aka. primitives
const : ∀ {τ} →
(c : Const τ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken Γ₁≼Γ₂ (const c) = const c
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
open import Base.Denotation.Environment Type ⟦_⟧Type public
⟦_⟧Const : ∀ {τ} → Const τ → ⟦ τ ⟧Type
⟦_⟧Const ()
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦ const c ⟧Term ρ = ⟦ c ⟧Const
⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ
⟦ app s t ⟧Term ρ = ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ)
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
open import Theorem.CongApp
open import Postulate.Extensionality
weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂}
(t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧Context) → ⟦ weaken Γ₁≼Γ₂ t ⟧Term ρ ≡ ⟦ t ⟧Term (⟦ Γ₁≼Γ₂ ⟧≼ ρ)
weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ
weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ
weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ))
weaken-sound (const c) ρ = refl
|
Add helpers
|
Add helpers
|
Agda
|
mit
|
inc-lc/ilc-agda
|
be5ee7eec0dd2371c546256f7625b36c21943d03
|
Popl14/Change/Specification.agda
|
Popl14/Change/Specification.agda
|
module Popl14.Change.Specification where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) → Change τ (⟦ t ⟧ ρ)
correctness : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ)
→ after {τ} (⟦ t ⟧Δ ρ dρ) ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → ΔEnv Γ ρ → Change τ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (intlit n) ρ dρ = + 0
⟦_⟧Δ (add s t) ρ dρ = ⟦ s ⟧Δ ρ dρ + ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ (minus t) ρ dρ = - ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ empty ρ dρ = emptyBag
⟦_⟧Δ (insert s t) ρ dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) ρ dρ = ⟦ s ⟧Δ ρ dρ ++ ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ (negate t) ρ dρ = negateBag (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (flatmap s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
Δf : Change (int ⇒ bag) f
Δf = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) ρ dρ = sumBag (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = cons
(λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ))
(λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (update ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) • update dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • update dρ)
≡⟨⟩
⟦ t ⟧ (update (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) →
⟦ x ⟧ ρ ⊞₍ τ ₎ ⟦ x ⟧ΔVar ρ dρ ≡ ⟦ x ⟧ (update dρ)
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (intlit n) ρ dρ = right-id-int n
correctness (add s t) ρ dρ = trans
(mn·pq=mp·nq
{⟦ s ⟧ ρ} {⟦ t ⟧ ρ} {⟦ s ⟧Δ ρ dρ} {⟦ t ⟧Δ ρ dρ})
(cong₂ _+_ (correctness s ρ dρ) (correctness t ρ dρ))
correctness (minus t) ρ dρ = trans
(-m·-n=-mn {⟦ t ⟧ ρ} {⟦ t ⟧Δ ρ dρ})
(cong -_ (correctness t ρ dρ))
correctness empty ρ dρ = right-id-bag emptyBag
correctness (insert s t) ρ dρ =
let
n = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness s ρ dρ))
(correctness t ρ dρ) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness (union s t) ρ dρ = trans
(ab·cd=ac·bd
{⟦ s ⟧ ρ} {⟦ t ⟧ ρ} {⟦ s ⟧Δ ρ dρ} {⟦ t ⟧Δ ρ dρ})
(cong₂ _++_ (correctness s ρ dρ) (correctness t ρ dρ))
correctness (negate t) ρ dρ = trans
(-a·-b=-ab {⟦ t ⟧ ρ} {⟦ t ⟧Δ ρ dρ})
(cong negateBag (correctness t ρ dρ))
correctness (flatmap s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
Δf = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness s ρ dρ) (correctness t ρ dρ))
correctness (sum t) ρ dρ =
let
b = ⟦ t ⟧ ρ
Δb = ⟦ t ⟧Δ ρ dρ
in
trans (sym homo-sum) (cong sumBag (correctness t ρ dρ))
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ ρ
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ ρ dρ
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f u ⊞₍ τ ₎ call-change Δf u Δu
≡⟨ sym (is-valid Δf u Δu) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Change σ v)
→ ⟦ t ⟧ ∅ (after {σ} dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after {σ} dv)
≡⟨ cong (λ hole → hole (after {σ} dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} dv)
≡⟨ is-valid (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before {σ} dv) ⊞₍ τ ₎ call-change Δf v dv
∎ where open ≡-Reasoning
|
module Popl14.Change.Specification where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Integer
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) → Change τ (⟦ t ⟧ ρ)
correctness : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ)
→ after {τ} (⟦ t ⟧Δ ρ dρ) ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → ΔEnv Γ ρ → Change τ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (intlit n) ρ dρ = + 0
⟦_⟧Δ (add s t) ρ dρ = ⟦ s ⟧Δ ρ dρ + ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ (minus t) ρ dρ = - ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ empty ρ dρ = emptyBag
⟦_⟧Δ (insert s t) ρ dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) ρ dρ = ⟦ s ⟧Δ ρ dρ ++ ⟦ t ⟧Δ ρ dρ
⟦_⟧Δ (negate t) ρ dρ = negateBag (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (flatmap s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
Δf : Change (int ⇒ bag) f
Δf = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) ρ dρ = sumBag (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = cons
(λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ))
(λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (update ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) • update dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • update dρ)
≡⟨⟩
⟦ t ⟧ (update (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) →
⟦ x ⟧ ρ ⊞₍ τ ₎ ⟦ x ⟧ΔVar ρ dρ ≡ ⟦ x ⟧ (update dρ)
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (intlit n) ρ dρ = right-id-int n
correctness (add s t) ρ dρ = trans
(mn·pq=mp·nq
{⟦ s ⟧ ρ} {⟦ t ⟧ ρ} {⟦ s ⟧Δ ρ dρ} {⟦ t ⟧Δ ρ dρ})
(cong₂ _+_ (correctness s ρ dρ) (correctness t ρ dρ))
correctness (minus t) ρ dρ = trans
(-m·-n=-mn {⟦ t ⟧ ρ} {⟦ t ⟧Δ ρ dρ})
(cong -_ (correctness t ρ dρ))
correctness empty ρ dρ = right-id-bag emptyBag
correctness (insert s t) ρ dρ =
let
n = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness s ρ dρ))
(correctness t ρ dρ) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness (union s t) ρ dρ = trans
(ab·cd=ac·bd
{⟦ s ⟧ ρ} {⟦ t ⟧ ρ} {⟦ s ⟧Δ ρ dρ} {⟦ t ⟧Δ ρ dρ})
(cong₂ _++_ (correctness s ρ dρ) (correctness t ρ dρ))
correctness (negate t) ρ dρ = trans
(-a·-b=-ab {⟦ t ⟧ ρ} {⟦ t ⟧Δ ρ dρ})
(cong negateBag (correctness t ρ dρ))
correctness (flatmap s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
b = ⟦ t ⟧ ρ
Δf = ⟦ s ⟧Δ ρ dρ
Δb = ⟦ t ⟧Δ ρ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness s ρ dρ) (correctness t ρ dρ))
correctness (sum t) ρ dρ =
let
b = ⟦ t ⟧ ρ
Δb = ⟦ t ⟧Δ ρ dρ
in
trans (sym homo-sum) (cong sumBag (correctness t ρ dρ))
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f = ⟦ s ⟧ ρ
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ ρ
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ ρ dρ
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f u ⊞₍ τ ₎ call-change Δf u Δu
≡⟨ sym (is-valid Δf u Δu) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : ΔEnv Γ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Change σ v)
→ ⟦ t ⟧ ∅ (after {σ} dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after {σ} dv)
≡⟨ cong (λ hole → hole (after {σ} dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} dv)
≡⟨ is-valid (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before {σ} dv) ⊞₍ τ ₎ call-change Δf v dv
∎ where open ≡-Reasoning
|
Remove unnecessary imports.
|
Remove unnecessary imports.
Old-commit-hash: 01c6cb718906e9a41b8156076fe9e837257c7a1f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
584a95def9b81558cd9bc660db3fc2eb687dd915
|
PLDI14-List-of-Theorems.agda
|
PLDI14-List-of-Theorems.agda
|
module PLDI14-List-of-Theorems where
open import Function
-- List of theorems in PLDI submission
--
-- For hints about installation and execution, please refer
-- to README.agda.
--
-- Agda modules corresponding to definitions, lemmas and theorems
-- are listed here with the most important name. For example,
-- after this file type checks (C-C C-L), placing the cursor
-- on the purple "Base.Change.Algebra" and pressing M-. will
-- bring you to the file where change structures are defined.
-- The name for change structures in that file is
-- "ChangeAlgebra", given in the using-clause.
-- Definition 2.1 (Change structures)
-- (d) ChangeAlgebra.diff
-- (e) IsChangeAlgebra.update-diff
open import Base.Change.Algebra using (ChangeAlgebra)
---- Carrier in record ChangeAlgebra --(a)
open Base.Change.Algebra.ChangeAlgebra using (Change) --(b)
open Base.Change.Algebra.ChangeAlgebra using (update) --(c)
open Base.Change.Algebra.ChangeAlgebra using (diff) --(d)
open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e)
-- Definition 2.2 (Nil change)
-- IsChangeAlgebra.nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Lemma 2.3 (Behavior of nil)
-- IsChangeAlgebra.update-nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Definition 2.4 (Derivatives)
open Base.Change.Algebra using (Derivative)
-- Definition 2.5 (Carrier set of function changes)
open Base.Change.Algebra.FunctionChanges
-- Definition 2.6 (Operations on function changes)
-- ChangeAlgebra.update FunctionChanges.changeAlgebra
-- ChangeAlgebra.diff FunctionChanges.changeAlgebra
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Theorem 2.7 (Function changes form a change structure)
-- (In Agda, the proof of Theorem 2.7 has to be included in the
-- definition of function changes, here
-- FunctionChanges.changeAlgebra.)
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Lemma 2.8 (Incrementalization)
open Base.Change.Algebra.FunctionChanges using (incrementalization)
-- Theorem 2.9 (Nil changes are derivatives)
open Base.Change.Algebra.FunctionChanges using (nil-is-derivative)
-- For each plugin requirement, we include its definition and
-- a concrete instantiation called "Popl14" with integers and
-- bags of integers as base types.
-- Plugin Requirement 3.1 (Domains of base types)
open import Parametric.Denotation.Value using (Structure)
open import Popl14.Denotation.Value using (⟦_⟧Base)
-- Definition 3.2 (Domains)
open Parametric.Denotation.Value.Structure using (⟦_⟧Type)
-- Plugin Requirement 3.3 (Evaluation of constants)
open import Parametric.Denotation.Evaluation using (Structure)
open import Popl14.Denotation.Evaluation using (⟦_⟧Const)
-- Definition 3.4 (Environments)
open import Base.Denotation.Environment using (⟦_⟧Context)
-- Definition 3.5 (Evaluation)
open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term)
-- Plugin Requirement 3.6 (Changes on base types)
open import Parametric.Change.Validity using (Structure)
open import Popl14.Change.Validity using (change-algebra-base-family)
-- Definition 3.7 (Changes)
open Parametric.Change.Validity.Structure using (change-algebra)
-- Definition 3.8 (Change environments)
open Parametric.Change.Validity.Structure using (environment-changes)
-- Plugin Requirement 3.9 (Change semantics for constants)
open import Parametric.Change.Specification using (Structure)
open import Popl14.Change.Specification using (specification-structure)
-- Definition 3.10 (Change semantics)
open Parametric.Change.Specification.Structure using (⟦_⟧Δ)
-- Lemma 3.11 (Change semantics is the derivative of semantics)
open Parametric.Change.Specification.Structure using (correctness)
-- Definition 3.12 (Erasure)
import Parametric.Change.Implementation
open Parametric.Change.Implementation.Structure using (_≈_)
open import Popl14.Change.Implementation using (implements-base)
-- Lemma 3.13 (The erased version of a change is almost the same)
open Parametric.Change.Implementation.Structure using (carry-over)
-- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t))
import Parametric.Change.Correctness
open Parametric.Change.Correctness.Structure using (main-theorem)
|
module PLDI14-List-of-Theorems where
open import Function
-- List of theorems in PLDI submission
--
-- For hints about installation and execution, please refer
-- to README.agda.
--
-- Agda modules corresponding to definitions, lemmas and theorems
-- are listed here with the most important name. For example,
-- after this file type checks (C-C C-L), placing the cursor
-- on the purple "Base.Change.Algebra" and pressing M-. will
-- bring you to the file where change structures are defined.
-- The name for change structures in that file is
-- "ChangeAlgebra", given in the using-clause.
-- Definition 2.1 (Change structures)
-- (d) ChangeAlgebra.diff
-- (e) IsChangeAlgebra.update-diff
open import Base.Change.Algebra using (ChangeAlgebra)
---- Carrier in record ChangeAlgebra --(a)
open Base.Change.Algebra.ChangeAlgebra using (Change) --(b)
open Base.Change.Algebra.ChangeAlgebra using (update) --(c)
open Base.Change.Algebra.ChangeAlgebra using (diff) --(d)
open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e)
-- Definition 2.2 (Nil change)
-- IsChangeAlgebra.nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Lemma 2.3 (Behavior of nil)
-- IsChangeAlgebra.update-nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Definition 2.4 (Derivatives)
open Base.Change.Algebra using (Derivative)
-- Definition 2.5 (Carrier set of function changes)
open Base.Change.Algebra.FunctionChanges
-- Definition 2.6 (Operations on function changes)
-- ChangeAlgebra.update FunctionChanges.changeAlgebra
-- ChangeAlgebra.diff FunctionChanges.changeAlgebra
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Theorem 2.7 (Function changes form a change structure)
-- (In Agda, the proof of Theorem 2.7 has to be included in the
-- definition of function changes, here
-- FunctionChanges.changeAlgebra.)
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Lemma 2.8 (Incrementalization)
open Base.Change.Algebra.FunctionChanges using (incrementalization)
-- Theorem 2.9 (Nil changes are derivatives)
open Base.Change.Algebra.FunctionChanges using (nil-is-derivative)
-- For each plugin requirement, we include its definition and
-- a concrete instantiation called "Popl14" with integers and
-- bags of integers as base types.
-- Plugin Requirement 3.1 (Domains of base types)
open import Parametric.Denotation.Value using (Structure)
open import Popl14.Denotation.Value using (⟦_⟧Base)
-- Definition 3.2 (Domains)
open Parametric.Denotation.Value.Structure using (⟦_⟧Type)
-- Plugin Requirement 3.3 (Evaluation of constants)
open import Parametric.Denotation.Evaluation using (Structure)
open import Popl14.Denotation.Evaluation using (⟦_⟧Const)
-- Definition 3.4 (Environments)
open import Base.Denotation.Environment using (⟦_⟧Context)
-- Definition 3.5 (Evaluation)
open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term)
-- Plugin Requirement 3.6 (Changes on base types)
open import Parametric.Change.Validity using (Structure)
open import Popl14.Change.Validity using (change-algebra-base-family)
-- Definition 3.7 (Changes)
open Parametric.Change.Validity.Structure using (change-algebra)
-- Definition 3.8 (Change environments)
open Parametric.Change.Validity.Structure using (environment-changes)
-- Plugin Requirement 3.9 (Change semantics for constants)
open import Parametric.Change.Specification using (Structure)
open import Popl14.Change.Specification using (specification-structure)
-- Definition 3.10 (Change semantics)
open Parametric.Change.Specification.Structure using (⟦_⟧Δ)
-- Lemma 3.11 (Change semantics is the derivative of semantics)
open Parametric.Change.Specification.Structure using (correctness)
-- Definition 3.12 (Erasure)
import Parametric.Change.Implementation
open Parametric.Change.Implementation.Structure using (_≈_)
open import Popl14.Change.Implementation using (implements-base)
-- Lemma 3.13 (The erased version of a change is almost the same)
open Parametric.Change.Implementation.Structure using (carry-over)
-- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t))
import Parametric.Change.Correctness
open Parametric.Change.Correctness.Structure using (derive-correct-closed)
-- Theorem 3.15 (Correctness of differentiation)
open Parametric.Change.Correctness.Structure using (main-theorem)
|
correct list of theorems
|
correct list of theorems
Old-commit-hash: c915c2bba4a8fd18c2b4d5af429fdedf6042ca83
|
Agda
|
mit
|
inc-lc/ilc-agda
|
d0bb4f7bbbfa2acbfe952a24f1f347e8b7bac989
|
lib/Algebra/Field.agda
|
lib/Algebra/Field.agda
|
module Algebra.Field where
open import Relation.Binary.PropositionalEquality.NP
import Algebra.FunctionProperties.Eq as FP
open import Data.Nat.NP using (ℕ; zero; suc; fold)
import Data.Integer as ℤ
open ℤ using (ℤ)
record Field-Ops {ℓ} (A : Set ℓ) : Set ℓ where
infixl 6 _+_ _−_
infixl 7 _*_ _/_
field
_+_ _*_ : A → A → A
0ᶠ 1ᶠ : A
0-_ : A → A
_⁻¹ : A → A
_−_ _/_ : A → A → A
a − b = a + 0- b
a / b = a * b ⁻¹
-0ᶠ -1ᶠ : A
-0ᶠ = 0- 0ᶠ
-1ᶠ = 0- 1ᶠ
sucᶠ : A → A
sucᶠ = _+_ 1ᶠ
predᶠ : A → A
predᶠ x = x − 1ᶠ
ℕ[_] : ℕ → A
ℕ[_] = fold 0ᶠ sucᶠ
ℤ[_] : ℤ → A
ℤ[ ℤ.+ x ] = ℕ[ x ]
ℤ[ ℤ.-[1+ x ] ] = 0- ℕ[ suc x ]
_^ℕ_ : A → ℕ → A
b ^ℕ e = fold 1ᶠ (_*_ b) e
_^ℤ_ : A → ℤ → A
b ^ℤ (ℤ.+ x) = b ^ℕ x
b ^ℤ ℤ.-[1+ x ] = (b ^ℕ (suc x))⁻¹
record Field-Struct {ℓ} {A : Set ℓ} (field-ops : Field-Ops A) : Set ℓ where
open FP {ℓ} {A}
open Field-Ops field-ops
field
0≢1 : 0ᶠ ≢ 1ᶠ
+-assoc : Associative _+_
*-assoc : Associative _*_
+-comm : Commutative _+_
*-comm : Commutative _*_
0+-identity : LeftIdentity 0ᶠ _+_
1*-identity : LeftIdentity 1ᶠ _*_
0--inverse : LeftInverse 0ᶠ 0-_ _+_
⁻¹-inverse : ∀ {x} → x ≢ 0ᶠ → x ⁻¹ * x ≡ 1ᶠ
*-+-distr : _*_ DistributesOverˡ _+_
0--right-inverse : RightInverse 0ᶠ 0-_ _+_
0--right-inverse = +-comm ∙ 0--inverse
⁻¹-right-inverse : ∀ {x} → x ≢ 0ᶠ → x * x ⁻¹ ≡ 1ᶠ
⁻¹-right-inverse p = *-comm ∙ ⁻¹-inverse p
+0-identity : RightIdentity 0ᶠ _+_
+0-identity = +-comm ∙ 0+-identity
*1-identity : RightIdentity 1ᶠ _*_
*1-identity = *-comm ∙ 1*-identity
+= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → x + y ≡ x' + y'
+= {x} {y' = y'} p q = ap (_+_ x) q ∙ ap (λ z → z + y') p
*= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → x * y ≡ x' * y'
*= {x} {y' = y'} p q = ap (_*_ x) q ∙ ap (λ z → z * y') p
0-c+c+x : ∀ {c x} → 0- c + c + x ≡ x
0-c+c+x = += 0--inverse refl ∙ 0+-identity
+-left-cancel : LeftCancel _+_
+-left-cancel p = ! 0-c+c+x ∙ +-assoc
∙ ap (λ z → 0- _ + z) p
∙ ! +-assoc ∙ 0-c+c+x
+-right-cancel : RightCancel _+_
+-right-cancel p = +-left-cancel (+-comm ∙ p ∙ +-comm)
0--involutive : Involutive 0-_
0--involutive = +-left-cancel (0--right-inverse ∙ ! 0--inverse)
-0≡0 : -0ᶠ ≡ 0ᶠ
-0≡0 = +-left-cancel (0--right-inverse ∙ ! 0+-identity)
open Field-Ops field-ops public
record Field {ℓ} (A : Set ℓ) : Set ℓ where
field
field-ops : Field-Ops A
field-struct : Field-Struct field-ops
open Field-Struct field-struct public
open import Reflection.NP
open import Data.List
open import Data.Maybe.NP
module TermField {a} {A : Set a} (F : Field A) where
open Field F
pattern _`+_ t u = con (quote _+_) (argᵛʳ t ∷ argᵛʳ u ∷ [])
pattern _`*_ t u = con (quote _*_) (argᵛʳ t ∷ argᵛʳ u ∷ [])
pattern `0-_ t = conᵛʳ (quote 0-_) t
pattern _`⁻¹ t = conᵛʳ (quote _⁻¹) t
pattern `0ᶠ = con (quote 0ᶠ) []
pattern `1ᶠ = con (quote 1ᶠ) []
module Decode-RawField {b}{B : Set b}(G : Field-Ops B)(default : Decode-Term B) where
module G = Field-Ops G
decode-Field : Decode-Term B
decode-Field `0ᶠ = just G.0ᶠ
decode-Field `1ᶠ = just G.1ᶠ
decode-Field (t `⁻¹) = map? G._⁻¹ (decode-Field t)
decode-Field (`0- t) = map? G.0-_ (decode-Field t)
decode-Field (t `+ u) = ⟪ G._+_ · decode-Field t · decode-Field u ⟫?
decode-Field (t `* u) = ⟪ G._*_ · decode-Field t · decode-Field u ⟫?
decode-Field t = default t
open ≡-Reasoning
open import Data.List
infixl 6 _+'_
infixl 7 _*'_
data Tm (A : Set) : Set where
lit : (n : ℤ) → Tm A
var : (x : A) → Tm A
_+'_ _*'_ : Tm A → Tm A → Tm A
pattern 0' = lit (ℤ.+ 0)
pattern 1' = lit (ℤ.+ 1)
pattern 2' = lit (ℤ.+ 1)
pattern 3' = lit (ℤ.+ 1)
pattern -1' = lit ℤ.-[1+ 0 ]
pattern -2' = lit ℤ.-[1+ 1 ]
pattern -3' = lit ℤ.-[1+ 2 ]
record Var (A : Set) : Set where
constructor _^'_
field
v : A
e : ℤ
data Nf' (A : Set) : Set where
_*'_ : (n : ℤ) (vs : List (Var A)) → Nf' A
data Nf (A : Set) : Set where
_+'_ : (n : ℤ) (ts' : List (Nf' A)) → Nf A
module _ {A : Set} where
infixl 6 _+ᴺ_
litᴺ : ℤ → Nf A
litᴺ n = n +' []
varᴺ : (x : A) → Nf A
varᴺ x = ℤ.+ 0 +' (ℤ.+ 1 *' (x ^' (ℤ.+ 1) ∷ []) ∷ [])
_+ᴺ_ : Nf A → Nf A → Nf A
(n +' ts) +ᴺ (m +' us) = n ℤ.+ m +' (ts ++ us)
infixl 7 _**_ _***_ _*ᴺ_
_**_ : ℤ → List (Nf' A) → Nf A
z ** [] = z +' []
m ** (n *' vs ∷ ts) with m ** ts
... | z +' us = z +' ((m ℤ.* n) *' vs ∷ us)
_***_ : List (Nf' A) → List (Nf' A) → Nf A
ts *** us = ℤ.+ 0 +' (ts ++ us)
_*ᴺ_ : Nf A → Nf A → Nf A
(n +' ts) *ᴺ (m +' us) =
n ℤ.* m +' [] +ᴺ n ** us +ᴺ m ** ts +ᴺ ts *** us
module Normalizer {F : Set}
(F-field : Field F) where
open Field F-field renaming (0-_ to -_)
module _ {A : Set} where
eval : (A → F) → Tm A → F
eval ρ (lit x) = ℤ[ x ]
eval ρ (t +' t₁) = eval ρ t + eval ρ t₁
eval ρ (t *' t₁) = eval ρ t * eval ρ t₁
eval ρ (var x) = ρ x
norm™ : Tm A → Nf A
norm™ (lit x) = litᴺ x
norm™ (var x) = varᴺ x
norm™ (t +' t₁) = norm™ t +ᴺ norm™ t₁
norm™ (t *' t₁) = norm™ t *ᴺ norm™ t₁
_+''_ : Tm A → Tm A → Tm A
-- lit (ℤ.+ 0) +'' u = u
t +'' lit (ℤ.+ 0) = t
t +'' u = t +' u
_*''_ : Tm A → Tm A → Tm A
-- lit (ℤ.+ 0) *'' u = lit (ℤ.+ 0)
-- lit (ℤ.-[1+_] 0) *'' u = lit (ℤ.+ 0)
t *'' lit (ℤ.+ 0) = lit (ℤ.+ 0)
t *'' lit (ℤ.-[1+_] 0) = lit (ℤ.+ 0)
-- lit (ℤ.+ 1) *'' u = u
t *'' lit (ℤ.+ 1) = t
t *'' u = t *' u
reifyVar : Var A → Tm A
reifyVar (v ^' (ℤ.+ n)) = fold (lit (ℤ.+ 1)) (λ x → var v *'' x) n
reifyVar (v ^' ℤ.-[1+ n ]) = fold (lit (ℤ.-[1+_] 1)) (λ x → var v *'' x) n
reifyNf' : Nf' A → Tm A
reifyNf' (n *' vs) = foldr (λ v t → reifyVar v *'' t) (lit n) vs
reifyNf : Nf A → Tm A
reifyNf (n +' ts') = foldr (λ n t → reifyNf' n +'' t) (lit n) ts'
module _ ρ where
_∼_ : (t u : Tm A) → Set
t ∼ u = eval ρ t ≡ eval ρ u
+'∼+'' : ∀ t u → (t +' u) ∼ (t +'' u)
+'∼+'' t (lit (ℤ.+ zero)) = +0-identity
+'∼+'' t (lit (ℤ.+ (suc x))) = refl
+'∼+'' t (lit ℤ.-[1+ x ]) = refl
+'∼+'' t (var x) = refl
+'∼+'' t (u +' u₁) = refl
+'∼+'' t (u *' u₁) = refl
{-
+-reifyNf : ∀ t u → reifyNf (t +ᴺ u) ∼ (reifyNf t +' reifyNf u)
+-reifyNf (n +' ts') (n₁ +' ts'') = {!!}
*-reifyNf : ∀ t u → reifyNf (t *ᴺ u) ∼ (reifyNf t *' reifyNf u)
*-reifyNf t u = {!!}
pf : ∀ t → eval ρ (reifyNf (norm™ t)) ≡ eval ρ t
pf (lit n) = refl
pf (var x) = refl
pf (t +' t₁) rewrite +-reifyNf (norm™ t) (norm™ t₁) | pf t | pf t₁ = refl
pf (t *' t₁) rewrite *-reifyNf (norm™ t) (norm™ t₁) | pf t | pf t₁ = refl
-}
-- -}
-- -}
-- -}
-- -}
-- -}
|
module Algebra.Field where
open import Relation.Binary.PropositionalEquality.NP
import Algebra.FunctionProperties.Eq as FP
open import Data.Nat.NP using (ℕ; zero; suc; fold)
import Data.Integer as ℤ
open ℤ using (ℤ)
record Field-Ops {ℓ} (A : Set ℓ) : Set ℓ where
infixl 6 _+_ _−_
infixl 7 _*_ _/_
field
_+_ _*_ : A → A → A
0ᶠ 1ᶠ : A
0-_ : A → A
_⁻¹ : A → A
_−_ _/_ : A → A → A
a − b = a + 0- b
a / b = a * b ⁻¹
-0ᶠ -1ᶠ : A
-0ᶠ = 0- 0ᶠ
-1ᶠ = 0- 1ᶠ
sucᶠ : A → A
sucᶠ = _+_ 1ᶠ
predᶠ : A → A
predᶠ x = x − 1ᶠ
ℕ[_] : ℕ → A
ℕ[_] = fold 0ᶠ sucᶠ
ℤ[_] : ℤ → A
ℤ[ ℤ.+ x ] = ℕ[ x ]
ℤ[ ℤ.-[1+ x ] ] = 0- ℕ[ suc x ]
_^ℕ_ : A → ℕ → A
b ^ℕ e = fold 1ᶠ (_*_ b) e
_^ℤ_ : A → ℤ → A
b ^ℤ (ℤ.+ x) = b ^ℕ x
b ^ℤ ℤ.-[1+ x ] = (b ^ℕ (suc x))⁻¹
record Field-Struct {ℓ} {A : Set ℓ} (field-ops : Field-Ops A) : Set ℓ where
open FP {ℓ} {A}
open Field-Ops field-ops
field
0≢1 : 0ᶠ ≢ 1ᶠ
+-assoc : Associative _+_
*-assoc : Associative _*_
+-comm : Commutative _+_
*-comm : Commutative _*_
0+-identity : LeftIdentity 0ᶠ _+_
1*-identity : LeftIdentity 1ᶠ _*_
0--inverse : LeftInverse 0ᶠ 0-_ _+_
⁻¹-inverse : ∀ {x} → x ≢ 0ᶠ → x ⁻¹ * x ≡ 1ᶠ
*-+-distr : _*_ DistributesOverˡ _+_
0--right-inverse : RightInverse 0ᶠ 0-_ _+_
0--right-inverse = +-comm ∙ 0--inverse
⁻¹-right-inverse : ∀ {x} → x ≢ 0ᶠ → x * x ⁻¹ ≡ 1ᶠ
⁻¹-right-inverse p = *-comm ∙ ⁻¹-inverse p
+0-identity : RightIdentity 0ᶠ _+_
+0-identity = +-comm ∙ 0+-identity
*1-identity : RightIdentity 1ᶠ _*_
*1-identity = *-comm ∙ 1*-identity
+= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → x + y ≡ x' + y'
+= {x} {y' = y'} p q = ap (_+_ x) q ∙ ap (λ z → z + y') p
*= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → x * y ≡ x' * y'
*= {x} {y' = y'} p q = ap (_*_ x) q ∙ ap (λ z → z * y') p
0-= : ∀ {x x'} → x ≡ x' → 0- x ≡ 0- x'
0-= = ap 0-_
-- Correct naming scheme?
+-*-distr : _*_ DistributesOverʳ _+_
+-*-distr = *-comm ∙ *-+-distr ∙ += *-comm *-comm
0-c+c+x : ∀ {c x} → 0- c + c + x ≡ x
0-c+c+x = += 0--inverse refl ∙ 0+-identity
+-left-cancel : LeftCancel _+_
+-left-cancel p = ! 0-c+c+x ∙ +-assoc
∙ ap (λ z → 0- _ + z) p
∙ ! +-assoc ∙ 0-c+c+x
+-right-cancel : RightCancel _+_
+-right-cancel p = +-left-cancel (+-comm ∙ p ∙ +-comm)
*0-zero : RightZero 0ᶠ _*_
*0-zero = +-right-cancel (+= refl (! *1-identity) ∙ ! *-+-distr
∙ *= refl 0+-identity ∙ *1-identity ∙ ! 0+-identity)
0*-zero : LeftZero 0ᶠ _*_
0*-zero = *-comm ∙ *0-zero
-- name ?
*-0- : ∀ {x y} → 0- (x * y) ≡ (0- x) * y
*-0- = +-right-cancel (0--inverse ∙ ! 0*-zero ∙ *= (! 0--inverse) refl ∙ +-*-distr)
-1*-neg : ∀ {x} → -1ᶠ * x ≡ 0- x
-1*-neg = ! *-0- ∙ 0-= 1*-identity
0--involutive : Involutive 0-_
0--involutive = +-left-cancel (0--right-inverse ∙ ! 0--inverse)
-0≡0 : -0ᶠ ≡ 0ᶠ
-0≡0 = +-left-cancel (0--right-inverse ∙ ! 0+-identity)
noZeroDivisor : ∀ {x y} → x ≢ 0ᶠ → y ≢ 0ᶠ → x * y ≢ 0ᶠ
noZeroDivisor nx ny x*y≡0ᶠ = ny (! *1-identity ∙ *= refl (! ⁻¹-inverse nx)
∙ *= refl *-comm ∙ ! *-assoc
∙ *= (*-comm ∙ x*y≡0ᶠ) refl ∙ 0*-zero
)
open Field-Ops field-ops public
record Field {ℓ} (A : Set ℓ) : Set ℓ where
field
field-ops : Field-Ops A
field-struct : Field-Struct field-ops
open Field-Struct field-struct public
open import Reflection.NP
open import Data.List
open import Data.Maybe.NP
module TermField {a} {A : Set a} (F : Field A) where
open Field F
pattern _`+_ t u = con (quote _+_) (argᵛʳ t ∷ argᵛʳ u ∷ [])
pattern _`*_ t u = con (quote _*_) (argᵛʳ t ∷ argᵛʳ u ∷ [])
pattern `0-_ t = conᵛʳ (quote 0-_) t
pattern _`⁻¹ t = conᵛʳ (quote _⁻¹) t
pattern `0ᶠ = con (quote 0ᶠ) []
pattern `1ᶠ = con (quote 1ᶠ) []
module Decode-RawField {b}{B : Set b}(G : Field-Ops B)(default : Decode-Term B) where
module G = Field-Ops G
decode-Field : Decode-Term B
decode-Field `0ᶠ = just G.0ᶠ
decode-Field `1ᶠ = just G.1ᶠ
decode-Field (t `⁻¹) = map? G._⁻¹ (decode-Field t)
decode-Field (`0- t) = map? G.0-_ (decode-Field t)
decode-Field (t `+ u) = ⟪ G._+_ · decode-Field t · decode-Field u ⟫?
decode-Field (t `* u) = ⟪ G._*_ · decode-Field t · decode-Field u ⟫?
decode-Field t = default t
open ≡-Reasoning
open import Data.List
infixl 6 _+'_
infixl 7 _*'_
data Tm (A : Set) : Set where
lit : (n : ℤ) → Tm A
var : (x : A) → Tm A
_+'_ _*'_ : Tm A → Tm A → Tm A
pattern 0' = lit (ℤ.+ 0)
pattern 1' = lit (ℤ.+ 1)
pattern 2' = lit (ℤ.+ 1)
pattern 3' = lit (ℤ.+ 1)
pattern -1' = lit ℤ.-[1+ 0 ]
pattern -2' = lit ℤ.-[1+ 1 ]
pattern -3' = lit ℤ.-[1+ 2 ]
record Var (A : Set) : Set where
constructor _^'_
field
v : A
e : ℤ
data Nf' (A : Set) : Set where
_*'_ : (n : ℤ) (vs : List (Var A)) → Nf' A
data Nf (A : Set) : Set where
_+'_ : (n : ℤ) (ts' : List (Nf' A)) → Nf A
module _ {A : Set} where
infixl 6 _+ᴺ_
litᴺ : ℤ → Nf A
litᴺ n = n +' []
varᴺ : (x : A) → Nf A
varᴺ x = ℤ.+ 0 +' (ℤ.+ 1 *' (x ^' (ℤ.+ 1) ∷ []) ∷ [])
_+ᴺ_ : Nf A → Nf A → Nf A
(n +' ts) +ᴺ (m +' us) = n ℤ.+ m +' (ts ++ us)
infixl 7 _**_ _***_ _*ᴺ_
_**_ : ℤ → List (Nf' A) → Nf A
z ** [] = z +' []
m ** (n *' vs ∷ ts) with m ** ts
... | z +' us = z +' ((m ℤ.* n) *' vs ∷ us)
_***_ : List (Nf' A) → List (Nf' A) → Nf A
ts *** us = ℤ.+ 0 +' (ts ++ us)
_*ᴺ_ : Nf A → Nf A → Nf A
(n +' ts) *ᴺ (m +' us) =
n ℤ.* m +' [] +ᴺ n ** us +ᴺ m ** ts +ᴺ ts *** us
module Normalizer {F : Set}
(F-field : Field F) where
open Field F-field renaming (0-_ to -_)
module _ {A : Set} where
eval : (A → F) → Tm A → F
eval ρ (lit x) = ℤ[ x ]
eval ρ (t +' t₁) = eval ρ t + eval ρ t₁
eval ρ (t *' t₁) = eval ρ t * eval ρ t₁
eval ρ (var x) = ρ x
norm™ : Tm A → Nf A
norm™ (lit x) = litᴺ x
norm™ (var x) = varᴺ x
norm™ (t +' t₁) = norm™ t +ᴺ norm™ t₁
norm™ (t *' t₁) = norm™ t *ᴺ norm™ t₁
_+''_ : Tm A → Tm A → Tm A
-- lit (ℤ.+ 0) +'' u = u
t +'' lit (ℤ.+ 0) = t
t +'' u = t +' u
_*''_ : Tm A → Tm A → Tm A
-- lit (ℤ.+ 0) *'' u = lit (ℤ.+ 0)
-- lit (ℤ.-[1+_] 0) *'' u = lit (ℤ.+ 0)
t *'' lit (ℤ.+ 0) = lit (ℤ.+ 0)
t *'' lit (ℤ.-[1+_] 0) = lit (ℤ.+ 0)
-- lit (ℤ.+ 1) *'' u = u
t *'' lit (ℤ.+ 1) = t
t *'' u = t *' u
reifyVar : Var A → Tm A
reifyVar (v ^' (ℤ.+ n)) = fold (lit (ℤ.+ 1)) (λ x → var v *'' x) n
reifyVar (v ^' ℤ.-[1+ n ]) = fold (lit (ℤ.-[1+_] 1)) (λ x → var v *'' x) n
reifyNf' : Nf' A → Tm A
reifyNf' (n *' vs) = foldr (λ v t → reifyVar v *'' t) (lit n) vs
reifyNf : Nf A → Tm A
reifyNf (n +' ts') = foldr (λ n t → reifyNf' n +'' t) (lit n) ts'
module _ ρ where
_∼_ : (t u : Tm A) → Set
t ∼ u = eval ρ t ≡ eval ρ u
+'∼+'' : ∀ t u → (t +' u) ∼ (t +'' u)
+'∼+'' t (lit (ℤ.+ zero)) = +0-identity
+'∼+'' t (lit (ℤ.+ (suc x))) = refl
+'∼+'' t (lit ℤ.-[1+ x ]) = refl
+'∼+'' t (var x) = refl
+'∼+'' t (u +' u₁) = refl
+'∼+'' t (u *' u₁) = refl
{-
+-reifyNf : ∀ t u → reifyNf (t +ᴺ u) ∼ (reifyNf t +' reifyNf u)
+-reifyNf (n +' ts') (n₁ +' ts'') = {!!}
*-reifyNf : ∀ t u → reifyNf (t *ᴺ u) ∼ (reifyNf t *' reifyNf u)
*-reifyNf t u = {!!}
pf : ∀ t → eval ρ (reifyNf (norm™ t)) ≡ eval ρ t
pf (lit n) = refl
pf (var x) = refl
pf (t +' t₁) rewrite +-reifyNf (norm™ t) (norm™ t₁) | pf t | pf t₁ = refl
pf (t *' t₁) rewrite *-reifyNf (norm™ t) (norm™ t₁) | pf t | pf t₁ = refl
-}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add more derived Field properties
|
Add more derived Field properties
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
e295b6ccc86d810b0a1b3567f66adcdaf0bb065f
|
arrow.agda
|
arrow.agda
|
data Bool : Set where
true : Bool
false : Bool
_∨_ : Bool → Bool → Bool
true ∨ _ = true
false ∨ b = b
_∧_ : Bool → Bool → Bool
false ∧ _ = false
true ∧ b = b
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_==_ : ℕ → ℕ → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
----------------------------------------
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
infixr 5 _∷_
[_] : {A : Set} → A → List A
[ x ] = x ∷ []
any : {A : Set} → (A → Bool) → List A → Bool
any _ [] = false
any f (x ∷ xs) = (f x) ∨ (any f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ [] = false
x ∈ (y ∷ ys) with x == y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q == s
(p ⇒ q) ≡≡ (r ⇒ s) = (p == r) ∧ (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ [] = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure [] found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs [])
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs ([ n ]))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ [] ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ []
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷
(model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷
(model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷
(model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷
(model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ []
testp : Arrow
testp = (5 ⇒ (⇒ 10))
testd : Arrow
testd = (5 ⇒ (⇒ 4))
tests : Arrow
tests = (5 ⇒ (⇒ 3))
testu : Arrow
testu = (6 ⇒ (⇒ 1))
|
data Bool : Set where
true : Bool
false : Bool
_∨_ : Bool → Bool → Bool
true ∨ _ = true
false ∨ b = b
_∧_ : Bool → Bool → Bool
false ∧ _ = false
true ∧ b = b
if_then_else_ : {A : Set} → Bool → A → A → A
if true then a else _ = a
if false then _ else b = b
----------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_==_ : ℕ → ℕ → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
----------------------------------------
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
infixr 5 _∷_
[_] : {A : Set} → A → List A
[ x ] = x ∷ []
any : {A : Set} → (A → Bool) → List A → Bool
any _ [] = false
any f (x ∷ xs) = (f x) ∨ (any f xs)
_∈_ : ℕ → List ℕ → Bool
x ∈ [] = false
x ∈ (y ∷ ys) with x == y
... | true = true
... | false = x ∈ ys
_∋_ : List ℕ → ℕ → Bool
xs ∋ y = y ∈ xs
----------------------------------------
data Arrow : Set where
⇒_ : ℕ → Arrow
_⇒_ : ℕ → Arrow → Arrow
_≡≡_ : Arrow → Arrow → Bool
(⇒ q) ≡≡ (⇒ s) = q == s
(p ⇒ q) ≡≡ (r ⇒ s) = (p == r) ∧ (q ≡≡ s)
_ ≡≡ _ = false
_∈∈_ : Arrow → List Arrow → Bool
x ∈∈ [] = false
x ∈∈ (y ∷ ys) with x ≡≡ y
... | true = true
... | false = x ∈∈ ys
closure : List Arrow → List ℕ → List ℕ
closure [] found = found
closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found))
closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found))
... | true = closure (q ∷ rest) found
... | false = closure rest found
_,_⊢_ : List Arrow → List ℕ → ℕ → Bool
cs , ps ⊢ q = q ∈ (closure cs ps)
_⊢_ : List Arrow → Arrow → Bool
cs ⊢ (⇒ q) = q ∈ (closure cs [])
cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
----------------------------------------
data Separation : Set where
model : List ℕ → List ℕ → Separation
modelsupports : Separation → List Arrow → ℕ → Bool
modelsupports (model holds _) cs n = cs , holds ⊢ n
modeldenies : Separation → List Arrow → ℕ → Bool
modeldenies (model _ fails) cs n = any (_∋_ (closure cs ([ n ]))) fails
_⟪!_⟫_ : List Arrow → Separation → Arrow → Bool
cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q
cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q)
_⟪_⟫_ : List Arrow → List Separation → Arrow → Bool
cs ⟪ [] ⟫ arr = false
cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr)
----------------------------------------
data Relation : Set where
Proved : Relation
Derivable : Relation
Separated : Relation
Unknown : Relation
consider : List Arrow → List Separation → Arrow → Relation
consider cs ms arr with (arr ∈∈ cs)
... | true = Proved
... | false with (cs ⊢ arr)
... | true = Derivable
... | false with (cs ⟪ ms ⟫ arr)
... | true = Separated
... | false = Unknown
proofs : List Arrow
proofs =
(3 ⇒ (⇒ 4)) ∷
-- (5 ⇒ (⇒ 4)) ∷
(6 ⇒ (⇒ 4)) ∷
(3 ⇒ (⇒ 3)) ∷
(3 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(9 ⇒ (⇒ 3)) ∷
(5 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 7)) ∷
(6 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 8)) ∷
(10 ⇒ (⇒ 7)) ∷
(5 ⇒ (⇒ 10)) ∷
(10 ⇒ (⇒ 4)) ∷
(5 ⇒ (⇒ 11)) ∷
(6 ⇒ (⇒ 11)) ∷
(11 ⇒ (⇒ 4)) ∷
(10 ⇒ (⇒ 7)) ∷
(8 ⇒ (⇒ 4)) ∷
(9 ⇒ (⇒ 7)) ∷
(9 ⇒ (⇒ 8)) ∷
(3 ⇒ (⇒ 8)) ∷
(5 ⇒ (3 ⇒ (⇒ 9))) ∷
(6 ⇒ (7 ⇒ (⇒ 10))) ∷
(6 ⇒ (3 ⇒ (⇒ 3))) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (⇒ 7)) ∷
(7 ⇒ (8 ⇒ (⇒ 10))) ∷
(3 ⇒ (10 ⇒ (⇒ 9))) ∷
(5 ⇒ (⇒ 1)) ∷
(3 ⇒ (1 ⇒ (⇒ 9))) ∷
(1 ⇒ (⇒ 2)) ∷
(10 ⇒ (⇒ 2)) ∷ []
cms : List Separation
cms =
(model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷
(model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷
(model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷
(model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷
(model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷
(model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷
(model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷
(model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷
(model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷
(model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷
(model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷
(model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷
(model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ []
testp : Relation
testp = consider proofs cms (5 ⇒ (⇒ 10))
testd : Relation
testd = consider proofs cms (5 ⇒ (⇒ 4))
tests : Relation
tests = consider proofs cms (5 ⇒ (⇒ 3))
testu : Relation
testu = consider proofs cms (6 ⇒ (⇒ 1))
testcl : List ℕ
testcl = closure proofs (5 ∷ [])
|
Add tests
|
Add tests
|
Agda
|
mit
|
louisswarren/hieretikz
|
fab1df4c820031858a8111d3a016a96fcf1bd2e4
|
Parametric/Denotation/CachingEvaluation.agda
|
Parametric/Denotation/CachingEvaluation.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but instead of producing object language terms, we
-- produce host language terms to take advantage of the richer type system of
-- the host language (in particular, here we need the unit type, product types
-- and *existentials*).
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Type semantics for this scenario.
⟦_⟧TypeHidCache : (τ : Type) → Set₁
⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧
⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ )
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧CtxHidCache : (Γ : Context) → Set₁
⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- It's questionable that this is not polymorphic enough.
⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦ this ⟧VarHidCache (v • ρ) = v
⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ
-- Now, let us define a caching semantics for terms.
-- This proves to be hard, because we need to insert and remove caches where
-- we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
--
-- Inserting and removing caches --
--
-- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time.
-- Indeed, both functions seem structurally recursive on τ.
dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧
extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache
dropCache {base ι} v = lower v
dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x))))
extend {base ι} v = lift v
extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt)
-- OK, this version is syntax-directed, luckily enough, except on primitives
-- (as expected). This reveals a bug of ours on higher-order primitives.
--
-- Moreover, we can somewhat safely assume that each call to extend and to
-- dropCache is bad: then we see that the handling of constants is bad. That's
-- correct, because constants will not return intermediate results in this
-- schema :-(.
⟦_⟧TermCache2 : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦_⟧TermCache2 (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ))
⟦_⟧TermCache2 (var x) ρ = ⟦ x ⟧VarHidCache ρ
-- It seems odd (a probable bug?) that the result of t needn't be stripped of
-- its cache.
⟦_⟧TermCache2 (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache2 ρ) (⟦ t ⟧TermCache2 ρ)))
-- Provide an empty cache!
⟦_⟧TermCache2 (abs t) ρ x = , (⟦ t ⟧TermCache2 (x • ρ) , tt)
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache2, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Type semantics for this scenario.
⟦_⟧TypeHidCache : (τ : Type) → Set₁
⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧
⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ )
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧CtxHidCache : (Γ : Context) → Set₁
⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- It's questionable that this is not polymorphic enough.
⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦ this ⟧VarHidCache (v • ρ) = v
⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ
-- Now, let us define a caching semantics for terms.
-- This proves to be hard, because we need to insert and remove caches where
-- we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
--
-- Inserting and removing caches --
--
-- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time.
-- Indeed, both functions seem structurally recursive on τ.
dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧
extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache
dropCache {base ι} v = lower v
dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x))))
extend {base ι} v = lift v
extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt)
-- OK, this version is syntax-directed, luckily enough, except on primitives
-- (as expected). This reveals a bug of ours on higher-order primitives.
--
-- Moreover, we can somewhat safely assume that each call to extend and to
-- dropCache is bad: then we see that the handling of constants is bad. That's
-- correct, because constants will not return intermediate results in this
-- schema :-(.
⟦_⟧TermCache2 : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦_⟧TermCache2 (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ))
⟦_⟧TermCache2 (var x) ρ = ⟦ x ⟧VarHidCache ρ
-- It seems odd (a probable bug?) that the result of t needn't be stripped of
-- its cache.
⟦_⟧TermCache2 (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache2 ρ) (⟦ t ⟧TermCache2 ρ)))
-- Provide an empty cache!
⟦_⟧TermCache2 (abs t) ρ x = , (⟦ t ⟧TermCache2 (x • ρ) , tt)
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache2, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
Clarify comment
|
Clarify comment
|
Agda
|
mit
|
inc-lc/ilc-agda
|
07cae51cc16edefb7e8225f94559a896323c1dd2
|
Popl14/Syntax/Term.agda
|
Popl14/Syntax/Term.agda
|
module Popl14.Syntax.Term where
open import Popl14.Syntax.Type
open import Data.Integer
import Parametric.Syntax.Term Base as Term
-- Popl14-Const ? No.
data Const : Term.Structure where
intlit-const : (n : ℤ) → Const ∅ int
add-const : Const (int • int • ∅) int
minus-const : Const (int • ∅) (int)
empty-const : Const ∅ (bag)
insert-const : Const (int • bag • ∅) (bag)
union-const : Const (bag • bag • ∅) (bag)
negate-const : Const (bag • ∅) (bag)
flatmap-const : Const ((int ⇒ bag) • bag • ∅) (bag)
sum-const : Const (bag • ∅) (int)
open Term.Structure Const public
-- Shorthands of constants
pattern intlit n = const (intlit-const n) ∅
pattern add s t = const add-const (s • t • ∅)
pattern minus t = const minus-const (t • ∅)
pattern empty = const empty-const ∅
pattern insert s t = const insert-const (s • t • ∅)
pattern union s t = const union-const (s • t • ∅)
pattern negate t = const negate-const (t • ∅)
pattern flatmap s t = const flatmap-const (s • t • ∅)
pattern sum t = const sum-const (t • ∅)
|
module Popl14.Syntax.Term where
open import Popl14.Syntax.Type
open import Data.Integer
import Parametric.Syntax.Term Base as Term
data Const : Term.Structure where
intlit-const : (n : ℤ) → Const ∅ int
add-const : Const (int • int • ∅) int
minus-const : Const (int • ∅) (int)
empty-const : Const ∅ (bag)
insert-const : Const (int • bag • ∅) (bag)
union-const : Const (bag • bag • ∅) (bag)
negate-const : Const (bag • ∅) (bag)
flatmap-const : Const ((int ⇒ bag) • bag • ∅) (bag)
sum-const : Const (bag • ∅) (int)
open Term.Structure Const public
-- Shorthands of constants
pattern intlit n = const (intlit-const n) ∅
pattern add s t = const add-const (s • t • ∅)
pattern minus t = const minus-const (t • ∅)
pattern empty = const empty-const ∅
pattern insert s t = const insert-const (s • t • ∅)
pattern union s t = const union-const (s • t • ∅)
pattern negate t = const negate-const (t • ∅)
pattern flatmap s t = const flatmap-const (s • t • ∅)
pattern sum t = const sum-const (t • ∅)
|
Remove comment.
|
Remove comment.
Old-commit-hash: aabb08e2144e33b92062ac6a93d3722869d7ba2f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
ce0860eb54642cc4fd246103f18313790c9d29f4
|
lib/Data/Vec/NP.agda
|
lib/Data/Vec/NP.agda
|
module Data.Vec.NP where
open import Data.Vec public
open import Data.Nat using (ℕ; suc; zero; _+_)
open import Data.Fin hiding (_+_)
open import Data.Fin.Props
open import Data.Bool
open import Data.Product
open import Function
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡
count : ∀ {n a} {A : Set a} → (A → Bool) → Vec A n → Fin (suc n)
count pred [] = zero
count pred (x ∷ xs) = (if pred x then suc else inject₁) (count pred xs)
filter : ∀ {n a} {A : Set a} (pred : A → Bool) (xs : Vec A n) → Vec A (toℕ (count pred xs))
filter pred [] = []
filter pred (x ∷ xs) with pred x
... | true = x ∷ filter pred xs
... | false rewrite inject₁-lemma (count pred xs) = filter pred xs
η : ∀ {n a} {A : Set a} → Vec A n → Vec A n
η = tabulate ∘ flip lookup
η′ : ∀ {n a} {A : Set a} → Vec A n → Vec A n
η′ {zero} = λ _ → []
η′ {suc n} = λ xs → head xs ∷ η (tail xs)
≡-splitAt : ∀ {m n a} {A : Set a} {xs zs : Vec A m} {ys ts : Vec A n}
→ (xs ++ ys) ≡ (zs ++ ts) → (xs ≡ zs × ys ≡ ts)
≡-splitAt {zero} {xs = []} {[]} p = refl , p
≡-splitAt {suc m} {xs = x ∷ xs} {z ∷ zs} eq with ≡-splitAt {m} {xs = xs} {zs} (cong tail eq)
... | (q₁ , q₂) = (cong₂ _∷_ (cong head eq) q₁) , q₂
{-
open import Data.Vec.Equality
module Here {a} {A : Set a} where
open Equality (≡.setoid A)
≈-splitAt : ∀ {m n} {xs zs : Vec A m} {ys ts : Vec A n}
→ (xs ++ ys) ≈ (zs ++ ts) → (xs ≈ zs × ys ≈ ts)
≈-splitAt {zero} {xs = []} {[]} p = []-cong , p
≈-splitAt {suc m} {xs = x ∷ xs} {z ∷ zs} (x¹≈x² ∷-cong p) with ≈-splitAt {m} {xs = xs} {zs} p
... | (q₁ , q₂) = x¹≈x² ∷-cong q₁ , q₂
-}
++-inj₁ : ∀ {m n} {a} {A : Set a} (xs ys : Vec A m) {zs ts : Vec A n} → xs ++ zs ≡ ys ++ ts → xs ≡ ys
++-inj₁ xs ys eq = proj₁ (≡-splitAt eq)
++-inj₂ : ∀ {m n} {a} {A : Set a} (xs ys : Vec A m) {zs ts : Vec A n} → xs ++ zs ≡ ys ++ ts → zs ≡ ts
++-inj₂ xs ys eq = proj₂ (≡-splitAt {xs = xs} {ys} eq)
take-++ : ∀ m {n} {a} {A : Set a} (xs : Vec A m) (ys : Vec A n) → take m (xs ++ ys) ≡ xs
take-++ m xs ys with xs ++ ys | inspect (_++_ xs) ys
... | zs | eq with splitAt m zs
take-++ m xs₁ ys₁ | .(xs ++ ys) | Reveal_is_.[_] eq | xs , ys , refl = sym (++-inj₁ xs₁ xs eq)
drop-++ : ∀ m {n} {a} {A : Set a} (xs : Vec A m) (ys : Vec A n) → drop m (xs ++ ys) ≡ ys
drop-++ m xs ys with xs ++ ys | inspect (_++_ xs) ys
... | zs | eq with splitAt m zs
drop-++ m xs₁ ys₁ | .(xs ++ ys) | Reveal_is_.[_] eq | xs , ys , refl = sym (++-inj₂ xs₁ xs eq)
take-drop-lem : ∀ m {n} {a} {A : Set a} (xs : Vec A (m + n)) → take m xs ++ drop m xs ≡ xs
take-drop-lem m xs with splitAt m xs
take-drop-lem m .(ys ++ zs) | ys , zs , refl = refl
take-them-all : ∀ n {a} {A : Set a} (xs : Vec A (n + 0)) → take n xs ++ [] ≡ xs
take-them-all n xs with splitAt n xs
take-them-all n .(ys ++ []) | ys , [] , refl = refl
|
module Data.Vec.NP where
open import Data.Vec public
open import Data.Nat using (ℕ; suc; zero; _+_)
open import Data.Fin hiding (_+_)
open import Data.Fin.Props
open import Data.Bool
open import Data.Product
open import Function
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡
count : ∀ {n a} {A : Set a} → (A → Bool) → Vec A n → Fin (suc n)
count pred [] = zero
count pred (x ∷ xs) = (if pred x then suc else inject₁) (count pred xs)
filter : ∀ {n a} {A : Set a} (pred : A → Bool) (xs : Vec A n) → Vec A (toℕ (count pred xs))
filter pred [] = []
filter pred (x ∷ xs) with pred x
... | true = x ∷ filter pred xs
... | false rewrite inject₁-lemma (count pred xs) = filter pred xs
η : ∀ {n a} {A : Set a} → Vec A n → Vec A n
η = tabulate ∘ flip lookup
η′ : ∀ {n a} {A : Set a} → Vec A n → Vec A n
η′ {zero} = λ _ → []
η′ {suc n} = λ xs → head xs ∷ η (tail xs)
++-decomp : ∀ {m n a} {A : Set a} {xs zs : Vec A m} {ys ts : Vec A n}
→ (xs ++ ys) ≡ (zs ++ ts) → (xs ≡ zs × ys ≡ ts)
++-decomp {zero} {xs = []} {[]} p = refl , p
++-decomp {suc m} {xs = x ∷ xs} {z ∷ zs} eq with ++-decomp {m} {xs = xs} {zs} (cong tail eq)
... | (q₁ , q₂) = (cong₂ _∷_ (cong head eq) q₁) , q₂
{-
open import Data.Vec.Equality
module Here {a} {A : Set a} where
open Equality (≡.setoid A)
≈-splitAt : ∀ {m n} {xs zs : Vec A m} {ys ts : Vec A n}
→ (xs ++ ys) ≈ (zs ++ ts) → (xs ≈ zs × ys ≈ ts)
≈-splitAt {zero} {xs = []} {[]} p = []-cong , p
≈-splitAt {suc m} {xs = x ∷ xs} {z ∷ zs} (x¹≈x² ∷-cong p) with ≈-splitAt {m} {xs = xs} {zs} p
... | (q₁ , q₂) = x¹≈x² ∷-cong q₁ , q₂
-}
++-inj₁ : ∀ {m n} {a} {A : Set a} (xs ys : Vec A m) {zs ts : Vec A n} → xs ++ zs ≡ ys ++ ts → xs ≡ ys
++-inj₁ xs ys eq = proj₁ (++-decomp eq)
++-inj₂ : ∀ {m n} {a} {A : Set a} (xs ys : Vec A m) {zs ts : Vec A n} → xs ++ zs ≡ ys ++ ts → zs ≡ ts
++-inj₂ xs ys eq = proj₂ (++-decomp {xs = xs} {ys} eq)
take-++ : ∀ m {n} {a} {A : Set a} (xs : Vec A m) (ys : Vec A n) → take m (xs ++ ys) ≡ xs
take-++ m xs ys with xs ++ ys | inspect (_++_ xs) ys
... | zs | eq with splitAt m zs
take-++ m xs₁ ys₁ | .(xs ++ ys) | Reveal_is_.[_] eq | xs , ys , refl = sym (++-inj₁ xs₁ xs eq)
drop-++ : ∀ m {n} {a} {A : Set a} (xs : Vec A m) (ys : Vec A n) → drop m (xs ++ ys) ≡ ys
drop-++ m xs ys with xs ++ ys | inspect (_++_ xs) ys
... | zs | eq with splitAt m zs
drop-++ m xs₁ ys₁ | .(xs ++ ys) | Reveal_is_.[_] eq | xs , ys , refl = sym (++-inj₂ xs₁ xs eq)
take-drop-lem : ∀ m {n} {a} {A : Set a} (xs : Vec A (m + n)) → take m xs ++ drop m xs ≡ xs
take-drop-lem m xs with splitAt m xs
take-drop-lem m .(ys ++ zs) | ys , zs , refl = refl
take-them-all : ∀ n {a} {A : Set a} (xs : Vec A (n + 0)) → take n xs ++ [] ≡ xs
take-them-all n xs with splitAt n xs
take-them-all n .(ys ++ []) | ys , [] , refl = refl
|
rename ≡-splitAt into ++-decomp
|
rename ≡-splitAt into ++-decomp
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
9a173b770f197c6b30d41ce679f7a2b1864026a1
|
ZK/JSChecker.agda
|
ZK/JSChecker.agda
|
{-# OPTIONS --without-K #-}
module ZK.JSChecker where
open import Type.Eq
open import Function using (case_of_)
open import Data.Two.Base using (_∧_)
open import Data.List.Base using ([]; _∷_)
open import FFI.JS
open import FFI.JS.Check
-- open import FFI.JS.Proc using (URI; JSProc; showURI; server)
-- open import Control.Process.Type
import FFI.JS.Console as Console
import FFI.JS.Process as Process
import FFI.JS.FS as FS
import FFI.JS.BigI as BigI
open BigI using (BigI; bigI)
import Crypto.JS.BigI.FiniteField as Zq
import Crypto.JS.BigI.CyclicGroup as Zp
open import Crypto.JS.BigI.Params using (Params; module Params)
open import Crypto.JS.BigI.Checks using (check-params!)
-- TODO dynamise me
primality-test-probability-bound : Number
primality-test-probability-bound = readNumber "10"
-- TODO: check if this is large enough
min-bits-q : Number
min-bits-q = 256N
min-bits-p : Number
min-bits-p = 2048N
bigdec : JSValue → BigI
bigdec v = bigI (castString v) "10"
-- PoK: (Zero-Knowledge) Proof of Knowledge
-- CP: Chaum-Pedersen
-- EG: ElGamal
-- rnd: Knowledge of the secret, random exponent used in ElGamal encryption
record PoK-CP-EG-rnd (ℤq ℤp★ : Set) : Set where
inductive -- NO_ETA
field
g y α β A B : ℤp★
m c s : ℤq
verify-PoK-CP-EG-rnd :
(p q : BigI)
(pok : PoK-CP-EG-rnd Zq.ℤ[ q ] Zp.ℤ[ p ]★) → Bool
verify-PoK-CP-EG-rnd p q pok = gˢ==αᶜ·A ∧ yˢ==⟨β/M⟩ᶜ·B
module verify-PoK-CP-EG-rnd where
open module ℤq = Zq q
open module ℤp★ = Zp p
open module ^-h = ^-hom {q}
open module pok = PoK-CP-EG-rnd pok
M = g ^ m
gˢ==αᶜ·A = g ^ s == (α ^ c) ** A
yˢ==⟨β/M⟩ᶜ·B = y ^ s == ((β // M) ^ c) ** B
zk-check! : JSValue → JS!
zk-check! arg =
check! "type of statement" (typ === fromString cpt)
(λ _ → "Expected type of statement: " ++
cpt ++ " not " ++ toString typ) >>
BigI▹ℤp★ gI >>= λ g →
BigI▹ℤp★ (bigdec (dat ·« "y" »)) >>= λ y →
BigI▹ℤp★ (bigdec (enc ·« "alpha" »)) >>= λ α →
BigI▹ℤp★ (bigdec (enc ·« "beta" »)) >>= λ β →
BigI▹ℤp★ (bigdec (com ·« "A" »)) >>= λ A →
BigI▹ℤp★ (bigdec (com ·« "B" »)) >>= λ B →
BigI▹ℤq (bigdec (prf ·« "challenge" »)) >>= λ c →
BigI▹ℤq (bigdec (prf ·« "response" »)) >>= λ s →
BigI▹ℤq (bigdec (dat ·« "plain" »)) >>= λ m →
check-params! gpq >>
-- Console.log ("pok=" ++ JSON-stringify (fromAny pok)) >>
check! "PoK-CP-EG-rnd" (verify-PoK-CP-EG-rnd pI qI
(record
{ g = g
; y = y
; α = α
; β = β
; A = A
; B = B
; c = c
; s = s
; m = m
}))
(λ _ → "Invalid transcript")
module zk-check where
cpt = "chaum-pedersen-pok-elgamal-rnd"
stm = arg ·« "statement" »
typ = stm ·« "type" »
dat = stm ·« "data" »
enc = dat ·« "enc" »
prf = arg ·« "proof" »
com = prf ·« "commitment" »
gI = bigdec (dat ·« "g" »)
pI = bigdec (dat ·« "p" »)
qI = bigdec (dat ·« "q" »)
gpq = record
{ primality-test-probability-bound = primality-test-probability-bound
; min-bits-q = min-bits-q
; min-bits-p = min-bits-p
; qI = qI
; pI = pI
; gI = gI
}
open module ℤq = Zq qI using (BigI▹ℤq)
open module ℤp★ = Zp pI using (BigI▹ℤp★)
-- open module [ℤq]ℤp★ = ZqZp gpq
{-
srv : URI → JSProc
srv d =
recv d λ q →
send d (fromBool (zk-check q))
end
-}
-- Working around Agda.Primitive.lsuc being undefined
-- case_of_ : {A : Set} {B : Set} → A → (A → B) → B
-- case x of f = f x
main : JS!
main =
Process.argv >>= λ args →
case JSArray▹ListString args of λ {
(_node ∷ _run ∷ _test ∷ args') →
case args' of λ {
[] →
Console.log "usage: No arguments"
{- server "127.0.0.1" "1337" srv >>= λ uri →
Console.log (showURI uri)
-}
; (arg ∷ args'') →
case args'' of λ {
[] →
Console.log ("Reading input file: " ++ arg) >>
FS.readFile arg nullJS >>== λ err dat →
check! "reading input file" (is-null err)
(λ _ → "readFile error: " ++ toString err) >>
zk-check! (JSON-parse (toString dat))
; _ →
Console.log "usage: Too many arguments"
}
}
; _ →
Console.log "usage"
}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
module ZK.JSChecker where
open import Type.Eq
open import Function using (case_of_)
open import Data.Two.Base using (_∧_)
open import Data.List.Base using ([]; _∷_)
open import FFI.JS
open import FFI.JS.Check
-- open import FFI.JS.Proc using (URI; JSProc; showURI; server)
-- open import Control.Process.Type
import FFI.JS.Console as Console
import FFI.JS.Process as Process
import FFI.JS.FS as FS
import FFI.JS.BigI as BigI
open BigI using (BigI; bigI)
import Crypto.JS.BigI.FiniteField as Zq
import Crypto.JS.BigI.CyclicGroup as Zp
open import Crypto.JS.BigI.Params using (Params; module Params)
open import Crypto.JS.BigI.Checks using (check-params!)
open import ZK.Types
verify-PoK-CP-EG-rnd :
(p q : BigI)
(pok : PoK-CP-EG-rnd Zq.ℤ[ q ] Zp.ℤ[ p ]★) → Bool
verify-PoK-CP-EG-rnd p q pok = gˢ==αᶜ·A ∧ yˢ==⟨β/M⟩ᶜ·B
module verify-PoK-CP-EG-rnd where
open module ℤq = Zq q
open module ℤp★ = Zp p
open module ^-h = ^-hom {q}
open module pok = PoK-CP-EG-rnd pok
M = g ^ m
gˢ==αᶜ·A = g ^ s == (α ^ c) ** A
yˢ==⟨β/M⟩ᶜ·B = y ^ s == ((β // M) ^ c) ** B
-- TODO dynamise me
primality-test-probability-bound : Number
primality-test-probability-bound = readNumber "10"
-- TODO: check if this is large enough
min-bits-q : Number
min-bits-q = 256N
min-bits-p : Number
min-bits-p = 2048N
bigdec : JSValue → JS[ BigI ]
bigdec v = bigI <$> castString v <*> return "10"
zk-check! : JSValue → JS!
zk-check! arg =
arg ·« "statement" » >>= λ stm →
stm ·« "type" » >>= λ typ →
let
cpt = "chaum-pedersen-pok-elgamal-rnd"
in
check! "type of statement" (typ === fromString cpt)
(λ _ → "Expected type of statement: " ++
cpt ++ " not " ++ toString typ) >>
stm ·« "data" » >>= λ dat →
dat ·« "enc" » >>= λ enc →
arg ·« "proof" » >>= λ prf →
prf ·« "commitment" » >>= λ com →
(bigdec =<< dat ·« "g" ») >>= λ gI →
(bigdec =<< dat ·« "p" ») >>= λ pI →
(bigdec =<< dat ·« "q" ») >>= λ qI →
let
open module ℤq = Zq qI using (BigI▹ℤq)
open module ℤp★ = Zp pI using (BigI▹ℤp★)
gpq = record
{ primality-test-probability-bound = primality-test-probability-bound
; min-bits-q = min-bits-q
; min-bits-p = min-bits-p
; qI = qI
; pI = pI
; gI = gI
}
in
BigI▹ℤp★ gI >>= λ g →
(BigI▹ℤp★ =<< bigdec =<< dat ·« "y" ») >>= λ y →
(BigI▹ℤp★ =<< bigdec =<< enc ·« "alpha" ») >>= λ α →
(BigI▹ℤp★ =<< bigdec =<< enc ·« "beta" ») >>= λ β →
(BigI▹ℤp★ =<< bigdec =<< com ·« "A" ») >>= λ A →
(BigI▹ℤp★ =<< bigdec =<< com ·« "B" ») >>= λ B →
(BigI▹ℤq =<< bigdec =<< prf ·« "challenge" ») >>= λ c →
(BigI▹ℤq =<< bigdec =<< prf ·« "response" ») >>= λ s →
(BigI▹ℤq =<< bigdec =<< dat ·« "plain" ») >>= λ m →
check-params! gpq >>
-- Console.log ("pok=" ++ JSON-stringify (fromAny pok)) >>
check! "PoK-CP-EG-rnd" (verify-PoK-CP-EG-rnd pI qI
(record
{ g = g
; y = y
; α = α
; β = β
; A = A
; B = B
; c = c
; s = s
; m = m
}))
(λ _ → "Invalid transcript")
{-
srv : URI → JSProc
srv d =
recv d λ q →
send d (fromBool (zk-check q))
end
-}
-- Working around Agda.Primitive.lsuc being undefined
-- case_of_ : {A : Set} {B : Set} → A → (A → B) → B
-- case x of f = f x
main : JS!
main =
Process.argv >>= λ args →
case JSArray▹List args of λ
{ (_node ∷ _run ∷ _test ∷ args') →
case args' of λ
{ [] →
Console.log "usage: No arguments"
{- server "127.0.0.1" "1337" srv >>= λ uri →
Console.log (showURI uri)
-}
; (arg ∷ args'') →
case args'' of λ
{ [] →
Console.log ("Reading input file: " ++ arg) >>
FS.readFile arg nullJS >>== λ err dat →
check! "reading input file" (is-null err)
(λ _ → "readFile error: " ++ toString err) >>
zk-check! (JSON-parse (toString dat))
; _ →
Console.log "usage: Too many arguments"
}
}
; _ →
Console.log "usage"
}
-- -}
-- -}
-- -}
-- -}
|
Update ZK.JSChecker to monadic JS operations
|
Update ZK.JSChecker to monadic JS operations
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
13ef6fc79c73003cf82b179fbf73127b0e3772b8
|
Parametric/Denotation/CachingEvaluation.agda
|
Parametric/Denotation/CachingEvaluation.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Type semantics for this scenario.
⟦_⟧TypeHidCache : (τ : Type) → Set₁
⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧
⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ )
-- Now, let us define a caching semantics for terms.
-- This proves to be hard, because we need to insert and remove caches where
-- we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
--
-- Inserting and removing caches --
--
-- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time.
-- Indeed, both functions seem structurally recursive on τ.
dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧
extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache
dropCache {base ι} v = lower v
dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x))))
extend {base ι} v = lift v
extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt)
⟦_⟧CtxHidCache : (Γ : Context) → Set₁
⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache
-- It's questionable that this is not polymorphic enough.
⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦ this ⟧VarHidCache (v • ρ) = v
⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ
-- OK, this version is syntax-directed, luckily enough, except on primitives
-- (as expected). This reveals a bug of ours on higher-order primitives.
--
-- Moreover, we can somewhat safely assume that each call to extend and to
-- dropCache is bad: then we see that the handling of constants is bad. That's
-- correct, because constants will not return intermediate results in this
-- schema :-(.
⟦_⟧TermCache : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache
⟦_⟧TermCache (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ))
⟦_⟧TermCache (var x) ρ = ⟦ x ⟧VarHidCache ρ
-- It seems odd (a probable bug?) that the result of t needn't be stripped of
-- its cache.
⟦_⟧TermCache (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache ρ) (⟦ t ⟧TermCache ρ)))
-- Provide an empty cache!
⟦_⟧TermCache (abs t) ρ x = , (⟦ t ⟧TermCache (x • ρ) , tt)
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Caching evaluation
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
module Parametric.Denotation.CachingEvaluation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
module Structure where
{-
-- Prototype here the type-correctness of a simple non-standard semantics.
-- This describes a simplified version of the transformation by Liu and
-- Tanenbaum, PEPM 1995 - but for now, instead of producing object language
-- terms, we produce host language terms to take advantage of the richer type
-- system of the host language (in particular, here we need the unit type,
-- product types and *existentials*).
--
-- As usual, we'll later switch to a real term transformation.
-}
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Unit
open import Level
-- Defining a caching semantics for Term proves to be hard, requiring to
-- insert and remove caches where we apply constants.
-- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us.
open import Parametric.Syntax.MType as MType
open MType.Structure Base
open import Parametric.Syntax.MTerm as MTerm
open MTerm.Structure Const
open import Function hiding (const)
⟦_⟧ValType : (τ : ValType) → Set
⟦_⟧CompType : (τ : CompType) → Set
⟦ U c ⟧ValType = ⟦ c ⟧CompType
⟦ B ι ⟧ValType = ⟦ base ι ⟧
⟦ vUnit ⟧ValType = ⊤
⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType
⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType
⟦ F τ ⟧CompType = ⟦ τ ⟧ValType
⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType
-- XXX: below we need to override just a few cases. Inheritance would handle
-- this precisely; without inheritance, we might want to use one of the
-- standard encodings of related features (delegation?).
⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁
⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁
-- This line is the only change, up to now, for the caching semantics starting from CBPV.
⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ )
-- Delegation upward.
⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType
⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType
-- The above does not override what happens in recursive occurrences.
{-# NO_TERMINATION_CHECK #-}
⟦_⟧ValTypeHidCache : (τ : ValType) → Set
⟦_⟧CompTypeHidCache : (τ : CompType) → Set
⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache
⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧
⟦ vUnit ⟧ValTypeHidCache = ⊤
⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache
⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache
-- This line is the only change, up to now, for the caching semantics.
--
-- XXX The termination checker isn't happy with it, and it may be right ─ if
-- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big.
-- I think we don't do that unless we are caching a non-terminating
-- computation to begin with, but I'm not entirely sure.
--
-- However, the termination checker can't prove that the function is
-- terminating because it's not structurally recursive, but one call of the
-- function will produce another call of the function stuck on a neutral term:
-- So the computation will have terminated, just in an unusual way!
--
-- Anyway, I need not mechanize this part of the proof for my goals.
⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache )
⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set
⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache
{-
⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁
⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache
-}
-- The solution is to distinguish among different kinds of constants. Some are
-- value constructors (and thus do not return caches), while others are
-- computation constructors (and thus should return caches). For products, I
-- believe we will only use the products which are values, not computations
-- (XXX check CBPV paper for the name).
⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache
⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache
open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public
using ()
renaming (⟦_⟧Var to ⟦_⟧ValVar)
-- This says that the environment does not contain caches... sounds wrong!
-- Either we add extra variables for the caches, or we store computations in
-- the environment (but that does not make sense), or we store caches in
-- values, by acting not on F but on something else (U?).
-- I suspect the plan was to use extra variables; that's annoying to model in
-- Agda but easier in implementations.
⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ
⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ
-- The real deal, finally.
open import UNDEFINED
-- XXX constants are still a slight mess because I'm abusing CBPV...
-- (Actually, I just forgot the difference, and believe I had too little clue
-- when I wrote these constructors... but some of them did make sense).
⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED
⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED
-- Also, where are introduction forms for pairs and sums among values? With
-- them, we should see that we can interpret them without adding a cache.
-- Thunks keep seeming noops.
⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ
-- Here, in an actual implementation, we would return the actual cache with
-- all variables.
--
-- The effect of F is a writer monad of cached values, where the monoid is
-- (isomorphic to) the free monoid over (∃ τ . τ), but we push the
-- existentials up when pairing things!
-- That's what we're interpreting computations in. XXX maybe consider using
-- monads directly. But that doesn't deal with arity.
⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt)
-- For this to be enough, a lambda needs to return a produce, not to forward
-- the underlying one (unless there are no intermediate results). The correct
-- requirements can maybe be enforced through a linear typing discipline.
{-
-- Here we'd have a problem with the original into from CBPV, because it does
-- not require converting expressions to the "CBPV A-normal form".
⟦_⟧CompTermCache (v₁ into v₂) ρ =
-- Sequence commands and combine their caches.
{-
let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in , (r₂ , (c₁ ,′ c₂))
-}
-- The code above does not work, because we only guarantee that v₂ is
-- a computation, not that it's an F-computation - v₂ could also be function
-- type or a computation product.
-- We need a restricted CBPV, where these two possibilities are forbidden. If
-- you want to save something between different lambdas, you need to add an F
-- U to reflect that. (Double-check the papers which show how to encode arity
-- using CBPV, it seems that they should find the same problem --- XXX they
-- don't).
-- Instead, just drop the first cache (XXX WRONG).
⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ)
-}
-- But if we alter _into_ as described above, composing the caches works!
-- However, we should not forget we also need to save the new intermediate
-- result, that is the one produced by the first part of the let.
⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ =
let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ
(τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ)
in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂))
-- Note the compositionality and luck: we don't need to do anything at the
-- cReturn time, we just need the nested into to do their job, because as I
-- said intermediate results are a writer monad.
--
-- Q: But then, do we still need to do all the other stuff? IOW, do we still
-- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <-
-- f args; z <- g args'; z)?
--
-- A: One thing we still need is using the monadic version of into for the
-- same reasons - which makes sense, since it has the type of monadic bind.
--
-- Maybe not: if we use a monad, which respects left and right identity, the
-- two above forms are equivalent. But what about associativity? We don't have
-- associativity with nested tuples in the middle. That's why the monad uses
-- lists! We can also use nested tuple, as long as in the into case we don't
-- do (a, b) but append a b (ahem, where?), which decomposes the first list
-- and prepends it to the second. To this end, we need to know the type of the
-- first element, or to ensure it's always a pair. Maybe we just want to reuse
-- an HList.
-- In abstractions, we should start collecting all variables...
-- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache,
-- that's moved into the handling of cReturn. This makes *the* difference for
-- nested lambdas, where we don't need to create caches multiple times!
⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ)
-- Here we see that we are in a sort of A-normal form, because the argument is
-- a value (not quite ANF though, since values can be thunks - that is,
-- computations which haven't been run yet, I guess. Do we have an use for
-- that? That allows passing lambdas as arguments directly - which is fine,
-- because producing a closure indeed does not have intermediate results!).
⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
|
Drop non-CBPV caching semantics & update comments
|
Drop non-CBPV caching semantics & update comments
|
Agda
|
mit
|
inc-lc/ilc-agda
|
27a4ba88511dda3572cdb1d98a77ac8d6af2e8e1
|
Base/Change/Context.agda
|
Base/Change/Context.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change contexts
------------------------------------------------------------------------
module Base.Change.Context
{Type : Set}
(ΔType : Type → Type) where
open import Base.Syntax.Context Type
-- Transform a context of values into a context of values and
-- changes.
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- like ΔContext, but ΔType τ and τ are swapped
ΔContext′ : Context → Context
ΔContext′ ∅ = ∅
ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change contexts
--
-- This module specifies how a context of values is merged
-- together with the corresponding context of changes.
--
-- In the PLDI paper, instead of merging the contexts together, we just
-- concatenate them. For example, in the "typing rule" for Derive
-- in Sec. 3.2 of the paper, we write in the conclusion of the rule:
-- "Γ, ΔΓ ⊢ Derive(t) : Δτ". Simple concatenation is possible because
-- the paper uses named variables and assumes that no user variables
-- start with "d". In this formalization, we use de Bruijn indices, so
-- it is easier to alternate values and their changes in the context.
------------------------------------------------------------------------
module Base.Change.Context
{Type : Set}
(ΔType : Type → Type) where
open import Base.Syntax.Context Type
-- Transform a context of values into a context of values and
-- changes.
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- like ΔContext, but ΔType τ and τ are swapped
ΔContext′ : Context → Context
ΔContext′ ∅ = ∅
ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ
-- This sub-context relationship explains how to go back from
-- ΔContext Γ to Γ: You have to drop every other binding.
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
|
Improve commentary on Base.Change.Context.
|
Improve commentary on Base.Change.Context.
Old-commit-hash: ad5f3d68627e46f68376b1c994a9ce3787870847
|
Agda
|
mit
|
inc-lc/ilc-agda
|
670c3d1576725334e48ff0039610f28d8afc13f2
|
Parametric/Change/Correctness.agda
|
Parametric/Change/Correctness.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- That `derive t` implements ⟦ t ⟧Δ
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
derive-correct-closed : ∀ {τ} (t : Term ∅ τ) →
⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅
derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} →
{dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} →
⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧
main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} =
let
g = ⟦ f ⟧ ∅
Δg = ⟦ f ⟧Δ ∅ ∅
Δg′ = ⟦ derive f ⟧ ∅
v = ⟦ s ⟧ ∅
dv′ = ⟦ ds ⟧ ∅
u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅
-- Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
g u
≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩
g (v ⟦⊕₍ σ ₎⟧ dv′)
≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ corollary-closed {σ} {τ} f v dv ⟩
g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv
≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv)
(derive-correct-closed f v dv dv′ erasure) ⟩
g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′
≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩
⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅
∎}) where open ≡-Reasoning
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Correctness of differentiation (Lemma 3.10 and Theorem 3.11).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Term as ChangeTerm
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Evaluation as ChangeEvaluation
import Parametric.Change.Derive as Derive
import Parametric.Change.Implementation as Implementation
module Parametric.Change.Correctness
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(diff-base : ChangeTerm.DiffStructure Const ΔBase)
(apply-base : ChangeTerm.ApplyStructure Const ΔBase)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(meaning-⊕-base : ChangeEvaluation.ApplyStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(meaning-⊝-base : ChangeEvaluation.DiffStructure
⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(derive-const : Derive.Structure Const ΔBase)
(implementation-structure : Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase
validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeTerm.Structure Const ΔBase diff-base apply-base
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open ChangeEvaluation.Structure
⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base
⟦apply-base⟧ ⟦diff-base⟧
meaning-⊕-base meaning-⊝-base
open Derive.Structure Const ΔBase derive-const
open Implementation.Structure
Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure
⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure
-- The denotational properties of the `derive` transformation.
-- In particular, the main theorem about it producing the correct
-- incremental behavior.
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
-- Extension point: A proof that change evaluation for a fully
-- applied primitive is related to the value of incrementalizing
-- this primitive, if their arguments are so related.
Structure : Set
Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
(ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) →
⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′)
module Structure (derive-const-correct : Structure) where
deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′)
deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′
deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′
-- We provide: A variant of Lemma 3.10 for arbitrary contexts.
derive-correct : ∀ {τ Γ} (t : Term Γ τ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′)
derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ)
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) →
implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))
derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅
derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ =
derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′
derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ =
derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′
(derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′)
derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ =
deriveVar-correct x ρ dρ ρ′ dρ≈ρ′
derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′
= subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′)
(derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′
(⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′))
derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ =
λ w dw w′ dw≈w′ →
derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′)
derive-correct-closed : ∀ {τ} (t : Term ∅ τ) →
⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅
derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅
-- And we proof Theorem 3.11, finally.
main-theorem : ∀ {σ τ}
{f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} →
{dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} →
⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧
main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} =
let
g = ⟦ f ⟧ ∅
Δg = ⟦ f ⟧Δ ∅ ∅
Δg′ = ⟦ derive f ⟧ ∅
v = ⟦ s ⟧ ∅
dv′ = ⟦ ds ⟧ ∅
u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅
-- Δoutput-term = app (app (derive f) x) (y ⊝ x)
in
ext {A = ⟦ ∅ ⟧Context} (λ { ∅ →
begin
g u
≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩
g (v ⟦⊕₍ σ ₎⟧ dv′)
≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩
g (v ⊞₍ σ ₎ dv)
≡⟨ corollary-closed {σ} {τ} f v dv ⟩
g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv
≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv)
(derive-correct-closed f v dv dv′ erasure) ⟩
g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′
≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩
⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅
∎}) where open ≡-Reasoning
|
Document P.C.Correctness.
|
Document P.C.Correctness.
Old-commit-hash: 688c41e30d805aa8b9ac8494f9ec53ddf0b1eb5a
|
Agda
|
mit
|
inc-lc/ilc-agda
|
2fbf9654c1cd556317dc4eaee7c81283b276d720
|
lib/Explore/Function/Fin.agda
|
lib/Explore/Function/Fin.agda
|
{-# OPTIONS --without-K #-}
open import Type
open import Function
open import Data.Fin using (Fin)
open import Level.NP
open import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Fin using (Fin; zero; suc)
open import Data.Nat
open import Data.Product
open import Relation.Binary.NP
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
open import Explore.Fin
module Explore.Function.Fin where
postulate
Postulate-FinFunˢ-ok : ★
module _ {A : ★}(μA : Explorable A) where
eᴬ = explore μA
extend : ∀ {n} → A → (Fin n → A) → Fin (suc n) → A
extend x g zero = x
extend x g (suc i) = g i
¬Fin0 : Fin 0 → A
¬Fin0 ()
-- There is one function Fin 0 → A (called abs) so this should be fine
-- if not there is a version below that forces the domain to be non-empty
FinFunᵉ : ∀ n → Explore _ (Fin n → A)
FinFunᵉ zero z op f = f ¬Fin0
FinFunᵉ (suc n) z op f = eᴬ z op (λ x → FinFunᵉ n z op (f ∘ extend x))
FinFunⁱ : ∀ n → ExploreInd _ (FinFunᵉ n)
FinFunⁱ zero P Pz P∙ Pf = Pf _
FinFunⁱ (suc n) P Pz P∙ Pf =
explore-ind μA (λ sa → P (λ z op f → sa z op (λ x → FinFunᵉ n z op (f ∘ extend x))))
Pz P∙
(λ x → FinFunⁱ n (λ sf → P (λ z op f → sf z op (f ∘ extend x)))
Pz P∙ (Pf ∘ extend x))
FinFunˢ : ∀ n → Sum (Fin n → A)
FinFunˢ n = FinFunᵉ n 0 _+_
postulate
FinFunˢ-ok : ∀ {{_ : Postulate-FinFunˢ-ok}} n → AdequateSum (FinFunˢ n)
μFinFun : ∀ {{_ : Postulate-FinFunˢ-ok}} {n} → Explorable (Fin n → A)
μFinFun = mk _ (FinFunⁱ _) (FinFunˢ-ok _)
module BigDistr
{{_ : Postulate-FinFunˢ-ok}}
{A : ★}(μA : Explorable A)
(cm : CommutativeMonoid ₀ ₀)
-- we want (open CMon cm) !!!
(_◎_ : let open CMon cm in C → C → C)
(ε-◎ : let open CMon cm in Zero _≈_ ε _◎_)
(distrib : let open CMon cm in _DistributesOver_ _≈_ _◎_ _∙_)
(_◎-cong_ : let open CMon cm in _◎_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_) where
open CMon cm renaming (sym to ≈-sym)
μF→A = μFinFun μA
-- Sum over A
Σᴬ = explore μA ε _∙_
-- Sum over (Fin(1+I)→A) functions
Σ' : ∀ {I} → ((Fin I → A) → C) → C
Σ' = explore μF→A ε _∙_
-- Product over Fin(1+I) values
Π' = λ I → explore (μFin I) ε _◎_
bigDistr : ∀ I F → Π' I (Σᴬ ∘ F) ≈ Σ' (Π' I ∘ _ˢ_ F)
bigDistr zero _ = refl
bigDistr (suc I) F
= Σᴬ (F zero) ◎ Π' I (Σᴬ ∘ F ∘ suc)
≈⟨ refl ◎-cong bigDistr I (F ∘ suc) ⟩
Σᴬ (F zero) ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc))
≈⟨ ≈-sym (explore-linʳ μA monoid _◎_ (F zero) (Σ' (Π' I ∘ _ˢ_ (F ∘ suc))) (proj₁ ε-◎ _) (proj₂ distrib)) ⟩
Σᴬ (λ j → F zero j ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc)))
≈⟨ explore-mon-ext μA monoid (λ j → ≈-sym (explore-linˡ μF→A monoid _◎_ (Π' I ∘ _ˢ_ (F ∘ suc)) (F zero j) (proj₂ ε-◎ _) (proj₁ distrib))) ⟩
(Σᴬ λ j → Σ' λ f → F zero j ◎ Π' I ((F ∘ suc) ˢ f))
∎
module _
{{_ : Postulate-FinFunˢ-ok}} where
FinDist : ∀ {n} → DistFun (μFin n) (λ μX → μFinFun μX)
FinDist μB c ◎ distrib ◎-cong f = BigDistr.bigDistr μB c ◎ distrib ◎-cong f _
|
{-# OPTIONS --without-K #-}
open import Type
open import Function
open import Data.Fin using (Fin)
open import Level.NP
open import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Fin using (Fin; zero; suc)
open import Data.Nat
open import Data.Product
open import Relation.Binary.NP
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
import Explore.Fin
open Explore.Fin.Regular
module Explore.Function.Fin where
postulate
Postulate-FinFunˢ-ok : ★
module _ {A : ★}(μA : Explorable A) where
eᴬ = explore μA
extend : ∀ {n} → A → (Fin n → A) → Fin (suc n) → A
extend x g zero = x
extend x g (suc i) = g i
¬Fin0 : Fin 0 → A
¬Fin0 ()
-- There is one function Fin 0 → A (called abs) so this should be fine
-- if not there is a version below that forces the domain to be non-empty
FinFunᵉ : ∀ n → Explore _ (Fin n → A)
FinFunᵉ zero z op f = f ¬Fin0
FinFunᵉ (suc n) z op f = eᴬ z op (λ x → FinFunᵉ n z op (f ∘ extend x))
FinFunⁱ : ∀ n → ExploreInd _ (FinFunᵉ n)
FinFunⁱ zero P Pz P∙ Pf = Pf _
FinFunⁱ (suc n) P Pz P∙ Pf =
explore-ind μA (λ sa → P (λ z op f → sa z op (λ x → FinFunᵉ n z op (f ∘ extend x))))
Pz P∙
(λ x → FinFunⁱ n (λ sf → P (λ z op f → sf z op (f ∘ extend x)))
Pz P∙ (Pf ∘ extend x))
FinFunˢ : ∀ n → Sum (Fin n → A)
FinFunˢ n = FinFunᵉ n 0 _+_
postulate
FinFunˢ-ok : ∀ {{_ : Postulate-FinFunˢ-ok}} n → AdequateSum (FinFunˢ n)
μFinFun : ∀ {{_ : Postulate-FinFunˢ-ok}} {n} → Explorable (Fin n → A)
μFinFun = mk _ (FinFunⁱ _) (FinFunˢ-ok _)
module BigDistr
{{_ : Postulate-FinFunˢ-ok}}
{A : ★}(μA : Explorable A)
(cm : CommutativeMonoid ₀ ₀)
-- we want (open CMon cm) !!!
(_◎_ : let open CMon cm in C → C → C)
(ε-◎ : let open CMon cm in Zero _≈_ ε _◎_)
(distrib : let open CMon cm in _DistributesOver_ _≈_ _◎_ _∙_)
(_◎-cong_ : let open CMon cm in _◎_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_) where
open CMon cm renaming (sym to ≈-sym)
μF→A = μFinFun μA
-- Sum over A
Σᴬ = explore μA ε _∙_
-- Sum over (Fin(1+I)→A) functions
Σ' : ∀ {I} → ((Fin I → A) → C) → C
Σ' = explore μF→A ε _∙_
-- Product over Fin(1+I) values
Π' = λ I → explore (μFin I) ε _◎_
bigDistr : ∀ I F → Π' I (Σᴬ ∘ F) ≈ Σ' (Π' I ∘ _ˢ_ F)
bigDistr zero _ = refl
bigDistr (suc I) F
= Σᴬ (F zero) ◎ Π' I (Σᴬ ∘ F ∘ suc)
≈⟨ refl ◎-cong bigDistr I (F ∘ suc) ⟩
Σᴬ (F zero) ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc))
≈⟨ ≈-sym (explore-linʳ μA monoid _◎_ (F zero) (Σ' (Π' I ∘ _ˢ_ (F ∘ suc))) (proj₁ ε-◎ _) (proj₂ distrib)) ⟩
Σᴬ (λ j → F zero j ◎ Σ' (Π' I ∘ _ˢ_ (F ∘ suc)))
≈⟨ explore-mon-ext μA monoid (λ j → ≈-sym (explore-linˡ μF→A monoid _◎_ (Π' I ∘ _ˢ_ (F ∘ suc)) (F zero j) (proj₂ ε-◎ _) (proj₁ distrib))) ⟩
(Σᴬ λ j → Σ' λ f → F zero j ◎ Π' I ((F ∘ suc) ˢ f))
∎
module _
{{_ : Postulate-FinFunˢ-ok}} where
FinDist : ∀ {n} → DistFun (μFin n) (λ μX → μFinFun μX)
FinDist μB c ◎ distrib ◎-cong f = BigDistr.bigDistr μB c ◎ distrib ◎-cong f _
|
use the Regular version
|
Fun...Fun: use the Regular version
|
Agda
|
bsd-3-clause
|
crypto-agda/explore
|
18cdc5c3e0989baa42c6669ff2552c5f95ed8867
|
Postulate/Bag-Nehemiah.agda
|
Postulate/Bag-Nehemiah.agda
|
module Postulate.Bag-Nehemiah where
-- Postulates about bags of integers, version Nehemiah
--
-- This module postulates bags of integers with negative
-- multiplicities as a group under additive union.
open import Relation.Binary.PropositionalEquality
open import Algebra.Structures
open import Data.Integer
-- postulate Bag as an abelion group
-- [Argue that no inconsistency can be introduced]
postulate Bag : Set
-- singleton
postulate singletonBag : ℤ → Bag
-- union
postulate _++_ : Bag → Bag → Bag
infixr 5 _++_
-- negate = mapMultiplicities (λ z → - z)
postulate negateBag : Bag → Bag
postulate emptyBag : Bag
postulate abelian-bag : IsAbelianGroup _≡_ _++_ emptyBag negateBag
-- Naming convention follows Algebra.Morphism
-- Homomorphic₁ : morphism preserves negation
Homomorphic₁ :
{A B : Set} (f : A → B) (negA : A → A) (negB : B → B) → Set
Homomorphic₁ {A} {B} f negA negB = ∀ {x} → f (negA x) ≡ negB (f x)
-- Homomorphic₂ : morphism preserves binary operation.
Homomorphic₂ :
{A B : Set} (f : A → B) (_+_ : A → A → A) (_*_ : B → B → B) → Set
Homomorphic₂ {A} {B} f _+_ _*_ = ∀ {x y} → f (x + y) ≡ f x * f y
-- postulate map, flatmap and sum to be homomorphisms
postulate mapBag : (f : ℤ → ℤ) (b : Bag) → Bag
postulate flatmapBag : (f : ℤ → Bag) (b : Bag) → Bag
postulate sumBag : Bag → ℤ
postulate homo-map : ∀ {f} → Homomorphic₂ (mapBag f) _++_ _++_
postulate homo-flatmap : ∀ {f} → Homomorphic₂ (flatmapBag f) _++_ _++_
postulate homo-sum : Homomorphic₂ sumBag _++_ _+_
postulate neg-map : ∀ {f} → Homomorphic₁ (mapBag f) negateBag negateBag
postulate neg-flatmap : ∀ {f} → Homomorphic₁ (flatmapBag f) negateBag negateBag
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Bags with negative multiplicities, for Nehemiah.
--
-- Instead of implementing bags (with negative multiplicities,
-- like in the paper) in Agda, we postulate that a group of such
-- bags exist. Note that integer bags with integer multiplicities
-- are actually the free group given a singleton operation
-- `Integer -> Bag`, so this should be easy to formalize in
-- principle.
------------------------------------------------------------------------
module Postulate.Bag-Nehemiah where
-- Postulates about bags of integers, version Nehemiah
--
-- This module postulates bags of integers with negative
-- multiplicities as a group under additive union.
open import Relation.Binary.PropositionalEquality
open import Algebra.Structures
open import Data.Integer
-- postulate Bag as an abelion group
postulate Bag : Set
-- singleton
postulate singletonBag : ℤ → Bag
-- union
postulate _++_ : Bag → Bag → Bag
infixr 5 _++_
-- negate = mapMultiplicities (λ z → - z)
postulate negateBag : Bag → Bag
postulate emptyBag : Bag
postulate abelian-bag : IsAbelianGroup _≡_ _++_ emptyBag negateBag
-- Naming convention follows Algebra.Morphism
-- Homomorphic₁ : morphism preserves negation
Homomorphic₁ :
{A B : Set} (f : A → B) (negA : A → A) (negB : B → B) → Set
Homomorphic₁ {A} {B} f negA negB = ∀ {x} → f (negA x) ≡ negB (f x)
-- Homomorphic₂ : morphism preserves binary operation.
Homomorphic₂ :
{A B : Set} (f : A → B) (_+_ : A → A → A) (_*_ : B → B → B) → Set
Homomorphic₂ {A} {B} f _+_ _*_ = ∀ {x y} → f (x + y) ≡ f x * f y
-- postulate map, flatmap and sum to be homomorphisms
postulate mapBag : (f : ℤ → ℤ) (b : Bag) → Bag
postulate flatmapBag : (f : ℤ → Bag) (b : Bag) → Bag
postulate sumBag : Bag → ℤ
postulate homo-map : ∀ {f} → Homomorphic₂ (mapBag f) _++_ _++_
postulate homo-flatmap : ∀ {f} → Homomorphic₂ (flatmapBag f) _++_ _++_
postulate homo-sum : Homomorphic₂ sumBag _++_ _+_
postulate neg-map : ∀ {f} → Homomorphic₁ (mapBag f) negateBag negateBag
postulate neg-flatmap : ∀ {f} → Homomorphic₁ (flatmapBag f) negateBag negateBag
|
Document Postulate.Bag-Nehemiah (for #275).
|
Document Postulate.Bag-Nehemiah (for #275).
Old-commit-hash: f22f7ab7d307f61d4bb165003c6eb917869d49a5
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e047957caacbba3c00568183dc07c1230b362d8e
|
Denotation/Specification/Canon-Popl14.agda
|
Denotation/Specification/Canon-Popl14.agda
|
module Denotation.Specification.Canon-Popl14 where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ
-- better name is: ⟦_⟧Δ reacts to future arguments
validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) →
valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
-- better name is: ⟦_⟧Δ reacts to free variables
correctness : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ)
→ ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ
⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv
⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (intlit n) dρ = + 0
⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ
⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ
⟦_⟧Δ empty dρ = emptyBag
⟦_⟧Δ (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ
⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (app {σ} {τ} s t) dρ =
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
(validity {σ} t dρ))
⟦_⟧Δ (abs t) dρ = λ v →
⟦ t ⟧Δ (v • dρ)
validVar : ∀ {τ Γ} (x : Var Γ τ) →
(dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ)
validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv]
validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ
validity (intlit n) dρ = tt
validity (add s t) dρ = tt
validity (minus t) dρ = tt
validity (empty) dρ = tt
validity (insert s t) dρ = tt
validity (union s t) dρ = tt
validity (negate t) dρ = tt
validity (flatmap s t) dρ = tt
validity (sum t) dρ = tt
validity {τ} (var x) dρ = validVar {τ} x dρ
validity (app s t) dρ =
let
v = ⟦ t ⟧ (ignore dρ)
Δv = ⟦ t ⟧Δ dρ
in
proj₁ (validity s dρ (cons v Δv (validity t dρ)))
validity {σ ⇒ τ} (abs t) dρ = λ v →
let
v′ = after {σ} v
Δv′ = v′ ⊟₍ σ ₎ v′
dρ₁ = v • dρ
dρ₂ = nil-valid-change σ v′ • dρ
in
validity t dρ₁
,
(begin
⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂
≡⟨ correctness t dρ₂ ⟩
⟦ t ⟧ (update dρ₂)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (update dρ₁)
≡⟨ sym (correctness t dρ₁) ⟩
⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} →
⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ)
correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl
correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ}
correctness (intlit n) dρ = right-id-int n
correctness (add s t) dρ = trans
(mn·pq=mp·nq
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _+_ (correctness s dρ) (correctness t dρ))
correctness (minus t) dρ = trans
(-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong -_ (correctness t dρ))
correctness empty dρ = right-id-bag emptyBag
correctness (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness s dρ))
(correctness t dρ) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness (union s t) dρ = trans
(ab·cd=ac·bd
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _++_ (correctness s dρ) (correctness t dρ))
correctness (negate t) dρ = trans
(-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong negateBag (correctness t dρ))
correctness (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness s dρ) (correctness t dρ))
correctness (sum t) dρ =
let
b = ⟦ t ⟧ (ignore dρ)
Δb = ⟦ t ⟧Δ dρ
in
trans (sym homo-sum) (cong sumBag (correctness t dρ))
correctness {τ} (var x) dρ = correctVar {τ} {x = x}
correctness (app {σ} {τ} s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ (ignore dρ)
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ dρ
Δu = ⟦ t ⟧Δ dρ
in
begin
f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ))
≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s dρ ⟨$⟩ correctness {σ} t dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) dρ = ext (λ v →
let
dρ′ : ΔEnv (σ • Γ)
dρ′ = nil-valid-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′
≡⟨ correctness {τ} t dρ′ ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} →
(⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ)
(⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ)
≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ))
⊞₍ τ ₎
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))
corollary {σ} {τ} s t {dρ} = proj₂
(validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ))
(⟦ t ⟧Δ dρ) (validity {σ} t dρ)))
corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)}
(v : ValidChange σ)
→ ⟦ t ⟧ ∅ (after {σ} v)
≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v
corollary-closed {σ} {τ} {t = t} v =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅
in
begin
f (after {σ} v)
≡⟨ cong (λ hole → hole (after {σ} v))
(sym (correctness {σ ⇒ τ} t ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v)
≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩
f (before {σ} v) ⊞₍ τ ₎ Δf v
∎ where open ≡-Reasoning
|
module Denotation.Specification.Canon-Popl14 where
-- Denotation-as-specification for Calculus Popl14
--
-- Contents
-- - ⟦_⟧Δ : binding-time-shifted derive
-- - Validity and correctness lemmas for ⟦_⟧Δ
-- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments
-- - `corollary-closed`: binding-time-shifted main theorem
open import Popl14.Syntax.Term
open import Popl14.Denotation.Value
open import Popl14.Change.Validity
open import Popl14.Denotation.Evaluation public
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
open import Theorem.Groups-Popl14
open import Theorem.CongApp
open import Postulate.Extensionality
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ
-- better name is: ⟦_⟧Δ reacts to future arguments
validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) →
valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
-- better name is: ⟦_⟧Δ reacts to free variables
correctness : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ)
→ ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ)
⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ
⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv
⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (intlit n) dρ = + 0
⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ
⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ
⟦_⟧Δ empty dρ = emptyBag
⟦_⟧Δ (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
(singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b)
⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ
⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b
⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ)
⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ
⟦_⟧Δ (app {σ} {τ} s t) dρ =
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ)
(validity {σ} t dρ))
⟦_⟧Δ (abs t) dρ = λ v →
⟦ t ⟧Δ (v • dρ)
validVar : ∀ {τ Γ} (x : Var Γ τ) →
(dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ)
validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv]
validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ
validity (intlit n) dρ = tt
validity (add s t) dρ = tt
validity (minus t) dρ = tt
validity (empty) dρ = tt
validity (insert s t) dρ = tt
validity (union s t) dρ = tt
validity (negate t) dρ = tt
validity (flatmap s t) dρ = tt
validity (sum t) dρ = tt
validity {τ} (var x) dρ = validVar {τ} x dρ
validity (app s t) dρ =
let
v = ⟦ t ⟧ (ignore dρ)
Δv = ⟦ t ⟧Δ dρ
in
proj₁ (validity s dρ (cons v Δv (validity t dρ)))
validity {σ ⇒ τ} (abs t) dρ = λ v →
let
v′ = after {σ} v
Δv′ = v′ ⊟₍ σ ₎ v′
dρ₁ = v • dρ
dρ₂ = nil-valid-change σ v′ • dρ
in
validity t dρ₁
,
(begin
⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂
≡⟨ correctness t dρ₂ ⟩
⟦ t ⟧ (update dρ₂)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (update dρ₁)
≡⟨ sym (correctness t dρ₁) ⟩
⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁
∎) where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) (dρ : ΔEnv Γ) →
⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ)
correctVar (this) (cons v dv R[v,dv] • dρ) = refl
correctVar (that y) (cons v dv R[v,dv] • dρ) = correctVar y dρ
correctness (intlit n) dρ = right-id-int n
correctness (add s t) dρ = trans
(mn·pq=mp·nq
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _+_ (correctness s dρ) (correctness t dρ))
correctness (minus t) dρ = trans
(-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong -_ (correctness t dρ))
correctness empty dρ = right-id-bag emptyBag
correctness (insert s t) dρ =
let
n = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
n′ = ⟦ s ⟧ (update dρ)
b′ = ⟦ t ⟧ (update dρ)
Δn = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in
begin
(singletonBag n ++ b) ++
(singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b)
≡⟨ a++[b\\a]=b ⟩
singletonBag (n ⊞₍ base base-int ₎ Δn) ++
(b ⊞₍ base base-bag ₎ Δb)
≡⟨ cong₂ _++_
(cong singletonBag (correctness s dρ))
(correctness t dρ) ⟩
singletonBag n′ ++ b′
∎ where open ≡-Reasoning
correctness (union s t) dρ = trans
(ab·cd=ac·bd
{⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ})
(cong₂ _++_ (correctness s dρ) (correctness t dρ))
correctness (negate t) dρ = trans
(-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ})
(cong negateBag (correctness t dρ))
correctness (flatmap s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
b = ⟦ t ⟧ (ignore dρ)
Δf = ⟦ s ⟧Δ dρ
Δb = ⟦ t ⟧Δ dρ
in trans
(a++[b\\a]=b {flatmapBag f b}
{flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf)
(b ⊞₍ base base-bag ₎ Δb)})
(cong₂ flatmapBag (correctness s dρ) (correctness t dρ))
correctness (sum t) dρ =
let
b = ⟦ t ⟧ (ignore dρ)
Δb = ⟦ t ⟧Δ dρ
in
trans (sym homo-sum) (cong sumBag (correctness t dρ))
correctness {τ} (var x) dρ = correctVar {τ} x dρ
correctness (app {σ} {τ} s t) dρ =
let
f = ⟦ s ⟧ (ignore dρ)
g = ⟦ s ⟧ (update dρ)
u = ⟦ t ⟧ (ignore dρ)
v = ⟦ t ⟧ (update dρ)
Δf = ⟦ s ⟧Δ dρ
Δu = ⟦ t ⟧Δ dρ
in
begin
f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ))
≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s dρ ⟨$⟩ correctness {σ} t dρ ⟩
g v
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) dρ = ext (λ v →
let
dρ′ : ΔEnv (σ • Γ)
dρ′ = nil-valid-change σ v • dρ
in
begin
⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′
≡⟨ correctness {τ} t dρ′ ⟩
⟦ t ⟧ (update dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩
⟦ t ⟧ (v • update dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} →
(⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ)
(⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ)
≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ))
⊞₍ τ ₎
(⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))
corollary {σ} {τ} s t {dρ} = proj₂
(validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ))
(⟦ t ⟧Δ dρ) (validity {σ} t dρ)))
corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)}
(v : ValidChange σ)
→ ⟦ t ⟧ ∅ (after {σ} v)
≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v
corollary-closed {σ} {τ} {t = t} v =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅
in
begin
f (after {σ} v)
≡⟨ cong (λ hole → hole (after {σ} v))
(sym (correctness {σ ⇒ τ} t ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v)
≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩
f (before {σ} v) ⊞₍ τ ₎ Δf v
∎ where open ≡-Reasoning
|
Make some arguments of correctVar explicit.
|
Make some arguments of correctVar explicit.
Old-commit-hash: 2596b6835434e84c2b902574a029b3b1644baa1b
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9b2d54a0d452488646b4ad893d98b6b7c51edbc6
|
lib/Function/Extensionality.agda
|
lib/Function/Extensionality.agda
|
{-# OPTIONS --without-K #-}
module Function.Extensionality where
open import Relation.Binary.PropositionalEquality renaming (subst to tr)
postulate
FunExt : Set
λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}}
(f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁
-- This should be derivable if I had a proper proof of λ=
tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p)
{f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x)
→ tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x)
|
{-# OPTIONS --without-K #-}
module Function.Extensionality where
open import Function.NP
open import Relation.Binary.PropositionalEquality.NP -- renaming (subst to tr)
happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}
→ f ≡ g → (x : A) → f x ≡ g x
happly p x = ap (λ f → f x) p
postulate
FunExt : Set
λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}}
(f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁
happly-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}}
(fg : ∀ x → f x ≡ g x) → happly (λ= fg) ≡ fg
λ=-happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}}
(α : f ≡ g) → λ= (happly α) ≡ α
-- This should be derivable if I had a proper proof of λ=
tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p)
{f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x)
→ tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x)
!-α-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}}
(α : f ≡ g) → ! α ≡ λ= (!_ ∘ happly α)
!-α-λ= refl = ! λ=-happly refl
!-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}}
(fg : ∀ x → f x ≡ g x) → ! (λ= fg) ≡ λ= (!_ ∘ fg)
!-λ= fg = !-α-λ= (λ= fg) ∙ ap λ= (λ= (λ x → ap !_ (happly (happly-λ= fg) x)))
|
Add happly, and the univalence axioms
|
Add happly, and the univalence axioms
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
0087d65feddda54b6f2fa46d87ca1d54d8f1779a
|
Parametric/Change/Specification.agda
|
Parametric/Change/Specification.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ ⟦ c ⟧Const
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ (⟦ const c ⟧Term ρ)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record
{ apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ)
; correct = λ v dv →
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎
⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)
≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩
⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ))
≡⟨⟩
⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩
⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ)
≡⟨⟩
⟦ t ⟧ (after-env (dv • dρ))
≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎
} where open ≡-Reasoning
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v →
let
-- dρ′ : ΔEnv (σ • Γ) (v • ρ)
dρ′ = nil₍ σ ₎ v • dρ
in
begin
⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′
≡⟨ correctness {τ} t _ dρ′ ⟩
⟦ t ⟧ (after-env dρ′)
≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩
⟦ t ⟧ (v • after-env dρ)
∎
) where open ≡-Reasoning
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
|
Simplify definition
|
Simplify definition
This variant is simpler to think about and do proofs about on paper, and
the two variants are definitionally equal for Agda.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
df3e9873d4d0c9dac1df76aa623fc13494cecc2d
|
lib/NomPa/All.agda
|
lib/NomPa/All.agda
|
module NomPa.All where
import NomPa.Record
import NomPa.Derived
import NomPa.Derived.NaPa
import NomPa.Traverse
import NomPa.Implem
import NomPa.Examples.LC.DataTypes
import NomPa.Examples.LC.Contexts
import NomPa.Examples.LC.Equiv
-- import NomPa.Examples.LC.Monadic
-- import NomPa.Examples.LC.Monadic.Tests
import NomPa.Examples.LC.DbLevels
import NomPa.Examples.NaPa.LC
import NomPa.Examples.LC.Combined
import NomPa.Examples.LC
import NomPa.Examples.Records
-- import NomPa.Examples.Records.TypedVec
-- import NomPa.Examples.Records.Typed
import NomPa.Laws
import NomPa.Link
import NomPa.NomT
import NomPa.NomT.Maybe
-- Normalization By Evaluation
import NomPa.Examples.NBE
import NomPa.Examples.NBE.Can
import NomPa.Examples.NBE.Env
import NomPa.Examples.NBE.Neu
import NomPa.Examples.NBE.Tests
-- bare, raw, non-fancy…
import NomPa.Examples.BareDB
import NomPa.Examples.Raw
import NomPa.Examples.Raw.Parser
import NomPa.Examples.Raw.Printer
import NomPa.Examples.LC.WellScopedJudgment
-- Encodings: Emebedding of nominal types
import NomPa.Encodings.NominalTypes
import NomPa.Encodings.NominalTypes.Generic
import NomPa.Encodings.NominalTypes.Generic.Subst
import NomPa.Encodings.NominalTypes.Generic.Combined
import NomPa.Encodings.NominalTypes.MultiSorts
import NomPa.Encodings.NominalTypes.MultiSorts.Test
import NomPa.Encodings.AlphaCaml
import NomPa.Encodings.AlphaCaml.Test
import NomPa.Encodings.BindersUnbound
import NomPa.Encodings.BindersUnbound.Generic
-- Algorithms
import NomPa.Examples.LC.CC
import NomPa.Examples.LC.Monadic
import NomPa.Examples.LC.Monadic.Tests
-- hybrid
import NomPa.Examples.LN
import NomPa.Examples.LL
import NomPa.Examples.LocallyNamed
-- More examples
import NomPa.Examples.LC.Maybe
import NomPa.Examples.LC.SymanticsTy
import NomPa.Examples.LC.Tests
import NomPa.Examples.LocallyClosed
import NomPa.Examples.PTS
import NomPa.Examples.PTS.F
import NomPa.Examples.Reg
-- Tests
import NomPa.Examples.Tests
-- Logical relations
import NomPa.Record.LogicalRelation
import NomPa.Implem.LogicalRelation
import NomPa.Examples.LC.DataTypes.Logical
-- Universal types
import NomPa.Universal.RegularTree
import NomPa.Universal.Sexp
import NomPa.Derived.WorldInclusion
|
module NomPa.All where
import NomPa.Record
import NomPa.Derived
import NomPa.Derived.NaPa
import NomPa.Traverse
import NomPa.Implem
import NomPa.Examples.LC.DataTypes
import NomPa.Examples.LC.Contexts
import NomPa.Examples.LC.Equiv
-- import NomPa.Examples.LC.Monadic
-- import NomPa.Examples.LC.Monadic.Tests
import NomPa.Examples.LC.DbLevels
import NomPa.Examples.NaPa.LC
import NomPa.Examples.LC.Combined
import NomPa.Examples.LC
import NomPa.Examples.Records
-- import NomPa.Examples.Records.TypedVec
-- import NomPa.Examples.Records.Typed
import NomPa.Laws
import NomPa.Link
import NomPa.NomT
import NomPa.NomT.Maybe
-- Normalization By Evaluation
import NomPa.Examples.NBE
import NomPa.Examples.NBE.Can
import NomPa.Examples.NBE.Env
import NomPa.Examples.NBE.Neu
import NomPa.Examples.NBE.Tests
-- bare, raw, non-fancy…
import NomPa.Examples.BareDB
import NomPa.Examples.Raw
import NomPa.Examples.Raw.Parser
import NomPa.Examples.Raw.Printer
import NomPa.Examples.LC.WellScopedJudgment
-- Encodings: Emebedding of nominal types
import NomPa.Encodings.NominalTypes
import NomPa.Encodings.NominalTypes.Generic
import NomPa.Encodings.NominalTypes.Generic.Subst
import NomPa.Encodings.NominalTypes.Generic.Combined
import NomPa.Encodings.NominalTypes.MultiSorts
import NomPa.Encodings.NominalTypes.MultiSorts.Test
import NomPa.Encodings.AlphaCaml
import NomPa.Encodings.AlphaCaml.Test
import NomPa.Encodings.BindersUnbound
import NomPa.Encodings.BindersUnbound.Generic
-- Algorithms
import NomPa.Examples.LC.CC
import NomPa.Examples.LC.Monadic
import NomPa.Examples.LC.Monadic.Tests
-- hybrid
import NomPa.Examples.LN
import NomPa.Examples.LL
import NomPa.Examples.LocallyNamed
-- More examples
import NomPa.Examples.LC.Maybe
--import NomPa.Examples.LC.SymanticsTy
import NomPa.Examples.LC.Tests
import NomPa.Examples.LocallyClosed
import NomPa.Examples.PTS
import NomPa.Examples.PTS.F
import NomPa.Examples.Reg
-- Tests
import NomPa.Examples.Tests
-- Logical relations
import NomPa.Record.LogicalRelation
import NomPa.Implem.LogicalRelation
import NomPa.Examples.LC.DataTypes.Logical
-- Universal types
import NomPa.Universal.RegularTree
import NomPa.Universal.Sexp
import NomPa.Derived.WorldInclusion
|
Disable broken import
|
NomPa: Disable broken import
|
Agda
|
bsd-3-clause
|
np/NomPa
|
95e2bfa97f5f84f48cf5fe9cd6a123b8e8ddb4bb
|
Game/ReceiptFreeness/Definitions.agda
|
Game/ReceiptFreeness/Definitions.agda
|
{-# OPTIONS --without-K #-}
open import Function
open import Type
open import Data.Product renaming (zip to zip-×)
open import Data.Two
open import Data.List as L
open import Data.Nat.NP hiding (_==_)
module Game.ReceiptFreeness.Definitions
(PubKey : ★)
(SecKey : ★)
-- Message = 𝟚
(CipherText : ★)
(SerialNumber : ★)
-- randomness supply for, encryption, key-generation, adversary, adversary state
(Rₑ Rₐ : ★)
(Enc : let Message = 𝟚 in
PubKey → Message → Rₑ → CipherText)
(Dec : let Message = 𝟚 in
SecKey → CipherText → Message)
where
Candidate : ★
Candidate = 𝟚 -- as in the paper: "for simplicity"
alice bob : Candidate
alice = 0₂
bob = 1₂
-- candidate order
-- also known as LHS or Message
-- represented by who is the first candidate
CO = 𝟚
alice-then-bob bob-then-alice : CO
alice-then-bob = alice
bob-then-alice = bob
data CO-spec : CO → Candidate → Candidate → ★ where
alice-then-bob-spec : CO-spec alice-then-bob alice bob
bob-then-alice-spec : CO-spec bob-then-alice bob alice
MarkedReceipt : ★
MarkedReceipt = 𝟚
marked-on-first-cell marked-on-second-cell : MarkedReceipt
marked-on-first-cell = 0₂
marked-on-second-cell = 1₂
data MarkedReceipt-spec : CO → MarkedReceipt → Candidate → ★ where
m1 : MarkedReceipt-spec alice-then-bob marked-on-first-cell alice
m2 : MarkedReceipt-spec alice-then-bob marked-on-second-cell bob
m3 : MarkedReceipt-spec bob-then-alice marked-on-first-cell bob
m4 : MarkedReceipt-spec bob-then-alice marked-on-second-cell alice
data MarkedReceipt? : ★ where
not-marked : MarkedReceipt?
marked : MarkedReceipt → MarkedReceipt?
-- Receipt or also called RHS
-- Made of a potential mark, a serial number, and an encrypted candidate order
Receipt : ★
Receipt = MarkedReceipt? × SerialNumber × CipherText
markedReceipt? : Receipt → MarkedReceipt?
markedReceipt? = proj₁
-- Marked when there is a 1
marked? : MarkedReceipt? → 𝟚
marked? not-marked = 0₂
marked? (marked _) = 1₂
marked-on-first-cell? : MarkedReceipt? → 𝟚
marked-on-first-cell? not-marked = 0₂
marked-on-first-cell? (marked x) = x == 0₂
marked-on-second-cell? : MarkedReceipt? → 𝟚
marked-on-second-cell? not-marked = 0₂
marked-on-second-cell? (marked x) = x == 1₂
enc-co : Receipt → CipherText
enc-co = proj₂ ∘ proj₂
Ballot : ★
Ballot = CO × Receipt
-- co or also called LHS
co : Ballot → CO
co = proj₁
-- receipt or also called RHS
receipt : Ballot → Receipt
receipt = proj₂
-- randomness for genBallot
Rgb : ★
Rgb = CO × SerialNumber × Rₑ
genBallot : PubKey → Rgb → Ballot
genBallot pk (r-co , sn , rₑ) = r-co , not-marked , sn , Enc pk r-co rₑ
mark : CO → Candidate → MarkedReceipt
mark co c = co xor c
mark-ok : ∀ co c → MarkedReceipt-spec co (mark co c) c
mark-ok 1₂ 1₂ = m3
mark-ok 1₂ 0₂ = m4
mark-ok 0₂ 1₂ = m2
mark-ok 0₂ 0₂ = m1
fillBallot : Candidate → Ballot → Ballot
fillBallot c (co , _ , sn , enc-co) = co , marked (mark co c) , sn , enc-co
-- TODO Ballot-spec c (fillBallot b)
ClearReceipt : ★
ClearReceipt = CO × MarkedReceipt?
ClearBB : ★
ClearBB = List ClearReceipt
Tally : ★
Tally = ℕ × ℕ
alice-score : Tally → ℕ
alice-score = proj₁
bob-score : Tally → ℕ
bob-score = proj₂
1:alice-0:bob 0:alice-1:bob : Tally
1:alice-0:bob = 1 , 0
0:alice-1:bob = 0 , 1
data TallyMarkedReceipt-spec : CO → MarkedReceipt → Tally → ★ where
c1 : TallyMarkedReceipt-spec alice-then-bob marked-on-first-cell 1:alice-0:bob
c2 : TallyMarkedReceipt-spec alice-then-bob marked-on-second-cell 0:alice-1:bob
c3 : TallyMarkedReceipt-spec bob-then-alice marked-on-first-cell 0:alice-1:bob
c4 : TallyMarkedReceipt-spec bob-then-alice marked-on-second-cell 1:alice-0:bob
marked-for-alice? : CO → MarkedReceipt → 𝟚
marked-for-alice? co m = co == m
marked-for-bob? : CO → MarkedReceipt → 𝟚
marked-for-bob? co m = not (marked-for-alice? co m)
tallyMarkedReceipt : CO → MarkedReceipt → Tally
tallyMarkedReceipt co m = 𝟚▹ℕ for-alice , 𝟚▹ℕ (not for-alice)
where for-alice = marked-for-alice? co m
tallyMarkedReceipt-ok : ∀ co m → TallyMarkedReceipt-spec co m (tallyMarkedReceipt co m)
tallyMarkedReceipt-ok 1₂ 1₂ = c4
tallyMarkedReceipt-ok 1₂ 0₂ = c3
tallyMarkedReceipt-ok 0₂ 1₂ = c2
tallyMarkedReceipt-ok 0₂ 0₂ = c1
tallyMarkedReceipt? : CO → MarkedReceipt? → Tally
tallyMarkedReceipt? co not-marked = 0 , 0
tallyMarkedReceipt? co (marked mark) = tallyMarkedReceipt co mark
_+,+_ : Tally → Tally → Tally
_+,+_ = zip-× _+_ _+_
-- Not taking advantage of any homomorphic encryption
tallyClearBB : ClearBB → Tally
tallyClearBB = L.foldr _+,+_ (0 , 0) ∘ L.map (uncurry tallyMarkedReceipt?)
BB : ★
BB = List Receipt
DecReceipt : SecKey → Receipt → CO × MarkedReceipt?
DecReceipt sk (m? , sn , enc-co) = Dec sk enc-co , m?
DecBB : SecKey → BB → ClearBB
DecBB = L.map ∘ DecReceipt
-- Not taking advantage of any homomorphic encryption
tally : SecKey → BB → Tally
tally sk bb = tallyClearBB (DecBB sk bb)
open import Game.ReceiptFreeness.Adversary PubKey (SerialNumber ²) Rₐ Receipt Ballot Tally CO BB public
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Function
open import Type
open import Data.Product renaming (zip to zip-×)
open import Data.Two
open import Data.List as L
open import Data.Nat.NP hiding (_==_)
module Game.ReceiptFreeness.Definitions
(PubKey : ★)
(SecKey : ★)
-- Message = 𝟚
(CipherText : ★)
(SerialNumber : ★)
-- randomness supply for, encryption, key-generation, adversary, adversary state
(Rₑ Rₐ : ★)
(Enc : let Message = 𝟚 in
PubKey → Message → Rₑ → CipherText)
(Dec : let Message = 𝟚 in
SecKey → CipherText → Message)
where
Candidate : ★
Candidate = 𝟚 -- as in the paper: "for simplicity"
alice bob : Candidate
alice = 0₂
bob = 1₂
-- candidate order
-- also known as LHS or Message
-- represented by who is the first candidate
CO = 𝟚
alice-then-bob bob-then-alice : CO
alice-then-bob = alice
bob-then-alice = bob
data CO-spec : CO → Candidate → Candidate → ★ where
alice-then-bob-spec : CO-spec alice-then-bob alice bob
bob-then-alice-spec : CO-spec bob-then-alice bob alice
MarkedReceipt : ★
MarkedReceipt = 𝟚
marked-on-first-cell marked-on-second-cell : MarkedReceipt
marked-on-first-cell = 0₂
marked-on-second-cell = 1₂
data MarkedReceipt-spec : CO → MarkedReceipt → Candidate → ★ where
m1 : MarkedReceipt-spec alice-then-bob marked-on-first-cell alice
m2 : MarkedReceipt-spec alice-then-bob marked-on-second-cell bob
m3 : MarkedReceipt-spec bob-then-alice marked-on-first-cell bob
m4 : MarkedReceipt-spec bob-then-alice marked-on-second-cell alice
data MarkedReceipt? : ★ where
not-marked : MarkedReceipt?
marked : MarkedReceipt → MarkedReceipt?
-- Receipt or also called RHS
-- Made of a potential mark, a serial number, and an encrypted candidate order
Receipt : ★
Receipt = MarkedReceipt? × SerialNumber × CipherText
markedReceipt? : Receipt → MarkedReceipt?
markedReceipt? = proj₁
-- Marked when there is a 1
marked? : MarkedReceipt? → 𝟚
marked? not-marked = 0₂
marked? (marked _) = 1₂
marked-on-first-cell? : MarkedReceipt? → 𝟚
marked-on-first-cell? not-marked = 0₂
marked-on-first-cell? (marked x) = x == 0₂
marked-on-second-cell? : MarkedReceipt? → 𝟚
marked-on-second-cell? not-marked = 0₂
marked-on-second-cell? (marked x) = x == 1₂
enc-co : Receipt → CipherText
enc-co = proj₂ ∘ proj₂
m? : Receipt → MarkedReceipt?
m? = proj₁
Ballot : ★
Ballot = CO × Receipt
-- co or also called LHS
co : Ballot → CO
co = proj₁
-- receipt or also called RHS
receipt : Ballot → Receipt
receipt = proj₂
-- randomness for genBallot
Rgb : ★
Rgb = CO × SerialNumber × Rₑ
genBallot : PubKey → Rgb → Ballot
genBallot pk (r-co , sn , rₑ) = r-co , not-marked , sn , Enc pk r-co rₑ
mark : CO → Candidate → MarkedReceipt
mark co c = co xor c
mark-ok : ∀ co c → MarkedReceipt-spec co (mark co c) c
mark-ok 1₂ 1₂ = m3
mark-ok 1₂ 0₂ = m4
mark-ok 0₂ 1₂ = m2
mark-ok 0₂ 0₂ = m1
fillBallot : Candidate → Ballot → Ballot
fillBallot c (co , _ , sn , enc-co) = co , marked (mark co c) , sn , enc-co
-- TODO Ballot-spec c (fillBallot b)
ClearReceipt : ★
ClearReceipt = CO × MarkedReceipt?
ClearBB : ★
ClearBB = List ClearReceipt
Tally : ★
Tally = ℕ × ℕ
alice-score : Tally → ℕ
alice-score = proj₁
bob-score : Tally → ℕ
bob-score = proj₂
1:alice-0:bob 0:alice-1:bob : Tally
1:alice-0:bob = 1 , 0
0:alice-1:bob = 0 , 1
data TallyMarkedReceipt-spec : CO → MarkedReceipt → Tally → ★ where
c1 : TallyMarkedReceipt-spec alice-then-bob marked-on-first-cell 1:alice-0:bob
c2 : TallyMarkedReceipt-spec alice-then-bob marked-on-second-cell 0:alice-1:bob
c3 : TallyMarkedReceipt-spec bob-then-alice marked-on-first-cell 0:alice-1:bob
c4 : TallyMarkedReceipt-spec bob-then-alice marked-on-second-cell 1:alice-0:bob
marked-for-alice? : CO → MarkedReceipt → 𝟚
marked-for-alice? co m = co == m
marked-for-bob? : CO → MarkedReceipt → 𝟚
marked-for-bob? co m = not (marked-for-alice? co m)
tallyMarkedReceipt : CO → MarkedReceipt → Tally
tallyMarkedReceipt co m = 𝟚▹ℕ for-alice , 𝟚▹ℕ (not for-alice)
where for-alice = marked-for-alice? co m
tallyMarkedReceipt-ok : ∀ co m → TallyMarkedReceipt-spec co m (tallyMarkedReceipt co m)
tallyMarkedReceipt-ok 1₂ 1₂ = c4
tallyMarkedReceipt-ok 1₂ 0₂ = c3
tallyMarkedReceipt-ok 0₂ 1₂ = c2
tallyMarkedReceipt-ok 0₂ 0₂ = c1
tallyMarkedReceipt? : CO → MarkedReceipt? → Tally
tallyMarkedReceipt? co not-marked = 0 , 0
tallyMarkedReceipt? co (marked mark) = tallyMarkedReceipt co mark
_+,+_ : Tally → Tally → Tally
_+,+_ = zip-× _+_ _+_
-- Not taking advantage of any homomorphic encryption
tallyClearBB : ClearBB → Tally
tallyClearBB = L.foldr _+,+_ (0 , 0) ∘ L.map (uncurry tallyMarkedReceipt?)
BB : ★
BB = List Receipt
DecReceipt : SecKey → Receipt → CO × MarkedReceipt?
DecReceipt sk (m? , sn , enc-co) = Dec sk enc-co , m?
DecBB : SecKey → BB → ClearBB
DecBB = L.map ∘ DecReceipt
-- Not taking advantage of any homomorphic encryption
tally : SecKey → BB → Tally
tally sk bb = tallyClearBB (DecBB sk bb)
open import Game.ReceiptFreeness.Adversary PubKey (SerialNumber ²) Rₐ Receipt Ballot Tally CO BB public
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add missing projection for Receipts
|
Add missing projection for Receipts
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
a74d5f4d0654808362f2583716c758bb12b35288
|
Parametric/Change/Implementation.agda
|
Parametric/Change/Implementation.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Derive as Derive
module Parametric.Change.Implementation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(derive-const : Derive.Structure Const ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open Derive.Structure Const ΔBase derive-const
open import Base.Denotation.Notation
-- Notions of programs being implementations of specifications
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
implements-base : ∀ ι {v : ⟦ ι ⟧Base} → Δ₍ ι ₎ v → ⟦ ΔBase ι ⟧Base → Set
u⊟v≈u⊝v-base : ∀ ι {u v : ⟦ ι ⟧Base} →
implements-base ι (u ⊟₍ ι ₎ v) (⟦diff-base⟧ ι u v)
carry-over-base : ∀ {ι}
{v : ⟦ ι ⟧Base}
(Δv : Δ₍ ι ₎ v)
{Δv′ : ⟦ ΔBase ι ⟧Base} (Δv≈Δv′ : implements-base ι Δv Δv′) →
v ⊞₍ base ι ₎ Δv ≡ v ⟦⊕₍ base ι ₎⟧ Δv′
------------------------
-- Logical relation ≈ --
------------------------
infix 4 implements
syntax implements τ u v = u ≈₍ τ ₎ v
implements : ∀ τ {v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
implements (base ι) Δf Δf′ = implements-base ι Δf Δf′
implements (σ ⇒ τ) {f} Δf Δf′ =
(w : ⟦ σ ⟧) (Δw : Δ₍ σ ₎ w)
(Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ {w} Δw Δw′) →
implements τ {f w} (call-change {σ} {τ} Δf w Δw) (Δf′ w Δw′)
infix 4 _≈_
_≈_ : ∀ {τ v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
_≈_ {τ} {v} = implements τ {v}
data implements-env : ∀ Γ → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ mapContext ΔType Γ ⟧ → Set where
∅ : implements-env ∅ {∅} ∅ ∅
_•_ : ∀ {τ Γ v ρ dv dρ v′ ρ′} →
(dv≈v′ : implements τ {v} dv v′) →
(dρ≈ρ′ : implements-env Γ {ρ} dρ ρ′) →
implements-env (τ • Γ) {v • ρ} (dv • dρ) (v′ • ρ′)
----------------
-- carry-over --
----------------
-- If a program implements a specification, then certain things
-- proven about the specification carry over to the programs.
carry-over : ∀ {τ}
{v : ⟦ τ ⟧}
(Δv : Δ₍ τ ₎ v)
{Δv′ : ⟦ ΔType τ ⟧} (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) →
after₍ τ ₎ Δv ≡ before₍ τ ₎ Δv ⟦⊕₍ τ ₎⟧ Δv′
u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
u ⊟₍ τ ₎ v ≈₍ τ ₎ u ⟦⊝₍ τ ₎⟧ v
u⊟v≈u⊝v {base ι} {u} {v} = u⊟v≈u⊝v-base ι {u} {v}
u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where
result : (w : ⟦ σ ⟧) (Δw : Δ₍ σ ₎ w) →
(Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ →
(g (after₍ σ ₎ Δw) ⊟₍ τ ₎ f (before₍ σ ₎ Δw)) ≈₍ τ ₎ g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′) ⟦⊝₍ τ ₎⟧ f (before₍ σ ₎ Δw)
result w Δw Δw′ Δw≈Δw′
rewrite carry-over {σ} Δw Δw≈Δw′ =
u⊟v≈u⊝v {τ} {g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′)} {f (before₍ σ ₎ Δw)}
carry-over {base ι} Δv Δv≈Δv′ = carry-over-base Δv Δv≈Δv′
carry-over {σ ⇒ τ} {f} Δf {Δf′} Δf≈Δf′ =
ext (λ v →
carry-over {τ} {f v} (call-change {σ} {τ} Δf v (nil₍ σ ₎ v))
{Δf′ v (v ⟦⊝₍ σ ₎⟧ v)}
(Δf≈Δf′ v (nil₍ σ ₎ v) (v ⟦⊝₍ σ ₎⟧ v) ( u⊟v≈u⊝v {σ} {v} {v})))
-- A property relating `alternate` and the subcontext relation Γ≼ΔΓ
⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
ρ ≡ ⟦ Γ≼ΔΓ ⟧ (alternate ρ dρ)
⟦Γ≼ΔΓ⟧ ∅ ∅ = refl
⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ)
-- A specialization of the soundness of weakening
⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
⟦ t ⟧ ρ ≡ ⟦ fit t ⟧ (alternate ρ dρ)
⟦fit⟧ t ρ dρ =
trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _))
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Logical relation for erasure (Def. 3.8 and Lemma 3.9)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Derive as Derive
module Parametric.Change.Implementation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
(validity-structure : Validity.Structure ⟦_⟧Base)
(specification-structure : Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure)
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(derive-const : Derive.Structure Const ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base validity-structure
open Specification.Structure
Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure
open ChangeType.Structure Base ΔBase
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧
open Derive.Structure Const ΔBase derive-const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
-- Extension point 1: Logical relation on base types.
--
-- In the paper, we assume that the logical relation is equality on base types
-- (see Def. 3.8a). Here, we only require that plugins define what the logical
-- relation is on base types, and provide proofs for the two extension points
-- below.
implements-base : ∀ ι {v : ⟦ ι ⟧Base} → Δ₍ ι ₎ v → ⟦ ΔBase ι ⟧Base → Set
-- Extension point 2: Differences on base types are logically related.
u⊟v≈u⊝v-base : ∀ ι {u v : ⟦ ι ⟧Base} →
implements-base ι (u ⊟₍ ι ₎ v) (⟦diff-base⟧ ι u v)
-- Extension point 3: Lemma 3.1 for base types.
carry-over-base : ∀ {ι}
{v : ⟦ ι ⟧Base}
(Δv : Δ₍ ι ₎ v)
{Δv′ : ⟦ ΔBase ι ⟧Base} (Δv≈Δv′ : implements-base ι Δv Δv′) →
v ⊞₍ base ι ₎ Δv ≡ v ⟦⊕₍ base ι ₎⟧ Δv′
------------------------
-- Logical relation ≈ --
------------------------
infix 4 implements
syntax implements τ u v = u ≈₍ τ ₎ v
implements : ∀ τ {v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
implements (base ι) Δf Δf′ = implements-base ι Δf Δf′
implements (σ ⇒ τ) {f} Δf Δf′ =
(w : ⟦ σ ⟧) (Δw : Δ₍ σ ₎ w)
(Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ {w} Δw Δw′) →
implements τ {f w} (call-change {σ} {τ} Δf w Δw) (Δf′ w Δw′)
infix 4 _≈_
_≈_ : ∀ {τ v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
_≈_ {τ} {v} = implements τ {v}
data implements-env : ∀ Γ → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ mapContext ΔType Γ ⟧ → Set where
∅ : implements-env ∅ {∅} ∅ ∅
_•_ : ∀ {τ Γ v ρ dv dρ v′ ρ′} →
(dv≈v′ : implements τ {v} dv v′) →
(dρ≈ρ′ : implements-env Γ {ρ} dρ ρ′) →
implements-env (τ • Γ) {v • ρ} (dv • dρ) (v′ • ρ′)
----------------
-- carry-over --
----------------
-- This is lemma 3.10.
carry-over : ∀ {τ}
{v : ⟦ τ ⟧}
(Δv : Δ₍ τ ₎ v)
{Δv′ : ⟦ ΔType τ ⟧} (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) →
after₍ τ ₎ Δv ≡ before₍ τ ₎ Δv ⟦⊕₍ τ ₎⟧ Δv′
u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
u ⊟₍ τ ₎ v ≈₍ τ ₎ u ⟦⊝₍ τ ₎⟧ v
u⊟v≈u⊝v {base ι} {u} {v} = u⊟v≈u⊝v-base ι {u} {v}
u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where
result : (w : ⟦ σ ⟧) (Δw : Δ₍ σ ₎ w) →
(Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ →
(g (after₍ σ ₎ Δw) ⊟₍ τ ₎ f (before₍ σ ₎ Δw)) ≈₍ τ ₎ g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′) ⟦⊝₍ τ ₎⟧ f (before₍ σ ₎ Δw)
result w Δw Δw′ Δw≈Δw′
rewrite carry-over {σ} Δw Δw≈Δw′ =
u⊟v≈u⊝v {τ} {g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′)} {f (before₍ σ ₎ Δw)}
carry-over {base ι} Δv Δv≈Δv′ = carry-over-base Δv Δv≈Δv′
carry-over {σ ⇒ τ} {f} Δf {Δf′} Δf≈Δf′ =
ext (λ v →
carry-over {τ} {f v} (call-change {σ} {τ} Δf v (nil₍ σ ₎ v))
{Δf′ v (v ⟦⊝₍ σ ₎⟧ v)}
(Δf≈Δf′ v (nil₍ σ ₎ v) (v ⟦⊝₍ σ ₎⟧ v) ( u⊟v≈u⊝v {σ} {v} {v})))
-- A property relating `alternate` and the subcontext relation Γ≼ΔΓ
⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
ρ ≡ ⟦ Γ≼ΔΓ ⟧ (alternate ρ dρ)
⟦Γ≼ΔΓ⟧ ∅ ∅ = refl
⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ)
-- A specialization of the soundness of weakening
⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
⟦ t ⟧ ρ ≡ ⟦ fit t ⟧ (alternate ρ dρ)
⟦fit⟧ t ρ dρ =
trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _))
|
Document P.C.Implementation.
|
Document P.C.Implementation.
Old-commit-hash: 62c4109c756f345ba501b4ab6a99669cec1f3a21
|
Agda
|
mit
|
inc-lc/ilc-agda
|
14cfac67791f75bdf456a7774da62935891a6640
|
Control/Strategy.agda
|
Control/Strategy.agda
|
module Control.Strategy where
open import Function.NP
open import Type using (★)
open import Category.Monad
open import Data.Product hiding (map)
open import Data.List using (List; []; _∷_)
open import Relation.Binary.PropositionalEquality.NP
data Strategy (Q : ★) (R : Q → ★) (A : ★) : ★ where
ask : (q? : Q) (cont : R q? → Strategy Q R A) → Strategy Q R A
done : A → Strategy Q R A
infix 2 _≈_
data _≈_ {Q R A} : (s₀ s₁ : Strategy Q R A) → ★ where
ask-ask : ∀ (q? : Q) {k₀ k₁} (cont : ∀ r → k₀ r ≈ k₁ r) → ask q? k₀ ≈ ask q? k₁
done-done : ∀ x → done x ≈ done x
≈-refl : ∀ {Q R A} {s : Strategy Q R A} → s ≈ s
≈-refl {s = ask q? cont} = ask-ask q? (λ r → ≈-refl)
≈-refl {s = done x} = done-done x
module _ {Q : ★} {R : Q → ★} where
private
M : ★ → ★
M = Strategy Q R
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< ask q? cont = ask q? (λ r → f =<< cont r)
f =<< done x = f x
return : ∀ {A} → A → M A
return = done
map : ∀ {A B} → (A → B) → M A → M B
map f s = (done ∘ f) =<< s
join : ∀ {A} → M (M A) → M A
join s = id =<< s
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>=_ = flip _=<<_
rawMonad : RawMonad M
rawMonad = record { return = return; _>>=_ = _>>=_ }
return-=<< : ∀ {A} (m : M A) → return =<< m ≈ m
return-=<< (ask q? cont) = ask-ask q? (λ r → return-=<< (cont r))
return-=<< (done x) = done-done x
return->>= : ∀ {A B} (x : A) (f : A → M B) → return x >>= f ≡ f x
return->>= _ _ = refl
>>=-assoc : ∀ {A B C} (mx : M A) (my : A → M B) (f : B → M C) → (mx >>= λ x → (my x >>= f)) ≈ (mx >>= my) >>= f
>>=-assoc (ask q? cont) my f = ask-ask q? (λ r → >>=-assoc (cont r) my f)
>>=-assoc (done x) my f = ≈-refl
map-id : ∀ {A} (s : M A) → map id s ≈ s
map-id = return-=<<
map-∘ : ∀ {A B C} (f : A → B) (g : B → C) s → map (g ∘ f) s ≈ (map g ∘ map f) s
map-∘ f g s = >>=-assoc s (done ∘ f) (done ∘ g)
module EffectfulRun
(E : ★ → ★)
(_>>=E_ : ∀ {A B} → E A → (A → E B) → E B)
(returnE : ∀ {A} → A → E A)
(Oracle : (q : Q) → E (R q)) where
runE : ∀ {A} → M A → E A
runE (ask q? cont) = Oracle q? >>=E (λ r → runE (cont r))
runE (done x) = returnE x
module _ (Oracle : (q : Q) → R q) where
run : ∀ {A} → M A → A
run (ask q? cont) = run (cont (Oracle q?))
run (done x) = x
module _ {A B : ★} (f : A → M B) where
run->>= : (s : M A) → run (s >>= f) ≡ run (f (run s))
run->>= (ask q? cont) = run->>= (cont (Oracle q?))
run->>= (done x) = refl
module _ {A B : ★} (f : A → B) where
run-map : (s : M A) → run (map f s) ≡ f (run s)
run-map = run->>= (return ∘ f)
module _ {A B : ★} where
run-≈ : {s₀ s₁ : M A} → s₀ ≈ s₁ → run s₀ ≡ run s₁
run-≈ (ask-ask q? cont) = run-≈ (cont (Oracle q?))
run-≈ (done-done x) = refl
private
State : (S A : ★) → ★
State S A = S → A × S
-- redundant since we have EffectfulRun, but...
module StatefulRun {S : ★} (Oracle : (q : Q) → State S (R q)) where
runS : ∀ {A} → M A → State S A
runS (ask q? cont) s = case Oracle q? s of λ { (x , s') → runS (cont x) s' }
runS (done x) s = x , s
evalS : ∀ {A} → M A → S → A
evalS x s = proj₁ (runS x s)
execS : ∀ {A} → M A → S → S
execS x s = proj₂ (runS x s)
private
Transcript = List (Σ Q R)
module TranscriptRun (Oracle : Transcript → Π Q R){A} where
runT : M A → Transcript → A × Transcript
runT (ask q? cont) t = let r = Oracle t q? in runT (cont r) ((q? , r) ∷ t)
runT (done x) t = x , t
open StatefulRun
-- runT is runS where the state is the transcript and the Oracle cannot change it
runT-runS : ∀ (str : M A) t → runT str t ≡ runS (λ q s → let r = Oracle s q in r , (q , r) ∷ s) str t
runT-runS (ask q? cont) t = let r = Oracle t q? in runT-runS (cont r) ((q? , r) ∷ t)
runT-runS (done x) t = refl
-- -}
-- -}
-- -}
-- -}
|
module Control.Strategy where
open import Data.Nat
open import Function.NP
open import Type using (★)
open import Category.Monad
open import Data.Product hiding (map)
open import Data.List as List using (List; []; _∷_)
open import Relation.Binary.PropositionalEquality.NP
data Strategy (Q : ★) (R : Q → ★) (A : ★) : ★ where
ask : (q? : Q) (cont : R q? → Strategy Q R A) → Strategy Q R A
done : A → Strategy Q R A
infix 2 _≈_
data _≈_ {Q R A} : (s₀ s₁ : Strategy Q R A) → ★ where
ask-ask : ∀ (q? : Q) {k₀ k₁} (cont : ∀ r → k₀ r ≈ k₁ r) → ask q? k₀ ≈ ask q? k₁
done-done : ∀ x → done x ≈ done x
≈-refl : ∀ {Q R A} {s : Strategy Q R A} → s ≈ s
≈-refl {s = ask q? cont} = ask-ask q? (λ r → ≈-refl)
≈-refl {s = done x} = done-done x
module _ {Q : ★} {R : Q → ★} where
private
M : ★ → ★
M = Strategy Q R
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< ask q? cont = ask q? (λ r → f =<< cont r)
f =<< done x = f x
return : ∀ {A} → A → M A
return = done
map : ∀ {A B} → (A → B) → M A → M B
map f s = (done ∘ f) =<< s
join : ∀ {A} → M (M A) → M A
join s = id =<< s
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>=_ = flip _=<<_
rawMonad : RawMonad M
rawMonad = record { return = return; _>>=_ = _>>=_ }
return-=<< : ∀ {A} (m : M A) → return =<< m ≈ m
return-=<< (ask q? cont) = ask-ask q? (λ r → return-=<< (cont r))
return-=<< (done x) = done-done x
return->>= : ∀ {A B} (x : A) (f : A → M B) → return x >>= f ≡ f x
return->>= _ _ = refl
>>=-assoc : ∀ {A B C} (mx : M A) (my : A → M B) (f : B → M C) → (mx >>= λ x → (my x >>= f)) ≈ (mx >>= my) >>= f
>>=-assoc (ask q? cont) my f = ask-ask q? (λ r → >>=-assoc (cont r) my f)
>>=-assoc (done x) my f = ≈-refl
map-id : ∀ {A} (s : M A) → map id s ≈ s
map-id = return-=<<
map-∘ : ∀ {A B C} (f : A → B) (g : B → C) s → map (g ∘ f) s ≈ (map g ∘ map f) s
map-∘ f g s = >>=-assoc s (done ∘ f) (done ∘ g)
module EffectfulRun
(E : ★ → ★)
(_>>=E_ : ∀ {A B} → E A → (A → E B) → E B)
(returnE : ∀ {A} → A → E A)
(Oracle : (q : Q) → E (R q)) where
runE : ∀ {A} → M A → E A
runE (ask q? cont) = Oracle q? >>=E (λ r → runE (cont r))
runE (done x) = returnE x
module _ (Oracle : (q : Q) → R q) where
run : ∀ {A} → M A → A
run (ask q? cont) = run (cont (Oracle q?))
run (done x) = x
module _ {A B : ★} (f : A → M B) where
run->>= : (s : M A) → run (s >>= f) ≡ run (f (run s))
run->>= (ask q? cont) = run->>= (cont (Oracle q?))
run->>= (done x) = refl
module _ {A B : ★} (f : A → B) where
run-map : (s : M A) → run (map f s) ≡ f (run s)
run-map = run->>= (return ∘ f)
module _ {A B : ★} where
run-≈ : {s₀ s₁ : M A} → s₀ ≈ s₁ → run s₀ ≡ run s₁
run-≈ (ask-ask q? cont) = run-≈ (cont (Oracle q?))
run-≈ (done-done x) = refl
module Repeat {I O : ★} where
ind : (I → M O) → List I → M (List O)
ind g [] = done []
ind g (x ∷ xs) = g x >>= (λ o → map (_∷_ o) (ind g xs))
module _ (Oracle : (q : Q) → R q)(g : I → M O) where
run-ind : ∀ xs → run Oracle (ind g xs) ≡ List.map (run Oracle ∘ g) xs
run-ind [] = refl
run-ind (x ∷ xs) = run->>= Oracle (λ o → map (_∷_ o) (ind g xs)) (g x)
∙ run-map Oracle (_∷_ (run Oracle (g x))) (ind g xs)
∙ ap (_∷_ (run Oracle (g x))) (run-ind xs)
module RepeatIndex {O : ★} where
map-list : (ℕ → (q : Q) → R q → O) → List Q → M (List O)
map-list _ [] = done []
map-list f (x ∷ xs) = ask x λ r → map (_∷_ (f 0 x r)) (map-list (f ∘ suc) xs)
mapIndex : {A B : Set} → (ℕ → A → B) → List A → List B
mapIndex f [] = []
mapIndex f (x ∷ xs) = f 0 x ∷ mapIndex (f ∘ suc) xs
module _ (Oracle : (q : Q) → R q) where
run-map-list : ∀ xs (g : ℕ → (q : Q) → R q → O) → run Oracle (map-list g xs) ≡ mapIndex (λ i q → g i q (Oracle q)) xs
run-map-list [] _ = refl
run-map-list (x ∷ xs) g = run-map Oracle (_∷_ (g 0 x (Oracle x))) (map-list (g ∘ suc) xs) ∙ ap (_∷_ (g 0 x (Oracle x))) (run-map-list xs (g ∘ suc))
private
State : (S A : ★) → ★
State S A = S → A × S
-- redundant since we have EffectfulRun, but...
module StatefulRun {S : ★} (Oracle : (q : Q) → State S (R q)) where
runS : ∀ {A} → M A → State S A
runS (ask q? cont) s = case Oracle q? s of λ { (x , s') → runS (cont x) s' }
runS (done x) s = x , s
evalS : ∀ {A} → M A → S → A
evalS x s = proj₁ (runS x s)
execS : ∀ {A} → M A → S → S
execS x s = proj₂ (runS x s)
private
Transcript = List (Σ Q R)
module TranscriptRun (Oracle : Transcript → Π Q R){A} where
runT : M A → Transcript → A × Transcript
runT (ask q? cont) t = let r = Oracle t q? in runT (cont r) ((q? , r) ∷ t)
runT (done x) t = x , t
open StatefulRun
-- runT is runS where the state is the transcript and the Oracle cannot change it
runT-runS : ∀ (str : M A) t → runT str t ≡ runS (λ q s → let r = Oracle s q in r , (q , r) ∷ s) str t
runT-runS (ask q? cont) t = let r = Oracle t q? in runT-runS (cont r) ((q? , r) ∷ t)
runT-runS (done x) t = refl
module TranscriptConstRun (Oracle : Π Q R){A} where
open TranscriptRun
runT-run : ∀ (str : M A) {t} → proj₁ (runT (const Oracle) str t) ≡ run Oracle str
runT-run (ask q? cont) = let r = Oracle q? in runT-run (cont r)
runT-run (done x) = refl
-- -}
-- -}
-- -}
-- -}
|
Add some more ways of computing Strategy
|
Add some more ways of computing Strategy
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
00bee87e47150d5062c2e99e9711f35f367885f2
|
formalization/agda/Spire/Operational.agda
|
formalization/agda/Spire/Operational.agda
|
module Spire.Operational where
----------------------------------------------------------------------
data Level : Set where
zero : Level
suc : Level → Level
----------------------------------------------------------------------
data Context : Set
data Type (Γ : Context) : Set
data Value (Γ : Context) : Type Γ → Set
data Neutral (Γ : Context) : Type Γ → Set
----------------------------------------------------------------------
data Context where
∅ : Context
_,_ : (Γ : Context) → Type Γ → Context
data Type Γ where
`⊥ `⊤ `Bool : Type Γ
`Desc `Type : (ℓ : Level) → Type Γ
`Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Type Γ
`⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ
`⟦_⟧ᵈ : ∀{ℓ} → Neutral Γ (`Desc ℓ) → Type Γ → Type Γ
----------------------------------------------------------------------
⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ
⟦_⟧ᵈ : ∀{Γ ℓ} → Value Γ (`Desc ℓ) → Type Γ → Type Γ
postulate
wknT : ∀{Γ A} → Type Γ → Type (Γ , A)
subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ
subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x)
data Var : (Γ : Context) (A : Type Γ) → Set where
here : ∀{Γ A} → Var (Γ , A) (wknT A)
there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A)
----------------------------------------------------------------------
data Value Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Desc `Type : ∀{ℓ} → Value Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ)
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ) → Value Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Value Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Value Γ (`Type ℓ))
(B : Value (Γ , ⟦ A ⟧) (`Desc (suc ℓ)))
→ Value Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Value Γ `⊤
`true `false : Value Γ `Bool
_`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B)
`λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (⟦ D ⟧ᵈ (`μ D)) → Value Γ (`μ D)
`neut : ∀{A} → Neutral Γ A → Value Γ A
----------------------------------------------------------------------
data Neutral Γ where
{- Value elimination -}
`var : ∀{A} → Var Γ A → Neutral Γ A
`if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C
`elim⊥ : ∀{A} → Neutral Γ `⊥ → Neutral Γ A
`elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b))
`proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A
`proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab)))
_`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a)
----------------------------------------------------------------------
⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧
⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧
⟦ `⊥ ⟧ = `⊥
⟦ `⊤ ⟧ = `⊤
⟦ `Bool ⟧ = `Bool
⟦ `μ D ⟧ = `μ D
⟦ `Type {zero} ⟧ = `⊥
⟦ `Type {suc ℓ} ⟧ = `Type ℓ
⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧
⟦ `Desc {ℓ} ⟧ = `Desc ℓ
⟦ `⟦ D ⟧ᵈ X ⟧ = ⟦ D ⟧ᵈ ⟦ X ⟧
⟦ `neut A ⟧ = `⟦ A ⟧
----------------------------------------------------------------------
⟦ `⊤ᵈ ⟧ᵈ X = `⊤
⟦ `Xᵈ ⟧ᵈ X = X
⟦ `Πᵈ A D ⟧ᵈ X = `Π ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `Σᵈ A D ⟧ᵈ X = `Σ ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `neut D ⟧ᵈ X = `⟦ D ⟧ᵈ X
----------------------------------------------------------------------
elim⊥ : ∀{Γ A} → Value Γ `⊥ → Value Γ A
elim⊥ (`neut bot) = `neut (`elim⊥ bot)
----------------------------------------------------------------------
if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C
if `true then c₁ else c₂ = c₁
if `false then c₁ else c₂ = c₂
if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂)
elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Value Γ `Bool)
→ Value Γ (subT ⟦ P ⟧ b)
elimBool P pt pf `true = pt
elimBool P pt pf `false = pf
elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b)
----------------------------------------------------------------------
proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A
proj₁ (a `, b) = a
proj₁ (`neut ab) = `neut (`proj₁ ab)
proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab))
proj₂ (a `, b) = b
proj₂ (`neut ab) = `neut (`proj₂ ab)
----------------------------------------------------------------------
_$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a)
`λ b $ a = subV b a
`neut f $ a = `neut (f `$ a)
----------------------------------------------------------------------
data Term (Γ : Context) : Type Γ → Set
eval : ∀{Γ A} → Term Γ A → Value Γ A
data Term Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ)
`μ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ) → Term Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Term Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Term Γ (`Type ℓ))
(D : Term (Γ , ⟦ eval A ⟧) (`Desc (suc ℓ)))
→ Term Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Term Γ `⊤
`true `false : Term Γ `Bool
_`,_ : ∀{A B}
(a : Term Γ A) (b : Term Γ (subT B (eval a)))
→ Term Γ (`Σ A B)
`λ : ∀{A B}
(b : Term (Γ , A) B)
→ Term Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (⟦ D ⟧ᵈ (`μ D)) → Term Γ (`μ D)
{- Value elimination -}
`var : ∀{A} → Var Γ A → Term Γ A
`if_`then_`else_ : ∀{C}
(b : Term Γ `Bool)
(c₁ c₂ : Term Γ C)
→ Term Γ C
_`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a))
`proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A
`proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab)))
`elim⊥ : ∀{A} → Term Γ `⊥ → Term Γ A
`elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ))
(pt : Term Γ (subT ⟦ eval P ⟧ `true))
(pf : Term Γ (subT ⟦ eval P ⟧ `false))
(b : Term Γ `Bool)
→ Term Γ (subT ⟦ eval P ⟧ (eval b))
----------------------------------------------------------------------
{- Type introduction -}
eval `⊥ = `⊥
eval `⊤ = `⊤
eval `Bool = `Bool
eval `Type = `Type
eval (`Π A B) = `Π (eval A) (eval B)
eval (`Σ A B) = `Σ (eval A) (eval B)
eval (`μ D) = `μ (eval D)
eval `⟦ A ⟧ = `⟦ eval A ⟧
eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X)
{- Desc introduction -}
eval `⊤ᵈ = `⊤ᵈ
eval `Xᵈ = `Xᵈ
eval (`Πᵈ A D) = `Πᵈ (eval A) (eval D)
eval (`Σᵈ A D) = `Σᵈ (eval A) (eval D)
{- Value introduction -}
eval `tt = `tt
eval `true = `true
eval `false = `false
eval (a `, b) = eval a `, eval b
eval (`λ b) = `λ (eval b)
eval (`con x) = `con (eval x)
{- Value elimination -}
eval (`var i) = `neut (`var i)
eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂
eval (f `$ a) = eval f $ eval a
eval (`proj₁ ab) = proj₁ (eval ab)
eval (`proj₂ ab) = proj₂ (eval ab)
eval (`elim⊥ bot) = elim⊥ (eval bot)
eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b)
----------------------------------------------------------------------
|
module Spire.Operational where
----------------------------------------------------------------------
data Level : Set where
zero : Level
suc : Level → Level
----------------------------------------------------------------------
data Context : Set
data Type (Γ : Context) : Set
data Value (Γ : Context) : Type Γ → Set
data Neutral (Γ : Context) : Type Γ → Set
----------------------------------------------------------------------
data Context where
∅ : Context
_,_ : (Γ : Context) → Type Γ → Context
data Type Γ where
`⊥ `⊤ `Bool : Type Γ
`Desc `Type : (ℓ : Level) → Type Γ
`Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Type Γ
`⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ
`⟦_⟧ᵈ : ∀{ℓ} → Neutral Γ (`Desc ℓ) → Type Γ → Type Γ
----------------------------------------------------------------------
⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ
⟦_⟧ᵈ : ∀{Γ ℓ} → Value Γ (`Desc ℓ) → Type Γ → Type Γ
postulate
wknT : ∀{Γ A} → Type Γ → Type (Γ , A)
subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ
subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x)
data Var : (Γ : Context) (A : Type Γ) → Set where
here : ∀{Γ A} → Var (Γ , A) (wknT A)
there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A)
----------------------------------------------------------------------
data Value Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Desc `Type : ∀{ℓ} → Value Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ)
`μ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Value Γ (`Desc ℓ) → Value Γ (`Type ℓ) → Value Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Value Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Value Γ (`Type ℓ))
(B : Value (Γ , ⟦ A ⟧) (`Desc (suc ℓ)))
→ Value Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Value Γ `⊤
`true `false : Value Γ `Bool
_`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B)
`λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (⟦ D ⟧ᵈ (`μ D)) → Value Γ (`μ D)
`neut : ∀{A} → Neutral Γ A → Value Γ A
----------------------------------------------------------------------
data Neutral Γ where
{- Value elimination -}
`var : ∀{A} → Var Γ A → Neutral Γ A
`if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C
`elim⊥ : ∀{A} → Neutral Γ `⊥ → Neutral Γ A
`elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b))
`proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A
`proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab)))
_`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a)
`des : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Neutral Γ (`μ D) → Neutral Γ (⟦ D ⟧ᵈ (`μ D))
----------------------------------------------------------------------
⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧
⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧
⟦ `⊥ ⟧ = `⊥
⟦ `⊤ ⟧ = `⊤
⟦ `Bool ⟧ = `Bool
⟦ `μ D ⟧ = `μ D
⟦ `Type {zero} ⟧ = `⊥
⟦ `Type {suc ℓ} ⟧ = `Type ℓ
⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧
⟦ `Desc {ℓ} ⟧ = `Desc ℓ
⟦ `⟦ D ⟧ᵈ X ⟧ = ⟦ D ⟧ᵈ ⟦ X ⟧
⟦ `neut A ⟧ = `⟦ A ⟧
----------------------------------------------------------------------
⟦ `⊤ᵈ ⟧ᵈ X = `⊤
⟦ `Xᵈ ⟧ᵈ X = X
⟦ `Πᵈ A D ⟧ᵈ X = `Π ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `Σᵈ A D ⟧ᵈ X = `Σ ⟦ A ⟧ (⟦ D ⟧ᵈ (wknT X))
⟦ `neut D ⟧ᵈ X = `⟦ D ⟧ᵈ X
----------------------------------------------------------------------
elim⊥ : ∀{Γ A} → Value Γ `⊥ → Value Γ A
elim⊥ (`neut bot) = `neut (`elim⊥ bot)
----------------------------------------------------------------------
if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C
if `true then c₁ else c₂ = c₁
if `false then c₁ else c₂ = c₂
if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂)
elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ))
(pt : Value Γ (subT ⟦ P ⟧ `true))
(pf : Value Γ (subT ⟦ P ⟧ `false))
(b : Value Γ `Bool)
→ Value Γ (subT ⟦ P ⟧ b)
elimBool P pt pf `true = pt
elimBool P pt pf `false = pf
elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b)
----------------------------------------------------------------------
proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A
proj₁ (a `, b) = a
proj₁ (`neut ab) = `neut (`proj₁ ab)
proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab))
proj₂ (a `, b) = b
proj₂ (`neut ab) = `neut (`proj₂ ab)
----------------------------------------------------------------------
des : ∀{Γ ℓ} {D : Value Γ (`Desc ℓ)} → Value Γ (`μ D) → Value Γ (⟦ D ⟧ᵈ (`μ D))
des (`con x) = x
des (`neut x) = `neut (`des x)
----------------------------------------------------------------------
_$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a)
`λ b $ a = subV b a
`neut f $ a = `neut (f `$ a)
----------------------------------------------------------------------
data Term (Γ : Context) : Type Γ → Set
eval : ∀{Γ A} → Term Γ A → Value Γ A
data Term Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ)
`Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ)
`μ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ)
`⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ))
`⟦_⟧ᵈ : ∀{ℓ} → Term Γ (`Desc ℓ) → Term Γ (`Type ℓ) → Term Γ (`Type ℓ)
{- Desc introduction -}
`⊤ᵈ `Xᵈ : ∀{ℓ} → Term Γ (`Desc ℓ)
`Πᵈ `Σᵈ : ∀{ℓ}
(A : Term Γ (`Type ℓ))
(D : Term (Γ , ⟦ eval A ⟧) (`Desc (suc ℓ)))
→ Term Γ (`Desc (suc ℓ))
{- Value introduction -}
`tt : Term Γ `⊤
`true `false : Term Γ `Bool
_`,_ : ∀{A B}
(a : Term Γ A) (b : Term Γ (subT B (eval a)))
→ Term Γ (`Σ A B)
`λ : ∀{A B}
(b : Term (Γ , A) B)
→ Term Γ (`Π A B)
`con : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (⟦ D ⟧ᵈ (`μ D)) → Term Γ (`μ D)
{- Value elimination -}
`var : ∀{A} → Var Γ A → Term Γ A
`if_`then_`else_ : ∀{C}
(b : Term Γ `Bool)
(c₁ c₂ : Term Γ C)
→ Term Γ C
_`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a))
`proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A
`proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab)))
`elim⊥ : ∀{A} → Term Γ `⊥ → Term Γ A
`elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ))
(pt : Term Γ (subT ⟦ eval P ⟧ `true))
(pf : Term Γ (subT ⟦ eval P ⟧ `false))
(b : Term Γ `Bool)
→ Term Γ (subT ⟦ eval P ⟧ (eval b))
`des : ∀{ℓ} {D : Value Γ (`Desc ℓ)} → Term Γ (`μ D) → Term Γ (⟦ D ⟧ᵈ (`μ D))
----------------------------------------------------------------------
{- Type introduction -}
eval `⊥ = `⊥
eval `⊤ = `⊤
eval `Bool = `Bool
eval `Type = `Type
eval (`Π A B) = `Π (eval A) (eval B)
eval (`Σ A B) = `Σ (eval A) (eval B)
eval (`μ D) = `μ (eval D)
eval `⟦ A ⟧ = `⟦ eval A ⟧
eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X)
{- Desc introduction -}
eval `⊤ᵈ = `⊤ᵈ
eval `Xᵈ = `Xᵈ
eval (`Πᵈ A D) = `Πᵈ (eval A) (eval D)
eval (`Σᵈ A D) = `Σᵈ (eval A) (eval D)
{- Value introduction -}
eval `tt = `tt
eval `true = `true
eval `false = `false
eval (a `, b) = eval a `, eval b
eval (`λ b) = `λ (eval b)
eval (`con x) = `con (eval x)
{- Value elimination -}
eval (`var i) = `neut (`var i)
eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂
eval (f `$ a) = eval f $ eval a
eval (`proj₁ ab) = proj₁ (eval ab)
eval (`proj₂ ab) = proj₂ (eval ab)
eval (`elim⊥ bot) = elim⊥ (eval bot)
eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b)
eval (`des x) = des (eval x)
----------------------------------------------------------------------
|
Add Mu eliminator to operational semantics.
|
Add Mu eliminator to operational semantics.
|
Agda
|
bsd-3-clause
|
spire/spire
|
c9a0e322742287bc9c2a9d3e057a06d23971c82c
|
Syntax/Language/Calculus.agda
|
Syntax/Language/Calculus.agda
|
module Syntax.Language.Calculus where
-- Full description of a calculus in Plotkin style
--
-- Users should supply
-- - base types
-- - constants
-- - Δtype of base types
-- - derivatives of constants
open import Syntax.Type.Plotkin public
open import Syntax.Term.Plotkin public
open import Syntax.Context public
open import Syntax.Context.Plotkin public
open import Syntax.DeltaContext public
record Calculus : Set₁ where
constructor
calculus-with
field
basetype : Set
constant : Context {Type basetype} → Type basetype → Set
Δtype : Type basetype → Type basetype
Δconst : ∀ {Γ Σ τ} → (c : constant Σ τ) →
Term {basetype} {constant} Γ
(internalizeContext basetype (ΔContext′ (Type basetype) Δtype Σ) (Δtype τ))
open Calculus public
type : Calculus → Set
type L = Type (basetype L)
context : Calculus → Set
context L = Context {type L}
term : (L : Calculus) → context L → type L → Set
term L = Term {basetype L} {constant L}
|
module Syntax.Language.Calculus where
-- Full description of a calculus in Plotkin style
--
-- Users should supply
-- - base types
-- - constants
-- - Δtype of base types
-- - derivatives of constants
open import Syntax.Type.Plotkin public
open import Syntax.Term.Plotkin public
open import Syntax.Context public
open import Syntax.Context.Plotkin public
open import Syntax.DeltaContext public
record Calculus : Set₁ where
constructor
calculus-with
field
basetype : Set
constant : Context {Type basetype} → Type basetype → Set
Δtype : Type basetype → Type basetype
Δconst : ∀ {Γ Σ τ} → (c : constant Σ τ) →
Term {basetype} {constant} Γ
(internalizeContext basetype (ΔContext′ (Type basetype) Δtype Σ) (Δtype τ))
type : Set
type = Type basetype
context : Set
context = Context {type}
term : context → type → Set
term = Term {basetype} {constant}
open Calculus public
|
Refactor Syntax/Language/Calculus.agda
|
Refactor Syntax/Language/Calculus.agda
Move helpers inside record, so that if we open the record module with a
record value:
open Calculus some-specific-calculus
We get all of the helper functions specialized to
`some-specific-calculus`, like the fields.
Old-commit-hash: dafe67297ca04cb5ab0369e8d1d7a8e2109a6c6d
|
Agda
|
mit
|
inc-lc/ilc-agda
|
456887b7b811ebbfcf89f5846339b3778163d905
|
Parametric/Change/Validity.agda
|
Parametric/Change/Validity.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : Base → Set
valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set
apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base
diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι
R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v)
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
ValidChange : Type → Set
ValidChange τ = Triple
⟦ τ ⟧
(λ _ → Change τ)
(λ v dv → valid {τ} v dv)
-- Change : Type → Set
Change (base ι) = Change-base ι
Change (σ ⇒ τ) = ValidChange σ → Change τ
before : ValidChange ⊆ ⟦_⟧
before (cons v _ _) = v
after : ValidChange ⊆ ⟦_⟧
after {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn
f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf (cons v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}))
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
m ⊟₍ base ι ₎ n = diff-change-base ι m n
g ⊟₍ σ ⇒ τ ₎ f = λ v → g (after v) ⊟₍ τ ₎ f (before v)
-- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
valid {base ι} n Δn = valid-base {ι} n Δn
valid {σ ⇒ τ} f Δf =
∀ (v : ValidChange σ)
→ valid {τ} (f (before v)) (Δf v)
-- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
× (f ⊞₍ σ ⇒ τ ₎ Δf) (after v) ≡ f (before v) ⊞₍ τ ₎ Δf v
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v}
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w →
let
w′ = after {σ} w
in
R[v,u-v] {τ}
,
(begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {τ} {u w′} {v (before {σ} w)}) ⟩
v (before {σ} w) ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w
∎) where open ≡-Reasoning
-- helpers
nil-valid-change : ∀ τ → ⟦ τ ⟧ → ValidChange τ
nil-valid-change τ v = cons v (v ⊟₍ τ ₎ v) (R[v,u-v] {τ} {v} {v})
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
ΔEnv : Context → Set
ΔEnv = DependentList ValidChange
ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
ignore = map (λ {τ} → before {τ})
update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
update = map (λ {τ} → after {τ})
|
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
open import Data.Product hiding (map)
import Structure.Tuples as Tuples
open Tuples
import Base.Data.DependentList as DependentList
open DependentList
open import Relation.Unary using (_⊆_)
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
Change-base : Base → Set
valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set
apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base
diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι
R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v)
v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u
---------------
-- Interface --
---------------
Change : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
infixl 6 apply-change diff-change -- as with + - in GHC.Num
syntax apply-change τ v dv = v ⊞₍ τ ₎ dv
syntax diff-change τ u v = u ⊟₍ τ ₎ v
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u
--------------------
-- Implementation --
--------------------
-- (Change τ) is the set of changes of type τ. This set is
-- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In
-- particular, (Change (σ ⇒ τ)) is a function that accepts only
-- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid
-- changes.
--
-- Change τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
ValidChange : Type → Set
ValidChange τ = Triple
⟦ τ ⟧
(λ _ → Change τ)
(λ v dv → valid {τ} v dv)
-- Change : Type → Set
Change (base ι) = Change-base ι
Change (σ ⇒ τ) = ValidChange σ → Change τ
before : ValidChange ⊆ ⟦_⟧
before (cons v _ _) = v
after : ValidChange ⊆ ⟦_⟧
after {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv
nil-valid-change : ∀ τ → ⟦ τ ⟧ → ValidChange τ
nil-valid-change τ v = cons v (v ⊟₍ τ ₎ v) (R[v,u-v] {τ} {v} {v})
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn
f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf (nil-valid-change σ v)
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
m ⊟₍ base ι ₎ n = diff-change-base ι m n
g ⊟₍ σ ⇒ τ ₎ f = λ v → g (after v) ⊟₍ τ ₎ f (before v)
-- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set
valid {base ι} n Δn = valid-base {ι} n Δn
valid {σ ⇒ τ} f Δf =
∀ (v : ValidChange σ)
→ valid {τ} (f (before v)) (Δf v)
-- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
× (f ⊞₍ σ ⇒ τ ₎ Δf) (after v) ≡ f (before v) ⊞₍ τ ₎ Δf v
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w
≡⟨ refl ⟩
v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w)
≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩
v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v}
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w →
let
w′ = after {σ} w
in
R[v,u-v] {τ}
,
(begin
(v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {τ} {u w′} {v (before {σ} w)}) ⟩
v (before {σ} w) ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w
∎) where open ≡-Reasoning
-- syntactic sugar for implicit indices
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧
_⊞_ {τ} v dv = v ⊞₍ τ ₎ dv
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ
_⊟_ {τ} u v = u ⊟₍ τ ₎ v
------------------
-- Environments --
------------------
open DependentList public using (∅; _•_)
open Tuples public using (cons)
ΔEnv : Context → Set
ΔEnv = DependentList ValidChange
ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
ignore = map (λ {τ} → before {τ})
update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧
update = map (λ {τ} → after {τ})
|
Move nil-valid-change to use it in ⊞.
|
Move nil-valid-change to use it in ⊞.
What I learned from this project: To implement apply, you need nil.
Old-commit-hash: 3af743a00cc7e7cad69e57ec30364639c1b5e928
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5d95a3734811ffcaf8c9508aca53f1f46a9739ee
|
FunUniverse/Fin/Op.agda
|
FunUniverse/Fin/Op.agda
|
open import Type
open import Function
open import Data.Nat.NP using (ℕ; module ℕ°)
open import Data.Fin.NP as Fin using (Fin; inject+; raise; bound; free)
open import Data.Vec.NP using (lookup)
open import FunUniverse.Data
open import FunUniverse.Core
open import FunUniverse.Rewiring.Linear
open import FunUniverse.Category
open import FunUniverse.Category.Op
open import FunUniverse.Fin
module FunUniverse.Fin.Op where
_ᶠ→_ : (i o : ℕ) → ★
i ᶠ→ o = Fin o → Fin i
finOpFunU : FunUniverse ℕ
finOpFunU = Bits-U , _ᶠ→_
finOpCat : Category _ᶠ→_
finOpCat = op finCat
open FunUniverse finOpFunU
open Cong-*1 _`→_
finOpLinRewiring : LinRewiring finOpFunU
finOpLinRewiring = mk finOpCat first (λ {x} → swap {x}) (λ {x} → assoc {x}) id id <_×_> (λ {x} → second {x}) id id id id
where
-- NOTE that doing:
-- swap {A} {B} rewrite ℕ°.+-comm A B = id
-- would be totally wrong.
swap : ∀ {A B} → (A `× B) `→ (B `× A)
swap {A} {B} x with Fin.cmp B A x
swap {A} {B} ._ | Fin.bound y = raise A y
swap {A} {B} ._ | Fin.free y = inject+ B y
-- Since the order of elements is preserved this is OK to rewrite
assoc : ∀ {A B C} → ((A `× B) `× C) `→ (A `× (B `× C))
assoc {A} {B} {C} rewrite ℕ°.+-assoc A B C = id
<_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D)
<_×_> {A} {B} {C} {D} f g x with Fin.cmp C D x
<_×_> {A} {B} {C} {D} f g ._ | Fin.bound y = inject+ B (f y)
<_×_> {A} {B} {C} {D} f g ._ | Fin.free y = raise A (g y)
idᶠ : ∀ {A} → A `→ A
idᶠ = id
first : ∀ {A B C} → (A `→ B) → (A `× C) `→ (B `× C)
first f = < f × id >
second : ∀ {A B C} → (B `→ C) → (A `× B) `→ (A `× C)
second {A} f = < idᶠ {A} × f >
finOpRewiring : Rewiring finOpFunU
finOpRewiring = mk finOpLinRewiring (λ ()) dup (λ()) (λ f g → dup ⁏ < f × g >) (inject+ _) (λ {x} → raise x) cong-*1 (cong-*1 ∘ flip lookup)
where
open LinRewiring finOpLinRewiring using (<_×_>; _⁏_)
dup : ∀ {A} → A `→ (A `× A)
dup {A} x with Fin.cmp A A x
dup ._ | Fin.bound y = y
dup ._ | Fin.free y = y
|
Add FunUniverse/Fin/Op.agda
|
Add FunUniverse/Fin/Op.agda
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
13c4b4c064a0a4ebee4104eb40461152750f44d5
|
NormalizationByEvaluation.agda
|
NormalizationByEvaluation.agda
|
module NormalizationByEvaluation where
-- NORMALIZATION BY EVALUATION
--
-- for the simply-typed λ calculus with base types
open import Level hiding (Lift; lift)
open import Data.Bool
open import Relation.Binary hiding (_⇒_)
-- The rest of this file is parametric in the set of base types.
module Parametric (Base : Set) where
-- SYNTAX OF TYPES
--
-- We support function types and base types.
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
base : (b : Base) → Type
open import Syntactic.Contexts Type public
-- DOMAIN CONSTRUCTION
--
-- The meaning of types is defined using Kripke structures.
record IsKripke {w ℓ₁ ℓ₂} {World : Set w}
(_≈_ : Rel World ℓ₁)
(_≤_ : Rel World ℓ₂)
(_⊩⟦_⟧Base : World → Base → Set (ℓ₂ ⊔ w))
: Set (w ⊔ ℓ₁ ⊔ ℓ₂) where
Lift : ∀ {A : Set} (_⊩⟦_⟧ : World → A → Set (ℓ₂ ⊔ w)) → Set (ℓ₂ ⊔ w)
Lift _⊩⟦_⟧ = ∀ {a w₁ w₂} → w₁ ≤ w₂ → w₁ ⊩⟦ a ⟧ → w₂ ⊩⟦ a ⟧
field
isPreorder : IsPreorder _≈_ _≤_
liftBase : Lift _⊩⟦_⟧Base
open IsPreorder isPreorder public
_⊩⟦_⟧Type : World → Type → Set (ℓ₂ ⊔ w)
w₁ ⊩⟦ τ₁ ⇒ τ₂ ⟧Type = ∀ {w₂} → w₁ ≤ w₂ → w₂ ⊩⟦ τ₁ ⟧Type → w₂ ⊩⟦ τ₂ ⟧Type
w₁ ⊩⟦ base b ⟧Type = w₁ ⊩⟦ b ⟧Base
liftType : Lift _⊩⟦_⟧Type
liftType {τ₁ ⇒ τ₂} w₁≤w₂ w₁⊩τ₁⇒τ₂ = λ w₂≤w₃ w₃⊩τ₁ → w₁⊩τ₁⇒τ₂ (trans w₁≤w₂ w₂≤w₃) w₃⊩τ₁
liftType {base b} w₁≤w₂ w₁⊩b = liftBase w₁≤w₂ w₁⊩b
module _ (w : World) where
open import Denotational.Environments Type (λ τ → w ⊩⟦ τ ⟧Type) public
renaming (⟦_⟧Context to _⊩⟦_⟧Context; ⟦_⟧Var to _⊩⟦_⟧Var)
liftContext : Lift {Context} _⊩⟦_⟧Context
liftContext {∅} w₁≤w₂ w₁⊩Γ = ∅
liftContext {τ • Γ} w₁≤w₂ (w₁⊩τ • w₁⊩Γ) = liftType {τ} w₁≤w₂ w₁⊩τ • liftContext w₁≤w₂ w₁⊩Γ
record Kripke w ℓ₁ ℓ₂ : Set (suc (w ⊔ ℓ₁ ⊔ ℓ₂)) where
field
World : Set w
_≈_ : Rel World ℓ₁
_≤_ : Rel World ℓ₂
_⊩⟦_⟧Base : World → Base → Set (ℓ₂ ⊔ w)
isKripke : IsKripke _≈_ _≤_ _⊩⟦_⟧Base
open IsKripke isKripke public
-- TERMS
--
-- The syntax of terms is parametric in the set of constants.
module Terms (Constant : Type → Set) where
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
con : ∀ {Γ τ} → (c : Constant τ) → Term Γ τ
weaken : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Term Γ₁ τ → Term Γ₂ τ
weaken Γ₁≼Γ₂ (abs t) = abs (weaken (keep _ • Γ₁≼Γ₂) t)
weaken Γ₁≼Γ₂ (app t₁ t₂) = app (weaken Γ₁≼Γ₂ t₁) (weaken Γ₁≼Γ₂ t₂)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (con c) = con c
-- SYMBOLIC EXECUTION and REIFICATION
--
-- The Kripke structure of symbolic computation, using typing
-- contexts as worlds. Base types are interpreted as
-- terms. This is parametric in the set of available constants.
module Symbolic (Constant : Type → Set) where
open import Relation.Binary.PropositionalEquality
open Terms Constant
BaseTerm : Context → Base → Set
BaseTerm Γ b = Term Γ (base b)
isKripke : IsKripke _≡_ _≼_ BaseTerm
isKripke = record {
isPreorder = ≼-isPreorder;
liftBase = weaken }
symbolic : Kripke zero zero zero
symbolic = record {
World = Context;
_≈_ = _≡_;
_≤_ = _≼_;
_⊩⟦_⟧Base = BaseTerm;
isKripke = isKripke }
open Kripke symbolic
↓ : ∀ {Γ} τ → Γ ⊩⟦ τ ⟧Type → Term Γ τ
↑ : ∀ {Γ} τ → Term Γ τ → Γ ⊩⟦ τ ⟧Type
↓ (τ₁ ⇒ τ₂) v = abs (↓ τ₂ (v (drop τ₁ • ≼-refl) (↑ τ₁ (var this))))
↓ (base b) v = v
↑ (τ₁ ⇒ τ₂) t = λ Γ₁≼Γ₂ v → ↑ τ₂ (app (weaken Γ₁≼Γ₂ t) (↓ τ₁ v))
↑ (base b) t = t
Γ⊩Γ : ∀ {Γ} → Γ ⊩⟦ Γ ⟧Context
Γ⊩Γ {∅} = ∅
Γ⊩Γ {τ • Γ} = ↑ τ (var this) • liftContext (drop τ • ≼-refl) Γ⊩Γ
-- EVALUATION
--
-- Evaluation is defined for every Kripke structure and every
-- set of constants. We have to provide the interpretation of
-- the constants in the choosen Kripke structure, though.
module _ {w ℓ₁ ℓ₂} (K : Kripke w ℓ₁ ℓ₂) where
open Kripke K
module Evaluation (Constant : Type → Set)
(_⊩⟦_⟧Constant : ∀ w {τ} → Constant τ → w ⊩⟦ τ ⟧Type) where
open Terms Constant
_⊩⟦_⟧Term_ : ∀ w {Γ τ} → Term Γ τ → w ⊩⟦ Γ ⟧Context → w ⊩⟦ τ ⟧Type
w₁ ⊩⟦ abs t ⟧Term w₁⊩Γ = λ {w₂} w₁≤w₂ w₂⊩τ₁ → w₂ ⊩⟦ t ⟧Term (w₂⊩τ₁ • liftContext w₁≤w₂ w₁⊩Γ)
w₁ ⊩⟦ app t₁ t₂ ⟧Term w₁⊩Γ = (w₁ ⊩⟦ t₁ ⟧Term w₁⊩Γ) refl (w₁ ⊩⟦ t₂ ⟧Term w₁⊩Γ)
w₁ ⊩⟦ var x ⟧Term w₁⊩Γ = (w₁ ⊩⟦ x ⟧Var) w₁⊩Γ
w₁ ⊩⟦ con c ⟧Term w₁⊩Γ = w₁ ⊩⟦ c ⟧Constant
-- NORMALIZATION
--
-- Given a set of constants and their interpretation in the
-- Kripke structure for symbolic computation, we can normalize
-- terms.
module _ (Constant : Type → Set) where
open Terms Constant
open Symbolic Constant
open Kripke symbolic
module Normalization (_⊩⟦_⟧Constant : ∀ Γ {τ} → Constant τ → Γ ⊩⟦ τ ⟧Type) where
open Evaluation symbolic Constant _⊩⟦_⟧Constant
norm : ∀ {Γ τ} → Term Γ τ → Term Γ τ
norm {Γ} {τ} t = ↓ τ (Γ ⊩⟦ t ⟧Term Γ⊩Γ)
|
Implement NbE for lambda calculus with base types (see #50).
|
Implement NbE for lambda calculus with base types (see #50).
Old-commit-hash: 26dd0dee4e73552fe51a52999922812354a03188
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
7733c00a89f89d8d2ab941d498d88e4b5f59d2ef
|
adder.agda
|
adder.agda
|
open import Type
open import Data.Nat.NP
open import Data.Bool using (if_then_else_)
import Data.Vec as V
open V using (Vec; []; _∷_)
open import Function.NP hiding (id)
open import FunUniverse.Core hiding (_,_)
open import Data.Fin using (Fin; zero; suc; #_; inject+; raise) renaming (toℕ to Fin▹ℕ)
module adder where
module FunAdder
{t}
{T : ★_ t}
{funU : FunUniverse T}
(funOps : FunOps funU)
where
open FunUniverse funU renaming (`⊤ to `𝟙; `Bit to `𝟚)
open FunOps funOps renaming (_∘_ to _`∘_)
open import Solver.Linear
module LinSolver = Syntaxᶠ linRewiring
--iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ `Vec B n
iter : ∀ {n A B C D} → (D `× A `× B `→ D `× C) → D `× `Vec A n `× `Vec B n `→ `Vec C n
iter {zero} F = <[]>
iter {suc n} F = < id × < uncons × uncons > >
⁏ (helper ⁏ < F ⁏ swap × id > ⁏ assoc ⁏ < id × iter F >)
⁏ <∷>
where
open LinSolver
helper = λ {A} {B} {D} {VA} {VB} →
rewireᶠ (A ∷ B ∷ D ∷ VA ∷ VB ∷ [])
(λ a b d va vb → (d , (a , va) , (b , vb)) ↦ (d , a , b) , (va , vb))
-- TODO reverses all over the places... switch to lsb first?
adder : ∀ {n} → `Bits n `× `Bits n `→ `Bits n
adder = <tt⁏ <0b> , < reverse × reverse > > ⁏ iter full-adder ⁏ reverse
open import Data.Digit
bits : ∀ ℓ → ℕ → `𝟙 `→ `Bits ℓ
bits ℓ n₀ = constBits (V.reverse (L▹V (L.map F▹𝟚 (proj₁ (toDigits 2 n₀)))))
where open import Data.List as L
open import Data.Product
open import Data.Two
L▹V : ∀ {n} → List 𝟚 → Vec 𝟚 n
L▹V {zero} xs = []
L▹V {suc n} [] = V.replicate 0'
L▹V {suc n} (x ∷ xs) = x ∷ L▹V xs
F▹𝟚 : Fin 2 → 𝟚
F▹𝟚 zero = 0'
F▹𝟚 (suc _) = 1'
open import IO
import IO.Primitive
open import Data.One
open import Data.Two
open import Data.Product
open import Coinduction
open import FunUniverse.Agda
open FunAdder agdaFunOps
open FunOps agdaFunOps
putBit : 𝟚 → IO 𝟙
putBit 1' = putStr "1"
putBit 0' = putStr "0"
putBits : ∀ {n} → Vec 𝟚 n → IO 𝟙
putBits [] = return _
putBits (x ∷ bs) = ♯ putBit x >> ♯ putBits bs
arg1 = bits 8 0x0b _
arg2 = bits 8 0x1f _
result = adder (arg1 , arg2)
mainIO : IO 𝟙
mainIO = ♯ putBits arg1 >>
♯ (♯ putStr " + " >>
♯ (♯ putBits arg2 >>
♯ (♯ putStr " = " >>
♯ putBits result)))
main : IO.Primitive.IO 𝟙
main = IO.run mainIO
|
add a "simple" circuit adder capable of 11+31=42
|
add a "simple" circuit adder capable of 11+31=42
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
72c4baef0b4762d0e68731f5561c74025613aeca
|
lib/Data/Nat/Primality/NP.agda
|
lib/Data/Nat/Primality/NP.agda
|
{-# OPTIONS --without-K #-}
module Data.Nat.Primality.NP where
open import Data.Nat.NP
open import Data.Nat.Properties
open import Data.Nat.Divisibility.NP
open import Data.Nat.Primality public
hiding (prime?) -- was slow
open import Data.Fin.Dec
open import Relation.Unary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Negation
open import Relation.Nullary
-- same code but imports the fast _∣?_
prime? : Decidable Prime
prime? 0 = no λ()
prime? 1 = no λ()
prime? (suc (suc n)) = all? λ _ → ¬? (_ ∣? _)
prime-≥2 : ∀ {n} → Prime n → n ≥ 2
prime-≥2 {0} ()
prime-≥2 {1} ()
prime-≥2 {2+ _} _ = s≤s (s≤s z≤n)
prime-≢0 : ∀ {n} → Prime n → n ≢ 0
prime-≢0 {0} () _
prime-≢0 {1+ _} _ ()
prime-≢1 : ∀ {n} → Prime n → n ≢ 1
prime-≢1 {0} () _
prime-≢1 {1} () _
prime-≢1 {2+ _} _ ()
|
Add Nat.Primality.NP
|
Add Nat.Primality.NP
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
|
a22358b5e658d944b72f4ecb719b036e857e9f95
|
lib/Data/One/Param/Binary.agda
|
lib/Data/One/Param/Binary.agda
|
{-# OPTIONS --without-K #-}
open import Type.Param.Binary
open import Data.Unit renaming (⊤ to 𝟙; tt to 0₁)
module Data.One.Param.Binary where
record ⟦𝟙⟧ (x₁ x₂ : 𝟙) : Set₀ where
constructor ⟦0₁⟧
|
Add Data.One.Param.Binary
|
Add Data.One.Param.Binary
|
Agda
|
bsd-3-clause
|
np/agda-parametricity
|
|
c838b5d3d047273d8b46736db7c5e6353d903cbd
|
Crypto/Sig/Lamport/OneBit/Abstract.agda
|
Crypto/Sig/Lamport/OneBit/Abstract.agda
|
{-# OPTIONS --without-K #-}
open import Type using (Type)
open import Type.Eq using (Eq?; _==_; ≡⇒==; ==⇒≡)
open import Data.Product.NP using (_×_; _,_; fst; snd; map)
open import Data.Bit using (Bit; 0b; 1b; proj′; ✓→≡; ≡→✓)
open import Relation.Binary.PropositionalEquality.NP
open ≡-Reasoning
module Crypto.Sig.Lamport.OneBit.Abstract
(Secret : Type)
(Digest : Type)
(hash : Secret → Digest)
(eq? : Eq? Digest)
where
SignKey = Secret × Secret
Signature = Secret
VerifKey = Digest × Digest
module signkey (sk : SignKey) where
skL = fst sk
skH = snd sk
vkL = hash skL
vkH = hash skH
-- Derive the public key by hashing each secret
verif-key : SignKey → VerifKey
verif-key sk = vkL , vkH
where open signkey sk
module verifkey (vk : VerifKey) where
vkL = fst vk
vkH = snd vk
-- Key generation
key-gen : SignKey → VerifKey × SignKey
key-gen sk = vk , sk
module key-gen where
vk = verif-key sk
-- Sign a single bit message
sign : SignKey → Bit → Signature
sign = proj′
-- Verify the signature of a single bit message
verify : VerifKey → Bit → Signature → Bit
verify vk b sig = proj′ vk b == hash sig
verify-correct-sig : ∀ sk b → verify (verif-key sk) b (sign sk b) ≡ 1b
verify-correct-sig sk 0b = ✓→≡ (≡⇒== (hash (fst sk) ∎))
verify-correct-sig sk 1b = ✓→≡ (≡⇒== (hash (snd sk) ∎))
import Algebra.FunctionProperties.Eq
open Algebra.FunctionProperties.Eq.Implicits
module Assuming-injectivity (hash-inj : Injective hash) where
-- If one considers the hash function injective, then, so is verif-key
verif-key-inj : ∀ {sk1 sk2} → verif-key sk1 ≡ verif-key sk2 → sk1 ≡ sk2
verif-key-inj {sk1} {sk2} e
= ap₂ _,_ (hash-inj (ap fst e)) (hash-inj (ap snd e))
where
module sk1 = signkey sk1
module sk2 = signkey sk2
-- Therefor under this assumption, different secret keys means different public keys
verif-key-corrolary : ∀ {sk1 sk2} → sk1 ≢ sk2 → verif-key sk1 ≢ verif-key sk2
verif-key-corrolary {sk1} {sk2} sk≢ vk= = sk≢ (verif-key-inj vk=)
-- If one considers the hash function injective then there is
-- only one signing key which can sign correctly all (0 and 1)
-- the messages
signkey-uniqness :
∀ sk1 sk2 →
(∀ b → verify (verif-key sk1) b (sign sk2 b) ≡ 1b) →
sk1 ≡ sk2
signkey-uniqness sk1 sk2 e
= ap₂ _,_ (hash-inj (==⇒≡ (≡→✓ (e 0b))))
(hash-inj (==⇒≡ (≡→✓ (e 1b))))
module Assuming-invertibility
(unhash : Digest → Secret)
(unhash-hash : ∀ x → unhash (hash x) ≡ x)
(hash-unhash : ∀ x → hash (unhash x) ≡ x)
where
-- EXERCISES
{-
recover-signkey : VerifKey → SignKey
recover-signkey = {!!}
recover-signkey-correct : ∀ sk → recover-signkey (verif-key sk) ≡ sk
recover-signkey-correct = {!!}
forgesig : VerifKey → Bit → Signature
forgesig = {!!}
forgesig-correct : ∀ vk b → verify vk b (forgesig vk b) ≡ 1b
forgesig-correct = {!!}
-}
-- -}
|
Add Crypto.Sig.Lamport.OneBit.Abstract
|
Add Crypto.Sig.Lamport.OneBit.Abstract
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
d245f73509a8c7b6ddee9bdcd869c6144bf6d4c8
|
FunUniverse/Nand/Function.agda
|
FunUniverse/Nand/Function.agda
|
open import Data.Product
module FunUniverse.Nand.Function where
module FromNand {A} (nand : A × A → A) where
open import FunUniverse.Agda
open import FunUniverse.Nand (Abstract𝟚.funRewiring A)
open FromNand nand public
open import Data.Two
module Nand𝟚 = FromNand (uncurry nand)
open import Data.Tree.Binary
module NandTree {A} = FromNand {BinTree A} (uncurry fork)
|
Add FunUniverse/Nand/Function.agda
|
Add FunUniverse/Nand/Function.agda
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
cf87a127259d824c11c3fb4c235421022c1fc846
|
FLABloM/SemiRingRecord.agda
|
FLABloM/SemiRingRecord.agda
|
module SemiRingRecord where
import Algebra.FunctionProperties
using (LeftIdentity; RightIdentity)
import Function using (_on_)
import Relation.Binary.EqReasoning as EqReasoning
import Relation.Binary.On using (isEquivalence)
import Algebra.Structures using (module IsCommutativeMonoid; IsCommutativeMonoid)
open import Relation.Binary
using (module IsEquivalence; IsEquivalence; _Preserves₂_⟶_⟶_ ; Setoid)
open import Data.Product renaming (_,_ to _,,_) -- just to avoid clash with other commas
open import Preliminaries
open import SemiNearRingRecord
record SemiRing : Set₁ where
field
snr : SemiNearRing
open SemiNearRing snr
field
1s : s
open Algebra.FunctionProperties _≃s_ using (LeftIdentity; RightIdentity)
field
∙-identityl : LeftIdentity 1s _∙s_
∙-identityr : RightIdentity 1s _∙s_
|
Add SemiRing
|
Add SemiRing
|
Agda
|
bsd-3-clause
|
DSLsofMath/DSLsofMath
|
|
ddc36dae24c43d057f2b8f67f617631d371130bf
|
lib/Control/Process/Type.agda
|
lib/Control/Process/Type.agda
|
{-
On the one hand this module has nothing to do with JS, on the other
hand our JS binding relies on this particular type definition.
-}
module Control.Process.Type where
open import Data.String.Base using (String)
data Proc (C {-channels-} : Set₀) (M {-messages-} : Set₀) : Set₀ where
end : Proc C M
send : (d : C) (m : M) (p : Proc C M) → Proc C M
recv : (d : C) (p : M → Proc C M) → Proc C M
spawn : (p : C → Proc C M)
(q : C → Proc C M) → Proc C M
error : (err : String) → Proc C M
|
Add Control.Process.Type
|
Add Control.Process.Type
|
Agda
|
bsd-3-clause
|
audreyt/agda-libjs,crypto-agda/agda-libjs
|
|
e0c6a8e5b17986de3b0562105b17b44fb570453b
|
FiniteField/FinImplem.agda
|
FiniteField/FinImplem.agda
|
-- Implements ℤq with Data.Fin
open import Type
open import Data.Nat
open import Data.Fin.NP as Fin
open import Relation.Binary.PropositionalEquality
open import Explore.Type
open import Explore.Explorable
open Fin.Modulo renaming (sucmod to [suc]; sucmod-inj to [suc]-inj)
module FiniteField.FinImplem (q-1 : ℕ) ([0]' [1]' : Fin (suc q-1)) where
-- open Sum
q : ℕ
q = suc q-1
ℤq : ★
ℤq = Fin q
μℤq : Explorable ℤq
μℤq = {!μFinSuc q-1!}
sumℤq : Sum ℤq
sumℤq = sum μℤq
[0] : ℤq
[0] = [0]'
[1] : ℤq
[1] = [1]'
[suc]-stable : SumStableUnder (sum μℤq) [suc]
[suc]-stable = {!μFinSUI [suc] [suc]-inj!}
_ℕ⊞_ : ℕ → ℤq → ℤq
zero ℕ⊞ n = n
suc m ℕ⊞ n = m ℕ⊞ ([suc] n)
ℕ⊞-inj : ∀ n {x y} → n ℕ⊞ x ≡ n ℕ⊞ y → x ≡ y
ℕ⊞-inj zero eq = eq
ℕ⊞-inj (suc n) eq = [suc]-inj (ℕ⊞-inj n eq)
ℕ⊞-stable : ∀ m → SumStableUnder (sum μℤq) (_ℕ⊞_ m)
ℕ⊞-stable m = {!μFinSUI (_ℕ⊞_ m) (ℕ⊞-inj m)!}
_⊞_ : ℤq → ℤq → ℤq
m ⊞ n = Fin▹ℕ m ℕ⊞ n
⊞-inj : ∀ m {x y} → m ⊞ x ≡ m ⊞ y → x ≡ y
⊞-inj m = ℕ⊞-inj (Fin▹ℕ m)
⊞-stable : ∀ m → SumStableUnder (sum μℤq) (_⊞_ m)
⊞-stable m = {!μFinSUI (_⊞_ m) (⊞-inj m)!}
_ℕ⊠_ : ℕ → ℤq → ℤq
zero ℕ⊠ n = [0]
suc m ℕ⊠ n = n ⊞ (m ℕ⊠ n)
_⊠_ : ℤq → ℤq → ℤq
m ⊠ n = Fin▹ℕ m ℕ⊠ n
_[^]ℕ_ : ℤq → ℕ → ℤq
m [^]ℕ zero = [1]
m [^]ℕ suc n = m ⊠ (m [^]ℕ n)
_[^]_ : ℤq → ℤq → ℤq
m [^] n = m [^]ℕ (Fin▹ℕ n)
|
Add FiniteField/FinImplem.agda (unfinished)
|
Add FiniteField/FinImplem.agda (unfinished)
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
80516389760b8a704422d85e8bf6d5b682422d9d
|
Parametric/Change/Equivalence.agda
|
Parametric/Change/Equivalence.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
module Parametric.Change.Equivalence
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
-- Extension Point: None (currently). Do we need to allow plugins to customize
-- this concept?
Structure : Set
Structure = Unit
module Structure (unused : Structure) where
module _ {ℓ} {A} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
_≙_ : ∀ dx dy → Set
dx ≙ dy = x ⊞ dx ≡ x ⊞ dy
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = refl
≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-symm ≙ = sym ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely. That should be true for functions
-- using changes parametrically, for derivatives and function changes, and
-- for functions using only the interface to changes (including the fact
-- that function changes are functions). Stating the general result, though,
-- seems hard, we should rather have lemmas proving that certain classes of
-- functions respect this equivalence.
|
Implement delta-observational equivalence (#244, #299)
|
Implement delta-observational equivalence (#244, #299)
This proof shows that delta-observational equivalence is an equivalence
relation.
Known limitations of this commit:
* it does not show that any function respects this relation;
* it does not rephrase existing results;
* this might better belong in Base.Change.Equivalence.
Old-commit-hash: 46789e08b7a8bbd95738f9bf14b3ff8644151772
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
f58fb12a605924ada6a2cc1645dc725167a301ea
|
meaning.agda
|
meaning.agda
|
module meaning where
open import Level
record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where
constructor
meaning
field
Semantics : Set ℓ
⟦_⟧ : Syntax → Semantics
open Meaning {{...}} public
|
Add missing file.
|
Add missing file.
Forgot to add this file in commit ba1d8a8be0778b4d917c4d98c7db8f78f8f3cbbc.
Old-commit-hash: 02fcec1035aa2e0190d1ba3fc335cecbade97c9b
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
14b8f096b525d8a615d01965c700b05596b5d603
|
New/Equivalence.agda
|
New/Equivalence.agda
|
module New.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Function
open import Data.Product
open import Postulate.Extensionality
open import New.Changes
module _ {a} {A : Set a} {{CA : ChAlg A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
-- To avoid unification problems, use a one-field record (a Haskell "newtype")
-- instead of a "type synonym".
record _≙_ (dx dy : Ch A) : Set a where
-- doe = Delta-Observational Equivalence.
constructor doe
field
proof : x ⊕ dx ≡ x ⊕ dy
open _≙_ public
-- Same priority as ≡
infix 4 _≙_
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = doe refl
≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-sym ≙ = doe $ sym $ proof ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂)
-- That's standard congruence applied to ≙
≙-cong : ∀ {b} {B : Set b}
(f : A → B) {dx dy} → dx ≙ dy → f (x ⊕ dx) ≡ f (x ⊕ dy)
≙-cong f da≙db = cong f $ proof da≙db
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-sym
; trans = ≙-trans
}
≙-setoid : Setoid a a
≙-setoid = record
{ Carrier = Ch A
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
≙-syntax : ∀ {a} {A : Set a} {{CA : ChAlg A}} (x : A) (dx₁ dx₂ : Ch A) → Set a
≙-syntax x dx₁ dx₂ = _≙_ {x = x} dx₁ dx₂
syntax ≙-syntax x dx₁ dx₂ = dx₁ ≙[ x ] dx₂
module BinaryValid
{A : Set} {{CA : ChAlg A}}
{B : Set} {{CB : ChAlg B}}
{C : Set} {{CC : ChAlg C}}
(f : A → B → C) (df : A → Ch A → B → Ch B → Ch C)
where
open import Data.Product
binary-valid-preserve-hp =
∀ a da (ada : valid a da)
b db (bdb : valid b db)
→ valid (f a b) (df a da b db)
binary-valid-eq-hp =
∀ a da (ada : valid a da)
b db (bdb : valid b db)
→ (f ⊕ df) (a ⊕ da) (b ⊕ db) ≡ f a b ⊕ df a da b db
binary-valid :
binary-valid-preserve-hp →
binary-valid-eq-hp →
valid f df
binary-valid ext-valid proof a da ada =
(λ b db bdb → ext-valid a da ada b db bdb , lem2 b db bdb)
, ext lem1
where
lem1 : ∀ b → f (a ⊕ da) b ⊕ df (a ⊕ da) (nil (a ⊕ da)) b (nil b) ≡
f a b ⊕ df a da b (nil b)
lem1 b
rewrite sym (update-nil b)
| proof a da ada b (nil b) (nil-valid b)
| update-nil b = refl
lem2 : ∀ b (db : Ch B) (bdb : valid b db) →
f a (b ⊕ db) ⊕ df a da (b ⊕ db) (nil (b ⊕ db)) ≡
f a b ⊕ df a da b db
lem2 b db bdb
rewrite sym (proof a da ada (b ⊕ db) (nil (b ⊕ db)) (nil-valid (b ⊕ db)))
| update-nil (b ⊕ db) = proof a da ada b db bdb
module TernaryValid
{A : Set} {{CA : ChAlg A}}
{B : Set} {{CB : ChAlg B}}
{C : Set} {{CC : ChAlg C}}
{D : Set} {{CD : ChAlg D}}
(f : A → B → C → D) (df : A → Ch A → B → Ch B → C → Ch C → Ch D)
where
ternary-valid-preserve-hp =
∀ a da (ada : valid a da)
b db (bdb : valid b db)
c dc (cdc : valid c dc)
→ valid (f a b c) (df a da b db c dc)
-- These are explicit definitions only to speed up typechecking.
CA→B→C→D : ChAlg (A → B → C → D)
CA→B→C→D = funCA
f⊕df = (_⊕_ {{CA→B→C→D}} f df)
-- Already this definition takes a while to typecheck.
ternary-valid-eq-hp =
∀ a (da : Ch A {{CA}}) (ada : valid {{CA}} a da)
b (db : Ch B {{CB}}) (bdb : valid {{CB}} b db)
c (dc : Ch C {{CC}}) (cdc : valid {{CC}} c dc)
→ f⊕df (a ⊕ da) (b ⊕ db) (c ⊕ dc) ≡ f a b c ⊕ df a da b db c dc
ternary-valid :
ternary-valid-preserve-hp →
ternary-valid-eq-hp →
valid f df
ternary-valid ext-valid proof a da ada =
binary-valid
(λ b db bdb c dc cdc → ext-valid a da ada b db bdb c dc cdc)
lem2
, ext (λ b → ext (lem1 b))
where
open BinaryValid (f a) (df a da)
lem1 : ∀ b c → f⊕df (a ⊕ da) b c ≡ (f a ⊕ df a da) b c
lem1 b c
rewrite sym (update-nil b)
| sym (update-nil c)
|
proof
a da ada
b (nil b) (nil-valid b)
c (nil c) (nil-valid c)
| update-nil b
| update-nil c = refl
-- rewrite
-- sym
-- (proof
-- (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da))
-- b (nil b) (nil-valid b)
-- c (nil c) (nil-valid c))
-- | update-nil (a ⊕ da)
-- | update-nil b
-- | update-nil c = {! !}
lem2 : ∀ b db (bdb : valid b db)
c dc (cdc : valid c dc) →
(f a ⊕ df a da) (b ⊕ db) (c ⊕ dc)
≡ f a b c ⊕ df a da b db c dc
lem2 b db bdb c dc cdc
rewrite sym
(proof
a da ada
(b ⊕ db) (nil (b ⊕ db)) (nil-valid (b ⊕ db))
(c ⊕ dc) (nil (c ⊕ dc)) (nil-valid (c ⊕ dc))
)
| update-nil (b ⊕ db)
| update-nil (c ⊕ dc) = proof a da ada b db bdb c dc cdc
|
Add lemmas to prove function changes valid
|
Add lemmas to prove function changes valid
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
02b7dc1fcde2d5ea5944dc426ae4920689962b5d
|
experiments/NonregularTraversable.agda
|
experiments/NonregularTraversable.agda
|
-- A traversable functor that is not regular.
open import Data.Nat
open import Data.Vec
open import Data.Product
record Applicative : Set₁ where
constructor
appl
field
Map : Set → Set
pure : ∀ {A} → A → Map A
call : ∀ {A B} → Map (A → B) → Map A → Map B
Traversable : (Set → Set) → Set₁
Traversable F = (G : Applicative) →
∀ {A B} → (A → Map G B) → F A → Map G (F B)
where open Applicative
infixr 10 _^_
-- exponents for naturals
_^_ : ℕ → ℕ → ℕ
m ^ zero = 1
m ^ suc n = m * (m ^ n)
-- a regular container
RegCon : Set → Set
RegCon A = Σ ℕ (Vec A)
-- a regular traversal
regTrav : Traversable RegCon
regTrav G f (0 , []) = pure G ((0 , []))
where open Applicative
regTrav G f (suc n , x ∷ xs) =
call G (call G
(pure G (λ y nys → (suc (proj₁ nys) , y ∷ proj₂ nys)))
(f x)) (regTrav G f (n , xs))
where open Applicative
-- a nonregular language: 0, 10, 1100, 111000, ....
nonreg : ℕ → ℕ
nonreg n = let 2n = 2 ^ n in 2n * pred 2n
-- a nonregular finitary container
NonregCon : Set → Set
NonregCon A = Σ ℕ (λ n → Vec A (nonreg n))
fmap : ∀ {A B} (G : Applicative) → (A → B) →
let open Applicative in Map G A → Map G B
fmap G f gx = call G (pure G f) gx
where open Applicative
-- a nonregular traversable functor
nonregTrav : Traversable NonregCon
nonregTrav G f (n , xs) =
let
gnnys = regTrav G f ((nonreg n , xs))
in
fmap G (λ{(nn , ys) → (n , {!ys!})}) gnnys
-- should be well-typed but is not
|
add example of non-regular traversable functor
|
add example of non-regular traversable functor
|
Agda
|
mit
|
yfcai/CREG
|
|
ccc91a1d485cba9d42a78ea4ff80597f0f7e7849
|
bytecode.agda
|
bytecode.agda
|
-- This module is an example of the use of the circuit building library.
-- The point is to start with a tiny bytecode evaluator for bit operations.
module bytecode where
open import Function
open import Data.Nat
open import Data.Vec
open import Data.Product.NP
open import Data.Bits
open import Data.Bool
open import Algebra.FunctionProperties
data I : ℕ → Set where
`[] : I 1
`op₀ : ∀ {i} (b : Bit) (is : I (1 + i)) → I i
`op₁ : ∀ {i} (op₁ : Op₁ Bit) (is : I (1 + i)) → I (1 + i)
`op₂ : ∀ {i} (op₂ : Op₂ Bit) (is : I (1 + i)) → I (2 + i)
eval : ∀ {i} → I i → Bits i → Bit
eval `[] (x ∷ []) = x
eval (`op₀ b is) st = eval is (b ∷ st)
eval (`op₁ op₁ is) (b ∷ st) = eval is (op₁ b ∷ st)
eval (`op₂ op₂ is) (b₀ ∷ b₁ ∷ st) = eval is (op₂ b₀ b₁ ∷ st)
eval₀ : I 0 → Bit
eval₀ i₀ = eval i₀ []
open import circuit
module Ck {C} (cb : CircuitBuilder C) where
open CircuitBuilder cb
data IC : ℕ → Set where
`[] : IC 1
`op : ∀ {i ki ko} (op : C ki ko) (is : IC (ko + i)) → IC (ki + i)
module Eval (runC : RunCircuit C) where
module CF = CircuitBuilder bitsFunCircuitBuilder
ckIC : ∀ {i} → IC i → C i 1
ckIC `[] = idC
ckIC (`op op is) = op *** idC >>> ckIC is
evalIC : ∀ {i} → IC i → Bits i → Bit
evalIC is bs = head (runC (ckIC is) bs)
ck : ∀ {i} → I i → C i 1
ck `[] = idC
ck (`op₀ b is) = bit b *** idC >>> ck is
ck (`op₁ op₁ is) = unOp op₁ *** idC >>> ck is
ck (`op₂ op₂ is) = binOp op₂ *** idC >>> ck is
I2IC : ∀ {i} → I i → IC i
I2IC `[] = `[]
I2IC (`op₀ b is) = `op (bit b) (I2IC is)
I2IC (`op₁ op₁ is) = `op (unOp op₁) (I2IC is)
I2IC (`op₂ op₂ is) = `op (binOp op₂) (I2IC is)
ck₀ : I 0 → C 0 1
ck₀ = ck
module CheckCk where
open Ck bitsFunCircuitBuilder
open CircuitBuilder bitsFunCircuitBuilder
open import Relation.Binary.PropositionalEquality
ck-eval : ∀ {i} (is : I i) bs → ck is bs ≡ eval is bs ∷ []
ck-eval `[] (x ∷ []) = refl
ck-eval (`op₀ b is) bs = ck-eval is (b ∷ bs)
ck-eval (`op₁ op₁ is) (b ∷ bs) = ck-eval is (op₁ b ∷ bs)
ck-eval (`op₂ op₂ is) (b₀ ∷ b₁ ∷ bs) = ck-eval is (op₂ b₀ b₁ ∷ bs)
|
Add bytecode.agda to experiment with circuits
|
Add bytecode.agda to experiment with circuits
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
095f53c09c64b3abe9688067512e48f0db0bf52b
|
ZK/SigmaProtocol/KnownStatement.agda
|
ZK/SigmaProtocol/KnownStatement.agda
|
open import Type using (Type)
open import Data.Bool.Base using (Bool; true)
open import Relation.Binary.Core using (_≡_; _≢_)
-- This module assumes the exact statement of the Zero-Knowledge proof to be
-- known by all parties.
module ZK.SigmaProtocol.KnownStatement
(Commitment : Type) -- Prover commitments
(Challenge : Type) -- Verifier challenges, picked at random
(Response : Type) -- Prover responses/proofs to challenges
(Randomness : Type) -- Prover's randomness
(Witness : Type) -- Prover's witness
(ValidWitness : Witness → Type) -- Valid witness for the statement
where
-- The prover is made of two steps.
-- * First, send the commitment.
-- * Second, receive a challenge and send back the response.
--
-- Therefor one represents a prover as a pair (a record) made
-- of a commitment (get-A) and a function (get-f) from challenges
-- to responses.
--
-- Note that one might wish the function get-f to be partial.
--
-- This covers any kind of prover, either honest or dishonest
-- Notice as well that such should depend on some randomness.
-- So such a prover as type: SomeRandomness → Prover
record Prover-Interaction : Type where
constructor _,_
field
get-A : Commitment
get-f : Challenge → Response
Prover : Type
Prover = (r : Randomness)(w : Witness) → Prover-Interaction
-- A transcript of the interaction between the prover and the
-- verifier.
--
-- Note that in the case of an interactive zero-knowledge
-- proof the transcript alone does not prove anything. It can usually
-- be simulated if one knows the challenge before the commitment.
--
-- The only way to be convinced by an interactive prover is to be/trust the verifier,
-- namely to receive the commitment first and send a randomly picked challenge
-- thereafter. So the proof is not transferable.
--
-- The other way is by making the zero-knowledge proof non-interactive, which forces the
-- challenge to be a cryptographic hash of the commitment and the statement.
-- See the StrongFiatShamir module and the corresponding paper for more details.
record Transcript : Type where
constructor mk
field
get-A : Commitment
get-c : Challenge
get-f : Response
-- The actual behavior of an interactive verifier is as follows:
-- * Given a statement
-- * Receive a commitment from the prover
-- * Send a randomly chosen challenge to the prover
-- * Receive a response to that challenge
-- Since the first two points are common to all Σ-protocols we describe
-- the verifier behavior as a computable test on the transcript.
Verifier : Type
Verifier = (t : Transcript) → Bool
-- To run the interaction, one only needs the prover and a randomly
-- chosen challenge. The returned transcript is then checked by the
-- verifier afterwards.
run : Prover-Interaction → Challenge → Transcript
run (A , f) c = mk A c (f c)
-- A Σ-protocol is made of the code for honest prover
-- and honest verifier.
record Σ-Protocol : Type where
constructor _,_
field
prover : Prover
verifier : Verifier
Verified : (t : Transcript) → Type
Verified t = verifier t ≡ true
-- Correctness (also called completeness in some papers): a Σ-protocol is said
-- to be correct if for any challenge, the (honest) verifier accepts what
-- the (honest) prover returns.
Correct : Σ-Protocol → Type
Correct (prover , verifier) = ∀ r {w} c → ValidWitness w → verifier (run (prover r w) c) ≡ true
-- A simulator takes a challenge and a response and returns a commitment.
--
-- As defined next, a correct simulator picks the commitment such that
-- the transcript is accepted by the verifier.
--
-- Notice that generally, to make a valid looking transcript one should
-- randomly pick the challenge and the response.
Simulator : Type
Simulator = (c : Challenge) (s : Response) → Commitment
-- A correct simulator always convinces the honest verifier.
Correct-simulator : Verifier → Simulator → Type
Correct-simulator verifier simulator
= ∀ c s → let A = simulator c s in
verifier (mk A c s) ≡ true
{-
A Σ-protocol, more specifically a verifier which is equipped with
a correct simulator is said to be Special Honest Verifier Zero Knowledge.
This property is one of the condition to apply the Strong Fiat Shamir
transformation.
The Special part of Special-Honest-Verifier-Zero-Knowledge is covered by the
simulator being correct.
The Honest part is not covered yet, the definition is informally adapted from
the paper "How not to prove yourself":
Furthermore, if the challenge c and response s where chosen uniformly at random from their respective
domains then the triple (A, c, s) is distributed identically to that of an execution
between the (honest) prover and the (honest) verifier (run prover c).
where A = simulator c s
-}
record Special-Honest-Verifier-Zero-Knowledge (Σ-proto : Σ-Protocol) : Type where
open Σ-Protocol Σ-proto
field
simulator : Simulator
correct-simulator : Correct-simulator verifier simulator
-- A pair of "Transcript"s such that the commitment is shared
-- and the challenges are different.
record Transcript² (verifier : Verifier) : Type where
constructor mk
field
-- The commitment is shared
get-A : Commitment
-- The challenges...
get-c₀ get-c₁ : Challenge
-- ...are different
c₀≢c₁ : get-c₀ ≢ get-c₁
-- The responses/proofs are arbitrary
get-f₀ get-f₁ : Response
-- The two transcripts
t₀ : Transcript
t₀ = mk get-A get-c₀ get-f₀
t₁ : Transcript
t₁ = mk get-A get-c₁ get-f₁
field
-- The transcripts verify
verify₀ : verifier t₀ ≡ true
verify₁ : verifier t₁ ≡ true
-- Remark: What if the underlying witnesses are different? Nothing is enforced here.
-- At least in the case of the Schnorr protocol it does not matter and yield a unique
-- witness.
Extractor : Verifier → Type
Extractor verifier = Transcript² verifier → Witness
Extract-Valid-Witness : (verifier : Verifier) → Extractor verifier → Type
Extract-Valid-Witness verifier extractor = ∀ t² → ValidWitness (extractor t²)
-- A Σ-protocol, more specifically a verifier which is equipped with
-- a correct extractor is said to have the Special Soundness property.
-- This property is one of the condition to apply the Strong Fiat Shamir
-- transformation.
record Special-Soundness Σ-proto : Type where
open Σ-Protocol Σ-proto
field
-- TODO Challenge should exp large wrt the security param
extractor : Extractor verifier
extract-valid-witness : Extract-Valid-Witness verifier extractor
record Special-Σ-Protocol : Type where
field
Σ-protocol : Σ-Protocol
correct : Correct Σ-protocol
shvzk : Special-Honest-Verifier-Zero-Knowledge Σ-protocol
ssound : Special-Soundness Σ-protocol
open Σ-Protocol Σ-protocol public
open Special-Honest-Verifier-Zero-Knowledge shvzk public
open Special-Soundness ssound public
|
Add ZK.SigmaProtocol.KnowStatement
|
Add ZK.SigmaProtocol.KnowStatement
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
6419e6a499edf075accabe01063360bc7c867ef8
|
formalization/agda/Spire/Examples/CompLev.agda
|
formalization/agda/Spire/Examples/CompLev.agda
|
{-# OPTIONS --type-in-type #-}
open import Data.Unit
open import Data.Product hiding ( curry ; uncurry )
open import Data.List hiding ( concat )
open import Data.String
open import Relation.Binary.PropositionalEquality
open import Function
module Spire.Examples.CompLev where
----------------------------------------------------------------------
Label : Set
Label = String
Enum : Set
Enum = List Label
data Tag : Enum → Set where
here : ∀{l E} → Tag (l ∷ E)
there : ∀{l E} → Tag E → Tag (l ∷ E)
Branches : (E : Enum) (P : Tag E → Set) → Set
Branches [] P = ⊤
Branches (l ∷ E) P = P here × Branches E (λ t → P (there t))
case : {E : Enum} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t
case P (c , cs) here = c
case P (c , cs) (there t) = case (λ t → P (there t)) cs t
----------------------------------------------------------------------
data Tel : Set where
End : Tel
Arg : (A : Set) (B : A → Tel) → Tel
Elᵀ : Tel → Set
Elᵀ End = ⊤
Elᵀ (Arg A B) = Σ A (λ a → Elᵀ (B a))
----------------------------------------------------------------------
data Desc (I : Set) : Set where
End : Desc I
Rec : (i : I) (D : Desc I) → Desc I
RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I
Arg : (A : Set) (B : A → Desc I) → Desc I
----------------------------------------------------------------------
ISet : Set → Set
ISet I = I → Set
Elᴰ : {I : Set} (D : Desc I) → ISet I → Set
Elᴰ End X = ⊤
Elᴰ (Rec j D) X = X j × Elᴰ D X
Elᴰ (RecFun A B D) X = ((a : A) → X (B a)) × Elᴰ D X
Elᴰ (Arg A B) X = Σ A (λ a → Elᴰ (B a) X)
Hyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (xs : Elᴰ D X) → Set
Hyps End X P tt = ⊤
Hyps (Rec i D) X P (x , xs) = P i x × Hyps D X P xs
Hyps (RecFun A B D) X P (f , xs) = ((a : A) → P (B a) (f a)) × Hyps D X P xs
Hyps (Arg A B) X P (a , xs) = Hyps (B a) X P xs
----------------------------------------------------------------------
data μ {I : Set} (R : I → Desc I) (i : I) : Set where
init : Elᴰ (R i) (μ R) → μ R i
----------------------------------------------------------------------
ind : {I : Set} (R : I → Desc I)
(M : (i : I) → μ R i → Set)
(α : ∀ i (xs : Elᴰ (R i) (μ R)) (ihs : Hyps (R i) (μ R) M xs) → M i (init xs))
(i : I)
(x : μ R i)
→ M i x
prove : {I : Set} (D : Desc I) (R : I → Desc I)
(M : (i : I) → μ R i → Set)
(α : ∀ i (xs : Elᴰ (R i) (μ R)) (ihs : Hyps (R i) (μ R) M xs) → M i (init xs))
(xs : Elᴰ D (μ R)) → Hyps D (μ R) M xs
ind R M α i (init xs) = α i xs (prove (R i) R M α xs)
prove End R M α tt = tt
prove (Rec j D) R M α (x , xs) = ind R M α j x , prove D R M α xs
prove (RecFun A B D) R M α (f , xs) = (λ a → ind R M α (B a) (f a)) , prove D R M α xs
prove (Arg A B) R M α (a , xs) = prove (B a) R M α xs
----------------------------------------------------------------------
DescE : Enum
DescE = "End" ∷ "Rec" ∷ "Arg" ∷ []
DescT : Set
DescT = Tag DescE
-- EndT : DescT
pattern EndT = here
-- RecT : DescT
pattern RecT = there here
-- ArgT : DescT
pattern ArgT = there (there here)
DescR : Set → ⊤ → Desc ⊤
DescR I tt = Arg (Tag DescE)
(case (λ _ → Desc ⊤) (
(Arg I λ i → End)
, (Arg I λ i → Rec tt End)
, (Arg Set λ A → RecFun A (λ a → tt) End)
, tt
))
`Desc : (I : Set) → Set
`Desc I = μ (DescR I) tt
-- `End : {I : Set} (i : I) → `Desc I
pattern `End i = init (EndT , i , tt)
-- `Rec : {I : Set} (i : I) (D : `Desc I) → `Desc I
pattern `Rec i D = init (RecT , i , D , tt)
-- `Arg : {I : Set} (A : Set) (B : A → `Desc I) → `Desc I
pattern `Arg A B = init (ArgT , A , B , tt)
----------------------------------------------------------------------
FixI : (I : Set) → Set
FixI I = I × `Desc I
FixR' : (I : Set) (D : `Desc I) → I → `Desc I → Desc (FixI I)
FixR' I D i (`End j) = Arg (j ≡ i) λ q → End
FixR' I D i (`Rec j E) = Rec (j , D) (FixR' I D i E)
FixR' I D i (`Arg A B) = Arg A λ a → FixR' I D i (B a)
FixR' I D i (init (there (there (there ())) , xs))
FixR : (I : Set) (D : `Desc I) → FixI I → Desc (FixI I)
FixR I D E,i = FixR' I D (proj₁ E,i) (proj₂ E,i)
`Fix : (I : Set) (D : `Desc I) (i : I) → Set
`Fix I D i = μ (FixR I D) (i , D)
----------------------------------------------------------------------
|
Fix internalized as a computational description.
|
Fix internalized as a computational description.
The idea is that the core could have computatial descriptions,
which do not mention things like which arguments are implicit,
and Desc can be internalized as a description like the current
primitive (non-computational) description that also mentions
which arguments are implicit. Then you can define the fixpoint
of that description as a computational description, parameterized
by (I : Set) (D : DescI) and indexed by (i : I) (E : Desc I).
It's cool that you can do this but I think it's one step too far
in the direction of making the core type theory simple in exchange
for more complicated derivable programs.
If anything, defining `Desc, making an interpretation function for
it, along with a toDesc function might be okay. But, again I think
defining `Fix is probably not worthwhile.
|
Agda
|
bsd-3-clause
|
spire/spire
|
|
3be44d190ddb71b95417f9028965e046e7938081
|
agda/Language/Greek.agda
|
agda/Language/Greek.agda
|
module Language.Greek where
data Maybe A : Set where
none : Maybe A
just : A → Maybe A
data Unicode : Set where
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω : Unicode
grave acute diaeresis smooth rough circumflex iotaSubscript : Unicode
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
{-# COMPILED_TYPE Char Char #-}
charToUnicode : Char -> Maybe Unicode
charToUnicode 'Α' = just Α
charToUnicode 'Β' = just Β
charToUnicode 'Γ' = just Γ
charToUnicode 'Δ' = just Δ
charToUnicode 'Ε' = just Ε
charToUnicode 'Ζ' = just Ζ
charToUnicode 'Η' = just Η
charToUnicode 'Θ' = just Θ
charToUnicode 'Ι' = just Ι
charToUnicode 'Κ' = just Κ
charToUnicode 'Λ' = just Λ
charToUnicode 'Μ' = just Μ
charToUnicode 'Ν' = just Ν
charToUnicode 'Ξ' = just Ξ
charToUnicode 'Ο' = just Ο
charToUnicode 'Π' = just Π
charToUnicode 'Ρ' = just Ρ
charToUnicode 'Σ' = just Σ
charToUnicode 'Τ' = just Τ
charToUnicode 'Υ' = just Υ
charToUnicode 'Φ' = just Φ
charToUnicode 'Χ' = just Χ
charToUnicode 'Ψ' = just Ψ
charToUnicode 'Ω' = just Ω
charToUnicode 'α' = just α
charToUnicode 'β' = just β
charToUnicode 'γ' = just γ
charToUnicode 'δ' = just δ
charToUnicode 'ε' = just ε
charToUnicode 'ζ' = just ζ
charToUnicode 'η' = just η
charToUnicode 'θ' = just θ
charToUnicode 'ι' = just ι
charToUnicode 'κ' = just κ
charToUnicode 'λ' = just λ′
charToUnicode 'μ' = just μ
charToUnicode 'ν' = just ν
charToUnicode 'ξ' = just ξ
charToUnicode 'ο' = just ο
charToUnicode 'π' = just π
charToUnicode 'ρ' = just ρ
charToUnicode 'ς' = just ς
charToUnicode 'σ' = just σ
charToUnicode 'τ' = just τ
charToUnicode 'υ' = just υ
charToUnicode 'φ' = just φ
charToUnicode 'χ' = just χ
charToUnicode 'ψ' = just ψ
charToUnicode 'ω' = just ω
charToUnicode '\x0300' = just grave -- COMBINING GRAVE ACCENT
charToUnicode '\x0301' = just acute -- COMBINING ACUTE ACCENT
charToUnicode '\x0308' = just diaeresis -- COMBINING DIAERESIS
charToUnicode '\x0313' = just smooth -- COMBINING COMMA ABOVE
charToUnicode '\x0314' = just rough -- COMBINING REVERSED COMMA ABOVE
charToUnicode '\x0342' = just circumflex -- COMBINING GREEK PERISPOMENI
charToUnicode '\x0345' = just iotaSubscript -- COMBINING GREEK YPOGEGRAMMENI
charToUnicode _ = none
data UnicodeCategory : Set where
letter mark : UnicodeCategory
unicodeToCategory : Unicode → UnicodeCategory
unicodeToCategory Α = letter
unicodeToCategory Β = letter
unicodeToCategory Γ = letter
unicodeToCategory Δ = letter
unicodeToCategory Ε = letter
unicodeToCategory Ζ = letter
unicodeToCategory Η = letter
unicodeToCategory Θ = letter
unicodeToCategory Ι = letter
unicodeToCategory Κ = letter
unicodeToCategory Λ = letter
unicodeToCategory Μ = letter
unicodeToCategory Ν = letter
unicodeToCategory Ξ = letter
unicodeToCategory Ο = letter
unicodeToCategory Π = letter
unicodeToCategory Ρ = letter
unicodeToCategory Σ = letter
unicodeToCategory Τ = letter
unicodeToCategory Υ = letter
unicodeToCategory Φ = letter
unicodeToCategory Χ = letter
unicodeToCategory Ψ = letter
unicodeToCategory Ω = letter
unicodeToCategory α = letter
unicodeToCategory β = letter
unicodeToCategory γ = letter
unicodeToCategory δ = letter
unicodeToCategory ε = letter
unicodeToCategory ζ = letter
unicodeToCategory η = letter
unicodeToCategory θ = letter
unicodeToCategory ι = letter
unicodeToCategory κ = letter
unicodeToCategory λ′ = letter
unicodeToCategory μ = letter
unicodeToCategory ν = letter
unicodeToCategory ξ = letter
unicodeToCategory ο = letter
unicodeToCategory π = letter
unicodeToCategory ρ = letter
unicodeToCategory σ = letter
unicodeToCategory ς = letter
unicodeToCategory τ = letter
unicodeToCategory υ = letter
unicodeToCategory φ = letter
unicodeToCategory χ = letter
unicodeToCategory ψ = letter
unicodeToCategory ω = letter
unicodeToCategory grave = mark
unicodeToCategory acute = mark
unicodeToCategory diaeresis = mark
unicodeToCategory smooth = mark
unicodeToCategory rough = mark
unicodeToCategory circumflex = mark
unicodeToCategory iotaSubscript = mark
data List A : Set where
[] : List A
_∷_ : A → List A -> List A
infixr 6 _∷_
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f y [] = y
foldr f y (x ∷ xs) = f x (foldr f y xs)
data _And_ : (A : Set) → (B : Set) → Set₁ where
_and_ : {A B : Set} → A → B → A And B
data ConcreteLetter : Set where
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω : ConcreteLetter
data ConcreteMark : Set where
grave acute diaeresis smooth rough circumflex iotaSubscript : ConcreteMark
|
Add an initial start for an Agda model.
|
Add an initial start for an Agda model.
|
Agda
|
mit
|
scott-fleischman/greek-grammar,scott-fleischman/greek-grammar
|
|
8eb3bf726fb7d12e74f6c4c5fd3b4b9b641cfefd
|
lib/Algebra/Nearring.agda
|
lib/Algebra/Nearring.agda
|
{-# OPTIONS --without-K #-}
open import Relation.Binary.PropositionalEquality.NP
import Algebra.FunctionProperties.Eq
open Algebra.FunctionProperties.Eq.Implicits
open import Function.Extensionality
open import Data.Product.NP
open import Data.Nat.NP using (ℕ; zero; fold) renaming (suc to 1+)
open import Data.Integer using (ℤ; +_; -[1+_])
open import Algebra.Raw
open import Algebra.Monoid
open import Algebra.Monoid.Commutative
open import Algebra.Group
open import Algebra.Group.Abelian
open import HoTT
module Algebra.Nearring where
record Nearring+1-Struct {ℓ} {A : Set ℓ} (rng-ops : Ring-Ops A) : Set ℓ where
open Ring-Ops rng-ops
open ≡-Reasoning
field
+-grp-struct : Group-Struct +-grp-ops
*-mon-struct : Monoid-Struct *-mon-ops
*-+-distrʳ : _*_ DistributesOverʳ _+_
open Additive-Group-Struct +-grp-struct public
-- 0−-involutive : Involutive 0−_
-- cancels-+-left : LeftCancel _+_
-- cancels-+-right : RightCancel _+_
-- ...
open Multiplicative-Monoid-Struct *-mon-struct public
open From-Ring-Ops rng-ops
open From-+Group-1*Identity-DistributesOverʳ
+-assoc
0+-identity
+0-identity
(snd 0−-inverse)
1*-identity
*-+-distrʳ
public
+-grp : Group A
+-grp = +-grp-ops , +-grp-struct
module +-Grp = Group +-grp
*-mon : Monoid A
*-mon = *-mon-ops , *-mon-struct
module *-Mon = Monoid *-mon
record Nearring+1 {ℓ} (A : Set ℓ) : Set ℓ where
field
rng-ops : Ring-Ops A
nearring+1-struct : Nearring+1-Struct rng-ops
open Ring-Ops rng-ops public
open Nearring+1-Struct nearring+1-struct public
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add Nearring+1
|
Add Nearring+1
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
|
b5129ee5c0b5ffae12387ee403ca85c9cabd2fb1
|
lib/FFI/JS/BigI.agda
|
lib/FFI/JS/BigI.agda
|
open import FFI.JS hiding (toString)
module FFI.JS.BigI where
abstract
BigI : Set
BigI = JSValue
BigI▹JSValue : BigI → JSValue
BigI▹JSValue x = x
unsafe-JSValue▹BigI : BigI → JSValue
unsafe-JSValue▹BigI x = x
postulate
bigI : (x base : String) → BigI
add : (x y : BigI) → BigI
multiply : (x y : BigI) → BigI
mod : (x y : BigI) → BigI
modPow : (this e m : BigI) → BigI
modInv : (this m : BigI) → BigI
equals : (x y : BigI) → Bool
toString : (x : BigI) → String
fromHex : String → BigI
toHex : BigI → String
{-# COMPILED_JS bigI function(x) { return function (y) { return require("bigi")(x,y); }; } #-}
{-# COMPILED_JS add function(x) { return function (y) { return x.add(y); }; } #-}
{-# COMPILED_JS multiply function(x) { return function (y) { return x.multiply(y); }; } #-}
{-# COMPILED_JS mod function(x) { return function (y) { return x.mod(y); }; } #-}
{-# COMPILED_JS modPow function(x) { return function (y) { return function (z) { return x.modPow(y,z); }; }; } #-}
{-# COMPILED_JS modInv function(x) { return function (y) { return x.modInverse(y); }; } #-}
{-# COMPILED_JS equals function(x) { return function (y) { return x.equals(y); }; } #-}
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
{-# COMPILED_JS fromHex require("bigi").fromHex #-}
{-# COMPILED_JS toHex function(x) { return x.toHex(); } #-}
0I 1I 2I : BigI
0I = bigI "0" "10"
1I = bigI "1" "10"
2I = bigI "2" "10"
|
Add FFI.JS.BigI
|
Add FFI.JS.BigI
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-libjs,audreyt/agda-libjs
|
|
27acbf899d88340ad1d03042fa744d1a3b783e0c
|
Base/Change/Sums.agda
|
Base/Change/Sums.agda
|
module Base.Change.Sums where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Base.Change.Equivalence
open import Postulate.Extensionality
open import Data.Sum
module SumChanges ℓ (X Y : Set ℓ) {{CX : ChangeAlgebra ℓ X}} {{CY : ChangeAlgebra ℓ Y}} where
open ≡-Reasoning
data SumChange : X ⊎ Y → Set ℓ where
ch₁ : ∀ {x} → (dx : Δ x) → SumChange (inj₁ x)
rp₁₂ : ∀ {x} → (y : Y) → SumChange (inj₁ x)
ch₂ : ∀ {y} → (dy : Δ y) → SumChange (inj₂ y)
rp₂₁ : ∀ {y} → (x : X) → SumChange (inj₂ y)
_⊕_ : (v : X ⊎ Y) → SumChange v → X ⊎ Y
inj₁ x ⊕ ch₁ dx = inj₁ (x ⊞ dx)
inj₂ y ⊕ ch₂ dy = inj₂ (y ⊞ dy)
inj₁ x ⊕ rp₁₂ y = inj₂ y
inj₂ y ⊕ rp₂₁ x = inj₁ x
_⊝_ : ∀ (v₂ v₁ : X ⊎ Y) → SumChange v₁
inj₁ x₂ ⊝ inj₁ x₁ = ch₁ (x₂ ⊟ x₁)
inj₂ y₂ ⊝ inj₂ y₁ = ch₂ (y₂ ⊟ y₁)
inj₂ y₂ ⊝ inj₁ x₁ = rp₁₂ y₂
inj₁ x₂ ⊝ inj₂ y₁ = rp₂₁ x₂
s-nil : (v : X ⊎ Y) → SumChange v
s-nil (inj₁ x) = ch₁ (nil x)
s-nil (inj₂ y) = ch₂ (nil y)
s-update-diff : ∀ (u v : X ⊎ Y) → v ⊕ (u ⊝ v) ≡ u
s-update-diff (inj₁ x₂) (inj₁ x₁) = cong inj₁ (update-diff x₂ x₁)
s-update-diff (inj₂ y₂) (inj₂ y₁) = cong inj₂ (update-diff y₂ y₁)
s-update-diff (inj₁ x₂) (inj₂ y₁) = refl
s-update-diff (inj₂ y₂) (inj₁ x₁) = refl
s-update-nil : ∀ v → v ⊕ (s-nil v) ≡ v
s-update-nil (inj₁ x) = cong inj₁ (update-nil x)
s-update-nil (inj₂ y) = cong inj₂ (update-nil y)
changeAlgebra : ChangeAlgebra ℓ (X ⊎ Y)
changeAlgebra = record
{ Change = SumChange
; update = _⊕_
; diff = _⊝_
; nil = s-nil
; isChangeAlgebra = record
{ update-diff = s-update-diff
; update-nil = s-update-nil
}
}
inj₁′ : (x : X) → (dx : Δ x) → Δ (inj₁ x)
inj₁′ x dx = ch₁ dx
inj₁′Derivative : Derivative inj₁ inj₁′
inj₁′Derivative x dx = refl
inj₂′ : (y : Y) → (dy : Δ y) → Δ (inj₂ y)
inj₂′ y dy = ch₂ dy
inj₂′Derivative : Derivative inj₂ inj₂′
inj₂′Derivative y dy = refl
-- Elimination form for sums. This is a less dependently-typed version of
-- [_,_].
match : ∀ {Z : Set ℓ} → (X → Z) → (Y → Z) → X ⊎ Y → Z
match f g (inj₁ x) = f x
match f g (inj₂ y) = g y
module _ {Z : Set ℓ} {{CZ : ChangeAlgebra ℓ Z}} where
X→Z = FunctionChanges.changeAlgebra X Z
--module ΔX→Z = FunctionChanges X Z {{CX}} {{CZ}}
Y→Z = FunctionChanges.changeAlgebra Y Z
--module ΔY→Z = FunctionChanges Y Z {{CY}} {{CZ}}
X⊎Y→Z = FunctionChanges.changeAlgebra (X ⊎ Y) Z
Y→Z→X⊎Y→Z = FunctionChanges.changeAlgebra (Y → Z) (X ⊎ Y → Z)
open FunctionChanges using (apply; correct)
match′₀-realizer : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → (s : X ⊎ Y) → Δ s → Δ (match f g s)
match′₀-realizer f df g dg (inj₁ x) (ch₁ dx) = apply df x dx
match′₀-realizer f df g dg (inj₁ x) (rp₁₂ y) = ((g ⊞ dg) y) ⊟ (f x)
match′₀-realizer f df g dg (inj₂ y) (rp₂₁ x) = ((f ⊞ df) x) ⊟ (g y)
match′₀-realizer f df g dg (inj₂ y) (ch₂ dy) = apply dg y dy
match′₀-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (ds : Δ s) → match f g (s ⊕ ds) ⊞ match′₀-realizer f df g dg (s ⊕ ds) (nil (s ⊕ ds)) ≡ match f g s ⊞ match′₀-realizer f df g dg s ds
match′₀-realizer-correct f df g dg (inj₁ x) (ch₁ dx) = correct df x dx
match′₀-realizer-correct f df g dg (inj₂ y) (ch₂ dy) = correct dg y dy
match′₀-realizer-correct f df g dg (inj₁ x) (rp₁₂ y) rewrite update-diff ((g ⊞ dg) y) (f x) = refl
match′₀-realizer-correct f df g dg (inj₂ y) (rp₂₁ x) rewrite update-diff ((f ⊞ df) x) (g y) = refl
match′₀ : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → Δ (match f g)
match′₀ f df g dg = record { apply = match′₀-realizer f df g dg ; correct = match′₀-realizer-correct f df g dg }
match′-realizer-correct-body : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) →
(match f (g ⊞ dg) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg))) s ≡ (match f g ⊞ match′₀ f df g dg) s
match′-realizer-correct-body f df g dg (inj₁ x) = refl
-- refl doesn't work here. That seems a *huge* bad smell. However, that's simply because we're only updating g, not f
match′-realizer-correct-body f df g dg (inj₂ y) rewrite update-nil y = update-diff (g y ⊞ apply dg y (nil y)) (g y ⊞ apply dg y (nil y))
match′-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) →
(match f (g ⊞ dg)) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg)) ≡ match f g ⊞ match′₀ f df g dg
match′-realizer-correct f df g dg = ext (match′-realizer-correct-body f df g dg)
match′ : (f : X → Z) → Δ f → Δ (match f)
match′ f df = record { apply = λ g dg → match′₀ f df g dg ; correct = match′-realizer-correct f df }
|
Implement change structure for sum types
|
Implement change structure for sum types
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
98776944ea4983b6faeeced4116bc7798c5e3ebc
|
Crypto/Sig/Lamport.agda
|
Crypto/Sig/Lamport.agda
|
{-# OPTIONS --without-K #-}
open import Function using (_∘_)
open import Data.Nat.NP hiding (_==_)
open import Data.Product.NP hiding (map)
open import Data.Bit hiding (_==_)
open import Data.Bits
open import Data.Bits.Properties
open import Data.Vec.NP
open import Relation.Binary.PropositionalEquality.NP
import Crypto.Sig.LamportOneBit
module Crypto.Sig.Lamport
(#digest : ℕ)
(#seed : ℕ)
(#secret : ℕ)
(#message : ℕ)
(hash-secret : Bits #secret → Bits #digest)
(seed-expansion : Bits #seed → Bits (#message * 2* #secret))
where
module OTS1 = Crypto.Sig.LamportOneBit #secret #digest hash-secret
H = hash-secret
#seckey1 = 2* #secret
#pubkey1 = 2* #digest
#signature1 = #secret
#seckey = #message * #seckey1
#pubkey = #message * #pubkey1
#signature = #message * #signature1
Digest = Bits #digest
Seed = Bits #seed
Secret = Bits #secret
SignKey = Bits #seckey
Message = Bits #message
Signature = Bits #signature
VerifKey = Bits #pubkey
verif-key : SignKey → VerifKey
verif-key = map* #message OTS1.verif-key
module verifkey (vk : VerifKey) where
vk1s = group #message #pubkey1 vk
module signkey (sk : SignKey) where
sk1s = group #message #seckey1 sk
vk = verif-key sk
open verifkey vk public
module signature (sig : Signature) where
sig1s = group #message #signature1 sig
key-gen : Seed → VerifKey × SignKey
key-gen s = vk , sk
module key-gen where
sk = seed-expansion s
vk = verif-key sk
sign : SignKey → Message → Signature
sign sk m = sig
module sign where
open signkey sk public
sig1s = map OTS1.sign sk1s ⊛ m
sig = concat sig1s
verify : VerifKey → Message → Signature → Bit
verify vk m sig = and (map OTS1.verify vk1s ⊛ m ⊛ sig1s)
module verify where
open verifkey vk public
open signature sig public
verify-correct-sig : ∀ sk m → verify (verif-key sk) m (sign sk m) ≡ 1b
verify-correct-sig = lemma
where
module lemma {#m} sk b m where
skL = take #seckey1 sk
skH = drop #seckey1 sk
vkL = OTS1.verif-key skL
vkH = map* #m OTS1.verif-key skH
sigL = OTS1.sign skL b
sigH = concat (map OTS1.sign (group #m #seckey1 skH) ⊛ m)
lemma : ∀ {#m} sk m → and (map OTS1.verify (group #m #pubkey1 (map* #m OTS1.verif-key sk)) ⊛ m ⊛ group #m #signature1
(concat (map OTS1.sign (group #m #seckey1 sk) ⊛ m))) ≡ 1b
lemma sk [] = refl
lemma sk (b ∷ m)
rewrite (let open lemma sk b m in take-++ #pubkey1 vkL vkH)
| (let open lemma sk b m in drop-++ #pubkey1 vkL vkH)
| (let open lemma sk b m in take-++ #signature1 sigL sigH)
| (let open lemma sk b m in drop-++ #signature1 sigL sigH)
| (let open lemma sk b m in OTS1.verify-correct-sig skL b)
| (let open lemma sk b m in lemma skH m)
= refl
-- -}
-- -}
-- -}
-- -}
|
Add Crypto.Sig.Lamport
|
Add Crypto.Sig.Lamport
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
128af4af6ee42b630e845312b9e05e5b42880cae
|
Control/Strategy/Utils.agda
|
Control/Strategy/Utils.agda
|
{-# OPTIONS --copatterns #-}
open import Type
open import Function
open import Data.Product
open import Control.Strategy renaming (map to mapS)
module Control.Strategy.Utils where
record Proto : ★₁ where
constructor P[_,_]
field
Q : ★
R : Q → ★
Client : Proto → ★ → ★
Client P[ Q , R ] A = Strategy Q R A
{-
data Bisim {P P' A A'} (RA : A → A' → ★) : Client P A → Client P' A' → ★ where
ask-nop : ∀ {q? cont clt} r
→ Bisim RA (cont r) clt
→ Bisim RA (ask q? cont) clt
ask-ask : ∀ q₀ q₁ cont₀ cont₁ r₀ r₁
→ ({!!} → Bisim RA (cont₀ r₀) (cont₁ r₁))
→ Bisim RA (ask q₀ cont₀) (ask q₁ cont₁)
-}
module Unused where
mapS' : ∀ {A B Q Q' R} (f : A → B) (g : Q → Q') → Strategy Q (R ∘ g) A → Strategy Q' R B
mapS' f g (ask q cont) = ask (g q) (λ r → mapS' f g (cont r))
mapS' f g (done x) = done (f x)
[_,_]=<<_ : ∀ {A B Q Q' R} (f : A → Strategy Q' R B) (g : Q → Q') → Strategy Q (R ∘ g) A → Strategy Q' R B
[ f , g ]=<< ask q? cont = ask (g q?) (λ r → [ f , g ]=<< cont r)
[ f , g ]=<< done x = f x
module Rec {A B Q : ★} {R : Q → ★} {M : ★ → ★}
(runAsk : ∀ {A} → (q : Q) → (R q → M A) → M A)
(runDone : A → M B) where
runMM : Strategy Q R A → M B
runMM (ask q? cont) = runAsk q? (λ r → runMM (cont r))
runMM (done x) = runDone x
module MM {A B Q : ★} {R : Q → ★} {M : ★ → ★}
(_>>=M_ : ∀ {A B : ★} → M A → (A → M B) → M B)
(runAsk : (q : Q) → M (R q))
(runDone : A → M B) where
runMM : Strategy Q R A → M B
runMM (ask q? cont) = runAsk q? >>=M (λ r → runMM (cont r))
runMM (done x) = runDone x
module _ {A B Q Q' : ★} {R : Q → ★} {R'}
(f : (q : Q) → Strategy Q' R' (R q))
(g : A → Strategy Q' R' B) where
[_,_]=<<'_ : Strategy Q R A → Strategy Q' R' B
[_,_]=<<'_ (ask q? cont) = f q? >>= λ r → [_,_]=<<'_ (cont r)
[_,_]=<<'_ (done x) = g x
record ServerResp (P : Proto) (q : Proto.Q P) (A : ★₀) : ★₀ where
coinductive
open Proto P
field
srv-resp : R q
srv-cont : ∀ q → ServerResp P q A
open ServerResp
Server : Proto → ★₀ → ★₀
Server P A = ∀ q → ServerResp P q A
OracleServer : Proto → ★₀
OracleServer P[ Q , R ] = (q : Q) → R q
module _ {P : Proto} {A : ★} where
open Proto P
com : Server P A → Client P A → A
com srv (ask q κc) = com (srv-cont r) (κc (srv-resp r)) where r = srv q
com srv (done x) = x
module _ {P P' : Proto} {A A' : ★} where
module P = Proto P
module P' = Proto P'
record MITM : ★ where
coinductive
field
hack-query : (q' : P'.Q) → Client P (P'.R q' × MITM)
hack-result : A' → Client P A
open MITM
module WithOutBind where
hacked-com-client : Server P A → MITM → Client P' A' → A
hacked-com-mitm : ∀ {q'} → Server P A → Client P (P'.R q' × MITM) → (P'.R q' → Client P' A') → A
hacked-com-srv-resp : ∀ {q q'} → ServerResp P q A → (P.R q → Client P (P'.R q' × MITM)) → (P'.R q' → Client P' A') → A
hacked-com-srv-resp r mitm clt = hacked-com-mitm (srv-cont r) (mitm (srv-resp r)) clt
hacked-com-mitm srv (ask q? mitm) clt = hacked-com-srv-resp (srv q?) mitm clt
hacked-com-mitm srv (done (r' , mitm)) clt = hacked-com-client srv mitm (clt r')
hacked-com-client srv mitm (ask q' κc) = hacked-com-mitm srv (hack-query mitm q') κc
hacked-com-client srv mitm (done x) = com srv (hack-result mitm x)
mitm-to-client-trans : MITM → Client P' A' → Client P A
mitm-to-client-trans mitm (ask q? cont) = hack-query mitm q? >>= λ { (r' , mitm') → mitm-to-client-trans mitm' (cont r') }
mitm-to-client-trans mitm (done x) = hack-result mitm x
hacked-com : Server P A → MITM → Client P' A' → A
hacked-com srv mitm clt = com srv (mitm-to-client-trans mitm clt)
module _ (P : Proto) (A : ★) where
open Proto P
open MITM
honest : MITM {P} {P} {A} {A}
hack-query honest q = ask q λ r → done (r , honest)
hack-result honest a = done a
module _ (P : Proto) (A : ★) (Oracle : OracleServer P) where
oracle-server : Server P A
srv-resp (oracle-server q) = Oracle q
srv-cont (oracle-server q) = oracle-server
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add Control.Strategy.Utils
|
Add Control.Strategy.Utils
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
f4f6e7a3cad61d0a276de2905272032cf125b5eb
|
lib/Data/Product/Param/Binary.agda
|
lib/Data/Product/Param/Binary.agda
|
{-# OPTIONS --without-K #-}
open import Level
open import Data.Product
renaming (proj₁ to fst; proj₂ to snd)
open import Function.Param.Binary
module Data.Product.Param.Binary where
record ⟦Σ⟧ {a₁ a₂ b₂ b₁ aᵣ bᵣ}
{A₁ : Set a₁} {A₂ : Set a₂}
{B₁ : A₁ → Set b₁}
{B₂ : A₂ → Set b₂}
(Aᵣ : A₁ → A₂ → Set aᵣ)
(Bᵣ : {x₁ : A₁} {x₂ : A₂} (xᵣ : Aᵣ x₁ x₂)
→ B₁ x₁ → B₂ x₂ → Set bᵣ)
(p₁ : Σ A₁ B₁) (p₂ : Σ A₂ B₂) : Set (aᵣ ⊔ bᵣ) where
constructor _⟦,⟧_
field
⟦fst⟧ : Aᵣ (fst p₁) (fst p₂)
⟦snd⟧ : Bᵣ ⟦fst⟧ (snd p₁) (snd p₂)
open ⟦Σ⟧ public
infixr 4 _⟦,⟧_
syntax ⟦Σ⟧ Aᵣ (λ xᵣ → e) = [ xᵣ ∶ Aᵣ ]⟦×⟧[ e ]
⟦∃⟧ : ∀ {a₁ a₂ b₂ b₁ aᵣ bᵣ}
{A₁ : Set a₁} {A₂ : Set a₂}
{Aᵣ : A₁ → A₂ → Set aᵣ}
{B₁ : A₁ → Set b₁}
{B₂ : A₂ → Set b₂}
(Bᵣ : ⟦Pred⟧ bᵣ Aᵣ B₁ B₂)
(p₁ : Σ A₁ B₁) (p₂ : Σ A₂ B₂) → Set _
⟦∃⟧ = ⟦Σ⟧ _
syntax ⟦∃⟧ (λ xᵣ → e) = ⟦∃⟧[ xᵣ ] e
_⟦×⟧_ : ∀ {a₁ a₂ b₂ b₁ aᵣ bᵣ}
{A₁ : Set a₁} {A₂ : Set a₂}
{B₁ : Set b₁} {B₂ : Set b₂}
(Aᵣ : A₁ → A₂ → Set aᵣ)
(Bᵣ : B₁ → B₂ → Set bᵣ)
(p₁ : A₁ × B₁) (p₂ : A₂ × B₂) → Set (aᵣ ⊔ bᵣ)
_⟦×⟧_ Aᵣ Bᵣ = ⟦Σ⟧ Aᵣ (λ _ → Bᵣ)
{-
_⟦×⟧_ : ∀ {a₁ a₂ aᵣ} {A₁ : Set a₁} {A₂ : Set a₂} (Aᵣ : A₁ → A₂ → Set aᵣ)
{b₁ b₂ bᵣ} {B₁ : Set b₁} {B₂ : Set b₂} (Bᵣ : B₁ → B₂ → Set bᵣ)
(p₁ : A₁ × B₁) (p₂ : A₂ × B₂) → Set _
_⟦×⟧_ Aᵣ Bᵣ = λ p₁ p₂ → Aᵣ (fst p₁) (fst p₂) ×
Bᵣ (snd p₁) (snd p₂)
-}
{- One can give these two types to ⟦_,_⟧:
⟦_,_⟧' : ∀ {a₁ a₂ b₁ b₂ aᵣ bᵣ}
{A₁ : Set a₁} {A₂ : Set a₂}
{B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂}
{Aᵣ : ⟦Set⟧ aᵣ A₁ A₂}
{Bᵣ : ⟦Pred⟧ Aᵣ bᵣ B₁ B₂}
{x₁ x₂ y₁ y₂}
(xᵣ : Aᵣ x₁ x₂)
(yᵣ : Bᵣ xᵣ y₁ y₂)
→ ⟦Σ⟧ Aᵣ Bᵣ (x₁ , y₁) (x₂ , y₂)
⟦_,_⟧' = ⟦_,_⟧
⟦_,_⟧'' : ∀ {a₁ a₂ b₁ b₂ aᵣ bᵣ}
{A₁ : Set a₁} {A₂ : Set a₂}
{B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂}
{Aᵣ : ⟦Set⟧ aᵣ A₁ A₂}
{Bᵣ : ⟦Pred⟧ Aᵣ bᵣ B₁ B₂}
{p₁ p₂}
(⟦fst⟧ : Aᵣ (fst p₁) (fst p₂))
(⟦snd⟧ : Bᵣ ⟦fst⟧ (snd p₁) (snd p₂))
→ ⟦Σ⟧ Aᵣ Bᵣ p₁ p₂
⟦_,_⟧'' = ⟦_,_⟧
-}
|
add Data.Product.Param.Binary
|
add Data.Product.Param.Binary
|
Agda
|
bsd-3-clause
|
np/agda-parametricity
|
|
8fd23013cafc4153d1b4a63b41e95bc6ecbbac7e
|
Crypto/Sig/LamportOneBit.agda
|
Crypto/Sig/LamportOneBit.agda
|
{-# OPTIONS --without-K #-}
open import Data.Nat.NP hiding (_==_)
open import Data.Product.NP hiding (map)
open import Data.Bit hiding (_==_)
open import Data.Bits
open import Data.Bits.Properties
open import Data.Vec.NP
open import Relation.Binary.PropositionalEquality.NP
module Crypto.Sig.LamportOneBit
(#secret : ℕ)
(#digest : ℕ)
(hash : Bits #secret → Bits #digest)
where
#signkey = 2* #secret
#verifkey = 2* #digest
#signature = #secret
Digest = Bits #digest
Secret = Bits #secret
SignKey = Bits #signkey
Signature = Bits #signature
VerifKey = Bits #verifkey
module signkey (sk : SignKey) where
skL = take #secret sk
skH = drop #secret sk
vkL = hash skL
vkH = hash skH
-- Derive the public key by hashing each secret
verif-key : SignKey → VerifKey
verif-key = map2* #secret #digest hash
module verifkey (vk : VerifKey) where
vkL = take #digest vk
vkH = drop #digest vk
-- Key generation
key-gen : SignKey → VerifKey × SignKey
key-gen sk = vk , sk
module key-gen where
vk = verif-key sk
-- Sign a single bit message
sign : SignKey → Bit → Signature
sign sk b = take2* _ b sk
-- Verify the signature of a single bit message
verify : VerifKey → Bit → Signature → Bit
verify vk b sig = take2* _ b vk == hash sig
verify-correct-sig : ∀ sk b → verify (verif-key sk) b (sign sk b) ≡ 1b
verify-correct-sig sk 0b = ==-reflexive (take-++ #digest (hash (take #secret sk)) _)
verify-correct-sig sk 1b = ==-reflexive (drop-++ #digest (hash (take #secret sk)) _)
import Algebra.FunctionProperties.Eq
open Algebra.FunctionProperties.Eq.Implicits
module Assuming-injectivity (hash-inj : Injective hash) where
-- If one considers the hash function injective, then, so is verif-key
verif-key-inj : ∀ {sk1 sk2} → verif-key sk1 ≡ verif-key sk2 → sk1 ≡ sk2
verif-key-inj {sk1} {sk2} e
= take-drop= #secret sk1 sk2
(hash-inj (++-inj₁ e))
(hash-inj (++-inj₂ sk1.vkL sk2.vkL e))
where
module sk1 = signkey sk1
module sk2 = signkey sk2
-- Therefor under this assumption, different secret keys means different public keys
verif-key-corrolary : ∀ {sk1 sk2} → sk1 ≢ sk2 → verif-key sk1 ≢ verif-key sk2
verif-key-corrolary {sk1} {sk2} sk≢ vk= = sk≢ (verif-key-inj vk=)
-- If one considers the hash function injective then there is
-- only one signing key which can sign correctly all (0 and 1)
-- the messages
signkey-uniqness :
∀ sk1 sk2 →
(∀ b → verify (verif-key sk1) b (sign sk2 b) ≡ 1b) →
sk1 ≡ sk2
signkey-uniqness sk1 sk2 e
= take-drop= #secret sk1 sk2 (lemmaL (e 0b)) (lemmaH (e 1b))
where
module sk1 = signkey sk1
module sk2 = signkey sk2
lemmaL : verify (verif-key sk1) 0b (sign sk2 0b) ≡ 1b →
sk1.skL ≡ sk2.skL
lemmaL e0
rewrite take-++ #digest sk1.vkL sk1.vkH
| hash-inj (==⇒≡ e0)
= refl
lemmaH : verify (verif-key sk1) 1b (sign sk2 1b) ≡ 1b →
sk1.skH ≡ sk2.skH
lemmaH e1
rewrite drop-++ #digest sk1.vkL sk1.vkH
| hash-inj (==⇒≡ e1)
= refl
module Assuming-invertibility
(unhash : Digest → Secret)
(unhash-hash : ∀ x → unhash (hash x) ≡ x)
(hash-unhash : ∀ x → hash (unhash x) ≡ x)
where
-- EXERCISES
{-
recover-signkey : VerifKey → SignKey
recover-signkey = {!!}
recover-signkey-correct : ∀ sk → recover-signkey (verif-key sk) ≡ sk
recover-signkey-correct = {!!}
forgesig : VerifKey → Bit → Signature
forgesig = {!!}
forgesig-correct : ∀ vk b → verify vk b (forgesig vk b) ≡ 1b
forgesig-correct = {!!}
-}
-- -}
|
Add Crypto.Sig.LamportOneBit
|
Add Crypto.Sig.LamportOneBit
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
fefd4590ac23e7cdf91cbc2277dcce1be57d736e
|
Control/Strategy.agda
|
Control/Strategy.agda
|
module Control.Strategy where
open import Function
open import Type using (★)
open import Category.Monad
open import Relation.Binary.PropositionalEquality.NP
data Strategy (Q R A : ★) : ★ where
ask : (q? : Q) (cont : R → Strategy Q R A) → Strategy Q R A
done : A → Strategy Q R A
infix 2 _≈_
data _≈_ {Q R A} : (s₀ s₁ : Strategy Q R A) → ★ where
ask-ask : ∀ {k₀ k₁} → (q? : Q) (cont : ∀ r → k₀ r ≈ k₁ r) → ask q? k₀ ≈ ask q? k₁
done-done : ∀ x → done x ≈ done x
≈-refl : ∀ {Q R A} {s : Strategy Q R A} → s ≈ s
≈-refl {s = ask q? cont} = ask-ask q? (λ r → ≈-refl)
≈-refl {s = done x} = done-done x
module _ {Q R : ★} where
private
M : ★ → ★
M = Strategy Q R
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< ask q? cont = ask q? (λ r → f =<< cont r)
f =<< done x = f x
return : ∀ {A} → A → M A
return = done
map : ∀ {A B} → (A → B) → M A → M B
map f s = (done ∘ f) =<< s
join : ∀ {A} → M (M A) → M A
join s = id =<< s
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>=_ = flip _=<<_
rawMonad : RawMonad M
rawMonad = record { return = return; _>>=_ = _>>=_ }
return-=<< : ∀ {A} (m : M A) → return =<< m ≈ m
return-=<< (ask q? cont) = ask-ask q? (λ r → return-=<< (cont r))
return-=<< (done x) = done-done x
return->>= : ∀ {A B} (x : A) (f : A → M B) → return x >>= f ≡ f x
return->>= _ _ = refl
>>=-assoc : ∀ {A B C} (mx : M A) (my : A → M B) (f : B → M C) → (mx >>= λ x → (my x >>= f)) ≈ (mx >>= my) >>= f
>>=-assoc (ask q? cont) my f = ask-ask q? (λ r → >>=-assoc (cont r) my f)
>>=-assoc (done x) my f = ≈-refl
map-id : ∀ {A} (s : M A) → map id s ≈ s
map-id = return-=<<
map-∘ : ∀ {A B C} (f : A → B) (g : B → C) s → map (g ∘ f) s ≈ (map g ∘ map f) s
map-∘ f g s = >>=-assoc s (done ∘ f) (done ∘ g)
module EffectfulRun
(E : ★ → ★)
(_>>=E_ : ∀ {A B} → E A → (A → E B) → E B)
(returnE : ∀ {A} → A → E A)
(Oracle : Q → E R) where
runE : ∀ {A} → M A → E A
runE (ask q? cont) = Oracle q? >>=E (λ r → runE (cont r))
runE (done x) = returnE x
module _ (Oracle : Q → R) where
run : ∀ {A} → M A → A
run (ask q? cont) = run (cont (Oracle q?))
run (done x) = x
module _ {A B : ★} (f : A → M B) where
run->>= : (s : M A) → run (s >>= f) ≡ run (f (run s))
run->>= (ask q? cont) = run->>= (cont (Oracle q?))
run->>= (done x) = refl
module _ {A B : ★} (f : A → B) where
run-map : (s : M A) → run (map f s) ≡ f (run s)
run-map = run->>= (return ∘ f)
module _ {A B : ★} where
run-≈ : {s₀ s₁ : M A} → s₀ ≈ s₁ → run s₀ ≡ run s₁
run-≈ (ask-ask q? cont) = run-≈ (cont (Oracle q?))
run-≈ (done-done x) = refl
|
Add Control.Strategy
|
Add Control.Strategy
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
962dded37d6c55fa91fe570fbfe0821e7c37241a
|
ttfp1.agda
|
ttfp1.agda
|
-- some excises for learning ttfp (type theory for functional programming).
-- most of the code is *borrowed* from learn you an agda shamelessly
-- Function composition
_∘_ : {A : Set} { B : A -> Set} { C : (x : A) -> B x -> Set}
(f : {x : A}(y : B x) -> C x y) (g : (x : A) -> B x)
(x : A) -> C x (g x)
(f ∘ g) x = f (g x)
-- Conjuntion, ∏-type in haskell
data _∧_ (α : Set) (β : Set) : Set where
∧-intro : α → β → (α ∧ β)
∧-elim₁ : {α β : Set} → (α ∧ β) → α
∧-elim₁ (∧-intro p q) = p
∧-elim₂ : {α β : Set} → (α ∧ β) → β
∧-elim₂ (∧-intro p q) = q
_⇔_ : (α : Set) → (β : Set) → Set
a ⇔ b = (a → b) ∧ (b → a)
∧-comm′ : {α β : Set} → (α ∧ β) → (β ∧ α)
∧-comm′ (∧-intro a b) = ∧-intro b a
∧-comm : {α β : Set} → (α ∧ β) ⇔ (β ∧ α)
∧-comm = ∧-intro ∧-comm′ ∧-comm′
-- type signature cannot be eliminated, was expecting type could be infered but it wasn't the case.
e₁e₁ : { P Q R : Set} → ( (P ∧ Q) ∧ R ) → P
e₁e₁ = ∧-elim₁ ∘ ∧-elim₁
e₂e₁ : { P Q R : Set} → ( (P ∧ Q) ∧ R) → Q
e₂e₁ = ∧-elim₂ ∘ ∧-elim₁
∧-assoc₁ : { P Q R : Set } → ((P ∧ Q) ∧ R) → (P ∧ (Q ∧ R))
∧-assoc₁ = λ x → ∧-intro (∧-elim₁ (∧-elim₁ x)) (∧-intro (∧-elim₂ (∧-elim₁ x)) (∧-elim₂ x))
∧-assoc₂ : {P Q R : Set} → (P ∧ (Q ∧ R)) → ((P ∧ Q) ∧ R)
∧-assoc₂ = λ x → ∧-intro (∧-intro (∧-elim₁ x) (∧-elim₁ (∧-elim₂ x))) (∧-elim₂ (∧-elim₂ x))
∧-assoc : {P Q R : Set} → ((P ∧ Q) ∧ R) ⇔ (P ∧ (Q ∧ R))
∧-assoc = ∧-intro ∧-assoc₁ ∧-assoc₂
-- Disjunctions, ∑-type in haskell
data _∨_ (P Q : Set) : Set where
∨-intro₁ : P → P ∨ Q
∨-intro₂ : Q → P ∨ Q
∨-elim : {A B C : Set} → (A ∨ B) → (A → C) → (B → C) → C
∨-elim (∨-intro₁ a) ac bc = ac a
∨-elim (∨-intro₂ b) ac bc = bc b
∨-comm′ : {P Q : Set} → (P ∨ Q) → (Q ∨ P)
∨-comm′ (∨-intro₁ p) = ∨-intro₂ p
∨-comm′ (∨-intro₂ q) = ∨-intro₁ q
∨-comm : {P Q : Set} → (P ∨ Q) ⇔ (Q ∨ P)
∨-comm = ∧-intro ∨-comm′ ∨-comm′
|
Create ttfp1.agda
|
Create ttfp1.agda
notes while learning ttfp
|
Agda
|
bsd-3-clause
|
wangbj/excises,wangbj/excises,wangbj/excises
|
|
38dc0e74c8050099800069c05d5282fdff28dced
|
incremental.agda
|
incremental.agda
|
module incremental where
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
infixr 5 _⇒_
-- Semantics
Dom⟦_⟧ : Type -> Set
Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Semantics
data Empty : Set where
∅ : Empty
data Bind A B : Set where
_•_ : (v : A) (ρ : B) → Bind A B
Env⟦_⟧ : Context → Set
Env⟦ ∅ ⟧ = Empty
Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- Semantics
lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
lookup⟦ this ⟧ (v • ρ) = v
lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
-- Semantics
eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ)
eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ)
eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ
-- WEAKENING
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₁ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ
-- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
Δ-term {Γ} (app t₁ t₂) = {!!}
Δ-term {Γ} (var x) = {!!}
|
Implement STLC in AGDA (fix #13).
|
Implement STLC in AGDA (fix #13).
Old-commit-hash: 8c8d0d1e3a7f67f1a6640d7526542321b3a5a424
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
2824f8185e103bd7e2500937eff9fb9af1077e07
|
lib/Data/Nat/GCD/NP.agda
|
lib/Data/Nat/GCD/NP.agda
|
module Data.Nat.GCD.NP where
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Divisibility as Div
open import Relation.Binary
private module P = Poset Div.poset
open import Data.Product
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Induction
open import Induction.Nat
open import Induction.Lexicographic
open import Function
open import Data.Nat.GCD.Lemmas
------------------------------------------------------------------------
-- Greatest common divisor
module GCD where
-- Specification of the greatest common divisor (gcd) of two natural
-- numbers.
record GCD (m n gcd : ℕ) : Set where
constructor is
field
-- The gcd is a common divisor.
commonDivisor : gcd ∣ m × gcd ∣ n
-- All common divisors divide the gcd, i.e. the gcd is the
-- greatest common divisor according to the partial order _∣_.
greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ gcd
open GCD public
-- The gcd is unique.
unique : ∀ {d₁ d₂ m n} → GCD m n d₁ → GCD m n d₂ → d₁ ≡ d₂
unique d₁ d₂ = P.antisym (GCD.greatest d₂ (GCD.commonDivisor d₁))
(GCD.greatest d₁ (GCD.commonDivisor d₂))
-- The gcd relation is "symmetric".
sym : ∀ {d m n} → GCD m n d → GCD n m d
sym g = is (swap $ GCD.commonDivisor g) (GCD.greatest g ∘ swap)
-- The gcd relation is "reflexive".
refl : ∀ {n} → GCD n n n
refl = is (P.refl , P.refl) proj₁
-- The GCD of 0 and n is n.
base : ∀ {n} → GCD 0 n n
base {n} = is (n ∣0 , P.refl) proj₂
-- If d is the gcd of n and k, then it is also the gcd of n and
-- n + k.
step : ∀ {n k d} → GCD n k d → GCD n (n + k) d
step g with GCD.commonDivisor g
step {n} {k} {d} g | (d₁ , d₂) = is (d₁ , ∣-+ d₁ d₂) greatest′
where
greatest′ : ∀ {d′} → d′ ∣ n × d′ ∣ n + k → d′ ∣ d
greatest′ (d₁ , d₂) = GCD.greatest g (d₁ , ∣-∸ d₂ d₁)
open GCD public using (GCD)
------------------------------------------------------------------------
-- Calculating the gcd
-- The calculation also proves Bézout's lemma.
module Bézout where
module Identity where
-- If m and n have greatest common divisor d, then one of the
-- following two equations is satisfied, for some numbers x and y.
-- The proof is "lemma" below (Bézout's lemma).
--
-- (If this identity was stated using integers instead of natural
-- numbers, then it would not be necessary to have two equations.)
data Identity (d m n : ℕ) : Set where
-- +- : (x y : ℕ) (eq : d + y * n ≡ x * m) → Identity d m n
-+ : (x y : ℕ) (eq : d + x * m ≡ y * n) → Identity d m n
-- Various properties about Identity.
{-
sym : ∀ {d} → Symmetric (Identity d)
sym (+- x y eq) = -+ y x eq
sym (-+ x y eq) = +- y x eq
-}
refl : ∀ {d} → Identity d d d
refl = -+ 0 1 PropEq.refl
base : ∀ {d} → Identity d 0 d
base = -+ 0 1 PropEq.refl
private
infixl 7 _⊕_
_⊕_ : ℕ → ℕ → ℕ
m ⊕ n = 1 + m + n
step : ∀ {d n k} → Identity d n k → Identity d n (n + k)
{-
step {d} (+- x y eq) with compare x y
step {d} (+- .x .x eq) | equal x = +- (2 * x) x (lem₂ d x eq)
step {d} (+- .x .(x ⊕ i) eq) | less x i = +- (2 * x ⊕ i) (x ⊕ i) (lem₃ d x eq)
step {d} {n} (+- .(y ⊕ i) .y eq) | greater y i = +- (2 * y ⊕ i) y (lem₄ d y n eq)
-}
step {d} (-+ x y eq) with compare x y
step {d} (-+ .x .x eq) | equal x = -+ (2 * x) x (lem₅ d x eq)
step {d} (-+ .x .(x ⊕ i) eq) | less x i = -+ (2 * x ⊕ i) (x ⊕ i) (lem₆ d x eq)
step {d} {n} (-+ .(y ⊕ i) .y eq) | greater y i = -+ (2 * y ⊕ i) y (lem₇ d y n eq)
open Identity public using (Identity) -- ; +-; -+)
module Lemma where
-- This type packs up the gcd, the proof that it is a gcd, and the
-- proof that it satisfies Bézout's identity.
data Lemma (m n : ℕ) : Set where
result : (d : ℕ) (g : GCD m n d) (b : Identity d m n) → Lemma m n
-- Various properties about Lemma.
{-
sym : Symmetric Lemma
sym (result d g b) = result d (GCD.sym g) (Identity.sym b)
-}
base : ∀ d → Lemma 0 d
base d = result d GCD.base Identity.base
refl : ∀ d → Lemma d d
refl d = result d GCD.refl Identity.refl
stepˡ : ∀ {n k} → Lemma n (suc k) → Lemma n (suc (n + k))
stepˡ {n} {k} (result d g b) =
PropEq.subst (Lemma n) (lem₀ n k) $
result d (GCD.step g) (Identity.step b)
{-
stepʳ : ∀ {n k} → Lemma (suc k) n → Lemma (suc (n + k)) n
stepʳ = sym ∘ stepˡ ∘ sym
-}
open Lemma public using (Lemma; result)
-- Bézout's lemma proved using some variant of the extended
-- Euclidean algorithm.
lemma : (m n : ℕ) → Lemma m n
lemma zero n = Lemma.base n
lemma m zero = {!Lemma.sym (Lemma.base m)!}
lemma (suc m) (suc n) = build [ <-rec-builder ⊗ <-rec-builder ] P gcd (m , n)
where
P : ℕ × ℕ → Set
P (m , n) = Lemma (suc m) (suc n)
gcd : ∀ p → (<-Rec ⊗ <-Rec) P p → P p
gcd (m , n ) rec with compare m n
gcd (m , .m ) rec | equal .m = Lemma.refl (suc m)
gcd (m , .(suc m + k)) rec | less .m k =
-- "gcd m k"
-- k < n
-- m < n
-- n = suc m + k
-- dist m n = suc k
-- m + k < m + suc m + k
-- k < suc m + k
-- 0 < suc m
Lemma.stepˡ $ proj₁ rec k (≤⇒≤′ (s≤s (≤-steps {k} {k} m (≤′⇒≤ ≤′-refl))))
gcd (.(suc n + k) , n) rec | greater .n k =
-- "gcd k n"
-- m > n
-- m ≡ suc n + k
-- dist m n = suc k
-- k + n < suc n + k + n
-- k < suc n + k
-- 0 < suc n
-- gcd n k
{!Lemma.stepʳ $ proj₂ rec k (≤⇒≤′ (s≤s (≤-steps {k} {k} n (≤′⇒≤ ≤′-refl)))) n!}
-- Bézout's identity can be recovered from the GCD.
identity : ∀ {m n d} → GCD m n d → Identity d m n
identity {m} {n} g with lemma m n
identity g | result d g′ b with GCD.unique g g′
identity g | result d g′ b | PropEq.refl = b
-- Calculates the gcd of the arguments.
gcd : (m n : ℕ) → ∃ λ d → GCD m n d
gcd m n with Bézout.lemma m n
gcd m n | Bézout.result d g _ = (d , g)
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add a broken attempt at simplifying Nat.GCD: Nat.GCD.NP
|
Add a broken attempt at simplifying Nat.GCD: Nat.GCD.NP
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
|
4995bc2a3bd988bcf90ed2efe5b614e17b5554a0
|
Game/IND-CPA-alt.agda
|
Game/IND-CPA-alt.agda
|
{-# OPTIONS --without-K #-}
open import Type
open import Data.Product
open import Data.Bit
module Game.IND-CPA-alt
(PubKey : ★)
(SecKey : ★)
(Message : ★)
(CipherText : ★)
-- randomness supply for: encryption, key-generation, adversary, extensions
(Rₑ Rₖ Rₐ : ★)
(KeyGen : Rₖ → PubKey × SecKey)
(Enc : PubKey → Message → Rₑ → CipherText)
where
M² = Bit → Message
-- IND-CPA adversary in two parts
Adv : ★
Adv = Rₐ → PubKey → (M² × (CipherText → Bit))
-- IND-CPA randomness supply
R : ★
R = (Rₐ × Rₖ × Rₑ)
-- IND-CPA games:
-- * input: adversary and randomness supply
-- * output b: adversary claims we are in game ⅁ b
Game : ★
Game = Adv → R → Bit
-- The game step by step:
-- (pk) key-generation, only the public-key is needed
-- (mb) send randomness, public-key and bit
-- receive which message to encrypt
-- (c) encrypt the message
-- (b′) send randomness, public-key and ciphertext
-- receive the guess from the adversary
⅁ : Bit → Game
⅁ b m (rₐ , rₖ , rₑ) = b′
where
pk = proj₁ (KeyGen rₖ)
ad = m rₐ pk
mb = proj₁ ad b
c = Enc pk mb rₑ
b′ = proj₂ ad c
⅁₀ ⅁₁ : Game
⅁₀ = ⅁ 0b
⅁₁ = ⅁ 1b
|
Add alternative defintion for IND CPA
|
Add alternative defintion for IND CPA
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
f9510280666609fdd9b8b35645bab6c0e17092c4
|
lib/FFI/JS.agda
|
lib/FFI/JS.agda
|
module FFI.JS where
open import Data.Char.Base public using (Char)
open import Data.String.Base public using (String)
open import Data.Bool.Base public using (Bool; true; false)
open import Data.List.Base using (List)
open import Data.Product using (_×_) renaming (proj₁ to fst; proj₂ to snd)
open import Control.Process.Type
{-# COMPILED_JS Bool function (x,v) { return ((x)? v["true"]() : v["false"]()); } #-}
{-# COMPILED_JS true true #-}
{-# COMPILED_JS false false #-}
data JSType : Set where
array object number string bool null : JSType
infixr 5 _++_
postulate
Number : Set
readNumber : String → Number
zero : Number
one : Number
_+_ : Number → Number → Number
_++_ : String → String → String
reverse : String → String
sort : String → String
take-half : String → String
drop-half : String → String
String▹List : String → List Char
List▹String : List Char → String
Number▹String : Number → String
JSValue : Set
_+JS_ : JSValue → JSValue → JSValue
_≤JS_ : JSValue → JSValue → Bool
_===_ : JSValue → JSValue → Bool
JSON-stringify : JSValue → String
JSON-parse : String → JSValue
toString : JSValue → String
fromString : String → JSValue
fromChar : Char → JSValue
fromNumber : Number → JSValue
objectFromList : {A : Set} → List A → (A → String) → (A → JSValue) → JSValue
fromJSArray : {A : Set} → JSValue → (Number → JSValue → A) → List A
fromJSArrayString : JSValue → List String
castNumber : JSValue → Number
castString : JSValue → String
nullJS : JSValue
trueJS : JSValue
falseJS : JSValue
readJSType : String → JSType
showJSType : JSType → String
typeof : JSValue → JSType
_·[_] : JSValue → JSValue → JSValue
onString : {A : Set} (f : String → A) → JSValue → A
trace : {A B : Set} → String → A → (A → B) → B
{-# COMPILED_JS zero 0 #-}
{-# COMPILED_JS one 1 #-}
{-# COMPILED_JS readNumber Number #-}
{-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-}
{-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-}
{-# COMPILED_JS _+JS_ function(x) { return function(y) { return x + y; }; } #-}
{-# COMPILED_JS reverse function(x) { return x.split("").reverse().join(""); } #-}
{-# COMPILED_JS sort function(x) { return x.split("").sort().join(""); } #-}
{-# COMPILED_JS take-half function(x) { return x.substring(0,x.length/2); } #-}
{-# COMPILED_JS drop-half function(x) { return x.substring(x.length/2); } #-}
{-# COMPILED_JS List▹String function(x) { return (require("libagda").fromList(x, function(y) { return y; })).join(""); } #-}
{-# COMPILED_JS String▹List function(x) { return require("libagda").fromJSArrayString(x.split("")); } #-}
{-# COMPILED_JS fromJSArray function (ty) { return require("libagda").fromJSArray; } #-}
{-# COMPILED_JS fromJSArrayString require("libagda").fromJSArrayString #-}
{-# COMPILED_JS _≤JS_ function(x) { return function(y) { return x <= y; }; } #-}
{-# COMPILED_JS _===_ function(x) { return function(y) { return x === y; }; } #-}
{-# COMPILED_JS JSON-stringify JSON.stringify #-}
{-# COMPILED_JS JSON-parse JSON.parse #-}
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
{-# COMPILED_JS fromString function(x) { return x; } #-}
{-# COMPILED_JS fromChar function(x) { return x; } #-}
{-# COMPILED_JS fromNumber function(x) { return x; } #-}
{-# COMPILED_JS Number▹String String #-}
{-# COMPILED_JS castNumber Number #-}
{-# COMPILED_JS castString String #-}
{-# COMPILED_JS nullJS null #-}
{-# COMPILED_JS trueJS true #-}
{-# COMPILED_JS falseJS false #-}
{-# COMPILED_JS typeof function(x) { return typeof(x); } #-}
{-# COMPILED_JS _·[_] require("libagda").readProp #-}
{-# COMPILED_JS onString function(t) { return require("libagda").onString; } #-}
{-# COMPILED_JS trace require("libagda").trace #-}
data Value : Set₀ where
array : List Value → Value
object : List (String × Value) → Value
string : String → Value
number : Number → Value
bool : Bool → Value
null : Value
postulate
fromValue : Value → JSValue
{-# COMPILED_JS fromValue require("libagda").fromValue #-}
data ValueView : Set₀ where
array : List JSValue → ValueView
object : List (String × JSValue) → ValueView
string : String → ValueView
number : Number → ValueView
bool : Bool → ValueView
null : ValueView
{-
postulate
fromJSValue : JSValue → ValueView
-}
fromBool : Bool → JSValue
fromBool true = trueJS
fromBool false = falseJS
Object = List (String × JSValue)
fromObject : Object → JSValue
fromObject o = objectFromList o fst snd
_≤Char_ : Char → Char → Bool
x ≤Char y = fromChar x ≤JS fromChar y
_≤String_ : String → String → Bool
x ≤String y = fromString x ≤JS fromString y
_≤Number_ : Number → Number → Bool
x ≤Number y = fromNumber x ≤JS fromNumber y
_·«_» : JSValue → String → JSValue
v ·« s » = v ·[ fromString s ]
abstract
URI = String
showURI : URI → String
showURI x = x
readURI : String → URI
readURI x = x
JSProc = Proc URI JSValue
data JSCmd : Set where
server : (ip port : String)
(proc : URI → JSProc)
(callback : URI → JSCmd) → JSCmd
client : JSProc → JSCmd → JSCmd
end : JSCmd
assert : Bool → JSCmd → JSCmd
console_log : String → JSCmd → JSCmd
process_argv : (List String → JSCmd) → JSCmd
|
Add FFI.JS
|
Add FFI.JS
|
Agda
|
bsd-3-clause
|
audreyt/agda-libjs,crypto-agda/agda-libjs
|
|
9236c772d09686e999993e80d77ce8bd225d16f5
|
lib/FFI/JS/SHA1.agda
|
lib/FFI/JS/SHA1.agda
|
module FFI.JS.SHA1 where
open import Data.String.Base using (String)
postulate SHA1 : String → String
{-# COMPILED_JS SHA1 function (x) { return require("sha1")(x); } #-}
|
Add FFI.JS.SHA1
|
Add FFI.JS.SHA1
|
Agda
|
bsd-3-clause
|
audreyt/agda-libjs,crypto-agda/agda-libjs
|
|
d5f6beafc85ff125a91c2f035d2d29dd6409f54e
|
ZK/GroupHom/ElGamal/JS.agda
|
ZK/GroupHom/ElGamal/JS.agda
|
{-# OPTIONS --without-K #-}
open import FFI.JS.BigI
open import Data.Bool.Base using (Bool)
open import SynGrp
open import ZK.GroupHom.Types
import ZK.GroupHom.ElGamal
import ZK.GroupHom.JS
module ZK.GroupHom.ElGamal.JS (p q : BigI)(g : ℤ[ p ]★) where
module EG = ZK.GroupHom.ElGamal `ℤ[ q ]+ `ℤ[ p ]★ _`^_ g
module known-enc-rnd (pk : EG.PubKey)
(M : EG.Message)
(ct : EG.CipherText) where
module ker = EG.Known-enc-rnd pk M ct
module zkh = `ZK-hom ker.zk-hom
module zkp = ZK.GroupHom.JS q zkh.`φ zkh.y
prover-commitment : (r : zkp.Randomness)(w : zkp.Witness) → zkp.Commitment
prover-commitment r w = zkp.Prover-Interaction.get-A (zkp.prover r w)
prover-response : (r : zkp.Randomness)(w : zkp.Witness)(c : zkp.Challenge) → zkp.Response
prover-response r w c = zkp.Prover-Interaction.get-f (zkp.prover r w) c
verify-transcript : (A : zkp.Commitment)(c : zkp.Challenge)(r : zkp.Response) → Bool
verify-transcript A c r = zkp.verifier (zkp.Transcript.mk A c r)
-- -}
-- -}
-- -}
-- -}
|
Add ZK.GroupHom.ElGamal.JS, so far only known-enc-rnd
|
Add ZK.GroupHom.ElGamal.JS, so far only known-enc-rnd
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
1ffd391240cdf755b930cf4216a8231b81aee07d
|
FunUniverse/Fin/Op/Abstract.agda
|
FunUniverse/Fin/Op/Abstract.agda
|
open import Type
open import Function
open import Data.Product using (proj₂)
open import Data.Two renaming (mux to mux₂)
open import Data.Nat.NP using (ℕ; zero; suc; _+_; _*_; module ℕ°)
open import Data.Fin.NP as Fin using (Fin; inject+; raise; bound; free; zero; suc)
open import Data.Vec.NP using (Vec; []; _∷_; lookup; tabulate)
open import Data.Vec.Properties using (lookup∘tabulate)
open import Data.Bits using (Bits; _→ᵇ_; RewireTbl{-; 0ⁿ; 1ⁿ-})
open import Relation.Binary.PropositionalEquality
open import FunUniverse.Data
open import FunUniverse.Core
open import FunUniverse.Fin.Op
open import FunUniverse.Rewiring.Linear
open import FunUniverse.Category
open import Language.Simple.Interface
module FunUniverse.Fin.Op.Abstract where
private
module BF = Rewiring finOpRewiring
module _ {E : ★ → ★} {Op} (lang : Lang Op 𝟚 E) where
open Lang lang
{-
bits : ∀ {o} → Bits o → 0 →ᵉ o
bits xs = 𝟚▹E ∘ flip Vec.lookup xs
-}
efinFunU : FunUniverse ℕ
efinFunU = Bits-U , _→ᵉ_
module EFinFunUniverse = FunUniverse efinFunU
efinCat : Category _→ᵉ_
efinCat = input , _∘ᵉ_
private
open EFinFunUniverse
module _ {A B C D} (f : A `→ C) (g : B `→ D) where
<_×_> : (A `× B) `→ (C `× D)
<_×_> x with Fin.cmp C D x
<_×_> ._ | Fin.bound y = inject+ B <$> f y
<_×_> ._ | Fin.free y = raise A <$> g y
efinLin : LinRewiring efinFunU
efinLin = mk efinCat (flip <_×_> input)
(λ {A} → input ∘ BF.swap {A})
(λ {A} → input ∘ BF.assoc {A})
input input <_×_> (λ {A} → <_×_> {A} input)
input input input input
efinRewiring : Rewiring efinFunU
efinRewiring = mk efinLin (λ()) (input ∘ BF.dup) (λ()) (λ f g → < f × g > ∘ᵉ (input ∘ BF.dup))
(input ∘ inject+ _) (λ {A} → input ∘ raise A)
(λ f → input ∘ BF.rewire f) (λ f → input ∘ BF.rewireTbl f)
{-
efinFork : HasFork efinFunU
efinFork = cond , λ f g → second {1} < f , g > ⁏ cond
where
open Rewiring efinRewiring
cond : ∀ {A} → `Bit `× A `× A `→ A
cond {A} x = {!mux (return zero) (input (raise 1 (inject+ _ x))) (input (raise 1 (raise A x)))!}
𝟚▹E = {!!}
efinOps : FunOps efinFunU
efinOps = mk efinRewiring efinFork (const (𝟚▹E 0₂)) (const (𝟚▹E 1₂))
open Cong-*1 _→ᵉ_
reify : ∀ {i o} → i →ᵇ o → i →ᵉ o
reify = cong-*1′ ∘ FunOps.fromBitsFun efinOps
-}
{-
eval-reify : eval (reify f)
eval-reify = ?
-}
-- -}
|
Add FunUniverse/Fin/Op/Abstract.agda
|
Add FunUniverse/Fin/Op/Abstract.agda
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
3887acc776498fc936c85a42b1ba8ed98dfe1593
|
Everything.agda
|
Everything.agda
|
module Everything where
import Holes.Prelude
import Holes.Term
import Holes.Cong.Limited
import Holes.Cong.General
import Holes.Cong.Propositional
|
Add Everything file
|
Add Everything file
|
Agda
|
mit
|
bch29/agda-holes
|
|
22eab6635a40915cfce9e29a45fe31de8280bcbf
|
PLDI14-List-of-Theorems.agda
|
PLDI14-List-of-Theorems.agda
|
module PLDI14-List-of-Theorems where
open import Function
-- List of theorems in PLDI submission
--
-- For hints about installation and execution, please refer
-- to README.agda.
--
-- Agda modules corresponding to definitions, lemmas and theorems
-- are listed here with the most important name. For example,
-- after this file type checks (C-C C-L), placing the cursor
-- on the purple "Base.Change.Algebra" and pressing M-. will
-- bring you to the file where change structures are defined.
-- The name for change structures in that file is
-- "ChangeAlgebra", given in the using-clause.
-- Definition 2.1 (Change structures)
-- (d) ChangeAlgebra.diff
-- (e) IsChangeAlgebra.update-diff
open import Base.Change.Algebra using (ChangeAlgebra)
---- Carrier in record ChangeAlgebra --(a)
open Base.Change.Algebra.ChangeAlgebra using (Change) --(b)
open Base.Change.Algebra.ChangeAlgebra using (update) --(c)
open Base.Change.Algebra.ChangeAlgebra using (diff) --(d)
open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e)
-- Definition 2.2 (Nil change)
-- IsChangeAlgebra.nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Lemma 2.3 (Behavior of nil)
-- IsChangeAlgebra.update-nil
open Base.Change.Algebra using (IsChangeAlgebra)
-- Definition 2.4 (Derivatives)
open Base.Change.Algebra using (Derivative)
-- Definition 2.5 (Carrier set of function changes)
open Base.Change.Algebra.FunctionChanges
-- Definition 2.6 (Operations on function changes)
-- ChangeAlgebra.update FunctionChanges.changeAlgebra
-- ChangeAlgebra.diff FunctionChanges.changeAlgebra
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Theorem 2.7 (Function changes form a change structure)
-- (In Agda, the proof of Theorem 2.7 has to be included in the
-- definition of function changes, here
-- FunctionChanges.changeAlgebra.)
open Base.Change.Algebra.FunctionChanges using (changeAlgebra)
-- Lemma 2.8 (Incrementalization)
open Base.Change.Algebra.FunctionChanges using (incrementalization)
-- Theorem 2.9 (Nil changes are derivatives)
open Base.Change.Algebra.FunctionChanges using (nil-is-derivative)
-- For each plugin requirement, we include its definition and
-- a concrete instantiation called "Popl14" with integers and
-- bags of integers as base types.
-- Plugin Requirement 3.1 (Domains of base types)
open import Parametric.Denotation.Value using (Structure)
open import Popl14.Denotation.Value using (⟦_⟧Base)
-- Definition 3.2 (Domains)
open Parametric.Denotation.Value.Structure using (⟦_⟧Type)
-- Plugin Requirement 3.3 (Evaluation of constants)
open import Parametric.Denotation.Evaluation using (Structure)
open import Popl14.Denotation.Evaluation using (⟦_⟧Const)
-- Definition 3.4 (Environments)
open import Base.Denotation.Environment using (⟦_⟧Context)
-- Definition 3.5 (Evaluation)
open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term)
-- Plugin Requirement 3.6 (Changes on base types)
open import Parametric.Change.Validity using (Structure)
open import Popl14.Change.Validity using (change-algebra-base-family)
-- Definition 3.7 (Changes)
open Parametric.Change.Validity.Structure using (change-algebra)
-- Definition 3.8 (Change environments)
open Parametric.Change.Validity.Structure using (environment-changes)
-- Plugin Requirement 3.9 (Change semantics for constants)
open import Parametric.Change.Specification using (Structure)
open import Popl14.Change.Specification using (specification-structure)
-- Definition 3.10 (Change semantics)
open Parametric.Change.Specification.Structure using (⟦_⟧Δ)
-- Lemma 3.11 (Change semantics is the derivative of semantics)
open Parametric.Change.Specification.Structure using (correctness)
-- Definition 3.12 (Erasure)
import Parametric.Change.Implementation
open Parametric.Change.Implementation.Structure using (_≈_)
open import Popl14.Change.Implementation using (implements-base)
-- Lemma 3.13 (The erased version of a change is almost the same)
open Parametric.Change.Implementation.Structure using (carry-over)
-- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t))
import Parametric.Change.Correctness
open Parametric.Change.Correctness.Structure using (main-theorem)
|
add list of theorems
|
add list of theorems
Old-commit-hash: ae20c5bded5fecd55d9723e7870ba03979cd0880
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
dd18fcc5ba9cbb6d8cbf62d171887cf3a22893f5
|
Base/Change/Products.agda
|
Base/Change/Products.agda
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
-- The following is probably bullshit:
-- Does not handle products of functions - more accurately, writing the
-- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; isChangeAlgebra = record
{ update-diff = p-update-diff
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
-- We should do the same for uncurry instead.
-- What one could wrongly expect to be the derivative of the constructor:
_,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′ a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof
-- As a consequence, proving that's a derivative seems too insanely hard. We
-- might want to provide a proof schema for curried functions at once,
-- starting from the right correctness equation.
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
_,_′-real : Δ _,_
_,_′-real = nil _,_
module FCΔA→B→A×B = ΔA→B→A×B.FunctionChange
_,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (FCΔA→B→A×B.apply _,_′-real)
_,_′-real-Derivative =
FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_
{-
_,_′′ : (a : A) → Δ a →
Δ {{B→A×B}} (λ b → (a , b))
_,_′′ a da = record
{ apply = _,_′ a da
; correct = λ b db →
begin
(a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′ a da) b db
∎
}
_,_′′′ : Δ {{A→B→A×B}} _,_
_,_′′′ = record
{ apply = _,_′′
; correct = λ a da →
begin
update
(_,_ (a ⊞ da))
(_,_′′ (a ⊞ da) (nil (a ⊞ da)))
≡⟨ {!!} ⟩
update (_,_ a) (_,_′′ a da)
--ChangeAlgebra.update B→A×B (_,_ a) (a , da ′′)
∎
}
where
open ChangeAlgebra B→A×B hiding (nil)
{-
{!
begin
(_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da))
{- ≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -}
≡⟨ ? ⟩
{-a ⊞ da , b ⊞ db
≡⟨⟩-}
(_,_ a) ⊞ (_,_′′ a da)
∎!}
}
-}
open import Postulate.Extensionality
_,_′Derivative :
Derivative {{CA}} {{B→A×B}} _,_ _,_′′
_,_′Derivative a da =
begin
_⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da)
≡⟨⟩
(λ b → (a , b) ⊞ ΔBA×B.FunctionChange.apply (_,_′′ a da) b (nil b))
--ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b))
≡⟨ {!!} ⟩
(λ b → (a , b) ⊞ ΔBA×B.FunctionChange.apply (_,_′′ a da) b (nil b))
≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩
--FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!}
_,_ (a ⊞ da)
∎
where
--open FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
-}
|
Define a change structure for products
|
Define a change structure for products
Derivatives of curried functions seem challenging.
Accessing nested records too, but seems easy to fix.
Old-commit-hash: d89e6171d447aae6292cc025dc6db95ce2370b88
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
16e3c79c254b8edd7f64b46df9c7c746fa4194c2
|
Language/Simple/Free.agda
|
Language/Simple/Free.agda
|
{-# OPTIONS --without-K --copatterns #-}
open import Level.NP
open import Function hiding (_$_)
open import Type
open import Algebra
open import Algebra.FunctionProperties
open import Algebra.Structures
open import Data.Nat using (ℕ; zero; suc; _+_; _≤?_)
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec using (Vec; []; _∷_; _++_)
open import Data.One
open import Data.Two
open import Data.Product.NP
open import Relation.Nullary.Decidable
open import Relation.Binary.NP
open import Relation.Binary.PropositionalEquality.NP as ≡ using (_≡_; !_; _≗_; module ≡-Reasoning)
open import Category.Monad.NP
import Language.Simple.Abstract
module Language.Simple.Free where
module _ {Op : ℕ → ★} where
open Language.Simple.Abstract Op renaming (E to T)
data Ctx (X : ★) : ★ where
hole : Ctx X
op : ∀ {a b} → Op (a + (1 + b)) → Vec (T X) a → Ctx X → Vec (T X) b → Ctx X
module _ {X : ★} where
η : ∀ {X} → X → T X
η = var
_·_ : Ctx X → T X → T X
hole · e = e
op o ts E us · e = op o (ts ++ E · e ∷ us)
open WithEvalOp
open Monad monad public renaming (liftM to map-T)
module Unused
{X R : ★}
(⊢_≡_ : T X → T X → ★)
(eval-Op : ∀ {n} → Op n → Vec R n → R)
(eval-X : X → R)
(t u : T X)
(⊢t≡u : ⊢ t ≡ u)
where
ev = eval eval-Op eval-X
≈ = ev t ≡ ev u
module ℛ {X : ★} (⊢_≡_ : T X → T X → ★) where
{-
data _≋*_ : ∀ {a} (ts us : Vec (T X) a) → ★
data _≋_ : (t u : T X) → ★
data _≋*_ where
[] : [] ≋* []
_∷_ : ∀ {t u a} {ts us : Vec _ a}
→ t ≋ u → ts ≋* us → (t ∷ ts) ≋* (u ∷ us)
data _≋_ where
η : ∀ {t u} → ⊢ t ≡ u → t ≋ u
!η : ∀ {t u} → ⊢ t ≡ u → u ≋ t
var : ∀ x → var x ≋ var x
op : ∀ {a} (o : Op a) {ts us} → ts ≋* us → op o ts ≋ op o us
-}
module Unused2 where
data Succ (X : ★) : ★ where
old : X → Succ X
new : Succ X
infix 9 _$_
_$_ : T (Succ X) → T X → T X
E $ t = E >>= (λ { new → t ; (old x) → var x })
infix 0 _≈_
data _≈_ : (t u : T X) → ★ where
refl : Reflexive _≈_
sym : Symmetric _≈_
trans : Transitive _≈_
η≡ : ∀ {t u} → ⊢ t ≡ u → t ≈ u
congCtx : ∀ E {t u} → t ≈ u → E · t ≈ E · u
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
module FreeSemigroup where
U = Semigroup.Carrier
record _→ₛ_ (X Y : Semigroup ₀ ₀) : ★ where
open Semigroup X renaming (_∙_ to _∙x_)
open Semigroup Y renaming (_∙_ to _∙y_)
field
to : U X → U Y
to-∙-cong : ∀ t u → to (t ∙x u) ≡ to t ∙y to u
open _→ₛ_ public
idₛ : ∀ {S} → S →ₛ S
to idₛ = id
to-∙-cong idₛ _ _ = ≡.refl
module _ {X Y Z} where
_∘ₛ_ : (Y →ₛ Z) → (X →ₛ Y) → X →ₛ Z
to (f ∘ₛ g) = to f ∘ to g
to-∙-cong (f ∘ₛ g) t u
= to (f ∘ₛ g) (t ∙x u)
≡⟨ ≡.cong (to f) (to-∙-cong g _ _) ⟩
to f (to g t ∙y to g u)
≡⟨ to-∙-cong f _ _ ⟩
to (f ∘ₛ g) t ∙z to (f ∘ₛ g) u
∎
where
open ≡-Reasoning
open Semigroup X renaming (_∙_ to _∙x_)
open Semigroup Y renaming (_∙_ to _∙y_)
open Semigroup Z renaming (_∙_ to _∙z_)
data Op : ℕ → ★ where
`μ : Op 2
open Language.Simple.Abstract Op renaming (E to T)
open Monad monad
module _ {X : ★} where
_∙_ : T X → T X → T X
t ∙ u = op `μ (t ∷ u ∷ [])
module _ (X : ★) where
infix 0 ⊢_≡_
data ⊢_≡_ : T X → T X → ★ where
⊢-∙-assoc : ∀ x y z → ⊢ ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))
open ℛ ⊢_≡_
∙-assoc : Associative _≈_ _∙_
∙-assoc x y z = η≡ (⊢-∙-assoc x y z)
open Equivalence-Reasoning ≈-isEquivalence
∙-cong : _∙_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
∙-cong {x} {y} {u} {v} p q =
x ∙ u
≈⟨ congCtx (op `μ (x ∷ []) hole []) q ⟩
x ∙ v
≈⟨ congCtx (op `μ [] hole (v ∷ [])) p ⟩
y ∙ v ∎
T-IsSemigroup : IsSemigroup _≈_ _∙_
T-IsSemigroup = record { isEquivalence = ≈-isEquivalence
; assoc = ∙-assoc
; ∙-cong = ∙-cong }
T-Semigroup : Semigroup ₀ ₀
T-Semigroup = record { Carrier = T X
; _≈_ = _≈_
; _∙_ = _∙_
; isSemigroup = T-IsSemigroup }
map-T-∙-hom : ∀ {X Y : ★} (f : X → Y) t u
→ map-T f (t ∙ u) ≡ map-T f t ∙ map-T f u
map-T-∙-hom _ _ _ = ≡.refl
Tₛ = T-Semigroup
Tₛ-hom : ∀ {X Y} (f : X → Y) → Tₛ X →ₛ Tₛ Y
to (Tₛ-hom f) = map-T f
to-∙-cong (Tₛ-hom f) = map-T-∙-hom f
module WithSemigroup (S : Semigroup ₀ ₀) where
module S = Semigroup S
open S renaming (Carrier to S₀; _∙_ to _∙ₛ_)
eval-Op : ∀ {n} → Op n → Vec S₀ n → S₀
eval-Op `μ (x ∷ y ∷ []) = x ∙ₛ y
eval-T : T S₀ → S₀
eval-T = WithEvalOp.eval eval-Op id
eval-T-var : ∀ x → eval-T (var x) ≡ x
eval-T-var x = ≡.refl
eval-T-∙ : ∀ t u → eval-T (t ∙ u) ≡ eval-T t ∙ₛ eval-T u
eval-T-∙ t u = ≡.refl
eval-Tₛ : Tₛ S₀ →ₛ S
to eval-Tₛ = eval-T
to-∙-cong eval-Tₛ t u = ≡.refl
{-
Tₛ : Sets ⟶ Semigroups
U : Semigroups ⟶ Sets
Tₛ ⊣ U
Semigroups(Tₛ X, Y) ≅ Sets(X, U Y)
-}
module _ {X : ★} {Y : Semigroup ₀ ₀} where
open WithSemigroup Y
open Semigroup Y renaming (Carrier to Y₀; _∙_ to _∙Y_)
φ : (Tₛ X →ₛ Y) → X → U Y
φ f = to f ∘ var
-- var is the unit (η)
ψ : (f : X → U Y) → Tₛ X →ₛ Y
ψ f = eval-Tₛ ∘ₛ Tₛ-hom f
-- eval-Tₛ is the co-unit (ε)
φ-ψ : ∀ f → φ (ψ f) ≡ f
φ-ψ f = ≡.refl
ψ-φ : ∀ f t → to (ψ (φ f)) t ≡ to f t
ψ-φ f (var x) = ≡.refl
ψ-φ f (op `μ (t ∷ u ∷ []))
= to (ψ (φ f)) (t ∙ u)
≡⟨ ≡.refl ⟩
eval-T (map-T (φ f) (t ∙ u))
≡⟨ ≡.refl ⟩
eval-T (map-T (φ f) t ∙ map-T (φ f) u)
≡⟨ ≡.refl ⟩
eval-T (map-T (φ f) t) ∙Y eval-T (map-T (φ f) u)
≡⟨ ≡.refl ⟩
to (ψ (φ f)) t ∙Y to (ψ (φ f)) u
≡⟨ ≡.cong₂ _∙Y_ (ψ-φ f t) (ψ-φ f u) ⟩
to f t ∙Y to f u
≡⟨ ! (to-∙-cong f t u) ⟩
to f (t ∙ u)
∎
where open ≡-Reasoning
module FreeMonoid where
data Op : ℕ → ★ where
`ε : Op 0
`μ : Op 2
open Language.Simple.Abstract Op renaming (E to T)
ε : ∀ {X} → T X
ε = op `ε []
_∙_ : ∀ {X} → T X → T X → T X
t ∙ u = op `μ (t ∷ u ∷ [])
infix 0 _⊢_≡_
data _⊢_≡_ (X : ★) : T X → T X → ★ where
⊢-ε∙x : ∀ x → X ⊢ ε ∙ x ≡ x
⊢-x∙ε : ∀ x → X ⊢ x ∙ ε ≡ x
⊢-∙-assoc : ∀ x y z → X ⊢ ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))
module _ (X : ★) where
open ℛ (_⊢_≡_ X)
{- TODO, share the proofs with FreeSemigroup above -}
∙-assoc : Associative _≈_ _∙_
∙-assoc x y z = η≡ (⊢-∙-assoc x y z)
open Equivalence-Reasoning ≈-isEquivalence
∙-cong : _∙_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
∙-cong {x} {y} {u} {v} p q =
x ∙ u
≈⟨ congCtx (op `μ (x ∷ []) hole []) q ⟩
x ∙ v
≈⟨ congCtx (op `μ [] hole (v ∷ [])) p ⟩
y ∙ v ∎
monoid : Monoid ₀ ₀
monoid = record { Carrier = T X ; _≈_ = _≈_ ; _∙_ = _∙_ ; ε = ε
; isMonoid = record { isSemigroup = record { isEquivalence = ≈-isEquivalence
; assoc = ∙-assoc
; ∙-cong = ∙-cong }
; identity = (λ x → η≡ (⊢-ε∙x x))
, (λ x → η≡ (⊢-x∙ε x)) } }
{-
Free monoid as a functor F : Sets → Mon
map-[] : map f [] ≡ []
map-++ : map f xs ++ map f ys = map f (xs ++ ys)
F X = (List X , [] , _++_)
F (f : Sets(X , Y))
: Mon(F X , F Y)
= (map f , map-[] , map-++)
-}
module FreeGroup where
data Op : ℕ → ★ where
`ε : Op 0
`i : Op 1
`μ : Op 2
open Language.Simple.Abstract Op renaming (E to T)
ε : ∀ {X} → T X
ε = op `ε []
infix 9 −_
−_ : ∀ {X} → T X → T X
− t = op `i (t ∷ [])
infixr 6 _∙_
_∙_ : ∀ {X} → T X → T X → T X
t ∙ u = op `μ (t ∷ u ∷ [])
infix 0 _⊢_≡_
data _⊢_≡_ (X : ★) : T X → T X → ★ where
ε∙x : ∀ x → X ⊢ ε ∙ x ≡ x
x∙ε : ∀ x → X ⊢ x ∙ ε ≡ x
∙-assoc : ∀ x y z → X ⊢ (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)
−∙-inv : ∀ x → X ⊢ − x ∙ x ≡ ε
∙−-inv : ∀ x → X ⊢ x ∙ − x ≡ ε
-- − (− t) ≡ t
-- − t ∙ − (− t) ≡ ε ≡ − t ∙ t
-- -}
-- -}
-- -}
-- -}
|
Add Language.Simple.Free
|
Add Language.Simple.Free
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
a2284fe9263eadf1deb8ce96940c9f0cc72949bb
|
ModalLogic.agda
|
ModalLogic.agda
|
module ModalLogic where
-- Implement Frank Pfenning's lambda calculus based on modal logic S4, as
-- described in "A Modal Analysis of Staged Computation".
open import Denotational.Notation
data BaseType : Set where
Base : BaseType
Next : BaseType → BaseType
data Type : Set where
base : BaseType → Type
_⇒_ : Type → Type → Type
□_ : Type → Type
-- Reuse contexts, variables and weakening from Tillmann's library.
open import Syntactic.Contexts Type
-- No semantics for these types.
data Term : Context → Context → Type → Set where
abs : ∀ {τ₁ τ₂ Γ Δ} → (t : Term (τ₁ • Γ) Δ τ₂) → Term Γ Δ (τ₁ ⇒ τ₂)
app : ∀ {τ₁ τ₂ Γ Δ} → (t₁ : Term Γ Δ (τ₁ ⇒ τ₂)) (t₂ : Term Γ Δ τ₁) → Term Γ Δ τ₂
ovar : ∀ {Γ Δ τ} → (x : Var Γ τ) → Term Γ Δ τ
mvar : ∀ {Γ Δ τ} → (u : Var Δ τ) → Term Γ Δ τ
-- Note the builtin weakening
box : ∀ {Γ Δ τ} → Term ∅ Δ τ → Term Γ Δ (□ τ)
let-box_in-_ : ∀ {τ₁ τ₂ Γ Δ} → (e₁ : Term Γ Δ (□ τ₁)) → (e₂ : Term Γ (τ₁ • Δ) τ₂) → Term Γ Δ τ₂
-- Lemma 1 includes weakening.
-- Most of the proof can be generated by C-c C-a, but syntax errors must then be fixed.
weaken : ∀ {Γ₁ Γ₂ Δ₁ Δ₂ τ} → (Γ′ : Γ₁ ≼ Γ₂) → (Δ′ : Δ₁ ≼ Δ₂) → Term Γ₁ Δ₁ τ → Term Γ₂ Δ₂ τ
weaken Γ′ Δ′ (abs {τ₁} t) = abs (weaken (keep τ₁ • Γ′) Δ′ t)
weaken Γ′ Δ′ (app t t₁) = app (weaken Γ′ Δ′ t) (weaken Γ′ Δ′ t₁)
weaken Γ′ Δ′ (ovar x) = ovar (lift Γ′ x)
weaken Γ′ Δ′ (mvar u) = mvar (lift Δ′ u)
weaken Γ′ Δ′ (box t) = box (weaken ∅ Δ′ t)
weaken Γ′ Δ′ (let-box_in-_ {τ₁} t t₁) =
let-box weaken Γ′ Δ′ t in-
weaken Γ′ (keep τ₁ • Δ′) t₁
|
Implement modal logic
|
Implement modal logic
This doesn't belong here, but it reuses @Toxaris modular library.
Old-commit-hash: 2f12ca949c8cb58e2b65b773607282bafbccb5c9
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
006fd9c825ad2011f95bb01a40c7f000d4fd4f30
|
bugs/Future.agda
|
bugs/Future.agda
|
module Future where
open import Denotational.Notation
-- Uses too much memory.
-- open import Data.Integer
open import Data.Product
open import Data.Sum
open import Data.Unit
postulate ⟦Int⟧ : Set
postulate ⟦Bag⟧ : Set → Set
--mutual
-- First, define a language of types, their denotations, and then the whole algebra of changes in the semantic domain
data Type : Set
⟦_⟧Type : Type → Set
data Type where
Int : Type
--Bag : Type → Type
_⇒_ {- _⊠_ _⊞_ -} : Type → Type → Type
Δ : (τ : Type) → (old : ⟦ τ ⟧Type) → Type
-- meaningOfType : Meaning Type
-- meaningOfType = meaning ⟦_⟧Type
-- Try out Δ old here
Change : (τ : Type) → ⟦ τ ⟧Type → Set
Change Int old₁ = {!!}
-- Change (Bag τ₁) old₁ = ⟦ Bag τ₁ ⟧Type ⊎ (Σ[ old ∈ (⟦ τ₁ ⟧Type) ] (⟦Bag⟧ ⟦ Δ τ₁ old ⟧Type))
Change (τ₁ ⇒ τ₂) oldF = ⟦ Δ τ₂ (oldF ?) ⟧Type
-- oldF ? -- oldF ? -- (oldInput : ⟦ τ₁ ⟧Type) → ⟦ Δ τ₁ oldInput ⟧Type → ⟦ Δ τ₂ (oldF oldInput) ⟧Type
-- Change (τ₁ ⊠ τ₂) old₁ = {!⟦ τ₁ ⟧Type × ⟦ τ₂ ⟧Type!}
-- Change (τ₁ ⊞ τ₂) old₁ = {!!}
Change (Δ τ₁ old₁) old₂ = {!!}
⟦ Int ⟧Type = ⟦Int⟧
-- ⟦ Bag τ ⟧Type = ⟦Bag⟧ ⟦ τ ⟧Type
⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type
-- ⟦ σ ⊠ τ ⟧Type = ⟦ σ ⟧Type × ⟦ τ ⟧Type
-- ⟦ σ ⊞ τ ⟧Type = ⟦ σ ⟧Type ⊎ ⟦ τ ⟧Type
⟦ Δ τ old ⟧Type = {- ⊤ ⊎ ⟦ τ ⟧Type ⊎ -} Change τ old
|
add another bug example
|
Agda: add another bug example
Old-commit-hash: 82f681165ed59ccc36685cbf9c376026811e127f
|
Agda
|
mit
|
inc-lc/ilc-agda
|
|
9bb44c3e31a11725d740b2f59d40ebbe7e0917a2
|
FiniteField/JS.agda
|
FiniteField/JS.agda
|
{-# OPTIONS --without-K #-}
open import Function.NP
open import FFI.JS using (Number; Bool; true; false; String; warn-check; check; trace-call; _++_)
open import FFI.JS.BigI
open import Data.List.Base hiding (sum; _++_)
{-
open import Algebra.Raw
open import Algebra.Field
-}
module FiniteField.JS (q : BigI) where
abstract
ℤq : Set
ℤq = BigI
private
mod-q : BigI → ℤq
mod-q x = mod x q
-- There is two ways to go from BigI to ℤq: check and mod-q
-- Use check for untrusted input data and mod-q for internal
-- computation.
BigI▹ℤq : BigI → ℤq
BigI▹ℤq = -- trace-call "BigI▹ℤq "
λ x →
mod-q
(warn-check (x <I q)
(λ _ → "Not below the modulus: " ++ toString q ++ " < " ++ toString x)
(warn-check (x ≥I 0I)
(λ _ → "Should be positive: " ++ toString x ++ " < 0") x))
check-non-zero : ℤq → BigI
check-non-zero = -- trace-call "check-non-zero "
λ x → check (x >I 0I) (λ _ → "Should be non zero") x
repr : ℤq → BigI
repr x = x
0# 1# : ℤq
0# = 0I
1# = 1I
1/_ : Op₁ ℤq
1/ x = modInv (check-non-zero x) q
_^_ : Op₂ ℤq
x ^ y = modPow (repr x) (repr y) q
_+_ _−_ _*_ _/_ : Op₂ ℤq
x + y = mod-q (add (repr x) (repr y))
x − y = mod-q (subtract (repr x) (repr y))
x * y = mod-q (multiply (repr x) (repr y))
x / y = x * 1/ y
0−_ : Op₁ ℤq
0− x = mod-q (negate (repr x))
_==_ : (x y : ℤq) → Bool
x == y = equals (repr x) (repr y)
sum prod : List ℤq → ℤq
sum = foldr _+_ 0#
prod = foldr _*_ 1#
{-
+-mon-ops : Monoid-Ops ℤq
+-mon-ops = _+_ , 0#
+-grp-ops : Group-Ops ℤq
+-grp-ops = +-mon-ops , 0−_
*-mon-ops : Monoid-Ops ℤq
*-mon-ops = _*_ , 1#
*-grp-ops : Group-Ops ℤq
*-grp-ops = *-mon-ops , 1/_
fld-ops : Field-Ops ℤq
fld-ops = +-grp-ops , *-grp-ops
postulate
fld-struct : Field-Struct fld-ops
fld : Field ℤq
fld = fld-ops , fld-struct
-- -}
-- -}
-- -}
-- -}
-- -}
|
Add FiniteField/JS
|
Add FiniteField/JS
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
|
a48ff25823603032db6b1a26e4605512aefd0561
|
notes/FOT/FOTC/Data/Conat/ConatSL.agda
|
notes/FOT/FOTC/Data/Conat/ConatSL.agda
|
------------------------------------------------------------------------------
-- Definition of FOTC Conat using Agda's co-inductive combinators
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Conat.ConatSL where
open import FOTC.Base
open import Coinduction
------------------------------------------------------------------------------
data Conat : D → Set where
cozero : Conat zero
cosucc : ∀ {n} → (∞ (Conat n)) → Conat (succ₁ n)
Conat-unf : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')
Conat-unf cozero = inj₁ refl
Conat-unf (cosucc {n} Cn) = inj₂ (n , ♭ Cn , refl)
Conat-pre-fixed : ∀ {n} →
(n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')) →
Conat n
Conat-pre-fixed (inj₁ h) = subst Conat (sym h) cozero
Conat-pre-fixed (inj₂ (n , Cn , h)) = subst Conat (sym h) (cosucc (♯ Cn))
Conat-coind : ∀ (A : D → Set) {n} →
(A n → n ≡ zero ∨ (∃[ n' ] A n' ∧ n ≡ succ₁ n')) →
A n → Conat n
Conat-coind A h An = {!!}
|
Add incomplete note on co-inductive natural numbers.
|
Add incomplete note on co-inductive natural numbers.
|
Agda
|
mit
|
asr/fotc,asr/fotc
|
|
07045b7aa32a14de23ec233029b6fc6134b24685
|
experiment/liftVec.agda
|
experiment/liftVec.agda
|
open import Function
open import Data.Nat using (ℕ ; suc ; zero)
open import Data.Fin using (Fin)
open import Data.Vec
open import Data.Vec.N-ary.NP
open import Relation.Binary.PropositionalEquality
module liftVec where
module single (A : Set)(_+_ : A → A → A)where
data Tm : Set where
var : Tm
cst : A → Tm
fun : Tm → Tm → Tm
eval : Tm → A → A
eval var x = x
eval (cst c) x = c
eval (fun tm tm') x = eval tm x + eval tm' x
veval : {m : ℕ} → Tm → Vec A m → Vec A m
veval var xs = xs
veval (cst x) xs = replicate x
veval (fun tm tm') xs = zipWith _+_ (veval tm xs) (veval tm' xs)
record Fm : Set where
constructor _=='_
field
lhs : Tm
rhs : Tm
s[_] : Fm → Set
s[ lhs ==' rhs ] = (x : A) → eval lhs x ≡ eval rhs x
v[_] : Fm → Set
v[ lhs ==' rhs ] = {m : ℕ}(xs : Vec A m) → veval lhs xs ≡ veval rhs xs
lemma1 : (t : Tm) → veval t [] ≡ []
lemma1 var = refl
lemma1 (cst x) = refl
lemma1 (fun t t') rewrite lemma1 t | lemma1 t' = refl
lemma2 : {m : ℕ}(x : A)(xs : Vec A m)(t : Tm) → veval t (x ∷ xs) ≡ eval t x ∷ veval t xs
lemma2 _ _ var = refl
lemma2 _ _ (cst c) = refl
lemma2 x xs (fun t t') rewrite lemma2 x xs t | lemma2 x xs t' = refl
prf : (t : Fm) → s[ t ] → v[ t ]
prf (lhs ==' rhs) pr [] rewrite lemma1 lhs | lemma1 rhs = refl
prf (l ==' r) pr (x ∷ xs) rewrite lemma2 x xs l | lemma2 x xs r = cong₂ (_∷_) (pr x) (prf (l ==' r) pr xs)
module MultiDataType {A : Set} {nrVar : ℕ} where
data Tm : Set where
var : Fin nrVar → Tm
cst : A → Tm
fun : Tm → Tm → Tm
infixl 6 _+'_
_+'_ : Tm → Tm → Tm
_+'_ = fun
infix 4 _≡'_
record TmEq : Set where
constructor _≡'_
field
lhs rhs : Tm
module multi (A : Set)(_+_ : A → A → A)(nrVar : ℕ) where
open MultiDataType {A} {nrVar} public
sEnv : Set
sEnv = Vec A nrVar
vEnv : ℕ → Set
vEnv m = Vec (Vec A m) nrVar
Var : Set
Var = Fin nrVar
_!_ : {X : Set} → Vec X nrVar → Var → X
E ! v = lookup v E
eval : Tm → sEnv → A
eval (var x) G = G ! x
eval (cst c) G = c
eval (fun t t') G = eval t G + eval t' G
veval : {m : ℕ} → Tm → vEnv m → Vec A m
veval (var x) G = G ! x
veval (cst c) G = replicate c
veval (fun t t') G = zipWith _+_ (veval t G) (veval t' G)
lemma1 : {xs : Vec (Vec A 0) nrVar} (t : Tm) → veval t xs ≡ []
lemma1 {xs} (var x) with xs ! x
... | [] = refl
lemma1 (cst x) = refl
lemma1 {xs} (fun t t') rewrite lemma1 {xs} t | lemma1 {xs} t' = refl
lemVar : {m n : ℕ}(G : Vec (Vec A (suc m)) n)(i : Fin n) → lookup i G ≡ lookup i (map head G) ∷ lookup i (map tail G)
lemVar [] ()
lemVar ((x ∷ G) ∷ G₁) Data.Fin.zero = refl
lemVar (G ∷ G') (Data.Fin.suc i) = lemVar G' i
lemma2 : {n : ℕ}(xs : vEnv (suc n))(t : Tm) → veval t xs ≡ eval t (map head xs) ∷ veval t (map tail xs)
lemma2 G (var x) = lemVar G x
lemma2 _ (cst x) = refl
lemma2 G (fun t t') rewrite lemma2 G t | lemma2 G t' = refl
s[_==_] : Tm → Tm → Set
s[ l == r ] = (G : Vec A nrVar) → eval l G ≡ eval r G
v[_==_] : Tm → Tm → Set
v[ l == r ] = {m : ℕ}(G : Vec (Vec A m) nrVar) → veval l G ≡ veval r G
prf : (l r : Tm) → s[ l == r ] → v[ l == r ]
prf l r pr {zero} G rewrite lemma1 {G} l | lemma1 {G} r = refl
prf l r pr {suc m} G rewrite lemma2 G l | lemma2 G r
= cong₂ _∷_ (pr (replicate head ⊛ G)) (prf l r pr (map tail G))
module Full (A : Set)(_+_ : A → A → A) (m : ℕ) n where
open multi A _+_ n public
solve : ∀ (l r : Tm) → ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G))
→ ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G))
solve l r x = curryⁿ {n} {A = Vec A m} {B = curryⁿ′ f}
(λ xs → subst id (sym (curry-$ⁿ′ f xs))
(prf l r (λ G → subst id (curry-$ⁿ′ g G) (x $ⁿ G)) xs))
where f = λ G → veval {m} l G ≡ veval r G
g = λ G → eval l G ≡ eval r G
mkTm : N-ary n Tm TmEq → TmEq
mkTm = go (tabulate id) where
go : {m : ℕ} -> Vec (Fin n) m → N-ary m Tm TmEq → TmEq
go [] f = f
go (x ∷ args) f = go args (f (var x))
prove : ∀ (t : N-ary n Tm TmEq) →
let
l = TmEq.lhs (mkTm t)
r = TmEq.rhs (mkTm t)
in ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G))
→ ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G))
prove t x = solve (TmEq.lhs (mkTm t)) (TmEq.rhs (mkTm t)) x
open import Data.Bool
module example where
open import Data.Fin
open import Data.Bool.NP
open import Data.Product using (Σ ; proj₁)
module VecBoolXorProps {m} = Full Bool _xor_ m
open MultiDataType
coolTheorem : {m : ℕ} → (xs ys : Vec Bool m) → zipWith _xor_ xs ys ≡ zipWith _xor_ ys xs
coolTheorem = VecBoolXorProps.prove 2 (λ x y → x +' y ≡' y +' x) Xor°.+-comm
coolTheorem2 : {m : ℕ} → (xs : Vec Bool m) → _
coolTheorem2 = VecBoolXorProps.prove 1 (λ x → (x +' x) ≡' (cst false)) (proj₁ Xor°.-‿inverse)
test = example.coolTheorem (true ∷ false ∷ []) (false ∷ false ∷ [])
|
open import Function
open import Data.Nat using (ℕ ; suc ; zero)
open import Data.Fin using (Fin)
open import Data.Vec
open import Data.Vec.N-ary.NP
open import Relation.Binary.PropositionalEquality
module liftVec where
module single (A : Set)(_+_ : A → A → A)where
data Tm : Set where
var : Tm
cst : A → Tm
fun : Tm → Tm → Tm
eval : Tm → A → A
eval var x = x
eval (cst c) x = c
eval (fun tm tm') x = eval tm x + eval tm' x
veval : {m : ℕ} → Tm → Vec A m → Vec A m
veval var xs = xs
veval (cst x) xs = replicate x
veval (fun tm tm') xs = zipWith _+_ (veval tm xs) (veval tm' xs)
record Fm : Set where
constructor _=='_
field
lhs : Tm
rhs : Tm
s[_] : Fm → Set
s[ lhs ==' rhs ] = (x : A) → eval lhs x ≡ eval rhs x
v[_] : Fm → Set
v[ lhs ==' rhs ] = {m : ℕ}(xs : Vec A m) → veval lhs xs ≡ veval rhs xs
lemma1 : (t : Tm) → veval t [] ≡ []
lemma1 var = refl
lemma1 (cst x) = refl
lemma1 (fun t t') rewrite lemma1 t | lemma1 t' = refl
lemma2 : {m : ℕ}(x : A)(xs : Vec A m)(t : Tm) → veval t (x ∷ xs) ≡ eval t x ∷ veval t xs
lemma2 _ _ var = refl
lemma2 _ _ (cst c) = refl
lemma2 x xs (fun t t') rewrite lemma2 x xs t | lemma2 x xs t' = refl
prf : (t : Fm) → s[ t ] → v[ t ]
prf (lhs ==' rhs) pr [] rewrite lemma1 lhs | lemma1 rhs = refl
prf (l ==' r) pr (x ∷ xs) rewrite lemma2 x xs l | lemma2 x xs r = cong₂ (_∷_) (pr x) (prf (l ==' r) pr xs)
module MultiDataType {A : Set} {nrVar : ℕ} where
data Tm : Set where
var : Fin nrVar → Tm
cst : A → Tm
fun : Tm → Tm → Tm
infixl 6 _+'_
_+'_ : Tm → Tm → Tm
_+'_ = fun
infix 4 _≡'_
record TmEq : Set where
constructor _≡'_
field
lhs rhs : Tm
module multi (A : Set)(_+_ : A → A → A)(nrVar : ℕ) where
open MultiDataType {A} {nrVar} public
sEnv : Set
sEnv = Vec A nrVar
vEnv : ℕ → Set
vEnv m = Vec (Vec A m) nrVar
Var : Set
Var = Fin nrVar
_!_ : {X : Set} → Vec X nrVar → Var → X
E ! v = lookup v E
eval : Tm → sEnv → A
eval (var x) G = G ! x
eval (cst c) G = c
eval (fun t t') G = eval t G + eval t' G
veval : {m : ℕ} → Tm → vEnv m → Vec A m
veval (var x) G = G ! x
veval (cst c) G = replicate c
veval (fun t t') G = zipWith _+_ (veval t G) (veval t' G)
lemma1 : {xs : Vec (Vec A 0) nrVar} (t : Tm) → veval t xs ≡ []
lemma1 {xs} (var x) with xs ! x
... | [] = refl
lemma1 (cst x) = refl
lemma1 {xs} (fun t t') rewrite lemma1 {xs} t | lemma1 {xs} t' = refl
lemVar : {m n : ℕ}(G : Vec (Vec A (suc m)) n)(i : Fin n) → lookup i G ≡ lookup i (map head G) ∷ lookup i (map tail G)
lemVar [] ()
lemVar ((x ∷ G) ∷ G₁) Data.Fin.zero = refl
lemVar (G ∷ G') (Data.Fin.suc i) = lemVar G' i
lemma2 : {n : ℕ}(xs : vEnv (suc n))(t : Tm) → veval t xs ≡ eval t (map head xs) ∷ veval t (map tail xs)
lemma2 G (var x) = lemVar G x
lemma2 _ (cst x) = refl
lemma2 G (fun t t') rewrite lemma2 G t | lemma2 G t' = refl
s[_==_] : Tm → Tm → Set
s[ l == r ] = (G : Vec A nrVar) → eval l G ≡ eval r G
v[_==_] : Tm → Tm → Set
v[ l == r ] = {m : ℕ}(G : Vec (Vec A m) nrVar) → veval l G ≡ veval r G
prf : (l r : Tm) → s[ l == r ] → v[ l == r ]
prf l r pr {zero} G rewrite lemma1 {G} l | lemma1 {G} r = refl
prf l r pr {suc m} G rewrite lemma2 G l | lemma2 G r
= cong₂ _∷_ (pr (replicate head ⊛ G)) (prf l r pr (map tail G))
module Full (A : Set)(_+_ : A → A → A) (m : ℕ) n where
open multi A _+_ n public
solve : ∀ (l r : Tm) → ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G))
→ ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G))
solve l r x = curryⁿ {n} {A = Vec A m} {B = curryⁿ′ f}
(λ xs → subst id (sym (curry-$ⁿ′ f xs))
(prf l r (λ G → subst id (curry-$ⁿ′ g G) (x $ⁿ G)) xs))
where f = λ G → veval {m} l G ≡ veval r G
g = λ G → eval l G ≡ eval r G
mkTm : N-ary n Tm TmEq → TmEq
mkTm = go (tabulate id) where
go : {m : ℕ} -> Vec (Fin n) m → N-ary m Tm TmEq → TmEq
go [] f = f
go (x ∷ args) f = go args (f (var x))
prove : ∀ (t : N-ary n Tm TmEq) →
let
l = TmEq.lhs (mkTm t)
r = TmEq.rhs (mkTm t)
in ∀ⁿ n (curryⁿ′ (λ G → eval l G ≡ eval r G))
→ ∀ⁿ n (curryⁿ′ (λ G → veval {m} l G ≡ veval r G))
prove t x = solve (TmEq.lhs (mkTm t)) (TmEq.rhs (mkTm t)) x
open import Data.Two
module example where
open import Data.Fin
open import Data.Product using (Σ ; proj₁)
module VecBoolXorProps {m} = Full 𝟚 _xor_ m
open MultiDataType
coolTheorem : {m : ℕ} → (xs ys : Vec 𝟚 m) → zipWith _xor_ xs ys ≡ zipWith _xor_ ys xs
coolTheorem = VecBoolXorProps.prove 2 (λ x y → x +' y ≡' y +' x) Xor°.+-comm
coolTheorem2 : {m : ℕ} → (xs : Vec 𝟚 m) → _
coolTheorem2 = VecBoolXorProps.prove 1 (λ x → (x +' x) ≡' (cst 0₂)) (proj₁ Xor°.-‿inverse)
test = example.coolTheorem (1₂ ∷ 0₂ ∷ []) (0₂ ∷ 0₂ ∷ [])
|
Upgrade to Data.Two
|
Upgrade to Data.Two
|
Agda
|
bsd-3-clause
|
crypto-agda/agda-nplib
|
a79e9939c6512db4827fc831f2689871d99cfc26
|
Base/Change/Context.agda
|
Base/Change/Context.agda
|
module Base.Change.Context
{Type : Set}
(ΔType : Type → Type) where
-- Transform a context of values into a context of values and
-- changes.
open import Base.Syntax.Context Type
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- like ΔContext, but ΔType τ and τ are swapped
ΔContext′ : Context → Context
ΔContext′ ∅ = ∅
ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
|
module Base.Change.Context
{Type : Set}
(ΔType : Type → Type) where
open import Base.Syntax.Context Type
-- Transform a context of values into a context of values and
-- changes.
ΔContext : Context → Context
ΔContext ∅ = ∅
ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ
-- like ΔContext, but ΔType τ and τ are swapped
ΔContext′ : Context → Context
ΔContext′ ∅ = ∅
ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ
Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ
Γ≼ΔΓ {∅} = ∅
Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
|
Move function-specific comment right before function
|
Move function-specific comment right before function
Currently, this seems a comment about the whole module.
Old-commit-hash: c25e918e712496981adfe4c74f94a8d80e8e5052
|
Agda
|
mit
|
inc-lc/ilc-agda
|
06d988ce4bc3692e4e60e39bdb8f2e1daddb660e
|
Denotation/Change/Popl14.agda
|
Denotation/Change/Popl14.agda
|
module Denotation.Change.Popl14 where
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Popl14.Denotation.Value
open import Theorem.Groups-Popl14
open import Postulate.Extensionality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
---------------
-- Interface --
---------------
ΔVal : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
-- apply Δv v ::= v ⊞ Δv
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧
-- diff u v ::= u ⊟ v
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
--------------------
-- Implementation --
--------------------
-- ΔVal τ is intended to be the semantic domain for changes of values
-- of type τ.
--
-- ΔVal τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
--
-- ΔVal : Type → Set
ΔVal int = ℤ
ΔVal bag = Bag
ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧
_⊞_ {int} n Δn = n + Δn
_⊞_ {bag} b Δb = b ++ Δb
_⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ})
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ
_⊟_ {int} m n = m - n
_⊟_ {bag} d b = d \\ b
_⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v
-- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set
valid {int} n Δn = ⊤
valid {bag} b Δb = ⊤
valid {σ ⇒ τ} f Δf =
∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv)
→ valid (f v) (Δf v Δv R[v,Δv])
× (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {int} {u} {v} = n+[m-n]=m {v} {u}
v+[u-v]=u {bag} {u} {v} = a++[b\\a]=b {v} {u}
v+[u-v]=u {σ ⇒ τ} {u} {v} = ext (λ w →
begin
(v ⊞ (u ⊟ v)) w
≡⟨ refl ⟩
v w ⊞ (u (w ⊞ (w ⊟ w)) ⊟ v w)
≡⟨ cong (λ hole → v w ⊞ (u hole ⊟ v w)) v+[u-v]=u ⟩
v w ⊞ (u w ⊟ v w)
≡⟨ v+[u-v]=u ⟩
u w
∎) where open ≡-Reasoning
R[v,u-v] {int} {u} {v} = tt
R[v,u-v] {bag} {u} {v} = tt
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] →
let
w′ = w ⊞ Δw
in
R[v,u-v] {τ}
,
(begin
(v ⊞ (u ⊟ v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {u = u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {u = u w′} {v w}) ⟩
v w ⊞ (u ⊟ v) w Δw R[w,Δw]
∎) where open ≡-Reasoning
-- `diff` and `apply`, without validity proofs
infixl 6 _⟦⊕⟧_ _⟦⊝⟧_
_⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_⟦⊕⟧_ {int} n Δn = n + Δn
_⟦⊕⟧_ {bag} b Δb = b ++ Δb
_⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → f v ⟦⊕⟧ Δf v (v ⟦⊝⟧ v)
_⟦⊝⟧_ {int} m n = m - n
_⟦⊝⟧_ {bag} a b = a \\ b
_⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → g (v ⟦⊕⟧ Δv) ⟦⊝⟧ f v
|
module Denotation.Change.Popl14 where
-- Changes for Calculus Popl14
--
-- Contents
-- - Mutually recursive concepts: ΔVal, validity.
-- Under module Syntax, the corresponding concepts of
-- ΔType and ΔContext reside in separate files.
-- Now they have to be together due to mutual recursiveness.
-- - `diff` and `apply` on semantic values of changes:
-- they have to be here as well because they are mutually
-- recursive with validity.
-- - The lemma diff-is-valid: it has to be here because it is
-- mutually recursive with `apply`
-- - The lemma apply-diff: it is mutually recursive with `apply`
-- and `diff`
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Popl14.Denotation.Value
open import Theorem.Groups-Popl14
open import Postulate.Extensionality
open import Data.Unit
open import Data.Product
open import Data.Integer
open import Structure.Bag.Popl14
---------------
-- Interface --
---------------
ΔVal : Type → Set
valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set
infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num
-- apply Δv v ::= v ⊞ Δv
_⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧
-- diff u v ::= u ⊟ v
_⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ
-- Lemma diff-is-valid
R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v)
-- Lemma apply-diff
v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
let
_+_ = _⊞_ {τ}
_-_ = _⊟_ {τ}
in
v + (u - v) ≡ u
--------------------
-- Implementation --
--------------------
-- ΔVal τ is intended to be the semantic domain for changes of values
-- of type τ.
--
-- ΔVal τ is the target of the denotational specification ⟦_⟧Δ.
-- Detailed motivation:
--
-- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex
--
-- ΔVal : Type → Set
ΔVal (base base-int) = ℤ
ΔVal (base base-bag) = Bag
ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ
-- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧
_⊞_ {base base-int} n Δn = n + Δn
_⊞_ {base base-bag} b Δb = b ++ Δb
_⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ})
-- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ
_⊟_ {base base-int} m n = m - n
_⊟_ {base base-bag} d b = d \\ b
_⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v
-- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set
valid {base base-int} n Δn = ⊤
valid {base base-bag} b Δb = ⊤
valid {σ ⇒ τ} f Δf =
∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv)
→ valid (f v) (Δf v Δv R[v,Δv])
-- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
× (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv]
-- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u
v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u}
v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u}
v+[u-v]=u {σ ⇒ τ} {u} {v} =
let
_+_ = _⊞_ {σ ⇒ τ}
_-_ = _⊟_ {σ ⇒ τ}
_+₀_ = _⊞_ {σ}
_-₀_ = _⊟_ {σ}
_+₁_ = _⊞_ {τ}
_-₁_ = _⊟_ {τ}
in
ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w →
begin
(v + (u - v)) w
≡⟨ refl ⟩
v w +₁ (u (w +₀ (w -₀ w)) -₁ v w)
≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩
v w +₁ (u w -₁ v w)
≡⟨ v+[u-v]=u {τ} ⟩
u w
∎) where
open ≡-Reasoning
R[v,u-v] {base base-int} {u} {v} = tt
R[v,u-v] {base base-bag} {u} {v} = tt
R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] →
let
w′ = w ⊞ Δw
_+_ = _⊞_ {σ ⇒ τ}
_-_ = _⊟_ {σ ⇒ τ}
_+₁_ = _⊞_ {τ}
_-₁_ = _⊟_ {τ}
in
R[v,u-v] {τ}
,
(begin
(v + (u - v)) w′
≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩
u w′
≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩
v w +₁ (u - v) w Δw R[w,Δw]
∎) where open ≡-Reasoning
-- `diff` and `apply`, without validity proofs
infixl 6 _⟦⊕⟧_ _⟦⊝⟧_
_⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_⟦⊕⟧_ {base base-int} n Δn = n + Δn
_⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb
_⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v →
let
_-₀_ = _⟦⊝⟧_ {σ}
_+₁_ = _⟦⊕⟧_ {τ}
in
f v +₁ Δf v (v -₀ v)
_⟦⊝⟧_ {base base-int} m n = m - n
_⟦⊝⟧_ {base base-bag} a b = a \\ b
_⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
|
add type annotations to Denotation.Change.Popl14
|
[WIP] add type annotations to Denotation.Change.Popl14
Old-commit-hash: 90b06722aecf9d0b5c6c69547217cb2c522912be
|
Agda
|
mit
|
inc-lc/ilc-agda
|
d9a3d68c58bd5c8ae49738e7a8f68fd5e89b4bce
|
lambda.agda
|
lambda.agda
|
module lambda where
open import Relation.Binary.PropositionalEquality
open import Denotational.Notation
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
bool : Type
infixr 5 _⇒_
-- Denotational Semantics
data Bool : Set where
true false : Bool
⟦_⟧Type : Type -> Set
⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type
⟦ bool ⟧Type = Bool
meaningOfType : Meaning Type
meaningOfType = meaning ⟦_⟧Type
-- TYPING CONTEXTS, VARIABLES and WEAKENING
open import Syntactic.Contexts Type public
open import Denotational.Environments Type ⟦_⟧Type public
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
true false : ∀ {Γ} → Term Γ bool
cond : ∀ {Γ τ} → (e₁ : Term Γ bool) (e₂ e₃ : Term Γ τ) → Term Γ τ
-- Denotational Semantics
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ)
⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ
⟦ true ⟧Term ρ = true
⟦ false ⟧Term ρ = false
⟦ cond t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ
... | true = ⟦ t₂ ⟧Term ρ
... | false = ⟦ t₃ ⟧Term ρ
meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ)
meaningOfTerm = meaning ⟦_⟧Term
-- NATURAL SEMANTICS
-- Syntax
data Env : Context → Set
data Val : Type → Set
data Val where
⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂)
true : Val bool
false : Val bool
data Env where
∅ : Env ∅
_•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ)
-- Lookup
infixr 8 _⊢_↓_ _⊢_↦_
data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where
this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} →
v • ρ ⊢ this ↦ v
that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} →
ρ ⊢ x ↦ v₂ →
v₁ • ρ ⊢ that x ↦ v₂
-- Reduction
data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where
abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} →
ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩
app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} →
ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ →
ρ ⊢ t₂ ↓ v₂ →
v₂ • ρ′ ⊢ t′ ↓ v′ →
ρ ⊢ app t₁ t₂ ↓ v′
var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→
ρ ⊢ x ↦ v →
ρ ⊢ var x ↓ v
cond-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} →
ρ ⊢ t₁ ↓ true →
ρ ⊢ t₂ ↓ v₂ →
ρ ⊢ cond t₁ t₂ t₃ ↓ v₂
cond-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} →
ρ ⊢ t₁ ↓ false →
ρ ⊢ t₃ ↓ v₃ →
ρ ⊢ cond t₁ t₂ t₃ ↓ v₃
-- SOUNDNESS of natural semantics
⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧
⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧
⟦ ∅ ⟧Env = ∅
⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env
⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env)
⟦ true ⟧Val = true
⟦ false ⟧Val = false
meaningOfEnv : ∀ {Γ} → Meaning (Env Γ)
meaningOfEnv = meaning ⟦_⟧Env
meaningOfVal : ∀ {τ} → Meaning (Val τ)
meaningOfVal = meaning ⟦_⟧Val
↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} →
ρ ⊢ x ↦ v →
⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧
↦-sound this = refl
↦-sound (that ↦) = ↦-sound ↦
↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} →
ρ ⊢ t ↓ v →
⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧
↓-sound abs = refl
↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′)
↓-sound (var ↦) = ↦-sound ↦
↓-sound (cond-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂
↓-sound (cond-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃
-- WEAKENING
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
weaken {Γ₁} {Γ₂} true = true
weaken {Γ₁} {Γ₂} false = false
weaken {Γ₁} {Γ₂} (cond e₁ e₂ e₃) = cond (weaken {Γ₁} {Γ₂} e₁) (weaken {Γ₁} {Γ₂} e₂) (weaken {Γ₁} {Γ₂} e₃)
|
module lambda where
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types public
open import Syntactic.Contexts Type public
open import Denotational.Notation
open import Denotational.Values public
open import Denotational.Environments Type ⟦_⟧Type public
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
true false : ∀ {Γ} → Term Γ bool
cond : ∀ {Γ τ} → (e₁ : Term Γ bool) (e₂ e₃ : Term Γ τ) → Term Γ τ
-- Denotational Semantics
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧
⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ)
⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ)
⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ
⟦ true ⟧Term ρ = true
⟦ false ⟧Term ρ = false
⟦ cond t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ
... | true = ⟦ t₂ ⟧Term ρ
... | false = ⟦ t₃ ⟧Term ρ
meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ)
meaningOfTerm = meaning ⟦_⟧Term
-- NATURAL SEMANTICS
-- Syntax
data Env : Context → Set
data Val : Type → Set
data Val where
⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂)
true : Val bool
false : Val bool
data Env where
∅ : Env ∅
_•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ)
-- Lookup
infixr 8 _⊢_↓_ _⊢_↦_
data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where
this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} →
v • ρ ⊢ this ↦ v
that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} →
ρ ⊢ x ↦ v₂ →
v₁ • ρ ⊢ that x ↦ v₂
-- Reduction
data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where
abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} →
ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩
app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} →
ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ →
ρ ⊢ t₂ ↓ v₂ →
v₂ • ρ′ ⊢ t′ ↓ v′ →
ρ ⊢ app t₁ t₂ ↓ v′
var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→
ρ ⊢ x ↦ v →
ρ ⊢ var x ↓ v
cond-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} →
ρ ⊢ t₁ ↓ true →
ρ ⊢ t₂ ↓ v₂ →
ρ ⊢ cond t₁ t₂ t₃ ↓ v₂
cond-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} →
ρ ⊢ t₁ ↓ false →
ρ ⊢ t₃ ↓ v₃ →
ρ ⊢ cond t₁ t₂ t₃ ↓ v₃
-- SOUNDNESS of natural semantics
⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧
⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧
⟦ ∅ ⟧Env = ∅
⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env
⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env)
⟦ true ⟧Val = true
⟦ false ⟧Val = false
meaningOfEnv : ∀ {Γ} → Meaning (Env Γ)
meaningOfEnv = meaning ⟦_⟧Env
meaningOfVal : ∀ {τ} → Meaning (Val τ)
meaningOfVal = meaning ⟦_⟧Val
↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} →
ρ ⊢ x ↦ v →
⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧
↦-sound this = refl
↦-sound (that ↦) = ↦-sound ↦
↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} →
ρ ⊢ t ↓ v →
⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧
↓-sound abs = refl
↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′)
↓-sound (var ↦) = ↦-sound ↦
↓-sound (cond-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂
↓-sound (cond-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃
-- WEAKENING
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
weaken {Γ₁} {Γ₂} true = true
weaken {Γ₁} {Γ₂} false = false
weaken {Γ₁} {Γ₂} (cond e₁ e₂ e₃) = cond (weaken {Γ₁} {Γ₂} e₁) (weaken {Γ₁} {Γ₂} e₂) (weaken {Γ₁} {Γ₂} e₃)
|
Improve reuse (see #28).
|
Improve reuse (see #28).
Old-commit-hash: 7da11aabf971e192ab71542164b98c80cbe26325
|
Agda
|
mit
|
inc-lc/ilc-agda
|
a883bca1e4dcf18cbd172d5af888116a00518e15
|
Parametric/Change/Term.agda
|
Parametric/Change/Term.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply {base ι} = diff-base , apply-base
lift-diff-apply {σ ⇒ τ} =
let
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ})
_⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t
_⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t
_⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t
in
abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)
,
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))
lift-diff :
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
lift-diff = λ {τ Γ} →
proj₁ (lift-diff-apply {τ} {Γ})
lift-apply :
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply = λ {τ Γ} →
proj₂ (lift-diff-apply {τ} {Γ})
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ lift-diff
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ lift-apply
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply :
∀ {τ Γ} →
Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-diff-apply {base ι} = diff-base , apply-base
lift-diff-apply {σ ⇒ τ} =
let
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ})
_⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t
_⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t
_⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t
in
abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)
,
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))
diff-term :
∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
diff-term = λ {τ Γ} →
proj₁ (lift-diff-apply {τ} {Γ})
lift-apply :
∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
lift-apply = λ {τ Γ} →
proj₂ (lift-diff-apply {τ} {Γ})
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ diff-term
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ lift-apply
|
Rename lift-diff to diff-term.
|
Rename lift-diff to diff-term.
Old-commit-hash: 64cb73fbed07060d460e4d9ee85fcec48281d13a
|
Agda
|
mit
|
inc-lc/ilc-agda
|
b01d8abafe916c9d2d8af12b12d2adb5f2ae8340
|
Syntax/Term/Plotkin.agda
|
Syntax/Term/Plotkin.agda
|
module Syntax.Term.Plotkin where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open import Syntax.Type.Plotkin
open import Syntax.Context
data Term
{B : Set {- of base types -}}
{C : Set {- of constants -}}
{type-of : C → Type B}
(Γ : Context {Type B}) :
(τ : Type B) → Set
where
const : (c : C) → Term Γ (type-of c)
var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ
app : ∀ {σ τ}
(s : Term {B} {C} {type-of} Γ (σ ⇒ τ))
(t : Term {B} {C} {type-of} Γ σ) → Term Γ τ
abs : ∀ {σ τ}
(t : Term {B} {C} {type-of} (σ • Γ) τ) → Term Γ (σ ⇒ τ)
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {B C type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {B} {C} {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {B C type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {B} {C} {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {B C type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {B} {C} {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {B C ⊢ Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term {B} {C} {⊢} Γ₁ τ →
Term {B} {C} {⊢} Γ₂ τ
weaken Γ₁≼Γ₂ (const c) = const c
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
-- Specialized weakening
weaken₁ : ∀ {B C ⊢ Γ σ τ} →
Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {B C ⊢ Γ α β τ} →
Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {B C ⊢ Γ α β γ τ} →
Term {B} {C} {⊢} Γ τ → Term {B} {C} {⊢} (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {B C ⊢ Γ α β γ} →
Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {B C ⊢ Γ α β γ δ} →
Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {B C ⊢ Γ α β γ δ ε} →
Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {B C ⊢ Γ α β γ δ ε ζ} →
Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {B C ⊢ Γ α β γ δ ε ζ η} →
Term {B} {C} {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
|
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open import Syntax.Type.Plotkin
open import Syntax.Context
data Term
{type-of : C → Type B}
(Γ : Context {Type B}) :
(τ : Type B) → Set
where
const : (c : C) → Term Γ (type-of c)
var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ
app : ∀ {σ τ}
(s : Term {type-of} Γ (σ ⇒ τ))
(t : Term {type-of} Γ σ) → Term Γ τ
abs : ∀ {σ τ}
(t : Term {type-of} (σ • Γ) τ) → Term Γ (σ ⇒ τ)
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {type-of} {Δbase : B → Type B} →
let
Δtype = lift-Δtype Δbase
term = Term {type-of}
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {⊢ Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term {⊢} Γ₁ τ →
Term {⊢} Γ₂ τ
weaken Γ₁≼Γ₂ (const c) = const c
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
-- Specialized weakening
weaken₁ : ∀ {⊢ Γ σ τ} →
Term {⊢} Γ τ → Term {⊢} (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {⊢ Γ α β τ} →
Term {⊢} Γ τ → Term {⊢} (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {⊢ Γ α β γ τ} →
Term {⊢} Γ τ → Term {⊢} (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {⊢ Γ α β γ} →
Term {⊢} Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {⊢ Γ α β γ δ} →
Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {⊢ Γ α β γ δ ε} →
Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {⊢ Γ α β γ δ ε ζ} →
Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {⊢ Γ α β γ δ ε ζ η} →
Term {⊢} Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
|
Move parameters to module level.
|
Move parameters to module level.
All definitions in this module depend on the parameters {B} and
{C} which never change inside this module. So it is easier to
parameterize the whole module instead of each separate
definition.
Old-commit-hash: 1303320f48d486d11152713c604275c2c7bcdc18
|
Agda
|
mit
|
inc-lc/ilc-agda
|
9755ab9f86f1e00b28c36e99421e4e9be389a95f
|
Base/Change/Products.agda
|
Base/Change/Products.agda
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
-- The following is probably bullshit:
-- Does not handle products of functions - more accurately, writing the
-- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; isChangeAlgebra = record
{ update-diff = p-update-diff
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
-- We should do the same for uncurry instead.
-- What one could wrongly expect to be the derivative of the constructor:
_,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′ a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof
-- As a consequence, proving that's a derivative seems too insanely hard. We
-- might want to provide a proof schema for curried functions at once,
-- starting from the right correctness equation.
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
_,_′-real : Δ _,_
_,_′-real = nil _,_
_,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real)
_,_′-real-Derivative =
FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_
_,_′′ : (a : A) → Δ a →
Δ {{B→A×B}} (λ b → (a , b))
_,_′′ a da = record
{ apply = _,_′ a da
; correct = λ b db →
begin
(a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′ a da) b db
∎
}
_,_′′′ : Δ {{A→B→A×B}} _,_
_,_′′′ = record
{ apply = _,_′′
; correct = λ a da →
begin
update
(_,_ (a ⊞ da))
(_,_′′ (a ⊞ da) (nil (a ⊞ da)))
≡⟨ {!!} ⟩
update (_,_ a) (_,_′′ a da)
∎
}
where
-- This is needed to use update above.
-- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly.
open ChangeAlgebra B→A×B hiding (nil)
{-
{!
begin
(_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da))
{- ≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -}
≡⟨ ? ⟩
{-a ⊞ da , b ⊞ db
≡⟨⟩-}
(_,_ a) ⊞ (_,_′′ a da)
∎!}
}
-}
open import Postulate.Extensionality
_,_′Derivative :
Derivative {{CA}} {{B→A×B}} _,_ _,_′′
_,_′Derivative a da =
begin
_⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da)
≡⟨⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
--ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b))
≡⟨ {!!} ⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩
--FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!}
_,_ (a ⊞ da)
∎
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
-- The following is probably bullshit:
-- Does not handle products of functions - more accurately, writing the
-- derivative of fst and snd for products of functions is hard: fst' p dp must return the change of fst p
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; isChangeAlgebra = record
{ update-diff = p-update-diff
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
-- We should do the same for uncurry instead.
-- What one could wrongly expect to be the derivative of the constructor:
_,_′ : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′ a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of its own validity, and because after application it does not contain a proof
-- As a consequence, proving that's a derivative seems too insanely hard. We
-- might want to provide a proof schema for curried functions at once,
-- starting from the right correctness equation.
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
_,_′-real : Δ _,_
_,_′-real = nil _,_
_,_′-real-Derivative : Derivative {{CA}} {{B→A×B}} _,_ (ΔA→B→A×B.apply _,_′-real)
_,_′-real-Derivative =
FunctionChanges.nil-is-derivative A (B → A × B) {{CA}} {{B→A×B}} _,_
_,_′′ : (a : A) → Δ a →
Δ {{B→A×B}} (λ b → (a , b))
_,_′′ a da = record
{ apply = _,_′ a da
; correct = λ b db →
begin
(a , b ⊞ db) ⊞ (_,_′ a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′ a da) b db
∎
}
{-
_,_′′′ : Δ {{A→B→A×B}} _,_
_,_′′′ = record
{ apply = _,_′′
; correct = λ a da →
begin
update
(_,_ (a ⊞ da))
(_,_′′ (a ⊞ da) (nil (a ⊞ da)))
≡⟨ {!!} ⟩
update (_,_ a) (_,_′′ a da)
∎
}
where
-- This is needed to use update above.
-- Passing the change structure seems hard with the given operators; maybe I'm just using them wrongly.
open ChangeAlgebra B→A×B hiding (nil)
{-
{!
begin
(_,_ (a ⊞ da)) ⊞ _,_′′ (a ⊞ da) (nil (a ⊞ da))
{- ≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db)) -}
≡⟨ ? ⟩
{-a ⊞ da , b ⊞ db
≡⟨⟩-}
(_,_ a) ⊞ (_,_′′ a da)
∎!}
}
-}
open import Postulate.Extensionality
_,_′Derivative :
Derivative {{CA}} {{B→A×B}} _,_ _,_′′
_,_′Derivative a da =
begin
_⊞_ {{B→A×B}} (_,_ a) (_,_′′ a da)
≡⟨⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
--ext (λ b → cong (λ □ → (a , b) ⊞ □) (update-nil {{?}} b))
≡⟨ {!!} ⟩
(λ b → (a , b) ⊞ ΔBA×B.apply (_,_′′ a da) b (nil b))
≡⟨ sym {!ΔA→B→A×B.incrementalization _,_ _,_′′′ a da!} ⟩
--FunctionChanges.incrementalization A (B → A × B) {{CA}} {{{!B→A×B!}}} _,_ {!!} {!!} {!!}
_,_ (a ⊞ da)
∎
-}
|
Comment out holes to ensure Everything compiles again
|
Comment out holes to ensure Everything compiles again
Old-commit-hash: dfc28a00f9301015066e19d4be2c4179f8e0849b
|
Agda
|
mit
|
inc-lc/ilc-agda
|
07b3b64ff9795f6941b64231e7b2a0dd630e0de4
|
lib/Explore/Examples.agda
|
lib/Explore/Examples.agda
|
{-# OPTIONS --without-K #-}
module Explore.Examples where
open import Type
open import Level.NP
open import Data.Maybe.NP
open import Data.List
open import Data.Two
open import Data.Product
open import Data.Sum.NP
open import Data.One
open import HoTT using (UA)
open import Function.Extensionality using (FunExt)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Explore.Core
open import Explore.Explorable
open import Explore.Universe.Base
open import Explore.Monad {₀} ₀ public renaming (map to map-explore)
open import Explore.Two
open import Explore.Product
open Explore.Product.Operators
module E where
open FromExplore public
module M {Msg Digest : ★}
(_==_ : Digest → Digest → 𝟚)
(H : Msg → Digest)
(exploreMsg : ∀ {ℓ} → Explore ℓ Msg)
(d : Digest) where
module V1 where
list-H⁻¹ : List Msg
list-H⁻¹ = exploreMsg [] _++_ (λ m → [0: [] 1: [ m ] ] (H m == d))
module ExploreMsg = FromExplore {A = Msg} exploreMsg
module V2 where
first-H⁻¹ : Maybe Msg
first-H⁻¹ = ExploreMsg.findKey (λ m → H m == d)
module V3 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ ε _⊕_ f = exploreMsg ε _⊕_ (λ m → [0: ε 1: f m ] (H m == d))
module V4 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ = exploreMsg >>= λ m → [0: empty-explore 1: point-explore m ] (H m == d)
module V5 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = filter-explore (λ m → H m == d) exploreMsg
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
module V6 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = explore-endo (filter-explore (λ m → H m == d) exploreMsg)
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
last-H⁻¹ : Maybe Msg
last-H⁻¹ = E.last explore-H⁻¹
Msg = 𝟚 × 𝟚
Digest = 𝟚
-- _==_ : Digest → Digest → 𝟚
H : Msg → Digest
H (x , y) = x xor y
Msgᵉ : ∀ {ℓ} → Explore ℓ Msg
Msgᵉ = 𝟚ᵉ ×ᵉ 𝟚ᵉ
module N5 = M.V5 _==_ H Msgᵉ
module N6 = M.V6 _==_ H Msgᵉ
test5 = N5.list-H⁻¹
test6-list : N6.list-H⁻¹ 0₂ ≡ (0₂ , 0₂) ∷ (1₂ , 1₂) ∷ []
test6-list = refl
test6-rev-list : E.list (E.backward (N6.explore-H⁻¹ 0₂)) ≡ (1₂ , 1₂) ∷ (0₂ , 0₂) ∷ []
test6-rev-list = refl
test6-first : N6.first-H⁻¹ 0₂ ≡ just (0₂ , 0₂)
test6-first = refl
test6-last : N6.last-H⁻¹ 0₂ ≡ just (1₂ , 1₂)
test6-last = refl
-- -}
{-
𝟛ᵁ : U
𝟛ᵁ = 𝟙ᵁ ⊎ᵁ 𝟚ᵁ
list22 = list (𝟚ᵁ →ᵁ 𝟚ᵁ)
list33 = list (𝟛ᵁ →ᵁ 𝟛ᵁ)
-}
{-
module _ {{_ : UA}}{{_ : FunExt}} where
check22 : ∀ (f : 𝟚 → 𝟚) x → ✓ (f x == f (f (f x)))
check22 f x = {!check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x)!}
-}
|
{-# OPTIONS --without-K #-}
module Explore.Examples where
open import Type
open import Level.NP
open import Data.Maybe.NP
open import Data.List
open import Data.Zero
open import Data.One
open import Data.Two
open import Data.Product
open import Data.Sum.NP
open import HoTT using (UA)
open import Function.NP
open import Function.Extensionality using (FunExt)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Explore.Core
open import Explore.Explorable
open import Explore.Universe.Type {𝟘}
open import Explore.Universe.Base
open import Explore.Monad {₀} ₀ public renaming (map to map-explore)
open import Explore.Two
open import Explore.Product
open Explore.Product.Operators
module E where
open FromExplore public
module M {Msg Digest : ★}
(_==_ : Digest → Digest → 𝟚)
(H : Msg → Digest)
(exploreMsg : ∀ {ℓ} → Explore ℓ Msg)
(d : Digest) where
module V1 where
list-H⁻¹ : List Msg
list-H⁻¹ = exploreMsg [] _++_ (λ m → [0: [] 1: [ m ] ] (H m == d))
module ExploreMsg = FromExplore {A = Msg} exploreMsg
module V2 where
first-H⁻¹ : Maybe Msg
first-H⁻¹ = ExploreMsg.findKey (λ m → H m == d)
module V3 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ ε _⊕_ f = exploreMsg ε _⊕_ (λ m → [0: ε 1: f m ] (H m == d))
module V4 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ = exploreMsg >>= λ m → [0: empty-explore 1: point-explore m ] (H m == d)
module V5 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = filter-explore (λ m → H m == d) exploreMsg
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
module V6 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = explore-endo (filter-explore (λ m → H m == d) exploreMsg)
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
last-H⁻¹ : Maybe Msg
last-H⁻¹ = E.last explore-H⁻¹
Msg = 𝟚 × 𝟚
Digest = 𝟚
-- _==_ : Digest → Digest → 𝟚
H : Msg → Digest
H (x , y) = x xor y
Msgᵉ : ∀ {ℓ} → Explore ℓ Msg
Msgᵉ = 𝟚ᵉ ×ᵉ 𝟚ᵉ
module N5 = M.V5 _==_ H Msgᵉ
module N6 = M.V6 _==_ H Msgᵉ
test5 = N5.list-H⁻¹
test6-list : N6.list-H⁻¹ 0₂ ≡ (0₂ , 0₂) ∷ (1₂ , 1₂) ∷ []
test6-list = refl
test6-rev-list : E.list (E.backward (N6.explore-H⁻¹ 0₂)) ≡ (1₂ , 1₂) ∷ (0₂ , 0₂) ∷ []
test6-rev-list = refl
test6-first : N6.first-H⁻¹ 0₂ ≡ just (0₂ , 0₂)
test6-first = refl
test6-last : N6.last-H⁻¹ 0₂ ≡ just (1₂ , 1₂)
test6-last = refl
-- -}
𝟛ᵁ : U
𝟛ᵁ = 𝟙ᵁ ⊎ᵁ 𝟚ᵁ
prop-∧-comm : 𝟚 × 𝟚 → 𝟚
prop-∧-comm (x , y) = x ∧ y == y ∧ x
module _ {{_ : UA}}{{_ : FunExt}} where
check-∧-comm : ∀ x y → ✓ (x ∧ y == y ∧ x)
check-∧-comm x y = check! (𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-comm (x , y)
prop-∧-∨-distr : 𝟚 × 𝟚 × 𝟚 → 𝟚
prop-∧-∨-distr (x , y , z) = x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z
module _ {{_ : UA}}{{_ : FunExt}} where
check-∧-∨-distr : ∀ x y z → ✓ (x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z)
check-∧-∨-distr x y z =
check! (𝟚ᵁ ×ᵁ 𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-∨-distr (x , y , z)
list22 = list (𝟚ᵁ →ᵁ 𝟚ᵁ)
list33 = list (𝟛ᵁ →ᵁ 𝟛ᵁ)
{-
module _ {{_ : UA}}{{_ : FunExt}} where
module _ (fᵁ : El (𝟚ᵁ →ᵁ 𝟚ᵁ)) x where
f = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ fᵁ
check22 : ✓ (f x == f (f (f x)))
check22 = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x)
{-
check22 : ∀ (f : 𝟚 → 𝟚) x → ✓ (f x == f (f (f x)))
check22 f x = let k = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x) in {!k!}
-- -}
-- -}
-- -}
-- -}
|
Update the Examples
|
Update the Examples
|
Agda
|
bsd-3-clause
|
crypto-agda/explore
|
b4c39231ae725a5b759926a08d76642ed2df680d
|
Base/Change/Products.agda
|
Base/Change/Products.agda
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
-- An interesting alternative definition allows omitting the nil change of a
-- component when that nil change can be computed from the type. For instance, the nil change for integers is always the same.
-- However, the nil change for function isn't always the same (unless we
-- defunctionalize them first), so nil changes for functions can't be omitted.
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-nil : (v : A × B) → PChange v
p-nil (a , b) = (nil a , nil b)
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v
p-update-nil (a , b) =
let v = (a , b)
in
begin
v ⊕ (p-nil v)
≡⟨⟩
(a ⊞ nil a , b ⊞ nil b)
≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩
(a , b)
≡⟨⟩
v
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; nil = p-nil
; isChangeAlgebra = record
{ update-diff = p-update-diff
; update-nil = p-update-nil
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra {c = ℓ} {d = ℓ} A (B → A × B) {{CA}} {{B→A×B}}
module ΔBA×B = FunctionChanges B (A × B) {{CB}} {{changeAlgebra}}
module ΔA→B→A×B = FunctionChanges A (B → A × B) {{CA}} {{B→A×B}}
-- Morally, the following is a change:
-- What one could wrongly expect to be the derivative of the constructor:
_,_′-realizer : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′-realizer a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of
-- its own validity, and because after application it does not contain a
-- proof.
--
-- However, the above is (morally) a "realizer" of the actual change, since it
-- only represents its computational behavior, not its proof manipulation.
-- Hence, we need to do some additional work.
_,_′-realizer-correct _,_′-realizer-correct-detailed :
(a : A) → (da : Δ a) → (b : B) → (db : Δ b) →
(a , b ⊞ db) ⊞ (_,_′-realizer a da (b ⊞ db) (nil (b ⊞ db))) ≡ (a , b) ⊞ (_,_′-realizer a da b db)
_,_′-realizer-correct a da b db rewrite update-nil (b ⊞ db) = refl
_,_′-realizer-correct-detailed a da b db =
begin
(a , b ⊞ db) ⊞ (_,_′-realizer a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′-realizer a da) b db
∎
_,_′ : (a : A) → (da : Δ a) → Δ (_,_ a)
_,_′ a da = record { apply = _,_′-realizer a da ; correct = λ b db → _,_′-realizer-correct a da b db }
_,_′-Derivative : Derivative _,_ _,_′
_,_′-Derivative a da = ext (λ b → cong (_,_ (a ⊞ da)) (update-nil b))
where
open import Postulate.Extensionality
-- Define specialized variant of uncurry, and derive it.
uncurry₀ : ∀ {C : Set ℓ} → (A → B → C) → A × B → C
uncurry₀ f (a , b) = f a b
module _ {C : Set ℓ} {{CC : ChangeAlgebra ℓ C}} where
B→C : ChangeAlgebra ℓ (B → C)
B→C = FunctionChanges.changeAlgebra B C
A→B→C : ChangeAlgebra ℓ (A → B → C)
A→B→C = FunctionChanges.changeAlgebra A (B → C)
A×B→C : ChangeAlgebra ℓ (A × B → C)
A×B→C = FunctionChanges.changeAlgebra (A × B) C
module ΔB→C = FunctionChanges B C {{CB}} {{CC}}
module ΔA→B→C = FunctionChanges A (B → C) {{CA}} {{B→C}}
module ΔA×B→C = FunctionChanges (A × B) C {{changeAlgebra}} {{CC}}
uncurry₀′-realizer : (f : A → B → C) → Δ f → (p : A × B) → Δ p → Δ (uncurry₀ f p)
uncurry₀′-realizer f df (a , b) (da , db) = ΔB→C.apply (ΔA→B→C.apply df a da) b db
uncurry₀′-realizer-correct uncurry₀′-realizer-correct-detailed :
∀ (f : A → B → C) (df : Δ f) (p : A × B) (dp : Δ p) →
uncurry₀ f (p ⊕ dp) ⊞ uncurry₀′-realizer f df (p ⊕ dp) (nil (p ⊞ dp)) ≡ uncurry₀ f p ⊞ uncurry₀′-realizer f df p dp
-- Hard to read
uncurry₀′-realizer-correct f df (a , b) (da , db)
rewrite sym (ΔB→C.incrementalization (f (a ⊞ da)) (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db)))
| update-nil (b ⊞ db)
| {- cong (λ □ → □ (b ⊞ db)) -} (sym (ΔA→B→C.incrementalization f df (a ⊞ da) (nil (a ⊞ da))))
| update-nil (a ⊞ da)
| cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df a da)
| ΔB→C.incrementalization (f a) (ΔA→B→C.apply df a da) b db
= refl
-- Verbose, but it shows all the intermediate steps.
uncurry₀′-realizer-correct-detailed f df (a , b) (da , db) =
begin
uncurry₀ f (a ⊞ da , b ⊞ db) ⊞ uncurry₀′-realizer f df (a ⊞ da , b ⊞ db) (nil (a ⊞ da , b ⊞ db))
≡⟨⟩
f (a ⊞ da) (b ⊞ db) ⊞ ΔB→C.apply (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))
≡⟨ sym (ΔB→C.incrementalization (f (a ⊞ da)) (ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) ⟩
(f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db)))
≡⟨ cong-lem₀ ⟩
(f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
≡⟨ sym cong-lem₂ ⟩
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡⟨ cong-lem₁ ⟩
(f ⊞ df) (a ⊞ da) (b ⊞ db)
≡⟨ cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df a da) ⟩
(f a ⊞ ΔA→B→C.apply df a da) (b ⊞ db)
≡⟨ ΔB→C.incrementalization (f a) (ΔA→B→C.apply df a da) b db ⟩
f a b ⊞ ΔB→C.apply (ΔA→B→C.apply df a da) b db
≡⟨⟩
uncurry₀ f (a , b) ⊞ uncurry₀′-realizer f df (a , b) (da , db)
∎
where
cong-lem₀ :
(f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db)))
≡
(f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
cong-lem₀ rewrite update-nil (b ⊞ db) = refl
cong-lem₁ :
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡
(f ⊞ df) (a ⊞ da) (b ⊞ db)
cong-lem₁ rewrite update-nil (a ⊞ da) = refl
cong-lem₂ :
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡
(f (a ⊞ da) ⊞ ΔA→B→C.apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
cong-lem₂ = cong (λ □ → □ (b ⊞ db)) (ΔA→B→C.incrementalization f df (a ⊞ da) (nil (a ⊞ da)))
uncurry₀′ : (f : A → B → C) → Δ f → Δ (uncurry f)
uncurry₀′ f df = record
{ apply = uncurry₀′-realizer f df
; correct = uncurry₀′-realizer-correct f df }
-- Now proving that uncurry₀′ is a derivative is trivial!
uncurry₀′Derivative₀ : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′
uncurry₀′Derivative₀ f df = refl
-- If you wonder what's going on, here's the step-by-step proof, going purely by definitional equality.
uncurry₀′Derivative : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′
uncurry₀′Derivative f df =
begin
uncurry₀ f ⊞ uncurry₀′ f df
≡⟨⟩
(λ {(a , b) → uncurry₀ f (a , b) ⊞ ΔA×B→C.apply (uncurry₀′ f df) (a , b) (nil (a , b))})
≡⟨⟩
(λ {(a , b) → f a b ⊞ ΔB→C.apply (ΔA→B→C.apply df a (nil a)) b (nil b)})
≡⟨⟩
(λ {(a , b) → (f a ⊞ ΔA→B→C.apply df a (nil a)) b})
≡⟨⟩
(λ {(a , b) → (f ⊞ df) a b})
≡⟨⟩
(λ {(a , b) → uncurry₀ (f ⊞ df) (a , b)})
≡⟨⟩
uncurry₀ (f ⊞ df)
∎
|
module Base.Change.Products where
open import Relation.Binary.PropositionalEquality
open import Level
open import Base.Change.Algebra
open import Data.Product
-- Also try defining sectioned change structures on the positives halves of
-- groups? Or on arbitrary subsets?
-- Restriction: we pair sets on the same level (because right now everything
-- else would risk getting in the way).
module ProductChanges ℓ (A B : Set ℓ) {{CA : ChangeAlgebra ℓ A}} {{CB : ChangeAlgebra ℓ B}} where
open ≡-Reasoning
-- The simplest possible definition of changes for products.
PChange : A × B → Set ℓ
PChange (a , b) = Δ a × Δ b
-- An interesting alternative definition allows omitting the nil change of a
-- component when that nil change can be computed from the type. For instance, the nil change for integers is always the same.
-- However, the nil change for function isn't always the same (unless we
-- defunctionalize them first), so nil changes for functions can't be omitted.
_⊕_ : (v : A × B) → PChange v → A × B
_⊕_ (a , b) (da , db) = a ⊞ da , b ⊞ db
_⊝_ : A × B → (v : A × B) → PChange v
_⊝_ (aNew , bNew) (a , b) = aNew ⊟ a , bNew ⊟ b
p-nil : (v : A × B) → PChange v
p-nil (a , b) = (nil a , nil b)
p-update-diff : (u v : A × B) → v ⊕ (u ⊝ v) ≡ u
p-update-diff (ua , ub) (va , vb) =
let u = (ua , ub)
v = (va , vb)
in
begin
v ⊕ (u ⊝ v)
≡⟨⟩
(va ⊞ (ua ⊟ va) , vb ⊞ (ub ⊟ vb))
--v ⊕ ((ua ⊟ va , ub ⊟ vb))
≡⟨ cong₂ _,_ (update-diff ua va) (update-diff ub vb)⟩
(ua , ub)
≡⟨⟩
u
∎
p-update-nil : (v : A × B) → v ⊕ (p-nil v) ≡ v
p-update-nil (a , b) =
let v = (a , b)
in
begin
v ⊕ (p-nil v)
≡⟨⟩
(a ⊞ nil a , b ⊞ nil b)
≡⟨ cong₂ _,_ (update-nil a) (update-nil b)⟩
(a , b)
≡⟨⟩
v
∎
changeAlgebra : ChangeAlgebra ℓ (A × B)
changeAlgebra = record
{ Change = PChange
; update = _⊕_
; diff = _⊝_
; nil = p-nil
; isChangeAlgebra = record
{ update-diff = p-update-diff
; update-nil = p-update-nil
}
}
proj₁′ : (v : A × B) → Δ v → Δ (proj₁ v)
proj₁′ (a , b) (da , db) = da
proj₁′Derivative : Derivative proj₁ proj₁′
-- Implementation note: we do not need to pattern match on v and dv because
-- they are records, hence Agda knows that pattern matching on records cannot
-- fail. Technically, the required feature is the eta-rule on records.
proj₁′Derivative v dv = refl
-- An extended explanation.
proj₁′Derivative₁ : Derivative proj₁ proj₁′
proj₁′Derivative₁ (a , b) (da , db) =
let v = (a , b)
dv = (da , db)
in
begin
proj₁ v ⊞ proj₁′ v dv
≡⟨⟩
a ⊞ da
≡⟨⟩
proj₁ (v ⊞ dv)
∎
-- Same for the second extractor.
proj₂′ : (v : A × B) → Δ v → Δ (proj₂ v)
proj₂′ (a , b) (da , db) = db
proj₂′Derivative : Derivative proj₂ proj₂′
proj₂′Derivative v dv = refl
B→A×B = FunctionChanges.changeAlgebra B (A × B)
A→B→A×B = FunctionChanges.changeAlgebra A (B → A × B) {{CA}} {{B→A×B}}
-- Morally, the following is a change:
-- What one could wrongly expect to be the derivative of the constructor:
_,_′-realizer : (a : A) → (da : Δ a) → (b : B) → (db : Δ b) → Δ (a , b)
_,_′-realizer a da b db = da , db
-- That has the correct behavior, in a sense, and it would be in the
-- subset-based formalization in the paper.
--
-- But the above is not even a change, because it does not contain a proof of
-- its own validity, and because after application it does not contain a
-- proof.
--
-- However, the above is (morally) a "realizer" of the actual change, since it
-- only represents its computational behavior, not its proof manipulation.
-- Hence, we need to do some additional work.
_,_′-realizer-correct _,_′-realizer-correct-detailed :
(a : A) → (da : Δ a) → (b : B) → (db : Δ b) →
(a , b ⊞ db) ⊞ (_,_′-realizer a da (b ⊞ db) (nil (b ⊞ db))) ≡ (a , b) ⊞ (_,_′-realizer a da b db)
_,_′-realizer-correct a da b db rewrite update-nil (b ⊞ db) = refl
_,_′-realizer-correct-detailed a da b db =
begin
(a , b ⊞ db) ⊞ (_,_′-realizer a da) (b ⊞ db) (nil (b ⊞ db))
≡⟨⟩
a ⊞ da , b ⊞ db ⊞ (nil (b ⊞ db))
≡⟨ cong (λ □ → a ⊞ da , □) (update-nil (b ⊞ db)) ⟩
a ⊞ da , b ⊞ db
≡⟨⟩
(a , b) ⊞ (_,_′-realizer a da) b db
∎
_,_′ : (a : A) → (da : Δ a) → Δ (_,_ a)
_,_′ a da = record { apply = _,_′-realizer a da ; correct = λ b db → _,_′-realizer-correct a da b db }
_,_′-Derivative : Derivative _,_ _,_′
_,_′-Derivative a da = ext (λ b → cong (_,_ (a ⊞ da)) (update-nil b))
where
open import Postulate.Extensionality
-- Define specialized variant of uncurry, and derive it.
uncurry₀ : ∀ {C : Set ℓ} → (A → B → C) → A × B → C
uncurry₀ f (a , b) = f a b
module _ {C : Set ℓ} {{CC : ChangeAlgebra ℓ C}} where
B→C : ChangeAlgebra ℓ (B → C)
B→C = FunctionChanges.changeAlgebra B C
A→B→C : ChangeAlgebra ℓ (A → B → C)
A→B→C = FunctionChanges.changeAlgebra A (B → C)
A×B→C : ChangeAlgebra ℓ (A × B → C)
A×B→C = FunctionChanges.changeAlgebra (A × B) C
open FunctionChanges using (apply; correct)
uncurry₀′-realizer : (f : A → B → C) → Δ f → (p : A × B) → Δ p → Δ (uncurry₀ f p)
uncurry₀′-realizer f df (a , b) (da , db) = apply (apply df a da) b db
uncurry₀′-realizer-correct uncurry₀′-realizer-correct-detailed :
∀ (f : A → B → C) (df : Δ f) (p : A × B) (dp : Δ p) →
uncurry₀ f (p ⊕ dp) ⊞ uncurry₀′-realizer f df (p ⊕ dp) (nil (p ⊞ dp)) ≡ uncurry₀ f p ⊞ uncurry₀′-realizer f df p dp
-- Hard to read
uncurry₀′-realizer-correct f df (a , b) (da , db)
rewrite sym (correct (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db)))
| update-nil (b ⊞ db)
| {- cong (λ □ → □ (b ⊞ db)) -} (sym (correct df (a ⊞ da) (nil (a ⊞ da))))
| update-nil (a ⊞ da)
| cong (λ □ → □ (b ⊞ db)) (correct df a da)
| correct (apply df a da) b db
= refl
-- Verbose, but it shows all the intermediate steps.
uncurry₀′-realizer-correct-detailed f df (a , b) (da , db) =
begin
uncurry₀ f (a ⊞ da , b ⊞ db) ⊞ uncurry₀′-realizer f df (a ⊞ da , b ⊞ db) (nil (a ⊞ da , b ⊞ db))
≡⟨⟩
f (a ⊞ da) (b ⊞ db) ⊞ apply (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))
≡⟨ sym (correct (apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db) (nil (b ⊞ db))) ⟩
(f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db)))
≡⟨ cong-lem₀ ⟩
(f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
≡⟨ sym cong-lem₂ ⟩
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡⟨ cong-lem₁ ⟩
(f ⊞ df) (a ⊞ da) (b ⊞ db)
≡⟨ cong (λ □ → □ (b ⊞ db)) (correct df a da) ⟩
(f a ⊞ apply df a da) (b ⊞ db)
≡⟨ correct (apply df a da) b db ⟩
f a b ⊞ apply (apply df a da) b db
≡⟨⟩
uncurry₀ f (a , b) ⊞ uncurry₀′-realizer f df (a , b) (da , db)
∎
where
cong-lem₀ :
(f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) ((b ⊞ db) ⊞ (nil (b ⊞ db)))
≡
(f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
cong-lem₀ rewrite update-nil (b ⊞ db) = refl
cong-lem₁ :
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡
(f ⊞ df) (a ⊞ da) (b ⊞ db)
cong-lem₁ rewrite update-nil (a ⊞ da) = refl
cong-lem₂ :
((f ⊞ df) ((a ⊞ da) ⊞ (nil (a ⊞ da)))) (b ⊞ db)
≡
(f (a ⊞ da) ⊞ apply df (a ⊞ da) (nil (a ⊞ da))) (b ⊞ db)
cong-lem₂ = cong (λ □ → □ (b ⊞ db)) (correct df (a ⊞ da) (nil (a ⊞ da)))
uncurry₀′ : (f : A → B → C) → Δ f → Δ (uncurry f)
uncurry₀′ f df = record
{ apply = uncurry₀′-realizer f df
; correct = uncurry₀′-realizer-correct f df }
-- Now proving that uncurry₀′ is a derivative is trivial!
uncurry₀′Derivative₀ : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′
uncurry₀′Derivative₀ f df = refl
-- If you wonder what's going on, here's the step-by-step proof, going purely by definitional equality.
uncurry₀′Derivative : Derivative {{CB = A×B→C}} uncurry₀ uncurry₀′
uncurry₀′Derivative f df =
begin
uncurry₀ f ⊞ uncurry₀′ f df
≡⟨⟩
(λ {(a , b) → uncurry₀ f (a , b) ⊞ apply (uncurry₀′ f df) (a , b) (nil (a , b))})
≡⟨⟩
(λ {(a , b) → f a b ⊞ apply (apply df a (nil a)) b (nil b)})
≡⟨⟩
(λ {(a , b) → (f a ⊞ apply df a (nil a)) b})
≡⟨⟩
(λ {(a , b) → (f ⊞ df) a b})
≡⟨⟩
(λ {(a , b) → uncurry₀ (f ⊞ df) (a , b)})
≡⟨⟩
uncurry₀ (f ⊞ df)
∎
|
Simplify code
|
Base.Change.Products: Simplify code
These simplifications are inspired by Base.Change.Sums. But they're
still modest.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
5957a0a5f21ebc9ad88ea001c4afa6b381372c04
|
Parametric/Change/Type.agda
|
Parametric/Change/Type.agda
|
import Parametric.Syntax.Type as Type
module Parametric.Change.Type
(Base : Type.Structure)
where
open Type.Structure Base
Structure : Set
Structure = Base → Base
module Structure (ΔBase : Structure) where
ΔType : Type → Type
ΔType (base ι) = base (ΔBase ι)
ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ
open import Base.Change.Context ΔType public
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Simply-typed changes (Fig. 3 and Fig. 4d)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
module Parametric.Change.Type
(Base : Type.Structure)
where
open Type.Structure Base
-- Extension point: Simply-typed changes of base types.
Structure : Set
Structure = Base → Base
module Structure (ΔBase : Structure) where
-- We provide: Simply-typed changes on simple types.
ΔType : Type → Type
ΔType (base ι) = base (ΔBase ι)
ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ
-- And we also provide context merging.
open import Base.Change.Context ΔType public
|
Document P.C.Type.
|
Document P.C.Type.
Old-commit-hash: 11e38d018843f21411d014020ce42181e1f77d32
|
Agda
|
mit
|
inc-lc/ilc-agda
|
27037592477c7d9112554d56337e06c5a2c6f0b9
|
Parametric/Syntax/Term.agda
|
Parametric/Syntax/Term.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The syntax of terms (Fig. 1a and 1b).
------------------------------------------------------------------------
-- The syntax of terms depends on the syntax of simple types
-- (because terms are indexed by types in order to rule out
-- ill-typed terms). But we are in the Parametric.* hierarchy, so
-- we don't know the full syntax of types, only how to lift the
-- syntax of base types into the syntax of simple types. This
-- means that we have to be parametric in the syntax of base
-- types, too.
--
-- In such parametric modules that depend on other parametric
-- modules, we first import our dependencies under a more
-- convenient name.
import Parametric.Syntax.Type as Type
-- Then we start the module proper, with parameters for all
-- extension points of our dependencies. Note that here, the
-- "Structure" naming convenion makes some sense, because we can
-- say that we need some "Type.Structure" in order to define the
-- "Term.Structure".
module Parametric.Syntax.Term
(Base : Type.Structure)
where
-- Now inside the module, we can open our dependencies with the
-- parameters for their extension points. Again, here the name
-- "Structure" makes some sense, because we can say that we want
-- to access the "Type.Structure" that is induced by Base.
open Type.Structure Base
-- At this point, we have dealt with the extension points of our
-- dependencies, and we have all the definitions about simple
-- types, contexts, variables, and variable sets in scope that we
-- provided in Parametric.Syntax.Type. Now we can proceed to
-- define our own extension point, following the pattern
-- explained in Parametric.Syntax.Type.
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import Data.Unit
open import Data.Sum
-- Our extension point is a set of primitives, indexed by the
-- types of their arguments and their return type. In general, if
-- you're confused about what an extension point means, you might
-- want to open the corresponding module in the Nehemiah
-- hierarchy to see how it is implemented in the example
-- plugin. In this case, that would be the Nehemiah.Syntax.Term
-- module.
Structure : Set₁
Structure = Context → Type → Set
module Structure (Const : Structure) where
import Base.Data.DependentList as DependentList
open DependentList public using (∅ ; _•_)
open DependentList
-- Declarations of Term and Terms to enable mutual recursion.
--
-- Note that terms are indexed by contexts and types. In the
-- paper, we define the abstract syntax of terms in Fig 1a and
-- then define a type system in Fig 1b. All lemmas and theorems
-- then explicitly specify that they only hold for well-typed
-- terms. Here, we use the indices to define a type that can
-- only hold well-typed terms in the first place.
data Term
(Γ : Context) :
(τ : Type) → Set
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
Terms : Context → Context → Set
Terms Γ = DependentList (Term Γ)
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
-- constants aka. primitives can only occur fully applied.
const : ∀ {Σ τ} →
(c : Const Σ τ) →
(args : Terms Γ Σ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Free variables
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ
FV (const ι ts) = FV-terms ts
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
FV-terms ∅ = none
FV-terms (t • ts) = FV t ∪ FV-terms ts
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken-terms : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weaken-terms Γ₁≼Γ₂ ∅ = ∅
weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
-- We could also write this:
module NamespaceForBadAbs₁ where
abs₁′ :
∀ {Γ τ₁ τ} →
(Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁′ {Γ} {τ₁} = λ f → abs (f (var this))
-- However, this is less general, and it is harder to reuse. In particular,
-- this cannot be used inside abs₂, ..., abs₆.
-- Now, let's write other variants with a loop!
open import Data.Vec using (_∷_; []; Vec; foldr)
open import Data.Nat
module AbsNHelpers where
open import Function
hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set
hoasArgType Γ τ = foldr _ (λ a b → a → b) (Term Γ τ) ∘ Data.Vec.map (Term Γ)
-- That is,
--hoasArgType Γ τ [] = Term Γ τ
--hoasArgType Γ τ (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τ τs
hoasResType : ∀ {n} → Type → Vec Type n → Type
hoasResType τ = foldr _ _⇒_ τ
absNType : {n : ℕ} → Vec _ n → Set
absNType τs = ∀ {Γ τ} →
(f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τ τs) →
Term Γ (hoasResType τ τs)
-- A better type for absN but a mess to use due to the proofs (which aren't synthesized, even though maybe they should be?)
-- absN : (n : ℕ) → {_ : n > 0} → absNType n
-- XXX See "how to keep your neighbours in order" for tricks.
-- Please the termination checker by keeping this case separate.
absNBase : ∀ {τ₁} → absNType (τ₁ ∷ [])
absNBase {τ₁} f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
-- Otherwise, the recursive step of absN would invoke absN twice, and the
-- termination checker does not figure out that the calls are in fact
-- terminating.
open AbsNHelpers using (absNType; absNBase)
-- XXX: could we be using the same trick as above to take the N implicit
-- arguments individually, rather than in a vector? I can't figure out how,
-- at least not without trying it. But it seems that's what's shown in Agda 2.4.0 release notes!
absN : {n : ℕ} → (τs : Vec _ (suc n)) → absNType τs
absN {zero} (τ₁ ∷ []) = absNBase
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absNBase (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-- What I'd like to write, avoiding the need for absNBase, but can't because of the termination checker.
{-
absN {zero} (τ₁ ∷ []) f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absN (τ₁ ∷ []) (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-}
-- Declare abs₁ .. abs₆ wrappers for more convenient use, allowing implicit
-- type arguments to be synthesized. Somehow, Agda does not manage to
-- synthesize τs by unification.
-- Implicit arguments are reversed when assembling the list, but that's no real problem.
module _ {τ₁ : Type} where
τs₁ = τ₁ ∷ []
abs₁ : absNType τs₁
abs₁ = absN τs₁
module _ {τ₂ : Type} where
τs₂ = τ₂ ∷ τs₁
abs₂ : absNType τs₂
abs₂ = absN τs₂
module _ {τ₃ : Type} where
τs₃ = τ₃ ∷ τs₂
abs₃ : absNType τs₃
abs₃ = absN τs₃
module _ {τ₄ : Type} where
τs₄ = τ₄ ∷ τs₃
abs₄ : absNType τs₄
abs₄ = absN τs₄
module _ {τ₅ : Type} where
τs₅ = τ₅ ∷ τs₄
abs₅ : absNType τs₅
abs₅ = absN τs₅
module _ {τ₆ : Type} where
τs₆ = τ₆ ∷ τs₅
abs₆ : absNType τs₆
abs₆ = absN τs₆
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The syntax of terms (Fig. 1a and 1b).
------------------------------------------------------------------------
-- The syntax of terms depends on the syntax of simple types
-- (because terms are indexed by types in order to rule out
-- ill-typed terms). But we are in the Parametric.* hierarchy, so
-- we don't know the full syntax of types, only how to lift the
-- syntax of base types into the syntax of simple types. This
-- means that we have to be parametric in the syntax of base
-- types, too.
--
-- In such parametric modules that depend on other parametric
-- modules, we first import our dependencies under a more
-- convenient name.
import Parametric.Syntax.Type as Type
-- Then we start the module proper, with parameters for all
-- extension points of our dependencies. Note that here, the
-- "Structure" naming convenion makes some sense, because we can
-- say that we need some "Type.Structure" in order to define the
-- "Term.Structure".
module Parametric.Syntax.Term
(Base : Type.Structure)
where
-- Now inside the module, we can open our dependencies with the
-- parameters for their extension points. Again, here the name
-- "Structure" makes some sense, because we can say that we want
-- to access the "Type.Structure" that is induced by Base.
open Type.Structure Base
-- At this point, we have dealt with the extension points of our
-- dependencies, and we have all the definitions about simple
-- types, contexts, variables, and variable sets in scope that we
-- provided in Parametric.Syntax.Type. Now we can proceed to
-- define our own extension point, following the pattern
-- explained in Parametric.Syntax.Type.
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function using (_∘_)
open import Data.Unit
open import Data.Sum
-- Our extension point is a set of primitives, indexed by the
-- types of their arguments and their return type. In general, if
-- you're confused about what an extension point means, you might
-- want to open the corresponding module in the Nehemiah
-- hierarchy to see how it is implemented in the example
-- plugin. In this case, that would be the Nehemiah.Syntax.Term
-- module.
Structure : Set₁
Structure = Context → Type → Set
module Structure (Const : Structure) where
import Base.Data.DependentList as DependentList
open DependentList public using (∅ ; _•_)
open DependentList
-- Declarations of Term and Terms to enable mutual recursion.
--
-- Note that terms are indexed by contexts and types. In the
-- paper, we define the abstract syntax of terms in Fig 1a and
-- then define a type system in Fig 1b. All lemmas and theorems
-- then explicitly specify that they only hold for well-typed
-- terms. Here, we use the indices to define a type that can
-- only hold well-typed terms in the first place.
data Term
(Γ : Context) :
(τ : Type) → Set
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
Terms : Context → Context → Set
Terms Γ = DependentList (Term Γ)
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
-- constants aka. primitives can only occur fully applied.
const : ∀ {Σ τ} →
(c : Const Σ τ) →
(args : Terms Γ Σ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indicies, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Free variables
FV : ∀ {τ Γ} → Term Γ τ → Vars Γ
FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ
FV (const ι ts) = FV-terms ts
FV (var x) = singleton x
FV (abs t) = tail (FV t)
FV (app s t) = FV s ∪ FV t
FV-terms ∅ = none
FV-terms (t • ts) = FV t ∪ FV-terms ts
closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤
closed? t = empty? (FV t)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken-terms : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weaken-terms Γ₁≼Γ₂ ∅ = ∅
weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
-- We could also write this:
module NamespaceForBadAbs₁ where
abs₁′ :
∀ {Γ τ₁ τ} →
(Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁′ {Γ} {τ₁} = λ f → abs (f (var this))
-- However, this is less general, and it is harder to reuse. In particular,
-- this cannot be used inside abs₂, ..., abs₆.
-- Now, let's write other variants with a loop!
open import Data.Vec using (_∷_; []; Vec; foldr; [_])
open import Data.Nat
module AbsNHelpers where
open import Function
hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set
hoasArgType Γ τ = foldr _ (λ a b → a → b) (Term Γ τ) ∘ Data.Vec.map (Term Γ)
-- That is,
--hoasArgType Γ τ [] = Term Γ τ
--hoasArgType Γ τ (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τ τs
hoasResType : ∀ {n} → Type → Vec Type n → Type
hoasResType τ = foldr _ _⇒_ τ
absNType : {n : ℕ} → Vec _ n → Set
absNType τs = ∀ {Γ τ} →
(f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τ τs) →
Term Γ (hoasResType τ τs)
-- A better type for absN but a mess to use due to the proofs (which aren't synthesized, even though maybe they should be?)
-- absN : (n : ℕ) → {_ : n > 0} → absNType n
-- XXX See "how to keep your neighbours in order" for tricks.
-- Please the termination checker by keeping this case separate.
absNBase : ∀ {τ₁} → absNType [ τ₁ ]
absNBase {τ₁} f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
-- Otherwise, the recursive step of absN would invoke absN twice, and the
-- termination checker does not figure out that the calls are in fact
-- terminating.
-- What I'd like to write, avoiding the need for absNBase, but can't because of the termination checker.
{-
absN {zero} (τ₁ ∷ []) f = abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absN (τ₁ ∷ []) (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-}
--What I have to write instead:
absN : {n : ℕ} → (τs : Vec _ (suc n)) → absNType τs
absN {zero} (τ₁ ∷ []) = absNBase
absN {suc n} (τ₁ ∷ τ₂ ∷ τs) f =
absNBase (λ {_} {Γ≼Γ′} x₁ →
absN {n} (τ₂ ∷ τs) (λ {Γ′₁} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
-- Using a similar trick, we can declare absV which takes the N implicit
-- type arguments individually, collects them and passes them on to absN.
-- This is inspired by what's shown in the Agda 2.4.0 release notes, and
-- relies critically on support for varying arity. To collect them, we need
-- to use an accumulator argument.
absVType : ∀ n {m} (τs : Vec Type m) → Set
absVType 0 τs = absNType τs
absVType (suc n) τs = {τᵢ : Type} → absVType n (τᵢ ∷ τs)
-- XXX
absVAux : ∀ {m} → (τs : Vec Type m) → ∀ n → absVType (suc n) τs
absVAux τs zero {τᵢ} = absN (τᵢ ∷ τs)
absVAux τs (suc n) {τᵢ} = absVAux (τᵢ ∷ τs) n
absV = absVAux []
open AbsNHelpers using (absV) public
-- Declare abs₁ .. abs₆ wrappers for more convenient use, allowing implicit
-- type arguments to be synthesized. Somehow, Agda does not manage to
-- synthesize τs by unification.
-- Implicit arguments are reversed when assembling the list, but that's no real problem.
abs₁ = absV 0
abs₂ = absV 1
abs₃ = absV 2
abs₄ = absV 3
abs₅ = absV 4
abs₆ = absV 5
{-
abs₁
Have: {τ₁ : Type} {Γ : Context} {τ : Type} →
({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ) →
Term Γ (τ₁ Type.Structure.⇒ τ)
abs₂
Have: {τ₁ : Type} {τ₁ = τ₂ : Type} {Γ : Context} {τ : Type} →
({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} →
Term Γ′ τ₂ → Term Γ′ τ₁ → Term Γ′ τ) →
Term Γ (τ₂ Type.Structure.⇒ τ₁ Type.Structure.⇒ τ)
-}
|
Remove remaining duplication between abs₁ ... abs₆
|
Remove remaining duplication between abs₁ ... abs₆
This relies on Agda 2.4.0's varying arity in a more essential way.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
05536450804504640dcab4d2a372088bbc7ef7b3
|
src/fot/FOTC/Program/McCarthy91/PropertiesATP.agda
|
src/fot/FOTC/Program/McCarthy91/PropertiesATP.agda
|
------------------------------------------------------------------------------
-- Main properties of the McCarthy 91 function
------------------------------------------------------------------------------
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The main properties proved of the McCarthy 91 function (called
-- f₉₁) are
-- 1. The function always terminates.
-- 2. For all n, n < f₉₁ n + 11.
-- 3. For all n > 100, then f₉₁ n = n - 10.
-- 4. For all n <= 100, then f₉₁ n = 91.
-- N.B This module does not contain combined proofs, but it imports
-- modules which contain combined proofs.
module FOTC.Program.McCarthy91.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
using ( x>y→x≤y→⊥ )
open import FOTC.Data.Nat.Inequalities.PropertiesATP
using ( x>y∨x≯y
; x≯y→x≤y
; x≯Sy→x≯y∨x≡Sy
; x+k<y+k→x<y
; <-trans
)
open import FOTC.Data.Nat.PropertiesATP
using ( ∸-N
; +-N
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP
using ( x<x+11 )
open import FOTC.Data.Nat.UnaryNumbers.TotalityATP
using ( 10-N
; 11-N
; 89-N
; 90-N
; 91-N
; 92-N
; 93-N
; 94-N
; 95-N
; 96-N
; 97-N
; 98-N
; 99-N
; 100-N
)
open import FOTC.Program.McCarthy91.ArithmeticATP
open import FOTC.Program.McCarthy91.AuxiliaryPropertiesATP
open import FOTC.Program.McCarthy91.McCarthy91
open import FOTC.Program.McCarthy91.WF-Relation
open import FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP
open import FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP
------------------------------------------------------------------------------
-- For all n > 100, then f₉₁ n = n - 10.
--
-- N.B. (21 November 2013). The hypothesis N n is not necessary.
postulate f₉₁-x>100 : ∀ n → N n → n > 100' → f₉₁ n ≡ n ∸ 10'
{-# ATP prove f₉₁-x>100 #-}
-- For all n <= 100, then f₉₁ n = 91.
f₉₁-x≯100 : ∀ {n} → N n → n ≯ 100' → f₉₁ n ≡ 91'
f₉₁-x≯100 = ◁-wfind A h
where
A : D → Set
A d = d ≯ 100' → f₉₁ d ≡ 91'
h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m
h {m} Nm f with x>y∨x≯y Nm 100-N
... | inj₁ m>100 = λ m≯100 →
⊥-elim (x>y→x≤y→⊥ Nm 100-N m>100 (x≯y→x≤y Nm 100-N m≯100))
... | inj₂ m≯100 with x≯Sy→x≯y∨x≡Sy Nm 99-N m≯100
... | inj₂ m≡100 = λ _ → f₉₁-x≡y f₉₁-100 m≡100
... | inj₁ m≯99 with x≯Sy→x≯y∨x≡Sy Nm 98-N m≯99
... | inj₂ m≡99 = λ _ → f₉₁-x≡y f₉₁-99 m≡99
... | inj₁ m≯98 with x≯Sy→x≯y∨x≡Sy Nm 97-N m≯98
... | inj₂ m≡98 = λ _ → f₉₁-x≡y f₉₁-98 m≡98
... | inj₁ m≯97 with x≯Sy→x≯y∨x≡Sy Nm 96-N m≯97
... | inj₂ m≡97 = λ _ → f₉₁-x≡y f₉₁-97 m≡97
... | inj₁ m≯96 with x≯Sy→x≯y∨x≡Sy Nm 95-N m≯96
... | inj₂ m≡96 = λ _ → f₉₁-x≡y f₉₁-96 m≡96
... | inj₁ m≯95 with x≯Sy→x≯y∨x≡Sy Nm 94-N m≯95
... | inj₂ m≡95 = λ _ → f₉₁-x≡y f₉₁-95 m≡95
... | inj₁ m≯94 with x≯Sy→x≯y∨x≡Sy Nm 93-N m≯94
... | inj₂ m≡94 = λ _ → f₉₁-x≡y f₉₁-94 m≡94
... | inj₁ m≯93 with x≯Sy→x≯y∨x≡Sy Nm 92-N m≯93
... | inj₂ m≡93 = λ _ → f₉₁-x≡y f₉₁-93 m≡93
... | inj₁ m≯92 with x≯Sy→x≯y∨x≡Sy Nm 91-N m≯92
... | inj₂ m≡92 = λ _ → f₉₁-x≡y f₉₁-92 m≡92
... | inj₁ m≯91 with x≯Sy→x≯y∨x≡Sy Nm 90-N m≯91
... | inj₂ m≡91 = λ _ → f₉₁-x≡y f₉₁-91 m≡91
... | inj₁ m≯90 with x≯Sy→x≯y∨x≡Sy Nm 89-N m≯90
... | inj₂ m≡90 = λ _ → f₉₁-x≡y f₉₁-90 m≡90
... | inj₁ m≯89 = λ _ → f₉₁-m≯89
where
m≤89 : m ≤ 89'
m≤89 = x≯y→x≤y Nm 89-N m≯89
f₉₁-m+11 : m + 11' ≯ 100' → f₉₁ (m + 11') ≡ 91'
f₉₁-m+11 = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm))
f₉₁-m≯89 : f₉₁ m ≡ 91'
f₉₁-m≯89 = f₉₁-x≯100-helper m 91' m≯100
(f₉₁-m+11 (x≤89→x+11≯100 Nm m≤89))
f₉₁-91
-- The function always terminates.
f₉₁-N : ∀ {n} → N n → N (f₉₁ n)
f₉₁-N {n} Nn with x>y∨x≯y Nn 100-N
... | inj₁ n>100 = subst N (sym (f₉₁-x>100 n Nn n>100)) (∸-N Nn 10-N)
... | inj₂ n≯100 = subst N (sym (f₉₁-x≯100 Nn n≯100)) 91-N
-- For all n, n < f₉₁ n + 11.
f₉₁-ineq : ∀ {n} → N n → n < f₉₁ n + 11'
f₉₁-ineq = ◁-wfind A h
where
A : D → Set
A d = d < f₉₁ d + 11'
h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m
h {m} Nm f with x>y∨x≯y Nm 100-N
... | inj₁ m>100 = x>100→x<f₉₁-x+11 Nm m>100
... | inj₂ m≯100 =
let f₉₁-m+11-N : N (f₉₁ (m + 11'))
f₉₁-m+11-N = f₉₁-N (+-N Nm 11-N)
h₁ : A (m + 11')
h₁ = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm))
m<f₉₁m+11 : m < f₉₁ (m + 11')
m<f₉₁m+11 = x+k<y+k→x<y Nm f₉₁-m+11-N 11-N h₁
h₂ : A (f₉₁ (m + 11'))
h₂ = f f₉₁-m+11-N (<→◁ f₉₁-m+11-N Nm m≯100 m<f₉₁m+11)
in (<-trans Nm f₉₁-m+11-N (x+11-N (f₉₁-N Nm))
m<f₉₁m+11
(f₉₁x+11<f₉₁x+11 m m≯100 h₂))
|
------------------------------------------------------------------------------
-- Main properties of the McCarthy 91 function
------------------------------------------------------------------------------
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The main properties proved of the McCarthy 91 function (called
-- f₉₁) are
-- 1. The function always terminates.
-- 2. For all n, n < f₉₁ n + 11.
-- 3. For all n > 100, then f₉₁ n = n - 10.
-- 4. For all n <= 100, then f₉₁ n = 91.
-- N.B This module does not contain combined proofs, but it imports
-- modules which contain combined proofs.
module FOTC.Program.McCarthy91.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
using ( x>y→x≤y→⊥ )
open import FOTC.Data.Nat.Inequalities.PropertiesATP
using ( x>y∨x≯y
; x≯y→x≤y
; x≯Sy→x≯y∨x≡Sy
; x+k<y+k→x<y
; <-trans
)
open import FOTC.Data.Nat.PropertiesATP
using ( ∸-N
; +-N
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP
using ( x<x+11 )
open import FOTC.Data.Nat.UnaryNumbers.TotalityATP
using ( 10-N
; 11-N
; 89-N
; 90-N
; 91-N
; 92-N
; 93-N
; 94-N
; 95-N
; 96-N
; 97-N
; 98-N
; 99-N
; 100-N
)
open import FOTC.Program.McCarthy91.ArithmeticATP
open import FOTC.Program.McCarthy91.AuxiliaryPropertiesATP
open import FOTC.Program.McCarthy91.McCarthy91
open import FOTC.Program.McCarthy91.WF-Relation
open import FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP
open import FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP
------------------------------------------------------------------------------
-- For all n > 100, then f₉₁ n = n - 10.
postulate f₉₁-x>100 : ∀ n → n > 100' → f₉₁ n ≡ n ∸ 10'
{-# ATP prove f₉₁-x>100 #-}
-- For all n <= 100, then f₉₁ n = 91.
f₉₁-x≯100 : ∀ {n} → N n → n ≯ 100' → f₉₁ n ≡ 91'
f₉₁-x≯100 = ◁-wfind A h
where
A : D → Set
A d = d ≯ 100' → f₉₁ d ≡ 91'
h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m
h {m} Nm f with x>y∨x≯y Nm 100-N
... | inj₁ m>100 = λ m≯100 →
⊥-elim (x>y→x≤y→⊥ Nm 100-N m>100 (x≯y→x≤y Nm 100-N m≯100))
... | inj₂ m≯100 with x≯Sy→x≯y∨x≡Sy Nm 99-N m≯100
... | inj₂ m≡100 = λ _ → f₉₁-x≡y f₉₁-100 m≡100
... | inj₁ m≯99 with x≯Sy→x≯y∨x≡Sy Nm 98-N m≯99
... | inj₂ m≡99 = λ _ → f₉₁-x≡y f₉₁-99 m≡99
... | inj₁ m≯98 with x≯Sy→x≯y∨x≡Sy Nm 97-N m≯98
... | inj₂ m≡98 = λ _ → f₉₁-x≡y f₉₁-98 m≡98
... | inj₁ m≯97 with x≯Sy→x≯y∨x≡Sy Nm 96-N m≯97
... | inj₂ m≡97 = λ _ → f₉₁-x≡y f₉₁-97 m≡97
... | inj₁ m≯96 with x≯Sy→x≯y∨x≡Sy Nm 95-N m≯96
... | inj₂ m≡96 = λ _ → f₉₁-x≡y f₉₁-96 m≡96
... | inj₁ m≯95 with x≯Sy→x≯y∨x≡Sy Nm 94-N m≯95
... | inj₂ m≡95 = λ _ → f₉₁-x≡y f₉₁-95 m≡95
... | inj₁ m≯94 with x≯Sy→x≯y∨x≡Sy Nm 93-N m≯94
... | inj₂ m≡94 = λ _ → f₉₁-x≡y f₉₁-94 m≡94
... | inj₁ m≯93 with x≯Sy→x≯y∨x≡Sy Nm 92-N m≯93
... | inj₂ m≡93 = λ _ → f₉₁-x≡y f₉₁-93 m≡93
... | inj₁ m≯92 with x≯Sy→x≯y∨x≡Sy Nm 91-N m≯92
... | inj₂ m≡92 = λ _ → f₉₁-x≡y f₉₁-92 m≡92
... | inj₁ m≯91 with x≯Sy→x≯y∨x≡Sy Nm 90-N m≯91
... | inj₂ m≡91 = λ _ → f₉₁-x≡y f₉₁-91 m≡91
... | inj₁ m≯90 with x≯Sy→x≯y∨x≡Sy Nm 89-N m≯90
... | inj₂ m≡90 = λ _ → f₉₁-x≡y f₉₁-90 m≡90
... | inj₁ m≯89 = λ _ → f₉₁-m≯89
where
m≤89 : m ≤ 89'
m≤89 = x≯y→x≤y Nm 89-N m≯89
f₉₁-m+11 : m + 11' ≯ 100' → f₉₁ (m + 11') ≡ 91'
f₉₁-m+11 = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm))
f₉₁-m≯89 : f₉₁ m ≡ 91'
f₉₁-m≯89 = f₉₁-x≯100-helper m 91' m≯100
(f₉₁-m+11 (x≤89→x+11≯100 Nm m≤89))
f₉₁-91
-- The function always terminates.
f₉₁-N : ∀ {n} → N n → N (f₉₁ n)
f₉₁-N {n} Nn with x>y∨x≯y Nn 100-N
... | inj₁ n>100 = subst N (sym (f₉₁-x>100 n n>100)) (∸-N Nn 10-N)
... | inj₂ n≯100 = subst N (sym (f₉₁-x≯100 Nn n≯100)) 91-N
-- For all n, n < f₉₁ n + 11.
f₉₁-ineq : ∀ {n} → N n → n < f₉₁ n + 11'
f₉₁-ineq = ◁-wfind A h
where
A : D → Set
A d = d < f₉₁ d + 11'
h : ∀ {m} → N m → (∀ {k} → N k → k ◁ m → A k) → A m
h {m} Nm f with x>y∨x≯y Nm 100-N
... | inj₁ m>100 = x>100→x<f₉₁-x+11 Nm m>100
... | inj₂ m≯100 =
let f₉₁-m+11-N : N (f₉₁ (m + 11'))
f₉₁-m+11-N = f₉₁-N (+-N Nm 11-N)
h₁ : A (m + 11')
h₁ = f (x+11-N Nm) (<→◁ (x+11-N Nm) Nm m≯100 (x<x+11 Nm))
m<f₉₁m+11 : m < f₉₁ (m + 11')
m<f₉₁m+11 = x+k<y+k→x<y Nm f₉₁-m+11-N 11-N h₁
h₂ : A (f₉₁ (m + 11'))
h₂ = f f₉₁-m+11-N (<→◁ f₉₁-m+11-N Nm m≯100 m<f₉₁m+11)
in (<-trans Nm f₉₁-m+11-N (x+11-N (f₉₁-N Nm))
m<f₉₁m+11
(f₉₁x+11<f₉₁x+11 m m≯100 h₂))
|
Revert "Added a non-required totality hypothesis."
|
Revert "Added a non-required totality hypothesis."
This reverts commit 57708b770c00d1ba6276cda0f02752e147f2f533.
|
Agda
|
mit
|
asr/fotc,asr/fotc
|
f04e665aed5f41deea97dd4b7160ad5ee957e41a
|
Nehemiah/Change/Validity.agda
|
Nehemiah/Change/Validity.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes with the Nehemiah plugin.
------------------------------------------------------------------------
module Nehemiah.Change.Validity where
open import Nehemiah.Syntax.Type
open import Nehemiah.Denotation.Value
import Parametric.Change.Validity ⟦_⟧Base as Validity
open import Nehemiah.Change.Type
open import Nehemiah.Change.Value
open import Data.Integer
open import Structure.Bag.Nehemiah
open import Base.Change.Algebra
open import Level
change-algebra-base : ∀ ι → ChangeAlgebra zero ⟦ ι ⟧Base
change-algebra-base base-int = GroupChanges.changeAlgebra ℤ
change-algebra-base base-bag = GroupChanges.changeAlgebra Bag
change-algebra-base-family : ChangeAlgebraFamily zero ⟦_⟧Base
change-algebra-base-family = family change-algebra-base
open Validity.Structure change-algebra-base-family public
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes with the Nehemiah plugin.
------------------------------------------------------------------------
module Nehemiah.Change.Validity where
open import Nehemiah.Syntax.Type
open import Nehemiah.Denotation.Value
import Parametric.Change.Validity ⟦_⟧Base as Validity
open import Nehemiah.Change.Type
open import Nehemiah.Change.Value
open import Data.Integer
open import Structure.Bag.Nehemiah
open import Base.Change.Algebra
open import Level
change-algebra-base : ∀ ι → ChangeAlgebra zero ⟦ ι ⟧Base
change-algebra-base base-int = GroupChanges.changeAlgebra ℤ {{abelian-int}}
change-algebra-base base-bag = GroupChanges.changeAlgebra Bag {{abelian-bag}}
instance
change-algebra-base-family : ChangeAlgebraFamily zero ⟦_⟧Base
change-algebra-base-family = family change-algebra-base
--open Validity.Structure change-algebra-base-family public --XXX agda/agda#1985.
open Validity.Structure public
|
Update Nehemiah.Change.Validity
|
Update Nehemiah.Change.Validity
* Adapt to weaker instance resolution.
* Omit module application that runs into agda/agda#1985.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
94c667f3d542af3d0d5f3f603fe4d1aeccaf6e95
|
New/Changes.agda
|
New/Changes.agda
|
module New.Changes where
open import Relation.Binary.PropositionalEquality
open import Level
open import Data.Unit
open import Data.Product
record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where
field
_⊕_ : A → Ch → A
_⊝_ : A → A → Ch
valid : A → Ch → Set ℓ
⊝-valid : ∀ (a b : A) → valid a (b ⊝ a)
⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b
infixl 6 _⊕_ _⊝_
Δ : A → Set ℓ
Δ a = Σ[ da ∈ Ch ] (valid a da)
update-diff = ⊕-⊝
nil : A → Ch
nil a = a ⊝ a
nil-valid : (a : A) → valid a (nil a)
nil-valid a = ⊝-valid a a
update-nil : (a : A) → a ⊕ nil a ≡ a
update-nil a = update-diff a a
record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where
field
Ch : Set ℓ
isChAlg : IsChAlg A Ch
open IsChAlg isChAlg public
open ChAlg {{...}} public hiding (Ch)
Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ
Ch A {{CA}} = ChAlg.Ch CA
-- Huge hack, but it does gives the output you want to see in all cases I've seen.
{-# DISPLAY IsChAlg.valid x = valid #-}
{-# DISPLAY ChAlg.valid x = valid #-}
{-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY ChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY IsChAlg.nil x = nil #-}
{-# DISPLAY ChAlg.nil x = nil #-}
{-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-}
{-# DISPLAY ChAlg._⊝_ x = _⊝_ #-}
module _ {ℓ₁} {ℓ₂}
{A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where
private
fCh = A → Ch A → Ch B
_f⊕_ : (A → B) → fCh → A → B
_f⊕_ = λ f df a → f a ⊕ df a (nil a)
_f⊝_ : (g f : A → B) → fCh
_f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a
open ≡-Reasoning
open import Postulate.Extensionality
IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂)
IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da
instance
funCA : ChAlg (A → B)
private
funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a
funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a)
funCA = record
{ Ch = A → Ch A → Ch B
; isChAlg = record
{ _⊕_ = _f⊕_
; _⊝_ = _f⊝_
; valid = λ f df → ∀ a da (v : valid a da) →
valid (f a) (df a da) ×
(f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da
; ⊝-valid = λ f g a da (v : valid a da) →
⊝-valid (f a) (g (a ⊕ da))
, ( begin
f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da))
≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da)))
(update-nil (a ⊕ da)) ⟩
f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da))
≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩
g (a ⊕ da)
≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩
f a ⊕ (g (a ⊕ da) ⊝ f a)
∎)
; ⊕-⊝ = λ g f → ext (funUpdateDiff g f)
} }
nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f)
nil-is-derivative f a da v =
begin
f (a ⊕ da)
≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩
(f ⊕ nil f) (a ⊕ da)
≡⟨ proj₂ (nil-valid f a da v) ⟩
f a ⊕ (nil f a da)
∎
private
_p⊕_ : A × B → Ch A × Ch B → A × B
_p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db
_p⊝_ : A × B → A × B → Ch A × Ch B
_p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1
pvalid : A × B → Ch A × Ch B → Set (ℓ₂ ⊔ ℓ₁)
pvalid (a , b) (da , db) = valid a da × valid b db
p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1)
p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2
p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2
p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1)
instance
pairCA : ChAlg (A × B)
pairCA = record
{ Ch = Ch A × Ch B
; isChAlg = record
{ _⊕_ = _p⊕_
; _⊝_ = _p⊝_
; valid = pvalid
; ⊝-valid = p⊝-valid
; ⊕-⊝ = p⊕-⊝
} }
open import Data.Integer
open import Theorem.Groups-Nehemiah
instance
intCA : ChAlg ℤ
intCA = record
{ Ch = ℤ
; isChAlg = record
{ _⊕_ = _+_
; _⊝_ = _-_
; valid = λ a b → ⊤
; ⊝-valid = λ a b → tt
; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
|
module New.Changes where
open import Relation.Binary.PropositionalEquality
open import Level
open import Data.Unit
open import Data.Product
open import Data.Sum
record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where
field
_⊕_ : A → Ch → A
_⊝_ : A → A → Ch
valid : A → Ch → Set ℓ
⊝-valid : ∀ (a b : A) → valid a (b ⊝ a)
⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b
infixl 6 _⊕_ _⊝_
Δ : A → Set ℓ
Δ a = Σ[ da ∈ Ch ] (valid a da)
update-diff = ⊕-⊝
nil : A → Ch
nil a = a ⊝ a
nil-valid : (a : A) → valid a (nil a)
nil-valid a = ⊝-valid a a
update-nil : (a : A) → a ⊕ nil a ≡ a
update-nil a = update-diff a a
record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where
field
Ch : Set ℓ
isChAlg : IsChAlg A Ch
open IsChAlg isChAlg public
open ChAlg {{...}} public hiding (Ch)
Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ
Ch A {{CA}} = ChAlg.Ch CA
-- Huge hack, but it does gives the output you want to see in all cases I've seen.
{-# DISPLAY IsChAlg.valid x = valid #-}
{-# DISPLAY ChAlg.valid x = valid #-}
{-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY ChAlg._⊕_ x = _⊕_ #-}
{-# DISPLAY IsChAlg.nil x = nil #-}
{-# DISPLAY ChAlg.nil x = nil #-}
{-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-}
{-# DISPLAY ChAlg._⊝_ x = _⊝_ #-}
module _ {ℓ₁} {ℓ₂}
{A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where
private
fCh = A → Ch A → Ch B
_f⊕_ : (A → B) → fCh → A → B
_f⊕_ = λ f df a → f a ⊕ df a (nil a)
_f⊝_ : (g f : A → B) → fCh
_f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a
open ≡-Reasoning
open import Postulate.Extensionality
IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂)
IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da
instance
funCA : ChAlg (A → B)
private
funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a
funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a)
funCA = record
{ Ch = A → Ch A → Ch B
; isChAlg = record
{ _⊕_ = _f⊕_
; _⊝_ = _f⊝_
; valid = λ f df → ∀ a da (v : valid a da) →
valid (f a) (df a da) ×
(f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da
; ⊝-valid = λ f g a da (v : valid a da) →
⊝-valid (f a) (g (a ⊕ da))
, ( begin
f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da))
≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da)))
(update-nil (a ⊕ da)) ⟩
f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da))
≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩
g (a ⊕ da)
≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩
f a ⊕ (g (a ⊕ da) ⊝ f a)
∎)
; ⊕-⊝ = λ g f → ext (funUpdateDiff g f)
} }
nil-is-derivative : ∀ (f : A → B) → IsDerivative f (nil f)
nil-is-derivative f a da v =
begin
f (a ⊕ da)
≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩
(f ⊕ nil f) (a ⊕ da)
≡⟨ proj₂ (nil-valid f a da v) ⟩
f a ⊕ (nil f a da)
∎
private
_p⊕_ : A × B → Ch A × Ch B → A × B
_p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db
_p⊝_ : A × B → A × B → Ch A × Ch B
_p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1
pvalid : A × B → Ch A × Ch B → Set (ℓ₂ ⊔ ℓ₁)
pvalid (a , b) (da , db) = valid a da × valid b db
p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1)
p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2
p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2
p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1)
instance
pairCA : ChAlg (A × B)
pairCA = record
{ Ch = Ch A × Ch B
; isChAlg = record
{ _⊕_ = _p⊕_
; _⊝_ = _p⊝_
; valid = pvalid
; ⊝-valid = p⊝-valid
; ⊕-⊝ = p⊕-⊝
} }
private
SumChange = (Ch A ⊎ Ch B) ⊎ (A ⊎ B)
data SumChange2 : Set (ℓ₁ ⊔ ℓ₂) where
ch₁ : (da : Ch A) → SumChange2
ch₂ : (db : Ch B) → SumChange2
rp : (s : A ⊎ B) → SumChange2
convert : SumChange → SumChange2
convert (inj₁ (inj₁ da)) = ch₁ da
convert (inj₁ (inj₂ db)) = ch₂ db
convert (inj₂ s) = rp s
convert₁ : SumChange2 → SumChange
convert₁ (ch₁ da) = inj₁ (inj₁ da)
convert₁ (ch₂ db) = inj₁ (inj₂ db)
convert₁ (rp s) = inj₂ s
data SValid : A ⊎ B → SumChange → Set (ℓ₁ ⊔ ℓ₂) where
sv₁ : ∀ (a : A) (da : Ch A) (ada : valid a da) → SValid (inj₁ a) (convert₁ (ch₁ da))
sv₂ : ∀ (b : B) (db : Ch B) (bdb : valid b db) → SValid (inj₂ b) (convert₁ (ch₂ db))
svrp : ∀ (s₁ s₂ : A ⊎ B) → SValid s₁ (convert₁ (rp s₂))
inv1 : ∀ ds → convert₁ (convert ds) ≡ ds
inv1 (inj₁ (inj₁ da)) = refl
inv1 (inj₁ (inj₂ db)) = refl
inv1 (inj₂ s) = refl
inv2 : ∀ ds → convert (convert₁ ds) ≡ ds
inv2 (ch₁ da) = refl
inv2 (ch₂ db) = refl
inv2 (rp s) = refl
private
s⊕2 : A ⊎ B → SumChange2 → A ⊎ B
s⊕2 (inj₁ a) (ch₁ da) = inj₁ (a ⊕ da)
s⊕2 (inj₂ b) (ch₂ db) = inj₂ (b ⊕ db)
s⊕2 (inj₂ b) (ch₁ da) = inj₂ b -- invalid
s⊕2 (inj₁ a) (ch₂ db) = inj₁ a -- invalid
s⊕2 s (rp s₁) = s₁
s⊕ : A ⊎ B → SumChange → A ⊎ B
s⊕ s ds = s⊕2 s (convert ds)
s⊝2 : A ⊎ B → A ⊎ B → SumChange2
s⊝2 (inj₁ x2) (inj₁ x1) = ch₁ (x2 ⊝ x1)
s⊝2 (inj₂ y2) (inj₂ y1) = ch₂ (y2 ⊝ y1)
s⊝2 s2 s1 = rp s2
s⊝ : A ⊎ B → A ⊎ B → SumChange
s⊝ s2 s1 = convert₁ (s⊝2 s2 s1)
s⊝-valid : (a b : A ⊎ B) → SValid a (s⊝ b a)
s⊝-valid (inj₁ x1) (inj₁ x2) = sv₁ x1 (x2 ⊝ x1) (⊝-valid x1 x2)
s⊝-valid (inj₂ y1) (inj₂ y2) = sv₂ y1 (y2 ⊝ y1) (⊝-valid y1 y2)
s⊝-valid s1@(inj₁ x) s2@(inj₂ y) = svrp s1 s2
s⊝-valid s1@(inj₂ y) s2@(inj₁ x) = svrp s1 s2
s⊕-⊝ : (b a : A ⊎ B) → s⊕ a (s⊝ b a) ≡ b
s⊕-⊝ (inj₁ x2) (inj₁ x1) rewrite ⊕-⊝ x2 x1 = refl
s⊕-⊝ (inj₁ x2) (inj₂ y1) = refl
s⊕-⊝ (inj₂ y2) (inj₁ x1) = refl
s⊕-⊝ (inj₂ y2) (inj₂ y1) rewrite ⊕-⊝ y2 y1 = refl
sumCA = record
{ Ch = SumChange
; isChAlg = record
{ _⊕_ = s⊕
; _⊝_ = s⊝
; valid = SValid
; ⊝-valid = s⊝-valid
; ⊕-⊝ = s⊕-⊝
} }
open import Data.Integer
open import Theorem.Groups-Nehemiah
instance
intCA : ChAlg ℤ
intCA = record
{ Ch = ℤ
; isChAlg = record
{ _⊕_ = _+_
; _⊝_ = _-_
; valid = λ a b → ⊤
; ⊝-valid = λ a b → tt
; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} } }
|
Add change structure for changes
|
Add change structure for changes
|
Agda
|
mit
|
inc-lc/ilc-agda
|
f1c2df98ed89a3de0f4b42407cb950eded1c5ed4
|
total.agda
|
total.agda
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ {{Γ′}} (abs t)
≈⟨ Δ-abs {{Γ′}} t ⟩
abs (abs (Δ {τ • Γ₁} {{Γ″}} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩
abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
≡⟨⟩
derive-term {{Γ′}} (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ {{Γ′}} (app t₁ t₂)
≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧Var ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct {{Γ′}} (if t₁ t₂ t₃) =
begin
Δ (if t₁ t₂ t₃)
≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩
if (Δ t₁)
(if (lift-term {{Γ′}} t₁)
(diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂))
(diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃)))
(if (lift-term {{Γ′}} t₁)
(Δ {{Γ′}} t₂)
(Δ {{Γ′}} t₃))
≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁)
(≈-if (≈-refl)
(≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl)
(≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl))
(≈-if (≈-refl)
(derive-term-correct {{Γ′}} t₂)
(derive-term-correct {{Γ′}} t₃)) ⟩
if (derive-term {{Γ′}} t₁)
(if (lift-term {{Γ′}} t₁)
(diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂))
(diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃)))
(if (lift-term {{Γ′}} t₁)
(derive-term {{Γ′}} t₂)
(derive-term {{Γ′}} t₃))
≡⟨⟩
derive-term {{Γ′}} (if t₁ t₂ t₃)
∎ where open ≈-Reasoning
derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
|
module total where
-- INCREMENTAL λ-CALCULUS
-- with total derivatives
--
-- Features:
-- * changes and derivatives are unified (following Cai)
-- * Δ e describes how e changes when its free variables or its arguments change
-- * denotational semantics including semantics of changes
--
-- Note that Δ is *not* the same as the ∂ operator in
-- definition/intro.tex. See discussion at:
--
-- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325
--
-- Work in Progress:
-- * lemmas about behavior of changes
-- * lemmas about behavior of Δ
-- * correctness proof for symbolic derivation
open import Relation.Binary.PropositionalEquality
open import Syntactic.Types
open import Syntactic.Contexts Type
open import Syntactic.Terms.Total
open import Syntactic.Changes
open import Denotational.Notation
open import Denotational.Values
open import Denotational.Environments Type ⟦_⟧Type
open import Denotational.Evaluation.Total
open import Denotational.Equivalence
open import Denotational.ValidChanges
open import Changes
open import ChangeContexts
open import ChangeContextLifting
open import PropsDelta
open import SymbolicDerivation
-- CORRECTNESS of derivation
derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) →
diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡
⟦ derive-var x ⟧ ρ
derive-var-correct (dv • v • ρ) this = diff-apply dv v
derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x
derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) →
Δ {{Γ′}} t ≈ derive-term {{Γ′}} t
derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) =
begin
Δ {{Γ′}} (abs t)
≈⟨ Δ-abs {{Γ′}} t ⟩
abs (abs (Δ {τ • Γ₁} {{Γ″}} t))
≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩
abs (abs (derive-term {τ • Γ₁} {{Γ″}} t))
≡⟨⟩
derive-term {{Γ′}} (abs t)
∎ where
open ≈-Reasoning
Γ″ = keep Δ-Type τ • keep τ • Γ′
derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) =
begin
Δ {{Γ′}} (app t₁ t₂)
≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩
app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂)
≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩
app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂)
≡⟨⟩
derive-term {{Γ′}} (app t₁ t₂)
∎ where open ≈-Reasoning
derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ →
begin
⟦ Δ {{Γ′}} (var x) ⟧ ρ
≡⟨⟩
diff
(⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ)))
(⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ)))
≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩
⟦ derive-var x ⟧ (⟦ Γ′ ⟧ ρ)
≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩
⟦ lift Γ′ (derive-var x) ⟧ ρ
∎) where open ≡-Reasoning
derive-term-correct true = ext-t (λ ρ → ≡-refl)
derive-term-correct false = ext-t (λ ρ → ≡-refl)
derive-term-correct {{Γ′}} (if t₁ t₂ t₃) =
begin
Δ (if t₁ t₂ t₃)
≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩
if (Δ t₁)
(if (lift-term {{Γ′}} t₁)
(diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂))
(diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃)))
(if (lift-term {{Γ′}} t₁)
(Δ {{Γ′}} t₂)
(Δ {{Γ′}} t₃))
≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁)
(≈-if (≈-refl)
(≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl)
(≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl))
(≈-if (≈-refl)
(derive-term-correct {{Γ′}} t₂)
(derive-term-correct {{Γ′}} t₃)) ⟩
if (derive-term {{Γ′}} t₁)
(if (lift-term {{Γ′}} t₁)
(diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂))
(diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃)))
(if (lift-term {{Γ′}} t₁)
(derive-term {{Γ′}} t₂)
(derive-term {{Γ′}} t₃))
≡⟨⟩
derive-term {{Γ′}} (if t₁ t₂ t₃)
∎ where open ≈-Reasoning
derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
|
Increase overloading and confusion.
|
Increase overloading and confusion.
Old-commit-hash: df682306832e5b833f837c92dec32b3c428a7ab9
|
Agda
|
mit
|
inc-lc/ilc-agda
|
757995f811b789374410d560566e8717a68f1e24
|
Base/Change/Equivalence.agda
|
Base/Change/Equivalence.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Function
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
-- To avoid unification problems, use a one-field record.
record _≙_ dx dy : Set a where
-- doe = Delta-Observational Equivalence.
constructor doe
field
proof : x ⊞ dx ≡ x ⊞ dy
open _≙_ public
-- Same priority as ≡
infix 4 _≙_
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = doe refl
≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-sym ≙ = doe $ sym $ proof ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂)
-- That's standard congruence applied to ≙
≙-cong : ∀ {b} {B : Set b}
(f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy)
≙-cong f da≙db = cong f $ proof da≙db
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-sym
; trans = ≙-trans
}
≙-setoid : Setoid ℓ a
≙-setoid = record
{ Carrier = Δ x
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
module ≙-Reasoning where
open EqR ≙-setoid public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
trans
(proof (let open ≙-Reasoning in
begin
dx
≙⟨ dx≙nil-x ⟩
nil x
∎))
(let open ≡-Reasoning in
begin
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎)
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x = doe $
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = doe lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
-- Unused, but just to test that inference works.
lemma : nil f ≙ dg
lemma = ≙-sym (derivative-is-nil dg fdg)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence
------------------------------------------------------------------------
module Base.Change.Equivalence where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Function
module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where
-- Delta-observational equivalence: these asserts that two changes
-- give the same result when applied to a base value.
-- To avoid unification problems, use a one-field record.
record _≙_ dx dy : Set a where
-- doe = Delta-Observational Equivalence.
constructor doe
field
proof : x ⊞ dx ≡ x ⊞ dy
open _≙_ public
-- Same priority as ≡
infix 4 _≙_
open import Relation.Binary
-- _≙_ is indeed an equivalence relation:
≙-refl : ∀ {dx} → dx ≙ dx
≙-refl = doe refl
≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx
≙-sym ≙ = doe $ sym $ proof ≙
≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz
≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂)
-- That's standard congruence applied to ≙
≙-cong : ∀ {b} {B : Set b}
(f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy)
≙-cong f da≙db = cong f $ proof da≙db
≙-isEquivalence : IsEquivalence (_≙_)
≙-isEquivalence = record
{ refl = ≙-refl
; sym = ≙-sym
; trans = ≙-trans
}
≙-setoid : Setoid ℓ a
≙-setoid = record
{ Carrier = Δ x
; _≈_ = _≙_
; isEquivalence = ≙-isEquivalence
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
module ≙-Reasoning where
open EqR ≙-setoid public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
-- By update-nil, if dx = nil x, then x ⊞ dx ≡ x.
-- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x
nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x
nil-is-⊞-unit dx dx≙nil-x =
begin
x ⊞ dx
≡⟨ proof dx≙nil-x ⟩
x ⊞ (nil x)
≡⟨ update-nil x ⟩
x
∎
where
open ≡-Reasoning
-- Here we prove the inverse:
⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x
⊞-unit-is-nil dx x⊞dx≡x = doe $
begin
x ⊞ dx
≡⟨ x⊞dx≡x ⟩
x
≡⟨ sym (update-nil x) ⟩
x ⊞ nil x
∎
where
open ≡-Reasoning
-- TODO: we want to show that all functions of interest respect
-- delta-observational equivalence, so that two d.o.e. changes can be
-- substituted for each other freely.
--
-- * That should be be true for
-- functions using changes parametrically.
--
-- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ];
-- this is proved below on both contexts at once by fun-change-respects.
--
-- * Finally, change algebra operations should respect d.o.e. But ⊞ respects
-- it by definition, and ⊟ doesn't take change arguments - we will only
-- need a proof for compose, when we define it.
--
-- Stating the general result, though, seems hard, we should
-- rather have lemmas proving that certain classes of functions respect this
-- equivalence.
-- This results pairs with update-diff.
diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx
diff-update {dx} = doe lemma
where
lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx
lemma = update-diff (x ⊞ dx) x
module _ {a} {b} {c} {d} {A : Set a} {B : Set b}
{{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where
module FC = FunctionChanges A B {{CA}} {{CB}}
open FC using (changeAlgebra; incrementalization)
open FC.FunctionChange
fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} →
df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂
fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂
-- Informally: use incrementalization on both sides and then apply
-- congruence.
lemma =
begin
f x ⊞ apply df₁ x dx₁
≡⟨ sym (incrementalization f df₁ x dx₁) ⟩
(f ⊞ df₁) (x ⊞ dx₁)
≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩
(f ⊞ df₁) (x ⊞ dx₂)
≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩
(f ⊞ df₂) (x ⊞ dx₂)
≡⟨ incrementalization f df₂ x dx₂ ⟩
f x ⊞ apply df₂ x dx₂
∎
open import Postulate.Extensionality
-- An extensionality principle for delta-observational equivalence: if
-- applying two function changes to the same base value and input change gives
-- a d.o.e. result, then the two function changes are d.o.e. themselves.
delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg
delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂
where
open ≡-Reasoning
-- This type signature just expands the goal manually a bit.
lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx
lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx
lemma₂ : f ⊞ df ≡ f ⊞ dg
lemma₂ = ext (λ x → lemma₁ x (nil x))
-- We know that Derivative f (apply (nil f)) (by nil-is-derivative).
-- That is, df = nil f -> Derivative f (apply df).
-- Now, we try to prove that if Derivative f (apply df) -> df = nil f.
-- But first, we prove that f ⊞ df = f.
derivative-is-⊞-unit : ∀ {f : A → B} df →
Derivative f (apply df) → f ⊞ df ≡ f
derivative-is-⊞-unit {f} df fdf =
begin
f ⊞ df
≡⟨⟩
(λ x → f x ⊞ apply df x (nil x))
≡⟨ ext (λ x → fdf x (nil x)) ⟩
(λ x → f (x ⊞ nil x))
≡⟨ ext (λ x → cong f (update-nil x)) ⟩
(λ x → f x)
≡⟨⟩
f
∎
where
open ≡-Reasoning
-- We can restate the above as "df is a nil change".
derivative-is-nil : ∀ {f : A → B} df →
Derivative f (apply df) → df ≙ nil f
derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf)
-- If we have two derivatives, they're both nil, hence they're equal.
derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg
derivative-unique {f} {df} {dg} fdf fdg =
begin
df
≙⟨ derivative-is-nil df fdf ⟩
nil f
≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩
dg
∎
where
open ≙-Reasoning
-- Unused, but just to test that inference works.
lemma : nil f ≙ dg
lemma = ≙-sym (derivative-is-nil dg fdg)
|
Revert "Show how badly reasoning for ≙ and ≡ combine"
|
Revert "Show how badly reasoning for ≙ and ≡ combine"
This reverts commit 24faa2c5edd91d1db64977d5124ef40e01de433f. The commit
showed how badly something worked, so let's leave in the old version for
now.
Old-commit-hash: 9f5f49cf0319ba809356655a204ec83725dfceb4
|
Agda
|
mit
|
inc-lc/ilc-agda
|
c1d53d1c793d91e002e6c8b4ffbbcc8dca4c6eda
|
README.agda
|
README.agda
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
-- We claim that this formalization
--
-- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper,
-- (2) formally specifies the interface between our incrementalization
-- framework and potential plugins, and
-- (3) shows that the plugin interface can be instantiated.
--
-- The first claim is the main reason for a machine-checked
-- proof: We want to be sure that we got the proofs right.
--
-- The second claim is about reusability and applicability: Only
-- a clearly defined interface allows other researchers to
-- provide plugins for our framework.
--
-- The third claim is to show that the plugin interface is
-- consistent: An inconsistent plugin interface would allow to
-- prove arbitrary results in the framework.
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda (2.4.0), the Agda standard library (version 0.8), generate
-- Everything.agda with the attached Haskell helper, and finally run Agda on
-- this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- (This import is also important to ensure that if we typecheck
-- README.agda, we also typecheck every other file of our
-- formalization).
-- THE AGDA CODE
-- =============
--
-- The formalization has four parts:
--
-- 1. A formalization of change structures. This lives in
-- Base.Change.Algebra. (What we call "change structure" in the
-- paper, we call "change algebra" in the Agda code. We changed
-- the name when writing the paper, and never got around to
-- updating the name in the Agda code).
--
-- 2. Incrementalization framework for first-class functions,
-- with extension points for plugging in data types and their
-- incrementalization. This lives in the Parametric.*
-- hierarchy.
--
-- 3. An example plugin that provides integers and bags
-- with negative multiplicity. This lives in the Nehemiah.*
-- hierarchy. (For some reason, we choose to call this
-- particular incarnation of the plugin Nehemiah).
--
-- 4. Other material that is unrelated to the framework/plugin
-- distinction. This is all other files.
-- FORMALIZATION OF CHANGE STRUCTURES
-- ==================================
--
-- Section 2 of the paper, and Base.Change.Algebra in Agda.
import Base.Change.Algebra
-- INCREMENTALIZATION FRAMEWORK
-- ============================
--
-- Section 3 of the paper, and Parametric.* hierarchy in Agda.
--
-- The extension points are implemented as module parameters. See
-- detailed explanation in Parametric.Syntax.Type and
-- Parametric.Syntax.Term. Some extension points are for types,
-- some for values, and some for proof fragments. In Agda, these
-- three kinds of entities are unified anyway, so we can encode
-- all of them as module parameters.
--
-- Every module in the Parametric.* hierarchy adds at least one
-- extension point, so the module hierarchy of a plugin will
-- typically mirror the Parametric.* hierarchy, defining the
-- values for these extension points.
--
-- Firstly, we have the syntax of types and terms, the erased
-- change structure for function types and incrementalization as
-- a term-to-term transformation. The contents of these modules
-- formalizes Sec. 3.1 and 3.2 of the paper, except for the
-- second and third line of Figure 3, which is formalized further
-- below.
import Parametric.Syntax.Type -- syntax of types
import Parametric.Syntax.Term -- syntax of terms
import Parametric.Change.Type -- simply-typed changes
import Parametric.Change.Derive -- incrementalization
-- Secondly, we define the usual denotational semantics of the
-- simply-typed lambda calculus in terms of total functions, and
-- the change semantics in terms of a change structure on total
-- functions. The contents of these modules formalize Sec. 3.3,
-- 3.4 and 3.5 of the paper.
import Parametric.Denotation.Value -- standard values
import Parametric.Denotation.Evaluation -- standard evaluation
import Parametric.Change.Validity -- dependently-typed changes
import Parametric.Change.Specification -- change evaluation
-- Thirdly, we define terms that operate on simply-typed changes,
-- and connect them to their values. The concents of these
-- modules formalize the second and third line of Figure 3, as
-- well as the semantics of these lines.
import Parametric.Change.Term -- terms that operate on simply-typed changes
import Parametric.Change.Value -- the values of these terms
import Parametric.Change.Evaluation -- connecting the terms and their values
-- Finally, we prove correctness by connecting the (syntactic)
-- incrementalization to the (semantic) change evaluation by a
-- logical relation, and a proof that the values of terms
-- produced by the incrementalization transformation are related
-- to the change values of the original terms. The contents of
-- these modules formalize Sec. 3.6.
import Parametric.Change.Implementation -- logical relation
import Parametric.Change.Correctness -- main correctness proof
-- EXAMPLE PLUGIN
-- ==============
--
-- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda.
--
-- The module structure of the plugin follows the structure of
-- the Parametric.* hierarchy. For example, the extension point
-- defined in Parametric.Syntax.Term is instantiated in
-- Nehemiah.Syntax.Term.
--
-- As discussed in Sec. 3.7 of the paper, the point of this
-- plugin is not to speed up any real programs, but to show "that
-- the interface for proof plugins can be implemented". As a
-- first step towards proving correctness of the more complicated
-- plugin with integers, bags and finite maps we implement in
-- Scala, we choose to define plugin with integers and bags in
-- Agda. Instead of implementing bags (with negative
-- multiplicities, like in the paper) in Agda, though, we
-- postulate that a group of such bags exist. Note that integer
-- bags with integer multiplicities are actually the free group
-- given a singleton operation `Integer -> Bag`, so this should
-- be easy to formalize in principle.
-- Before we start with the plugin, we postulate an abstract data
-- type for integer bags.
import Postulate.Bag-Nehemiah
-- Firstly, we extend the syntax of types and terms, the erased
-- change structure for function types, and incrementalization as
-- a term-to-term transformation to account for the data types of
-- the Nehemiah language. The contents of these modules
-- instantiate the extension points in Sec. 3.1 and 3.2 of the
-- paper, except for the second and third line of Figure 3, which
-- is instantiated further below.
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
-- Secondly, we extend the usual denotational semantics and the
-- change semantics to account for the data types of the Nehemiah
-- language. The contents of these modules instantiate the
-- extension points in Sec. 3.3, 3.4 and 3.5 of the paper.
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
-- Thirdly, we extend the terms that operate on simply-typed
-- changes, and the connection to their values to account for the
-- data types of the Nehemiah language. The concents of these
-- modules instantiate the extension points in the second and
-- third line of Figure 3.
import Nehemiah.Change.Term
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- Finally, we extend the logical relation and the main
-- correctness proof to account for the data types in the
-- Nehemiah language. The contents of these modules instantiate
-- the extension points defined in Sec. 3.6.
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
-- OTHER MATERIAL
-- ==============
--
-- We postulate extensionality of Agda functions. This postulate
-- is well known to be compatible with Agda's type theory.
import Postulate.Extensionality
-- For historical reasons, we reexport Data.List.All from the
-- standard library under the name DependentList.
import Base.Data.DependentList
-- This module supports overloading the ⟦_⟧ notation based on
-- Agda's instance arguments.
import Base.Denotation.Notation
-- These modules implement contexts including typed de Bruijn
-- indices to represent bound variables, sets of bound variables,
-- and environments. These modules are parametric in the set of
-- types (that are stored in contexts) and the set of values
-- (that are stored in environments). So these modules are even
-- more parametric than the Parametric.* hierarchy.
import Base.Syntax.Context
import Base.Syntax.Vars
import Base.Denotation.Environment
-- This module contains some helper definitions to merge a
-- context of values and a context of changes.
import Base.Change.Context
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Machine-checked formalization of the theoretical results presented
-- in the paper:
--
-- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann.
-- A Theory of Changes for Higher-Order Languages:
-- Incrementalizing λ-Calculi by Static Differentiation.
-- To appear at PLDI, ACM 2014.
--
-- We claim that this formalization
--
-- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper,
-- (2) formally specifies the interface between our incrementalization
-- framework and potential plugins, and
-- (3) shows that the plugin interface can be instantiated.
--
-- The first claim is the main reason for a machine-checked
-- proof: We want to be sure that we got the proofs right.
--
-- The second claim is about reusability and applicability: Only
-- a clearly defined interface allows other researchers to
-- provide plugins for our framework.
--
-- The third claim is to show that the plugin interface is
-- consistent: An inconsistent plugin interface would allow to
-- prove arbitrary results in the framework.
------------------------------------------------------------------------
module README where
-- We know two good ways to read this code base. You can either
-- use Emacs with agda2-mode to interact with the source files,
-- or you can use a web browser to view the pretty-printed and
-- hyperlinked source files. For Agda power users, we also
-- include basic setup information for your own machine.
-- IF YOU WANT TO USE A BROWSER
-- ============================
--
-- Start with *HTML* version of this readme. On the AEC
-- submission website (online or inside the VM), follow the link
-- "view the Agda code in their browser" to the file
-- agda/README.html.
--
-- The source code is syntax highlighted and hyperlinked. You can
-- click on module names to open the corresponding files, or you
-- can click on identifiers to jump to their definition. In
-- general, a Agda file with name `Foo/Bar/Baz.agda` contains a
-- module `Foo.Bar.Baz` and is shown in an HTML file
-- `Foo.Bar.Baz.html`.
--
-- Note that we also include the HTML files generated for our
-- transitive dependencies from the Agda standard library. This
-- allows you to follow hyperlinks to the Agda standard
-- library. It is the default behavior of `agda --html` which we
-- used to generate the HTML.
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE EMACS
-- ========================
--
-- Open this file in Emacs with agda2-mode installed. See below
-- for which Agda version you need to install. On the VM image,
-- everything is setup for you and you can just open this file in
-- Emacs.
--
-- C-c C-l Load code. Type checks and syntax highlights. Use
-- this if the code is not syntax highlighted, or
-- after you changed something that you want to type
-- check.
--
-- M-. Jump to definition of identifier at the point.
-- M-* Jump back.
--
-- Note that README.agda imports Everything.agda which imports
-- every Agda file in our formalization. So if README.agda type
-- checks successfully, everything does. If you want to type
-- check everything from scratch, delete the *.agdai files to
-- disable separate compilation. You can use "find . -name
-- '*.agdai' | xargs rm" to do that.
--
-- More information on the Agda mode is available on the Agda wiki:
--
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations
--
-- To get started, continue below on "Where to start reading?".
-- IF YOU WANT TO USE YOUR OWN SETUP
-- =================================
--
-- To typecheck this formalization, you need to install the appropriate version
-- of Agda (2.4.0.*), the Agda standard library (version 0.8), generate
-- Everything.agda with the attached Haskell helper, and finally run Agda on
-- this file.
--
-- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh
-- script and following instructions given on output will eventually generate
-- Everything.agda and proceed to type check everything on command line.
--
-- If you're not an Agda power user, it is probably easier to use
-- the VM image or look at the pretty-printed and hyperlinked
-- HTML files, see above.
-- WHERE TO START READING?
-- =======================
--
-- modules.pdf
-- The graph of dependencies between Agda modules.
-- Good if you want to get a broad overview.
--
-- README.agda
-- This file. A coarse-grained introduction to the Agda
-- formalization. Good if you want to begin at the beginning
-- and understand the structure of our code.
--
-- PLDI14-List-of-Theorems.agda
-- Pointers to the Agda formalizations of all theorems, lemmas
-- or definitions in the PLDI paper. Good if you want to read
-- the paper and the Agda code side by side.
--
-- Here is an import of this file, so you can jump to it
-- directly (use M-. in Emacs or click the module name in the
-- Browser):
import PLDI14-List-of-Theorems
-- Everything.agda
-- Imports every Agda module in our formalization. Good if you
-- want to make sure you don't miss anything.
--
-- Again, here's is an import of this file so you can navigate
-- there:
import Everything
-- (This import is also important to ensure that if we typecheck
-- README.agda, we also typecheck every other file of our
-- formalization).
-- THE AGDA CODE
-- =============
--
-- The formalization has four parts:
--
-- 1. A formalization of change structures. This lives in
-- Base.Change.Algebra. (What we call "change structure" in the
-- paper, we call "change algebra" in the Agda code. We changed
-- the name when writing the paper, and never got around to
-- updating the name in the Agda code).
--
-- 2. Incrementalization framework for first-class functions,
-- with extension points for plugging in data types and their
-- incrementalization. This lives in the Parametric.*
-- hierarchy.
--
-- 3. An example plugin that provides integers and bags
-- with negative multiplicity. This lives in the Nehemiah.*
-- hierarchy. (For some reason, we choose to call this
-- particular incarnation of the plugin Nehemiah).
--
-- 4. Other material that is unrelated to the framework/plugin
-- distinction. This is all other files.
-- FORMALIZATION OF CHANGE STRUCTURES
-- ==================================
--
-- Section 2 of the paper, and Base.Change.Algebra in Agda.
import Base.Change.Algebra
-- INCREMENTALIZATION FRAMEWORK
-- ============================
--
-- Section 3 of the paper, and Parametric.* hierarchy in Agda.
--
-- The extension points are implemented as module parameters. See
-- detailed explanation in Parametric.Syntax.Type and
-- Parametric.Syntax.Term. Some extension points are for types,
-- some for values, and some for proof fragments. In Agda, these
-- three kinds of entities are unified anyway, so we can encode
-- all of them as module parameters.
--
-- Every module in the Parametric.* hierarchy adds at least one
-- extension point, so the module hierarchy of a plugin will
-- typically mirror the Parametric.* hierarchy, defining the
-- values for these extension points.
--
-- Firstly, we have the syntax of types and terms, the erased
-- change structure for function types and incrementalization as
-- a term-to-term transformation. The contents of these modules
-- formalizes Sec. 3.1 and 3.2 of the paper, except for the
-- second and third line of Figure 3, which is formalized further
-- below.
import Parametric.Syntax.Type -- syntax of types
import Parametric.Syntax.Term -- syntax of terms
import Parametric.Change.Type -- simply-typed changes
import Parametric.Change.Derive -- incrementalization
-- Secondly, we define the usual denotational semantics of the
-- simply-typed lambda calculus in terms of total functions, and
-- the change semantics in terms of a change structure on total
-- functions. The contents of these modules formalize Sec. 3.3,
-- 3.4 and 3.5 of the paper.
import Parametric.Denotation.Value -- standard values
import Parametric.Denotation.Evaluation -- standard evaluation
import Parametric.Change.Validity -- dependently-typed changes
import Parametric.Change.Specification -- change evaluation
-- Thirdly, we define terms that operate on simply-typed changes,
-- and connect them to their values. The concents of these
-- modules formalize the second and third line of Figure 3, as
-- well as the semantics of these lines.
import Parametric.Change.Term -- terms that operate on simply-typed changes
import Parametric.Change.Value -- the values of these terms
import Parametric.Change.Evaluation -- connecting the terms and their values
-- Finally, we prove correctness by connecting the (syntactic)
-- incrementalization to the (semantic) change evaluation by a
-- logical relation, and a proof that the values of terms
-- produced by the incrementalization transformation are related
-- to the change values of the original terms. The contents of
-- these modules formalize Sec. 3.6.
import Parametric.Change.Implementation -- logical relation
import Parametric.Change.Correctness -- main correctness proof
-- EXAMPLE PLUGIN
-- ==============
--
-- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda.
--
-- The module structure of the plugin follows the structure of
-- the Parametric.* hierarchy. For example, the extension point
-- defined in Parametric.Syntax.Term is instantiated in
-- Nehemiah.Syntax.Term.
--
-- As discussed in Sec. 3.7 of the paper, the point of this
-- plugin is not to speed up any real programs, but to show "that
-- the interface for proof plugins can be implemented". As a
-- first step towards proving correctness of the more complicated
-- plugin with integers, bags and finite maps we implement in
-- Scala, we choose to define plugin with integers and bags in
-- Agda. Instead of implementing bags (with negative
-- multiplicities, like in the paper) in Agda, though, we
-- postulate that a group of such bags exist. Note that integer
-- bags with integer multiplicities are actually the free group
-- given a singleton operation `Integer -> Bag`, so this should
-- be easy to formalize in principle.
-- Before we start with the plugin, we postulate an abstract data
-- type for integer bags.
import Postulate.Bag-Nehemiah
-- Firstly, we extend the syntax of types and terms, the erased
-- change structure for function types, and incrementalization as
-- a term-to-term transformation to account for the data types of
-- the Nehemiah language. The contents of these modules
-- instantiate the extension points in Sec. 3.1 and 3.2 of the
-- paper, except for the second and third line of Figure 3, which
-- is instantiated further below.
import Nehemiah.Syntax.Type
import Nehemiah.Syntax.Term
import Nehemiah.Change.Type
import Nehemiah.Change.Derive
-- Secondly, we extend the usual denotational semantics and the
-- change semantics to account for the data types of the Nehemiah
-- language. The contents of these modules instantiate the
-- extension points in Sec. 3.3, 3.4 and 3.5 of the paper.
import Nehemiah.Denotation.Value
import Nehemiah.Denotation.Evaluation
import Nehemiah.Change.Validity
import Nehemiah.Change.Specification
-- Thirdly, we extend the terms that operate on simply-typed
-- changes, and the connection to their values to account for the
-- data types of the Nehemiah language. The concents of these
-- modules instantiate the extension points in the second and
-- third line of Figure 3.
import Nehemiah.Change.Term
import Nehemiah.Change.Value
import Nehemiah.Change.Evaluation
-- Finally, we extend the logical relation and the main
-- correctness proof to account for the data types in the
-- Nehemiah language. The contents of these modules instantiate
-- the extension points defined in Sec. 3.6.
import Nehemiah.Change.Implementation
import Nehemiah.Change.Correctness
-- OTHER MATERIAL
-- ==============
--
-- We postulate extensionality of Agda functions. This postulate
-- is well known to be compatible with Agda's type theory.
import Postulate.Extensionality
-- For historical reasons, we reexport Data.List.All from the
-- standard library under the name DependentList.
import Base.Data.DependentList
-- This module supports overloading the ⟦_⟧ notation based on
-- Agda's instance arguments.
import Base.Denotation.Notation
-- These modules implement contexts including typed de Bruijn
-- indices to represent bound variables, sets of bound variables,
-- and environments. These modules are parametric in the set of
-- types (that are stored in contexts) and the set of values
-- (that are stored in environments). So these modules are even
-- more parametric than the Parametric.* hierarchy.
import Base.Syntax.Context
import Base.Syntax.Vars
import Base.Denotation.Environment
-- This module contains some helper definitions to merge a
-- context of values and a context of changes.
import Base.Change.Context
|
Update recommended version of Agda
|
README.agda: Update recommended version of Agda
Rationale: 2.4.0 doesn't install any more.
|
Agda
|
mit
|
inc-lc/ilc-agda
|
464a985aa70ecceb7a7917d62fc7cb3e05dd59c2
|
models/Desc.agda
|
models/Desc.agda
|
{-# OPTIONS --type-in-type
--no-termination-check
--no-positivity-check #-}
module Desc where
--********************************************
-- Prelude
--********************************************
-- Some preliminary stuffs, to avoid relying on the stdlib
--****************
-- Sigma and friends
--****************
data Sigma (A : Set) (B : A -> Set) : Set where
_,_ : (x : A) (y : B x) -> Sigma A B
_*_ : (A B : Set) -> Set
A * B = Sigma A \_ -> B
fst : {A : Set}{B : A -> Set} -> Sigma A B -> A
fst (a , _) = a
snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p)
snd (a , b) = b
data Zero : Set where
record One : Set where
--****************
-- Sum and friends
--****************
data _+_ (A B : Set) : Set where
l : A -> A + B
r : B -> A + B
--********************************************
-- Desc code
--********************************************
-- Inductive types are implemented as a Universe. Hence, in this
-- section, we implement their code.
-- We can read this code as follow (see Conor's "Ornamental
-- algebras"): a description in |Desc| is a program to read one node
-- of the described tree.
data Desc : Set where
Arg : (X : Set) -> (X -> Desc) -> Desc
-- Read a field in |X|; continue, given its value
-- Often, |X| is an |EnumT|, hence allowing to choose a constructor
-- among a finite set of constructors
Ind : (H : Set) -> Desc -> Desc
-- Read a field in H; read a recursive subnode given the field,
-- continue regarless of the subnode
-- Often, |H| is |1|, hence |Ind| simplifies to |Inf : Desc -> Desc|,
-- meaning: read a recursive subnode and continue regardless
Done : Desc
-- Stop reading
--********************************************
-- Desc decoder
--********************************************
-- Provided the type of the recursive subnodes |R|, we decode a
-- description as a record describing the node.
[|_|]_ : Desc -> Set -> Set
[| Arg A D |] R = Sigma A (\ a -> [| D a |] R)
[| Ind H D |] R = (H -> R) * [| D |] R
[| Done |] R = One
--********************************************
-- Functions on codes
--********************************************
-- Saying that a "predicate" |p| holds everywhere in |v| amounts to
-- write something of the following type:
Everywhere : (d : Desc) (D : Set) (bp : D -> Set) (V : [| d |] D) -> Set
Everywhere (Arg A f) d p v = Everywhere (f (fst v)) d p (snd v)
-- It must hold for this constructor
Everywhere (Ind H x) d p v = ((y : H) -> p (fst v y)) * Everywhere x d p (snd v)
-- It must hold for the subtrees
Everywhere Done _ _ _ = _
-- It trivially holds at endpoints
-- Then, we can build terms that inhabits this type. That is, a
-- function that takes a "predicate" |bp| and makes it hold everywhere
-- in the data-structure. It is the equivalent of a "map", but in a
-- dependently-typed setting.
everywhere : (d : Desc) (D : Set) (bp : D -> Set) ->
((y : D) -> bp y) -> (v : [| d |] D) ->
Everywhere d D bp v
everywhere (Arg a f) d bp p v = everywhere (f (fst v)) d bp p (snd v)
-- It holds everywhere on this constructor
everywhere (Ind H x) d bp p v = (\y -> p (fst v y)) , everywhere x d bp p (snd v)
-- It holds here, and down in the recursive subtrees
everywhere Done _ _ _ _ = One
-- Nothing needs to be done on endpoints
-- Looking at the decoder, a natural thing to do is to define its
-- fixpoint |Mu D|, hence instantiating |R| with |Mu D| itself.
data Mu (D : Desc) : Set where
Con : [| D |] (Mu D) -> Mu D
-- Using the "map" defined by |everywhere|, we can implement a "fold"
-- over the |Mu| fixpoint:
foldDesc : (D : Desc) (bp : Mu D -> Set) ->
((x : [| D |] (Mu D)) -> Everywhere D (Mu D) bp x -> bp (Con x)) ->
(v : Mu D) ->
bp v
foldDesc D bp p (Con v) = p v (everywhere D (Mu D) bp (\x -> foldDesc D bp p x) v)
--********************************************
-- Nat
--********************************************
data NatConst : Set where
ZE : NatConst
SU : NatConst
natc : NatConst -> Desc
natc ZE = Done
natc SU = Ind One Done
natd : Desc
natd = Arg NatConst natc
nat : Set
nat = Mu natd
zero : nat
zero = Con ( ZE , _ )
suc : nat -> nat
suc n = Con ( SU , ( (\_ -> n) , _ ) )
two : nat
two = suc (suc zero)
four : nat
four = suc (suc (suc (suc zero)))
sum : nat ->
((x : Sigma NatConst (\ a -> [| natc a |] Mu (Arg NatConst natc))) ->
Everywhere (natc (fst x)) (Mu (Arg NatConst natc)) (\ _ -> Mu (Arg NatConst natc)) (snd x) ->
Mu (Arg NatConst natc))
sum n2 (ZE , _) p = n2
sum n2 (SU , f) p = suc ( fst p _)
plus : nat -> nat -> nat
plus n1 n2 = foldDesc natd (\_ -> nat) (sum n2) n1
x : nat
x = plus two two
|
{-# OPTIONS --type-in-type #-}
module Desc where
--********************************************
-- Prelude
--********************************************
-- Some preliminary stuffs, to avoid relying on the stdlib
--****************
-- Sigma and friends
--****************
data Sigma (A : Set) (B : A -> Set) : Set where
_,_ : (x : A) (y : B x) -> Sigma A B
_*_ : (A : Set)(B : Set) -> Set
A * B = Sigma A \_ -> B
fst : {A : Set}{B : A -> Set} -> Sigma A B -> A
fst (a , _) = a
snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p)
snd (a , b) = b
data Zero : Set where
data Unit : Set where
Void : Unit
--****************
-- Sum and friends
--****************
data _+_ (A : Set)(B : Set) : Set where
l : A -> A + B
r : B -> A + B
--****************
-- Equality
--****************
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
cong f refl = refl
cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} ->
x == y -> z == t -> f x z == f y t
cong2 f refl refl = refl
postulate
reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g
--********************************************
-- Desc code
--********************************************
data Desc : Set where
id : Desc
const : Set -> Desc
prod : Desc -> Desc -> Desc
sigma : (S : Set) -> (S -> Desc) -> Desc
pi : (S : Set) -> (S -> Desc) -> Desc
--********************************************
-- Desc interpretation
--********************************************
[|_|]_ : Desc -> Set -> Set
[| id |] Z = Z
[| const X |] Z = X
[| prod D D' |] Z = [| D |] Z * [| D' |] Z
[| sigma S T |] Z = Sigma S (\s -> [| T s |] Z)
[| pi S T |] Z = (s : S) -> [| T s |] Z
--********************************************
-- Fixpoint construction
--********************************************
data Mu (D : Desc) : Set where
con : [| D |] (Mu D) -> Mu D
--********************************************
-- Predicate: All
--********************************************
All : (D : Desc)(X : Set)(P : X -> Set) -> [| D |] X -> Set
All id X P x = P x
All (const Z) X P x = Z
All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d')
All (sigma S T) X P (a , b) = All (T a) X P b
All (pi S T) X P f = (s : S) -> All (T s) X P (f s)
all : (D : Desc)(X : Set)(P : X -> Set)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x
all id X P R x = R x
all (const Z) X P R z = z
all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d'
all (sigma S T) X P R (a , b) = all (T a) X P R b
all (pi S T) X P R f = \ s -> all (T s) X P R (f s)
--********************************************
-- Elimination principle: induction
--********************************************
{-
induction : (D : Desc)
(P : Mu D -> Set) ->
( (x : [| D |] (Mu D)) ->
All D (Mu D) P x -> P (con x)) ->
(v : Mu D) ->
P v
induction D P ms (con xs) = ms xs (all D (Mu D) P (\x -> induction D P ms x) xs)
-}
module Elim (D : Desc)
(P : Mu D -> Set)
(ms : (x : [| D |] (Mu D)) ->
All D (Mu D) P x -> P (con x))
where
mutual
induction : (x : Mu D) -> P x
induction (con xs) = ms xs (hyps D xs)
hyps : (D' : Desc)
(xs : [| D' |] (Mu D)) ->
All D' (Mu D) P xs
hyps id x = induction x
hyps (const Z) z = z
hyps (prod D D') (d , d') = hyps D d , hyps D' d'
hyps (sigma S T) (a , b) = hyps (T a) b
hyps (pi S T) f = \s -> hyps (T s) (f s)
induction : (D : Desc)
(P : Mu D -> Set) ->
( (x : [| D |] (Mu D)) ->
All D (Mu D) P x -> P (con x)) ->
(v : Mu D) ->
P v
induction D P ms x = Elim.induction D P ms x
--********************************************
-- Examples
--********************************************
--****************
-- Nat
--****************
data NatConst : Set where
Ze : NatConst
Suc : NatConst
natCases : NatConst -> Desc
natCases Ze = const Unit
natCases Suc = id
NatD : Desc
NatD = sigma NatConst natCases
Nat : Set
Nat = Mu NatD
ze : Nat
ze = con (Ze , Void)
suc : Nat -> Nat
suc n = con (Suc , n)
--****************
-- List
--****************
data ListConst : Set where
Nil : ListConst
Cons : ListConst
listCases : Set -> ListConst -> Desc
listCases X Nil = const Unit
listCases X Cons = sigma X (\_ -> id)
ListD : Set -> Desc
ListD X = sigma ListConst (listCases X)
List : Set -> Set
List X = Mu (ListD X)
nil : {X : Set} -> List X
nil = con ( Nil , Void )
cons : {X : Set} -> X -> List X -> List X
cons x t = con ( Cons , ( x , t ))
--****************
-- Tree
--****************
data TreeConst : Set where
Leaf : TreeConst
Node : TreeConst
treeCases : Set -> TreeConst -> Desc
treeCases X Leaf = const Unit
treeCases X Node = sigma X (\_ -> prod id id)
TreeD : Set -> Desc
TreeD X = sigma TreeConst (treeCases X)
Tree : Set -> Set
Tree X = Mu (TreeD X)
leaf : {X : Set} -> Tree X
leaf = con (Leaf , Void)
node : {X : Set} -> X -> Tree X -> Tree X -> Tree X
node x le ri = con (Node , (x , (le , ri)))
--********************************************
-- Finite sets
--********************************************
EnumU : Set
EnumU = Nat
nilE : EnumU
nilE = ze
consE : EnumU -> EnumU
consE e = suc e
{-
data EnumU : Set where
nilE : EnumU
consE : EnumU -> EnumU
-}
data EnumT : (e : EnumU) -> Set where
EZe : {e : EnumU} -> EnumT (consE e)
ESu : {e : EnumU} -> EnumT e -> EnumT (consE e)
casesSpi : (xs : [| NatD |] Nat) ->
All NatD Nat (\e -> (P' : EnumT e -> Set) -> Set) xs ->
(P' : EnumT (con xs) -> Set) -> Set
casesSpi (Ze , Void) hs P' = Unit
casesSpi (Suc , n) hs P' = P' EZe * hs (\e -> P' (ESu e))
spi : (e : EnumU)(P : EnumT e -> Set) -> Set
spi e P = induction NatD (\e -> (P : EnumT e -> Set) -> Set) casesSpi e P
{-
spi : (e : EnumU)(P : EnumT e -> Set) -> Set
spi nilE P = Unit
spi (consE e) P = P EZe * spi e (\e -> P (ESu e))
-}
casesSwitch : (xs : [| NatD |] Nat) ->
All NatD Nat (\e -> (P' : EnumT e -> Set)(b' : spi e P')(x' : EnumT e) -> P' x') xs ->
(P' : EnumT (con xs) -> Set)(b' : spi (con xs) P')(x' : EnumT (con xs)) -> P' x'
casesSwitch (Ze , Void) hs P' b' ()
casesSwitch (Suc , n) hs P' b' EZe = fst b'
casesSwitch (Suc , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e'
switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x
switch e P b x = induction NatD (\e -> (P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x) casesSwitch e P b x
{-
switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x
switch nilE P b ()
switch (consE e) P b EZe = fst b
switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n
-}
--********************************************
-- Tagged description
--********************************************
TagDesc : Set
TagDesc = Sigma EnumU (\e -> spi e (\_ -> Desc))
toDesc : TagDesc -> Desc
toDesc (B , F) = sigma (EnumT B) (\e -> switch B (\_ -> Desc) F e)
--********************************************
-- Catamorphism
--********************************************
cata : (D : Desc)
(T : Set) ->
([| D |] T -> T) ->
(Mu D) -> T
cata D T phi x = induction D (\_ -> T) (\x ms -> phi (replace D T x ms )) x
where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T
replace id T x y = y
replace (const Z) T z z' = z'
replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y'
replace (sigma A B) T (a , b) t = a , replace (B a) T b t
replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s)
--********************************************
-- Free monad construction
--********************************************
_**_ : TagDesc -> (X : Set) -> TagDesc
(e , D) ** X = consE e , (const X , D)
--********************************************
-- Substitution
--********************************************
apply : (D : TagDesc)(X Y : Set) ->
(X -> Mu (toDesc (D ** Y))) ->
[| toDesc (D ** X) |] (Mu (toDesc (D ** Y))) ->
Mu (toDesc (D ** Y))
apply (E , B) X Y sig (EZe , x) = sig x
apply (E , B) X Y sig (ESu n , t) = con (ESu n , t)
subst : (D : TagDesc)(X Y : Set) ->
Mu (toDesc (D ** X)) ->
(X -> Mu (toDesc (D ** Y))) ->
Mu (toDesc (D ** Y))
subst D X Y x sig = cata (toDesc (D ** X)) (Mu (toDesc (D ** Y))) (apply D X Y sig) x
|
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
|
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
|
Agda
|
mit
|
kwangkim/pigment,kwangkim/pigment,brixen/Epigram,kwangkim/pigment
|
7f1a4e72fc0081b46fe06904e4627bb80b3240ac
|
proposal/examples/TacticsMatchingFunctionCalls.agda
|
proposal/examples/TacticsMatchingFunctionCalls.agda
|
{-
This file demonstrates a technique that simulates the ability to
pattern match against function calls rather than just variables
or constructors.
This technique is necessary to write certain kinds of tactics
as generic functions.
-}
module TacticsMatchingFunctionCalls where
open import Data.Bool hiding ( _≟_ )
open import Data.Nat
open import Data.Fin hiding ( _+_ )
open import Data.Product hiding ( map )
open import Data.List
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Function
----------------------------------------------------------------------
{-
Zero is the right identity of addition on the natural numbers.
-}
plusrident : (n : ℕ) → n ≡ n + 0
plusrident zero = refl
plusrident (suc n) = cong suc (plusrident n)
----------------------------------------------------------------------
{-
Arith is a universe of codes representing the natural numbers
along with a limited set of functions over them. We would like to write
tactics that pattern match against types indexed by applications of
these functions.
-}
data Arith : Set where
`zero : Arith
`suc : (a : Arith) → Arith
_`+_ _`*_ : (a₁ a₂ : Arith) → Arith
eval : Arith → ℕ
eval `zero = zero
eval (`suc a) = suc (eval a)
eval (a₁ `+ a₂) = eval a₁ + eval a₂
eval (a₁ `* a₂) = eval a₁ * eval a₂
----------------------------------------------------------------------
{-
Φ (standing for *function*-indexed types)
represents an indexed type, but we *can* pattern
match on function calls in its index position.
A - The type of codes, including constructors and functions.
i.e. Arith
A′ - The model underlying the codes.
i.e. ℕ
el - The evaluation function from code values to model values.
i.e. eval
B - The genuine indexed datatype that Φ represents.
i.e. Fin
a - The index value as a code, which may be a function call and hence supports
pattern matching.
i.e. (a `+ `zero)
-}
data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where
φ : (b : B (el a)) → Φ A A′ el B a
----------------------------------------------------------------------
{-
Alternatively, we can specialize Φ to our Arith universe. This may be
a good use of our ability to cheaply define new datatypes via Desc.
-}
data ΦArith (B : ℕ → Set) (a : Arith) : Set where
φ : (b : B (eval a)) → ΦArith B a
----------------------------------------------------------------------
{-
Going further, we could even specialize B in ΦArith to Fin.
-}
data Fin₂ (a : Arith) : Set where
fin : (i : Fin (eval a)) → Fin₂ a
----------------------------------------------------------------------
{-
A small universe of dependent types that is sufficient for the
examples given below.
-}
data Type : Set
⟦_⟧ : Type → Set
data Type where
`Bool `ℕ `Arith : Type
`Fin : (n : ℕ) → Type
`Φ : (A A′ : Type)
(el : ⟦ A ⟧ → ⟦ A′ ⟧)
(B : ⟦ A′ ⟧ → Type)
(a : ⟦ A ⟧)
→ Type
`ΦArith : (B : ℕ → Type) (a : Arith) → Type
`Fin₂ : (a : Arith) → Type
`Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type
`Id : (A : Type) (x y : ⟦ A ⟧) → Type
⟦ `Bool ⟧ = Bool
⟦ `ℕ ⟧ = ℕ
⟦ `Arith ⟧ = Arith
⟦ `Fin n ⟧ = Fin n
⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a
⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a
⟦ `Fin₂ a ⟧ = Fin₂ a
⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧
⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧)
⟦ `Id A x y ⟧ = x ≡ y
_`→_ : (A B : Type) → Type
A `→ B = `Π A (const B)
_`×_ : (A B : Type) → Type
A `× B = `Σ A (const B)
----------------------------------------------------------------------
{-
Tactics are represented as generic functions taking a Dynamic value (of
any type), and returning a Dynamic value (at a possibly different type).
The convention is to behave like the identity function if the tactic
doesn't match the current value or fails.
In practice, the context will be a List of Dynamic values, and a tactic
will map a Context to a Context. For simplicity, the tactics I give below
only map a Dynamic to a Dynamic.
-}
Dynamic : Set
Dynamic = Σ Type ⟦_⟧
Tactic : Set
Tactic = Dynamic → Dynamic
----------------------------------------------------------------------
{-
Here is an example of a tactic that only needs to pattern match on a
variable or constructor, but not a function. We don't encounter
any problems when writing this kind of a tactic.
The tactic below changes a `Fin n` value into a `Fin (n + 0)` value.
-}
add-plus0-Fin : Tactic
add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i
add-plus0-Fin x = x
----------------------------------------------------------------------
{-
In contrast, it is not straightforward to write tactics that need
to pattern match on function calls.
For example, below is ideally what we want to write to change
a value of `Fin (n + 0)` to a value of `Fin n`.
-}
-- rm-plus0-Fin : Tactic
-- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i
-- rm-plus0-Fin x = x
----------------------------------------------------------------------
{-
Instead of matching directly on `Fin, we can match on a `Φ that
represents `Fin. This allows us to match on the the `+ function call
in the index position.
Because we cannot match against the function `el` (we would like to match
it against `eval`), we add to our return type that proves the
extentional equality between `el` and `eval`.
Also note that the tactic below can be used for any type indexed by
ℕ, not just Fin.
-}
rm-plus0 : Tactic
rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) =
`Π `Arith (λ x → `Id `ℕ (el x) (eval x))
`→
`Φ `Arith `ℕ el B a
,
λ f → φ
(subst (λ x → ⟦ B x ⟧)
(sym (f a))
(subst (λ x → ⟦ B x ⟧)
(sym (plusrident (eval a)))
(subst (λ x → ⟦ B x ⟧)
(f (a `+ `zero))
b)))
rm-plus0 x = x
----------------------------------------------------------------------
{-
Now it is possible to apply the generic tactic to a specific
value and have the desired behavior occur. Notice that the generated
extentional equality premise is trivially provable because
eval is always equal to eval.
-}
eg-rm-plus0 : (a : Arith)
→ ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧
→ ⟦ `Φ `Arith `ℕ eval `Fin a ⟧
eg-rm-plus0 a (φ i) = proj₂
(rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i))
(λ _ → refl)
----------------------------------------------------------------------
{-
Here is the same tactic but using the specialized ΦArith type.
-}
rm-plus0-Arith : Tactic
rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) =
`ΦArith B a
,
φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i)
rm-plus0-Arith x = x
----------------------------------------------------------------------
{-
And the same example usage, this time without needing to prove a premise.
-}
eg-rm-plus0-Arith : (a : Arith)
→ ⟦ `ΦArith `Fin (a `+ `zero) ⟧
→ ⟦ `ΦArith `Fin a ⟧
eg-rm-plus0-Arith a (φ i) = proj₂
(rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i))
----------------------------------------------------------------------
{-
Finally, here is the same tactic but using the even more
specialized Fin₂ type.
-}
rm-plus0-Fin : Tactic
rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i) =
`Fin₂ a
,
fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i)
rm-plus0-Fin x = x
----------------------------------------------------------------------
eg-rm-plus0-Fin : (a : Arith)
→ ⟦ `Fin₂ (a `+ `zero) ⟧
→ ⟦ `Fin₂ a ⟧
eg-rm-plus0-Fin a (fin i) = proj₂
(rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i))
----------------------------------------------------------------------
|
{-
This file demonstrates a technique that simulates the ability to
pattern match against function calls rather than just variables
or constructors.
This technique is necessary to write certain kinds of tactics
as generic functions.
-}
module TacticsMatchingFunctionCalls where
open import Data.Bool hiding ( _≟_ )
open import Data.Nat
open import Data.Fin hiding ( _+_ )
open import Data.Product hiding ( map )
open import Data.List
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Function
----------------------------------------------------------------------
{-
Zero is the right identity of addition on the natural numbers.
-}
plusrident : (n : ℕ) → n ≡ n + 0
plusrident zero = refl
plusrident (suc n) = cong suc (plusrident n)
----------------------------------------------------------------------
{-
Arith is a universe of codes representing the natural numbers
along with a limited set of functions over them. We would like to write
tactics that pattern match against types indexed by applications of
these functions.
-}
data Arith : Set where
`zero : Arith
`suc : (a : Arith) → Arith
_`+_ _`*_ : (a₁ a₂ : Arith) → Arith
eval : Arith → ℕ
eval `zero = zero
eval (`suc a) = suc (eval a)
eval (a₁ `+ a₂) = eval a₁ + eval a₂
eval (a₁ `* a₂) = eval a₁ * eval a₂
----------------------------------------------------------------------
{-
Φ (standing for *function*-indexed types)
represents an indexed type, but we *can* pattern
match on function calls in its index position.
A - The type of codes, including constructors and functions.
i.e. Arith
A′ - The model underlying the codes.
i.e. ℕ
el - The evaluation function from code values to model values.
i.e. eval
B - The genuine indexed datatype that Φ represents.
i.e. Fin
a - The index value as a code, which may be a function call and hence supports
pattern matching.
i.e. (a `+ `zero)
-}
data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where
φ : (b : B (el a)) → Φ A A′ el B a
----------------------------------------------------------------------
{-
Alternatively, we can specialize Φ to our Arith universe. This may be
a good use of our ability to cheaply define new datatypes via Desc.
-}
data ΦArith (B : ℕ → Set) (a : Arith) : Set where
φ : (b : B (eval a)) → ΦArith B a
----------------------------------------------------------------------
{-
Going further, we could even specialize B in ΦArith to Fin.
-}
data Fin₂ (a : Arith) : Set where
fin : (i : Fin (eval a)) → Fin₂ a
----------------------------------------------------------------------
{-
A small universe of dependent types that is sufficient for the
examples given below.
-}
data Type : Set
⟦_⟧ : Type → Set
data Type where
`Bool `ℕ `Arith : Type
`Fin : (n : ℕ) → Type
`Φ : (A A′ : Type)
(el : ⟦ A ⟧ → ⟦ A′ ⟧)
(B : ⟦ A′ ⟧ → Type)
(a : ⟦ A ⟧)
→ Type
`ΦArith : (B : ℕ → Type) (a : Arith) → Type
`Fin₂ : (a : Arith) → Type
`Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type
`Id : (A : Type) (x y : ⟦ A ⟧) → Type
⟦ `Bool ⟧ = Bool
⟦ `ℕ ⟧ = ℕ
⟦ `Arith ⟧ = Arith
⟦ `Fin n ⟧ = Fin n
⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a
⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a
⟦ `Fin₂ a ⟧ = Fin₂ a
⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧
⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧)
⟦ `Id A x y ⟧ = x ≡ y
_`→_ : (A B : Type) → Type
A `→ B = `Π A (const B)
_`×_ : (A B : Type) → Type
A `× B = `Σ A (const B)
----------------------------------------------------------------------
{-
Tactics are represented as generic functions taking a Dynamic value (of
any type), and returning a Dynamic value (at a possibly different type).
The convention is to behave like the identity function if the tactic
doesn't match the current value or fails.
In practice, the context will be a List of Dynamic values, and a tactic
will map a Context to a Context. For simplicity, the tactics I give below
only map a Dynamic to a Dynamic.
-}
Dynamic : Set
Dynamic = Σ Type ⟦_⟧
Tactic : Set
Tactic = Dynamic → Dynamic
----------------------------------------------------------------------
{-
Here is an example of a tactic that only needs to pattern match on a
variable or constructor, but not a function. We don't encounter
any problems when writing this kind of a tactic.
The tactic below changes a `Fin n` value into a `Fin (n + 0)` value.
-}
add-plus0-Fin : Tactic
add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i
add-plus0-Fin x = x
----------------------------------------------------------------------
{-
In contrast, it is not straightforward to write tactics that need
to pattern match on function calls.
For example, below is ideally what we want to write to change
a value of `Fin (n + 0)` to a value of `Fin n`.
-}
-- rm-plus0-Fin : Tactic
-- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i
-- rm-plus0-Fin x = x
----------------------------------------------------------------------
{-
Instead of matching directly on `Fin, we can match on a `Φ that
represents `Fin. This allows us to match on the the `+ function call
in the index position.
Because we cannot match against the function `el` (we would like to match
it against `eval`), we add to our return type that proves the
extentional equality between `el` and `eval`.
Also note that the tactic below can be used for any type indexed by
ℕ, not just Fin.
-}
rm-plus0 : Tactic
rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) =
`Π `Arith (λ x → `Id `ℕ (el x) (eval x))
`→
`Φ `Arith `ℕ el B a
,
λ f → φ
(subst (λ x → ⟦ B x ⟧)
(sym (f a))
(subst (λ x → ⟦ B x ⟧)
(sym (plusrident (eval a)))
(subst (λ x → ⟦ B x ⟧)
(f (a `+ `zero))
b)))
rm-plus0 x = x
----------------------------------------------------------------------
{-
Now it is possible to apply the generic tactic to a specific
value and have the desired behavior occur. Notice that the generated
extentional equality premise is trivially provable because
eval is always equal to eval.
-}
eg-rm-plus0 : (a : Arith)
→ ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧
→ ⟦ `Φ `Arith `ℕ eval `Fin a ⟧
eg-rm-plus0 a (φ i) = proj₂
(rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i))
(λ _ → refl)
----------------------------------------------------------------------
{-
Here is the same tactic but using the specialized ΦArith type.
-}
rm-plus0-Arith : Tactic
rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) =
`ΦArith B a
,
φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i)
rm-plus0-Arith x = x
----------------------------------------------------------------------
{-
And the same example usage, this time without needing to prove a premise.
-}
eg-rm-plus0-Arith : (a : Arith)
→ ⟦ `ΦArith `Fin (a `+ `zero) ⟧
→ ⟦ `ΦArith `Fin a ⟧
eg-rm-plus0-Arith a (φ i) = proj₂
(rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i))
----------------------------------------------------------------------
{-
Finally, here is the same tactic but using the even more
specialized Fin₂ type.
-}
rm-plus0-Fin : Tactic
rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i) =
`Fin₂ a
,
fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i)
rm-plus0-Fin x = x
----------------------------------------------------------------------
eg-rm-plus0-Fin : (a : Arith)
→ ⟦ `Fin₂ (a `+ `zero) ⟧
→ ⟦ `Fin₂ a ⟧
eg-rm-plus0-Fin a (fin i) = proj₂
(rm-plus0-Fin (`Fin₂ (a `+ `zero) , fin i))
----------------------------------------------------------------------
{-
A tactic to simplify by one step of `+.
-}
simp-step-plus0-Fin : Tactic
simp-step-plus0-Fin (`Fin₂ (`zero `+ a) , fin i) =
`Fin₂ a , fin i
simp-step-plus0-Fin (`Fin₂ (`suc a₁ `+ a₂) , fin i) =
`Fin₂ (`suc (a₁ `+ a₂)) , fin i
simp-step-plus0-Fin x = x
----------------------------------------------------------------------
{-
A semantics-preserving definitional evaluator, and a tactic
to simplify as far as possible using definitional equality.
This is like the "simp" tactic in Coq.
-}
eval₂ : (a₁ : Arith) → Σ Arith (λ a₂ → eval a₁ ≡ eval a₂)
eval₂ `zero = `zero , refl
eval₂ (`suc a)
with eval₂ a
... | a′ , p
rewrite p = `suc a′ , refl
eval₂ (`zero `+ a₂) = eval₂ a₂
eval₂ (`suc a₁ `+ a₂)
with eval₂ a₁ | eval₂ a₂
... | a₁′ , p | a₂′ , q
rewrite p | q = `suc (a₁′ `+ a₂′) , refl
eval₂ (a₁ `+ a₂)
with eval₂ a₁ | eval₂ a₂
... | a₁′ , p | a₂′ , q
rewrite p | q = (a₁′ `+ a₂′) , refl
eval₂ (`zero `* a₂) = `zero , refl
eval₂ (`suc a₁ `* a₂)
with eval₂ a₁ | eval₂ a₂
... | a₁′ , p | a₂′ , q
rewrite p | q = a₂′ `+ (a₁′ `* a₂′) , refl
eval₂ (a₁ `* a₂)
with eval₂ a₁ | eval₂ a₂
... | a₁′ , p | a₂′ , q
rewrite p | q = (a₁′ `* a₂′) , refl
simp-Fin : Tactic
simp-Fin (`Fin₂ a , fin i)
with eval₂ a
... | a′ , p rewrite p =
`Fin₂ a′ , fin i
simp-Fin x = x
----------------------------------------------------------------------
|
Add Coq's "simp" tactic.
|
Add Coq's "simp" tactic.
|
Agda
|
bsd-3-clause
|
spire/spire
|
71b3a14edcb512975548e8df67858a30b1f62d68
|
Syntax/Term/Plotkin.agda
|
Syntax/Term/Plotkin.agda
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Denotation.Environment Type
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
TermConstructor : (Γ Σ : Context) (τ : Type) → Set
TermConstructor Γ ∅ τ′ = Term Γ τ′
TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′
-- helper for lift-η-const, don't try to understand at home
lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ
lift-η-const-rec {∅} k = k ∅
lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts))
lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ
lift-η-const constant = lift-η-const-rec (const constant)
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Denotation.Environment Type
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
-- helper for lift-η-const, don't try to understand at home
lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → CurriedTermConstructor Γ Σ τ
lift-η-const-rec {∅} k = k ∅
lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts))
lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
lift-η-const constant = lift-η-const-rec (const constant)
|
Rename TermConstructor to CurriedTermConstructor.
|
Rename TermConstructor to CurriedTermConstructor.
This rename prepares for introducing UncurriedTermConstructor which
will allow to clarify the role of lift-η-const-rec.
Old-commit-hash: b9de3c413f5a2a2015d3114bfb8483ab3078cc06
|
Agda
|
mit
|
inc-lc/ilc-agda
|
6538c1e3a868c0dc095139fc2243a8683b77c995
|
Data/NatBag/Properties.agda
|
Data/NatBag/Properties.agda
|
module Data.NatBag.Properties where
import Data.Nat as ℕ
open import Relation.Binary.PropositionalEquality
open import Data.NatBag
open import Data.Integer
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
-- This import is too slow.
-- It causes Agda 2.3.2 to use so much memory that cai's
-- computer with 4GB RAM begins to thresh.
--
-- open import Data.Integer.Properties using (n⊖n≡0)
n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0
n⊖n≡0 ℕ.zero = refl
n⊖n≡0 (ℕ.suc n) = n⊖n≡0 n
----------------
-- Statements --
----------------
b\\b=∅ : ∀ {b : Bag} → b \\ b ≡ empty
∅++b=b : ∀ {b : Bag} → empty ++ b ≡ b
b\\∅=b : ∀ {b : Bag} → b \\ empty ≡ b
∅\\b=-b : ∀ {b : Bag} → empty \\ b ≡ map₂ -_ b
-- ++d=\\-d : ∀ {b d : Bag} → b ++ d ≡ b \\ map₂ -_ d
b++[d\\b]=d : ∀ {b d : Bag} → b ++ (d \\ b) ≡ d
------------
-- Proofs --
------------
i-i=0 : ∀ {i : ℤ} → (i - i) ≡ (+ 0)
i-i=0 {+ ℕ.zero} = refl
i-i=0 {+ ℕ.suc n} = n⊖n≡0 n
i-i=0 { -[1+ n ]} = n⊖n≡0 n
-- Debug tool
-- Lets you try out inhabitance of any type anywhere
absurd! : ∀ {B C : Set} → 0 ≡ 1 → B → {x : B} → C
absurd! ()
-- Specialized absurdity needed to type check.
-- λ () hasn't enough information sometimes.
absurd : Nonzero (+ 0) → ∀ {A : Set} → A
absurd ()
-- Here to please the termination checker.
neb\\neb=∅ : ∀ {neb : NonemptyBag} → zipNonempty _-_ neb neb ≡ empty
neb\\neb=∅ {singleton i i≠0} with nonzero? (i - i)
... | inj₁ _ = refl
... | inj₂ 0≠0 rewrite i-i=0 {i} = absurd 0≠0
neb\\neb=∅ {i ∷ neb} with nonzero? (i - i)
... | inj₁ _ rewrite neb\\neb=∅ {neb} = refl
... | inj₂ 0≠0 rewrite neb\\neb=∅ {neb} | i-i=0 {i} = absurd 0≠0
{-
++d=\\-d {inj₁ ∅} {inj₁ ∅} = refl
++d=\\-d {inj₁ ∅} {inj₂ (i ∷ y)} = {!!}
++d=\\-d {inj₂ y} {d} = {!!}
++d=\\-d {inj₁ ∅} {inj₂ (singleton i i≠0)}
rewrite ∅++b=b {inj₂ (singleton i i≠0)}
with nonzero? i | nonzero? (+ 0 - i)
... | inj₂ _ | inj₂ 0-i≠0 =
begin
{!!}
≡⟨ {!!} ⟩
{!inj₂ (singleton (- i) ?)!}
∎ where open ≡-Reasoning
... | inj₁ i=0 | _ rewrite i=0 = absurd i≠0
++d=\\-d {inj₁ ∅} {inj₂ (singleton (+ 0) i≠0)} | _ | _ = absurd i≠0
++d=\\-d {inj₁ ∅} {inj₂ (singleton (+ (ℕ.suc n)) i≠0)}
| inj₂ (positive .n) | inj₁ ()
++d=\\-d {inj₁ ∅} {inj₂ (singleton -[1+ n ] i≠0)}
| inj₂ (negative .n) | inj₁ ()
-}
b\\b=∅ {inj₁ ∅} = refl
b\\b=∅ {inj₂ neb} = neb\\neb=∅ {neb}
∅++b=b {b} = {!!}
b\\∅=b {b} = {!!}
∅\\b=-b {b} = {!!}
negate : ∀ {i} → Nonzero i → Nonzero (- i)
negate (negative n) = positive n
negate (positive n) = negative n
negate′ : ∀ {i} → (i≠0 : Nonzero i) → Nonzero (+ 0 - i)
negate′ { -[1+ n ]} (negative .n) = positive n
negate′ {+ .(ℕ.suc n)} (positive n) = negative n
0-i=-i : ∀ {i} → + 0 - i ≡ - i
0-i=-i { -[1+ n ]} = refl -- cases are split, for arguments to
0-i=-i {+ ℕ.zero} = refl -- refl are different.
0-i=-i {+ ℕ.suc n} = refl
rewrite-singleton :
∀ (i : ℤ) (0-i≠0 : Nonzero (+ 0 - i)) ( -i≠0 : Nonzero (- i)) →
singleton (+ 0 - i) 0-i≠0 ≡ singleton (- i) -i≠0
rewrite-singleton (+ ℕ.zero) () ()
rewrite-singleton (+ ℕ.suc n) (negative .n) (negative .n) = refl
rewrite-singleton ( -[1+ n ]) (positive .n) (positive .n) = refl
negateSingleton : ∀ {i i≠0} →
mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0)
≡
inj₂ (singleton (- i) (negate i≠0))
-- Fun fact:
-- Pattern-match on implicit parameters in the first two
-- cases results in rejection by Agda.
negateSingleton {i} {i≠0} with nonzero? i | nonzero? (+ 0 - i)
negateSingleton | inj₂ (negative n) | inj₁ ()
negateSingleton | inj₂ (positive n) | inj₁ ()
negateSingleton {_} {i≠0} | inj₁ i=0 | _ rewrite i=0 = absurd i≠0
negateSingleton {i} {i≠0} | inj₂ _ | inj₂ 0-i≠0 =
begin -- Reasoning done in 1 step. Included for clarity only.
inj₂ (singleton (+ 0 + - i) 0-i≠0)
≡⟨ cong inj₂ (rewrite-singleton i 0-i≠0 (negate i≠0)) ⟩
inj₂ (singleton (- i) (negate i≠0))
∎ where open ≡-Reasoning
absurd[i-i≠0] : ∀ {i} → Nonzero (i - i) → ∀ {A : Set} → A
absurd[i-i≠0] {+ ℕ.zero} = absurd
absurd[i-i≠0] {+ ℕ.suc n} = absurd[i-i≠0] { -[1+ n ]}
absurd[i-i≠0] { -[1+ ℕ.zero ]} = absurd
absurd[i-i≠0] { -[1+ ℕ.suc n ]} = absurd[i-i≠0] { -[1+ n ]}
annihilate : ∀ {i i≠0} →
inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡ inj₁ ∅
annihilate {i} with nonzero? (i - i)
... | inj₁ i-i=0 = λ {i≠0} → refl
... | inj₂ i-i≠0 = absurd[i-i≠0] {i} i-i≠0
{-
left-is-not-right : ∀ {A B : Set} {a : A} {b : B} →
inj₁ a ≡ inj₂ b → ∀ {X : Set} → X
left-is-not-right = λ {A} {B} {a} {b} → λ ()
never-both : ∀ {A B : Set} {sum : A ⊎ B} {a b} →
sum ≡ inj₁ a → sum ≡ inj₂ b → ∀ {X : Set} → X
never-both s=a s=b = left-is-not-right (trans (sym s=a) s=b)
empty-bag? : ∀ (b : Bag) → (b ≡ inj₁ ∅) ⊎ Σ NonemptyBag (λ neb → b ≡ inj₂ neb)
empty-bag? (inj₁ ∅) = inj₁ refl
empty-bag? (inj₂ neb) = inj₂ (neb , refl)
-}
b++[∅\\b]=∅ : ∀ {b} → b ++ (empty \\ b) ≡ empty
b++[∅\\b]=∅ {inj₁ ∅} = refl
b++[∅\\b]=∅ {inj₂ (singleton i i≠0)} =
begin
inj₂ (singleton i i≠0) ++
mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0)
≡⟨ cong₂ _++_ {x = inj₂ (singleton i i≠0)} refl
(negateSingleton {i} {i≠0}) ⟩
inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0))
≡⟨ annihilate {i} {i≠0} ⟩
inj₁ ∅
∎ where open ≡-Reasoning
b++[∅\\b]=∅ {inj₂ (i ∷ y)} = {!!}
b++[d\\b]=d {inj₁ ∅} {d} rewrite b\\∅=b {d} | ∅++b=b {d} = refl
b++[d\\b]=d {b} {inj₁ ∅} = b++[∅\\b]=∅ {b}
b++[d\\b]=d {inj₂ b} {inj₂ d} = {!!}
|
module Data.NatBag.Properties where
import Data.Nat as ℕ
open import Relation.Binary.PropositionalEquality
open import Data.NatBag
open import Data.Integer
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
-- This import is too slow.
-- It causes Agda 2.3.2 to use so much memory that cai's
-- computer with 4GB RAM begins to thresh.
--
-- open import Data.Integer.Properties using (n⊖n≡0)
n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0
n⊖n≡0 ℕ.zero = refl
n⊖n≡0 (ℕ.suc n) = n⊖n≡0 n
----------------
-- Statements --
----------------
b\\b=∅ : ∀ {b : Bag} → b \\ b ≡ empty
∅++b=b : ∀ {b : Bag} → empty ++ b ≡ b
b\\∅=b : ∀ {b : Bag} → b \\ empty ≡ b
∅\\b=-b : ∀ {b : Bag} → empty \\ b ≡ map₂ -_ b
b++[d\\b]=d : ∀ {b d : Bag} → b ++ (d \\ b) ≡ d
------------
-- Proofs --
------------
i-i=0 : ∀ {i : ℤ} → (i - i) ≡ (+ 0)
i-i=0 {+ ℕ.zero} = refl
i-i=0 {+ ℕ.suc n} = n⊖n≡0 n
i-i=0 { -[1+ n ]} = n⊖n≡0 n
-- Debug tool
-- Lets you try out inhabitance of any type anywhere
absurd! : ∀ {B C : Set} → 0 ≡ 1 → B → {x : B} → C
absurd! ()
-- Specialized absurdity needed to type check.
-- λ () hasn't enough information sometimes.
absurd : Nonzero (+ 0) → ∀ {A : Set} → A
absurd ()
-- Here to please the termination checker.
neb\\neb=∅ : ∀ {neb : NonemptyBag} → zipNonempty _-_ neb neb ≡ empty
neb\\neb=∅ {singleton i i≠0} with nonzero? (i - i)
... | inj₁ _ = refl
... | inj₂ 0≠0 rewrite i-i=0 {i} = absurd 0≠0
neb\\neb=∅ {i ∷ neb} with nonzero? (i - i)
... | inj₁ _ rewrite neb\\neb=∅ {neb} = refl
... | inj₂ 0≠0 rewrite neb\\neb=∅ {neb} | i-i=0 {i} = absurd 0≠0
b\\b=∅ {inj₁ ∅} = refl
b\\b=∅ {inj₂ neb} = neb\\neb=∅ {neb}
∅++b=b {b} = {!!}
b\\∅=b {b} = {!!}
∅\\b=-b {b} = {!!}
negate : ∀ {i} → Nonzero i → Nonzero (- i)
negate (negative n) = positive n
negate (positive n) = negative n
negate′ : ∀ {i} → (i≠0 : Nonzero i) → Nonzero (+ 0 - i)
negate′ { -[1+ n ]} (negative .n) = positive n
negate′ {+ .(ℕ.suc n)} (positive n) = negative n
0-i=-i : ∀ {i} → + 0 - i ≡ - i
0-i=-i { -[1+ n ]} = refl -- cases are split, for arguments to
0-i=-i {+ ℕ.zero} = refl -- refl are different.
0-i=-i {+ ℕ.suc n} = refl
rewrite-singleton :
∀ (i : ℤ) (0-i≠0 : Nonzero (+ 0 - i)) ( -i≠0 : Nonzero (- i)) →
singleton (+ 0 - i) 0-i≠0 ≡ singleton (- i) -i≠0
rewrite-singleton (+ ℕ.zero) () ()
rewrite-singleton (+ ℕ.suc n) (negative .n) (negative .n) = refl
rewrite-singleton ( -[1+ n ]) (positive .n) (positive .n) = refl
negateSingleton : ∀ {i i≠0} →
mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0)
≡
inj₂ (singleton (- i) (negate i≠0))
-- Fun fact:
-- Pattern-match on implicit parameters in the first two
-- cases results in rejection by Agda.
negateSingleton {i} {i≠0} with nonzero? i | nonzero? (+ 0 - i)
negateSingleton | inj₂ (negative n) | inj₁ ()
negateSingleton | inj₂ (positive n) | inj₁ ()
negateSingleton {_} {i≠0} | inj₁ i=0 | _ rewrite i=0 = absurd i≠0
negateSingleton {i} {i≠0} | inj₂ _ | inj₂ 0-i≠0 =
begin -- Reasoning done in 1 step. Included for clarity only.
inj₂ (singleton (+ 0 + - i) 0-i≠0)
≡⟨ cong inj₂ (rewrite-singleton i 0-i≠0 (negate i≠0)) ⟩
inj₂ (singleton (- i) (negate i≠0))
∎ where open ≡-Reasoning
absurd[i-i≠0] : ∀ {i} → Nonzero (i - i) → ∀ {A : Set} → A
absurd[i-i≠0] {+ ℕ.zero} = absurd
absurd[i-i≠0] {+ ℕ.suc n} = absurd[i-i≠0] { -[1+ n ]}
absurd[i-i≠0] { -[1+ ℕ.zero ]} = absurd
absurd[i-i≠0] { -[1+ ℕ.suc n ]} = absurd[i-i≠0] { -[1+ n ]}
annihilate : ∀ {i i≠0} →
inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0)) ≡ inj₁ ∅
annihilate {i} with nonzero? (i - i)
... | inj₁ i-i=0 = λ {i≠0} → refl
... | inj₂ i-i≠0 = absurd[i-i≠0] {i} i-i≠0
b++[∅\\b]=∅ : ∀ {b} → b ++ (empty \\ b) ≡ empty
b++[∅\\b]=∅ {inj₁ ∅} = refl
b++[∅\\b]=∅ {inj₂ (singleton i i≠0)} =
begin
inj₂ (singleton i i≠0) ++
mapNonempty₂ (λ j → + 0 - j) (singleton i i≠0)
≡⟨ cong₂ _++_ {x = inj₂ (singleton i i≠0)} refl
(negateSingleton {i} {i≠0}) ⟩
inj₂ (singleton i i≠0) ++ inj₂ (singleton (- i) (negate i≠0))
≡⟨ annihilate {i} {i≠0} ⟩
inj₁ ∅
∎ where open ≡-Reasoning
b++[∅\\b]=∅ {inj₂ (i ∷ y)} = {!!}
b++[d\\b]=d {inj₁ ∅} {d} rewrite b\\∅=b {d} | ∅++b=b {d} = refl
b++[d\\b]=d {b} {inj₁ ∅} = b++[∅\\b]=∅ {b}
b++[d\\b]=d {inj₂ b} {inj₂ d} = {!!}
|
Remove dead code of Data.NatBag.Properties Checkpoint: Recast property proofs using set theoretic methods (#55)
|
Remove dead code of Data.NatBag.Properties
Checkpoint: Recast property proofs using set theoretic methods (#55)
Old-commit-hash: 04b32e5d92152cdab089a25c0d8f9f4c39279fb0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
2971c097d16d13188929ef857808539310db0b8e
|
meaning.agda
|
meaning.agda
|
module meaning where
open import Level
record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where
constructor
meaning
field
{Semantics} : Set ℓ
⟦_⟧ : Syntax → Semantics
open Meaning {{...}} public
|
module meaning where
open import Level
record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where
constructor
meaning
field
{Semantics} : Set ℓ
⟨_⟩⟦_⟧ : Syntax → Semantics
open Meaning {{...}} public
renaming (⟨_⟩⟦_⟧ to ⟦_⟧)
open Meaning public
using (⟨_⟩⟦_⟧)
|
Improve printing of resolved overloading.
|
Improve printing of resolved overloading.
After this change, the semantic brackets will contain the syntactic
thing even if Agda displays explicitly resolved overloaded notation.
Old-commit-hash: c8cbc43ed8e715342e0cc3bccc98e0be2dd23560
|
Agda
|
mit
|
inc-lc/ilc-agda
|
b5190556d5bc58a768c39b9fa871dea8b2d6f0f1
|
Parametric/Change/Term.agda
|
Parametric/Change/Term.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
diff-term {base ι} = diff-base
diff-term {σ ⇒ τ} =
(let
_⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t
in
abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x))
apply-term {base ι} = apply-base
apply-term {σ ⇒ τ} =
(let
_⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t
_⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t
in
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)))
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ diff-term
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ apply-term
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Term
{Base : Set}
(Constant : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
-- Terms that operate on changes
open Type.Structure Base
open Term.Structure Base Constant
open ChangeType.Structure Base ΔBase
open import Data.Product
DiffStructure : Set
DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι))
ApplyStructure : Set
ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)
module Structure
(diff-base : DiffStructure)
(apply-base : ApplyStructure)
where
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
diff-term {base ι} = diff-base
diff-term {σ ⇒ τ} =
(let
_⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t
_⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t
in
abs₄ (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x))
apply-term {base ι} = apply-base
apply-term {σ ⇒ τ} =
(let
_⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t
_⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t
in
abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)))
diff : ∀ {τ Γ} →
Term Γ τ → Term Γ τ →
Term Γ (ΔType τ)
diff = app₂ diff-term
apply : ∀ {τ Γ} →
Term Γ (ΔType τ) → Term Γ τ →
Term Γ τ
apply = app₂ apply-term
|
Fix bug in diff-term.
|
Fix bug in diff-term.
Old-commit-hash: 01ada999b676d2a8a2ab289b3a0c79f1524620e5
|
Agda
|
mit
|
inc-lc/ilc-agda
|
011116b87218eb84d5010b97f93c495b4f090fae
|
incremental.agda
|
incremental.agda
|
module incremental where
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
infixr 5 _⇒_
-- Semantics
Dom⟦_⟧ : Type -> Set
Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Semantics
data Empty : Set where
∅ : Empty
data Bind A B : Set where
_•_ : (v : A) (ρ : B) → Bind A B
Env⟦_⟧ : Context → Set
Env⟦ ∅ ⟧ = Empty
Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- Semantics
lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
lookup⟦ this ⟧ (v • ρ) = v
lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
-- Semantics
eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ)
eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ)
eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ
-- WEAKENING
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₁ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ
-- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
Δ-term {Γ} (app t₁ t₂) = {!!}
Δ-term {Γ} (var x) = {!!}
|
module incremental where
-- SIMPLE TYPES
-- Syntax
data Type : Set where
_⇒_ : (τ₁ τ₂ : Type) → Type
infixr 5 _⇒_
-- Semantics
Dom⟦_⟧ : Type -> Set
Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧
-- TYPING CONTEXTS
-- Syntax
data Context : Set where
∅ : Context
_•_ : (τ : Type) (Γ : Context) → Context
infixr 9 _•_
-- Semantics
data Empty : Set where
∅ : Empty
data Bind A B : Set where
_•_ : (v : A) (ρ : B) → Bind A B
Env⟦_⟧ : Context → Set
Env⟦ ∅ ⟧ = Empty
Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧
-- VARIABLES
-- Syntax
data Var : Context → Type → Set where
this : ∀ {Γ τ} → Var (τ • Γ) τ
that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
-- Semantics
lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
lookup⟦ this ⟧ (v • ρ) = v
lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ
-- TERMS
-- Syntax
data Term : Context → Type → Set where
abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂)
app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂
var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ
-- Semantics
eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧
eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ)
eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ)
eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ
-- WEAKENING
-- Extend a context to a super context
infixr 10 _⋎_
_⋎_ : (Γ₁ Γ₁ : Context) → Context
∅ ⋎ Γ₂ = Γ₂
(τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂
-- Lift a variable to a super context
lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
lift {∅} {∅} x = x
lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x)
lift {τ • Γ₁} {Γ₂} this = this
lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x)
-- Weaken a term to a super context
weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ
weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t)
weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂)
weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x)
-- CHANGE TYPES
Δ-Type : Type → Type
Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂
apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ)
apply {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λf. λx. apply ( df x ) ( f x )
compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ)
compose {τ₁ ⇒ τ₂} =
abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this)))))
-- λdf. λdg. λx. compose ( df x ) ( dg x )
nil : ∀ {τ Γ} → Term Γ (Δ-Type τ)
nil {τ₁ ⇒ τ₂} =
abs nil
-- λx. nil
-- Hey, apply is α-equivalent to compose, what's going on?
-- Oh, and `Δ-Type` is the identity function?
-- CHANGE CONTEXTS
Δ-Context : Context → Context
Δ-Context ∅ = ∅
Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ
-- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES
Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ)
Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t)
Δ-term {Γ} (app t₁ t₂) = {!!}
Δ-term {Γ} (var x) = {!!}
|
Implement nil changes.
|
Implement nil changes.
Old-commit-hash: da546d60ec48fe5f6f8b261aac1fdbb71b18fa69
|
Agda
|
mit
|
inc-lc/ilc-agda
|
f2fde70dc52c3050e537b787efd3c7efa9778118
|
Syntax/Term/Plotkin.agda
|
Syntax/Term/Plotkin.agda
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
|
import Syntax.Type.Plotkin as Type
import Syntax.Context as Context
module Syntax.Term.Plotkin
{B : Set {- of base types -}}
{C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}}
where
-- Terms of languages described in Plotkin style
open import Function using (_∘_)
open import Data.Product
open Type B
open Context {Type}
open import Syntax.Context.Plotkin B
-- Declarations of Term and Terms to enable mutual recursion
data Term
(Γ : Context) :
(τ : Type) → Set
data Terms
(Γ : Context) :
(Σ : Context) → Set
-- (Term Γ τ) represents a term of type τ
-- with free variables bound in Γ.
data Term Γ where
const : ∀ {Σ τ} →
(c : C Σ τ) →
Terms Γ Σ →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- (Terms Γ Σ) represents a list of terms with types from Σ
-- with free variables bound in Γ.
data Terms Γ where
∅ : Terms Γ ∅
_•_ : ∀ {τ Σ} →
Term Γ τ →
Terms Γ Σ →
Terms Γ (τ • Σ)
infixr 9 _•_
-- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x
-- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x)
lift-diff-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} →
term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-diff-apply diff apply {base ι} = diff , apply
lift-diff-apply diff apply {σ ⇒ τ} =
let
-- for diff
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
-- for apply
Δh = var (that (that this))
h = var (that this)
y = var this
-- syntactic sugars
diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ})
diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ})
applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ})
applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
_⊝σ_ = λ s t → app (app diffσ s) t
_⊝τ_ = λ s t → app (app diffτ s) t
_⊕σ_ = λ t Δt → app (app applyσ Δt) t
_⊕τ_ = λ t Δt → app (app applyτ Δt) t
in
abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x))))
,
abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y))))
lift-diff : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ)
lift-diff diff apply = λ {τ Γ} →
proj₁ (lift-diff-apply diff apply {τ} {Γ})
lift-apply : ∀ {Δbase : B → Type} →
let
Δtype = lift-Δtype Δbase
term = Term
in
(∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) →
(∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) →
∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ)
lift-apply diff apply = λ {τ Γ} →
proj₂ (lift-diff-apply diff apply {τ} {Γ})
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weakenAll : ∀ {Γ₁ Γ₂ Σ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Terms Γ₁ Σ →
Terms Γ₂ Σ
weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts)
weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
weakenAll Γ₁≼Γ₂ ∅ = ∅
weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts
-- Specialized weakening
weaken₁ : ∀ {Γ σ τ} →
Term Γ τ → Term (σ • Γ) τ
weaken₁ t = weaken (drop _ • ≼-refl) t
weaken₂ : ∀ {Γ α β τ} →
Term Γ τ → Term (α • β • Γ) τ
weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t
weaken₃ : ∀ {Γ α β γ τ} →
Term Γ τ → Term (α • β • γ • Γ) τ
weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ
uncurriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ
uncurriedConst constant = const constant
CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set
CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′
CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′
curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ
curryTermConstructor {∅} k = k ∅
curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts))
curriedConst : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ
curriedConst constant = curryTermConstructor (uncurriedConst constant)
-- HOAS-like smart constructors for lambdas, for different arities.
abs₁ :
∀ {Γ τ₁ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → (x : Term Γ′ τ₁) → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ))
abs₁ {Γ} {τ₁} = λ f → abs (f {Γ≼Γ′ = drop τ₁ • ≼-refl} (var this))
abs₂ :
∀ {Γ τ₁ τ₂ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ))
abs₂ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₁ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₃ :
∀ {Γ τ₁ τ₂ τ₃ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ))
abs₃ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₂ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₄ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ))
abs₄ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₃ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₅ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ))
abs₅ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₄ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
abs₆ :
∀ {Γ τ₁ τ₂ τ₃ τ₄ τ₅ τ₆ τ} →
(∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τ₃ → Term Γ′ τ₄ → Term Γ′ τ₅ → Term Γ′ τ₆ → Term Γ′ τ) →
(Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ τ₄ ⇒ τ₅ ⇒ τ₆ ⇒ τ))
abs₆ f =
abs₁ (λ {_} {Γ≼Γ′} x₁ →
abs₅ (λ {_} {Γ′≼Γ′₁} →
f {Γ≼Γ′ = ≼-trans Γ≼Γ′ Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ x₁)))
|
Introduce HOAS-like smart constructors for lambdas
|
Introduce HOAS-like smart constructors for lambdas
Old-commit-hash: 6bf4939f8ec84c611d98f6f2395332943573dfe5
|
Agda
|
mit
|
inc-lc/ilc-agda
|
8514aefef6973b813691fb922e6d44e072cfc75d
|
generic-zero-knowledge-interactive.agda
|
generic-zero-knowledge-interactive.agda
|
open import Type
open import Data.Bool.NP as Bool hiding (check)
open import Data.Nat
open import Data.Maybe
open import Data.Product.NP
open import Data.Bits
open import Function.NP
open import Relation.Binary.PropositionalEquality.NP
open import sum
module generic-zero-knowledge-interactive where
-- A random argument, this is only a formal notation to
-- indicate that the argument is supposed to be picked
-- at random uniformly. (do not confuse with our randomness
-- monad).
record ↺ (A : ★) : ★ where
constructor rand
field get : A
module M (Permutation : ★)
(_⁻¹ : Endo Permutation)
(sumπ : Sum Permutation)
(μπ : SumProp sumπ)
(Rₚ-xtra : ★) -- extra prover/adversary randomness
(sumRₚ-xtra : Sum Rₚ-xtra)
(μRₚ-xtra : SumProp sumRₚ-xtra)
(Problem : ★)
(_==_ : Problem → Problem → Bit)
(==-refl : ∀ {pb} → (pb == pb) ≡ true)
(_∙P_ : Permutation → Endo Problem)
(⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x)
(Solution : ★)
(_∙S_ : Permutation → Endo Solution)
(⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x)
(check : Problem → Solution → Bit)
(check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s)
(easy-pb : Permutation → Problem)
(easy-sol : Permutation → Solution)
(check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true)
where
-- prover/adversary randomness
Rₚ : ★
Rₚ = Permutation × Rₚ-xtra
sumRₚ : Sum Rₚ
sumRₚ = sumπ ×Sum sumRₚ-xtra
μRₚ : SumProp sumRₚ
μRₚ = μπ ×μ μRₚ-xtra
R = Bit × Rₚ
sumR : Sum R
sumR = sumBit ×Sum sumRₚ
μR : SumProp sumR
μR = μBit ×μ μRₚ
check-π : Problem → Solution → Rₚ → Bit
check-π p s (π , _) = check (π ∙P p) (π ∙S s)
otp-∙-check : let #_ = count μRₚ
in
∀ p₀ s₀ p₁ s₁ →
check p₀ s₀ ≡ check p₁ s₁ →
#(check-π p₀ s₀) ≡ #(check-π p₁ s₁)
otp-∙-check p₀ s₀ p₁ s₁ check-pf =
count-ext μRₚ {f = check-π p₀ s₀} {check-π p₁ s₁} (λ π,r →
check-π p₀ s₀ π,r ≡⟨ check-∙ p₀ s₀ (proj₁ π,r) ⟩
check p₀ s₀ ≡⟨ check-pf ⟩
check p₁ s₁ ≡⟨ sym (check-∙ p₁ s₁ (proj₁ π,r)) ⟩
check-π p₁ s₁ π,r ∎)
where open ≡-Reasoning
#_ : (↺ (Bit × Permutation × Rₚ-xtra) → Bit) → ℕ
# f = count μR (f ∘ rand)
_≡#_ : (f g : ↺ (Bit × Rₚ) → Bit) → ★
f ≡# g = # f ≡ # g
{-
otp-∙ : let otp = λ O pb s → count μRₚ (λ { (π , _) → O (π ∙P pb) (π ∙S s) }) in
∀ pb₀ s₀ pb₁ s₁ →
check pb₀ s₀ ≡ check pb₁ s₁ →
(O : _ → _ → Bit) → otp O pb₀ s₀ ≡ otp O pb₁ s₁
otp-∙ pb₀ s₀ pb₁ s₁ check-pf O = {!(μπ ×Sum-proj₂ μRₚ-xtra ?!}
-}
Answer : Bit → ★
Answer false{-0b-} = Permutation
Answer true {-1b-} = Solution
answer : Permutation → Solution → ∀ b → Answer b
answer π _ false = π
answer _ s true = s
-- The prover is the advesary in the generic terminology,
-- and the verifier is the challenger.
DepProver : ★
DepProver = Problem → ↺ Rₚ → (b : Bit) → Problem × Answer b
Prover₀ : ★
Prover₀ = Problem → ↺ Rₚ → Problem × Permutation
Prover₁ : ★
Prover₁ = Problem → ↺ Rₚ → Problem × Solution
Prover : ★
Prover = Prover₀ × Prover₁
prover : DepProver → Prover
prover dpr = (λ pb r → dpr pb r 0b) , (λ pb r → dpr pb r 1b)
depProver : Prover → DepProver
depProver (pr₀ , pr₁) pb r false = pr₀ pb r
depProver (pr₀ , pr₁) pb r true = pr₁ pb r
-- Here we show that the explicit commitment step seems useless given
-- the formalization. The verifier can "trust" the prover on the fact
-- that any choice is going to be govern only by the problem and the
-- randomness.
module WithCommitment (Commitment : ★)
(AnswerWC : Bit → ★)
(reveal : ∀ b → Commitment → AnswerWC b → Problem × Answer b) where
ProverWC = (Problem → Rₚ → Commitment)
× (Problem → Rₚ → (b : Bit) → AnswerWC b)
depProver' : ProverWC → DepProver
depProver' (pr₀ , pr₁) pb (rand rₚ) b = reveal b (pr₀ pb rₚ) (pr₁ pb rₚ b)
Verif : Problem → ∀ b → Problem × Answer b → Bit
Verif pb false{-0b-} (π∙pb , π) = (π ∙P pb) == π∙pb
Verif pb true {-1b-} (π∙pb , π∙s) = check π∙pb π∙s
_⇄′_ : Problem → DepProver → Bit → ↺ Rₚ → Bit
(pb ⇄′ pr) b (rand rₚ) = Verif pb b (pr pb (rand rₚ) b)
_⇄_ : Problem → DepProver → ↺ (Bit × Rₚ) → Bit
(pb ⇄ pr) (rand (b , rₚ)) = (pb ⇄′ pr) b (rand rₚ)
_⇄''_ : Problem → Prover → ↺ (Bit × Rₚ) → Bit
pb ⇄'' pr = pb ⇄ depProver pr
honest : (Problem → Maybe Solution) → DepProver
honest solve pb (rand (π , rₚ)) b = (π ∙P pb , answer π sol b)
module Honest where
sol : Solution
sol with solve pb
... | just sol = π ∙S sol
... | nothing = π ∙S easy-sol π
module WithCorrectSolver (pb : Problem)
(s : Solution)
(check-s : check pb s ≡ true)
where
-- When the honest prover has a solution, he gets accepted
-- unconditionally by the verifier.
honest-accepted : ∀ r → (pb ⇄ honest (const (just s))) r ≡ 1b
honest-accepted (rand (true , π , rₚ)) rewrite check-∙ pb s π = check-s
honest-accepted (rand (false , π , rₚ)) = ==-refl
honest-⅁ = λ pb s → (pb ⇄ honest (const (just s)))
module HonestLeakZeroKnowledge (pb₀ pb₁ : Problem)
(s₀ s₁ : Solution)
(check-pf : check pb₀ s₀ ≡ check pb₁ s₁) where
helper : ∀ rₚ → Bool.toℕ ((pb₀ ⇄′ honest (const (just s₀))) 0b (rand rₚ))
≡ Bool.toℕ ((pb₁ ⇄′ honest (const (just s₁))) 0b (rand rₚ))
helper (π , rₚ) rewrite ==-refl {π ∙P pb₀} | ==-refl {π ∙P pb₁} = refl
honest-leak : honest-⅁ pb₀ s₀ ≡# honest-⅁ pb₁ s₁
honest-leak rewrite otp-∙-check pb₀ s₀ pb₁ s₁ check-pf | sum-ext μRₚ helper = refl
module HonestLeakZeroKnowledge' (pb : Problem)
(s₀ s₁ : Solution)
(check-pf : check pb s₀ ≡ check pb s₁) where
honest-leak : honest-⅁ pb s₀ ≡# honest-⅁ pb s₁
honest-leak = HonestLeakZeroKnowledge.honest-leak pb pb s₀ s₁ check-pf
-- Predicts b=b′
cheater : ∀ b′ → DepProver
cheater b′ pb (rand (π , _)) b = π ∙P (case b′ 0→ pb 1→ easy-pb π)
, answer π (π ∙S easy-sol π) b
-- If cheater predicts correctly, verifer accepts him
cheater-accepted : ∀ b pb rₚ → (pb ⇄′ cheater b) b rₚ ≡ 1b
cheater-accepted true pb (rand (π , rₚ)) = check-easy π
cheater-accepted false pb (rand (π , rₚ)) = ==-refl
-- If cheater predicts incorrecty, verifier rejects him
module CheaterRejected (pb : Problem)
(not-easy-sol : ∀ π → check (π ∙P pb) (π ∙S easy-sol π) ≡ false)
(not-easy-pb : ∀ π → ((π ∙P pb) == (π ∙P easy-pb π)) ≡ false) where
cheater-rejected : ∀ b rₚ → (pb ⇄′ cheater (not b)) b rₚ ≡ 0b
cheater-rejected true (rand (π , rₚ)) = not-easy-sol π
cheater-rejected false (rand (π , rₚ)) = not-easy-pb π
module DLog (ℤq : ★)
(_⊞_ : ℤq → ℤq → ℤq)
(⊟_ : ℤq → ℤq)
(G : ★)
(g : G)
(_^_ : G → ℤq → G)
(_∙_ : G → G → G)
(⊟-⊞ : ∀ π x → (⊟ π) ⊞ (π ⊞ x) ≡ x)
(^⊟-∙ : ∀ α β x → ((α ^ (⊟ x)) ∙ ((α ^ x) ∙ β)) ≡ β)
-- (∙-assoc : ∀ α β γ → α ∙ (β ∙ γ) ≡ (α ∙ β) ∙ γ)
(dist-^-⊞ : ∀ α x y → α ^ (x ⊞ y) ≡ (α ^ x) ∙ (α ^ y))
(_==_ : G → G → Bool)
(==-refl : ∀ {α} → (α == α) ≡ true)
(==-cong-∙ : ∀ {α β b} γ → α == β ≡ b → (γ ∙ α) == (γ ∙ β) ≡ b)
(==-true : ∀ {α β} → α == β ≡ true → α ≡ β)
(sumℤq : Sum ℤq)
(μℤq : SumProp sumℤq)
(Rₚ-xtra : ★) -- extra prover/adversary randomness
(sumRₚ-xtra : Sum Rₚ-xtra)
(μRₚ-xtra : SumProp sumRₚ-xtra)
(some-ℤq : ℤq)
where
Permutation = ℤq
Problem = G
Solution = ℤq
_⁻¹ : Endo Permutation
π ⁻¹ = ⊟ π
g^_ : ℤq → G
g^ x = g ^ x
_∙P_ : Permutation → Endo Problem
π ∙P p = g^ π ∙ p
⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x
⁻¹-inverseP π x rewrite ^⊟-∙ g x π = refl
_∙S_ : Permutation → Endo Solution
π ∙S s = π ⊞ s
⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x
⁻¹-inverseS = ⊟-⊞
check : Problem → Solution → Bit
check p s = p == g^ s
check-∙' : ∀ p s π b → check p s ≡ b → check (π ∙P p) (π ∙S s) ≡ b
check-∙' p s π true check-p-s rewrite dist-^-⊞ g π s | ==-true check-p-s = ==-refl
check-∙' p s π false check-p-s rewrite dist-^-⊞ g π s = ==-cong-∙ (g^ π) check-p-s
check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s
check-∙ p s π = check-∙' p s π (check p s) refl
easy-sol : Permutation → Solution
easy-sol π = some-ℤq
easy-pb : Permutation → Problem
easy-pb π = g^(easy-sol π)
check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true
check-easy π rewrite dist-^-⊞ g π (easy-sol π) = ==-refl
open M Permutation _⁻¹ sumℤq μℤq Rₚ-xtra sumRₚ-xtra μRₚ-xtra
Problem _==_ ==-refl _∙P_ ⁻¹-inverseP Solution _∙S_ ⁻¹-inverseS check check-∙ easy-pb easy-sol check-easy
-- -}
-- -}
-- -}
-- -}
-- -}
|
open import Type
open import Data.Bool.NP as Bool hiding (check)
open import Data.Nat
open import Data.Maybe
open import Data.Product.NP
open import Data.Bits
open import Function.NP
open import Relation.Binary.PropositionalEquality.NP
open import sum
module generic-zero-knowledge-interactive where
-- A random argument, this is only a formal notation to
-- indicate that the argument is supposed to be picked
-- at random uniformly. (do not confuse with our randomness
-- monad).
record ↺ (A : ★) : ★ where
constructor rand
field get : A
module M (Permutation : ★)
(_⁻¹ : Endo Permutation)
(μπ : SumProp Permutation)
(Rₚ-xtra : ★) -- extra prover/adversary randomness
(μRₚ-xtra : SumProp Rₚ-xtra)
(Problem : ★)
(_==_ : Problem → Problem → Bit)
(==-refl : ∀ {pb} → (pb == pb) ≡ true)
(_∙P_ : Permutation → Endo Problem)
(⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x)
(Solution : ★)
(_∙S_ : Permutation → Endo Solution)
(⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x)
(check : Problem → Solution → Bit)
(check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s)
(easy-pb : Permutation → Problem)
(easy-sol : Permutation → Solution)
(check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true)
where
-- prover/adversary randomness
Rₚ : ★
Rₚ = Permutation × Rₚ-xtra
μRₚ : SumProp Rₚ
μRₚ = μπ ×μ μRₚ-xtra
R = Bit × Rₚ
μR : SumProp R
μR = μBit ×μ μRₚ
check-π : Problem → Solution → Rₚ → Bit
check-π p s (π , _) = check (π ∙P p) (π ∙S s)
otp-∙-check : let #_ = count μRₚ
in
∀ p₀ s₀ p₁ s₁ →
check p₀ s₀ ≡ check p₁ s₁ →
#(check-π p₀ s₀) ≡ #(check-π p₁ s₁)
otp-∙-check p₀ s₀ p₁ s₁ check-pf =
count-ext μRₚ {f = check-π p₀ s₀} {check-π p₁ s₁} (λ π,r →
check-π p₀ s₀ π,r ≡⟨ check-∙ p₀ s₀ (proj₁ π,r) ⟩
check p₀ s₀ ≡⟨ check-pf ⟩
check p₁ s₁ ≡⟨ sym (check-∙ p₁ s₁ (proj₁ π,r)) ⟩
check-π p₁ s₁ π,r ∎)
where open ≡-Reasoning
#_ : (↺ (Bit × Permutation × Rₚ-xtra) → Bit) → ℕ
# f = count μR (f ∘ rand)
_≡#_ : (f g : ↺ (Bit × Rₚ) → Bit) → ★
f ≡# g = # f ≡ # g
{-
otp-∙ : let otp = λ O pb s → count μRₚ (λ { (π , _) → O (π ∙P pb) (π ∙S s) }) in
∀ pb₀ s₀ pb₁ s₁ →
check pb₀ s₀ ≡ check pb₁ s₁ →
(O : _ → _ → Bit) → otp O pb₀ s₀ ≡ otp O pb₁ s₁
otp-∙ pb₀ s₀ pb₁ s₁ check-pf O = {!(μπ ×Sum-proj₂ μRₚ-xtra ?!}
-}
Answer : Bit → ★
Answer false{-0b-} = Permutation
Answer true {-1b-} = Solution
answer : Permutation → Solution → ∀ b → Answer b
answer π _ false = π
answer _ s true = s
-- The prover is the advesary in the generic terminology,
-- and the verifier is the challenger.
DepProver : ★
DepProver = Problem → ↺ Rₚ → (b : Bit) → Problem × Answer b
Prover₀ : ★
Prover₀ = Problem → ↺ Rₚ → Problem × Permutation
Prover₁ : ★
Prover₁ = Problem → ↺ Rₚ → Problem × Solution
Prover : ★
Prover = Prover₀ × Prover₁
prover : DepProver → Prover
prover dpr = (λ pb r → dpr pb r 0b) , (λ pb r → dpr pb r 1b)
depProver : Prover → DepProver
depProver (pr₀ , pr₁) pb r false = pr₀ pb r
depProver (pr₀ , pr₁) pb r true = pr₁ pb r
-- Here we show that the explicit commitment step seems useless given
-- the formalization. The verifier can "trust" the prover on the fact
-- that any choice is going to be govern only by the problem and the
-- randomness.
module WithCommitment (Commitment : ★)
(AnswerWC : Bit → ★)
(reveal : ∀ b → Commitment → AnswerWC b → Problem × Answer b) where
ProverWC = (Problem → Rₚ → Commitment)
× (Problem → Rₚ → (b : Bit) → AnswerWC b)
depProver' : ProverWC → DepProver
depProver' (pr₀ , pr₁) pb (rand rₚ) b = reveal b (pr₀ pb rₚ) (pr₁ pb rₚ b)
Verif : Problem → ∀ b → Problem × Answer b → Bit
Verif pb false{-0b-} (π∙pb , π) = (π ∙P pb) == π∙pb
Verif pb true {-1b-} (π∙pb , π∙s) = check π∙pb π∙s
_⇄′_ : Problem → DepProver → Bit → ↺ Rₚ → Bit
(pb ⇄′ pr) b (rand rₚ) = Verif pb b (pr pb (rand rₚ) b)
_⇄_ : Problem → DepProver → ↺ (Bit × Rₚ) → Bit
(pb ⇄ pr) (rand (b , rₚ)) = (pb ⇄′ pr) b (rand rₚ)
_⇄''_ : Problem → Prover → ↺ (Bit × Rₚ) → Bit
pb ⇄'' pr = pb ⇄ depProver pr
honest : (Problem → Maybe Solution) → DepProver
honest solve pb (rand (π , rₚ)) b = (π ∙P pb , answer π sol b)
module Honest where
sol : Solution
sol with solve pb
... | just sol = π ∙S sol
... | nothing = π ∙S easy-sol π
module WithCorrectSolver (pb : Problem)
(s : Solution)
(check-s : check pb s ≡ true)
where
-- When the honest prover has a solution, he gets accepted
-- unconditionally by the verifier.
honest-accepted : ∀ r → (pb ⇄ honest (const (just s))) r ≡ 1b
honest-accepted (rand (true , π , rₚ)) rewrite check-∙ pb s π = check-s
honest-accepted (rand (false , π , rₚ)) = ==-refl
honest-⅁ = λ pb s → (pb ⇄ honest (const (just s)))
module HonestLeakZeroKnowledge (pb₀ pb₁ : Problem)
(s₀ s₁ : Solution)
(check-pf : check pb₀ s₀ ≡ check pb₁ s₁) where
helper : ∀ rₚ → Bool.toℕ ((pb₀ ⇄′ honest (const (just s₀))) 0b (rand rₚ))
≡ Bool.toℕ ((pb₁ ⇄′ honest (const (just s₁))) 0b (rand rₚ))
helper (π , rₚ) rewrite ==-refl {π ∙P pb₀} | ==-refl {π ∙P pb₁} = refl
honest-leak : honest-⅁ pb₀ s₀ ≡# honest-⅁ pb₁ s₁
honest-leak rewrite otp-∙-check pb₀ s₀ pb₁ s₁ check-pf | sum-ext μRₚ helper = refl
module HonestLeakZeroKnowledge' (pb : Problem)
(s₀ s₁ : Solution)
(check-pf : check pb s₀ ≡ check pb s₁) where
honest-leak : honest-⅁ pb s₀ ≡# honest-⅁ pb s₁
honest-leak = HonestLeakZeroKnowledge.honest-leak pb pb s₀ s₁ check-pf
-- Predicts b=b′
cheater : ∀ b′ → DepProver
cheater b′ pb (rand (π , _)) b = π ∙P (case b′ 0→ pb 1→ easy-pb π)
, answer π (π ∙S easy-sol π) b
-- If cheater predicts correctly, verifer accepts him
cheater-accepted : ∀ b pb rₚ → (pb ⇄′ cheater b) b rₚ ≡ 1b
cheater-accepted true pb (rand (π , rₚ)) = check-easy π
cheater-accepted false pb (rand (π , rₚ)) = ==-refl
-- If cheater predicts incorrecty, verifier rejects him
module CheaterRejected (pb : Problem)
(not-easy-sol : ∀ π → check (π ∙P pb) (π ∙S easy-sol π) ≡ false)
(not-easy-pb : ∀ π → ((π ∙P pb) == (π ∙P easy-pb π)) ≡ false) where
cheater-rejected : ∀ b rₚ → (pb ⇄′ cheater (not b)) b rₚ ≡ 0b
cheater-rejected true (rand (π , rₚ)) = not-easy-sol π
cheater-rejected false (rand (π , rₚ)) = not-easy-pb π
module DLog (ℤq : ★)
(_⊞_ : ℤq → ℤq → ℤq)
(⊟_ : ℤq → ℤq)
(G : ★)
(g : G)
(_^_ : G → ℤq → G)
(_∙_ : G → G → G)
(⊟-⊞ : ∀ π x → (⊟ π) ⊞ (π ⊞ x) ≡ x)
(^⊟-∙ : ∀ α β x → ((α ^ (⊟ x)) ∙ ((α ^ x) ∙ β)) ≡ β)
-- (∙-assoc : ∀ α β γ → α ∙ (β ∙ γ) ≡ (α ∙ β) ∙ γ)
(dist-^-⊞ : ∀ α x y → α ^ (x ⊞ y) ≡ (α ^ x) ∙ (α ^ y))
(_==_ : G → G → Bool)
(==-refl : ∀ {α} → (α == α) ≡ true)
(==-cong-∙ : ∀ {α β b} γ → α == β ≡ b → (γ ∙ α) == (γ ∙ β) ≡ b)
(==-true : ∀ {α β} → α == β ≡ true → α ≡ β)
(μℤq : SumProp ℤq)
(Rₚ-xtra : ★) -- extra prover/adversary randomness
(μRₚ-xtra : SumProp Rₚ-xtra)
(some-ℤq : ℤq)
where
Permutation = ℤq
Problem = G
Solution = ℤq
_⁻¹ : Endo Permutation
π ⁻¹ = ⊟ π
g^_ : ℤq → G
g^ x = g ^ x
_∙P_ : Permutation → Endo Problem
π ∙P p = g^ π ∙ p
⁻¹-inverseP : ∀ π x → π ⁻¹ ∙P (π ∙P x) ≡ x
⁻¹-inverseP π x rewrite ^⊟-∙ g x π = refl
_∙S_ : Permutation → Endo Solution
π ∙S s = π ⊞ s
⁻¹-inverseS : ∀ π x → π ⁻¹ ∙S (π ∙S x) ≡ x
⁻¹-inverseS = ⊟-⊞
check : Problem → Solution → Bit
check p s = p == g^ s
check-∙' : ∀ p s π b → check p s ≡ b → check (π ∙P p) (π ∙S s) ≡ b
check-∙' p s π true check-p-s rewrite dist-^-⊞ g π s | ==-true check-p-s = ==-refl
check-∙' p s π false check-p-s rewrite dist-^-⊞ g π s = ==-cong-∙ (g^ π) check-p-s
check-∙ : ∀ p s π → check (π ∙P p) (π ∙S s) ≡ check p s
check-∙ p s π = check-∙' p s π (check p s) refl
easy-sol : Permutation → Solution
easy-sol π = some-ℤq
easy-pb : Permutation → Problem
easy-pb π = g^(easy-sol π)
check-easy : ∀ π → check (π ∙P easy-pb π) (π ∙S easy-sol π) ≡ true
check-easy π rewrite dist-^-⊞ g π (easy-sol π) = ==-refl
open M Permutation _⁻¹ μℤq Rₚ-xtra μRₚ-xtra
Problem _==_ ==-refl _∙P_ ⁻¹-inverseP Solution _∙S_ ⁻¹-inverseS check check-∙ easy-pb easy-sol check-easy
-- -}
-- -}
-- -}
-- -}
-- -}
|
update generic ZK
|
update generic ZK
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
569e98b5b6d8a84329f54249ad3f83477357f717
|
flipbased-implem.agda
|
flipbased-implem.agda
|
module flipbased-implem where
open import Function
open import Data.Bits
open import Data.Nat.NP
open import Data.Vec
open import Relation.Binary
import Relation.Binary.PropositionalEquality as ≡
import Data.Fin as Fin
open ≡ using (_≗_; _≡_)
open Fin using (Fin; suc)
import flipbased
-- “↺ n A” reads like: “toss n coins and then return a value of type A”
record ↺ {a} n (A : Set a) : Set a where
constructor mk
field
run↺ : Bits n → A
open ↺ public
private
-- If you are not allowed to toss any coin, then you are deterministic.
Det : ∀ {a} → Set a → Set a
Det = ↺ 0
runDet : ∀ {a} {A : Set a} → Det A → A
runDet f = run↺ f []
toss : ↺ 1 Bit
toss = mk head
return↺ : ∀ {n a} {A : Set a} → A → ↺ n A
return↺ = mk ∘ const
map↺ : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → ↺ n A → ↺ n B
map↺ f x = mk (f ∘ run↺ x)
-- map↺ f x ≗ x >>=′ (return {0} ∘ f)
join↺ : ∀ {n₁ n₂ a} {A : Set a} → ↺ n₁ (↺ n₂ A) → ↺ (n₁ + n₂) A
join↺ {n₁} x = mk (λ bs → run↺ (run↺ x (take _ bs)) (drop n₁ bs))
-- join↺ x = x >>= id
comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → ↺ m A → ↺ n A
comap f (mk g) = mk (g ∘ f)
private
take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n
take≤ z≤n _ = []
take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs
weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → ↺ m A → ↺ n A
weaken≤ p = comap (take≤ p)
open flipbased ↺ toss weaken≤ return↺ map↺ join↺ public
_≗↺_ : ∀ {c a} {A : Set a} (f g : ↺ c A) → Set a
f ≗↺ g = run↺ f ≗ run↺ g
⅁ : ℕ → Set
⅁ n = ↺ n Bit
_≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ⅁ c) → Set
⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b
≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c})
≗⅁-trans p q b R = ≡.trans (p b R) (q b R)
count↺ᶠ : ∀ {c} → ⅁ c → Fin (suc (2^ c))
count↺ᶠ f = #⟨ run↺ f ⟩ᶠ
count↺ : ∀ {c} → ⅁ c → ℕ
count↺ = Fin.toℕ ∘ count↺ᶠ
_∼[_]⅁_ : ∀ {m n} → ⅁ m → (ℕ → ℕ → Set) → ⅁ n → Set
_∼[_]⅁_ {m} {n} f _∼_ g = ⟨2^ n * count↺ f ⟩ ∼ ⟨2^ m * count↺ g ⟩
_∼[_]⅁′_ : ∀ {n} → ⅁ n → (ℕ → ℕ → Set) → ⅁ n → Set
_∼[_]⅁′_ {n} f _∼_ g = count↺ f ∼ count↺ g
_≈⅁_ : ∀ {m n} → ⅁ m → ⅁ n → Set
f ≈⅁ g = f ∼[ _≡_ ]⅁ g
_≈⅁′_ : ∀ {n} (f g : ⅁ n) → Set
f ≈⅁′ g = f ∼[ _≡_ ]⅁′ g
≈⅁-refl : ∀ {n} {f : ⅁ n} → f ≈⅁ f
≈⅁-refl = ≡.refl
≈⅁-sym : ∀ {n} → Symmetric {A = ⅁ n} _≈⅁_
≈⅁-sym = ≡.sym
≈⅁-trans : ∀ {n} → Transitive {A = ⅁ n} _≈⅁_
≈⅁-trans = ≡.trans
≗⇒≈⅁ : ∀ {c} {f g : ⅁ c} → f ≗↺ g → f ≈⅁ g
≗⇒≈⅁ pf rewrite ext-# pf = ≡.refl
≈⅁′⇒≈⅁ : ∀ {n} {f g : ⅁ n} → f ≈⅁′ g → f ≈⅁ g
≈⅁′⇒≈⅁ eq rewrite eq = ≡.refl
≈⅁⇒≈⅁′ : ∀ {n} {f g : ⅁ n} → f ≈⅁ g → f ≈⅁′ g
≈⅁⇒≈⅁′ {n} = 2^-inj n
≈⅁-cong : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ≈⅁ f' → g ≈⅁ g'
≈⅁-cong f≗g f'≗g' f≈f' rewrite ext-# f≗g | ext-# f'≗g' = f≈f'
≈⅁′-cong : ∀ {c} {f g f' g' : ⅁ c} → f ≗↺ g → f' ≗↺ g' → f ≈⅁′ f' → g ≈⅁′ g'
≈⅁′-cong f≗g f'≗g' f≈f' rewrite ext-# f≗g | ext-# f'≗g' = f≈f'
|
module flipbased-implem where
open import Function
open import Data.Bits
open import Data.Nat.NP
open import Data.Vec
open import Relation.Binary
import Relation.Binary.PropositionalEquality as ≡
import Data.Fin as Fin
open ≡ using (_≗_; _≡_)
open Fin using (Fin; suc)
import flipbased
-- “↺ n A” reads like: “toss n coins and then return a value of type A”
record ↺ {a} n (A : Set a) : Set a where
constructor mk
field
run↺ : Bits n → A
open ↺ public
private
-- If you are not allowed to toss any coin, then you are deterministic.
Det : ∀ {a} → Set a → Set a
Det = ↺ 0
runDet : ∀ {a} {A : Set a} → Det A → A
runDet f = run↺ f []
toss : ↺ 1 Bit
toss = mk head
return↺ : ∀ {n a} {A : Set a} → A → ↺ n A
return↺ = mk ∘ const
map↺ : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → ↺ n A → ↺ n B
map↺ f x = mk (f ∘ run↺ x)
-- map↺ f x ≗ x >>=′ (return {0} ∘ f)
join↺ : ∀ {n₁ n₂ a} {A : Set a} → ↺ n₁ (↺ n₂ A) → ↺ (n₁ + n₂) A
join↺ {n₁} x = mk (λ bs → run↺ (run↺ x (take _ bs)) (drop n₁ bs))
-- join↺ x = x >>= id
comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → ↺ m A → ↺ n A
comap f (mk g) = mk (g ∘ f)
private
take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n
take≤ z≤n _ = []
take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs
weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → ↺ m A → ↺ n A
weaken≤ p = comap (take≤ p)
open flipbased ↺ toss weaken≤ return↺ map↺ join↺ public
_≗↺_ : ∀ {c a} {A : Set a} (f g : ↺ c A) → Set a
f ≗↺ g = run↺ f ≗ run↺ g
⅁ : ℕ → Set
⅁ n = ↺ n Bit
_≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ⅁ c) → Set
⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b
≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c})
≗⅁-trans p q b R = ≡.trans (p b R) (q b R)
count↺ᶠ : ∀ {c} → ⅁ c → Fin (suc (2^ c))
count↺ᶠ f = #⟨ run↺ f ⟩ᶠ
count↺ : ∀ {c} → ⅁ c → ℕ
count↺ f = #⟨ run↺ f ⟩
≗↺-cong-# : ∀ {n} {f g : ⅁ n} → f ≗↺ g → count↺ f ≡ count↺ g
≗↺-cong-# {f = f} {g} = ≗-cong-# (run↺ f) (run↺ g)
_∼[_]⅁_ : ∀ {m n} → ⅁ m → (ℕ → ℕ → Set) → ⅁ n → Set
_∼[_]⅁_ {m} {n} f _∼_ g = ⟨2^ n * count↺ f ⟩ ∼ ⟨2^ m * count↺ g ⟩
_∼[_]⅁′_ : ∀ {n} → ⅁ n → (ℕ → ℕ → Set) → ⅁ n → Set
_∼[_]⅁′_ {n} f _∼_ g = count↺ f ∼ count↺ g
_≈⅁_ : ∀ {m n} → ⅁ m → ⅁ n → Set
f ≈⅁ g = f ∼[ _≡_ ]⅁ g
_≈⅁′_ : ∀ {n} (f g : ⅁ n) → Set
f ≈⅁′ g = f ∼[ _≡_ ]⅁′ g
≈⅁-refl : ∀ {n} {f : ⅁ n} → f ≈⅁ f
≈⅁-refl = ≡.refl
≈⅁-sym : ∀ {n} → Symmetric {A = ⅁ n} _≈⅁_
≈⅁-sym = ≡.sym
≈⅁-trans : ∀ {n} → Transitive {A = ⅁ n} _≈⅁_
≈⅁-trans = ≡.trans
≗⇒≈⅁ : ∀ {c} {f g : ⅁ c} → f ≗↺ g → f ≈⅁ g
≗⇒≈⅁ pf rewrite ≗↺-cong-# pf = ≡.refl
≈⅁′⇒≈⅁ : ∀ {n} {f g : ⅁ n} → f ≈⅁′ g → f ≈⅁ g
≈⅁′⇒≈⅁ eq rewrite eq = ≡.refl
≈⅁⇒≈⅁′ : ∀ {n} {f g : ⅁ n} → f ≈⅁ g → f ≈⅁′ g
≈⅁⇒≈⅁′ {n} = 2^-inj n
≈⅁-cong : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ≈⅁ f' → g ≈⅁ g'
≈⅁-cong f≗g f'≗g' f≈f' rewrite ≗↺-cong-# f≗g | ≗↺-cong-# f'≗g' = f≈f'
≈⅁′-cong : ∀ {c} {f g f' g' : ⅁ c} → f ≗↺ g → f' ≗↺ g' → f ≈⅁′ f' → g ≈⅁′ g'
≈⅁′-cong f≗g f'≗g' f≈f' rewrite ≗↺-cong-# f≗g | ≗↺-cong-# f'≗g' = f≈f'
data Rat : Set where _/_ : (num denom : ℕ) → Rat
Pr[_≡1] : ∀ {n} (f : ⅁ n) → Rat
Pr[_≡1] {n} f = count↺ f / 2^ n
|
Switch count↺ to be based on search
|
Switch count↺ to be based on search
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
b590f8a3ed001a65516e5f2211013e1a46683692
|
ZK/PartialHeliosVerifier.agda
|
ZK/PartialHeliosVerifier.agda
|
{-# OPTIONS --without-K #-}
module ZK.PartialHeliosVerifier where
open import Type
open import Function hiding (case_of_)
open import Data.Bool.Base
open import Data.Product
open import Data.List.Base using (List; []; _∷_; and; foldr)
open import Data.String.Base using (String)
open import FFI.JS as JS hiding (_+_; _/_; _*_; join)
open import FFI.JS.BigI as BigI
import FFI.JS.Console as Console
import FFI.JS.Process as Process
import FFI.JS.FS as FS
open import FFI.JS.SHA1
open import FFI.JS.Proc
open import Control.Process.Type
join : String → List String → String
join sep [] = ""
join sep (x ∷ xs) = x ++ foldr (λ y z → sep ++ y ++ z) "" xs
{-
instance
showBigI = mk λ _ → showString ∘ BigI.toString
-}
G = BigI
ℤq = BigI
BigI▹G : BigI → G
BigI▹G = id
BigI▹ℤq : BigI → ℤq
BigI▹ℤq = id
non0I : BigI → BigI
non0I x with equals x 0I
... | true = throw "Should be non zero!" 0I
... | false = x
module BigICG (p q : BigI) where
_^_ : G → ℤq → G
_·_ : G → G → G
_/_ : G → G → G
_+_ : ℤq → ℤq → ℤq
_*_ : ℤq → ℤq → ℤq
_==_ : (x y : G) → Bool
_^_ = λ x y → modPow x y p
_·_ = λ x y → mod (multiply x y) p
_/_ = λ x y → mod (multiply x (modInv (non0I y) p)) p
_+_ = λ x y → mod (add x y) q
_*_ = λ x y → mod (multiply x y) q
_==_ = equals
sumI : List BigI → BigI
sumI = foldr _+_ 0I
bignum : Number → BigI
bignum n = bigI (Number▹String n) "10"
-- TODO check with undefined
bigdec : JSValue → BigI
bigdec v = bigI (castString v) "10"
{-
print : {A : Set}{{_ : Show A}} → A → Callback0
print = Console.log ∘ show
-}
PubKey = G
EncRnd = ℤq {- randomness used for encryption of ct -}
Message = G {- plain text message -}
Challenge = ℤq
Response = ℤq
CommitmentPart = G
CipherTextPart = G
module HeliosVerifyV3 (g : G) p q (y : PubKey) where
open BigICG p q
verify-chaum-pedersen : (α β : CipherTextPart)(M : Message)(A B : G)(c : Challenge)(s : Response) → Bool
verify-chaum-pedersen α β M A B c s
= trace "α=" α λ _ →
trace "β=" β λ _ →
trace "M=" M λ _ →
trace "A=" A λ _ →
trace "B=" B λ _ →
trace "c=" c λ _ →
trace "s=" s λ _ →
(g ^ s) == (A · (α ^ c))
∧ (y ^ s) == (B · ((β / M) ^ c))
verify-individual-proof : (α β : CipherTextPart)(ix : Number)(π : JSValue) → Bool
verify-individual-proof α β ix π
= trace "m=" m λ _ →
trace "M=" M λ _ →
trace "commitmentA=" A λ _ →
trace "commitmentB=" B λ _ →
trace "challenge=" c λ _ →
trace "response=" s λ _ →
res
where
m = bignum ix
M = g ^ m
A = bigdec (π ·« "commitment" » ·« "A" »)
B = bigdec (π ·« "commitment" » ·« "B" »)
c = bigdec (π ·« "challenge" »)
s = bigdec (π ·« "response" »)
res = verify-chaum-pedersen α β M A B c s
-- Conform to HeliosV3 but it is too weak.
-- One should follow a "Strong Fiat Shamir" transformation
-- from interactive ZK proof to non-interactive ZK proofs.
-- Namely one should hash the statement as well.
--
-- SHA1(A0 + "," + B0 + "," + A1 + "," + B1 + ... + "Amax" + "," + Bmax)
hash-commitments : JSArray JSValue → BigI
hash-commitments πs =
fromHex $
trace-call "SHA1(commitments)=" SHA1 $
trace-call "commitments=" (join ",") $
decodeJSArray πs λ _ π →
(castString (π ·« "commitment" » ·« "A" »))
++ "," ++
(castString (π ·« "commitment" » ·« "B" »))
sum-challenges : JSArray JSValue → BigI
sum-challenges πs =
sumI $ decodeJSArray πs λ _ π → bigdec (π ·« "challenge" »)
verify-challenges : JSArray JSValue → Bool
verify-challenges πs =
trace "hash(commitments)=" h λ _ →
trace "sum(challenge)=" c λ _ →
h == c
where
h = hash-commitments πs
c = sum-challenges πs
verify-choice : (v : JSValue)(πs : JSArray JSValue) → Bool
verify-choice v πs =
trace "α=" α λ _ →
trace "β=" β λ _ →
verify-challenges πs
∧
and (decodeJSArray πs $ verify-individual-proof α β)
where
α = bigdec (v ·« "alpha" »)
β = bigdec (v ·« "beta" »)
verify-choices : (choices πs : JSArray JSValue) → Bool
verify-choices choices πs =
trace "TODO: check the array size of choices πs together election data" "" λ _ →
and $ decodeJSArray choices λ ix choice →
trace "verify choice " ix λ _ →
verify-choice choice (castJSArray (πs Array[ ix ]))
verify-answer : (answer : JSValue) → Bool
verify-answer answer =
trace "TODO: CHECK the overall_proof" "" λ _ →
verify-choices choices individual-proofs
where
choices = answer ·« "choices" »A
individual-proofs = answer ·« "individual_proofs" »A
overall-proof = answer ·« "overall_proof" »A
verify-answers : (answers : JSArray JSValue) → Bool
verify-answers answers =
and $ decodeJSArray answers λ ix a →
trace "verify answer " ix λ _ →
verify-answer a
{-
verify-election-hash =
""
-- notice the whitespaces and the alphabetical order of keys
-- {"email": ["[email protected]", "[email protected]"], "first_name": "Ben", "last_name": "Adida"}
computed_hash = base64.b64encode(hash.new(election.toJSON()).digest())[:-1]
computed_hash == vote.election_hash:
""
-}
-- module _ {-(election : JSValue)-} where
verify-ballot : (ballot : JSValue) → Bool
verify-ballot ballot =
trace "TODO: CHECK the election_hash: " election_hash λ _ →
trace "TODO: CHECK the election_uuid: " election_uuid λ _ →
verify-answers answers
where
answers = ballot ·« "answers" »A
election_hash = ballot ·« "election_hash" »
election_uuid = ballot ·« "election_uuid" »
verify-ballots : (ballots : JSArray JSValue) → Bool
verify-ballots ballots =
and $ decodeJSArray ballots λ ix ballot →
trace "verify ballot " ix λ _ →
verify-ballot ballot
-- Many checks are still missing!
verify-helios-election : (arg : JSValue) → Bool
verify-helios-election arg = trace "res=" res id
where
ed = arg ·« "election_data" »
bs = arg ·« "ballots" »A
pk = ed ·« "public_key" »
g = bigdec (pk ·« "g" »)
p = bigdec (pk ·« "p" »)
q = bigdec (pk ·« "q" »)
y = bigdec (pk ·« "y" »)
res =
trace "g=" g λ _ →
trace "p=" p λ _ →
trace "q=" q λ _ →
trace "y=" y λ _ →
HeliosVerifyV3.verify-ballots g p q y bs
srv : URI → JSProc
srv d =
recv d λ q →
send d (fromBool (verify-helios-election q))
end
-- Working around Agda.Primitive.lsuc being undefined
case_of_ : {A : Set} {B : Set} → A → (A → B) → B
case x of f = f x
main : JS!
main =
Process.argv !₁ λ args →
case JSArray▹ListString args of λ {
(_node ∷ _run ∷ _test ∷ args') →
case args' of λ {
[] →
server "127.0.0.1" "1337" srv !₁ λ uri →
Console.log (showURI uri)
; (arg ∷ args'') →
case args'' of λ {
[] →
let opts =
-- fromJSObject (fromObject (("encoding" , fromString "utf8") ∷ []))
-- nullJS
JSON-parse "{\"encoding\":\"utf8\"}"
in
Console.log ("readFile=" ++ arg) >>
FS.readFile arg opts !₂ λ err dat →
Console.log ("readFile: err=" ++ JS.toString err) >>
Console.log (Bool▹String (verify-helios-election (JSON-parse (castString dat))))
; _ →
Console.log "usage"
}
}
; _ →
Console.log "usage"
}
-- -}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
module ZK.PartialHeliosVerifier where
open import Type
open import Function hiding (case_of_)
open import Data.Bool.Base
open import Data.Product
open import Data.List.Base using (List; []; _∷_; and; foldr)
open import Data.String.Base using (String)
open import FFI.JS as JS hiding (_+_; _/_; _*_; join)
open import FFI.JS.BigI as BigI
import FFI.JS.Console as Console
import FFI.JS.Process as Process
import FFI.JS.FS as FS
open import FFI.JS.SHA1
open import FFI.JS.Proc
open import Control.Process.Type
join : String → List String → String
join sep [] = ""
join sep (x ∷ xs) = x ++ foldr (λ y z → sep ++ y ++ z) "" xs
{-
instance
showBigI = mk λ _ → showString ∘ BigI.toString
-}
G = BigI
ℤq = BigI
BigI▹G : BigI → G
BigI▹G = id
BigI▹ℤq : BigI → ℤq
BigI▹ℤq = id
non0I : BigI → BigI
non0I x with equals x 0I
... | true = throw "Should be non zero!" 0I
... | false = x
module BigICG (p q : BigI) where
_^_ : G → ℤq → G
_·_ : G → G → G
_/_ : G → G → G
_+_ : ℤq → ℤq → ℤq
_*_ : ℤq → ℤq → ℤq
_==_ : (x y : G) → Bool
_^_ = λ x y → modPow x y p
_·_ = λ x y → mod (multiply x y) p
_/_ = λ x y → mod (multiply x (modInv (non0I y) p)) p
_+_ = λ x y → mod (add x y) q
_*_ = λ x y → mod (multiply x y) q
_==_ = equals
sumI : List BigI → BigI
sumI = foldr _+_ 0I
bignum : Number → BigI
bignum n = bigI (Number▹String n) "10"
-- TODO check with undefined
bigdec : JSValue → BigI
bigdec v = bigI (castString v) "10"
{-
print : {A : Set}{{_ : Show A}} → A → Callback0
print = Console.log ∘ show
-}
PubKey = G
EncRnd = ℤq {- randomness used for encryption of ct -}
Message = G {- plain text message -}
Challenge = ℤq
Response = ℤq
CommitmentPart = G
CipherTextPart = G
module HeliosVerifyV3 (g : G) p q (y : PubKey) where
open BigICG p q
verify-chaum-pedersen : (α β : CipherTextPart)(M : Message)(A B : G)(c : Challenge)(s : Response) → Bool
verify-chaum-pedersen α β M A B c s
= trace "α=" α λ _ →
trace "β=" β λ _ →
trace "M=" M λ _ →
trace "A=" A λ _ →
trace "B=" B λ _ →
trace "c=" c λ _ →
trace "s=" s λ _ →
(g ^ s) == (A · (α ^ c))
∧ (y ^ s) == (B · ((β / M) ^ c))
verify-individual-proof : (α β : CipherTextPart)(ix : Number)(π : JSValue) → Bool
verify-individual-proof α β ix π
= trace "m=" m λ _ →
trace "M=" M λ _ →
trace "commitmentA=" A λ _ →
trace "commitmentB=" B λ _ →
trace "challenge=" c λ _ →
trace "response=" s λ _ →
res
where
m = bignum ix
M = g ^ m
A = bigdec (π ·« "commitment" » ·« "A" »)
B = bigdec (π ·« "commitment" » ·« "B" »)
c = bigdec (π ·« "challenge" »)
s = bigdec (π ·« "response" »)
res = verify-chaum-pedersen α β M A B c s
-- Conform to HeliosV3 but it is too weak.
-- One should follow a "Strong Fiat Shamir" transformation
-- from interactive ZK proof to non-interactive ZK proofs.
-- Namely one should hash the statement as well.
--
-- SHA1(A0 + "," + B0 + "," + A1 + "," + B1 + ... + "Amax" + "," + Bmax)
hash-commitments : JSArray JSValue → BigI
hash-commitments πs =
fromHex $
trace-call "SHA1(commitments)=" SHA1 $
trace-call "commitments=" (join ",") $
decodeJSArray πs λ _ π →
(castString (π ·« "commitment" » ·« "A" »))
++ "," ++
(castString (π ·« "commitment" » ·« "B" »))
sum-challenges : JSArray JSValue → BigI
sum-challenges πs =
sumI $ decodeJSArray πs λ _ π → bigdec (π ·« "challenge" »)
verify-challenges : JSArray JSValue → Bool
verify-challenges πs =
trace "hash(commitments)=" h λ _ →
trace "sum(challenge)=" c λ _ →
h == c
where
h = hash-commitments πs
c = sum-challenges πs
verify-choice : (v : JSValue)(πs : JSArray JSValue) → Bool
verify-choice v πs =
trace "α=" α λ _ →
trace "β=" β λ _ →
verify-challenges πs
∧
and (decodeJSArray πs $ verify-individual-proof α β)
where
α = bigdec (v ·« "alpha" »)
β = bigdec (v ·« "beta" »)
verify-choices : (choices πs : JSArray JSValue) → Bool
verify-choices choices πs =
trace "TODO: check the array size of choices πs together election data" "" λ _ →
and $ decodeJSArray choices λ ix choice →
trace "verify choice " ix λ _ →
verify-choice choice (castJSArray (πs Array[ ix ]))
verify-answer : (answer : JSValue) → Bool
verify-answer answer =
trace "TODO: CHECK the overall_proof" "" λ _ →
verify-choices choices individual-proofs
where
choices = answer ·« "choices" »A
individual-proofs = answer ·« "individual_proofs" »A
overall-proof = answer ·« "overall_proof" »A
verify-answers : (answers : JSArray JSValue) → Bool
verify-answers answers =
and $ decodeJSArray answers λ ix a →
trace "verify answer " ix λ _ →
verify-answer a
{-
verify-election-hash =
""
-- notice the whitespaces and the alphabetical order of keys
-- {"email": ["[email protected]", "[email protected]"], "first_name": "Ben", "last_name": "Adida"}
computed_hash = base64.b64encode(hash.new(election.toJSON()).digest())[:-1]
computed_hash == vote.election_hash:
""
-}
-- module _ {-(election : JSValue)-} where
verify-ballot : (ballot : JSValue) → Bool
verify-ballot ballot =
trace "TODO: CHECK the election_hash: " election_hash λ _ →
trace "TODO: CHECK the election_uuid: " election_uuid λ _ →
verify-answers answers
where
answers = ballot ·« "answers" »A
election_hash = ballot ·« "election_hash" »
election_uuid = ballot ·« "election_uuid" »
verify-ballots : (ballots : JSArray JSValue) → Bool
verify-ballots ballots =
and $ decodeJSArray ballots λ ix ballot →
trace "verify ballot " ix λ _ →
verify-ballot ballot
-- Many checks are still missing!
verify-helios-election : (arg : JSValue) → Bool
verify-helios-election arg = trace "res=" res id
where
ed = arg ·« "election_data" »
bs = arg ·« "ballots" »A
pk = ed ·« "public_key" »
g = bigdec (pk ·« "g" »)
p = bigdec (pk ·« "p" »)
q = bigdec (pk ·« "q" »)
y = bigdec (pk ·« "y" »)
res =
trace "g=" g λ _ →
trace "p=" p λ _ →
trace "q=" q λ _ →
trace "y=" y λ _ →
HeliosVerifyV3.verify-ballots g p q y bs
srv : URI → JSProc
srv d =
recv d λ q →
send d (fromBool (verify-helios-election q))
end
-- Working around Agda.Primitive.lsuc being undefined
case_of_ : {A : Set} {B : Set} → A → (A → B) → B
case x of f = f x
main : JS!
main =
Process.argv >>= λ args →
case JSArray▹ListString args of λ {
(_node ∷ _run ∷ _test ∷ args') →
case args' of λ {
[] →
server "127.0.0.1" "1337" srv >>= λ uri →
Console.log (showURI uri)
; (arg ∷ args'') →
case args'' of λ {
[] →
let opts =
-- fromJSObject (fromObject (("encoding" , fromString "utf8") ∷ []))
-- nullJS
JSON-parse "{\"encoding\":\"utf8\"}"
in
Console.log ("readFile=" ++ arg) >>
FS.readFile arg opts >>== λ err dat →
Console.log ("readFile: err=" ++ JS.toString err) >>
Console.log (Bool▹String (verify-helios-election (JSON-parse (castString dat))))
; _ →
Console.log "usage"
}
}
; _ →
Console.log "usage"
}
-- -}
-- -}
-- -}
-- -}
-- -}
|
Update binds
|
Update binds
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
24e0a0189105b8f3f2766a604a1ad5423b51b77e
|
Parametric/Change/Derive.agda
|
Parametric/Change/Derive.agda
|
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Derive
{Base : Type.Structure}
(Const : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open ChangeType.Structure Base ΔBase
Structure : Set
Structure = ∀ {Γ Σ τ} →
Const Σ τ →
Terms (ΔContext Γ) Σ →
Terms (ΔContext Γ) (mapContext ΔType Σ) →
Term (ΔContext Γ) (ΔType τ)
module Structure (deriveConst : Structure) where
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
fit-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) Σ
fit-terms = weaken-terms Γ≼ΔΓ
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (mapContext ΔType Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • derive-terms ts
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (fit-terms ts) (derive-terms ts)
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Incrementalization as term-to-term transformation (Fig. 4g).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Derive
{Base : Type.Structure}
(Const : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open ChangeType.Structure Base ΔBase
-- Extension point: Incrementalization of fully applied primitives.
Structure : Set
Structure = ∀ {Γ Σ τ} →
Const Σ τ →
Terms (ΔContext Γ) Σ →
Terms (ΔContext Γ) (mapContext ΔType Σ) →
Term (ΔContext Γ) (ΔType τ)
module Structure (deriveConst : Structure) where
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
fit-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) Σ
fit-terms = weaken-terms Γ≼ΔΓ
-- In the paper, we transform "x" to "dx". Here, we work with
-- de Bruijn indices, so we have to manipulate the indices to
-- account for a bigger context after transformation.
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (mapContext ΔType Σ)
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive-terms {∅} ∅ = ∅
derive-terms {τ • Σ} (t • ts) = derive t • derive-terms ts
-- We provide: Incrementalization of arbitrary terms.
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive (const c ts) = deriveConst c (fit-terms ts) (derive-terms ts)
|
Document P.C.Derive.
|
Document P.C.Derive.
Old-commit-hash: 962425cf9bb190e1b8fb2c400bd9765180081dd0
|
Agda
|
mit
|
inc-lc/ilc-agda
|
8d4599155dc64db203782bdd39087df1a8014331
|
Popl14/Change/Term.agda
|
Popl14/Change/Term.agda
|
module Popl14.Change.Term where
-- Terms Calculus Popl14
--
-- Contents
-- - Term constructors
-- - Weakening on terms
-- - `fit`: weaken a term to its ΔContext
-- - diff-term, apply-term and their syntactic sugars
open import Data.Integer
open import Popl14.Syntax.Type public
open import Popl14.Syntax.Term public
open import Popl14.Change.Type public
import Parametric.Change.Term Const ΔBase as ChangeTerm
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
-- Sugars for diff-term and apply-term
infixl 6 _⊕_ _⊝_
_⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ
_⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ)
t ⊕ Δt = app (app apply-term Δt) t
s ⊝ t = app (app diff-term s) t
apply-base : ChangeTerm.ApplyStructure
apply-base {base-int} =
abs₂ (λ Δx x → add x Δx)
apply-base {base-bag} =
abs₂ (λ Δx x → union x Δx)
apply-term {base ι} = apply-base {ι}
apply-term {σ ⇒ τ} =
let
Δf = var (that (that this))
f = var (that this)
x = var this
in
-- Δf f x
abs (abs (abs
(app f x ⊕ app (app Δf x) (x ⊝ x))))
diff-base : ChangeTerm.DiffStructure
diff-base {base-int} =
abs₂ (λ x y → add x (minus y))
diff-base {base-bag} =
abs₂ (λ x y → union x (negate y))
diff-term {base ι} = diff-base {ι}
diff-term {σ ⇒ τ} =
let
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
in
-- g f x Δx
abs (abs (abs (abs
(app g (x ⊕ Δx) ⊝ app f x))))
|
module Popl14.Change.Term where
-- Terms Calculus Popl14
--
-- Contents
-- - Term constructors
-- - Weakening on terms
-- - `fit`: weaken a term to its ΔContext
-- - diff-term, apply-term and their syntactic sugars
open import Data.Integer
open import Popl14.Syntax.Type public
open import Popl14.Syntax.Term public
open import Popl14.Change.Type public
import Parametric.Change.Term Const ΔBase as ChangeTerm
diff-base : ChangeTerm.DiffStructure
diff-base {base-int} = abs₂ (λ x y → add x (minus y))
diff-base {base-bag} = abs₂ (λ x y → union x (negate y))
apply-base : ChangeTerm.ApplyStructure
apply-base {base-int} = abs₂ (λ Δx x → add x Δx)
apply-base {base-bag} = abs₂ (λ Δx x → union x Δx)
diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ)
apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ)
-- Sugars for diff-term and apply-term
infixl 6 _⊕_ _⊝_
_⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ
_⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ)
t ⊕ Δt = app (app apply-term Δt) t
s ⊝ t = app (app diff-term s) t
apply-term {base ι} = apply-base {ι}
apply-term {σ ⇒ τ} =
let
Δf = var (that (that this))
f = var (that this)
x = var this
in
-- Δf f x
abs (abs (abs
(app f x ⊕ app (app Δf x) (x ⊝ x))))
diff-term {base ι} = diff-base {ι}
diff-term {σ ⇒ τ} =
let
g = var (that (that (that this)))
f = var (that (that this))
x = var (that this)
Δx = var this
in
-- g f x Δx
abs (abs (abs (abs
(app g (x ⊕ Δx) ⊝ app f x))))
|
Move (apply|diff)-base to the top of the module.
|
Move (apply|diff)-base to the top of the module.
This commit separates the POPL14-specific code from the
language-independent code in this module. The following commits will
remove the language-independent code.
Old-commit-hash: 245a7b618b2ac811d28d702089482e9aed8b8425
|
Agda
|
mit
|
inc-lc/ilc-agda
|
c68a9b8870e9eaca8c1a746f2ec67e2c84d97fd5
|
Crypto/JS/BigI/CyclicGroup.agda
|
Crypto/JS/BigI/CyclicGroup.agda
|
{-# OPTIONS --without-K #-}
open import Type.Eq
open import FFI.JS using (JS[_]; return; Bool; _++_; _>>_)
open import FFI.JS.Check using (check!)
open import FFI.JS.BigI
open import Data.List.Base using (List; foldr)
open import Data.Two hiding (_==_)
open import Relation.Binary.PropositionalEquality
open import Algebra.Raw
open import Algebra.Group
-- TODO carry on a primality proof of p
module Crypto.JS.BigI.CyclicGroup (p : BigI) where
abstract
ℤ[_]★ : Set
ℤ[_]★ = BigI
private
ℤp★ : Set
ℤp★ = BigI
mod-p : BigI → ℤp★
mod-p x = mod x p
-- There are two ways to go from BigI to ℤp★: check and mod-p
-- Use check for untrusted input data and mod-p for internal
-- computation.
BigI▹ℤ[_]★ : BigI → JS[ ℤp★ ]
BigI▹ℤ[_]★ x =
-- Console.log "BigI▹ℤ[_]★" >>
check! "below modulus" (x <I p)
(λ _ → "Not below the modulus: p:" ++
toString p ++
" is less than x:" ++
toString x) >>
check! "strictcly positive" (x >I 0I)
(λ _ → "Should be strictly positive: " ++
toString x ++
" <= 0") >>
return x
repr : ℤp★ → BigI
repr x = x
1# : ℤp★
1# = 1I
1/_ : ℤp★ → ℤp★
1/ x = modInv x p
_^_ : ℤp★ → BigI → ℤp★
x ^ y = modPow x y p
_*_ _/_ : ℤp★ → ℤp★ → ℤp★
x * y = mod-p (multiply (repr x) (repr y))
x / y = x * 1/ y
instance
ℤ[_]★-Eq? : Eq? ℤp★
ℤ[_]★-Eq? = record
{ _==_ = _=='_
; ≡⇒== = ≡⇒=='
; ==⇒≡ = ==⇒≡' }
where
_=='_ : ℤp★ → ℤp★ → 𝟚
x ==' y = equals (repr x) (repr y)
postulate
≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y)
==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y
prod : List ℤp★ → ℤp★
prod = foldr _*_ 1#
mon-ops : Monoid-Ops ℤp★
mon-ops = _*_ , 1#
grp-ops : Group-Ops ℤp★
grp-ops = mon-ops , 1/_
postulate
grp-struct : Group-Struct grp-ops
grp : Group ℤp★
grp = grp-ops , grp-struct
module grp = Group grp
-- -}
-- -}
-- -}
-- -}
-- -}
|
{-# OPTIONS --without-K #-}
open import Type.Eq
open import FFI.JS using (JS[_]; return; _++_; _>>_)
open import FFI.JS.Check using (check!)
open import FFI.JS.BigI
open import Data.List.Base using (List; foldr)
open import Data.Two hiding (_==_)
open import Relation.Binary.PropositionalEquality
open import Algebra.Raw
open import Algebra.Group
-- TODO carry on a primality proof of p
module Crypto.JS.BigI.CyclicGroup (p : BigI) where
abstract
ℤ[_]★ : Set
ℤ[_]★ = BigI
private
ℤp★ : Set
ℤp★ = BigI
mod-p : BigI → ℤp★
mod-p x = mod x p
-- There are two ways to go from BigI to ℤp★: check and mod-p
-- Use check for untrusted input data and mod-p for internal
-- computation.
BigI▹ℤ[_]★ : BigI → JS[ ℤp★ ]
BigI▹ℤ[_]★ x =
-- Console.log "BigI▹ℤ[_]★" >>
check! "below modulus" (x <I p)
(λ _ → "Not below the modulus: p:" ++
toString p ++
" is less than x:" ++
toString x) >>
check! "strictcly positive" (x >I 0I)
(λ _ → "Should be strictly positive: " ++
toString x ++
" <= 0") >>
return x
repr : ℤp★ → BigI
repr x = x
1# : ℤp★
1# = 1I
1/_ : ℤp★ → ℤp★
1/ x = modInv x p
_^_ : ℤp★ → BigI → ℤp★
x ^ y = modPow x y p
_*_ _/_ : ℤp★ → ℤp★ → ℤp★
x * y = mod-p (multiply (repr x) (repr y))
x / y = x * 1/ y
instance
ℤ[_]★-Eq? : Eq? ℤp★
ℤ[_]★-Eq? = record
{ _==_ = _=='_
; ≡⇒== = ≡⇒=='
; ==⇒≡ = ==⇒≡' }
where
_=='_ : ℤp★ → ℤp★ → 𝟚
x ==' y = equals (repr x) (repr y)
postulate
≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y)
==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y
prod : List ℤp★ → ℤp★
prod = foldr _*_ 1#
mon-ops : Monoid-Ops ℤp★
mon-ops = _*_ , 1#
grp-ops : Group-Ops ℤp★
grp-ops = mon-ops , 1/_
postulate
grp-struct : Group-Struct grp-ops
grp : Group ℤp★
grp = grp-ops , grp-struct
module grp = Group grp
-- -}
-- -}
-- -}
-- -}
-- -}
|
remove useless import
|
CyclicGroup: remove useless import
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
3a1143b9db99b9ec7e1431f08aab91f27cf9bd7a
|
Postulate/Extensionality.agda
|
Postulate/Extensionality.agda
|
module Postulate.Extensionality where
-- POSTULATE EXTENSIONALITY
--
-- Justification on Agda mailing list:
-- http://permalink.gmane.org/gmane.comp.lang.agda/2343
open import Relation.Binary.PropositionalEquality
postulate ext : ∀ {a b} → Extensionality a b
-- Convenience of using extensionality 3 times in a row
-- (using it twice in a row is moderately tolerable)
ext³ : ∀
{A : Set}
{B : A → Set}
{C : (a : A) → B a → Set }
{D : (a : A) → (b : B a) → C a b → Set}
{f g : (a : A) → (b : B a) → (c : C a b) → D a b c} →
((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g
ext³ fabc=gabc = ext (λ a → ext (λ b → ext (λ c → fabc=gabc a b c)))
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Postulate extensionality of functions.
--
-- Justification on Agda mailing list:
-- http://permalink.gmane.org/gmane.comp.lang.agda/2343
------------------------------------------------------------------------
module Postulate.Extensionality where
open import Relation.Binary.PropositionalEquality
postulate ext : ∀ {a b} → Extensionality a b
-- Convenience of using extensionality 3 times in a row
-- (using it twice in a row is moderately tolerable)
ext³ : ∀
{A : Set}
{B : A → Set}
{C : (a : A) → B a → Set }
{D : (a : A) → (b : B a) → C a b → Set}
{f g : (a : A) → (b : B a) → (c : C a b) → D a b c} →
((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g
ext³ fabc=gabc = ext (λ a → ext (λ b → ext (λ c → fabc=gabc a b c)))
|
Document Postulate.Extensionality regularly.
|
Document Postulate.Extensionality regularly.
Old-commit-hash: 35222e92088dbd2313ec7252e50cd68e85b340bf
|
Agda
|
mit
|
inc-lc/ilc-agda
|
e7d0ffc6976dc3270e58e80326cf78dc7e9dcb2e
|
flat-funs.agda
|
flat-funs.agda
|
module flat-funs where
open import Data.Nat
import Level as L
open import composable
open import vcomp
record FlatFuns {t} (T : Set t) : Set (L.suc t) where
constructor mk
field
`⊤ : T
`Bit : T
_`×_ : T → T → T
_`^_ : T → ℕ → T
_`→_ : T → T → Set
`Vec : T → ℕ → T
`Vec A n = A `^ n
`Bits : ℕ → T
`Bits n = `Bit `^ n
infixr 2 _`×_
infixl 2 _`^_
infix 0 _`→_
record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where
constructor mk
open FlatFuns ♭Funs
field
idO : ∀ {A} → A `→ A
isComposable : Composable _`→_
isVComposable : VComposable _`×_ _`→_
-- Fanout
_&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
fst : ∀ {A B} → A `× B `→ A
snd : ∀ {A B} → A `× B `→ B
open Composable isComposable
open VComposable isVComposable
<_,_> : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
< f , g > = f &&& g
<_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D)
< f × g > = f *** g
open Composable isComposable public
open VComposable isVComposable public
open import Data.Unit using (⊤)
open import Data.Vec
open import Data.Bits
open import Data.Product
open import Function
fun♭Funs : FlatFuns Set
fun♭Funs = mk ⊤ Bit _×_ Vec (λ A B → A → B)
bitsFun♭Funs : FlatFuns ℕ
bitsFun♭Funs = mk 0 1 _+_ _*_ (λ i o → Bits i → Bits o)
fun♭Ops : FlatFunsOps fun♭Funs
fun♭Ops = mk id funComp funVComp _&&&_ proj₁ proj₂
where
_&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C
(f &&& g) x = (f x , g x)
bitsFun♭Ops : FlatFunsOps bitsFun♭Funs
bitsFun♭Ops = mk id bitsFunComp bitsFunVComp _&&&_ (λ {A} → take A) (λ {A} → drop A)
where
open FlatFuns bitsFun♭Funs
_&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
(f &&& g) x = (f x ++ g x)
×-♭Funs : ∀ {s t} {S : Set s} {T : Set t} → FlatFuns S → FlatFuns T → FlatFuns (S × T)
×-♭Funs funs-S funs-T = ?
where module S = FlatFuns funs-S
module T = FlatFuns funs-T
×-♭Ops : ∀ {s t} {S : Set s} {T : Set t} {funs-S : FlatFuns S} {funs-T : FlatFuns T}
→ FlatFunsOps funs-S → FlatFunsOps funs-T
→ FlatFunsOps (×-♭Funs funs-S funs-T)
×-♭Ops ops-S ops-T = ?
where module S = FlatFunsOps ops-S
module T = FlatFunsOps ops-T
|
module flat-funs where
open import Data.Nat
open import Data.Bits using (Bits)
import Level as L
import Function as F
open import composable
open import vcomp
open import universe
record FlatFuns {t} (T : Set t) : Set (L.suc t) where
constructor mk
field
universe : Universe T
_`→_ : T → T → Set
infix 0 _`→_
open Universe universe public
record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where
constructor mk
open FlatFuns ♭Funs
field
idO : ∀ {A} → A `→ A
_>>>_ : ∀ {A B C} → (A `→ B) → (B `→ C) → (A `→ C)
_***_ : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D)
-- Fanout
_&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
fst : ∀ {A B} → A `× B `→ A
snd : ∀ {A B} → A `× B `→ B
constBits : ∀ {n} → Bits n → `⊤ `→ `Bits n
<_,_> : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
< f , g > = f &&& g
<_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D)
< f × g > = f *** g
open import Data.Unit using (⊤)
open import Data.Vec
open import Data.Bits
open import Data.Fin using (Fin) renaming (_+_ to _+ᶠ_)
open import Data.Product renaming (zip to ×-zip; map to ×-map)
open import Function
-→- : Set → Set → Set
-→- A B = A → B
_→ᶠ_ : ℕ → ℕ → Set
_→ᶠ_ i o = Fin i → Fin o
mapArr : ∀ {s t} {S : Set s} {T : Set t} (F G : T → S)
→ (S → S → Set) → (T → T → Set)
mapArr F G _`→_ A B = F A `→ G B
fun♭Funs : FlatFuns Set
fun♭Funs = mk Set-U -→-
bitsFun♭Funs : FlatFuns ℕ
bitsFun♭Funs = mk Bits-U _→ᵇ_
finFun♭Funs : FlatFuns ℕ
finFun♭Funs = mk Fin-U _→ᶠ_
fun♭Ops : FlatFunsOps fun♭Funs
fun♭Ops = mk id (λ f g x → g (f x)) (λ f g → ×-map f g) _&&&_ proj₁ proj₂ const
where
_&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C
(f &&& g) x = (f x , g x)
bitsFun♭Ops : FlatFunsOps bitsFun♭Funs
bitsFun♭Ops = mk id (λ f g → g ∘ f) (VComposable._***_ bitsFunVComp) _&&&_ (λ {A} → take A)
(λ {A} → drop A) (λ xs _ → xs ++ [] {- ugly? -})
where
open FlatFuns bitsFun♭Funs
_&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
(f &&& g) x = (f x ++ g x)
×-♭Funs : ∀ {s t} {S : Set s} {T : Set t} → FlatFuns S → FlatFuns T → FlatFuns (S × T)
×-♭Funs funs-S funs-T = mk (×-U S.universe T.universe)
(λ { (A₀ , A₁) (B₀ , B₁) → (A₀ S.`→ B₀) × (A₁ T.`→ B₁) })
where module S = FlatFuns funs-S
module T = FlatFuns funs-T
×⊤-♭Funs : ∀ {s} {S : Set s} → FlatFuns S → FlatFuns ⊤ → FlatFuns S
×⊤-♭Funs funs-S funs-T = mk S.universe
(λ A B → (A S.`→ B) × (_ T.`→ _))
where module S = FlatFuns funs-S
module T = FlatFuns funs-T
×-♭Ops : ∀ {s t} {S : Set s} {T : Set t} {funs-S : FlatFuns S} {funs-T : FlatFuns T}
→ FlatFunsOps funs-S → FlatFunsOps funs-T
→ FlatFunsOps (×-♭Funs funs-S funs-T)
×-♭Ops ops-S ops-T = mk (S.idO , T.idO) (×-zip S._>>>_ T._>>>_) (×-zip S._***_ T._***_)
(×-zip S._&&&_ T._&&&_) (S.fst , T.fst) (S.snd , T.snd)
(S.constBits &&& T.constBits)
where module S = FlatFunsOps ops-S
module T = FlatFunsOps ops-T
open FlatFunsOps fun♭Ops
×⊤-♭Ops : ∀ {s} {S : Set s} {funs-S : FlatFuns S} {funs-⊤ : FlatFuns ⊤}
→ FlatFunsOps funs-S → FlatFunsOps funs-⊤
→ FlatFunsOps (×⊤-♭Funs funs-S funs-⊤)
×⊤-♭Ops ops-S ops-⊤ = mk (S.idO , T.idO) (×-zip S._>>>_ T._>>>_) (×-zip S._***_ T._***_)
(×-zip S._&&&_ T._&&&_) (S.fst , T.fst) (S.snd , T.snd)
(S.constBits &&& T.constBits)
where module S = FlatFunsOps ops-S
module T = FlatFunsOps ops-⊤
open FlatFunsOps fun♭Ops
constFuns : Set → FlatFuns ⊤
constFuns A = mk ⊤-U (λ _ _ → A)
timeOps : FlatFunsOps (constFuns ℕ)
timeOps = mk 0 _+_ _⊔_ _⊔_ 0 0 (const 0)
spaceOps : FlatFunsOps (constFuns ℕ)
spaceOps = mk 0 _+_ _+_ _+_ 0 0 (λ {n} _ → n)
time×spaceOps : FlatFunsOps (constFuns (ℕ × ℕ))
time×spaceOps = ×⊤-♭Ops timeOps spaceOps
|
put the type interface in the universe module
|
flat-funs: put the type interface in the universe module
|
Agda
|
bsd-3-clause
|
crypto-agda/crypto-agda
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.