commit
stringlengths
40
40
old_file
stringlengths
2
205
new_file
stringlengths
2
205
old_contents
stringlengths
0
32.9k
new_contents
stringlengths
1
38.9k
subject
stringlengths
3
9.4k
message
stringlengths
6
9.84k
lang
stringlengths
3
13
license
stringclasses
13 values
repos
stringlengths
6
115k
785dddce82b3dc294f8d52a3a8a96b64366b1ac4
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit module Structure where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
Remove more
Remove more No Structure in Base. Old-commit-hash: 81cee315c1ade9b842f0400fbc2bd215a189e8dc
Agda
mit
inc-lc/ilc-agda
2aa331ecc397f402c621e7b4b53886eb5ca53e91
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x) , abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y)) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
Use HOAS-enabled helpers for nested abstractions.
Use HOAS-enabled helpers for nested abstractions. Old-commit-hash: f5006b448dcc30a8ff103cf5de501e945e14faa1
Agda
mit
inc-lc/ilc-agda
24ce7b62d29582982f0f0c2694ebd10a473113aa
Game/IND-CCA2.agda
Game/IND-CCA2.agda
{-# OPTIONS --without-K #-} open import Type open import Data.Bit open import Data.Maybe open import Data.Product open import Data.Unit open import Data.Nat.NP open import Rat open import Explore.Type open import Explore.Explorable open import Explore.Product open Operators open import Relation.Binary.PropositionalEquality module Game.IND-CCA2 (PubKey : ★) (SecKey : ★) (Message : ★) (CipherText : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (KeyGen : Rₖ → PubKey × SecKey) (Enc : PubKey → Message → Rₑ → CipherText) (Dec : SecKey → CipherText → Message) where open import Game.CCA-Common Message CipherText Adv : ★ Adv = Rₐ → PubKey → Strategy ((Message × Message) × (CipherText → Strategy Bit)) {- Valid-Adv : Adv → Set Valid-Adv adv = ∀ {rₐ rₓ pk c} → Valid (λ x → x ≢ c) {!!} -} R : ★ R = Rₐ × Rₖ × Rₑ Game : ★ Game = Adv → R → Bit ⅁ : Bit → Game ⅁ b m (rₐ , rₖ , rₑ) with KeyGen rₖ ... | pk , sk = b′ where open Eval Dec sk ev = eval (m rₐ pk) mb = proj (proj₁ ev) b d = proj₂ ev c = Enc pk mb rₑ b′ = eval (d c) module Advantage (μₑ : Explore₀ Rₑ) (μₖ : Explore₀ Rₖ) (μₐ : Explore₀ Rₐ) where μR : Explore₀ R μR = μₐ ×ᵉ μₖ ×ᵉ μₑ module μR = FromExplore₀ μR run : Bit → Adv → ℕ run b adv = μR.count (⅁ b adv) Advantage : Adv → ℕ Advantage adv = dist (run 0b adv) (run 1b adv) Advantageℚ : Adv → ℚ Advantageℚ adv = Advantage adv / μR.Card -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type open import Data.Bit open import Data.Maybe open import Data.Product open import Data.Unit open import Data.Nat.NP --open import Rat open import Explore.Type open import Explore.Explorable open import Explore.Product open Operators open import Relation.Binary.PropositionalEquality module Game.IND-CCA2 (PubKey : ★) (SecKey : ★) (Message : ★) (CipherText : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (KeyGen : Rₖ → PubKey × SecKey) (Enc : PubKey → Message → Rₑ → CipherText) (Dec : SecKey → CipherText → Message) where open import Game.CCA-Common Message CipherText Adv : ★ Adv = Rₐ → PubKey → Strategy ((Message × Message) × (CipherText → Strategy Bit)) {- Valid-Adv : Adv → Set Valid-Adv adv = ∀ {rₐ rₓ pk c} → Valid (λ x → x ≢ c) {!!} -} R : ★ R = Rₐ × Rₖ × Rₑ Game : ★ Game = Adv → R → Bit ⅁ : Bit → Game ⅁ b m (rₐ , rₖ , rₑ) with KeyGen rₖ ... | pk , sk = b′ where open Eval Dec sk ev = eval (m rₐ pk) mb = proj (proj₁ ev) b d = proj₂ ev c = Enc pk mb rₑ b′ = eval (d c) module Advantage (μₑ : Explore₀ Rₑ) (μₖ : Explore₀ Rₖ) (μₐ : Explore₀ Rₐ) where μR : Explore₀ R μR = μₐ ×ᵉ μₖ ×ᵉ μₑ module μR = FromExplore₀ μR run : Bit → Adv → ℕ run b adv = μR.count (⅁ b adv) Advantage : Adv → ℕ Advantage adv = dist (run 0b adv) (run 1b adv) --Advantageℚ : Adv → ℚ --Advantageℚ adv = Advantage adv / μR.Card -- -} -- -} -- -} -- -}
Hide the Rat code
IND-CCA2: Hide the Rat code
Agda
bsd-3-clause
crypto-agda/crypto-agda
16f8a95227efdacdb93599ca7b8ddfd847c2e47a
Parametric/Denotation/Value.agda
Parametric/Denotation/Value.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Value domains for languages described in Plotkin style ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Denotation.Value (Base : Type.Structure) where open import Base.Denotation.Notation open Type.Structure Base Structure : Set₁ Structure = Base → Set module Structure (⟦_⟧Base : Structure) where ⟦_⟧Type : Type -> Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type open import Base.Denotation.Environment Type ⟦_⟧Type public
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for standard evaluation (Def. 3.1 and 3.2, Fig. 4c and 4f). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Denotation.Value (Base : Type.Structure) where open import Base.Denotation.Notation open Type.Structure Base -- Extension point: Values for base types. Structure : Set₁ Structure = Base → Set module Structure (⟦_⟧Base : Structure) where -- We provide: Values for arbitrary types. ⟦_⟧Type : Type -> Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type -- This means: Overload ⟦_⟧ to mean ⟦_⟧Type. meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- We also provide: Environments of such values. open import Base.Denotation.Environment Type ⟦_⟧Type public
Document P.D.Value.
Document P.D.Value. Old-commit-hash: bfaab88fbd6365ff0b9046dd999ccd1362c526d6
Agda
mit
inc-lc/ilc-agda
a2f7958b6a6e7245442d1e150092aacdc7c8707d
examples/Propositional.agda
examples/Propositional.agda
module Propositional where open import Data.Nat open import Relation.Binary.PropositionalEquality open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open ≡-Reasoning -------------------------------------------------------------------------------- -- Some easy lemmas -------------------------------------------------------------------------------- +-zero : ∀ a → a + zero ≡ a +-zero zero = refl +-zero (suc a) rewrite +-zero a = refl +-suc : ∀ a b → a + suc b ≡ suc (a + b) +-suc zero b = refl +-suc (suc a) b rewrite +-suc a b = refl +-assoc : ∀ a b c → a + b + c ≡ a + (b + c) +-assoc zero b c = refl +-assoc (suc a) b c rewrite +-assoc a b c = refl -------------------------------------------------------------------------------- -- Proofs by equational reasoning -------------------------------------------------------------------------------- -- commutativity of addition proved traditionally +-comm₁ : ∀ a b → a + b ≡ b + a +-comm₁ zero b = sym (+-zero b) +-comm₁ (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong suc (+-comm₁ a b) ⟩ suc (b + a) ≡⟨ sym (+-suc b a) ⟩ b + suc a ∎ -- commutativity of addition proved with holes +-comm : ∀ a b → a + b ≡ b + a +-comm zero b = sym (+-zero b) +-comm (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong! (+-comm a b) ⟩ suc (b + a) ≡⟨ cong! (+-suc b a) ⟩ b + suc a ∎ -- distributivity of multiplication over addition proved traditionally *-distrib-+₁ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+₁ zero b c = refl *-distrib-+₁ (suc a) b c = b + c + a * (b + c) ≡⟨ cong (λ h → b + c + h) (*-distrib-+₁ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ sym (+-assoc (b + c) (a * b) (a * c)) ⟩ ((b + c) + a * b) + a * c ≡⟨ cong (λ h → h + a * c) (+-assoc b c (a * b)) ⟩ (b + (c + a * b)) + a * c ≡⟨ cong (λ h → (b + h) + a * c) (+-comm c (a * b)) ⟩ (b + (a * b + c)) + a * c ≡⟨ cong (λ h → h + a * c) (sym (+-assoc b (a * b) c)) ⟩ ((b + a * b) + c) + a * c ≡⟨ +-assoc (b + a * b) c (a * c) ⟩ (b + a * b) + (c + a * c) ∎ -- distributivity of multiplication over addition proved with holes *-distrib-+ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+ zero b c = refl *-distrib-+ (suc a) b c = b + c + ⌞ a * (b + c) ⌟ ≡⟨ cong! (*-distrib-+ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ cong! (+-assoc (b + c) (a * b) (a * c)) ⟩ ⌞ (b + c) + a * b ⌟ + a * c ≡⟨ cong! (+-assoc b c (a * b)) ⟩ (b + ⌞ c + a * b ⌟) + a * c ≡⟨ cong! (+-comm c (a * b)) ⟩ ⌞ b + (a * b + c) ⌟ + a * c ≡⟨ cong! (+-assoc b (a * b) c) ⟩ ⌞ ((b + a * b) + c) + a * c ⌟ ≡⟨ cong! (+-assoc (b + a * b) c (a * c)) ⟩ (b + a * b) + (c + a * c) ∎
module Propositional where open import Data.Nat open import Relation.Binary.PropositionalEquality open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open ≡-Reasoning -------------------------------------------------------------------------------- -- Some easy lemmas -------------------------------------------------------------------------------- +-zero : ∀ a → a + zero ≡ a +-zero zero = refl +-zero (suc a) rewrite +-zero a = refl +-suc : ∀ a b → a + suc b ≡ suc (a + b) +-suc zero b = refl +-suc (suc a) b rewrite +-suc a b = refl +-assoc : ∀ a b c → a + b + c ≡ a + (b + c) +-assoc zero b c = refl +-assoc (suc a) b c rewrite +-assoc a b c = refl -------------------------------------------------------------------------------- -- Proofs by equational reasoning -------------------------------------------------------------------------------- -- commutativity of addition proved traditionally +-comm₁ : ∀ a b → a + b ≡ b + a +-comm₁ zero b = sym (+-zero b) +-comm₁ (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong suc (+-comm₁ a b) ⟩ suc (b + a) ≡⟨ sym (+-suc b a) ⟩ b + suc a ∎ -- commutativity of addition proved with holes +-comm : ∀ a b → a + b ≡ b + a +-comm zero b = sym (+-zero b) +-comm (suc a) b = suc ⌞ a + b ⌟ ≡⟨ cong! (+-comm a b) ⟩ suc (b + a) ≡⟨ cong! (+-suc b a) ⟩ b + suc a ∎ -- distributivity of multiplication over addition proved traditionally *-distrib-+₁ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+₁ zero b c = refl *-distrib-+₁ (suc a) b c = b + c + a * (b + c) ≡⟨ cong (λ h → b + c + h) (*-distrib-+₁ a b c) ⟩ (b + c) + (a * b + a * c) ≡⟨ sym (+-assoc (b + c) (a * b) (a * c)) ⟩ ((b + c) + a * b) + a * c ≡⟨ cong (λ h → h + a * c) (+-assoc b c (a * b)) ⟩ (b + (c + a * b)) + a * c ≡⟨ cong (λ h → (b + h) + a * c) (+-comm c (a * b)) ⟩ (b + (a * b + c)) + a * c ≡⟨ cong (λ h → h + a * c) (sym (+-assoc b (a * b) c)) ⟩ ((b + a * b) + c) + a * c ≡⟨ +-assoc (b + a * b) c (a * c) ⟩ (b + a * b) + (c + a * c) ∎ -- distributivity of multiplication over addition proved with holes *-distrib-+ : ∀ a b c → a * (b + c) ≡ a * b + a * c *-distrib-+ zero b c = refl *-distrib-+ (suc a) b c = b + c + ⌞ a * (b + c) ⌟ ≡⟨ cong! (*-distrib-+ a b c) ⟩ ⌞ (b + c) + (a * b + a * c) ⌟ ≡⟨ cong! (+-assoc (b + c) (a * b) (a * c)) ⟩ ⌞ (b + c) + a * b ⌟ + a * c ≡⟨ cong! (+-assoc b c (a * b)) ⟩ (b + ⌞ c + a * b ⌟) + a * c ≡⟨ cong! (+-comm c (a * b)) ⟩ ⌞ b + (a * b + c) ⌟ + a * c ≡⟨ cong! (+-assoc b (a * b) c) ⟩ ⌞ ((b + a * b) + c) + a * c ⌟ ≡⟨ cong! (+-assoc (b + a * b) c (a * c)) ⟩ (b + a * b) + (c + a * c) ∎
Add a hole in the examples that's strictly unnecessary
Add a hole in the examples that's strictly unnecessary ... but potentially confusing if it isn't there
Agda
mit
bch29/agda-holes
48d1be2bb4bb61634b15fbd0cff064c02be1f4f9
Base/Syntax/Context.agda
Base/Syntax/Context.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. -- ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. -- ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
Comment on handling of contexts
Comment on handling of contexts Old-commit-hash: 0bfc0dfdc024921016f8df0d8252aa20f5f0f8d6
Agda
mit
inc-lc/ilc-agda
7ec8bed818d248b395b4b0b2c2d2f21361f940bc
Thesis/LangOps.agda
Thesis/LangOps.agda
module Thesis.LangOps where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality oplusτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ ⇒ τ) ominusτo : ∀ {Γ} τ → Term Γ (τ ⇒ τ ⇒ Δt τ) onilτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ) onilτo τ = abs (app₂ (ominusτo τ) (var this) (var this)) -- Do NOT try to read this, such terms are write-only. But the behavior is -- specified to be oplusτ-equiv and ominusτ-equiv. oplusτo (σ ⇒ τ) = abs (abs (abs (app₂ (oplusτo τ) (app (var (that (that this))) (var this)) (app₂ (var (that this)) (var this) (app (onilτo σ) (var this)))))) oplusτo unit = abs (abs (const unit)) oplusτo int = const plus oplusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (oplusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (oplusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) oplusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const linj) (app₂ (oplusτo σ) (var (that (that this))) (var this)))) (abs (app (const linj) (var (that (that this))))))) (abs (var this)))) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const rinj) (var (that (that this))))) (abs (app (const rinj) (app₂ (oplusτo τ) (var (that (that this))) (var this)))))) (abs (var this)))))) ominusτo (σ ⇒ τ) = abs (abs (abs (abs (app₂ (ominusτo τ) (app (var (that (that (that this)))) (app₂ (oplusτo σ) (var (that this)) (var this))) (app (var (that (that this))) (var (that this))))))) ominusτo unit = abs (abs (const unit)) ominusτo int = const minus ominusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (ominusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (ominusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) ominusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app (const linj) (app (const linj) (app₂ (ominusτo σ) (var (that this)) (var this))))) (abs (app (const rinj) (var (that (that (that this)))))))) (abs (app₃ (const match) (var (that this)) (abs (app (const rinj) (var (that (that (that this)))))) (abs (app (const linj) (app (const rinj) (app₂ (ominusτo τ) (var (that this)) (var this))))))))) oplusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ a da → ⟦ oplusτo τ ⟧Term ρ a da ≡ a ⊕ da ominusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ b a → ⟦ ominusτo τ ⟧Term ρ b a ≡ b ⊝ a oplusτ-equiv-ext : ∀ τ Γ → ⟦ oplusτo {Γ} τ ⟧Term ≡ λ ρ → _⊕_ oplusτ-equiv-ext τ _ = ext³ (λ ρ a da → oplusτ-equiv _ ρ τ a da) ominusτ-equiv-ext : ∀ τ Γ → ⟦ ominusτo {Γ} τ ⟧Term ≡ λ ρ → _⊝_ ominusτ-equiv-ext τ _ = ext³ (λ ρ a da → ominusτ-equiv _ ρ τ a da) oplusτ-equiv Γ ρ (σ ⇒ τ) f df = ext (λ a → lemma a) where module _ (a : ⟦ σ ⟧Type) where ρ′ = a • df • f • ρ ρ′′ = a • ρ′ lemma : ⟦ oplusτo τ ⟧Term ρ′ (f a) (df a (⟦ ominusτo σ ⟧Term ρ′′ a a)) ≡ f a ⊕ df a (nil a) lemma rewrite ominusτ-equiv _ ρ′′ σ a a | oplusτ-equiv _ ρ′ τ (f a) (df a (nil a)) = refl oplusτ-equiv Γ ρ unit tt tt = refl oplusτ-equiv Γ ρ int a da = refl oplusτ-equiv Γ ρ (pair σ τ) (a , b) (da , db) rewrite oplusτ-equiv _ ((da , db) • (a , b) • ρ) σ a da | oplusτ-equiv _ ((da , db) • (a , b) • ρ) τ b db = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₁ dx)) rewrite oplusτ-equiv-ext σ (Δt σ • sum (Δt σ) (Δt τ) • σ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₂ dy)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₁ dx)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₂ dy)) rewrite oplusτ-equiv-ext τ (Δt τ • sum (Δt σ) (Δt τ) • τ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) = refl ominusτ-equiv Γ ρ (σ ⇒ τ) g f = ext (λ a → ext (lemma a)) where module _ (a : ⟦ σ ⟧Type) (da : Chτ σ) where ρ′ = da • a • f • g • ρ lemma : ⟦ ominusτo τ ⟧Term (da • a • f • g • ρ) (g (⟦ oplusτo σ ⟧Term (da • a • f • g • ρ) a da)) (f a) ≡ g (a ⊕ da) ⊝ f a lemma rewrite oplusτ-equiv _ ρ′ σ a da | ominusτ-equiv _ ρ′ τ (g (a ⊕ da)) (f a) = refl ominusτ-equiv Γ ρ unit tt tt = refl ominusτ-equiv Γ ρ int b a = refl ominusτ-equiv Γ ρ (pair σ τ) (a2 , b2) (a1 , b1) rewrite ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) σ a2 a1 | ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) τ b2 b1 = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ x₁) rewrite ominusτ-equiv-ext σ (σ • σ • sum σ τ • sum σ τ • Γ) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ x) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) rewrite ominusτ-equiv-ext τ (τ • τ • sum σ τ • sum σ τ • Γ) = refl
module Thesis.LangOps where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality oplusτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ ⇒ τ) ominusτo : ∀ {Γ} τ → Term Γ (τ ⇒ τ ⇒ Δt τ) onilτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ) onilτo τ = abs (app₂ (ominusτo τ) (var this) (var this)) -- Do NOT try to read this, such terms are write-only. But the behavior is -- specified to be oplusτ-equiv and ominusτ-equiv. oplusτo (σ ⇒ τ) = abs (abs (abs (app₂ (oplusτo τ) (app (var (that (that this))) (var this)) (app₂ (var (that this)) (var this) (app (onilτo σ) (var this)))))) oplusτo unit = abs (abs (const unit)) oplusτo int = const plus oplusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (oplusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (oplusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) oplusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const linj) (app₂ (oplusτo σ) (var (that (that this))) (var this)))) (abs (app (const linj) (var (that (that this))))))) (abs (var this)))) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const rinj) (var (that (that this))))) (abs (app (const rinj) (app₂ (oplusτo τ) (var (that (that this))) (var this)))))) (abs (var this)))))) ominusτo (σ ⇒ τ) = abs (abs (abs (abs (app₂ (ominusτo τ) (app (var (that (that (that this)))) (app₂ (oplusτo σ) (var (that this)) (var this))) (app (var (that (that this))) (var (that this))))))) ominusτo unit = abs (abs (const unit)) ominusτo int = const minus ominusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (ominusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (ominusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) ominusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app (const linj) (app (const linj) (app₂ (ominusτo σ) (var (that this)) (var this))))) (abs (app (const rinj) (var (that (that (that this)))))))) (abs (app₃ (const match) (var (that this)) (abs (app (const rinj) (var (that (that (that this)))))) (abs (app (const linj) (app (const rinj) (app₂ (ominusτo τ) (var (that this)) (var this))))))))) oplusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ a da → ⟦ oplusτo τ ⟧Term ρ a da ≡ a ⊕ da ominusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ b a → ⟦ ominusτo τ ⟧Term ρ b a ≡ b ⊝ a oplusτ-equiv-ext : ∀ τ Γ → ⟦ oplusτo {Γ} τ ⟧Term ≡ λ ρ → _⊕_ oplusτ-equiv-ext τ _ = ext³ (λ ρ a da → oplusτ-equiv _ ρ τ a da) ominusτ-equiv-ext : ∀ τ Γ → ⟦ ominusτo {Γ} τ ⟧Term ≡ λ ρ → _⊝_ ominusτ-equiv-ext τ _ = ext³ (λ ρ a da → ominusτ-equiv _ ρ τ a da) oplusτ-equiv Γ ρ (σ ⇒ τ) f df = ext (λ a → lemma a) where module _ (a : ⟦ σ ⟧Type) where ρ′ = a • df • f • ρ ρ′′ = a • ρ′ lemma : ⟦ oplusτo τ ⟧Term ρ′ (f a) (df a (⟦ ominusτo σ ⟧Term ρ′′ a a)) ≡ f a ⊕ df a (nil a) lemma rewrite ominusτ-equiv _ ρ′′ σ a a | oplusτ-equiv _ ρ′ τ (f a) (df a (nil a)) = refl oplusτ-equiv Γ ρ unit tt tt = refl oplusτ-equiv Γ ρ int a da = refl oplusτ-equiv Γ ρ (pair σ τ) (a , b) (da , db) rewrite oplusτ-equiv _ ((da , db) • (a , b) • ρ) σ a da | oplusτ-equiv _ ((da , db) • (a , b) • ρ) τ b db = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₁ dx)) rewrite oplusτ-equiv-ext σ (Δt σ • sum (Δt σ) (Δt τ) • σ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₂ dy)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₁ dx)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₂ dy)) rewrite oplusτ-equiv-ext τ (Δt τ • sum (Δt σ) (Δt τ) • τ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) = refl ominusτ-equiv Γ ρ (σ ⇒ τ) g f = ext (λ a → ext (lemma a)) where module _ (a : ⟦ σ ⟧Type) (da : Chτ σ) where ρ′ = da • a • f • g • ρ lemma : ⟦ ominusτo τ ⟧Term (da • a • f • g • ρ) (g (⟦ oplusτo σ ⟧Term (da • a • f • g • ρ) a da)) (f a) ≡ g (a ⊕ da) ⊝ f a lemma rewrite oplusτ-equiv _ ρ′ σ a da | ominusτ-equiv _ ρ′ τ (g (a ⊕ da)) (f a) = refl ominusτ-equiv Γ ρ unit tt tt = refl ominusτ-equiv Γ ρ int b a = refl ominusτ-equiv Γ ρ (pair σ τ) (a2 , b2) (a1 , b1) rewrite ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) σ a2 a1 | ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) τ b2 b1 = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ x₁) rewrite ominusτ-equiv-ext σ (σ • σ • sum σ τ • sum σ τ • Γ) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ x) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) rewrite ominusτ-equiv-ext τ (τ • τ • sum σ τ • sum σ τ • Γ) = refl -- Proved these lemmas to show them in thesis. oplusτ-equiv-term : ∀ dΓ (dρ : ⟦ dΓ ⟧Context) τ t dt → ⟦ app₂ (oplusτo τ) t dt ⟧Term dρ ≡ ⟦ t ⟧Term dρ ⊕ ⟦ dt ⟧Term dρ oplusτ-equiv-term dΓ dρ τ t dt = oplusτ-equiv dΓ dρ τ (⟦ t ⟧Term dρ) (⟦ dt ⟧Term dρ) ominusτ-equiv-term : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ t2 t1 → ⟦ app₂ (ominusτo τ) t2 t1 ⟧Term ρ ≡ ⟦ t2 ⟧Term ρ ⊝ ⟦ t1 ⟧Term ρ ominusτ-equiv-term Γ ρ τ t2 t1 = ominusτ-equiv Γ ρ τ (⟦ t2 ⟧Term ρ) (⟦ t1 ⟧Term ρ)
Add lemmas I present in thesis
Add lemmas I present in thesis
Agda
mit
inc-lc/ilc-agda
965133f11d3863769cb8e636eff326a49bc7321b
Crypto/JS/BigI/CyclicGroup.agda
Crypto/JS/BigI/CyclicGroup.agda
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (Bool; trace-call; _++_) open import FFI.JS.Check renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract -- ℤp* 𝔾 : Set 𝔾 = BigI private mod-p : BigI → 𝔾 mod-p x = mod x p -- There are two ways to go from BigI to 𝔾: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹𝔾 : BigI → 𝔾 BigI▹𝔾 = -- trace-call "BigI▹𝔾 " λ x → (check? (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) (check? (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x)) check-non-zero : 𝔾 → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : 𝔾 → BigI repr x = x 1# : 𝔾 1# = 1I 1/_ : 𝔾 → 𝔾 1/ x = modInv (check-non-zero x) p _^_ : 𝔾 → BigI → 𝔾 x ^ y = modPow x y p _*_ _/_ : 𝔾 → 𝔾 → 𝔾 x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance 𝔾-Eq? : Eq? 𝔾 𝔾-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : 𝔾 → 𝔾 → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List 𝔾 → 𝔾 prod = foldr _*_ 1# mon-ops : Monoid-Ops 𝔾 mon-ops = _*_ , 1# grp-ops : Group-Ops 𝔾 grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group 𝔾 grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq open import FFI.JS using (Bool; trace-call; _++_) open import FFI.JS.Check renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import Algebra.Raw open import Algebra.Group -- TODO carry on a primality proof of p module Crypto.JS.BigI.CyclicGroup (p : BigI) where abstract ℤ[_]★ : Set ℤ[_]★ = BigI private ℤp★ : Set ℤp★ = BigI mod-p : BigI → ℤp★ mod-p x = mod x p -- There are two ways to go from BigI to ℤp★: check and mod-p -- Use check for untrusted input data and mod-p for internal -- computation. BigI▹ℤ[_]★ : BigI → ℤp★ BigI▹ℤ[_]★ = -- trace-call "BigI▹ℤ[_]★ " λ x → (check? (x <I p) (λ _ → "Not below the modulus: p:" ++ toString p ++ " is less than x:" ++ toString x) (check? (x >I 0I) (λ _ → "Should be strictly positive: " ++ toString x ++ " <= 0") x)) check-non-zero : ℤp★ → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : ℤp★ → BigI repr x = x 1# : ℤp★ 1# = 1I 1/_ : ℤp★ → ℤp★ 1/ x = modInv (check-non-zero x) p _^_ : ℤp★ → BigI → ℤp★ x ^ y = modPow x y p _*_ _/_ : ℤp★ → ℤp★ → ℤp★ x * y = mod-p (multiply (repr x) (repr y)) x / y = x * 1/ y instance ℤ[_]★-Eq? : Eq? ℤp★ ℤ[_]★-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤp★ → ℤp★ → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y prod : List ℤp★ → ℤp★ prod = foldr _*_ 1# mon-ops : Monoid-Ops ℤp★ mon-ops = _*_ , 1# grp-ops : Group-Ops ℤp★ grp-ops = mon-ops , 1/_ postulate grp-struct : Group-Struct grp-ops grp : Group ℤp★ grp = grp-ops , grp-struct module grp = Group grp -- -} -- -} -- -} -- -} -- -}
rename 𝔾 as ℤ[ p ]★
CyclicGroup: rename 𝔾 as ℤ[ p ]★
Agda
bsd-3-clause
crypto-agda/crypto-agda
da7ed128a0220380c3109913af5f58760ad241d3
Base/Denotation/Notation.agda
Base/Denotation/Notation.agda
module Base.Denotation.Notation where -- OVERLOADING ⟦_⟧ NOTATION -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Overloading ⟦_⟧ notation -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. ------------------------------------------------------------------------ module Base.Denotation.Notation where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
Improve commentary in Base.Denotation.Notation.
Improve commentary in Base.Denotation.Notation. Old-commit-hash: f51d5958c73259a9120fc8a2ad20854bb12f8870
Agda
mit
inc-lc/ilc-agda
66a643a5678be6f131477803e19ed0cb52159556
agda/Equality.agda
agda/Equality.agda
-- This is an implementation of the equality type for Sets. Agda's -- standard equality is more powerful. The main idea here is to -- illustrate the equality type. module Equality where open import Level -- The equality of two elements of type A. The type a ≡ b is a family -- of types which captures the statement of equality in A. Not all of -- the types are inhabited as in general not all elements are equal -- here. The only type that are inhabited are a ≡ a by the element -- that we call definition. This is called refl (for reflection in -- agda). data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where definition : {x : A} → x ≡ x -- ≡ is a symmetric relation. sym : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym definition = definition -- ≡ is a transitive relation. trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans pAB definition = pAB -- trans definition pBC = pBC -- alternate proof of transitivity. -- Congruence. If we apply f to equals the result are also equal. cong : ∀{ℓ₀ ℓ₁} {A : Set ℓ₀} {B : Set ℓ₁} {a₀ a₁ : A} → (f : A → B) → a₀ ≡ a₁ → f a₀ ≡ f a₁ cong f definition = definition -- Pretty way of doing equational reasoning. If we want to prove a₀ ≡ -- b through an intermediate set of equations use this. The general -- form will look like. -- -- begin a ≈ a₀ by p₀ -- ≈ a₁ by p₁ -- ... -- ≈ b by p -- ∎ begin : ∀{ℓ} {A : Set ℓ} (a : A) → a ≡ a _≈_by_ : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → (c : A) → b ≡ c → a ≡ c _∎ : ∀{ℓ} {A : Set ℓ} (a : A) → A begin a = definition aEb ≈ c by bEc = trans aEb bEc x ∎ = x infixl 1 _≈_by_ infixl 1 _≡_
-- This is an implementation of the equality type for Sets. Agda's -- standard equality is more powerful. The main idea here is to -- illustrate the equality type. module Equality where open import Level -- The equality of two elements of type A. The type a ≡ b is a family -- of types which captures the statement of equality in A. Not all of -- the types are inhabited as in general not all elements are equal -- here. The only type that are inhabited are a ≡ a by the element -- that we call definition. This is called refl (for reflection in -- agda). data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : {x : A} → x ≡ x -- ≡ is a symmetric relation. sym : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym refl = refl -- ≡ is a transitive relation. trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans pAB refl = pAB -- trans refl pBC = pBC -- alternate proof of transitivity. -- Congruence. If we apply f to equals the result are also equal. cong : ∀{ℓ₀ ℓ₁} {A : Set ℓ₀} {B : Set ℓ₁} {a₀ a₁ : A} → (f : A → B) → a₀ ≡ a₁ → f a₀ ≡ f a₁ cong f refl = refl -- Pretty way of doing equational reasoning. If we want to prove a₀ ≡ -- b through an intermediate set of equations use this. The general -- form will look like. -- -- begin a ≈ a₀ by p₀ -- ≈ a₁ by p₁ -- ... -- ≈ b by p -- ∎ begin : ∀{ℓ} {A : Set ℓ} (a : A) → a ≡ a _≈_by_ : ∀{ℓ} {A : Set ℓ} {a b : A} → a ≡ b → (c : A) → b ≡ c → a ≡ c _∎ : ∀{ℓ} {A : Set ℓ} (a : A) → A begin a = refl aEb ≈ c by bEc = trans aEb bEc x ∎ = x infixl 1 _≈_by_ infixl 1 _≡_
use the standard terminology refl.
use the standard terminology refl.
Agda
unlicense
piyush-kurur/sample-code
5303d7901af55944be2ec4695ee17bbd01624291
Theorem/CongApp.agda
Theorem/CongApp.agda
module Theorem.CongApp where -- Theorem CongApp. -- If f ≡ g and x ≡ y, then (f x) ≡ (g y). open import Relation.Binary.PropositionalEquality public infixl 0 _⟨$⟩_ _⟨$⟩_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y : A} → f ≡ g → x ≡ y → f x ≡ g y _⟨$⟩_ = cong₂ (λ x y → x y)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Congruence of application. -- -- If f ≡ g and x ≡ y, then (f x) ≡ (g y). ------------------------------------------------------------------------ module Theorem.CongApp where open import Relation.Binary.PropositionalEquality public infixl 0 _⟨$⟩_ _⟨$⟩_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y : A} → f ≡ g → x ≡ y → f x ≡ g y _⟨$⟩_ = cong₂ (λ x y → x y)
Document Theorem.CongApp regularly.
Document Theorem.CongApp regularly. Old-commit-hash: f16f3e3d0b8e59230bd86a0c223af263a8db75e8
Agda
mit
inc-lc/ilc-agda
b87eb75ad51669de831d389ef1a78b415b31a18d
lib/Data/Nat/Distance.agda
lib/Data/Nat/Distance.agda
open import Data.Nat.NP open import Data.Nat.Properties as Props open import Data.Product open import Relation.Binary.PropositionalEquality.NP module Data.Nat.Distance where dist : ℕ → ℕ → ℕ dist zero y = y dist x zero = x dist (suc x) (suc y) = dist x y dist-refl : ∀ x → dist x x ≡ 0 dist-refl zero = idp dist-refl (suc x) rewrite dist-refl x = idp dist-0≡id : ∀ x → dist 0 x ≡ x dist-0≡id _ = idp dist-x-x+y≡y : ∀ x y → dist x (x + y) ≡ y dist-x-x+y≡y zero y = idp dist-x-x+y≡y (suc x) y = dist-x-x+y≡y x y dist-comm : ∀ x y → dist x y ≡ dist y x dist-comm zero zero = idp dist-comm zero (suc y) = idp dist-comm (suc x) zero = idp dist-comm (suc x) (suc y) = dist-comm x y dist-x+ : ∀ x y z → dist (x + y) (x + z) ≡ dist y z dist-x+ zero y z = idp dist-x+ (suc x) y z = dist-x+ x y z dist-2* : ∀ x y → dist (2* x) (2* y) ≡ 2* dist x y dist-2* zero y = idp dist-2* (suc x) zero = idp dist-2* (suc x) (suc y) rewrite +-assoc-comm x 1 x | +-assoc-comm y 1 y = dist-2* x y dist-asym-def : ∀ {x y} → x ≤ y → x + dist x y ≡ y dist-asym-def z≤n = idp dist-asym-def (s≤s pf) = ap suc (dist-asym-def pf) dist-sym-wlog : ∀ (f : ℕ → ℕ) → (∀ x k → dist (f x) (f (x + k)) ≡ f k) → ∀ x y → dist (f x) (f y) ≡ f (dist x y) dist-sym-wlog f pf x y with compare x y dist-sym-wlog f pf x .(suc (x + k)) | less .x k with pf x (suc k) ... | q rewrite +-assoc-comm x 1 k | q | ! +-assoc-comm x 1 k | dist-x-x+y≡y x (suc k) = idp dist-sym-wlog f pf .y y | equal .y with pf y 0 ... | q rewrite ℕ°.+-comm y 0 | dist-refl y = q dist-sym-wlog f pf .(suc (y + k)) y | greater .y k with pf y (suc k) ... | q rewrite +-assoc-comm 1 y k | dist-comm (y + suc k) y | dist-x-x+y≡y y (suc k) | dist-comm (f (y + suc k)) (f y) = q dist-x* : ∀ x y z → dist (x * y) (x * z) ≡ x * dist y z dist-x* x = dist-sym-wlog (_*_ x) pf where pf : ∀ a k → dist (x * a) (x * (a + k)) ≡ x * k pf a k rewrite proj₁ ℕ°.distrib x a k = dist-x-x+y≡y (x * a) _ dist-2^* : ∀ x y z → dist ⟨2^ x * y ⟩ ⟨2^ x * z ⟩ ≡ ⟨2^ x * dist y z ⟩ dist-2^* x = dist-sym-wlog (2^⟨ x ⟩*) pf where pf : ∀ a k → dist ⟨2^ x * a ⟩ ⟨2^ x * (a + k) ⟩ ≡ ⟨2^ x * k ⟩ pf a k rewrite 2^*-distrib x a k = dist-x-x+y≡y ⟨2^ x * a ⟩ ⟨2^ x * k ⟩ dist-bounded : ∀ {x y f} → x ≤ f → y ≤ f → dist x y ≤ f dist-bounded z≤n y≤f = y≤f dist-bounded (s≤s x≤f) z≤n = s≤s x≤f dist-bounded (s≤s x≤f) (s≤s y≤f) = ≤-step (dist-bounded x≤f y≤f) -- Triangular inequality dist-sum : ∀ x y z → dist x z ≤ dist x y + dist y z dist-sum zero zero z = ℕ≤.refl dist-sum zero (suc y) zero = z≤n dist-sum zero (suc y) (suc z) = s≤s (dist-sum zero y z) dist-sum (suc x) zero zero = s≤s (ℕ≤.reflexive (ℕ°.+-comm 0 x)) dist-sum (suc x) (suc y) zero rewrite ℕ°.+-comm (dist x y) (suc y) | dist-comm x y = s≤s (dist-sum zero y x) dist-sum (suc x) zero (suc z) = dist-sum x zero z ∙≤ ℕ≤.reflexive (ap₂ _+_ (dist-comm x 0) idp) ∙≤ ≤-step (ℕ≤.refl {x} +-mono ≤-step ℕ≤.refl) dist-sum (suc x) (suc y) (suc z) = dist-sum x y z dist≡0 : ∀ x y → dist x y ≡ 0 → x ≡ y dist≡0 zero zero d≡0 = refl dist≡0 zero (suc y) () dist≡0 (suc x) zero () dist≡0 (suc x) (suc y) d≡0 = ap suc (dist≡0 x y d≡0) ∸-dist : ∀ x y → y ≤ x → x ∸ y ≡ dist x y ∸-dist x .0 z≤n = ! dist-comm x 0 ∸-dist ._ ._ (s≤s y≤x) = ∸-dist _ _ y≤x {- post--ulate dist-≤ : ∀ x y → dist x y ≤ x dist-mono₁ : ∀ x y z t → x ≤ y → dist z t ≤ dist (x + z) (y + t) -} -- Haskell -- let dist x y = abs (x - y) -- quickCheck (forAll (replicateM 3 (choose (0,100))) (\ [x,y,z] -> dist (x * y) (x * z) == x * dist y z))
open import Function.NP open import Data.Nat.NP open import Data.Nat.Properties as Props open import Data.Nat.Properties.Simple open import Data.Product.NP open import Relation.Binary.PropositionalEquality.NP open import Relation.Binary open import Relation.Nullary module Data.Nat.Distance where {- dist : ℕ → ℕ → ℕ dist zero y = y dist x zero = x dist (suc x) (suc y) = dist x y -} -- `symIter` from Conor McBride -- Since symIter is essentially `dist` with callbacks, I -- include it here. module Generic {a}{A : Set a}(z : ℕ → A)(s : A → A) where dist : ℕ → ℕ → A dist zero y = z y dist x zero = z x dist (suc x) (suc y) = s (dist x y) dist-comm : ∀ x y → dist x y ≡ dist y x dist-comm zero zero = idp dist-comm zero (suc y) = idp dist-comm (suc x) zero = idp dist-comm (suc x) (suc y) = ap s (dist-comm x y) dist-0≡id : ∀ x → dist 0 x ≡ z x dist-0≡id _ = idp dist-0≡id′ : ∀ x → dist x 0 ≡ z x dist-0≡id′ zero = idp dist-0≡id′ (suc _) = idp open Generic id id public module Add where open Generic id (suc ∘ suc) public renaming ( dist to _+'_ ; dist-0≡id to +'0-identity ; dist-0≡id′ to 0+'-identity ; dist-comm to +'-comm ) +-spec : ∀ x y → x +' y ≡ x + y +-spec zero _ = idp +-spec (suc x) zero = ap suc (ℕ°.+-comm 0 x) +-spec (suc x) (suc y) = ap suc (ap suc (+-spec x y) ∙ ! +-suc x y) module AddMult where open Generic (λ x → x , 0) (λ { (s , p) → (2 + s , 1 + s + p) }) public renaming ( dist to _+*_ ; dist-0≡id to +*0-identity ; dist-0≡id′ to 0+*-identity ; dist-comm to +*-comm ) _+'_ : ℕ → ℕ → ℕ x +' y = fst (x +* y) _*'_ : ℕ → ℕ → ℕ x *' y = snd (x +* y) +*-spec : ∀ x y → (x +' y ≡ x + y) × (x *' y ≡ x * y) +*-spec zero _ = idp , idp +*-spec (suc x) zero = ap suc (ℕ°.+-comm 0 x) , ℕ°.*-comm 0 x +*-spec (suc x) (suc y) = ap suc p+ , ap suc p* where p = +*-spec x y p+ = ap suc (fst p) ∙ ! +-suc x y p* = ap₂ _+_ (fst p) (snd p) ∙ +-assoc x y (x * y) ∙ ap (λ z → x + (y + z)) (ℕ°.*-comm x y) ∙ ! +-assoc-comm y x (y * x) ∙ ap (_+_ y) (ℕ°.*-comm (suc y) x) module Min where open Generic (const zero) suc public renaming ( dist to _⊓'_ ; dist-0≡id to ⊓'0-zero ; dist-0≡id′ to 0⊓'-zero ; dist-comm to ⊓'-comm ) ⊓'-spec : ∀ x y → x ⊓' y ≡ x ⊓ y ⊓'-spec zero zero = idp ⊓'-spec zero (suc y) = idp ⊓'-spec (suc x) zero = idp ⊓'-spec (suc x) (suc y) = ap suc (⊓'-spec x y) module Max where open Generic id suc public renaming ( dist to _⊔'_ ; dist-0≡id to ⊔'0-identity ; dist-0≡id′ to 0⊔'-identity ; dist-comm to ⊔'-comm ) ⊔'-spec : ∀ x y → x ⊔' y ≡ x ⊔ y ⊔'-spec zero zero = idp ⊔'-spec zero (suc y) = idp ⊔'-spec (suc x) zero = idp ⊔'-spec (suc x) (suc y) = ap suc (⊔'-spec x y) dist-refl : ∀ x → dist x x ≡ 0 dist-refl zero = idp dist-refl (suc x) rewrite dist-refl x = idp dist-x-x+y≡y : ∀ x y → dist x (x + y) ≡ y dist-x-x+y≡y zero y = idp dist-x-x+y≡y (suc x) y = dist-x-x+y≡y x y dist-x+ : ∀ x y z → dist (x + y) (x + z) ≡ dist y z dist-x+ zero y z = idp dist-x+ (suc x) y z = dist-x+ x y z dist-2* : ∀ x y → dist (2* x) (2* y) ≡ 2* dist x y dist-2* zero y = idp dist-2* (suc x) zero = idp dist-2* (suc x) (suc y) rewrite +-assoc-comm x 1 x | +-assoc-comm y 1 y = dist-2* x y dist-asym-def : ∀ {x y} → x ≤ y → x + dist x y ≡ y dist-asym-def z≤n = idp dist-asym-def (s≤s pf) = ap suc (dist-asym-def pf) dist-sym-wlog : ∀ (f : ℕ → ℕ) → (∀ x k → dist (f x) (f (x + k)) ≡ f k) → ∀ x y → dist (f x) (f y) ≡ f (dist x y) dist-sym-wlog f pf x y with compare x y dist-sym-wlog f pf x .(suc (x + k)) | less .x k with pf x (suc k) ... | q rewrite +-assoc-comm x 1 k | q | ! +-assoc-comm x 1 k | dist-x-x+y≡y x (suc k) = idp dist-sym-wlog f pf .y y | equal .y with pf y 0 ... | q rewrite ℕ°.+-comm y 0 | dist-refl y = q dist-sym-wlog f pf .(suc (y + k)) y | greater .y k with pf y (suc k) ... | q rewrite +-assoc-comm 1 y k | dist-comm (y + suc k) y | dist-x-x+y≡y y (suc k) | dist-comm (f (y + suc k)) (f y) = q dist-x* : ∀ x y z → dist (x * y) (x * z) ≡ x * dist y z dist-x* x = dist-sym-wlog (_*_ x) pf where pf : ∀ a k → dist (x * a) (x * (a + k)) ≡ x * k pf a k rewrite fst ℕ°.distrib x a k = dist-x-x+y≡y (x * a) _ dist-2^* : ∀ x y z → dist ⟨2^ x * y ⟩ ⟨2^ x * z ⟩ ≡ ⟨2^ x * dist y z ⟩ dist-2^* x = dist-sym-wlog (2^⟨ x ⟩*) pf where pf : ∀ a k → dist ⟨2^ x * a ⟩ ⟨2^ x * (a + k) ⟩ ≡ ⟨2^ x * k ⟩ pf a k rewrite 2^*-distrib x a k = dist-x-x+y≡y ⟨2^ x * a ⟩ ⟨2^ x * k ⟩ dist-bounded : ∀ {x y f} → x ≤ f → y ≤ f → dist x y ≤ f dist-bounded z≤n y≤f = y≤f dist-bounded (s≤s x≤f) z≤n = s≤s x≤f dist-bounded (s≤s x≤f) (s≤s y≤f) = ≤-step (dist-bounded x≤f y≤f) -- Triangular inequality dist-sum : ∀ x y z → dist x z ≤ dist x y + dist y z dist-sum zero zero z = ℕ≤.refl dist-sum zero (suc y) zero = z≤n dist-sum zero (suc y) (suc z) = s≤s (dist-sum zero y z) dist-sum (suc x) zero zero = s≤s (ℕ≤.reflexive (ℕ°.+-comm 0 x)) dist-sum (suc x) (suc y) zero rewrite ℕ°.+-comm (dist x y) (suc y) | dist-comm x y = s≤s (dist-sum zero y x) dist-sum (suc x) zero (suc z) = dist-sum x zero z ∙≤ ℕ≤.reflexive (ap₂ _+_ (dist-comm x 0) idp) ∙≤ ≤-step (ℕ≤.refl {x} +-mono ≤-step ℕ≤.refl) dist-sum (suc x) (suc y) (suc z) = dist-sum x y z dist≡0 : ∀ x y → dist x y ≡ 0 → x ≡ y dist≡0 zero zero d≡0 = idp dist≡0 zero (suc y) () dist≡0 (suc x) zero () dist≡0 (suc x) (suc y) d≡0 = ap suc (dist≡0 x y d≡0) ∸-≤-dist : ∀ x y → x ∸ y ≤ dist x y ∸-≤-dist zero zero = z≤n ∸-≤-dist zero (suc y) = z≤n ∸-≤-dist (suc x) zero = ℕ≤.refl ∸-≤-dist (suc x) (suc y) = ∸-≤-dist x y ∸-dist : ∀ x y → y ≤ x → x ∸ y ≡ dist x y ∸-dist x .0 z≤n = ! dist-comm x 0 ∸-dist ._ ._ (s≤s y≤x) = ∸-dist _ _ y≤x dist-min-max : ∀ x y → dist x y ≡ (x ⊔ y) ∸ (x ⊓ y) dist-min-max zero zero = idp dist-min-max zero (suc y) = idp dist-min-max (suc x) zero = idp dist-min-max (suc x) (suc y) = dist-min-max x y -- -} -- -} -- -} -- -} -- -}
add the `symIter` from Conor and some lemmas
Dist: add the `symIter` from Conor and some lemmas
Agda
bsd-3-clause
crypto-agda/agda-nplib
1dd4fe7a8a920498ea83e46ad2707edca7f6f4bf
Syntax/Type/Plotkin.agda
Syntax/Type/Plotkin.agda
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift-Δtype : ∀ {B} → (B → Type B) → (Type B → Type B) lift-Δtype f (base ι) = f ι lift-Δtype f (σ ⇒ τ) = let Δ = lift-Δtype f in σ ⇒ Δ σ ⇒ Δ τ -- Note: the above is *not* a monadic bind. -- -- Proof. base` is the most straightforward `return` of the -- functor `Type`. -- -- return : B → Type B -- return = base -- -- Let -- -- m : Type B -- m = base κ ⇒ base ι -- -- then -- -- m >>= return = lift-Δtype return m -- = base κ ⇒ base κ ⇒ base ι -- -- violating the second monadic law, m >>= return ≡ m. ∎ open import Function -- Variant of lift-Δtype for (Δ : B → B). lift-Δtype₀ : ∀ {B} → (B → B) → (Type B → Type B) lift-Δtype₀ f = lift-Δtype $ base ∘ f -- This has a similar type to the type of `fmap`, -- and `base` has a similar type to the type of `return`. -- -- Similarly, for collections map can be defined from flatMap, -- like lift-Δtype₀ can be defined in terms of lift-Δtype.
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. open import Function infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift-Δtype : ∀ {B} → (B → Type B) → (Type B → Type B) lift-Δtype f (base ι) = f ι lift-Δtype f (σ ⇒ τ) = let Δ = lift-Δtype f in σ ⇒ Δ σ ⇒ Δ τ -- Note: the above is *not* a monadic bind. -- -- Proof. base` is the most straightforward `return` of the -- functor `Type`. -- -- return : B → Type B -- return = base -- -- Let -- -- m : Type B -- m = base κ ⇒ base ι -- -- then -- -- m >>= return = lift-Δtype return m -- = base κ ⇒ base κ ⇒ base ι -- -- violating the second monadic law, m >>= return ≡ m. ∎ -- Variant of lift-Δtype for (Δ : B → B). lift-Δtype₀ : ∀ {B} → (B → B) → (Type B → Type B) lift-Δtype₀ f = lift-Δtype $ base ∘ f -- This has a similar type to the type of `fmap`, -- and `base` has a similar type to the type of `return`. -- -- Similarly, for collections map can be defined from flatMap, -- like lift-Δtype₀ can be defined in terms of lift-Δtype.
move import to top of file in Syntax.Type.Plotkin
Agda: move import to top of file in Syntax.Type.Plotkin Old-commit-hash: 0d789d2318a5215ac4ba2f68286e7db5826593ec
Agda
mit
inc-lc/ilc-agda
fa1e5e6ba14f3f7038a0a46052c8f81d12ed2e9d
Base/Change/Equivalence/Base.agda
Base/Change/Equivalence/Base.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence - base definitions ------------------------------------------------------------------------ module Base.Change.Equivalence.Base where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence - base definitions ------------------------------------------------------------------------ module Base.Change.Equivalence.Base where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record (a Haskell "newtype") -- instead of a "type synonym". record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence }
Clarify Agda comment
Clarify Agda comment Old-commit-hash: e00f9f0bb80cb86372669d674900a9abd43b7ef4
Agda
mit
inc-lc/ilc-agda
e2d49c81f464ab9449818f964e0078660f4315da
Syntactic/Contexts.agda
Syntactic/Contexts.agda
module Syntactic.Contexts (Type : Set) where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
module Syntactic.Contexts (Type : Set) where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
add lemma about syntactic contexts
Agda: add lemma about syntactic contexts Old-commit-hash: 3613bba9a32778eaaa8f9d22419c23a8505be346
Agda
mit
inc-lc/ilc-agda
0ecf1536814a880e8cdbe60b6eef1ff1106504bf
Parametric/Change/Correctness.agda
Parametric/Change/Correctness.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) -- Our main theorem, as we used to state it in the paper. main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {y : Term ∅ σ} → ⟦ app f y ⟧ ≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ main-theorem {σ} {τ} {f} {x} {y} = let h = ⟦ f ⟧ ∅ Δh = ⟦ f ⟧Δ ∅ ∅ Δh′ = ⟦ derive f ⟧ ∅ v = ⟦ x ⟧ ∅ u = ⟦ y ⟧ ∅ Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin h u ≡⟨ cong h (sym (update-diff₍ σ ₎ u v)) ⟩ h (v ⊞₍ σ ₎ (u ⊟₍ σ ₎ v)) ≡⟨ corollary-closed {σ} {τ} f v (u ⊟₍ σ ₎ v) ⟩ h v ⊞₍ τ ₎ call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v) ≡⟨ carry-over {τ} (call-change {σ} {τ} Δh v (u ⊟₍ σ ₎ v)) (derive-correct f ∅ ∅ ∅ ∅ v (u ⊟₍ σ ₎ v) (u ⟦⊝₍ σ ₎⟧ v) (u⊟v≈u⊝v {σ} {u} {v})) ⟩ h v ⟦⊕₍ τ ₎⟧ Δh′ v (u ⟦⊝₍ σ ₎⟧ v) ≡⟨ trans (cong (λ hole → h v ⟦⊕₍ τ ₎⟧ Δh′ v hole) (meaning-⊝ {σ} {s = y} {x})) (meaning-⊕ {t = app f x} {Δt = Δoutput-term}) ⟩ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) (y ⊝ x) ⟧ ∅ ∎}) where open ≡-Reasoning -- A corollary, closer to what we state in the paper. main-theorem-coroll : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {x : Term ∅ σ} {dx : Term ∅ (ΔType σ)} → ⟦ app f (x ⊕₍ σ ₎ dx) ⟧ ≡ ⟦ app f x ⊕₍ τ ₎ app (app (derive f) x) ((x ⊕₍ σ ₎ dx) ⊝ x) ⟧ main-theorem-coroll {σ} {τ} {f} {x} {dx} = main-theorem {σ} {τ} {f} {x} {x ⊕₍ σ ₎ dx} -- For the statement in the paper, we'd need to talk about valid changes in -- the lambda calculus. In fact we can, thanks to the `implements` relation; -- but I guess the required proof must be done directly from derive-correct, -- not from main-theorem.
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) derive-correct-closed : ∀ {τ} (t : Term ∅ τ) → ⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅ derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅ main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} → {dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} → ⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} = let g = ⟦ f ⟧ ∅ Δg = ⟦ f ⟧Δ ∅ ∅ Δg′ = ⟦ derive f ⟧ ∅ v = ⟦ s ⟧ ∅ dv′ = ⟦ ds ⟧ ∅ u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅ -- Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin g u ≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩ g (v ⟦⊕₍ σ ₎⟧ dv′) ≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ corollary-closed {σ} {τ} f v dv ⟩ g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv ≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv) (derive-correct f ∅ ∅ ∅ ∅ v dv dv′ erasure) ⟩ g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′ ≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅ ∎}) where open ≡-Reasoning
make main theorem correspond to the one stated in the paper
make main theorem correspond to the one stated in the paper Old-commit-hash: 84979b2067c54a685110f1bad744ba106a962a0f
Agda
mit
inc-lc/ilc-agda
272abae5605c8fd8c5385376ffe4f4d4c26d2a9d
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) $ proof dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) $ proof df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
Add and use a congruence lemma
Add and use a congruence lemma To reduce explicit wrapping/unwrapping of proofs of ≙. Old-commit-hash: 2bc64b5b9f3b074a70918e11f66512232fb6796b
Agda
mit
inc-lc/ilc-agda
57dd579828aa8a7c7ff8b0546dd51520584eb18e
Denotational/Evaluation/Total.agda
Denotational/Evaluation/Total.agda
module Denotational.Evaluation.Total where -- EVALUATION with a primitive for TOTAL DERIVATIVES -- -- This module defines the semantics of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Changes open import ChangeContexts -- TERMS -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ = if ⟦ t₁ ⟧Term ρ then ⟦ t₂ ⟧Term ρ else ⟦ t₃ ⟧Term ρ ⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- PROPERTIES of WEAKENING weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ) weaken-sound (var x) ρ = lift-sound _ x ρ weaken-sound true ρ = refl weaken-sound false ρ = refl weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ ... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ weaken-sound (Δ {{Γ′}} t) {Γ″} ρ = cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
module Denotational.Evaluation.Total where -- EVALUATION with a primitive for TOTAL DERIVATIVES -- -- This module defines the semantics of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Changes open import ChangeContexts -- TERMS -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ = if ⟦ t₁ ⟧Term ρ then ⟦ t₂ ⟧Term ρ else ⟦ t₃ ⟧Term ρ ⟦ Δ {{Γ′}} t ⟧Term ρ = diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) {- Here is an example to understand the semantics of Δ. I will use a named variable representation for the task. Consider the typing judgment: x: T |- x: T Thus, we have that: dx : Δ T, x: T |- Δ x : Δ T Thanks to weakening, we also have: y : S, dx : Δ T, x: T |- Δ x : Δ T In the formalization, we need a proof Γ′ that the context Γ₁ = dx : Δ T, x: T is a subcontext of Γ₂ = y : S, dx : Δ T, x: T. Thus, Γ′ has type Γ₁ ≼ Γ₂. Now take the environment: ρ = y ↦ w, dx ↦ dv, x ↦ v Since the semantics of Γ′ : Γ₁ ≼ Γ₂ is a function from environments for Γ₂ to environments for Γ₁, we have that: ⟦ Γ′ ⟧ ρ = dx ↦ dv, x ↦ v From the definitions of update and ignore, it follows that: update (⟦ Γ′ ⟧ ρ) = x ↦ dv ⊕ v ignore (⟦ Γ′ ⟧ ρ) = x ↦ v Hence, finally, we have that: diff (⟦ t ⟧Term (update (⟦ Γ′ ⟧ ρ))) (⟦ t ⟧Term (ignore (⟦ Γ′ ⟧ ρ))) is simply diff (dv ⊕ v) v (or (dv ⊕ v) ⊝ v). If dv is a valid change, that's just dv, that is ⟦ dx ⟧ ρ. In other words -} meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- PROPERTIES of WEAKENING weaken-sound : ∀ {Γ₁ Γ₂ τ} (t : Term Γ₁ τ) {Γ′ : Γ₁ ≼ Γ₂} → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (app t₁ t₂) ρ = ≡-app (weaken-sound t₁ ρ) (weaken-sound t₂ ρ) weaken-sound (var x) ρ = lift-sound _ x ρ weaken-sound true ρ = refl weaken-sound false ρ = refl weaken-sound (if t₁ t₂ t₃) {Γ′} ρ with weaken-sound t₁ {Γ′} ρ ... | H with ⟦ weaken Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (⟦ Γ′ ⟧ ρ) weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | true | true = weaken-sound t₂ {Γ′} ρ weaken-sound (if t₁ t₂ t₃) {Γ′} ρ | refl | false | false = weaken-sound t₃ {Γ′} ρ weaken-sound (Δ {{Γ′}} t) {Γ″} ρ = cong (λ x → diff (⟦ t ⟧ (update x)) (⟦ t ⟧ (ignore x))) (⟦⟧-≼-trans Γ′ Γ″ ρ)
add extended comment on semantics of Δ
agda: add extended comment on semantics of Δ During my walk-throughs on the code, explaining this line was a bit hard and required a small example. After writing it here during the walkthrough, I decided to extend it and save it. Old-commit-hash: 279b6047512b8c934cae49bda5977fa104077e12
Agda
mit
inc-lc/ilc-agda
beadc4c6bf5a0654b270878f150131cb18ada078
lib/Data/Bool/NP.agda
lib/Data/Bool/NP.agda
{-# OPTIONS --universe-polymorphism #-} module Data.Bool.NP where open import Data.Bool using (Bool; true; false; T; if_then_else_; not) open import Data.Unit using (⊤) open import Data.Sum open import Function open import Relation.Binary.NP open import Relation.Binary.Logical open import Relation.Nullary open import Relation.Nullary.Decidable import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) check : ∀ b → {pf : T b} → ⊤ check = _ If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B If_then_else_ true x _ = x _ If_then_else_ false _ x = x _ If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B If′_then_else_ true x _ = x If′_then_else_ false _ x = x If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) → if b then A else B → if b then C else D If-map true f _ = f _ If-map false _ f = f _ If-elim : ∀ {A B : Set} {P : Bool → Set} b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b If-elim true f _ = f _ If-elim false _ f = f _ If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A If-true {b = true} _ = ≡.refl If-true {b = false} () If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B If-false {b = true} () If-false {b = false} _ = ≡.refl cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁) cong-if true _ = ≡.refl cong-if false _ = ≡.refl data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where ⟦true⟧ : ⟦Bool⟧ true true ⟦false⟧ : ⟦Bool⟧ false false private module ⟦Bool⟧-Internals where refl : Reflexive ⟦Bool⟧ refl {true} = ⟦true⟧ refl {false} = ⟦false⟧ sym : Symmetric ⟦Bool⟧ sym ⟦true⟧ = ⟦true⟧ sym ⟦false⟧ = ⟦false⟧ trans : Transitive ⟦Bool⟧ trans ⟦true⟧ = id trans ⟦false⟧ = id subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ subst _ ⟦true⟧ = id subst _ ⟦false⟧ = id _≟_ : Decidable ⟦Bool⟧ true ≟ true = yes ⟦true⟧ false ≟ false = yes ⟦false⟧ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence ⟦Bool⟧ isEquivalence = record { refl = refl; sym = sym; trans = trans } isDecEquivalence : IsDecEquivalence ⟦Bool⟧ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence } equality : Equality ⟦Bool⟧ equality = record { isEquivalence = isEquivalence; subst = subst } module ⟦Bool⟧-Props where open ⟦Bool⟧-Internals public using (subst; decSetoid; equality) open DecSetoid decSetoid public open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans) ⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_ ⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ ⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧) If′_then_else_ If′_then_else_ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ _==_ : (x y : Bool) → Bool true == true = true true == false = false false == true = false false == false = true module == where _≈_ : (x y : Bool) → Set x ≈ y = T (x == y) refl : Reflexive _≈_ refl {true} = _ refl {false} = _ subst : ∀ {ℓ} → Substitutive _≈_ ℓ subst _ {true} {true} _ = id subst _ {false} {false} _ = id subst _ {true} {false} () subst _ {false} {true} () sym : Symmetric _≈_ sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x}) trans : Transitive _≈_ trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y _≟_ : Decidable _≈_ true ≟ true = yes _ false ≟ false = yes _ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence _≈_ isEquivalence = record { refl = λ {x} → refl {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence } module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid open Data.Bool public ⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b ⟦true⟧′ {true} _ = ⟦true⟧ ⟦true⟧′ {false} () ⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b ⟦false⟧′ {true} () ⟦false⟧′ {false} _ = ⟦false⟧ T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂) T∧ {true} {true} _ _ = _ T∧ {false} {_} () _ T∧ {true} {false} _ () T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁ T∧₁ {true} {true} _ = _ T∧₁ {false} {_} () T∧₁ {true} {false} () T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂ T∧₂ {true} {true} _ = _ T∧₂ {false} {_} () T∧₂ {true} {false} () T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂ T∨'⊎ {true} _ = inj₁ _ T∨'⊎ {false} {true} _ = inj₂ _ T∨'⊎ {false} {false} () T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂) T∨₁ {true} _ = _ T∨₁ {false} {true} _ = _ T∨₁ {false} {false} () T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂) T∨₂ {true} _ = _ T∨₂ {false} {true} _ = _ T∨₂ {false} {false} () T'not'¬ : ∀ {b} → T (not b) → ¬ (T b) T'not'¬ {false} _ = λ() T'not'¬ {true} () T'¬'not : ∀ {b} → ¬ (T b) → T (not b) T'¬'not {true} f = f _ T'¬'not {false} _ = _ Tdec : ∀ b → Dec (T b) Tdec true = yes _ Tdec false = no λ()
{-# OPTIONS --universe-polymorphism #-} module Data.Bool.NP where open import Data.Bool using (Bool; true; false; T; if_then_else_; not) import Algebra import Data.Bool.Properties open import Data.Unit using (⊤) open import Data.Sum open import Function open import Relation.Binary.NP open import Relation.Binary.Logical open import Relation.Nullary open import Relation.Nullary.Decidable import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) module Xor° = Algebra.CommutativeRing Data.Bool.Properties.commutativeRing-xor-∧ module Bool° = Algebra.CommutativeSemiring Data.Bool.Properties.commutativeSemiring-∧-∨ check : ∀ b → {pf : T b} → ⊤ check = _ If_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → (T b → A) → (T (not b) → B) → if b then A else B If_then_else_ true x _ = x _ If_then_else_ false _ x = x _ If′_then_else_ : ∀ {ℓ} {A B : Set ℓ} b → A → B → if b then A else B If′_then_else_ true x _ = x If′_then_else_ false _ x = x If-map : ∀ {A B C D : Set} b (f : T b → A → C) (g : T (not b) → B → D) → if b then A else B → if b then C else D If-map true f _ = f _ If-map false _ f = f _ If-elim : ∀ {A B : Set} {P : Bool → Set} b (f : T b → A → P true) (g : T (not b) → B → P false) → if b then A else B → P b If-elim true f _ = f _ If-elim false _ f = f _ If-true : ∀ {A B : Set} {b} → T b → (if b then A else B) ≡ A If-true {b = true} _ = ≡.refl If-true {b = false} () If-false : ∀ {A B : Set} {b} → T (not b) → (if b then A else B) ≡ B If-false {b = true} () If-false {b = false} _ = ≡.refl cong-if : ∀ {A B : Set} b {t₀ t₁} (f : A → B) → (if b then f t₀ else f t₁) ≡ f (if b then t₀ else t₁) cong-if true _ = ≡.refl cong-if false _ = ≡.refl data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where ⟦true⟧ : ⟦Bool⟧ true true ⟦false⟧ : ⟦Bool⟧ false false private module ⟦Bool⟧-Internals where refl : Reflexive ⟦Bool⟧ refl {true} = ⟦true⟧ refl {false} = ⟦false⟧ sym : Symmetric ⟦Bool⟧ sym ⟦true⟧ = ⟦true⟧ sym ⟦false⟧ = ⟦false⟧ trans : Transitive ⟦Bool⟧ trans ⟦true⟧ = id trans ⟦false⟧ = id subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ subst _ ⟦true⟧ = id subst _ ⟦false⟧ = id _≟_ : Decidable ⟦Bool⟧ true ≟ true = yes ⟦true⟧ false ≟ false = yes ⟦false⟧ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence ⟦Bool⟧ isEquivalence = record { refl = refl; sym = sym; trans = trans } isDecEquivalence : IsDecEquivalence ⟦Bool⟧ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence } equality : Equality ⟦Bool⟧ equality = record { isEquivalence = isEquivalence; subst = subst } module ⟦Bool⟧-Props where open ⟦Bool⟧-Internals public using (subst; decSetoid; equality) open DecSetoid decSetoid public open Equality equality public hiding (subst; isEquivalence; refl; reflexive; sym; trans) ⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_ ⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ ⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧) If′_then_else_ If′_then_else_ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ ⟦If′⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ _==_ : (x y : Bool) → Bool true == true = true true == false = false false == true = false false == false = true module == where _≈_ : (x y : Bool) → Set x ≈ y = T (x == y) refl : Reflexive _≈_ refl {true} = _ refl {false} = _ subst : ∀ {ℓ} → Substitutive _≈_ ℓ subst _ {true} {true} _ = id subst _ {false} {false} _ = id subst _ {true} {false} () subst _ {false} {true} () sym : Symmetric _≈_ sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x}) trans : Transitive _≈_ trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y _≟_ : Decidable _≈_ true ≟ true = yes _ false ≟ false = yes _ true ≟ false = no (λ()) false ≟ true = no (λ()) isEquivalence : IsEquivalence _≈_ isEquivalence = record { refl = λ {x} → refl {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ } setoid : Setoid _ _ setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence } decSetoid : DecSetoid _ _ decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence } module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid open Data.Bool public ⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b ⟦true⟧′ {true} _ = ⟦true⟧ ⟦true⟧′ {false} () ⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b ⟦false⟧′ {true} () ⟦false⟧′ {false} _ = ⟦false⟧ T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂) T∧ {true} {true} _ _ = _ T∧ {false} {_} () _ T∧ {true} {false} _ () T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁ T∧₁ {true} {true} _ = _ T∧₁ {false} {_} () T∧₁ {true} {false} () T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂ T∧₂ {true} {true} _ = _ T∧₂ {false} {_} () T∧₂ {true} {false} () T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂ T∨'⊎ {true} _ = inj₁ _ T∨'⊎ {false} {true} _ = inj₂ _ T∨'⊎ {false} {false} () T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂) T∨₁ {true} _ = _ T∨₁ {false} {true} _ = _ T∨₁ {false} {false} () T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂) T∨₂ {true} _ = _ T∨₂ {false} {true} _ = _ T∨₂ {false} {false} () T'not'¬ : ∀ {b} → T (not b) → ¬ (T b) T'not'¬ {false} _ = λ() T'not'¬ {true} () T'¬'not : ∀ {b} → ¬ (T b) → T (not b) T'¬'not {true} f = f _ T'¬'not {false} _ = _ Tdec : ∀ b → Dec (T b) Tdec true = yes _ Tdec false = no λ()
add ring modules Xor°, Bool°
Data.Bool.NP: add ring modules Xor°, Bool°
Agda
bsd-3-clause
crypto-agda/agda-nplib
09aa7263bcfccc0537afdaba6875c6d31a8fa0e1
lib/Algebra/Group.agda
lib/Algebra/Group.agda
{-# OPTIONS --without-K #-} -- TODO -- If you are looking for a proof of: -- f (Σ(xᵢ∈A) g(x₁)) ≡ Π(xᵢ∈A) (f(g(xᵢ))) -- Have a look to: -- https://github.com/crypto-agda/explore/blob/master/lib/Explore/GroupHomomorphism.agda open import Type using (Type_) open import Data.Product.NP using (_,_) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid module Algebra.Group where record Group-Ops {ℓ} (G : Type ℓ) : Type ℓ where constructor _,_ field mon-ops : Monoid-Ops G _⁻¹ : G → G open Monoid-Ops mon-ops public open From-Group-Ops ε _∙_ _⁻¹ public record Group-Struct {ℓ} {G : Type ℓ} (grp-ops : Group-Ops G) : Type ℓ where constructor _,_ open Group-Ops grp-ops -- laws field mon-struct : Monoid-Struct mon-ops inverse : Inverse ε _⁻¹ _∙_ mon : Monoid G mon = mon-ops , mon-struct open Monoid-Struct mon-struct public open From-Assoc-Identities-Inverse assoc identity inverse public -- TODO Monoid+LeftInverse → Group record Group {ℓ}(G : Type ℓ) : Type ℓ where constructor _,_ field grp-ops : Group-Ops G grp-struct : Group-Struct grp-ops open Group-Ops grp-ops public open Group-Struct grp-struct public -- A renaming of Group-Ops with additive notation module Additive-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) where private module M = Group-Ops grp using () renaming ( _⁻¹ to 0−_ ; _/_ to _−_ ; _^⁻_ to _⊗⁻_ ; _^_ to _⊗_ ; mon-ops to +-mon-ops ; /= to −=) open M public using (0−_; +-mon-ops; −=) open Additive-Monoid-Ops +-mon-ops public infixl 6 _−_ infixl 7 _⊗⁻_ _⊗_ _−_ = M._−_ _⊗⁻_ = M._⊗⁻_ _⊗_ = M._⊗_ -- A renaming of Group-Struct with additive notation module Additive-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using () renaming ( mon-struct to +-mon-struct ; mon to +-mon ; assoc to +-assoc ; identity to +-identity ; ε∙-identity to 0+-identity ; ∙ε-identity to +0-identity ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; inverse to 0−-inverse ; ∙-/ to +-−; /-∙ to −-+ ; unique-ε-left to unique-0-left ; unique-ε-right to unique-0-right ; x/y≡ε→x≡y to x−y≡0→x≡y ; x/y≢ε to x−y≢0 ; is-ε-left to is-0-left ; is-ε-right to is-0-right ; unique-⁻¹ to unique-0− ; cancels-∙-left to cancels-+-left ; cancels-∙-right to cancels-+-right ; elim-∙-right-/ to elim-+-right-− ; elim-assoc= to elim-+-assoc= ; elim-!assoc= to elim-+-!assoc= ; elim-inner= to elim-+-inner= ; ⁻¹-hom′ to 0−-hom′ ; ⁻¹-inj to 0−-inj ; ⁻¹-involutive to 0−-involutive ; ε⁻¹≡ε to 0−0≡0 ) -- A renaming of Group with additive notation module Additive-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Additive-Group-Ops (Group.grp-ops mon) public open Additive-Group-Struct (Group.grp-struct mon) public -- A renaming of Group-Ops with multiplicative notation module Multiplicative-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) = Group-Ops grp using ( _⁻¹; _/_; /=; _^⁺_ ; _^⁻_; _^_; _²; _³; _⁴ ) renaming ( _∙_ to _*_; ε to 1#; mon-ops to *-mon-ops; ∙= to *= ) -- A renaming of Group-Struct with multiplicative notation module Multiplicative-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using ( unique-⁻¹ ; ⁻¹-hom′ ; ⁻¹-inj ; ⁻¹-involutive ) renaming ( assoc to *-assoc ; identity to *-identity ; ε∙-identity to 1*-identity ; ∙ε-identity to *1-identity ; inverse to ⁻¹-inverse ; ∙-/ to *-/; /-∙ to /-* ; mon-struct to *-mon-struct ; mon to *-mon ; unique-ε-left to unique-1-left ; unique-ε-right to unique-1-right ; x/y≡ε→x≡y to x/y≡1→x≡y ; x/y≢ε to x/y≢1 ; is-ε-left to is-1-left ; is-ε-right to is-1-right ; cancels-∙-left to cancels-*-left ; cancels-∙-right to cancels-*-right ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; elim-∙-right-/ to elim-*-right-/ ; elim-assoc= to elim-*-assoc= ; elim-!assoc= to elim-*-!assoc= ; elim-inner= to elim-*-inner= ; ε⁻¹≡ε to 1⁻¹≡1 ) -- A renaming of Group with multiplicative notation module Multiplicative-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Multiplicative-Group-Ops (Group.grp-ops mon) public open Multiplicative-Group-Struct (Group.grp-struct mon) public -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} -- TODO -- If you are looking for a proof of: -- f (Σ(xᵢ∈A) g(x₁)) ≡ Π(xᵢ∈A) (f(g(xᵢ))) -- Have a look to: -- https://github.com/crypto-agda/explore/blob/master/lib/Explore/GroupHomomorphism.agda open import Type using (Type_) open import Data.Product.NP using (_,_;fst;snd) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid module Algebra.Group where record Group-Ops {ℓ} (G : Type ℓ) : Type ℓ where constructor _,_ field mon-ops : Monoid-Ops G _⁻¹ : G → G open Monoid-Ops mon-ops public open From-Group-Ops ε _∙_ _⁻¹ public record Group-Struct {ℓ} {G : Type ℓ} (grp-ops : Group-Ops G) : Type ℓ where constructor _,_ open Group-Ops grp-ops -- laws field mon-struct : Monoid-Struct mon-ops inverse : Inverse ε _⁻¹ _∙_ mon : Monoid G mon = mon-ops , mon-struct ⁻¹∙-inverse : LeftInverse ε _⁻¹ _∙_ ⁻¹∙-inverse = fst inverse ∙⁻¹-inverse : RightInverse ε _⁻¹ _∙_ ∙⁻¹-inverse = snd inverse open Monoid-Struct mon-struct public open From-Assoc-Identities-Inverse assoc identity inverse public -- TODO Monoid+LeftInverse → Group record Group {ℓ}(G : Type ℓ) : Type ℓ where constructor _,_ field grp-ops : Group-Ops G grp-struct : Group-Struct grp-ops open Group-Ops grp-ops public open Group-Struct grp-struct public -- A renaming of Group-Ops with additive notation module Additive-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) where private module M = Group-Ops grp using () renaming ( _⁻¹ to 0−_ ; _/_ to _−_ ; _^⁻_ to _⊗⁻_ ; _^_ to _⊗_ ; mon-ops to +-mon-ops ; /= to −=) open M public using (0−_; +-mon-ops; −=) open Additive-Monoid-Ops +-mon-ops public infixl 6 _−_ infixl 7 _⊗⁻_ _⊗_ _−_ = M._−_ _⊗⁻_ = M._⊗⁻_ _⊗_ = M._⊗_ -- A renaming of Group-Struct with additive notation module Additive-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using () renaming ( mon-struct to +-mon-struct ; mon to +-mon ; assoc to +-assoc ; identity to +-identity ; ε∙-identity to 0+-identity ; ∙ε-identity to +0-identity ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; inverse to 0−-inverse ; ∙-/ to +-−; /-∙ to −-+ ; unique-ε-left to unique-0-left ; unique-ε-right to unique-0-right ; x/y≡ε→x≡y to x−y≡0→x≡y ; x/y≢ε to x−y≢0 ; is-ε-left to is-0-left ; is-ε-right to is-0-right ; unique-⁻¹ to unique-0− ; cancels-∙-left to cancels-+-left ; cancels-∙-right to cancels-+-right ; elim-∙-right-/ to elim-+-right-− ; elim-assoc= to elim-+-assoc= ; elim-!assoc= to elim-+-!assoc= ; elim-inner= to elim-+-inner= ; ⁻¹-hom′ to 0−-hom′ ; ⁻¹-inj to 0−-inj ; ⁻¹-involutive to 0−-involutive ; ε⁻¹≡ε to 0−0≡0 ) -- A renaming of Group with additive notation module Additive-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Additive-Group-Ops (Group.grp-ops mon) public open Additive-Group-Struct (Group.grp-struct mon) public -- A renaming of Group-Ops with multiplicative notation module Multiplicative-Group-Ops {ℓ}{G : Type ℓ} (grp : Group-Ops G) = Group-Ops grp using ( _⁻¹; _/_; /=; _^⁺_ ; _^⁻_; _^_; _²; _³; _⁴ ) renaming ( _∙_ to _*_; ε to 1#; mon-ops to *-mon-ops; ∙= to *= ) -- A renaming of Group-Struct with multiplicative notation module Multiplicative-Group-Struct {ℓ}{G : Type ℓ}{grp-ops : Group-Ops G} (grp-struct : Group-Struct grp-ops) = Group-Struct grp-struct using ( unique-⁻¹ ; ⁻¹-hom′ ; ⁻¹-inj ; ⁻¹-involutive ) renaming ( assoc to *-assoc ; identity to *-identity ; ε∙-identity to 1*-identity ; ∙ε-identity to *1-identity ; inverse to ⁻¹-inverse ; ∙-/ to *-/; /-∙ to /-* ; mon-struct to *-mon-struct ; mon to *-mon ; unique-ε-left to unique-1-left ; unique-ε-right to unique-1-right ; x/y≡ε→x≡y to x/y≡1→x≡y ; x/y≢ε to x/y≢1 ; is-ε-left to is-1-left ; is-ε-right to is-1-right ; cancels-∙-left to cancels-*-left ; cancels-∙-right to cancels-*-right ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; elim-∙-right-/ to elim-*-right-/ ; elim-assoc= to elim-*-assoc= ; elim-!assoc= to elim-*-!assoc= ; elim-inner= to elim-*-inner= ; ε⁻¹≡ε to 1⁻¹≡1 ) -- A renaming of Group with multiplicative notation module Multiplicative-Group {ℓ}{G : Type ℓ}(mon : Group G) where open Multiplicative-Group-Ops (Group.grp-ops mon) public open Multiplicative-Group-Struct (Group.grp-struct mon) public -- -} -- -} -- -} -- -}
update Group to include left and right inverse
update Group to include left and right inverse
Agda
bsd-3-clause
crypto-agda/agda-nplib
bd4721cbfeecd02bd82f2eb2bb19570e836dac3a
Denotation/Implementation/Popl14.agda
Denotation/Implementation/Popl14.agda
module Denotation.Implementation.Popl14 where -- Notions of programs being implementations of specifications -- for Calculus Popl14 open import Denotation.Specification.Canon-Popl14 public open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Derive open import Popl14.Change.Value open import Popl14.Change.Validity open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Tuples open import Structure.Bag.Popl14 open import Postulate.Extensionality infix 4 implements syntax implements τ u v = u ≈₍ τ ₎ v implements : ∀ (τ : Type) → Change τ → ⟦ ΔType τ ⟧ → Set u ≈₍ int ₎ v = u ≡ v u ≈₍ bag ₎ v = u ≡ v u ≈₍ σ ⇒ τ ₎ v = (w : ⟦ σ ⟧) (Δw : Change σ) (R[w,Δw] : valid {σ} w Δw) (Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ Δw Δw′) → implements τ (u (cons w Δw R[w,Δw])) (v w Δw′) infix 4 _≈_ _≈_ : ∀ {τ} → Change τ → ⟦ ΔType τ ⟧ → Set _≈_ {τ} = implements τ module Disambiguation (τ : Type) where _✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚_ = _⟦⊕⟧_ {τ} _−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−_ = _⟦⊝⟧_ {τ} infixl 6 _✚_ _−_ _≃_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃_ = _≈_ {τ} infix 4 _≃_ module FunctionDisambiguation (σ : Type) (τ : Type) where open Disambiguation (σ ⇒ τ) public _✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚₁_ = _⟦⊕⟧_ {τ} _−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−₁_ = _⟦⊝⟧_ {τ} infixl 6 _✚₁_ _−₁_ _≃₁_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃₁_ = _≈_ {τ} infix 4 _≃₁_ _✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧ _✚₀_ = _⟦⊕⟧_ {σ} _−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧ _−₀_ = _⟦⊝⟧_ {σ} infixl 6 _✚₀_ _−₀_ _≃₀_ : Change σ → ⟦ ΔType σ ⟧ → Set _≃₀_ = _≈_ {σ} infix 4 _≃₀_ compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set compatible {∅} ∅ ∅ = ⊤ compatible {τ • Γ} (cons v Δv _ • ρ) (Δv′ • v′ • ρ′) = Triple (v ≡ v′) (λ _ → Δv ≈₍ τ ₎ Δv′) (λ _ _ → compatible ρ ρ′) -- If a program implements a specification, then certain things -- proven about the specification carry over to the programs. carry-over : ∀ {τ} {v : ⟦ τ ⟧} {Δv : Change τ} {Δv′ : ⟦ ΔType τ ⟧} (R[v,Δv] : valid {τ} v Δv) (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) → let open Disambiguation τ in v ⊞₍ τ ₎ Δv ≡ v ✚ Δv′ u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let open Disambiguation τ in u ⊟₍ τ ₎ v ≃ u − v u⊟v≈u⊝v {base base-int} = refl u⊟v≈u⊝v {base base-bag} = refl u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where open FunctionDisambiguation σ τ result : (w : ⟦ σ ⟧) (Δw : Change σ) → valid {σ} w Δw → (Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ → g (w ⊞₍ σ ₎ Δw) ⊟₍ τ ₎ f w ≃₁ g (w ✚₀ Δw′) −₁ f w result w Δw R[w,Δw] Δw′ Δw≈Δw′ rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ = u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w} carry-over {base base-int} {v} _ Δv≈Δv′ = cong (_+_ v) Δv≈Δv′ carry-over {base base-bag} {v} _ Δv≈Δv′ = cong (_++_ v) Δv≈Δv′ carry-over {σ ⇒ τ} {f} {Δf} {Δf′} R[f,Δf] Δf≈Δf′ = ext (λ v → let open FunctionDisambiguation σ τ V = R[v,u-v] {σ} {v} {v} S = u⊟v≈u⊝v {σ} {v} {v} in carry-over {τ} {f v} {Δf (nil-valid-change σ v)} {Δf′ v (v −₀ v)} (proj₁ (R[f,Δf] (nil-valid-change σ v))) (Δf≈Δf′ v (v ⊟₍ σ ₎ v) V (v −₀ v) S)) -- A property relating `ignore` and the subcontext relation Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′ ⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl ⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ • ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C) -- A specialization of the soundness of weakening ⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′ ⟦fit⟧ t {ρ} {ρ′} C = trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
module Denotation.Implementation.Popl14 where -- Notions of programs being implementations of specifications -- for Calculus Popl14 open import Denotation.Specification.Canon-Popl14 public open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Derive open import Popl14.Change.Value open import Popl14.Change.Validity open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Tuples open import Structure.Bag.Popl14 open import Postulate.Extensionality infix 4 implements syntax implements τ u v = u ≈₍ τ ₎ v implements : ∀ (τ : Type) → Change τ → ⟦ ΔType τ ⟧ → Set u ≈₍ int ₎ v = u ≡ v u ≈₍ bag ₎ v = u ≡ v u ≈₍ σ ⇒ τ ₎ v = (w : ⟦ σ ⟧) (Δw : Change σ) (R[w,Δw] : valid {σ} w Δw) (Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ Δw Δw′) → implements τ (u (cons w Δw R[w,Δw])) (v w Δw′) infix 4 _≈_ _≈_ : ∀ {τ} → Change τ → ⟦ ΔType τ ⟧ → Set _≈_ {τ} = implements τ module Disambiguation (τ : Type) where _✚_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚_ = _⟦⊕⟧_ {τ} _−_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−_ = _⟦⊝⟧_ {τ} infixl 6 _✚_ _−_ _≃_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃_ = _≈_ {τ} infix 4 _≃_ module FunctionDisambiguation (σ : Type) (τ : Type) where open Disambiguation (σ ⇒ τ) public _✚₁_ : ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _✚₁_ = _⟦⊕⟧_ {τ} _−₁_ : ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _−₁_ = _⟦⊝⟧_ {τ} infixl 6 _✚₁_ _−₁_ _≃₁_ : Change τ → ⟦ ΔType τ ⟧ → Set _≃₁_ = _≈_ {τ} infix 4 _≃₁_ _✚₀_ : ⟦ σ ⟧ → ⟦ ΔType σ ⟧ → ⟦ σ ⟧ _✚₀_ = _⟦⊕⟧_ {σ} _−₀_ : ⟦ σ ⟧ → ⟦ σ ⟧ → ⟦ ΔType σ ⟧ _−₀_ = _⟦⊝⟧_ {σ} infixl 6 _✚₀_ _−₀_ _≃₀_ : Change σ → ⟦ ΔType σ ⟧ → Set _≃₀_ = _≈_ {σ} infix 4 _≃₀_ compatible : ∀ {Γ} → ΔEnv Γ → ⟦ ΔContext Γ ⟧ → Set compatible {∅} ∅ ∅ = ⊤ compatible {τ • Γ} (cons v Δv _ • ρ) (Δv′ • v′ • ρ′) = Triple (v ≡ v′) (λ _ → Δv ≈₍ τ ₎ Δv′) (λ _ _ → compatible ρ ρ′) -- If a program implements a specification, then certain things -- proven about the specification carry over to the programs. carry-over : ∀ {τ} {v : ⟦ τ ⟧} {Δv : Change τ} (R[v,Δv] : valid {τ} v Δv) {Δv′ : ⟦ ΔType τ ⟧} (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) → let open Disambiguation τ in v ⊞₍ τ ₎ Δv ≡ v ✚ Δv′ u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let open Disambiguation τ in u ⊟₍ τ ₎ v ≃ u − v u⊟v≈u⊝v {base base-int} = refl u⊟v≈u⊝v {base base-bag} = refl u⊟v≈u⊝v {σ ⇒ τ} {g} {f} = result where open FunctionDisambiguation σ τ result : (w : ⟦ σ ⟧) (Δw : Change σ) → valid {σ} w Δw → (Δw′ : ⟦ ΔType σ ⟧) → Δw ≈₍ σ ₎ Δw′ → g (w ⊞₍ σ ₎ Δw) ⊟₍ τ ₎ f w ≃₁ g (w ✚₀ Δw′) −₁ f w result w Δw R[w,Δw] Δw′ Δw≈Δw′ rewrite carry-over {σ} {w} R[w,Δw] Δw≈Δw′ = u⊟v≈u⊝v {τ} {g (w ✚₀ Δw′)} {f w} carry-over {base base-int} {v} _ Δv≈Δv′ = cong (_+_ v) Δv≈Δv′ carry-over {base base-bag} {v} _ Δv≈Δv′ = cong (_++_ v) Δv≈Δv′ carry-over {σ ⇒ τ} {f} {Δf} R[f,Δf] {Δf′} Δf≈Δf′ = ext (λ v → let open FunctionDisambiguation σ τ V = R[v,u-v] {σ} {v} {v} S = u⊟v≈u⊝v {σ} {v} {v} in carry-over {τ} {f v} {Δf (nil-valid-change σ v)} (proj₁ (R[f,Δf] (nil-valid-change σ v))) {Δf′ v (v −₀ v)} (Δf≈Δf′ v (v ⊟₍ σ ₎ v) V (v −₀ v) S)) -- A property relating `ignore` and the subcontext relation Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ignore ρ ≡ ⟦ Γ≼ΔΓ ⟧ ρ′ ⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} _ = refl ⟦Γ≼ΔΓ⟧ {τ • Γ} {cons v dv _ • ρ} {dv′ • v′ • ρ′} (cons v≡v′ _ C) = cong₂ _•_ v≡v′ (⟦Γ≼ΔΓ⟧ C) -- A specialization of the soundness of weakening ⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) {ρ : ΔEnv Γ} {ρ′ : ⟦ ΔContext Γ ⟧} (C : compatible ρ ρ′) → ⟦ t ⟧ (ignore ρ) ≡ ⟦ fit t ⟧ ρ′ ⟦fit⟧ t {ρ} {ρ′} C = trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ C)) (sym (weaken-sound t ρ′))
Change argument order of carry-over.
Change argument order of carry-over. This commit prepares for uncurrying cary-over. Old-commit-hash: e1a21bdcbe7ee2b217917bd6ac9dfc576487102a
Agda
mit
inc-lc/ilc-agda
9028d1ebd71caa01d4b8a57cbb884b32e787ebe1
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-var-3 : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context (Δ-Context Γ)) τ lift-var-3 this = that (that (that this)) lift-var-3 (that x) = that (that (that (that (lift-var-3 x)))) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore ∅ (τ₂ • Γrest) t₁ = weakenOne ∅ (Δ-Type τ₂) (doWeakenMore (τ₂ • ∅) Γrest t₁) doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) prefix : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context prefix Γ Γ′ = take (Δ-Context Γ) Γ′ rest : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context rest Γ Γ′ = drop (Δ-Context Γ) Γ′ weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 Γ Γ′ t = doWeakenMore (prefix Γ Γ′) (rest Γ Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t)) weakenMore : --∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (weakenMore2 Γ Γ′ t) {- weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 ∅ ∅ t₁ = Δ t₁ weakenMore2 (τ₁ • Γ₁) ∅ t₁ = weakenOne ∅ (Δ-Type (Δ-Type τ₁)) (weakenOne (Δ-Type τ₁ • ∅) (Δ-Type τ₁) {! weakenMore2 (Δ {τ₁ • Γ₁} {τ} t₁)!}) --(weakenMore2 {τ₁ • Γ₁} (Δ-Type τ₁ • τ₁ • ∅) t₁ )) -- (Δ {τ₁ • Γ₁} {τ} t₁))) weakenMore2 (τ₁ • Γ₁) (.(Δ-Type τ₁) • Γ′₁) t₁ = {!!} -} lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore ∅ (τ₂ • Γrest) t₁ = weakenOne ∅ (Δ-Type τ₂) (doWeakenMore (τ₂ • ∅) Γrest t₁) doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) prefix : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context prefix Γ Γ′ = take (Δ-Context Γ) Γ′ rest : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context rest Γ Γ′ = drop (Δ-Context Γ) Γ′ weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 Γ Γ′ t = doWeakenMore (prefix Γ Γ′) (rest Γ Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t)) weakenMore : --∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (weakenMore2 Γ Γ′ t) lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
Revert "agda/...: misc (to revert)"
Revert "agda/...: misc (to revert)" This reverts commit ae3a9db6fb87ddc01573ae236f8850b322bec8db. Old-commit-hash: fa2ae9742c4282275b8f242a197b35ef1acf5932
Agda
mit
inc-lc/ilc-agda
2e98871b50826699f6f16a2718f8f2361a559c4d
Thesis/ANormalUntyped.agda
Thesis/ANormalUntyped.agda
module Thesis.ANormalUntyped where open import Data.Nat.Base open import Data.Integer.Base open import Relation.Binary.PropositionalEquality {- Typed deBruijn indexes for untyped languages. -} -- Using a record gives an eta rule saying that all types are equal. record Type : Set where constructor Uni open import Base.Syntax.Context Type public data Term (Γ : Context) : Set where var : (x : Var Γ Uni) → Term Γ lett : (f : Var Γ Uni) → (x : Var Γ Uni) → Term (Uni • Γ) → Term Γ {- deriveC Δ (lett f x t) = dlett df x dx -} -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- cvar : (x : Var Γ τ) Δ → -- ΔCTerm Γ τ Δ -- clett : ∀ {σ τ₁ κ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → -- ΔCTerm (τ₁ • Γ) τ (? • Δ) → -- ΔCTerm Γ τ Δ weaken-term : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ → Term Γ₂ weaken-term Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken-term Γ₁≼Γ₂ (lett f x t) = lett (weaken-var Γ₁≼Γ₂ f) (weaken-var Γ₁≼Γ₂ x) (weaken-term (keep _ • Γ₁≼Γ₂) t) data Fun (Γ : Context) : Set where term : Term Γ → Fun Γ abs : ∀ {σ} → Fun (σ • Γ) → Fun Γ weaken-fun : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Fun Γ₁ → Fun Γ₂ weaken-fun Γ₁≼Γ₂ (term x) = term (weaken-term Γ₁≼Γ₂ x) weaken-fun Γ₁≼Γ₂ (abs f) = abs (weaken-fun (keep _ • Γ₁≼Γ₂) f) data Val : Type → Set -- data Val (τ : Type) : Set open import Base.Denotation.Environment Type Val public open import Base.Data.DependentList public -- data Val (τ : Type) where data Val where closure : ∀ {Γ} → (t : Fun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → Val Uni intV : ∀ (n : ℤ) → Val Uni -- ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type -- ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ -- ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ) data ErrVal : Set where Done : (v : Val Uni) → ErrVal Error : ErrVal TimeOut : ErrVal _>>=_ : ErrVal → (Val Uni → ErrVal) → ErrVal Done v >>= f = f v Error >>= f = Error TimeOut >>= f = TimeOut Res : Set Res = ℕ → ErrVal eval-fun : ∀ {Γ} → Fun Γ → ⟦ Γ ⟧Context → Res eval-term : ∀ {Γ} → Term Γ → ⟦ Γ ⟧Context → Res apply : Val Uni → Val Uni → Res apply (closure f ρ) a n = eval-fun f (a • ρ) n apply (intV _) a n = Error eval-term t ρ zero = TimeOut eval-term (var x) ρ (suc n) = Done (⟦ x ⟧Var ρ) eval-term (lett f x t) ρ (suc n) = apply (⟦ f ⟧Var ρ) (⟦ x ⟧Var ρ) n >>= (λ v → eval-term t (v • ρ) n) eval-fun (term t) ρ n = eval-term t ρ n eval-fun (abs f) ρ n = Done (closure f ρ) -- Erasure from typed to untyped values. import Thesis.ANormalBigStep as T erase-type : T.Type → Type erase-type _ = Uni erase-val : ∀ {τ} → T.Val τ → Val (erase-type τ) erase-errVal : ∀ {τ} → T.ErrVal τ → ErrVal erase-errVal (T.Done v) = Done (erase-val v) erase-errVal T.Error = Error erase-errVal T.TimeOut = TimeOut erase-res : ∀ {τ} → T.Res τ → Res erase-res r n = erase-errVal (r n) erase-ctx : T.Context → Context erase-ctx ∅ = ∅ erase-ctx (τ • Γ) = erase-type τ • (erase-ctx Γ) erase-env : ∀ {Γ} → T.Op.⟦ Γ ⟧Context → ⟦ erase-ctx Γ ⟧Context erase-env ∅ = ∅ erase-env (v • ρ) = erase-val v • erase-env ρ erase-var : ∀ {Γ τ} → T.Var Γ τ → Var (erase-ctx Γ) (erase-type τ) erase-var T.this = this erase-var (T.that x) = that (erase-var x) erase-term : ∀ {Γ τ} → T.Term Γ τ → Term (erase-ctx Γ) erase-term (T.var x) = var (erase-var x) erase-term (T.lett f x t) = lett (erase-var f) (erase-var x) (erase-term t) erase-fun : ∀ {Γ τ} → T.Fun Γ τ → Fun (erase-ctx Γ) erase-fun (T.term x) = term (erase-term x) erase-fun (T.abs f) = abs (erase-fun f) erase-val (T.closure t ρ) = closure (erase-fun t) (erase-env ρ) erase-val (T.intV n) = intV n -- Different erasures commute. erasure-commute-var : ∀ {Γ τ} (x : T.Var Γ τ) ρ → erase-val (T.Op.⟦ x ⟧Var ρ) ≡ ⟦ erase-var x ⟧Var (erase-env ρ) erasure-commute-var T.this (v • ρ) = refl erasure-commute-var (T.that x) (v • ρ) = erasure-commute-var x ρ erase-bind : ∀ {σ τ Γ} a (t : T.Term (σ • Γ) τ) ρ n → erase-errVal (a T.>>= (λ v → T.eval-term t (v • ρ) n)) ≡ erase-errVal a >>= (λ v → eval-term (erase-term t) (v • erase-env ρ) n) erasure-commute-fun : ∀ {Γ τ} (t : T.Fun Γ τ) ρ n → erase-errVal (T.eval-fun t ρ n) ≡ eval-fun (erase-fun t) (erase-env ρ) n erasure-commute-apply : ∀ {σ τ} (f : T.Val (σ T.⇒ τ)) a n → erase-errVal (T.apply f a n) ≡ apply (erase-val f) (erase-val a) n erasure-commute-apply {σ} (T.closure t ρ) a n = erasure-commute-fun t (a • ρ) n erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n → erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n erasure-commute-fun (T.term t) ρ n = erasure-commute-term t ρ n erasure-commute-fun (T.abs t) ρ n = refl erasure-commute-term t ρ zero = refl erasure-commute-term (T.var x) ρ (ℕ.suc n) = cong Done (erasure-commute-var x ρ) erasure-commute-term (T.lett f x t) ρ (ℕ.suc n) rewrite erase-bind (T.apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n) t ρ n | erasure-commute-apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n | erasure-commute-var f ρ | erasure-commute-var x ρ = refl erase-bind (T.Done v) t ρ n = erasure-commute-term t (v • ρ) n erase-bind T.Error t ρ n = refl erase-bind T.TimeOut t ρ n = refl
module Thesis.ANormalUntyped where open import Data.Empty open import Data.Product open import Data.Nat.Base import Data.Integer.Base as I open I using (ℤ) open import Data.Integer.Base using (ℤ) open import Relation.Binary.PropositionalEquality {- Typed deBruijn indexes for untyped languages. -} -- Using a record gives an eta rule saying that all types are equal. record Type : Set where constructor Uni record DType : Set where constructor DUni open import Base.Syntax.Context Type public import Base.Syntax.Context DType as DC data Term (Γ : Context) : Set where var : (x : Var Γ Uni) → Term Γ lett : (f : Var Γ Uni) → (x : Var Γ Uni) → Term (Uni • Γ) → Term Γ ΔΔ : Context → DC.Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = DUni • ΔΔ Γ derive-dvar : ∀ {Δ} → (x : Var Δ Uni) → DC.Var (ΔΔ Δ) DUni derive-dvar this = DC.this derive-dvar (that x) = DC.that (derive-dvar x) data DTerm : (Δ : Context) → Set where dvar : ∀ {Δ} (x : DC.Var (ΔΔ Δ) DUni) → DTerm Δ dlett : ∀ {Δ} → (f : Var Δ Uni) → (x : Var Δ Uni) → (t : Term (Uni • Δ)) → (df : DC.Var (ΔΔ Δ) DUni) → (dx : DC.Var (ΔΔ Δ) DUni) → (dt : DTerm (Uni • Δ)) → DTerm Δ derive-dterm : ∀ {Δ} → (t : Term Δ) → DTerm Δ derive-dterm (var x) = dvar (derive-dvar x) derive-dterm (lett f x t) = dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t) {- deriveC Δ (lett f x t) = dlett df x dx -} -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where -- cvar : (x : Var Γ τ) Δ → -- ΔCTerm Γ τ Δ -- clett : ∀ {σ τ₁ κ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → -- ΔCTerm (τ₁ • Γ) τ (? • Δ) → -- ΔCTerm Γ τ Δ weaken-term : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ → Term Γ₂ weaken-term Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken-term Γ₁≼Γ₂ (lett f x t) = lett (weaken-var Γ₁≼Γ₂ f) (weaken-var Γ₁≼Γ₂ x) (weaken-term (keep _ • Γ₁≼Γ₂) t) -- I don't necessarily recommend having a separate syntactic category for -- functions, but we should prove a fundamental lemma for them too, somehow. -- I'll probably end up with some ANF allowing lambdas to do the semantics. data Fun (Γ : Context) : Set where term : Term Γ → Fun Γ abs : ∀ {σ} → Fun (σ • Γ) → Fun Γ data DFun (Δ : Context) : Set where dterm : DTerm Δ → DFun Δ dabs : DFun (Uni • Δ) → DFun Δ derive-dfun : ∀ {Δ} → (t : Fun Δ) → DFun Δ derive-dfun (term t) = dterm (derive-dterm t) derive-dfun (abs f) = dabs (derive-dfun f) weaken-fun : ∀ {Γ₁ Γ₂} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Fun Γ₁ → Fun Γ₂ weaken-fun Γ₁≼Γ₂ (term x) = term (weaken-term Γ₁≼Γ₂ x) weaken-fun Γ₁≼Γ₂ (abs f) = abs (weaken-fun (keep _ • Γ₁≼Γ₂) f) data Val : Type → Set data DVal : DType → Set -- data Val (τ : Type) : Set open import Base.Denotation.Environment Type Val public open import Base.Data.DependentList public import Base.Denotation.Environment DType DVal as D -- data Val (τ : Type) where data Val where closure : ∀ {Γ} → (t : Fun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → Val Uni intV : ∀ (n : ℕ) → Val Uni data DVal where dclosure : ∀ {Γ} → (dt : DFun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → (dρ : D.⟦ ΔΔ Γ ⟧Context) → DVal DUni dintV : ∀ (n : ℤ) → DVal DUni ChΔ : ∀ (Δ : Context) → Set ChΔ Δ = D.⟦ ΔΔ Δ ⟧Context -- ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type -- ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ -- ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ) -- XXX separate syntax is a bit dangerous. Also, do I want to be so accurate relative to the original model? data _F⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Fun Γ → ℕ → Val Uni → Set where abs : ∀ {t : Fun (Uni • Γ)} → ρ F⊢ abs t ↓[ 0 ] closure t ρ data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Term Γ → ℕ → Val Uni → Set where var : ∀ (x : Var Γ Uni) → ρ ⊢ var x ↓[ 0 ] (⟦ x ⟧Var ρ) lett : ∀ n1 n2 {Γ' ρ′ v1 v2 v3} {f x t t'} → ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → ρ ⊢ var x ↓[ 0 ] v1 → (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → (v2 • ρ) ⊢ t ↓[ n2 ] v3 → ρ ⊢ lett f x t ↓[ suc (suc (n1 + n2)) ] v3 -- lit : ∀ n → -- ρ ⊢ const (lit n) ↓[ 0 ] intV n -- data _D_⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : D.⟦ ΔΔ Γ ⟧Context) : DTerm Γ → ℕ → DVal DUni → Set where -- dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) → -- ρ D dρ ⊢ dvar x ↓[ 0 ] (D.⟦ x ⟧Var dρ) -- dlett : ∀ n1 n2 n3 n4 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} → -- ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → -- ρ ⊢ var x ↓[ 0 ] v1 → -- (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → -- (v2 • ρ) ⊢ t ↓[ n2 ] v3 → -- -- With a valid input ρ' and ρ'' coincide? Varies among plausible validity -- -- definitions. -- ρ D dρ ⊢ dvar df ↓[ 0 ] dclosure {Γ'} dt' ρ'' dρ' → -- ρ D dρ ⊢ dvar dx ↓[ 0 ] dv1 → -- (v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓[ n3 ] dv2 → -- (v2 • ρ) D (dv2 • dρ) ⊢ dt ↓[ n4 ] dv3 → -- ρ D dρ ⊢ dlett f x t df dx dt ↓[ suc (suc (n1 + n2)) ] dv3 -- Do I need to damn count steps here? No. data _D_F⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DFun Γ → DVal DUni → Set where dabs : ∀ {t : DFun (Uni • Γ)} → ρ D dρ F⊢ dabs t ↓ dclosure t ρ dρ data _D_⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DTerm Γ → DVal DUni → Set where dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) → ρ D dρ ⊢ dvar x ↓ (D.⟦ x ⟧Var dρ) dlett : ∀ n1 n2 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} → ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ → ρ ⊢ var x ↓[ 0 ] v1 → (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 → (v2 • ρ) ⊢ t ↓[ n2 ] v3 → -- With a valid input ρ' and ρ'' coincide? Varies among plausible validity -- definitions. ρ D dρ ⊢ dvar df ↓ dclosure {Γ'} dt' ρ'' dρ' → ρ D dρ ⊢ dvar dx ↓ dv1 → (v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓ dv2 → (v2 • ρ) D (dv2 • dρ) ⊢ dt ↓ dv3 → ρ D dρ ⊢ dlett f x t df dx dt ↓ dv3 {-# TERMINATING #-} -- Dear lord. Why on Earth. mutual -- Single context? Yeah, good, that's what we want in the end... -- Though we might want more flexibility till when we have replacement -- changes. rrelT3 : ∀ {Γ} (t1 : Fun Γ) (dt : DFun Γ) (t2 : Fun Γ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelT3 t1 dt t2 ρ1 dρ ρ2 k = (v1 v2 : Val Uni) → ∀ j n2 (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) → Σ[ dv ∈ DVal DUni ] Σ[ dn ∈ ℕ ] ρ1 D dρ F⊢ dt ↓ dv × rrelV3 v1 dv v2 (k ∸ j) rrelV3 : ∀ (v1 : Val Uni) (dv : DVal DUni) (v2 : Val Uni) → ℕ → Set rrelV3 (intV v1) (dintV dv) (intV v2) n = dv I.+ (I.+ v1) ≡ (I.+ v2) rrelV3 (closure {Γ1} t1 ρ1) (dclosure {ΔΓ} dt ρ' dρ) (closure {Γ2} t2 ρ2) n = -- Require a proof that the two contexts match: Σ ((Γ1 ≡ Γ2) × (Γ1 ≡ ΔΓ)) λ { (refl , refl) → ∀ (k : ℕ) (k<n : k < n) v1 dv v2 → rrelV3 v1 dv v2 k → rrelT3 t1 dt t2 (v1 • ρ1) (dv • dρ) (v2 • ρ2) k } rrelV3 _ _ _ n = ⊥ -- -- [_]τ from v1 to v2) : -- -- [ τ ]τ dv from v1 to v2) = -- -- data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where -- -- v∅ : [ ∅ ]Δ ∅ from ∅ to ∅ -- -- _v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} → -- -- (dvv : [ τ ]τ dv from v1 to v2) → -- -- (dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) → -- -- [ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2) -- data ErrVal : Set where -- Done : (v : Val Uni) → ErrVal -- Error : ErrVal -- TimeOut : ErrVal -- _>>=_ : ErrVal → (Val Uni → ErrVal) → ErrVal -- Done v >>= f = f v -- Error >>= f = Error -- TimeOut >>= f = TimeOut -- Res : Set -- Res = ℕ → ErrVal -- -- eval-fun : ∀ {Γ} → Fun Γ → ⟦ Γ ⟧Context → Res -- -- eval-term : ∀ {Γ} → Term Γ → ⟦ Γ ⟧Context → Res -- -- apply : Val Uni → Val Uni → Res -- -- apply (closure f ρ) a n = eval-fun f (a • ρ) n -- -- apply (intV _) a n = Error -- -- eval-term t ρ zero = TimeOut -- -- eval-term (var x) ρ (suc n) = Done (⟦ x ⟧Var ρ) -- -- eval-term (lett f x t) ρ (suc n) = apply (⟦ f ⟧Var ρ) (⟦ x ⟧Var ρ) n >>= (λ v → eval-term t (v • ρ) n) -- -- eval-fun (term t) ρ n = eval-term t ρ n -- -- eval-fun (abs f) ρ n = Done (closure f ρ) -- -- -- Erasure from typed to untyped values. -- -- import Thesis.ANormalBigStep as T -- -- erase-type : T.Type → Type -- -- erase-type _ = Uni -- -- erase-val : ∀ {τ} → T.Val τ → Val (erase-type τ) -- -- erase-errVal : ∀ {τ} → T.ErrVal τ → ErrVal -- -- erase-errVal (T.Done v) = Done (erase-val v) -- -- erase-errVal T.Error = Error -- -- erase-errVal T.TimeOut = TimeOut -- -- erase-res : ∀ {τ} → T.Res τ → Res -- -- erase-res r n = erase-errVal (r n) -- -- erase-ctx : T.Context → Context -- -- erase-ctx ∅ = ∅ -- -- erase-ctx (τ • Γ) = erase-type τ • (erase-ctx Γ) -- -- erase-env : ∀ {Γ} → T.Op.⟦ Γ ⟧Context → ⟦ erase-ctx Γ ⟧Context -- -- erase-env ∅ = ∅ -- -- erase-env (v • ρ) = erase-val v • erase-env ρ -- -- erase-var : ∀ {Γ τ} → T.Var Γ τ → Var (erase-ctx Γ) (erase-type τ) -- -- erase-var T.this = this -- -- erase-var (T.that x) = that (erase-var x) -- -- erase-term : ∀ {Γ τ} → T.Term Γ τ → Term (erase-ctx Γ) -- -- erase-term (T.var x) = var (erase-var x) -- -- erase-term (T.lett f x t) = lett (erase-var f) (erase-var x) (erase-term t) -- -- erase-fun : ∀ {Γ τ} → T.Fun Γ τ → Fun (erase-ctx Γ) -- -- erase-fun (T.term x) = term (erase-term x) -- -- erase-fun (T.abs f) = abs (erase-fun f) -- -- erase-val (T.closure t ρ) = closure (erase-fun t) (erase-env ρ) -- -- erase-val (T.intV n) = intV n -- -- -- Different erasures commute. -- -- erasure-commute-var : ∀ {Γ τ} (x : T.Var Γ τ) ρ → -- -- erase-val (T.Op.⟦ x ⟧Var ρ) ≡ ⟦ erase-var x ⟧Var (erase-env ρ) -- -- erasure-commute-var T.this (v • ρ) = refl -- -- erasure-commute-var (T.that x) (v • ρ) = erasure-commute-var x ρ -- -- erase-bind : ∀ {σ τ Γ} a (t : T.Term (σ • Γ) τ) ρ n → erase-errVal (a T.>>= (λ v → T.eval-term t (v • ρ) n)) ≡ erase-errVal a >>= (λ v → eval-term (erase-term t) (v • erase-env ρ) n) -- -- erasure-commute-fun : ∀ {Γ τ} (t : T.Fun Γ τ) ρ n → -- -- erase-errVal (T.eval-fun t ρ n) ≡ eval-fun (erase-fun t) (erase-env ρ) n -- -- erasure-commute-apply : ∀ {σ τ} (f : T.Val (σ T.⇒ τ)) a n → erase-errVal (T.apply f a n) ≡ apply (erase-val f) (erase-val a) n -- -- erasure-commute-apply {σ} (T.closure t ρ) a n = erasure-commute-fun t (a • ρ) n -- -- erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n → -- -- erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n -- -- erasure-commute-fun (T.term t) ρ n = erasure-commute-term t ρ n -- -- erasure-commute-fun (T.abs t) ρ n = refl -- -- erasure-commute-term t ρ zero = refl -- -- erasure-commute-term (T.var x) ρ (ℕ.suc n) = cong Done (erasure-commute-var x ρ) -- -- erasure-commute-term (T.lett f x t) ρ (ℕ.suc n) rewrite erase-bind (T.apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n) t ρ n | erasure-commute-apply (T.Op.⟦ f ⟧Var ρ) (T.Op.⟦ x ⟧Var ρ) n | erasure-commute-var f ρ | erasure-commute-var x ρ = refl -- -- erase-bind (T.Done v) t ρ n = erasure-commute-term t (v • ρ) n -- -- erase-bind T.Error t ρ n = refl -- -- erase-bind T.TimeOut t ρ n = refl
Write down real step-indexed logical relation for untyped terms
Write down real step-indexed logical relation for untyped terms Sadly, Agda does not recognize this is terminating, because recursing on k with k < n is not a structurally recursive call on a subterm. SAD!
Agda
mit
inc-lc/ilc-agda
7849a93dd727b32c2606d958173b08212260367d
Game/Transformation/ReceiptFreeness-CCA2d/Valid.agda
Game/Transformation/ReceiptFreeness-CCA2d/Valid.agda
{-# OPTIONS --copatterns #-} open import Type open import Function open import Data.One open import Data.Two open import Data.Maybe open import Data.Product open import Data.Nat open import Data.Vec hiding (_>>=_ ; _∈_) open import Data.List as L open import Data.Fin as Fin using (Fin) open import Relation.Binary.PropositionalEquality.NP as ≡ open import Control.Strategy renaming (map to mapS) open import Game.Challenge import Game.ReceiptFreeness import Game.IND-CCA2-dagger import Game.IND-CPA-utils import Data.List.Any open Data.List.Any using (here; there) open Data.List.Any.Membership-≡ using (_∈_ ; _∉_) module Game.Transformation.ReceiptFreeness-CCA2d.Valid (PubKey : ★) (SecKey : ★) -- Message = 𝟚 (CipherText : ★) (SerialNumber : ★) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₑ Rₖ Rₐ : ★) (#q : ℕ) (max#q : Fin #q) (KeyGen : Rₖ → PubKey × SecKey) (Enc : let Message = 𝟚 in PubKey → Message → Rₑ → CipherText) (Dec : let Message = 𝟚 in SecKey → CipherText → Message) (Check : let open Game.ReceiptFreeness PubKey SecKey CipherText SerialNumber Rₑ Rₖ Rₐ #q max#q KeyGen Enc Dec in BB → Receipt → 𝟚) (CheckMem : ∀ bb r → ✓ (Check bb r) → proj₁ (proj₂ r) ∉ L.map (proj₁ ∘ proj₂) bb) -- (CheckEnc : ∀ pk m rₑ → Check (Enc pk m rₑ) ≡ 1₂) where _²' : ★ → ★ X ²' = X × X r-sn : Receipt → SerialNumber r-sn (_ , sn , _) = sn module Simulator-Valid (RFA : RF.Adversary)(RFA-Valid : RF.Valid-Adversary RFA) (WRONG-HYP : ∀ r r' → r-sn r ≡ r-sn r' → enc-co r ≡ enc-co r') where valid : CCA2†.Valid-Adversary (Simulator.A† RFA) valid (rₐ , rgb) pk = Phase1 _ (RFA-Valid rₐ pk) where open CCA2†.Valid-Adversary (rₐ , rgb) pk module RFA = RF.Valid-Adversary rₐ pk open Simulator RFA open AdversaryParts rgb pk rₐ -- could refine r more -- {- Phase2 : ∀ RF {bb i taA taB r} → r-sn (r 0₂) ∈ L.map r-sn bb → r-sn (r 1₂) ∈ L.map r-sn bb → RFA.Phase2-Valid r RF → Phase2-Valid (proj₂ ∘ proj₂ ∘ r) (mapS proj₁ (mitm-to-client-trans (MITM-phase 1₂ i bb (taA , taB)) RF)) Phase2 (ask REB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RBB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RTally cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask (RCO x) cont) r0 r1 ((r₀ , r₁) , RF-valid) = r₀ , r₁ , (λ r → Phase2 (cont _) r0 r1 (RF-valid _)) Phase2 (ask (Vote x) cont) {bb} r0 r1 RF-valid with Check bb x | CheckMem bb x ... | 0₂ | _ = Phase2 (cont _) r0 r1 (RF-valid _) ... | 1₂ | not-in-bb = (λ eq → not-in-bb _ {!subst (λ x → x ∈ L.map r-sn bb) eq!}) , {!!}, , λ r → Phase2 (cont _) (there r0) (there r1) (RF-valid _) Phase2 (done x) r0 r1 RF-valid = RF-valid Phase1 : ∀ RF {sn i bb taA taB} → RFA.Phase1-Valid sn RF → Phase1-Valid (mapS A†2 (mitm-to-client-trans (MITM-phase 0₂ i bb (taA , taB)) RF)) Phase1 (ask REB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RBB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RTally cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask (RCO x) cont) RF-valid r = Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) {bb = bb} RF-valid with Check bb x Phase1 (ask (Vote x) cont) RF-valid | 1₂ = λ r → Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) RF-valid | 0₂ = Phase1 _ (RF-valid _) Phase1 (done x) (sn₀∉sn , sn₁∉sn , RF-valid) cs = Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs) )) (here refl) (there (here refl)) (RF-valid _) -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --copatterns #-} open import Type open import Function open import Data.One open import Data.Two open import Data.Maybe open import Data.Product open import Data.Nat open import Data.Vec hiding (_>>=_ ; _∈_) open import Data.List as L open import Data.Fin as Fin using (Fin) open import Relation.Binary.PropositionalEquality.NP as ≡ open import Control.Strategy renaming (map to mapS) open import Control.Strategy.Utils open import Game.Challenge import Game.ReceiptFreeness import Game.IND-CCA2-dagger import Game.IND-CCA2-dagger.Valid import Game.IND-CPA-utils import Data.List.Any open Data.List.Any using (here; there) open Data.List.Any.Membership-≡ using (_∈_ ; _∉_) import Game.ReceiptFreeness.Adversary import Game.ReceiptFreeness.Valid import Game.Transformation.ReceiptFreeness-CCA2d.Simulator module Game.Transformation.ReceiptFreeness-CCA2d.Valid (PubKey : ★) (CipherText : ★) (SerialNumber : ★) (Receipt : ★) (MarkedReceipt? : ★) (Ballot : ★) (Tally : ★) -- (BB : ★) -- ([] : BB) -- (_∷_ : Receipt → BB → BB) (Rgb : ★) (genBallot : PubKey → Rgb → Ballot) (tallyMarkedReceipt? : let CO = 𝟚 in CO → MarkedReceipt? → Tally) (0,0 : Tally) (1,1 : Tally) (_+,+_ : Tally → Tally → Tally) (receipts : SerialNumber ² → CipherText ² → Receipt ²) (enc-co : Receipt → CipherText) (r-sn : Receipt → SerialNumber) (m? : Receipt → MarkedReceipt?) (b-sn : Ballot → SerialNumber) -- randomness supply for, encryption, key-generation, adversary, adversary state (Rₐ : ★) (#q : ℕ) (max#q : Fin #q) (Check : let BB = List Receipt in BB → Receipt → 𝟚) where _²' : ★ → ★ X ²' = X × X CO = 𝟚 BB = List Receipt all-sn : BB → List SerialNumber all-sn = L.map r-sn module RF = Game.ReceiptFreeness.Adversary PubKey (SerialNumber ²) Rₐ Receipt Ballot Tally CO BB module RFV = Game.ReceiptFreeness.Valid PubKey SerialNumber Rₐ Receipt Ballot Tally CO BB CipherText enc-co r-sn b-sn open Game.Transformation.ReceiptFreeness-CCA2d.Simulator PubKey CipherText (SerialNumber ²) Receipt MarkedReceipt? Ballot Tally BB [] _∷_ Rgb genBallot tallyMarkedReceipt? 0,0 1,1 _+,+_ receipts enc-co m? Rₐ #q max#q Check module CCA2†V = Game.IND-CCA2-dagger.Valid PubKey Message CipherText Rₐ† module Simulator-Valid (RFA : RF.Adversary)(RFA-Valid : RFV.Valid-Adversary RFA) (WRONG-HYP : ∀ r r' → enc-co r ≡ enc-co r' → r-sn r ≡ r-sn r') (CheckMem : ∀ bb r → ✓ (Check bb r) → r-sn r ∉ all-sn bb) where valid : CCA2†V.Valid-Adversary (Simulator.A† RFA) valid (rₐ , rgb) pk = Phase1 _ (RFA-Valid rₐ pk) where open CCA2†V.Valid-Adversary (rₐ , rgb) pk module RFVA = RFV.Valid-Adversary rₐ pk open RF open Simulator RFA open AdversaryParts rgb pk rₐ -- could refine r more -- {- Phase2 : ∀ RF {bb i ta r} → r-sn (r 0₂) ∈ all-sn bb → r-sn (r 1₂) ∈ all-sn bb → RFVA.Phase2-Valid r RF → Phase2-Valid (enc-co ∘ r) (mapS proj₁ (mitm-to-client-trans (MITM-phase 1₂ i bb ta) RF)) Phase2 (ask REB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RBB cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask RTally cont) r0 r1 RF-valid = Phase2 (cont _) r0 r1 (RF-valid _) Phase2 (ask (RCO x) cont) r0 r1 ((r₀ , r₁) , RF-valid) = r₀ , r₁ , (λ r → Phase2 (cont _) r0 r1 (RF-valid _)) Phase2 (ask (Vote x) cont) {bb} r0 r1 RF-valid with Check bb x | CheckMem bb x ... | 0₂ | _ = Phase2 (cont _) r0 r1 (RF-valid _) ... | 1₂ | not-in-bb = (λ eq → not-in-bb _ (subst (λ x₁ → x₁ ∈ all-sn bb) (WRONG-HYP _ _ eq) r0)) , (λ eq → not-in-bb _ (subst (λ x₁ → x₁ ∈ all-sn bb) (WRONG-HYP _ _ eq) r1)) , λ r → Phase2 (cont _) (there r0) (there r1) (RF-valid _) --Phase2 (cont _) (there r0) (there r1) (RF-valid _) Phase2 (done x) r0 r1 RF-valid = RF-valid Phase1 : ∀ RF {sn i bb ta} → RFVA.Phase1-Valid sn RF → Phase1-Valid (mapS A†2 (mitm-to-client-trans (MITM-phase 0₂ i bb ta) RF)) Phase1 (ask REB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RBB cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask RTally cont) RF-valid = Phase1 _ (RF-valid _) Phase1 (ask (RCO x) cont) RF-valid r = Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) {bb = bb} RF-valid with Check bb x Phase1 (ask (Vote x) cont) RF-valid | 1₂ = λ r → Phase1 _ (RF-valid _) Phase1 (ask (Vote x) cont) RF-valid | 0₂ = Phase1 _ (RF-valid _) Phase1 (done x) {bb = bb'}{ta} (sn₀∉sn , sn₁∉sn , RF-valid) cs = {!Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs))) (here refl) (there (here refl)) (RF-valid _)!} -- Phase2 (put-resp x (proj₂ (put-resp (hack-challenge x) cs) )) -- ? ? (RF-valid _) -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -} -- -}
update the validity for the simulator
update the validity for the simulator
Agda
bsd-3-clause
crypto-agda/crypto-agda
41898751fdcc62758217e161ad60e93a20db6f51
lib/Algebra/Monoid.agda
lib/Algebra/Monoid.agda
open import Function.NP open import Data.Product.NP open import Data.Nat using (ℕ; fold; zero) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; suc to 1+_) open import Data.Integer using (ℤ; +_; -[1+_]; _⊖_) renaming (_+_ to _+ℤ_; _*_ to _*ℤ_) open import Relation.Binary.PropositionalEquality.NP renaming (_∙_ to _♦_) open import Algebra.FunctionProperties.Eq open ≡-Reasoning module Algebra.Monoid where record Monoid-Ops {ℓ} (M : Set ℓ) : Set ℓ where constructor mk infixl 7 _∙_ field _∙_ : M → M → M ε : M _^⁺_ : M → ℕ → M x ^⁺ n = fold ε (_∙_ x) n module FromInverseOp (_⁻¹ : Op₁ M) where infixl 7 _/_ _/_ : M → M → M x / y = x ∙ y ⁻¹ open FromOp₂ _/_ public renaming (op= to /=) _^⁻_ _^⁻′_ : M → ℕ → M x ^⁻ n = (x ^⁺ n)⁻¹ x ^⁻′ n = (x ⁻¹)^⁺ n _^_ : M → ℤ → M x ^ -[1+ n ] = x ^⁻(1+ n) x ^ (+ n) = x ^⁺ n record Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops -- laws field assoc : Associative _∙_ identity : Identity ε _∙_ open FromOp₂ _∙_ public renaming (op= to ∙=) open FromAssoc _∙_ assoc public module _ {b} where ^⁺0-ε : b ^⁺ 0 ≡ ε ^⁺0-ε = idp ^⁺1-id : b ^⁺ 1 ≡ b ^⁺1-id = snd identity ^⁺2-∙ : b ^⁺ 2 ≡ b ∙ b ^⁺2-∙ = ap (_∙_ _) ^⁺1-id ^⁺-+ : ∀ m {n} → b ^⁺ (m +ℕ n) ≡ b ^⁺ m ∙ b ^⁺ n ^⁺-+ 0 = ! fst identity ^⁺-+ (1+ m) = ap (_∙_ b) (^⁺-+ m) ♦ ! assoc ^⁺-* : ∀ m {n} → b ^⁺(m *ℕ n) ≡ (b ^⁺ n)^⁺ m ^⁺-* 0 = idp ^⁺-* (1+ m) {n} = b ^⁺ (n +ℕ m *ℕ n) ≡⟨ ^⁺-+ n ⟩ b ^⁺ n ∙ b ^⁺(m *ℕ n) ≡⟨ ap (_∙_ (b ^⁺ n)) (^⁺-* m) ⟩ b ^⁺ n ∙ (b ^⁺ n)^⁺ m ∎ comm-ε : ∀ {x} → x ∙ ε ≡ ε ∙ x comm-ε = snd identity ♦ ! fst identity module _ {c x y} (e : (x ∙ y) ≡ ε) where elim-assoc= : (c ∙ x) ∙ y ≡ c elim-assoc= = assoc ♦ ∙= idp e ♦ snd identity elim-!assoc= : x ∙ (y ∙ c) ≡ c elim-!assoc= = ! assoc ♦ ∙= e idp ♦ fst identity module _ {c d x y} (e : (x ∙ y) ≡ ε) where elim-inner= : (c ∙ x) ∙ (y ∙ d) ≡ c ∙ d elim-inner= = assoc ♦ ap (_∙_ c) (elim-!assoc= e) module FromLeftInverse (_⁻¹ : Op₁ M) (inv-l : LeftInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-left : LeftCancel _∙_ cancels-∙-left {c} {x} {y} e = x ≡⟨ ! fst identity ⟩ ε ∙ x ≡⟨ ∙= (! inv-l) idp ⟩ c ⁻¹ ∙ c ∙ x ≡⟨ !assoc= e ⟩ c ⁻¹ ∙ c ∙ y ≡⟨ ∙= inv-l idp ⟩ ε ∙ y ≡⟨ fst identity ⟩ y ∎ inv-r : RightInverse ε _⁻¹ _∙_ inv-r = cancels-∙-left (! assoc ♦ ∙= inv-l idp ♦ ! comm-ε) /-∙ : ∀ {x y} → x ≡ (x / y) ∙ y /-∙ {x} {y} = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-l) ⟩ x ∙ (y ⁻¹ ∙ y) ≡⟨ ! assoc ⟩ (x / y) ∙ y ∎ module FromRightInverse (_⁻¹ : Op₁ M) (inv-r : RightInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-right : RightCancel _∙_ cancels-∙-right {c} {x} {y} e = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ∙= idp (! inv-r) ⟩ x ∙ (c ∙ c ⁻¹) ≡⟨ assoc= e ⟩ y ∙ (c ∙ c ⁻¹) ≡⟨ ∙= idp inv-r ⟩ y ∙ ε ≡⟨ snd identity ⟩ y ∎ inv-l : LeftInverse ε _⁻¹ _∙_ inv-l = cancels-∙-right (assoc ♦ ∙= idp inv-r ♦ comm-ε) module _ {x y} where is-ε-left : x ≡ ε → x ∙ y ≡ y is-ε-left e = ap (λ z → z ∙ _) e ♦ fst identity is-ε-right : y ≡ ε → x ∙ y ≡ x is-ε-right e = ap (λ z → _ ∙ z) e ♦ snd identity ∙-/ : x ≡ (x ∙ y) / y ∙-/ = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-r) ⟩ x ∙ (y / y) ≡⟨ ! assoc ⟩ (x ∙ y) / y ∎ module _ {x y} where unique-ε-left : x ∙ y ≡ y → x ≡ ε unique-ε-left eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ y / y ≡⟨ inv-r ⟩ ε ∎ unique-ε-right : x ∙ y ≡ x → y ≡ ε unique-ε-right eq = y ≡⟨ ! is-ε-left inv-l ⟩ x ⁻¹ ∙ x ∙ y ≡⟨ assoc ⟩ x ⁻¹ ∙ (x ∙ y) ≡⟨ ∙= idp eq ⟩ x ⁻¹ ∙ x ≡⟨ inv-l ⟩ ε ∎ unique-⁻¹ : x ∙ y ≡ ε → x ≡ y ⁻¹ unique-⁻¹ eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ ε / y ≡⟨ fst identity ⟩ y ⁻¹ ∎ open FromLeftInverse _⁻¹ inv-l hiding (inv-r) ε⁻¹-ε : ε ⁻¹ ≡ ε ε⁻¹-ε = unique-ε-left inv-l involutive : Involutive _⁻¹ involutive {x} = cancels-∙-right (x ⁻¹ ⁻¹ ∙ x ⁻¹ ≡⟨ inv-l ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ∎) ⁻¹-hom′ : ∀ {x y} → (x ∙ y)⁻¹ ≡ y ⁻¹ ∙ x ⁻¹ ⁻¹-hom′ {x} {y} = cancels-∙-left {x ∙ y} ((x ∙ y) ∙ (x ∙ y)⁻¹ ≡⟨ inv-r ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ≡⟨ ap (_∙_ x) (! fst identity) ⟩ x ∙ (ε ∙ x ⁻¹) ≡⟨ ∙= idp (∙= (! inv-r) idp) ⟩ x ∙ ((y ∙ y ⁻¹) ∙ x ⁻¹) ≡⟨ ap (_∙_ x) assoc ⟩ x ∙ (y ∙ (y ⁻¹ ∙ x ⁻¹)) ≡⟨ ! assoc ⟩ (x ∙ y) ∙ (y ⁻¹ ∙ x ⁻¹) ∎) elim-∙-left-⁻¹∙ : ∀ {c x y} → (c ∙ x)⁻¹ ∙ (c ∙ y) ≡ x ⁻¹ ∙ y elim-∙-left-⁻¹∙ {c} {x} {y} = (c ∙ x)⁻¹ ∙ (c ∙ y) ≡⟨ ∙= ⁻¹-hom′ idp ⟩ x ⁻¹ ∙ c ⁻¹ ∙ (c ∙ y) ≡⟨ elim-inner= inv-l ⟩ x ⁻¹ ∙ y ∎ elim-∙-right-/ : ∀ {c x y} → (x ∙ c) / (y ∙ c) ≡ x / y elim-∙-right-/ {c} {x} {y} = x ∙ c ∙ (y ∙ c)⁻¹ ≡⟨ ap (_∙_ _) ⁻¹-hom′ ⟩ x ∙ c ∙ (c ⁻¹ / y) ≡⟨ elim-inner= inv-r ⟩ x / y ∎ module _ {b} where ^⁺suc : ∀ n → b ^⁺(1+ n) ≡ b ^⁺ n ∙ b ^⁺suc 0 = comm-ε ^⁺suc (1+ n) = ap (_∙_ b) (^⁺suc n) ♦ ! assoc ^⁺-comm : ∀ n → b ∙ b ^⁺ n ≡ b ^⁺ n ∙ b ^⁺-comm = ^⁺suc ^⁻suc : ∀ n → b ^⁻(1+ n) ≡ b ⁻¹ ∙ b ^⁻ n ^⁻suc n = ap _⁻¹ (^⁺suc n) ♦ ⁻¹-hom′ ^⁻′-spec : ∀ n → b ^⁻′ n ≡ b ^⁻ n ^⁻′-spec 0 = ! ε⁻¹-ε ^⁻′-spec (1+ n) = ap (_∙_ (b ⁻¹)) (^⁻′-spec n) ♦ ! ⁻¹-hom′ ♦ ap _⁻¹ (! ^⁺suc n) ^⁻′1-id : b ^⁻′ 1 ≡ b ⁻¹ ^⁻′1-id = snd identity ^⁻1-id : b ^⁻ 1 ≡ b ⁻¹ ^⁻1-id = ! ^⁻′-spec 1 ♦ ^⁻′1-id ^⁻′2-∙ : b ^⁻′ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻′2-∙ = ap (_∙_ _) ^⁻′1-id ^⁻2-∙ : b ^⁻ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻2-∙ = ! ^⁻′-spec 2 ♦ ^⁻′2-∙ record Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-struct : Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Monoid-Struct mon-struct public record Commutative-Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops field mon-struct : Monoid-Struct mon-ops comm : Commutative _∙_ open Monoid-Struct mon-struct public open FromAssocComm _∙_ assoc comm public hiding (!assoc=; assoc=; inner=) record Commutative-Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-comm : Commutative-Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Commutative-Monoid-Struct mon-comm public mon : Monoid M mon = record { mon-struct = mon-struct } -- A renaming of Monoid with additive notation module Additive-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ) -- A renaming of Monoid with multiplicative notation module Multiplicative-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ) module Additive-Commutative-Monoid {M} (mon-comm : Commutative-Monoid M) = Commutative-Monoid mon-comm renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; assoc-comm to +-assoc-comm ; interchange to +-interchange ; outer= to +-outer= ) module Multiplicative-Commutative-Monoid {M} (mon : Commutative-Monoid M) = Commutative-Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; assoc-comm to *-assoc-comm ; interchange to *-interchange ; outer= to *-outer= ) record MonoidHomomorphism {A B : Set} (monA0+ : Monoid A) (monB1* : Monoid B) (f : A → B) : Set where open Additive-Monoid monA0+ open Multiplicative-Monoid monB1* field 0-hom-1 : f 0ᵐ ≡ 1ᵐ +-hom-* : ∀ {x y} → f (x + y) ≡ f x * f y -- -} -- -} -- -} -- -}
open import Function.NP open import Data.Product.NP open import Data.Nat using (ℕ; zero) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; suc to 1+_) open import Data.Integer using (ℤ; +_; -[1+_]; _⊖_) renaming (_+_ to _+ℤ_; _*_ to _*ℤ_) open import Relation.Binary.PropositionalEquality.NP renaming (_∙_ to _♦_) open import Algebra.FunctionProperties.Eq open ≡-Reasoning module Algebra.Monoid where record Monoid-Ops {ℓ} (M : Set ℓ) : Set ℓ where constructor mk infixl 7 _∙_ field _∙_ : M → M → M ε : M _^⁺_ : M → ℕ → M x ^⁺ n = nest n (_∙_ x) ε module FromInverseOp (_⁻¹ : Op₁ M) where infixl 7 _/_ _/_ : M → M → M x / y = x ∙ y ⁻¹ open FromOp₂ _/_ public renaming (op= to /=) _^⁻_ _^⁻′_ : M → ℕ → M x ^⁻ n = (x ^⁺ n)⁻¹ x ^⁻′ n = (x ⁻¹)^⁺ n _^_ : M → ℤ → M x ^ -[1+ n ] = x ^⁻(1+ n) x ^ (+ n) = x ^⁺ n record Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops -- laws field assoc : Associative _∙_ identity : Identity ε _∙_ open FromOp₂ _∙_ public renaming (op= to ∙=) open FromAssoc _∙_ assoc public module _ {b} where ^⁺0-ε : b ^⁺ 0 ≡ ε ^⁺0-ε = idp ^⁺1-id : b ^⁺ 1 ≡ b ^⁺1-id = snd identity ^⁺2-∙ : b ^⁺ 2 ≡ b ∙ b ^⁺2-∙ = ap (_∙_ _) ^⁺1-id ^⁺-+ : ∀ m {n} → b ^⁺ (m +ℕ n) ≡ b ^⁺ m ∙ b ^⁺ n ^⁺-+ 0 = ! fst identity ^⁺-+ (1+ m) = ap (_∙_ b) (^⁺-+ m) ♦ ! assoc ^⁺-* : ∀ m {n} → b ^⁺(m *ℕ n) ≡ (b ^⁺ n)^⁺ m ^⁺-* 0 = idp ^⁺-* (1+ m) {n} = b ^⁺ (n +ℕ m *ℕ n) ≡⟨ ^⁺-+ n ⟩ b ^⁺ n ∙ b ^⁺(m *ℕ n) ≡⟨ ap (_∙_ (b ^⁺ n)) (^⁺-* m) ⟩ b ^⁺ n ∙ (b ^⁺ n)^⁺ m ∎ comm-ε : ∀ {x} → x ∙ ε ≡ ε ∙ x comm-ε = snd identity ♦ ! fst identity module _ {c x y} (e : (x ∙ y) ≡ ε) where elim-assoc= : (c ∙ x) ∙ y ≡ c elim-assoc= = assoc ♦ ∙= idp e ♦ snd identity elim-!assoc= : x ∙ (y ∙ c) ≡ c elim-!assoc= = ! assoc ♦ ∙= e idp ♦ fst identity module _ {c d x y} (e : (x ∙ y) ≡ ε) where elim-inner= : (c ∙ x) ∙ (y ∙ d) ≡ c ∙ d elim-inner= = assoc ♦ ap (_∙_ c) (elim-!assoc= e) module FromLeftInverse (_⁻¹ : Op₁ M) (inv-l : LeftInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-left : LeftCancel _∙_ cancels-∙-left {c} {x} {y} e = x ≡⟨ ! fst identity ⟩ ε ∙ x ≡⟨ ∙= (! inv-l) idp ⟩ c ⁻¹ ∙ c ∙ x ≡⟨ !assoc= e ⟩ c ⁻¹ ∙ c ∙ y ≡⟨ ∙= inv-l idp ⟩ ε ∙ y ≡⟨ fst identity ⟩ y ∎ inv-r : RightInverse ε _⁻¹ _∙_ inv-r = cancels-∙-left (! assoc ♦ ∙= inv-l idp ♦ ! comm-ε) /-∙ : ∀ {x y} → x ≡ (x / y) ∙ y /-∙ {x} {y} = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-l) ⟩ x ∙ (y ⁻¹ ∙ y) ≡⟨ ! assoc ⟩ (x / y) ∙ y ∎ module FromRightInverse (_⁻¹ : Op₁ M) (inv-r : RightInverse ε _⁻¹ _∙_) where open FromInverseOp _⁻¹ cancels-∙-right : RightCancel _∙_ cancels-∙-right {c} {x} {y} e = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ∙= idp (! inv-r) ⟩ x ∙ (c ∙ c ⁻¹) ≡⟨ assoc= e ⟩ y ∙ (c ∙ c ⁻¹) ≡⟨ ∙= idp inv-r ⟩ y ∙ ε ≡⟨ snd identity ⟩ y ∎ inv-l : LeftInverse ε _⁻¹ _∙_ inv-l = cancels-∙-right (assoc ♦ ∙= idp inv-r ♦ comm-ε) module _ {x y} where is-ε-left : x ≡ ε → x ∙ y ≡ y is-ε-left e = ap (λ z → z ∙ _) e ♦ fst identity is-ε-right : y ≡ ε → x ∙ y ≡ x is-ε-right e = ap (λ z → _ ∙ z) e ♦ snd identity ∙-/ : x ≡ (x ∙ y) / y ∙-/ = x ≡⟨ ! snd identity ⟩ x ∙ ε ≡⟨ ap (_∙_ x) (! inv-r) ⟩ x ∙ (y / y) ≡⟨ ! assoc ⟩ (x ∙ y) / y ∎ module _ {x y} where unique-ε-left : x ∙ y ≡ y → x ≡ ε unique-ε-left eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ y / y ≡⟨ inv-r ⟩ ε ∎ unique-ε-right : x ∙ y ≡ x → y ≡ ε unique-ε-right eq = y ≡⟨ ! is-ε-left inv-l ⟩ x ⁻¹ ∙ x ∙ y ≡⟨ assoc ⟩ x ⁻¹ ∙ (x ∙ y) ≡⟨ ∙= idp eq ⟩ x ⁻¹ ∙ x ≡⟨ inv-l ⟩ ε ∎ unique-⁻¹ : x ∙ y ≡ ε → x ≡ y ⁻¹ unique-⁻¹ eq = x ≡⟨ ∙-/ ⟩ (x ∙ y) / y ≡⟨ /= eq idp ⟩ ε / y ≡⟨ fst identity ⟩ y ⁻¹ ∎ open FromLeftInverse _⁻¹ inv-l hiding (inv-r) ε⁻¹-ε : ε ⁻¹ ≡ ε ε⁻¹-ε = unique-ε-left inv-l involutive : Involutive _⁻¹ involutive {x} = cancels-∙-right (x ⁻¹ ⁻¹ ∙ x ⁻¹ ≡⟨ inv-l ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ∎) ⁻¹-hom′ : ∀ {x y} → (x ∙ y)⁻¹ ≡ y ⁻¹ ∙ x ⁻¹ ⁻¹-hom′ {x} {y} = cancels-∙-left {x ∙ y} ((x ∙ y) ∙ (x ∙ y)⁻¹ ≡⟨ inv-r ⟩ ε ≡⟨ ! inv-r ⟩ x ∙ x ⁻¹ ≡⟨ ap (_∙_ x) (! fst identity) ⟩ x ∙ (ε ∙ x ⁻¹) ≡⟨ ∙= idp (∙= (! inv-r) idp) ⟩ x ∙ ((y ∙ y ⁻¹) ∙ x ⁻¹) ≡⟨ ap (_∙_ x) assoc ⟩ x ∙ (y ∙ (y ⁻¹ ∙ x ⁻¹)) ≡⟨ ! assoc ⟩ (x ∙ y) ∙ (y ⁻¹ ∙ x ⁻¹) ∎) elim-∙-left-⁻¹∙ : ∀ {c x y} → (c ∙ x)⁻¹ ∙ (c ∙ y) ≡ x ⁻¹ ∙ y elim-∙-left-⁻¹∙ {c} {x} {y} = (c ∙ x)⁻¹ ∙ (c ∙ y) ≡⟨ ∙= ⁻¹-hom′ idp ⟩ x ⁻¹ ∙ c ⁻¹ ∙ (c ∙ y) ≡⟨ elim-inner= inv-l ⟩ x ⁻¹ ∙ y ∎ elim-∙-right-/ : ∀ {c x y} → (x ∙ c) / (y ∙ c) ≡ x / y elim-∙-right-/ {c} {x} {y} = x ∙ c ∙ (y ∙ c)⁻¹ ≡⟨ ap (_∙_ _) ⁻¹-hom′ ⟩ x ∙ c ∙ (c ⁻¹ / y) ≡⟨ elim-inner= inv-r ⟩ x / y ∎ module _ {b} where ^⁺suc : ∀ n → b ^⁺(1+ n) ≡ b ^⁺ n ∙ b ^⁺suc 0 = comm-ε ^⁺suc (1+ n) = ap (_∙_ b) (^⁺suc n) ♦ ! assoc ^⁺-comm : ∀ n → b ∙ b ^⁺ n ≡ b ^⁺ n ∙ b ^⁺-comm = ^⁺suc ^⁻suc : ∀ n → b ^⁻(1+ n) ≡ b ⁻¹ ∙ b ^⁻ n ^⁻suc n = ap _⁻¹ (^⁺suc n) ♦ ⁻¹-hom′ ^⁻′-spec : ∀ n → b ^⁻′ n ≡ b ^⁻ n ^⁻′-spec 0 = ! ε⁻¹-ε ^⁻′-spec (1+ n) = ap (_∙_ (b ⁻¹)) (^⁻′-spec n) ♦ ! ⁻¹-hom′ ♦ ap _⁻¹ (! ^⁺suc n) ^⁻′1-id : b ^⁻′ 1 ≡ b ⁻¹ ^⁻′1-id = snd identity ^⁻1-id : b ^⁻ 1 ≡ b ⁻¹ ^⁻1-id = ! ^⁻′-spec 1 ♦ ^⁻′1-id ^⁻′2-∙ : b ^⁻′ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻′2-∙ = ap (_∙_ _) ^⁻′1-id ^⁻2-∙ : b ^⁻ 2 ≡ b ⁻¹ ∙ b ⁻¹ ^⁻2-∙ = ! ^⁻′-spec 2 ♦ ^⁻′2-∙ record Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-struct : Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Monoid-Struct mon-struct public record Commutative-Monoid-Struct {ℓ} {M : Set ℓ} (mon-ops : Monoid-Ops M) : Set ℓ where open Monoid-Ops mon-ops field mon-struct : Monoid-Struct mon-ops comm : Commutative _∙_ open Monoid-Struct mon-struct public open FromAssocComm _∙_ assoc comm public hiding (!assoc=; assoc=; inner=) record Commutative-Monoid (M : Set) : Set where field mon-ops : Monoid-Ops M mon-comm : Commutative-Monoid-Struct mon-ops open Monoid-Ops mon-ops public open Commutative-Monoid-Struct mon-comm public mon : Monoid M mon = record { mon-struct = mon-struct } -- A renaming of Monoid with additive notation module Additive-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ) -- A renaming of Monoid with multiplicative notation module Multiplicative-Monoid {M} (mon : Monoid M) = Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ) module Additive-Commutative-Monoid {M} (mon-comm : Commutative-Monoid M) = Commutative-Monoid mon-comm renaming ( _∙_ to _+_; ε to 0ᵐ ; assoc to +-assoc; identity to +-identity ; ∙= to += ; assoc= to +-assoc= ; !assoc= to +-!assoc= ; inner= to +-inner= ; assoc-comm to +-assoc-comm ; interchange to +-interchange ; outer= to +-outer= ) module Multiplicative-Commutative-Monoid {M} (mon : Commutative-Monoid M) = Commutative-Monoid mon renaming ( _∙_ to _*_; ε to 1ᵐ ; assoc to *-assoc; identity to *-identity ; ∙= to *= ; assoc= to *-assoc= ; !assoc= to *-!assoc= ; inner= to *-inner= ; assoc-comm to *-assoc-comm ; interchange to *-interchange ; outer= to *-outer= ) record MonoidHomomorphism {A B : Set} (monA0+ : Monoid A) (monB1* : Monoid B) (f : A → B) : Set where open Additive-Monoid monA0+ open Multiplicative-Monoid monB1* field 0-hom-1 : f 0ᵐ ≡ 1ᵐ +-hom-* : ∀ {x y} → f (x + y) ≡ f x * f y -- -} -- -} -- -} -- -}
use nest and not fold
Monoid: use nest and not fold
Agda
bsd-3-clause
crypto-agda/agda-nplib
7826abee6b67c7b55aa70968ca7fd6b637d30857
Base/Syntax/Context.agda
Base/Syntax/Context.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We provide two approaches for weakening: context prefixes and -- and subcontext relationship. In this formalization, we mostly -- (maybe exclusively?) use the latter. -- Context Prefixes -- ---------------- -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context _⋎_ = List._++_ take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts and subcontexts, -- together with variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We define weakening based on subcontext relationship. -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation. open Subcontexts public
Drop Prefixes
Drop Prefixes
Agda
mit
inc-lc/ilc-agda
d4d74883fdfb5330e27bb48434b046f8291b5f3d
Denotation/Change/Popl14.agda
Denotation/Change/Popl14.agda
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let _+_ = _⊞_ {τ} _-_ = _⊟_ {τ} in v + (u - v) ≡ u -------------------- -- Implementation -- -------------------- -- ΔVal τ is intended to be the semantic domain for changes of values -- of type τ. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal (base base-int) = ℤ ΔVal (base base-bag) = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {base base-int} n Δn = n + Δn _⊞_ {base base-bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {base base-int} m n = m - n _⊟_ {base base-bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base base-int} n Δn = ⊤ valid {base base-bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = let _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₀_ = _⊞_ {σ} _-₀_ = _⊟_ {σ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v + (u - v)) w ≡⟨ refl ⟩ v w +₁ (u (w +₀ (w -₀ w)) -₁ v w) ≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩ v w +₁ (u w -₁ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base base-int} {u} {v} = tt R[v,u-v] {base base-bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in R[v,u-v] {τ} , (begin (v + (u - v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w +₁ (u - v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {base base-int} n Δn = n + Δn _⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → let _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} in f v +₁ Δf v (v -₀ v) _⟦⊝⟧_ {base base-int} m n = m - n _⟦⊝⟧_ {base base-bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
module Denotation.Change.Popl14 where -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Popl14.Denotation.Value open import Theorem.Groups-Popl14 open import Postulate.Extensionality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num -- apply Δv v ::= v ⊞ Δv _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ -- diff u v ::= u ⊟ v _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → let _+_ = _⊞_ {τ} _-_ = _⊟_ {τ} in v + (u - v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- -- ΔVal : Type → Set ΔVal (base base-int) = ℤ ΔVal (base base-bag) = Bag ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {base base-int} n Δn = n + Δn _⊞_ {base base-bag} b Δb = b ++ Δb _⊞_ {σ ⇒ τ} f Δf = λ v → f v ⊞ Δf v (v ⊟ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {base base-int} m n = m - n _⊟_ {base base-bag} d b = d \\ b _⊟_ {σ ⇒ τ} g f = λ v Δv R[v,Δv] → g (v ⊞ Δv) ⊟ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base base-int} n Δn = ⊤ valid {base base-bag} b Δb = ⊤ valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (_⊞_ {σ ⇒ τ} f Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base base-int} {u} {v} = n+[m-n]=m {v} {u} v+[u-v]=u {base base-bag} {u} {v} = a++[b\\a]=b {v} {u} v+[u-v]=u {σ ⇒ τ} {u} {v} = let _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₀_ = _⊞_ {σ} _-₀_ = _⊟_ {σ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v + (u - v)) w ≡⟨ refl ⟩ v w +₁ (u (w +₀ (w -₀ w)) -₁ v w) ≡⟨ cong (λ hole → v w +₁ (u hole -₁ v w)) (v+[u-v]=u {σ}) ⟩ v w +₁ (u w -₁ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base base-int} {u} {v} = tt R[v,u-v] {base base-bag} {u} {v} = tt R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞ Δw _+_ = _⊞_ {σ ⇒ τ} _-_ = _⊟_ {σ ⇒ τ} _+₁_ = _⊞_ {τ} _-₁_ = _⊟_ {τ} in R[v,u-v] {τ} , (begin (v + (u - v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w +₁ (u - v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- `diff` and `apply`, without validity proofs infixl 6 _⟦⊕⟧_ _⟦⊝⟧_ _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊕⟧_ {base base-int} n Δn = n + Δn _⟦⊕⟧_ {base base-bag} b Δb = b ++ Δb _⟦⊕⟧_ {σ ⇒ τ} f Δf = λ v → let _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} in f v +₁ Δf v (v -₀ v) _⟦⊝⟧_ {base base-int} m n = m - n _⟦⊝⟧_ {base base-bag} a b = a \\ b _⟦⊝⟧_ {σ ⇒ τ} g f = λ v Δv → _⟦⊝⟧_ {τ} (g (_⟦⊕⟧_ {σ} v Δv)) (f v)
Improve documentation of ΔVal.
Improve documentation of ΔVal. Old-commit-hash: fb71a0ea6af97c62b01a9d8b7d3089e5cd3139ed
Agda
mit
inc-lc/ilc-agda
a0c0e331a5839a6f7cd2921fe50b2acfdf977244
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ t₂) (Δ t₃)) ≈⟨ ≈-if (derive-term-correct t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct t₂) (derive-term-correct t₃)) ⟩ if (derive-term t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term t₂) (derive-term t₃)) ≡⟨⟩ derive-term (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ {{Γ′}} (abs t) ≈⟨ Δ-abs {{Γ′}} t ⟩ abs (abs (Δ {τ • Γ₁} {{Γ″}} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} {{Γ″}} t)) ⟩ abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) ≡⟨⟩ derive-term {{Γ′}} (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ {{Γ′}} (app t₁ t₂) ≈⟨ Δ-app {{Γ′}} t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct {{Γ′}} (if t₁ t₂ t₃) = begin Δ (if t₁ t₂ t₃) ≈⟨ Δ-if {{Γ′}} t₁ t₂ t₃ ⟩ if (Δ t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (Δ {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (Δ {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (Δ {{Γ′}} t₂) (Δ {{Γ′}} t₃)) ≈⟨ ≈-if (derive-term-correct {{Γ′}} t₁) (≈-if (≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₃) ≈-refl) ≈-refl) (≈-diff-term (≈-apply-term (derive-term-correct {{Γ′}} t₂) ≈-refl) ≈-refl)) (≈-if (≈-refl) (derive-term-correct {{Γ′}} t₂) (derive-term-correct {{Γ′}} t₃)) ⟩ if (derive-term {{Γ′}} t₁) (if (lift-term {{Γ′}} t₁) (diff-term (apply-term (derive-term {{Γ′}} t₃) (lift-term {{Γ′}} t₃)) (lift-term {{Γ′}} t₂)) (diff-term (apply-term (derive-term {{Γ′}} t₂) (lift-term {{Γ′}} t₂)) (lift-term {{Γ′}} t₃))) (if (lift-term {{Γ′}} t₁) (derive-term {{Γ′}} t₂) (derive-term {{Γ′}} t₃)) ≡⟨⟩ derive-term {{Γ′}} (if t₁ t₂ t₃) ∎ where open ≈-Reasoning derive-term-correct {{Γ′}} (Δ {{Γ″}} t) = ≈-Δ {{Γ′}} (derive-term-correct {{Γ″}} t)
Resolve implicit arguments.
Resolve implicit arguments. When I filled the last hole in total.agda in the previous commit, Agda told me to 'resolve implicit argument', so I added explicit implicit arguments until Agda was satisfied. I don't know whether or why it matters to do this. Old-commit-hash: ed138bd06659ab2caac47a670b7d3d60c4d97f3a
Agda
mit
inc-lc/ilc-agda
db5307718bfbf262aa80ac0a0dd4b8da3799363b
Denotational/WeakValidChanges.agda
Denotational/WeakValidChanges.agda
module Denotational.WeakValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.ChangeTypes.ChangesAreDerivatives open import Denotational.Notation open import Denotational.Values open import Denotational.Changes open import Denotational.EqualityLemmas -- DEFINITION of weakly valid changes via a logical relation -- Strong validity: open import Denotational.ValidChanges -- Weak validity, defined through a function producing a type. -- -- Since this is a logical relation, this couldn't be defined as a -- datatype, since it is not strictly positive. Weak-Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Weak-Valid-Δ {bool} v dv = ⊤ Weak-Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : Weak-Valid-Δ s ds) → Weak-Valid-Δ (f s) (df s ds) × df is-correct-for f on s and ds strong-to-weak-validity : ∀ {τ : Type} {v : ⟦ τ ⟧} {dv} → Valid-Δ v dv → Weak-Valid-Δ v dv strong-to-weak-validity {bool} _ = tt strong-to-weak-validity {τ ⇒ τ₁} {v} {dv} s-valid-v-dv s ds _ = strong-to-weak-validity dv-s-ds-valid-on-v-s , dv-is-correct-for-v-on-s-and-ds where proofs = s-valid-v-dv s ds dv-s-ds-valid-on-v-s = proj₁ proofs dv-is-correct-for-v-on-s-and-ds = proj₂ proofs {- -- This proof doesn't go through: the desired equivalence is too -- strong, and we can't fill the holes because dv is arbitrary. diff-apply-proof-weak : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof-weak {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv {!!})) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv {!!})) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof-weak {bool} db b _ = xor-cancellative b db -- That'd be the core of the proof of diff-apply-weak, if we relax the -- equivalence in the goal to something more correct. We need a proof -- of validity only for the first argument, somehow: maybe because -- diff itself produces strongly valid changes? -- -- Ahah! Not really: below we use the unprovable -- diff-apply-proof-weak. To be able to use induction, we need to use -- this weaker lemma again. Hence, we'll only be able to prove the -- same equivalence, which will needs another proof of validity to -- unfold further until the base case. diff-apply-proof-weak-f : ∀ {τ₁ τ₂} (df : ⟦ Δ-Type (τ₁ ⇒ τ₂) ⟧) (f : ⟦ τ₁ ⇒ τ₂ ⟧) → (Weak-Valid-Δ f df) → ∀ dv v → (Weak-Valid-Δ v dv) → (diff (apply df f) f) v dv ≡ df v dv diff-apply-proof-weak-f {τ₁} {τ₂} df f df-valid dv v dv-valid = begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)) ⟩ df v dv ∎ where open ≡-Reasoning -} -- A stronger delta equivalence. Note this isn't a congruence; it -- should be possible to define some congruence rules, but those will -- be more complex. data _≈_ : {τ : Type} → ⟦ Δ-Type τ ⟧ → ⟦ Δ-Type τ ⟧ → Set where --base : ∀ (v : ⟦ bool ⟧) → v ≈ v base : ∀ (v1 v2 : ⟦ bool ⟧) → (≡ : v1 ≡ v2) → v1 ≈ v2 fun : ∀ {σ τ} (f1 f2 : ⟦ Δ-Type (σ ⇒ τ) ⟧) → (t≈ : ∀ s ds (valid : Weak-Valid-Δ s ds) → f1 s ds ≈ f2 s ds) → f1 ≈ f2 ≡→≈ : ∀ {τ} {v1 v2 : ⟦ Δ-Type τ ⟧} → v1 ≡ v2 → v1 ≈ v2 ≡→≈ {bool} {v1} {.v1} refl = base v1 v1 refl ≡→≈ {τ₁ ⇒ τ₂} {v1} {.v1} refl = fun v1 v1 (λ s ds _ → ≡→≈ refl) open import Relation.Binary hiding (_⇒_) ≈-refl : ∀ {τ} → Reflexive (_≈_ {τ}) ≈-refl = ≡→≈ refl ≈-sym : ∀ {τ} → Symmetric (_≈_ {τ}) ≈-sym (base v1 v2 ≡) = base _ _ (sym ≡) ≈-sym {(σ ⇒ τ)} (fun f1 f2 t≈) = fun _ _ (λ s ds valid → ≈-sym (t≈ s ds valid)) ≈-trans : ∀ {τ} → Transitive (_≈_ {τ}) ≈-trans {.bool} {.k} {.k} {k} (base .k .k refl) (base .k .k refl) = base k k refl ≈-trans {σ ⇒ τ} {.f1} {.f2} {k} (fun f1 .f2 ≈₁) (fun f2 .k ≈₂) = fun f1 k (λ s ds valid → ≈-trans (≈₁ _ _ valid) (≈₂ _ _ valid)) ≈-isEquivalence : ∀ {τ} → IsEquivalence (_≈_ {τ}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Type → Setoid _ _ ≈-setoid τ = record { Carrier = ⟦ Δ-Type τ ⟧ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning where module _ {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid τ) public hiding (_≡⟨_⟩_) -- Correct proof, to refactor using ≈-Reasoning diff-apply-proof-weak-real : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≈ dv diff-apply-proof-weak-real {τ₁ ⇒ τ₂} df f df-valid = fun _ _ (λ v dv dv-valid → ≈-trans (≡→≈ ( begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ∎)) (diff-apply-proof-weak-real {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)))) --≈⟨ fill in the above proof ⟩ --df v dv where open ≡-Reasoning diff-apply-proof-weak-real {bool} db b _ = ≡→≈ (xor-cancellative b db)
module Denotational.WeakValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.ChangeTypes.ChangesAreDerivatives open import Denotational.Notation open import Denotational.Values open import Denotational.Changes open import Denotational.EqualityLemmas -- DEFINITION of weakly valid changes via a logical relation -- Strong validity: open import Denotational.ValidChanges -- Weak validity, defined through a function producing a type. -- -- Since this is a logical relation, this couldn't be defined as a -- datatype, since it is not strictly positive. Weak-Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Weak-Valid-Δ {bool} v dv = ⊤ Weak-Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : Weak-Valid-Δ s ds) → Weak-Valid-Δ (f s) (df s ds) × df is-correct-for f on s and ds strong-to-weak-validity : ∀ {τ : Type} {v : ⟦ τ ⟧} {dv} → Valid-Δ v dv → Weak-Valid-Δ v dv strong-to-weak-validity {bool} _ = tt strong-to-weak-validity {τ ⇒ τ₁} {v} {dv} s-valid-v-dv = λ s ds _ → let proofs = s-valid-v-dv s ds dv-s-ds-valid-on-v-s = proj₁ proofs dv-is-correct-for-v-on-s-and-ds = proj₂ proofs in strong-to-weak-validity dv-s-ds-valid-on-v-s , dv-is-correct-for-v-on-s-and-ds {- -- This proof doesn't go through: the desired equivalence is too -- strong, and we can't fill the holes because dv is arbitrary. diff-apply-proof-weak : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof-weak {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv {!!})) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv {!!})) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof-weak {bool} db b _ = xor-cancellative b db -- That'd be the core of the proof of diff-apply-weak, if we relax the -- equivalence in the goal to something more correct. We need a proof -- of validity only for the first argument, somehow: maybe because -- diff itself produces strongly valid changes? -- -- Ahah! Not really: below we use the unprovable -- diff-apply-proof-weak. To be able to use induction, we need to use -- this weaker lemma again. Hence, we'll only be able to prove the -- same equivalence, which will needs another proof of validity to -- unfold further until the base case. diff-apply-proof-weak-f : ∀ {τ₁ τ₂} (df : ⟦ Δ-Type (τ₁ ⇒ τ₂) ⟧) (f : ⟦ τ₁ ⇒ τ₂ ⟧) → (Weak-Valid-Δ f df) → ∀ dv v → (Weak-Valid-Δ v dv) → (diff (apply df f) f) v dv ≡ df v dv diff-apply-proof-weak-f {τ₁} {τ₂} df f df-valid dv v dv-valid = begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof-weak {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)) ⟩ df v dv ∎ where open ≡-Reasoning -} -- A stronger delta equivalence. Note this isn't a congruence; it -- should be possible to define some congruence rules, but those will -- be more complex. data _≈_ : {τ : Type} → ⟦ Δ-Type τ ⟧ → ⟦ Δ-Type τ ⟧ → Set where --base : ∀ (v : ⟦ bool ⟧) → v ≈ v base : ∀ (v1 v2 : ⟦ bool ⟧) → (≡ : v1 ≡ v2) → v1 ≈ v2 fun : ∀ {σ τ} (f1 f2 : ⟦ Δ-Type (σ ⇒ τ) ⟧) → (t≈ : ∀ s ds (valid : Weak-Valid-Δ s ds) → f1 s ds ≈ f2 s ds) → f1 ≈ f2 ≡→≈ : ∀ {τ} {v1 v2 : ⟦ Δ-Type τ ⟧} → v1 ≡ v2 → v1 ≈ v2 ≡→≈ {bool} {v1} {.v1} refl = base v1 v1 refl ≡→≈ {τ₁ ⇒ τ₂} {v1} {.v1} refl = fun v1 v1 (λ s ds _ → ≡→≈ refl) open import Relation.Binary hiding (_⇒_) ≈-refl : ∀ {τ} → Reflexive (_≈_ {τ}) ≈-refl = ≡→≈ refl ≈-sym : ∀ {τ} → Symmetric (_≈_ {τ}) ≈-sym (base v1 v2 ≡) = base _ _ (sym ≡) ≈-sym {(σ ⇒ τ)} (fun f1 f2 t≈) = fun _ _ (λ s ds valid → ≈-sym (t≈ s ds valid)) ≈-trans : ∀ {τ} → Transitive (_≈_ {τ}) ≈-trans {.bool} {.k} {.k} {k} (base .k .k refl) (base .k .k refl) = base k k refl ≈-trans {σ ⇒ τ} {.f1} {.f2} {k} (fun f1 .f2 ≈₁) (fun f2 .k ≈₂) = fun f1 k (λ s ds valid → ≈-trans (≈₁ _ _ valid) (≈₂ _ _ valid)) ≈-isEquivalence : ∀ {τ} → IsEquivalence (_≈_ {τ}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Type → Setoid _ _ ≈-setoid τ = record { Carrier = ⟦ Δ-Type τ ⟧ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning where module _ {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid τ) public hiding (_≡⟨_⟩_) -- Correct proof, to refactor using ≈-Reasoning diff-apply-proof-weak-real : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Weak-Valid-Δ v dv) → diff (apply dv v) v ≈ dv diff-apply-proof-weak-real {τ₁ ⇒ τ₂} df f df-valid = fun _ _ (λ v dv dv-valid → ≈-trans (≡→≈ ( begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v)) (strong-to-weak-validity (derive-is-valid (apply dv v)))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv dv-valid)) ⟩ diff (apply (df v dv) (f v)) (f v) ∎)) (diff-apply-proof-weak-real {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv dv-valid)))) --≈⟨ fill in the above proof ⟩ --df v dv where open ≡-Reasoning diff-apply-proof-weak-real {bool} db b _ = ≡→≈ (xor-cancellative b db)
Change where-clause to let-expr so that agda 2.3.2 typechecks README
Change where-clause to let-expr so that agda 2.3.2 typechecks README Old-commit-hash: 6ffa74c100a7ee9d51e15d960db14c801f06e27c
Agda
mit
inc-lc/ilc-agda
cad090cf1face3e9ee7c8e4575440a427c74e66a
lib/Explore/BinTree.agda
lib/Explore/BinTree.agda
{-# OPTIONS --without-K #-} module Explore.BinTree where open import Data.Tree.Binary open import Explore.Core open import Explore.Properties fromBinTree : ∀ {m} {A} → BinTree A → Explore m A fromBinTree empty = empty-explore fromBinTree (leaf x) = point-explore x fromBinTree (fork ℓ r) = merge-explore (fromBinTree ℓ) (fromBinTree r) fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind empty = empty-explore-ind fromBinTree-ind (leaf x) = point-explore-ind x fromBinTree-ind (fork ℓ r) = merge-explore-ind (fromBinTree-ind ℓ) (fromBinTree-ind r) {- fromBinTree : ∀ {m A} → BinTree A → Explore m A fromBinTree (leaf x) _ _ f = f x fromBinTree (fork ℓ r) ε _∙_ f = fromBinTree ℓ ε _∙_ f ∙ fromBinTree r ε _∙_ f fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind (leaf x) P _ P∙ Pf = Pf x fromBinTree-ind (fork ℓ r) P Pε P∙ Pf = P∙ (fromBinTree-ind ℓ P Pε P∙ Pf) (fromBinTree-ind r P Pε P∙ Pf) -}
{-# OPTIONS --without-K #-} module Explore.BinTree where open import Level.NP open import Type hiding (★) open import Data.Tree.Binary open import Data.Zero open import Data.Product open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Type.Identities open import Function.Extensionality open import Explore.Core open import Explore.Properties open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism fromBinTree : ∀ {m} {A} → BinTree A → Explore m A fromBinTree empty = empty-explore fromBinTree (leaf x) = point-explore x fromBinTree (fork ℓ r) = merge-explore (fromBinTree ℓ) (fromBinTree r) fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind empty = empty-explore-ind fromBinTree-ind (leaf x) = point-explore-ind x fromBinTree-ind (fork ℓ r) = merge-explore-ind (fromBinTree-ind ℓ) (fromBinTree-ind r) {- fromBinTree : ∀ {m A} → BinTree A → Explore m A fromBinTree (leaf x) _ _ f = f x fromBinTree (fork ℓ r) ε _∙_ f = fromBinTree ℓ ε _∙_ f ∙ fromBinTree r ε _∙_ f fromBinTree-ind : ∀ {m p A} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind (leaf x) P _ P∙ Pf = Pf x fromBinTree-ind (fork ℓ r) P Pε P∙ Pf = P∙ (fromBinTree-ind ℓ P Pε P∙ Pf) (fromBinTree-ind r P Pε P∙ Pf) -} AnyP≡ΣfromBinTree : ∀ {p}{A : ★ _}{P : A → ★ p}(xs : BinTree A) → Any P xs ≡ Σᵉ (fromBinTree xs) P AnyP≡ΣfromBinTree empty = idp AnyP≡ΣfromBinTree (leaf x) = idp AnyP≡ΣfromBinTree (fork xs xs₁) = ⊎= (AnyP≡ΣfromBinTree xs) (AnyP≡ΣfromBinTree xs₁) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀} where exploreΣ∈ : ∀ {m} xs → Explore m (Σ A λ x → Any (_≡_ x) xs) exploreΣ∈ empty = explore-iso (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) Lift𝟘ᵉ exploreΣ∈ (leaf x) = point-explore (x , idp) exploreΣ∈ (fork xs xs₁) = explore-iso (coe-equiv (! Σ⊎-split)) (exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁) Σᵉ-adq-exploreΣ∈ : ∀ {m} xs → Adequate-Σᵉ {m} (exploreΣ∈ xs) Σᵉ-adq-exploreΣ∈ empty = Σ-iso-ok (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) {Aᵉ = Lift𝟘ᵉ} ΣᵉLift𝟘-ok Σᵉ-adq-exploreΣ∈ (leaf x₁) F = ! Σ𝟙-snd ∙ Σ-fst≃ (≃-sym (Σx≡≃𝟙 x₁)) F Σᵉ-adq-exploreΣ∈ (fork xs xs₁) = Σ-iso-ok (coe-equiv (! Σ⊎-split)) {Aᵉ = exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁} (Σᵉ⊎-ok {eᴬ = exploreΣ∈ xs}{eᴮ = exploreΣ∈ xs₁} (Σᵉ-adq-exploreΣ∈ xs) (Σᵉ-adq-exploreΣ∈ xs₁)) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀}{P : A → ★ _}(explore-P : ∀ {m} x → Explore m (P x)) where open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism exploreAny : ∀ {m} xs → Explore m (Any P xs) exploreAny empty = Lift𝟘ᵉ exploreAny (leaf x) = explore-P x exploreAny (fork xs xs₁) = exploreAny xs ⊎ᵉ exploreAny xs₁ module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σᵉ {m} (explore-P x)) where Σᵉ-adq-exploreAny : ∀ {m} xs → Adequate-Σᵉ {m} (exploreAny xs) Σᵉ-adq-exploreAny empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreAny (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreAny (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreAny xs _) (Σᵉ-adq-exploreAny xs₁ _) ∙ ! dist-⊎-Σ exploreΣᵉ : ∀ {m} xs → Explore m (Σᵉ (fromBinTree xs) P) exploreΣᵉ {m} xs = fromBinTree-ind xs (λ e → Explore m (Σᵉ e P)) Lift𝟘ᵉ _⊎ᵉ_ explore-P module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σᵉ {m} (explore-P x)) where Σᵉ-adq-exploreΣᵉ : ∀ {m} xs → Adequate-Σᵉ {m} (exploreΣᵉ xs) Σᵉ-adq-exploreΣᵉ empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreΣᵉ (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreΣᵉ (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreΣᵉ xs _) (Σᵉ-adq-exploreΣᵉ xs₁ _) ∙ ! dist-⊎-Σ -- -} -- -} -- -} -- -}
Add more exploration functions about binary trees
Add more exploration functions about binary trees
Agda
bsd-3-clause
crypto-agda/explore
15cd0eafd613a991286818c276496c93db0ada5d
Parametric/Denotation/CachingMValue.agda
Parametric/Denotation/CachingMValue.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for caching evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value import Parametric.Denotation.MValue as MValue module Parametric.Denotation.CachingMValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open MValue.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) module Structure where -- XXX: below we need to override just a few cases. Inheritance would handle -- this precisely; without inheritance, we might want to use one of the -- standard encodings of related features (delegation?). ⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁ ⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁ -- This line is the only change, up to now, for the caching semantics starting from CBPV. ⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCacheWrong × ⟦ τ₁ ⟧ValTypeHidCacheWrong ) -- Delegation upward. ⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType ⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType -- The above does not override what happens in recursive occurrences. {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- This line is the only change, up to now, for the caching semantics. -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -}
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for caching evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value import Parametric.Denotation.MValue as MValue module Parametric.Denotation.CachingMValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open MValue.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) module Structure where {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. -- -- XXX: This line is the only change, up to now, for the caching semantics, -- the rest is copied. Inheritance would handle this precisely; without -- inheritance, we might want to use one of the standard encodings of related -- features (delegation?). ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -}
Drop ⟦_⟧*TypeHidCacheWrong
Drop ⟦_⟧*TypeHidCacheWrong This wrong definition should not be counted among the failures before CBPV, since it was created after and it is due to a separate limitation.
Agda
mit
inc-lc/ilc-agda
e7b75259e34cf9de11a2696f75d1384a4dc62f8d
agda/Nat.agda
agda/Nat.agda
module Nat where data ℕ : Set where zero : ℕ succ : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + b = b succ a + b = succ (a + b) _×_ : ℕ → ℕ → ℕ zero × b = zero succ a × b = (a × b) + b open import Relation.Binary.PropositionalEquality 0-is-right-identity-of-+ : ∀ (n : ℕ) → n + zero ≡ n 0-is-right-identity-of-+ zero = refl 0-is-right-identity-of-+ (succ n) = cong succ (0-is-right-identity-of-+ n) +-is-associative : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c +-is-associative zero b c = refl +-is-associative (succ a) b c = cong succ (+-is-associative a b c) lemma : ∀ (a b : ℕ) → a + succ b ≡ succ (a + b) lemma zero b = refl lemma (succ a) b = cong succ (lemma a b) import Relation.Binary.EqReasoning as EqR open module EqNat = EqR (setoid ℕ) +-is-commutative : ∀ (a b : ℕ) → a + b ≡ b + a +-is-commutative a zero = 0-is-right-identity-of-+ a +-is-commutative a (succ b) = begin a + succ b ≈⟨ lemma a b ⟩ succ (a + b) ≈⟨ cong succ (+-is-commutative a b) ⟩ succ (b + a) ≈⟨ refl ⟩ succ b + a ∎
module Nat where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC succ #-} _+_ : ℕ → ℕ → ℕ zero + b = b succ a + b = succ (a + b) _×_ : ℕ → ℕ → ℕ zero × b = zero succ a × b = (a × b) + b open import Relation.Binary.PropositionalEquality 0-is-right-identity-of-+ : ∀ (n : ℕ) → n + zero ≡ n 0-is-right-identity-of-+ zero = refl 0-is-right-identity-of-+ (succ n) = cong succ (0-is-right-identity-of-+ n) +-is-associative : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c +-is-associative zero b c = refl +-is-associative (succ a) b c = cong succ (+-is-associative a b c) lemma : ∀ (a b : ℕ) → a + succ b ≡ succ (a + b) lemma zero b = refl lemma (succ a) b = cong succ (lemma a b) import Relation.Binary.EqReasoning as EqR open module EqNat = EqR (setoid ℕ) +-is-commutative : ∀ (a b : ℕ) → a + b ≡ b + a +-is-commutative a zero = 0-is-right-identity-of-+ a +-is-commutative a (succ b) = begin a + succ b ≈⟨ lemma a b ⟩ succ (a + b) ≈⟨ cong succ (+-is-commutative a b) ⟩ succ (b + a) ≈⟨ refl ⟩ succ b + a ∎
allow the use of more natural notation in Nat
allow the use of more natural notation in Nat
Agda
unlicense
piyush-kurur/sample-code
8e1932027422fbfd5254b377ea26f80df138163c
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context module Parametric.Change.Term {Base : Set} (Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}) where -- Terms that operate on changes open Type Base open Context Type open import Parametric.Change.Type Δbase open import Parametric.Syntax.Term Constant open import Data.Product -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : Base → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context module Parametric.Change.Term {Base : Set} (Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}) {Δbase : Base → Type.Type Base} where -- Terms that operate on changes open Type Base open Context Type open import Parametric.Change.Type Δbase open import Parametric.Syntax.Term Constant open import Data.Product -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
Move parameter to module level.
Move parameter to module level. All definitions in this module take the same parameter, so moving that parameter to the module level makes it easier to instantiate all of the definitions at once. Old-commit-hash: c9a73b24cd02aed1ee75b46416c1893c8c37b130
Agda
mit
inc-lc/ilc-agda
bdfd1c903bebb00f241b98797e6544d8970bea49
Crypto/JS/BigI/FiniteField.agda
Crypto/JS/BigI/FiniteField.agda
{-# OPTIONS --without-K #-} open import Type.Eq using (_==_; Eq?; ≡⇒==; ==⇒≡) open import Data.Two.Base using (𝟚; ✓) open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl; ap) open import FFI.JS using (JS[_]; _++_; return; _>>_) open import FFI.JS.Check using (check!) renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Homomorphism open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where -- The constructor mk is not exported. private module Internals where data ℤ[_] : Set where mk : BigI → ℤ[_] mk-inj : ∀ {x y : BigI} → ℤ[_].mk x ≡ mk y → x ≡ y mk-inj refl = refl open Internals public using (ℤ[_]) open Internals ℤq : Set ℤq = ℤ[_] private mod-q : BigI → ℤq mod-q x = mk (mod x q) -- There are two ways to go from BigI to ℤq: BigI▹ℤ[ q ] and mod-q -- Use BigI▹ℤ[ q ] for untrusted input data and mod-q for internal -- computation. BigI▹ℤ[_] : BigI → JS[ ℤq ] BigI▹ℤ[_] x = -- Console.log "BigI▹ℤ[_]" check! "below the modulus" (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) >> check! "positivity" (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") >> return (mk x) check-non-zero : ℤq → BigI check-non-zero (mk x) = -- trace-call "check-non-zero " check? (x >I 0I) (λ _ → "Should be non zero") x ℤ[_]▹BigI : ℤq → BigI ℤ[_]▹BigI (mk x) = x 0# 1# : ℤq 0# = mk 0I 1# = mk 1I -- One could choose here to return a dummy value when 0 is given. -- Instead we throw an exception which in some circumstances could -- be bad if the runtime semantics is too eager. 1/_ : ℤq → ℤq 1/ x = mk (modInv (check-non-zero x) q) _^I_ : ℤq → BigI → ℤq mk x ^I y = mk (modPow x y q) ℤq▹BigI = ℤ[_]▹BigI BigI▹ℤq = BigI▹ℤ[_] _⊗I_ : ℤq → BigI → ℤq x ⊗I y = mod-q (multiply (ℤq▹BigI x) y) _+_ _−_ _*_ _/_ : ℤq → ℤq → ℤq x + y = mod-q (add (ℤq▹BigI x) (ℤq▹BigI y)) x − y = mod-q (subtract (ℤq▹BigI x) (ℤq▹BigI y)) x * y = x ⊗I ℤq▹BigI y x / y = x * 1/ y *-def : _*_ ≡ (λ x y → x ⊗I ℤq▹BigI y) *-def = refl 0−_ : ℤq → ℤq 0− x = mod-q (negate (ℤq▹BigI x)) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# instance ℤ[_]-Eq? : Eq? ℤq ℤ[_]-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤq → ℤq → 𝟚 mk x ==' mk y = x == y ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ≡⇒==' {mk x} {mk y} p = ≡⇒== (mk-inj p) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y ==⇒≡' {mk x} {mk y} p = ap mk (==⇒≡ p) ℤq-Eq? = ℤ[_]-Eq? +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct module fld = Field fld -- open fld using (+-grp) public ℤ[_]+-grp : Group ℤq ℤ[_]+-grp = fld.+-grp ℤq+-grp : Group ℤq ℤq+-grp = fld.+-grp -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq using (_==_; Eq?; ≡⇒==; ==⇒≡) open import Data.Two.Base using (𝟚; ✓) open import Relation.Binary.PropositionalEquality.Base using (_≡_; refl; ap) open import FFI.JS using (JS[_]; _++_; return; _>>_) open import FFI.JS.Check using (check!) --renaming (check to check?) renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Homomorphism open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where -- The constructor mk is not exported. private module Internals where data ℤ[_] : Set where mk : BigI → ℤ[_] mk-inj : ∀ {x y : BigI} → ℤ[_].mk x ≡ mk y → x ≡ y mk-inj refl = refl open Internals public using (ℤ[_]) open Internals ℤq : Set ℤq = ℤ[_] private mod-q : BigI → ℤq mod-q x = mk (mod x q) -- There are two ways to go from BigI to ℤq: BigI▹ℤ[ q ] and mod-q -- Use BigI▹ℤ[ q ] for untrusted input data and mod-q for internal -- computation. BigI▹ℤ[_] : BigI → JS[ ℤq ] BigI▹ℤ[_] x = -- Console.log "BigI▹ℤ[_]" check! "below the modulus" (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) >> check! "positivity" (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") >> return (mk x) check-non-zero : ℤq → BigI check-non-zero (mk x) = -- trace-call "check-non-zero " check? (x >I 0I) (λ _ → "Should be non zero") x ℤ[_]▹BigI : ℤq → BigI ℤ[_]▹BigI (mk x) = x 0# 1# : ℤq 0# = mk 0I 1# = mk 1I -- One could choose here to return a dummy value when 0 is given. -- Instead we throw an exception which in some circumstances could -- be bad if the runtime semantics is too eager. 1/_ : ℤq → ℤq 1/ x = mk (modInv (check-non-zero x) q) _^I_ : ℤq → BigI → ℤq mk x ^I y = mk (modPow x y q) ℤq▹BigI = ℤ[_]▹BigI BigI▹ℤq = BigI▹ℤ[_] _⊗I_ : ℤq → BigI → ℤq x ⊗I y = mod-q (multiply (ℤq▹BigI x) y) _+_ _−_ _*_ _/_ : ℤq → ℤq → ℤq x + y = mod-q (add (ℤq▹BigI x) (ℤq▹BigI y)) x − y = mod-q (subtract (ℤq▹BigI x) (ℤq▹BigI y)) x * y = x ⊗I ℤq▹BigI y x / y = x * 1/ y *-def : _*_ ≡ (λ x y → x ⊗I ℤq▹BigI y) *-def = refl 0−_ : ℤq → ℤq 0− x = mod-q (negate (ℤq▹BigI x)) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# instance ℤ[_]-Eq? : Eq? ℤq ℤ[_]-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤq → ℤq → 𝟚 mk x ==' mk y = x == y ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ≡⇒==' {mk x} {mk y} p = ≡⇒== (mk-inj p) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y ==⇒≡' {mk x} {mk y} p = ap mk (==⇒≡ p) ℤq-Eq? = ℤ[_]-Eq? +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct module fld = Field fld -- open fld using (+-grp) public ℤ[_]+-grp : Group ℤq ℤ[_]+-grp = fld.+-grp ℤq+-grp : Group ℤq ℤq+-grp = fld.+-grp -- -} -- -} -- -} -- -}
Use warn-check since check is monadic now...
ℤq: Use warn-check since check is monadic now...
Agda
bsd-3-clause
crypto-agda/crypto-agda
3be2477097d1bfe6056a5d1fbcef0fb70636e4dc
lib/Relation/Binary/PropositionalEquality/NP.agda
lib/Relation/Binary/PropositionalEquality/NP.agda
{-# OPTIONS --universe-polymorphism #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≡≡_ : ∀ {a} {A : Set a} {i j : A} (i≡j₁ : i ≡ j) (i≡j₂ : i ≡ j) → i≡j₁ ≡ i≡j₂ _≡≡_ refl refl = refl _≟≡_ : ∀ {a} {A : Set a} {i j : A} → Decidable {A = i ≡ j} _≡_ _≟≡_ refl refl = yes refl injective : ∀ {a} {A : Set a} → InjectiveRel A _≡_ injective refl refl = refl surjective : ∀ {a} {A : Set a} → SurjectiveRel A _≡_ surjective refl refl = refl bijective : ∀ {a} {A : Set a} → BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } module ≡-Reasoning {a} {A : Set a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : Set a} {B : Set b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦Set⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦Set⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → Set ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦Set₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
{-# OPTIONS --universe-polymorphism #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≡≡_ : ∀ {a} {A : Set a} {i j : A} (i≡j₁ : i ≡ j) (i≡j₂ : i ≡ j) → i≡j₁ ≡ i≡j₂ _≡≡_ refl refl = refl _≟≡_ : ∀ {a} {A : Set a} {i j : A} → Decidable {A = i ≡ j} _≡_ _≟≡_ refl refl = yes refl _≗₂_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f g : A → B → C) → Set _ f ≗₂ g = ∀ x y → f x y ≡ g x y injective : ∀ {a} {A : Set a} → InjectiveRel A _≡_ injective refl refl = refl surjective : ∀ {a} {A : Set a} → SurjectiveRel A _≡_ surjective refl refl = refl bijective : ∀ {a} {A : Set a} → BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } module ≡-Reasoning {a} {A : Set a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : Set a} {B : Set b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦Set⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦Set⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → Set ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦Set₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦Set₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
add ≗₂
add ≗₂
Agda
bsd-3-clause
crypto-agda/agda-nplib
89da077b4d098d6e0939d860c48061f66c5d3369
formalization/agda/Spire/Operational.agda
formalization/agda/Spire/Operational.agda
module Spire.Operational where ---------------------------------------------------------------------- data Level : Set where zero : Level suc : Level → Level ---------------------------------------------------------------------- data Context : Set data Type (Γ : Context) : Set data Value (Γ : Context) : Type Γ → Set data Neutral (Γ : Context) : Type Γ → Set ---------------------------------------------------------------------- data Context where ∅ : Context _,_ : (Γ : Context) → Type Γ → Context data Type Γ where `⊥ `⊤ `Bool : Type Γ `Type : (ℓ : Level) → Type Γ `Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ `⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ ---------------------------------------------------------------------- ⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ postulate wknT : ∀{Γ A} → Type Γ → Type (Γ , A) subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x) data Var : (Γ : Context) (A : Type Γ) → Set where here : ∀{Γ A} → Var (Γ , A) (wknT A) there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A) ---------------------------------------------------------------------- data Value Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Value Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Value Γ `⊤ `true `false : Value Γ `Bool _`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B) `λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B) `neut : ∀{A} → Neutral Γ A → Value Γ A ---------------------------------------------------------------------- data Neutral Γ where {- Value elimination -} `var : ∀{A} → Var Γ A → Neutral Γ A `if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C `proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A `proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab))) _`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a) ---------------------------------------------------------------------- ⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧ ⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧ ⟦ `⊥ ⟧ = `⊥ ⟦ `⊤ ⟧ = `⊤ ⟦ `Bool ⟧ = `Bool ⟦ `Type {zero} ⟧ = `⊥ ⟦ `Type {suc ℓ} ⟧ = `Type ℓ ⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧ ⟦ `neut A ⟧ = `⟦ A ⟧ ---------------------------------------------------------------------- if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C if `true then c₁ else c₂ = c₁ if `false then c₁ else c₂ = c₂ if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂) ---------------------------------------------------------------------- proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A proj₁ (a `, b) = a proj₁ (`neut ab) = `neut (`proj₁ ab) proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab)) proj₂ (a `, b) = b proj₂ (`neut ab) = `neut (`proj₂ ab) ---------------------------------------------------------------------- _$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a) `λ b $ a = subV b a `neut f $ a = `neut (f `$ a) ---------------------------------------------------------------------- data Term (Γ : Context) : Type Γ → Set eval : ∀{Γ A} → Term Γ A → Value Γ A data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Term Γ `⊤ `true `false : Term Γ `Bool _`,_ : ∀{A B} (a : Term Γ A) (b : Term Γ (subT B (eval a))) → Term Γ (`Σ A B) {- Value elimination -} `var : ∀{A} → Var Γ A → Term Γ A `if_`then_`else_ : ∀{C} (b : Term Γ `Bool) (c₁ c₂ : Term Γ C) → Term Γ C _`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a)) `proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A `proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab))) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `Type = `Type eval (`Π A B) = `Π (eval A) (eval B) eval (`Σ A B) = `Σ (eval A) (eval B) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Value introduction -} eval `tt = `tt eval `true = `true eval `false = `false eval (a `, b) = eval a `, eval b {- Value elimination -} eval (`var i) = `neut (`var i) eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂ eval (f `$ a) = eval f $ eval a eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) ----------------------------------------------------------------------
module Spire.Operational where ---------------------------------------------------------------------- data Level : Set where zero : Level suc : Level → Level ---------------------------------------------------------------------- data Context : Set data Type (Γ : Context) : Set data Value (Γ : Context) : Type Γ → Set data Neutral (Γ : Context) : Type Γ → Set ---------------------------------------------------------------------- data Context where ∅ : Context _,_ : (Γ : Context) → Type Γ → Context data Type Γ where `⊥ `⊤ `Bool : Type Γ `Type : (ℓ : Level) → Type Γ `Π `Σ : (A : Type Γ) (B : Type (Γ , A)) → Type Γ `⟦_⟧ : ∀{ℓ} → Neutral Γ (`Type ℓ) → Type Γ ---------------------------------------------------------------------- ⟦_⟧ : ∀{Γ ℓ} → Value Γ (`Type ℓ) → Type Γ postulate wknT : ∀{Γ A} → Type Γ → Type (Γ , A) subT : ∀{Γ A} → Type (Γ , A) → Value Γ A → Type Γ subV : ∀{Γ A B} → Value (Γ , A) B → (x : Value Γ A) → Value Γ (subT B x) data Var : (Γ : Context) (A : Type Γ) → Set where here : ∀{Γ A} → Var (Γ , A) (wknT A) there : ∀{Γ A B} → Var Γ A → Var (Γ , B) (wknT A) ---------------------------------------------------------------------- data Value Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Value Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Value Γ (`Type ℓ)) (B : Value (Γ , ⟦ A ⟧) (`Type ℓ)) → Value Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Value Γ (`Type ℓ) → Value Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Value Γ `⊤ `true `false : Value Γ `Bool _`,_ : ∀{A B} (a : Value Γ A) (b : Value Γ (subT B a)) → Value Γ (`Σ A B) `λ : ∀{A B} → Value (Γ , A) B → Value Γ (`Π A B) `neut : ∀{A} → Neutral Γ A → Value Γ A ---------------------------------------------------------------------- data Neutral Γ where {- Value elimination -} `var : ∀{A} → Var Γ A → Neutral Γ A `if_`then_`else_ : ∀{C} (b : Neutral Γ `Bool) (c₁ c₂ : Value Γ C) → Neutral Γ C `elimBool : ∀{ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Neutral Γ `Bool) → Neutral Γ (subT ⟦ P ⟧ (`neut b)) `proj₁ : ∀{A B} → Neutral Γ (`Σ A B) → Neutral Γ A `proj₂ : ∀{A B} (ab : Neutral Γ (`Σ A B)) → Neutral Γ (subT B (`neut (`proj₁ ab))) _`$_ : ∀{A B} (f : Neutral Γ (`Π A B)) (a : Value Γ A) → Neutral Γ (subT B a) ---------------------------------------------------------------------- ⟦ `Π A B ⟧ = `Π ⟦ A ⟧ ⟦ B ⟧ ⟦ `Σ A B ⟧ = `Σ ⟦ A ⟧ ⟦ B ⟧ ⟦ `⊥ ⟧ = `⊥ ⟦ `⊤ ⟧ = `⊤ ⟦ `Bool ⟧ = `Bool ⟦ `Type {zero} ⟧ = `⊥ ⟦ `Type {suc ℓ} ⟧ = `Type ℓ ⟦ `⟦ A ⟧ ⟧ = ⟦ A ⟧ ⟦ `neut A ⟧ = `⟦ A ⟧ ---------------------------------------------------------------------- if_then_else_ : ∀{Γ C} (b : Value Γ `Bool) (c₁ c₂ : Value Γ C) → Value Γ C if `true then c₁ else c₂ = c₁ if `false then c₁ else c₂ = c₂ if `neut b then c₁ else c₂ = `neut (`if b `then c₁ `else c₂) elimBool : ∀{Γ ℓ} (P : Value (Γ , `Bool) (`Type ℓ)) (pt : Value Γ (subT ⟦ P ⟧ `true)) (pf : Value Γ (subT ⟦ P ⟧ `false)) (b : Value Γ `Bool) → Value Γ (subT ⟦ P ⟧ b) elimBool P pt pf `true = pt elimBool P pt pf `false = pf elimBool P pt pf (`neut b) = `neut (`elimBool P pt pf b) ---------------------------------------------------------------------- proj₁ : ∀{Γ A B} → Value Γ (`Σ A B) → Value Γ A proj₁ (a `, b) = a proj₁ (`neut ab) = `neut (`proj₁ ab) proj₂ : ∀{Γ A B} (ab : Value Γ (`Σ A B)) → Value Γ (subT B (proj₁ ab)) proj₂ (a `, b) = b proj₂ (`neut ab) = `neut (`proj₂ ab) ---------------------------------------------------------------------- _$_ : ∀{Γ A B} → Value Γ (`Π A B) → (a : Value Γ A) → Value Γ (subT B a) `λ b $ a = subV b a `neut f $ a = `neut (f `$ a) ---------------------------------------------------------------------- data Term (Γ : Context) : Type Γ → Set eval : ∀{Γ A} → Term Γ A → Value Γ A data Term Γ where {- Type introduction -} `⊥ `⊤ `Bool `Type : ∀{ℓ} → Term Γ (`Type ℓ) `Π `Σ : ∀{ℓ} (A : Term Γ (`Type ℓ)) (B : Term (Γ , ⟦ eval A ⟧) (`Type ℓ)) → Term Γ (`Type ℓ) `⟦_⟧ : ∀{ℓ} → Term Γ (`Type ℓ) → Term Γ (`Type (suc ℓ)) {- Value introduction -} `tt : Term Γ `⊤ `true `false : Term Γ `Bool _`,_ : ∀{A B} (a : Term Γ A) (b : Term Γ (subT B (eval a))) → Term Γ (`Σ A B) {- Value elimination -} `var : ∀{A} → Var Γ A → Term Γ A `if_`then_`else_ : ∀{C} (b : Term Γ `Bool) (c₁ c₂ : Term Γ C) → Term Γ C _`$_ : ∀{A B} (f : Term Γ (`Π A B)) (a : Term Γ A) → Term Γ (subT B (eval a)) `proj₁ : ∀{A B} → Term Γ (`Σ A B) → Term Γ A `proj₂ : ∀{A B} (ab : Term Γ (`Σ A B)) → Term Γ (subT B (proj₁ (eval ab))) `elimBool : ∀{ℓ} (P : Term (Γ , `Bool) (`Type ℓ)) (pt : Term Γ (subT ⟦ eval P ⟧ `true)) (pf : Term Γ (subT ⟦ eval P ⟧ `false)) (b : Term Γ `Bool) → Term Γ (subT ⟦ eval P ⟧ (eval b)) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `Type = `Type eval (`Π A B) = `Π (eval A) (eval B) eval (`Σ A B) = `Σ (eval A) (eval B) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Value introduction -} eval `tt = `tt eval `true = `true eval `false = `false eval (a `, b) = eval a `, eval b {- Value elimination -} eval (`var i) = `neut (`var i) eval (`if b `then c₁ `else c₂) = if eval b then eval c₁ else eval c₂ eval (f `$ a) = eval f $ eval a eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) eval (`elimBool P pt pf b) = elimBool (eval P) (eval pt) (eval pf) (eval b) ----------------------------------------------------------------------
Add elimBool to operational semantics.
Add elimBool to operational semantics.
Agda
bsd-3-clause
spire/spire
d28029e6a6b72c675115285102a2d423b1c0b3f9
prg.agda
prg.agda
module prg where open import fun-universe open import Function open import Data.Nat.NP hiding (_==_) open import Data.Bool.NP hiding (_==_) open import Data.Nat.Properties open import Data.Bool.Properties open import Data.Bits open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Data.Empty open import Data.Vec open import Relation.Binary.PropositionalEquality.NP PRGFun : (k n : ℕ) → Set PRGFun k n = Bits k → Bits n module PRG⅁₁ {k n} (PRG : PRGFun k n) where -- TODO: give the adv some rand Adv : Set Adv = Bits n → Bit chal : Bit → Bits (n + k) → Bits n chal b R = if b then take n R else PRG (drop n R) prg⅁ : Adv → Bit → Bits (n + k) → Bit prg⅁ adv b R = adv (chal b R) -- ``Looks pseudo-random if the message is the output of the PRG some key'' brute′ : Adv brute′ m = search {k} _∨_ ((_==_ m) ∘ PRG) -- ``Looks random if the message is not a possible output of the PRG'' brute : Adv brute m = search {k} _∧_ (not ∘ (_==_ m) ∘ PRG) private brute-PRG-K≡0b-aux : ∀ {k n} (PRG : Bits k → Bits n) K → PRG⅁₁.brute PRG (PRG K) ≡ 0b brute-PRG-K≡0b-aux {zero} {n} PRG [] = cong not (==-refl (PRG [])) brute-PRG-K≡0b-aux {suc k} {n} PRG (true ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 1∷_) K = Bool°.+-comm (search _∧_ (not ∘ _==_ (PRG (1∷ K)) ∘ PRG ∘ 0∷_)) 0b brute-PRG-K≡0b-aux {suc k} {n} PRG (false ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 0∷_) K = refl brute′-bound-aux : ∀ {k n} (PRG : Bits k → Bits n) → let open PRG⅁₁ PRG in #⟨ brute′ ⟩ ≤ 2^ k brute′-bound-aux {zero} PRG = ℕ≤.reflexive #⟨ PRG [] ==⟩ brute′-bound-aux {suc k} PRG = #∨ {f = λ x → search _∨_ (_==_ x ∘ PRG ∘ 0∷_)} (brute′-bound-aux (PRG ∘ 0∷_)) (brute′-bound-aux (PRG ∘ 1∷_)) module PRG⅁ {k n} (PRG : PRGFun k n) where open PRG⅁₁ PRG public brute-PRG-K≡0b : ∀ K → brute (PRG K) ≡ 0b brute-PRG-K≡0b = brute-PRG-K≡0b-aux PRG prg⅁-brute-0 : prg⅁ brute 0b ≗ (const 0b) prg⅁-brute-0 R = brute-PRG-K≡0b (drop n R) brute′-bound : #⟨ brute′ ⟩ ≤ 2^ k brute′-bound = brute′-bound-aux PRG not∘brute′≗brute : not ∘ brute′ ≗ brute not∘brute′≗brute x = search-comm _∨_ _∧_ not (_==_ x ∘ PRG) de-morgan brute≗not∘brute′ : brute′ ≗ not ∘ brute brute≗not∘brute′ x = trans (sym (not-involutive _)) (cong not (not∘brute′≗brute x))
module prg where open import fun-universe open import Function open import Data.Nat.NP hiding (_==_) open import Data.Bool.NP hiding (_==_) open import Data.Nat.Properties open import Data.Bool.Properties open import Data.Bits open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Data.Empty open import Data.Vec open import Relation.Binary.PropositionalEquality.NP PRGFun : (k n : ℕ) → Set PRGFun k n = Bits k → Bits n module PRG⅁₁ {k n} (PRG : PRGFun k n) where -- TODO: give the adv some rand Adv : Set Adv = Bits n → Bit chal : Bit → Bits (n + k) → Bits n chal b R = if b then take n R else PRG (drop n R) prg⅁ : Adv → Bit → Bits (n + k) → Bit prg⅁ adv b R = adv (chal b R) -- ``Looks pseudo-random if the message is the output of the PRG some key'' brute′ : Adv brute′ m = search _∨_ {k} ((_==_ m) ∘ PRG) -- ``Looks random if the message is not a possible output of the PRG'' brute : Adv brute m = search _∧_ {k} (not ∘ (_==_ m) ∘ PRG) private brute-PRG-K≡0b-aux : ∀ {k n} (PRG : Bits k → Bits n) K → PRG⅁₁.brute PRG (PRG K) ≡ 0b brute-PRG-K≡0b-aux {zero} {n} PRG [] = cong not (==-refl (PRG [])) brute-PRG-K≡0b-aux {suc k} {n} PRG (true ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 1∷_) K = Bool°.+-comm (search _∧_ (not ∘ _==_ (PRG (1∷ K)) ∘ PRG ∘ 0∷_)) 0b brute-PRG-K≡0b-aux {suc k} {n} PRG (false ∷ K) rewrite brute-PRG-K≡0b-aux (PRG ∘ 0∷_) K = refl brute′-bound-aux : ∀ {k n} (PRG : Bits k → Bits n) → let open PRG⅁₁ PRG in #⟨ brute′ ⟩ ≤ 2^ k brute′-bound-aux {zero} PRG = ℕ≤.reflexive #⟨ PRG [] ==⟩ brute′-bound-aux {suc k} PRG = #∨ {f = λ x → search _∨_ (_==_ x ∘ PRG ∘ 0∷_)} (brute′-bound-aux (PRG ∘ 0∷_)) (brute′-bound-aux (PRG ∘ 1∷_)) module PRG⅁ {k n} (PRG : PRGFun k n) where open PRG⅁₁ PRG public brute-PRG-K≡0b : ∀ K → brute (PRG K) ≡ 0b brute-PRG-K≡0b = brute-PRG-K≡0b-aux PRG prg⅁-brute-0 : prg⅁ brute 0b ≗ (const 0b) prg⅁-brute-0 R = brute-PRG-K≡0b (drop n R) brute′-bound : #⟨ brute′ ⟩ ≤ 2^ k brute′-bound = brute′-bound-aux PRG not∘brute′≗brute : not ∘ brute′ ≗ brute not∘brute′≗brute x = search-hom _∨_ _∧_ not (_==_ x ∘ PRG) de-morgan brute≗not∘brute′ : brute′ ≗ not ∘ brute brute≗not∘brute′ x = trans (sym (not-involutive _)) (cong not (not∘brute′≗brute x))
fix argument order
prg: fix argument order
Agda
bsd-3-clause
crypto-agda/crypto-agda
f274de0be6b9f871bb446ee6381969cac1a7ad8a
Parametric/Denotation/CachingEvaluation.agda
Parametric/Denotation/CachingEvaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (τ₁ v× τ₂ v× σ) , (r₂ ,′ (c₁ ,′ c₂ ,′ r₁)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
Fix order of returned caches
Fix order of returned caches
Agda
mit
inc-lc/ilc-agda
a127cbe0afe5735ec22de57b718586c54a38c33b
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 7)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Fix testd
Fix testd
Agda
mit
louisswarren/hieretikz
3682d42d35e0734a6a4d6a4ee62cbad3965309b9
Parametric/Change/Term.agda
Parametric/Change/Term.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes (Fig. 3). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product -- Extension point 1: A term for ⊝ on base types. DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) -- Extension point 2: A term for ⊕ on base types. ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) -- We provide: terms for ⊕ and ⊝ on arbitrary types. diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in absV 4 (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in absV 3 (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = app₂ apply-term
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes (Fig. 3). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product -- Extension point 1: A term for ⊝ on base types. DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) -- Extension point 2: A term for ⊕ on base types. ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) -- We provide: terms for ⊕ and ⊝ on arbitrary types. diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in absV 4 (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in absV 3 (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = apply τ
Make _⊕_ more coherent with _⊝_
Make _⊕_ more coherent with _⊝_
Agda
mit
inc-lc/ilc-agda
5cd94161fed3259ba24dc7c2099fc439a5fdadb1
New/Derive.agda
New/Derive.agda
module New.Derive where open import New.Lang open import New.Changes open import New.LangOps ΔΓ : Context → Context ΔΓ ∅ = ∅ ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) -- dplus = λ m dm n dn → (m + dm) + (n + dn) - (m + n) = dm + dn deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) -- deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) -- deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) -- deriveConst (match {t1} {t2} {t3}) = -- -- λ s ds f df g dg → -- abs (abs (abs (abs (abs (abs -- -- match ds -- (app₃ (const match) (var (that (that (that (that this))))) -- -- λ ds₁ → match ds₁ -- (abs (app₃ (const match) (var this) -- -- case inj₁ da → absV 1 (λ da → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- λ a → app₂ df a da -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- -- absurd: λ b → dg b (nil b) -- (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- -- case inj₂ db → absV 1 (λ db → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- absurd: λ a → df a (nil a) -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- -- λ b → app₂ dg b db -- (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- -- recomputation branch: -- -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) -- (abs (app₂ (ominusτo t3) -- -- (match s2 (f ⊕ df) (g ⊕ dg)) -- (app₃ (const match) -- (var this) -- (app₂ (oplusτo (t1 ⇒ t3)) -- (var (that (that (that (that this))))) -- (var (that (that (that this))))) -- (app₂ (oplusτo (t2 ⇒ t3)) -- (var (that (that this))) -- (var (that this)))) -- -- (match s f g) -- (app₃ (const match) -- (var (that (that (that (that (that (that this))))))) -- (var (that (that (that (that this))))) -- (var (that (that this)))))))))))) -- {- -- derive (λ s f g → match s f g) = -- λ s ds f df g dg → -- case ds of -- ch1 da → -- case s of -- inj1 a → df a da -- inj2 b → {- absurd -} dg b (nil b) -- ch2 db → -- case s of -- inj2 b → dg b db -- inj1 a → {- absurd -} df a (nil a) -- rp s2 → -- match (f ⊕ df) (g ⊕ dg) s2 ⊝ -- match f g s -- -} deriveVar : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) open import New.LangChanges -- Lemmas needed to reason about derivation, for any correctness proof alternate : ∀ {Γ} → ⟦ Γ ⟧Context → eCh Γ → ⟦ ΔΓ Γ ⟧Context alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ (alternate ρ dρ) ⟦Γ≼ΔΓ⟧ ∅ ∅ = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term (alternate ρ dρ) fit-sound t ρ dρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _)) -- The change semantics is just the semantics composed with derivation! ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ x ⟧ΔVar ρ dρ = ⟦ deriveVar x ⟧Var (alternate ρ dρ) ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term (alternate ρ dρ) ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Cht τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) (alternate ρ dρ) | ⟦∅≼Γ⟧-∅ (alternate ρ dρ) = refl
module New.Derive where open import New.Lang open import New.Changes open import New.LangOps deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) -- dplus = λ m dm n dn → (m + dm) + (n + dn) - (m + n) = dm + dn deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) -- deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) -- deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) -- deriveConst (match {t1} {t2} {t3}) = -- -- λ s ds f df g dg → -- abs (abs (abs (abs (abs (abs -- -- match ds -- (app₃ (const match) (var (that (that (that (that this))))) -- -- λ ds₁ → match ds₁ -- (abs (app₃ (const match) (var this) -- -- case inj₁ da → absV 1 (λ da → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- λ a → app₂ df a da -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- -- absurd: λ b → dg b (nil b) -- (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- -- case inj₂ db → absV 1 (λ db → match s -- (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- -- absurd: λ a → df a (nil a) -- (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- -- λ b → app₂ dg b db -- (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- -- recomputation branch: -- -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) -- (abs (app₂ (ominusτo t3) -- -- (match s2 (f ⊕ df) (g ⊕ dg)) -- (app₃ (const match) -- (var this) -- (app₂ (oplusτo (t1 ⇒ t3)) -- (var (that (that (that (that this))))) -- (var (that (that (that this))))) -- (app₂ (oplusτo (t2 ⇒ t3)) -- (var (that (that this))) -- (var (that this)))) -- -- (match s f g) -- (app₃ (const match) -- (var (that (that (that (that (that (that this))))))) -- (var (that (that (that (that this))))) -- (var (that (that this)))))))))))) -- {- -- derive (λ s f g → match s f g) = -- λ s ds f df g dg → -- case ds of -- ch1 da → -- case s of -- inj1 a → df a da -- inj2 b → {- absurd -} dg b (nil b) -- ch2 db → -- case s of -- inj2 b → dg b db -- inj1 a → {- absurd -} df a (nil a) -- rp s2 → -- match (f ⊕ df) (g ⊕ dg) s2 ⊝ -- match f g s -- -} ΔΓ : Context → Context ΔΓ ∅ = ∅ ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ deriveVar : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) open import New.LangChanges -- Lemmas needed to reason about derivation, for any correctness proof alternate : ∀ {Γ} → ⟦ Γ ⟧Context → eCh Γ → ⟦ ΔΓ Γ ⟧Context alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ (alternate ρ dρ) ⟦Γ≼ΔΓ⟧ ∅ ∅ = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term (alternate ρ dρ) fit-sound t ρ dρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _)) -- The change semantics is just the semantics composed with derivation! ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ x ⟧ΔVar ρ dρ = ⟦ deriveVar x ⟧Var (alternate ρ dρ) ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : eCh Γ) → Cht τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term (alternate ρ dρ) ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Cht τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) (alternate ρ dρ) | ⟦∅≼Γ⟧-∅ (alternate ρ dρ) = refl
Reorder definitions
Reorder definitions Move definitions about change contexts next to their uses.
Agda
mit
inc-lc/ilc-agda
42316d32e1b90cea16ece1ad29627cb678610bc6
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning open import Postulate.Extensionality -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎
Clarify that change algebra operations trivially preserve d.o.e.
Clarify that change algebra operations trivially preserve d.o.e. Old-commit-hash: c11fb0c1abae938f0c7ec3dacff96f112f6bbee4
Agda
mit
inc-lc/ilc-agda
b3c29af8a0e31056b3efe8dd76723fe0d834058a
lib/Relation/Binary/PropositionalEquality/NP.agda
lib/Relation/Binary/PropositionalEquality/NP.agda
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q ! : {x y : A} → (x ≡ y → y ≡ x) ! refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! refl x = x cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦★⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q ! : {x y : A} → (x ≡ y → y ≡ x) ! refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! refl x = x cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} Pullback : ∀ {b c} {B : ★ b} {C : ★ c} (f : A → C) (g : B → C) → ★ _ Pullback {B = B} f g = Σ A (λ x → Σ B (λ y → f x ≡ g y)) module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦★⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
Add Pullback
Add Pullback
Agda
bsd-3-clause
crypto-agda/agda-nplib
e58fdcf2bd3f99745f653c3ee049cb1244bcb092
lib/Relation/Binary/NP.agda
lib/Relation/Binary/NP.agda
{-# OPTIONS --without-K #-} {-# OPTIONS --universe-polymorphism #-} module Relation.Binary.NP where open import Level open import Relation.Binary public import Relation.Binary.PropositionalEquality as PropEq -- could this be moved in place of Trans is Relation.Binary.Core Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'} → Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈ substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_ substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where field isEquivalence : IsEquivalence _≡_ subst : Substitutive _≡_ a open IsEquivalence isEquivalence public to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈ to-reflexive = substitutive-to-reflexive subst to-propositional : _≡_ ⇒ PropEq._≡_ to-propositional = substitutive⇒≡ subst -- Equational reasoning combinators. module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where infix 2 finally infixr 2 _≈⟨_⟩_ _≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z _ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z -- When there is no reflexivty available this -- combinator can be used to end the reasoning. finally : ∀ (x y : A) → x ≈ y → x ≈ y finally _ _ x≈y = x≈y syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎ module Refl-Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (refl : Reflexive _≈_) (trans : Transitive _≈_) where open Trans-Reasoning _≈_ trans public hiding (finally) infix 2 _∎ _∎ : ∀ x → x ≈ x _ ∎ = refl infixr 2 _≈⟨-by-definition-⟩_ _≈⟨-by-definition-⟩_ : ∀ x {y : A} → x ≈ y → x ≈ y _ ≈⟨-by-definition-⟩ x≈y = x≈y module Equivalence-Reasoning {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} (E : IsEquivalence _≈_) where open IsEquivalence E open Refl-Trans-Reasoning _≈_ refl trans public module Preorder-Reasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P open Refl-Trans-Reasoning _∼_ refl trans public renaming (_≈⟨_⟩_ to _∼⟨_⟩_; _≈⟨-by-definition-⟩_ to _∼⟨-by-definition-⟩_) open Equivalence-Reasoning isEquivalence public renaming (_∎ to _☐) module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where open Equivalence-Reasoning (Setoid.isEquivalence s) public
{-# OPTIONS --without-K #-} {-# OPTIONS --universe-polymorphism #-} module Relation.Binary.NP where open import Level open import Relation.Binary public import Relation.Binary.PropositionalEquality as PropEq -- could this be moved in place of Trans is Relation.Binary.Core Trans' : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans' P Q R = ∀ {i j k} (x : P i j) (xs : Q j k) → R i k substitutive-to-reflexive : ∀ {a ℓ ℓ'} {A : Set a} {≈ : Rel A ℓ} {≡ : Rel A ℓ'} → Substitutive ≡ ℓ → Reflexive ≈ → ≡ ⇒ ≈ substitutive-to-reflexive {≈ = ≈} ≡-subst ≈-refl xᵣ = ≡-subst (≈ _) xᵣ ≈-refl substitutive⇒≡ : ∀ {a ℓ} {A : Set a} {≡ : Rel A ℓ} → Substitutive ≡ a → ≡ ⇒ PropEq._≡_ substitutive⇒≡ subst = substitutive-to-reflexive {≈ = PropEq._≡_} subst PropEq.refl record Equality {a ℓ} {A : Set a} (_≡_ : Rel A ℓ) : Set (suc a ⊔ ℓ) where field isEquivalence : IsEquivalence _≡_ subst : Substitutive _≡_ a open IsEquivalence isEquivalence public to-reflexive : ∀ {≈} → Reflexive ≈ → _≡_ ⇒ ≈ to-reflexive = substitutive-to-reflexive subst to-propositional : _≡_ ⇒ PropEq._≡_ to-propositional = substitutive⇒≡ subst -- Equational reasoning combinators. module Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (trans : Transitive _≈_) where infix 2 finally infixr 2 _≈⟨_⟩_ _≈⟨_⟩_ : ∀ x {y z : A} → x ≈ y → y ≈ z → x ≈ z _ ≈⟨ x≈y ⟩ y≈z = trans x≈y y≈z -- When there is no reflexivty available this -- combinator can be used to end the reasoning. finally : ∀ (x y : A) → x ≈ y → x ≈ y finally _ _ x≈y = x≈y syntax finally x y x≈y = x ≈⟨ x≈y ⟩∎ y ∎ module Refl-Trans-Reasoning {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (refl : Reflexive _≈_) (trans : Transitive _≈_) where open Trans-Reasoning _≈_ trans public hiding (finally) infix 2 _∎ _∎ : ∀ x → x ≈ x _ ∎ = refl infixr 2 _≈⟨by-definition⟩_ _≈⟨by-definition⟩_ : ∀ x {y : A} → x ≈ y → x ≈ y _ ≈⟨by-definition⟩ x≈y = x≈y module Equivalence-Reasoning {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} (E : IsEquivalence _≈_) where open IsEquivalence E open Refl-Trans-Reasoning _≈_ refl trans public module Preorder-Reasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P open Refl-Trans-Reasoning _∼_ refl trans public renaming (_≈⟨_⟩_ to _∼⟨_⟩_; _≈⟨by-definition⟩_ to _∼⟨by-definition⟩_) open Equivalence-Reasoning isEquivalence public renaming (_∎ to _☐) module Setoid-Reasoning {a ℓ} (s : Setoid a ℓ) where open Equivalence-Reasoning (Setoid.isEquivalence s) public
Rename by-definition combinator for eq-reasoning
Rename by-definition combinator for eq-reasoning
Agda
bsd-3-clause
crypto-agda/agda-nplib
a0cb2129d6925e76e7c69250fbe510b3a711b245
Parametric/Denotation/Evaluation.agda
Parametric/Denotation/Evaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation (Def. 3.3 and Fig. 4i) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality -- Extension Point: Evaluation of fully applied constants. Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ -- We provide: Evaluation of arbitrary terms. ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map-IVT (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation (Def. 3.3 and Fig. 4i) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality -- Extension Point: Evaluation of fully applied constants. Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ -- We provide: Evaluation of arbitrary terms. ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
Correct code in comment
Correct code in comment map-IVT does not exist currently (not sure it ever did, I did not investigate); what we want and does not work is simply map. Hence, fix the comment to clarify it.
Agda
mit
inc-lc/ilc-agda
caab0f0a9ebc53432d697d8dfef61fb6cae09b67
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR (≙-setoid {x = x}) public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning
Prepare for splitting
Equivalence: Prepare for splitting The file has become too big. Splitting the anonymous modules requires more work out of type inference and introduces one type inference failure, which is fixed in this commmit. Old-commit-hash: 32f42f80b60cd3dd45e879d7a367b4fe933bb9d8
Agda
mit
inc-lc/ilc-agda
26feb31d8f07b57839d5ad020a366816d0ae21fb
Parametric/Denotation/Evaluation.agda
Parametric/Denotation/Evaluation.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Syntax.Context Type open import Base.Denotation.Environment Type ⟦_⟧Type open import Base.Denotation.Notation Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure(⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Syntax.Context Type open import Base.Denotation.Environment Type ⟦_⟧Type open import Base.Denotation.Notation Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term
insert missing space (cosmetic)
insert missing space (cosmetic) Old-commit-hash: 4d559497f68fabe2674c6d523508f715c78256c8
Agda
mit
inc-lc/ilc-agda
321249014d14436b6f3f84e01fdeb73f0d5faf7b
crypto-agda.agda
crypto-agda.agda
module crypto-agda where import Cipher.ElGamal.Generic import Composition.Forkable import Composition.Horizontal import Composition.Vertical import Crypto.Schemes --import FiniteField.FinImplem import FunUniverse.Agda import FunUniverse.BinTree import FunUniverse.Bits import FunUniverse.Category import FunUniverse.Category.Op import FunUniverse.Circuit import FunUniverse.Const import FunUniverse.Core import FunUniverse.Cost import FunUniverse.Data import FunUniverse.Defaults.FirstPart --import FunUniverse.ExnArrow import FunUniverse.Fin import FunUniverse.Fin.Op import FunUniverse.Fin.Op.Abstract --import FunUniverse.FlatFunsProd --import FunUniverse.Interface.Bits import FunUniverse.Interface.Two import FunUniverse.Interface.Vec import FunUniverse.Inverse --import FunUniverse.Loop import FunUniverse.Nand import FunUniverse.Nand.Function import FunUniverse.Nand.Properties import FunUniverse.README import FunUniverse.Rewiring.Linear --import FunUniverse.State import FunUniverse.Syntax import FunUniverse.Types import Game.DDH import Game.EntropySmoothing import Game.EntropySmoothing.WithKey import Game.IND-CPA import Game.Transformation.InternalExternal import Language.Simple.Abstract import Language.Simple.Interface import Language.Simple.Two.Mux import Language.Simple.Two.Mux.Normalise import Language.Simple.Two.Nand import README import Solver.AddMax import Solver.Linear --import Solver.Linear.Examples import Solver.Linear.Parser import Solver.Linear.Syntax import adder import alea.cpo import bijection-syntax.Bijection-Fin import bijection-syntax.Bijection import bijection-syntax.README --import circuits.bytecode import circuits.circuit --import elgamal --import sha1
module crypto-agda where import Attack.Compression import Attack.Reencryption import Attack.Reencryption.OneBitMessage import Cipher.ElGamal.Generic import Cipher.ElGamal.Homomorphic import Composition.Forkable import Composition.Horizontal import Composition.Vertical import Crypto.Schemes import FiniteField.FinImplem import FunUniverse.Agda import FunUniverse.BinTree import FunUniverse.Bits import FunUniverse.Category import FunUniverse.Category.Op import FunUniverse.Circuit import FunUniverse.Const import FunUniverse.Core import FunUniverse.Cost import FunUniverse.Data import FunUniverse.Defaults.FirstPart import FunUniverse.ExnArrow import FunUniverse.Fin import FunUniverse.Fin.Op import FunUniverse.Fin.Op.Abstract import FunUniverse.FlatFunsProd import FunUniverse.Interface.Bits import FunUniverse.Interface.Two import FunUniverse.Interface.Vec import FunUniverse.Inverse import FunUniverse.Loop import FunUniverse.Nand import FunUniverse.Nand.Function import FunUniverse.Nand.Properties import FunUniverse.README import FunUniverse.Rewiring.Linear import FunUniverse.State import FunUniverse.Syntax import FunUniverse.Types import Game.DDH import Game.EntropySmoothing import Game.EntropySmoothing.WithKey import Game.IND-CCA import Game.IND-CCA2-dagger import Game.IND-CCA2 import Game.IND-CPA import Game.Transformation.CCA-CPA import Game.Transformation.CCA2-CCA import Game.Transformation.CCA2-CCA2d import Game.Transformation.CCA2d-CCA2 import Game.Transformation.InternalExternal import Language.Simple.Abstract import Language.Simple.Interface import Language.Simple.Two.Mux import Language.Simple.Two.Mux.Normalise import Language.Simple.Two.Nand import README import Solver.AddMax import Solver.Linear import Solver.Linear.Examples import Solver.Linear.Parser import Solver.Linear.Syntax import adder import alea.cpo import bijection-syntax.Bijection-Fin import bijection-syntax.Bijection import bijection-syntax.README import circuits.bytecode import circuits.circuit import elgamal import sha1
update crypto-agda.agda
update crypto-agda.agda
Agda
bsd-3-clause
crypto-agda/crypto-agda
bc0f697e345522fad65844eed07cba984158e3b7
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). {- open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎ -}
Comment out bug-triggering code
Parametric.Change.Validity: Comment out bug-triggering code This code is exported and used elsewhere :-(
Agda
mit
inc-lc/ilc-agda
ac25a046e34905a5fd630275f7f19cf585a2f9ab
ZK/JSChecker.agda
ZK/JSChecker.agda
{-# OPTIONS --without-K #-} module ZK.JSChecker where open import Function using (id; _∘′_; case_of_) open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS open import FFI.JS.Check -- open import FFI.JS.Proc using (URI; JSProc; showURI; server) -- open import Control.Process.Type import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS import FFI.JS.BigI as BigI open BigI using (BigI; bigI) import Crypto.JS.BigI.ZqZp as ZqZp -- TODO dynamise me primality-test-probability-bound : Number primality-test-probability-bound = readNumber "10" -- TODO: check if this is large enough min-bits-q : Number min-bits-q = 256N min-bits-p : Number min-bits-p = 2048N -- TODO check with undefined bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" -- TODO bug (undefined)! record ZK-chaum-pedersen-pok-elgamal-rnd {--(ℤq ℤp★ : Set)--} : Set where field m c s : BigI {--ℤq--} g p q y α β A B : BigI --ℤp★ zk-check-chaum-pedersen-pok-elgamal-rnd! : ZK-chaum-pedersen-pok-elgamal-rnd {-BigI BigI-} → JS! zk-check-chaum-pedersen-pok-elgamal-rnd! pf = trace "g=" g λ _ → trace "p=" I.p λ _ → trace "q=" I.q λ _ → trace "y=" y λ _ → trace "α=" α λ _ → trace "β=" β λ _ → trace "m=" m λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → checks! >> check! "g^s==A·α^c" ((g ^ s) == (A · (α ^ c))) (λ _ → "") >> check! "y^s==B·(β/M)^c" ((y ^ s) == (B · ((β ·/ M) ^ c))) (λ _ → "") module ZK-check-chaum-pedersen-pok-elgamal-rnd where module I = ZK-chaum-pedersen-pok-elgamal-rnd pf params = record { primality-test-probability-bound = primality-test-probability-bound ; min-bits-q = min-bits-q ; min-bits-p = min-bits-p ; qI = I.q ; pI = I.p ; gI = I.g } open module [ℤq]ℤp★ = ZqZp params A = BigI▹ℤp★ I.A B = BigI▹ℤp★ I.B α = BigI▹ℤp★ I.α β = BigI▹ℤp★ I.β y = BigI▹ℤp★ I.y s = BigI▹ℤq I.s c = BigI▹ℤq I.c m = BigI▹ℤq I.m M = g ^ m zk-check! : JSValue → JS! zk-check! arg = check! "type of statement" (typ === fromString cpt) (λ _ → "Expected type of statement: " ++ cpt ++ " not " ++ toString typ) >> zk-check-chaum-pedersen-pok-elgamal-rnd! pok module Zk-check where cpt = "chaum-pedersen-pok-elgamal-rnd" stm = arg ·« "statement" » typ = stm ·« "type" » dat = stm ·« "data" » g = bigdec (dat ·« "g" ») p = bigdec (dat ·« "p" ») q = bigdec (dat ·« "q" ») y = bigdec (dat ·« "y" ») m = bigdec (dat ·« "plain" ») enc = dat ·« "enc" » α = bigdec (enc ·« "alpha" ») β = bigdec (enc ·« "beta" ») prf = arg ·« "proof" » com = prf ·« "commitment" » A = bigdec (com ·« "A" ») B = bigdec (com ·« "B" ») c = bigdec (prf ·« "challenge" ») s = bigdec (prf ·« "response" ») pok = record { g = g; p = p; q = q; y = y; α = α; β = β; A = A; B = B; c = c; s = s; m = m } {- srv : URI → JSProc srv d = recv d λ q → send d (fromBool (zk-check q)) end -} -- Working around Agda.Primitive.lsuc being undefined -- case_of_ : {A : Set} {B : Set} → A → (A → B) → B -- case x of f = f x main : JS! main = Process.argv !₁ λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → Console.log "usage: No arguments" {- server "127.0.0.1" "1337" srv !₁ λ uri → Console.log (showURI uri) -} ; (arg ∷ args'') → case args'' of λ { [] → Console.log ("Reading input file: " ++ arg) >> FS.readFile arg nullJS !₂ λ err dat → check! "reading input file" (is-null err) (λ _ → "readFile error: " ++ toString err) >> zk-check! (JSON-parse (toString dat)) ; _ → Console.log "usage: Too many arguments" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} module ZK.JSChecker where open import Function using (id; _∘′_; case_of_) open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.List.Base using (List; []; _∷_; and; foldr) open import Data.String.Base using (String) open import FFI.JS open import FFI.JS.Check -- open import FFI.JS.Proc using (URI; JSProc; showURI; server) -- open import Control.Process.Type import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS import FFI.JS.BigI as BigI open BigI using (BigI; bigI) import Crypto.JS.BigI.ZqZp as ZqZp -- TODO dynamise me primality-test-probability-bound : Number primality-test-probability-bound = readNumber "10" -- TODO: check if this is large enough min-bits-q : Number min-bits-q = 256N min-bits-p : Number min-bits-p = 2048N bigdec : JSValue → BigI bigdec v = bigI (castString v) "10" -- TODO bug (undefined)! record ZK-chaum-pedersen-pok-elgamal-rnd {--(ℤq ℤp★ : Set)--} : Set where field m c s : BigI {--ℤq--} g p q y α β A B : BigI --ℤp★ zk-check-chaum-pedersen-pok-elgamal-rnd! : ZK-chaum-pedersen-pok-elgamal-rnd {-BigI BigI-} → JS! zk-check-chaum-pedersen-pok-elgamal-rnd! pf = trace "g=" g λ _ → trace "p=" I.p λ _ → trace "q=" I.q λ _ → trace "y=" y λ _ → trace "α=" α λ _ → trace "β=" β λ _ → trace "m=" m λ _ → trace "M=" M λ _ → trace "A=" A λ _ → trace "B=" B λ _ → trace "c=" c λ _ → trace "s=" s λ _ → checks! >> check! "g^s==A·α^c" ((g ^ s) == (A · (α ^ c))) (λ _ → "") >> check! "y^s==B·(β/M)^c" ((y ^ s) == (B · ((β ·/ M) ^ c))) (λ _ → "") module ZK-check-chaum-pedersen-pok-elgamal-rnd where module I = ZK-chaum-pedersen-pok-elgamal-rnd pf params = record { primality-test-probability-bound = primality-test-probability-bound ; min-bits-q = min-bits-q ; min-bits-p = min-bits-p ; qI = I.q ; pI = I.p ; gI = I.g } open module [ℤq]ℤp★ = ZqZp params A = BigI▹ℤp★ I.A B = BigI▹ℤp★ I.B α = BigI▹ℤp★ I.α β = BigI▹ℤp★ I.β y = BigI▹ℤp★ I.y s = BigI▹ℤq I.s c = BigI▹ℤq I.c m = BigI▹ℤq I.m M = g ^ m zk-check! : JSValue → JS! zk-check! arg = check! "type of statement" (typ === fromString cpt) (λ _ → "Expected type of statement: " ++ cpt ++ " not " ++ toString typ) >> zk-check-chaum-pedersen-pok-elgamal-rnd! pok module Zk-check where cpt = "chaum-pedersen-pok-elgamal-rnd" stm = arg ·« "statement" » typ = stm ·« "type" » dat = stm ·« "data" » g = bigdec (dat ·« "g" ») p = bigdec (dat ·« "p" ») q = bigdec (dat ·« "q" ») y = bigdec (dat ·« "y" ») m = bigdec (dat ·« "plain" ») enc = dat ·« "enc" » α = bigdec (enc ·« "alpha" ») β = bigdec (enc ·« "beta" ») prf = arg ·« "proof" » com = prf ·« "commitment" » A = bigdec (com ·« "A" ») B = bigdec (com ·« "B" ») c = bigdec (prf ·« "challenge" ») s = bigdec (prf ·« "response" ») pok = record { g = g; p = p; q = q; y = y; α = α; β = β; A = A; B = B; c = c; s = s; m = m } {- srv : URI → JSProc srv d = recv d λ q → send d (fromBool (zk-check q)) end -} -- Working around Agda.Primitive.lsuc being undefined -- case_of_ : {A : Set} {B : Set} → A → (A → B) → B -- case x of f = f x main : JS! main = Process.argv !₁ λ args → case JSArray▹ListString args of λ { (_node ∷ _run ∷ _test ∷ args') → case args' of λ { [] → Console.log "usage: No arguments" {- server "127.0.0.1" "1337" srv !₁ λ uri → Console.log (showURI uri) -} ; (arg ∷ args'') → case args'' of λ { [] → Console.log ("Reading input file: " ++ arg) >> FS.readFile arg nullJS !₂ λ err dat → check! "reading input file" (is-null err) (λ _ → "readFile error: " ++ toString err) >> zk-check! (JSON-parse (toString dat)) ; _ → Console.log "usage: Too many arguments" } } ; _ → Console.log "usage" } -- -} -- -} -- -} -- -}
Remove no longer relevant TODO
Remove no longer relevant TODO
Agda
bsd-3-clause
crypto-agda/crypto-agda
a6dfe1f553ba79964ad12503ce1a9095fe79ffe2
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) apply : {A B : Set} → (A → B) → List A → List B apply _ ∘ = ∘ apply f (x ∷ xs) = (f x) ∷ (apply f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 7)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Add test
Add test
Agda
mit
louisswarren/hieretikz
51432b971511d6e3b28904b1d33fc55d32888906
lib/Function/Extensionality.agda
lib/Function/Extensionality.agda
{-# OPTIONS --without-K #-} module Function.Extensionality where open import Function.NP open import Relation.Binary.PropositionalEquality.NP -- renaming (subst to tr) happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x happly p x = ap (λ f → f x) p postulate FunExt : Set λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} (f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁ happly-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → happly (λ= fg) ≡ fg λ=-happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → λ= (happly α) ≡ α -- This should be derivable if I had a proper proof of λ= tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p) {f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x) → tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x) !-α-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → ! α ≡ λ= (!_ ∘ happly α) !-α-λ= refl = ! λ=-happly refl !-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → ! (λ= fg) ≡ λ= (!_ ∘ fg) !-λ= fg = !-α-λ= (λ= fg) ∙ ap λ= (λ= (λ x → ap !_ (happly (happly-λ= fg) x)))
{-# OPTIONS --without-K #-} module Function.Extensionality where open import Function.NP open import Relation.Binary.PropositionalEquality.NP -- renaming (subst to tr) happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x happly p x = ap (λ f → f x) p postulate FunExt : Set λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} (f= : ∀ x → f₀ x ≡ f₁ x) → f₀ ≡ f₁ happly-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → happly (λ= fg) ≡ fg λ=-happly : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → λ= (happly α) ≡ α -- This should be derivable if I had a proper proof of λ= tr-λ= : ∀ {a b p}{A : Set a}{B : A → Set b}{x}(P : B x → Set p) {f g : (x : A) → B x}{{fe : FunExt}}(fg : (x : A) → f x ≡ g x) → tr (λ f → P (f x)) (λ= fg) ≡ tr P (fg x) !-α-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (α : f ≡ g) → ! α ≡ λ= (!_ ∘ happly α) !-α-λ= refl = ! λ=-happly refl !-λ= : ∀ {a b}{A : Set a}{B : A → Set b}{f g : (x : A) → B x}{{fe : FunExt}} (fg : ∀ x → f x ≡ g x) → ! (λ= fg) ≡ λ= (!_ ∘ fg) !-λ= fg = !-α-λ= (λ= fg) ∙ ap λ= (λ= (λ x → ap !_ (happly (happly-λ= fg) x))) module _ {a b}{A : Set a}{B : A → Set b}{f₀ f₁ : (x : A) → B x}{{fe : FunExt}} where λ=ⁱ : (f= : ∀ {x} → f₀ x ≡ f₁ x) → f₀ ≡ f₁ λ=ⁱ f= = λ= λ x → f= {x}
add a version with implicit arguments
FunExt: add a version with implicit arguments
Agda
bsd-3-clause
crypto-agda/agda-nplib
702fcd37b6983eaf128ea29fca185751c2444c69
lib/Relation/Binary/Permutation.agda
lib/Relation/Binary/Permutation.agda
--TODO {-# OPTIONS --without-K #-} module Relation.Binary.Permutation where open import Level open import Data.Product.NP open import Data.Zero open import Data.One open import Data.Sum open import Data.List open import Relation.Nullary open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_;_≢_) private _⇔_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (R₁ : REL A B ℓ₁) (R₂ : REL A B ℓ₂) → Set _ R₁ ⇔ R₂ = R₁ ⇒ R₂ × R₂ ⇒ R₁ infix 2 _⇔_ ⟨_,_⟩∈_ : ∀ {ℓ a b} {A : Set a} {B : Set b} (x : A) (y : B) → REL A B ℓ → Set ℓ ⟨_,_⟩∈_ x y R = R x y data _[_↔_] {a} {A : Set a} (R : Rel A a) (x y : A) : Rel A a where here₁ : ∀ {j} (yRj : ⟨ y , j ⟩∈ R ) → ---------------------- ⟨ x , j ⟩∈ R [ x ↔ y ] here₂ : ∀ {j} (xRj : ⟨ x , j ⟩∈ R ) → ---------------------- ⟨ y , j ⟩∈ R [ x ↔ y ] there : ∀ {i j} (x≢i : x ≢ i ) (y≢i : y ≢ i ) (iRj : ⟨ i , j ⟩∈ R ) → ----------------------- ⟨ i , j ⟩∈ R [ x ↔ y ] module PermComm {a} {A : Set a} {R : Rel A a} where ⟹ : ∀ {x y} → R [ x ↔ y ] ⇒ R [ y ↔ x ] ⟹ (here₁ yRj) = here₂ yRj ⟹ (here₂ xRj) = here₁ xRj ⟹ (there x≢i x≢j iRj) = there x≢j x≢i iRj lem : ∀ {x y} → R [ x ↔ y ] ⇔ R [ y ↔ x ] lem = (λ {_} → ⟹) , (λ {_} → ⟹) module PermIdem {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) {x y : A} {R : Rel A a} where ⇐ : ∀ {x y} → R [ x ↔ y ] [ x ↔ y ] ⇒ R ⇐ (here₁ (here₁ yRj)) = yRj ⇐ (here₁ (here₂ xRj)) = xRj ⇐ (here₁ (there _ y≢y _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (here₂ (here₁ yRj)) = yRj ⇐ (here₂ (here₂ xRj)) = xRj ⇐ (here₂ (there x≢x _ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there x≢x _ (here₁ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there _ y≢y (here₂ _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (there _ _ (there _ _ iRj)) = iRj ⟹ : R ⇒ R [ x ↔ y ] [ x ↔ y ] ⟹ {i} {j} R with x ≟ i | y ≟ i ... | yes x≡i | _ rewrite x≡i = here₁ (here₂ R) ... | _ | yes y≡i rewrite y≡i = here₂ (here₁ R) ... | no x≢i | no y≢i = there x≢i y≢i (there x≢i y≢i R) lem : R ⇔ R [ x ↔ y ] [ x ↔ y ] lem = (λ {_} → ⟹) , λ {_} → ⇐ Permutation : ∀ {a} → Set a → Set a Permutation A = List (A × A) permRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a → Rel A a permRel π R = foldr (λ p r → r [ fst p ↔ snd p ]) R π toRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a toRel π = permRel π (λ _ _ → Lift 𝟙) {- _⟨$⟩₁_ : ∀ {a} {A : Set a} → Permutation A → A → Maybe A [] ⟨$⟩₁ y = nothing (x ∷ xs) ⟨$⟩₁ y = if ⌊ x ≟A y ⌋ then ? else -}
--TODO {-# OPTIONS --without-K #-} module Relation.Binary.Permutation where open import Level open import Data.Product.NP open import Data.Zero open import Data.One open import Data.Sum open import Data.List open import Relation.Nullary open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_;_≢_) private _⇔_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (R₁ : REL A B ℓ₁) (R₂ : REL A B ℓ₂) → Set _ R₁ ⇔ R₂ = R₁ ⇒ R₂ × R₂ ⇒ R₁ infix 2 _⇔_ ⟨_,_⟩∈_ : ∀ {ℓ a b} {A : Set a} {B : Set b} (x : A) (y : B) → REL A B ℓ → Set ℓ ⟨_,_⟩∈_ x y R = R x y data _[_↔_] {a} {A : Set a} (R : Rel A a) (x y : A) : Rel A a where here₁ : ∀ {j} (yRj : ⟨ y , j ⟩∈ R ) → ---------------------- ⟨ x , j ⟩∈ R [ x ↔ y ] here₂ : ∀ {j} (xRj : ⟨ x , j ⟩∈ R ) → ---------------------- ⟨ y , j ⟩∈ R [ x ↔ y ] there : ∀ {i j} (x≢i : x ≢ i ) (y≢i : y ≢ i ) (iRj : ⟨ i , j ⟩∈ R ) → ----------------------- ⟨ i , j ⟩∈ R [ x ↔ y ] module PermComm {a} {A : Set a} {R : Rel A a} where ⟹ : ∀ {x y} → R [ x ↔ y ] ⇒ R [ y ↔ x ] ⟹ (here₁ yRj) = here₂ yRj ⟹ (here₂ xRj) = here₁ xRj ⟹ (there x≢i x≢j iRj) = there x≢j x≢i iRj lem : ∀ {x y} → R [ x ↔ y ] ⇔ R [ y ↔ x ] lem = (λ {_} → ⟹) , (λ {_} → ⟹) module PermIdem {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) {R : Rel A a} where ⇐ : ∀ {x y} → R [ x ↔ y ] [ x ↔ y ] ⇒ R ⇐ (here₁ (here₁ yRj)) = yRj ⇐ (here₁ (here₂ xRj)) = xRj ⇐ (here₁ (there _ y≢y _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (here₂ (here₁ yRj)) = yRj ⇐ (here₂ (here₂ xRj)) = xRj ⇐ (here₂ (there x≢x _ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there x≢x _ (here₁ _)) = 𝟘-elim (x≢x ≡.refl) ⇐ (there _ y≢y (here₂ _)) = 𝟘-elim (y≢y ≡.refl) ⇐ (there _ _ (there _ _ iRj)) = iRj ⟹ : ∀ {x y} → R ⇒ R [ x ↔ y ] [ x ↔ y ] ⟹ {x} {y} {i} {j} R with x ≟ i | y ≟ i ... | yes x≡i | _ rewrite x≡i = here₁ (here₂ R) ... | _ | yes y≡i rewrite y≡i = here₂ (here₁ R) ... | no x≢i | no y≢i = there x≢i y≢i (there x≢i y≢i R) lem : ∀ {x y} → R ⇔ R [ x ↔ y ] [ x ↔ y ] lem = (λ {_} → ⟹) , λ {_} → ⇐ Permutation : ∀ {a} → Set a → Set a Permutation A = List (A × A) permRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a → Rel A a permRel π R = foldr (λ p r → r [ fst p ↔ snd p ]) R π toRel : ∀ {a} {A : Set a} → (π : Permutation A) → Rel A a toRel π = permRel π (λ _ _ → Lift 𝟙) {- _⟨$⟩₁_ : ∀ {a} {A : Set a} → Permutation A → A → Maybe A [] ⟨$⟩₁ y = nothing (x ∷ xs) ⟨$⟩₁ y = if ⌊ x ≟A y ⌋ then ? else -}
Fix in Relation.Binary.Permutation
Fix in Relation.Binary.Permutation
Agda
bsd-3-clause
crypto-agda/agda-nplib
3822d110c060a75d914e9d0e4fc105f00e99980a
Syntax/Language/Atlas.agda
Syntax/Language/Atlas.agda
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- The binary operator with which all base-type values -- form a group union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = app (app (const xor) s) t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- The binary operator such that -- union t t ≡ t -- To implement union, we need for each non-map base-type -- an operator such that `op v v = v` on all values `v`. -- for Booleans, conjunction is good enough. -- -- TODO (later): support conjunction, probably by Boolean -- elimination form if-then-else postulate and! : ∀ {Γ} → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = and! s t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
fix bug in `union` by postulating conjunction
Atlas: fix bug in `union` by postulating conjunction Old-commit-hash: 69ed9a83b2b162709e5dfcf541f9d0bf18c7e970
Agda
mit
inc-lc/ilc-agda
080a08a480530a0bfbe7ee42fb486407caea4a5e
Parametric/Change/Equivalence.agda
Parametric/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Equivalence {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {ℓ} {A} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. That should be true for functions -- using changes parametrically, for derivatives and function changes, and -- for functions using only the interface to changes (including the fact -- that function changes are functions). Stating the general result, though, -- seems hard, we should rather have lemmas proving that certain classes of -- functions respect this equivalence.
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Parametric.Change.Equivalence where open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit -- Extension Point: None (currently). Do we need to allow plugins to customize -- this concept? Structure : Set Structure = Unit module Structure (unused : Structure) where module _ {ℓ} {A} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. That should be true for functions -- using changes parametrically, for derivatives and function changes, and -- for functions using only the interface to changes (including the fact -- that function changes are functions). Stating the general result, though, -- seems hard, we should rather have lemmas proving that certain classes of -- functions respect this equivalence.
Remove extra imports
Remove extra imports Old-commit-hash: 3a9775f6afd97585f6b425390b5431b43807b03e
Agda
mit
inc-lc/ilc-agda
3409935502fb668aa913b86adee0b90b81efb211
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
data Bool : Set where true : Bool false : Bool _∨_ : Bool → Bool → Bool true ∨ _ = true false ∨ b = b _∧_ : Bool → Bool → Bool false ∧ _ = false true ∧ b = b ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _==_ : ℕ → ℕ → Bool zero == zero = true suc n == suc m = n == m _ == _ = false ---------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ [_] : {A : Set} → A → List A [ x ] = x ∷ [] any : {A : Set} → (A → Bool) → List A → Bool any _ [] = false any f (x ∷ xs) = (f x) ∨ (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ [] = false x ∈ (y ∷ ys) with x == y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q == s (p ⇒ q) ≡≡ (r ⇒ s) = (p == r) ∧ (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ [] = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure [] found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs []) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs ([ n ]))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ [] ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ [] cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷ (model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷ (model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷ (model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷ (model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ [] testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1))
Use standard syntax
Use standard syntax
Agda
mit
louisswarren/hieretikz
20a1abbafdf38b144be117be78c688be2786fbee
Neglible.agda
Neglible.agda
{-# OPTIONS --copatterns #-} open import Algebra open import Function open import Data.Nat.NP open import Data.Nat.Distance open import Data.Nat.Properties open import Data.Two open import Data.Zero open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Explore.Core open import Explore.Universe.Type {𝟘} open import Explore.Universe.Base module Neglible where module prop = CommutativeSemiring commutativeSemiring module OR = Poset (DecTotalOrder.poset decTotalOrder) ≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n ≤-*-cancel {suc x} {m} {n} (s≤s le) mn rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn record ℕ→ℚ : Set where constructor _/_[_] field εN : (n : ℕ) → ℕ εD : (n : ℕ) → ℕ εD-pos : ∀ n → εD n > 0 record Is-Neg (ε : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ ε field cₙ : (c : ℕ) → ℕ prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n open Is-Neg 0ℕℚ : ℕ→ℚ ℕ→ℚ.εN 0ℕℚ _ = 0 ℕ→ℚ.εD 0ℕℚ _ = 1 ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n 0ℕℚ-neg : Is-Neg 0ℕℚ cₙ 0ℕℚ-neg _ = 0 prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n _+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n +ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ) cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma where open ≤-Reasoning open ℕ→ℚ εM open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos) lemma = n * (n ^ c * (εN n * μD n + μN n * εD n)) ≡⟨ ! prop.*-assoc n (n ^ c) _ ∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n) ∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n)) (! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩ n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n ≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎)) +-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩ εD n * μD n + μD n * εD n ≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩ 2 * (εD n * μD n) ≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩ n * (εD n * μD n) ∎ module _ (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ε : ℕ→ℚ open ℕ→ℚ ε field ε-neg : Is-Neg ε bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k ~-trans : Transitive _~_ _~_.ε (~-trans x x₁) = _ _~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁) _~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k = (b * d) * dist #f #h ≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩ (b * d) * (dist #f #g + dist #g #h) ≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h) ∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl ∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h)) ⟩ d * (b * dist #f #g) + b * (d * dist #g #h) ≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩ d * (|R| * a) + b * (|R| * c) ≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩ |R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k ∎ where open ≤-Reasoning rot : ∀ x y z → x * (y * z) ≡ y * (z * x) rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) a = ℕ→ℚ.εN ε₀ k b = ℕ→ℚ.εD ε₀ k c = ℕ→ℚ.εN ε₁ k d = ℕ→ℚ.εD ε₁ k -- -} -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --copatterns #-} open import Algebra open import Function open import Data.Nat.NP open import Data.Nat.Distance open import Data.Nat.Properties open import Data.Two open import Data.Zero open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Explore.Core open import Explore.Universe.Type {𝟘} open import Explore.Universe.Base module Neglible where module prop = CommutativeSemiring commutativeSemiring module OR = Poset (DecTotalOrder.poset decTotalOrder) ≤-*-cancel : ∀ {x m n} → 1 ≤ x → x * m ≤ x * n → m ≤ n ≤-*-cancel {suc x} {m} {n} (s≤s le) mn rewrite prop.*-comm (suc x) m | prop.*-comm (suc x) n = cancel-*-right-≤ _ _ _ mn record ℕ→ℚ : Set where constructor _/_[_] field εN : (n : ℕ) → ℕ εD : (n : ℕ) → ℕ εD-pos : ∀ n → εD n > 0 record Is-Neg (ε : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ ε field cₙ : (c : ℕ) → ℕ prf : ∀(c n : ℕ) → n > cₙ n → n ^ c * εN n ≤ εD n open Is-Neg 0ℕℚ : ℕ→ℚ ℕ→ℚ.εN 0ℕℚ _ = 0 ℕ→ℚ.εD 0ℕℚ _ = 1 ℕ→ℚ.εD-pos 0ℕℚ _ = s≤s z≤n 0ℕℚ-neg : Is-Neg 0ℕℚ cₙ 0ℕℚ-neg _ = 0 prf 0ℕℚ-neg c n x = OR.trans (OR.reflexive (proj₂ prop.zero (n ^ c))) z≤n _+ℕℚ_ : ℕ→ℚ → ℕ→ℚ → ℕ→ℚ ℕ→ℚ.εN ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εN n * μD n + μN n * εD n ℕ→ℚ.εD ((εN / εD [ _ ]) +ℕℚ (μN / μD [ _ ])) n = εD n * μD n ℕ→ℚ.εD-pos ((εN / εD [ εD+ ]) +ℕℚ (μN / μD [ μD+ ])) n = εD+ n *-mono μD+ n +ℕℚ-neg : {ε μ : ℕ→ℚ} → Is-Neg ε → Is-Neg μ → Is-Neg (ε +ℕℚ μ) cₙ (+ℕℚ-neg ε μ) n = 1 + cₙ ε n + cₙ μ n prf (+ℕℚ-neg {εM} {μM} ε μ) c n n>nc = ≤-*-cancel {x = n} (OR.trans (s≤s z≤n) n>nc) lemma where open ≤-Reasoning open ℕ→ℚ εM open ℕ→ℚ μM renaming (εN to μN; εD to μD; εD-pos to μD-pos) lemma = n * (n ^ c * (εN n * μD n + μN n * εD n)) ≡⟨ ! prop.*-assoc n (n ^ c) _ ∙ proj₁ prop.distrib (n ^ (1 + c)) (εN n * μD n) (μN n * εD n) ∙ ap₂ _+_ (! prop.*-assoc (n ^ (1 + c)) (εN n) (μD n)) (! (prop.*-assoc (n ^ (1 + c)) (μN n) (εD n))) ⟩ n ^ (1 + c) * εN n * μD n + n ^ (1 + c) * μN n * εD n ≤⟨ (prf ε (1 + c) n (OR.trans (s≤s (≤-step (m≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (μD n ∎)) +-mono (prf μ (1 + c) n (OR.trans (s≤s (≤-step (n≤m+n (cₙ ε n) (cₙ μ n)))) n>nc) *-mono (εD n ∎)) ⟩ εD n * μD n + μD n * εD n ≡⟨ ap₂ _+_ (refl {x = εD n * μD n}) (prop.*-comm (μD n) (εD n) ∙ ! proj₂ prop.+-identity (εD n * μD n)) ⟩ 2 * (εD n * μD n) ≤⟨ OR.trans (s≤s (s≤s z≤n)) n>nc *-mono (εD n * μD n ∎) ⟩ n * (εD n * μD n) ∎ infix 4 _≤→_ record _≤→_ (f g : ℕ→ℚ) : Set where constructor mk open ℕ→ℚ f renaming (εN to fN; εD to fD) open ℕ→ℚ g renaming (εN to gN; εD to gD) field -- fN k / fD k ≤ gN k / gD k ≤→ : ∀ k → fN k * gD k ≤ gN k * fD k ≤→-trans : ∀ {f g h} → f ≤→ g → g ≤→ h → f ≤→ h _≤→_.≤→ (≤→-trans {fN / fD [ fD-pos ]} {gN / gD [ gD-pos ]} {hN / hD [ hD-pos ]} (mk fg) (mk gh)) k = ≤-*-cancel (gD-pos k) lemma where open ≤-Reasoning lemma : gD k * (fN k * hD k) ≤ gD k * (hN k * fD k) lemma = gD k * (fN k * hD k) ≡⟨ ! prop.*-assoc (gD k) (fN k) (hD k) ∙ ap (flip _*_ (hD k)) (prop.*-comm (gD k) (fN k)) ⟩ (fN k * gD k) * hD k ≤⟨ fg k *-mono OR.refl ⟩ (gN k * fD k) * hD k ≡⟨ prop.*-assoc (gN k) (fD k) (hD k) ∙ ap (_*_ (gN k)) (prop.*-comm (fD k) (hD k)) ∙ ! prop.*-assoc (gN k) (hD k) (fD k) ⟩ (gN k * hD k) * fD k ≤⟨ gh k *-mono OR.refl ⟩ (hN k * gD k) * fD k ≡⟨ ap (flip _*_ (fD k)) (prop.*-comm (hN k) (gD k)) ∙ prop.*-assoc (gD k) (hN k) (fD k) ⟩ gD k * (hN k * fD k) ∎ +ℕℚ-mono : ∀ {f f' g g'} → f ≤→ f' → g ≤→ g' → f +ℕℚ g ≤→ f' +ℕℚ g' _≤→_.≤→ (+ℕℚ-mono {fN / fD [ _ ]} {f'N / f'D [ _ ]} {gN / gD [ _ ]} {g'N / g'D [ _ ]} (mk ff) (mk gg)) k = (fN k * gD k + gN k * fD k) * (f'D k * g'D k) ≡⟨ proj₂ prop.distrib (f'D k * g'D k) (fN k * gD k) (gN k * fD k) ⟩ fN k * gD k * (f'D k * g'D k) + gN k * fD k * (f'D k * g'D k) ≡⟨ ap₂ _+_ (*-interchange (fN k) (gD k) (f'D k) (g'D k) ∙ ap (_*_ (fN k * f'D k)) (prop.*-comm (gD k) (g'D k))) (ap (_*_ (gN k * fD k)) (prop.*-comm (f'D k) (g'D k)) ∙ *-interchange (gN k) (fD k) (g'D k) (f'D k)) ⟩ fN k * f'D k * (g'D k * gD k) + gN k * g'D k * (fD k * f'D k) ≤⟨ (ff k *-mono OR.refl) +-mono (gg k *-mono OR.refl) ⟩ f'N k * fD k * (g'D k * gD k) + g'N k * gD k * (fD k * f'D k) ≡⟨ ap₂ _+_ (*-interchange (f'N k) (fD k) (g'D k) (gD k)) (ap (_*_ (g'N k * gD k)) (prop.*-comm (fD k) (f'D k)) ∙ *-interchange (g'N k) (gD k) (f'D k) (fD k) ∙ ap (_*_ (g'N k * f'D k)) (prop.*-comm (gD k) (fD k))) ⟩ f'N k * g'D k * (fD k * gD k) + g'N k * f'D k * (fD k * gD k) ≡⟨ ! proj₂ prop.distrib (fD k * gD k) (f'N k * g'D k) (g'N k * f'D k) ⟩ (f'N k * g'D k + g'N k * f'D k) * (fD k * gD k) ∎ where open ≤-Reasoning record NegBounded (f : ℕ→ℚ) : Set where constructor mk field ε : ℕ→ℚ ε-neg : Is-Neg ε bounded : f ≤→ ε module _ where open NegBounded ≤-NB : {f g : ℕ→ℚ} → f ≤→ g → NegBounded g → NegBounded f ε (≤-NB le nb) = ε nb ε-neg (≤-NB le nb) = ε-neg nb bounded (≤-NB le nb) = ≤→-trans le (bounded nb) _+NB_ : {f g : ℕ→ℚ} → NegBounded f → NegBounded g → NegBounded (f +ℕℚ g) ε (fNB +NB gNB) = ε fNB +ℕℚ ε gNB ε-neg (fNB +NB gNB) = +ℕℚ-neg (ε-neg fNB) (ε-neg gNB) bounded (fNB +NB gNB) = +ℕℚ-mono (bounded fNB) (bounded gNB) module ~-NegBounded (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n))(inh : ∀ x → 0 < Card (Rᵁ x)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) ~dist : (f g : (x : ℕ) → R x → 𝟚) → ℕ→ℚ ℕ→ℚ.εN (~dist f g) n = dist (# (f n)) (# (g n)) ℕ→ℚ.εD (~dist f g) n = Card (Rᵁ n) ℕ→ℚ.εD-pos (~dist f g) n = inh n ~dist-sum : ∀ f g h → ~dist f h ≤→ ~dist f g +ℕℚ ~dist g h _≤→_.≤→ (~dist-sum f g h) k = #fh * (|R| * |R|) ≤⟨ dist-sum #f #g #h *-mono OR.refl ⟩ (#fg + #gh) * (|R| * |R|) ≡⟨ ! prop.*-assoc (#fg + #gh) |R| |R| ∙ ap (flip _*_ |R|) (proj₂ prop.distrib |R| #fg #gh) ⟩ (#fg * |R| + #gh * |R|) * |R| ∎ where open ≤-Reasoning |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) #fh = dist #f #h #fg = dist #f #g #gh = dist #g #h record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ~ : NegBounded (~dist f g) ~-trans : Transitive _~_ _~_.~ (~-trans {f}{g}{h} (mk fg) (mk gh)) = ≤-NB (~dist-sum f g h) (fg +NB gh) module ~-Inlined (Rᵁ : ℕ → U)(let R = λ n → El (Rᵁ n)) where # : ∀ {n} → Count (R n) # {n} = count (Rᵁ n) record _~_ (f g : (x : ℕ) → R x → 𝟚) : Set where constructor mk field ε : ℕ→ℚ open ℕ→ℚ ε field ε-neg : Is-Neg ε bounded : ∀ k → εD k * dist (# (f k)) (# (g k)) ≤ Card (Rᵁ k) * εN k ~-trans : Transitive _~_ _~_.ε (~-trans x x₁) = _ _~_.ε-neg (~-trans x x₁) = +ℕℚ-neg (_~_.ε-neg x) (_~_.ε-neg x₁) _~_.bounded (~-trans {f}{g}{h}(mk ε₀ ε₀-neg fg) (mk ε₁ ε₁-neg gh)) k = (b * d) * dist #f #h ≤⟨ (b * d ∎) *-mono dist-sum #f #g #h ⟩ (b * d) * (dist #f #g + dist #g #h) ≡⟨ proj₁ prop.distrib (b * d) (dist #f #g) (dist #g #h) ∙ ap₂ _+_ (ap₂ _*_ (prop.*-comm b d) refl ∙ prop.*-assoc d b (dist #f #g)) (prop.*-assoc b d (dist #g #h)) ⟩ d * (b * dist #f #g) + b * (d * dist #g #h) ≤⟨ ((d ∎) *-mono fg k) +-mono ((b ∎) *-mono gh k) ⟩ d * (|R| * a) + b * (|R| * c) ≡⟨ ap₂ _+_ (rot d |R| a) (rot b |R| c) ∙ ! proj₁ prop.distrib |R| (a * d) (c * b) ⟩ |R| * ℕ→ℚ.εN (ε₀ +ℕℚ ε₁) k ∎ where open ≤-Reasoning rot : ∀ x y z → x * (y * z) ≡ y * (z * x) rot x y z = prop.*-comm x (y * z) ∙ prop.*-assoc y z x |R| = Card (Rᵁ k) #f = # (f k) #g = # (g k) #h = # (h k) a = ℕ→ℚ.εN ε₀ k b = ℕ→ℚ.εD ε₀ k c = ℕ→ℚ.εN ε₁ k d = ℕ→ℚ.εD ε₁ k -- -} -- -} -- -} -- -} -- -} -- -}
Update to Neglible
Update to Neglible
Agda
bsd-3-clause
crypto-agda/crypto-agda
f7a0824e23aa553c512f0fbff1879941ee29f6d0
lib/FFI/JS.agda
lib/FFI/JS.agda
module FFI.JS where open import Data.Empty public renaming (⊥ to 𝟘) open import Data.Unit.Base public renaming (⊤ to 𝟙) open import Data.Char.Base public using (Char) open import Data.String.Base public using (String) open import Data.Bool.Base public using (Bool; true; false) open import Data.List.Base using (List; []; _∷_) open import Data.Product using (_×_) renaming (proj₁ to fst; proj₂ to snd) open import Function using (id; _∘_) open import Control.Process.Type {-# COMPILED_JS Bool function (x,v) { return ((x)? v["true"]() : v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-} postulate Number : Set JSArray : Set → Set JSObject : Set JSValue : Set postulate readNumber : String → Number {-# COMPILED_JS readNumber Number #-} postulate 0N : Number {-# COMPILED_JS 0N 0 #-} postulate 1N : Number {-# COMPILED_JS 1N 1 #-} postulate 2N : Number {-# COMPILED_JS 2N 2 #-} postulate 4N : Number {-# COMPILED_JS 4N 4 #-} postulate 8N : Number {-# COMPILED_JS 8N 8 #-} postulate 16N : Number {-# COMPILED_JS 16N 16 #-} postulate 32N : Number {-# COMPILED_JS 32N 32 #-} postulate 64N : Number {-# COMPILED_JS 64N 64 #-} postulate 128N : Number {-# COMPILED_JS 128N 128 #-} postulate 256N : Number {-# COMPILED_JS 256N 256 #-} postulate 512N : Number {-# COMPILED_JS 512N 512 #-} postulate 1024N : Number {-# COMPILED_JS 1024N 1024 #-} postulate 2048N : Number {-# COMPILED_JS 2048N 2048 #-} postulate 4096N : Number {-# COMPILED_JS 4096N 4096 #-} postulate _+_ : Number → Number → Number {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} postulate _−_ : Number → Number → Number {-# COMPILED_JS _−_ function(x) { return function(y) { return x - y; }; } #-} postulate _*_ : Number → Number → Number {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} postulate _/_ : Number → Number → Number {-# COMPILED_JS _/_ function(x) { return function(y) { return x / y; }; } #-} infixr 5 _++_ postulate _++_ : String → String → String {-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-} postulate _+JS_ : JSValue → JSValue → JSValue {-# COMPILED_JS _+JS_ function(x) { return function(y) { return x + y; }; } #-} postulate _≤JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≤JS_ function(x) { return function(y) { return x <= y; }; } #-} postulate _<JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _<JS_ function(x) { return function(y) { return x < y; }; } #-} postulate _>JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _>JS_ function(x) { return function(y) { return x > y; }; } #-} postulate _≥JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≥JS_ function(x) { return function(y) { return x >= y; }; } #-} postulate _===_ : JSValue → JSValue → Bool {-# COMPILED_JS _===_ function(x) { return function(y) { return x === y; }; } #-} postulate reverse : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS reverse function(ty) { return function(x) { return x.reverse(); }; } #-} postulate sort : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS sort function(ty) { return function(x) { return x.sort(); }; } #-} postulate split : (sep target : String) → JSArray String {-# COMPILED_JS split function(sep) { return function(target) { return target.split(sep); }; } #-} postulate join : (sep : String)(target : JSArray String) → String {-# COMPILED_JS join function(sep) { return function(target) { return target.join(sep); }; } #-} postulate fromList : {A B : Set}(xs : List A)(fromElt : A → B) → JSArray B {-# COMPILED_JS fromList require("libagda").fromList #-} postulate length : String → Number {-# COMPILED_JS length function(s) { return s.length; } #-} postulate JSON-stringify : JSValue → String {-# COMPILED_JS JSON-stringify JSON.stringify #-} postulate JSON-parse : String → JSValue {-# COMPILED_JS JSON-parse JSON.parse #-} postulate toString : JSValue → String {-# COMPILED_JS toString function(x) { return x.toString(); } #-} postulate fromBool : Bool → JSValue {-# COMPILED_JS fromBool function(x) { return x; } #-} postulate fromString : String → JSValue {-# COMPILED_JS fromString function(x) { return x; } #-} postulate fromChar : Char → JSValue {-# COMPILED_JS fromChar String #-} postulate Char▹String : Char → String {-# COMPILED_JS Char▹String String #-} postulate fromNumber : Number → JSValue {-# COMPILED_JS fromNumber function(x) { return x; } #-} postulate fromJSArray : {A : Set} → JSArray A → JSValue {-# COMPILED_JS fromJSArray function(ty) { return function(x) { return x; }; } #-} postulate fromJSObject : JSObject → JSValue {-# COMPILED_JS fromJSObject function(x) { return x; } #-} postulate objectFromList : {A : Set}(xs : List A)(fromKey : A → String)(fromVal : A → JSValue) → JSObject {-# COMPILED_JS objectFromList require("libagda").objectFromList #-} postulate decodeJSArray : {A B : Set}(arr : JSArray A)(fromElt : Number → A → B) → List B {-# COMPILED_JS decodeJSArray require("libagda").decodeJSArray #-} postulate castNumber : JSValue → Number {-# COMPILED_JS castNumber Number #-} postulate castString : JSValue → String {-# COMPILED_JS castString String #-} -- TODO dyn check of length 1? postulate castChar : JSValue → Char {-# COMPILED_JS castChar String #-} -- TODO dyn check of length 1? postulate String▹Char : String → Char {-# COMPILED_JS String▹Char String #-} -- TODO dyn check? postulate castJSArray : JSValue → JSArray JSValue {-# COMPILED_JS castJSArray function(x) { return x; } #-} -- TODO dyn check? postulate castJSObject : JSValue → JSObject {-# COMPILED_JS castJSObject function(x) { return x; } #-} postulate nullJS : JSValue {-# COMPILED_JS nullJS null #-} postulate _·[_] : JSValue → JSValue → JSValue {-# COMPILED_JS _·[_] require("libagda").readProp #-} postulate _Array[_] : {A : Set} → JSArray A → Number → A {-# COMPILED_JS _Array[_] function(ty) { return require("libagda").readProp; } #-} postulate onJSArray : {A : Set} (f : JSArray JSValue → A) → JSValue → A {-# COMPILED_JS onJSArray require("libagda").onJSArray #-} postulate onString : {A : Set} (f : String → A) → JSValue → A {-# COMPILED_JS onString require("libagda").onString #-} -- Writes 'msg' and 'inp' to the console and then returns `f inp` postulate trace : {A B : Set}(msg : String)(inp : A)(f : A → B) → B {-# COMPILED_JS trace require("libagda").trace #-} postulate throw : {A : Set} → String → A → A {-# COMPILED_JS throw require("libagda").throw #-} data Value : Set₀ where array : List Value → Value object : List (String × Value) → Value string : String → Value number : Number → Value bool : Bool → Value null : Value Object = List (String × JSValue) postulate fromValue : Value → JSValue {-# COMPILED_JS fromValue require("libagda").fromValue #-} -- TODO we could make it a COMPILED type and remove the encoding by using JSValue as the internal repr. data ValueView : Set₀ where array : JSArray JSValue → ValueView object : JSObject → ValueView string : String → ValueView number : Number → ValueView bool : Bool → ValueView null : ValueView -- TODO not yet tested postulate viewJSValue : JSValue → ValueView {-# COMPILED_JS viewJSValue require("libagda").viewJSValue #-} Bool▹String : Bool → String Bool▹String true = "true" Bool▹String false = "false" List▹String : List Char → String List▹String xs = join "" (fromList xs Char▹String) String▹List : String → List Char String▹List s = decodeJSArray (split "" s) (λ _ → String▹Char) Number▹String : Number → String Number▹String = castString ∘ fromNumber JSArray▹ListString : {A : Set} → JSArray A → List A JSArray▹ListString a = decodeJSArray a (λ _ → id) fromObject : Object → JSObject fromObject o = objectFromList o fst snd _≤Char_ : Char → Char → Bool x ≤Char y = fromChar x ≤JS fromChar y _<Char_ : Char → Char → Bool x <Char y = fromChar x <JS fromChar y _>Char_ : Char → Char → Bool x >Char y = fromChar x >JS fromChar y _≥Char_ : Char → Char → Bool x ≥Char y = fromChar x ≥JS fromChar y _≤String_ : String → String → Bool x ≤String y = fromString x ≤JS fromString y _<String_ : String → String → Bool x <String y = fromString x <JS fromString y _>String_ : String → String → Bool x >String y = fromString x >JS fromString y _≥String_ : String → String → Bool x ≥String y = fromString x ≥JS fromString y _≤Number_ : Number → Number → Bool x ≤Number y = fromNumber x ≤JS fromNumber y _<Number_ : Number → Number → Bool x <Number y = fromNumber x <JS fromNumber y _>Number_ : Number → Number → Bool x >Number y = fromNumber x >JS fromNumber y _≥Number_ : Number → Number → Bool x ≥Number y = fromNumber x ≥JS fromNumber y _·«_» : JSValue → String → JSValue v ·« s » = v ·[ fromString s ] _·«_»A : JSValue → String → JSArray JSValue v ·« s »A = castJSArray (v ·« s ») trace-call : {A B : Set} → String → (A → B) → A → B trace-call s f x = trace s (f x) id postulate JSCmd : Set → Set Callback1 : Set → Set Callback1 A = JSCmd ((A → 𝟘) → 𝟘) Callback0 : Set Callback0 = Callback1 𝟙 Callback2 : Set → Set → Set Callback2 A B = JSCmd ((A → B → 𝟘) → 𝟘) postulate assert : Bool → Callback0 {-# COMPILED_JS assert require("libagda").assert #-} check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A check true errmsg x = x check false errmsg x = throw (errmsg _) x warn-check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A warn-check true errmsg x = x warn-check false errmsg x = trace ("Warning: " ++ errmsg _) x id infixr 0 _>>_ _!₁_ _!₂_ data JS! : Set₁ where end : JS! _!₁_ : {A : Set}(cmd : Callback1 A)(cb : A → JS!) → JS! _!₂_ : {A B : Set}(cmd : JSCmd ((A → B → 𝟘) → 𝟘))(cb : A → B → JS!) → JS! _>>_ : Callback0 → JS! → JS! cmd >> cont = cmd !₁ λ _ → cont -- -} -- -} -- -} -- -} -- -}
module FFI.JS where open import Data.Empty public renaming (⊥ to 𝟘) open import Data.Unit.Base public renaming (⊤ to 𝟙) open import Data.Char.Base public using (Char) open import Data.String.Base public using (String) open import Data.Bool.Base public using (Bool; true; false) open import Data.List.Base using (List; []; _∷_) open import Data.Product using (_×_) renaming (proj₁ to fst; proj₂ to snd) open import Function using (id; _∘_) open import Control.Process.Type {-# COMPILED_JS Bool function (x,v) { return ((x)? v["true"]() : v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-} postulate Number : Set JSArray : Set → Set JSObject : Set JSValue : Set postulate readNumber : String → Number {-# COMPILED_JS readNumber Number #-} postulate 0N : Number {-# COMPILED_JS 0N 0 #-} postulate 1N : Number {-# COMPILED_JS 1N 1 #-} postulate 2N : Number {-# COMPILED_JS 2N 2 #-} postulate 4N : Number {-# COMPILED_JS 4N 4 #-} postulate 8N : Number {-# COMPILED_JS 8N 8 #-} postulate 16N : Number {-# COMPILED_JS 16N 16 #-} postulate 32N : Number {-# COMPILED_JS 32N 32 #-} postulate 64N : Number {-# COMPILED_JS 64N 64 #-} postulate 128N : Number {-# COMPILED_JS 128N 128 #-} postulate 256N : Number {-# COMPILED_JS 256N 256 #-} postulate 512N : Number {-# COMPILED_JS 512N 512 #-} postulate 1024N : Number {-# COMPILED_JS 1024N 1024 #-} postulate 2048N : Number {-# COMPILED_JS 2048N 2048 #-} postulate 4096N : Number {-# COMPILED_JS 4096N 4096 #-} postulate _+_ : Number → Number → Number {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} postulate _−_ : Number → Number → Number {-# COMPILED_JS _−_ function(x) { return function(y) { return x - y; }; } #-} postulate _*_ : Number → Number → Number {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} postulate _/_ : Number → Number → Number {-# COMPILED_JS _/_ function(x) { return function(y) { return x / y; }; } #-} infixr 5 _++_ postulate _++_ : String → String → String {-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-} postulate _+JS_ : JSValue → JSValue → JSValue {-# COMPILED_JS _+JS_ function(x) { return function(y) { return x + y; }; } #-} postulate _≤JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≤JS_ function(x) { return function(y) { return x <= y; }; } #-} postulate _<JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _<JS_ function(x) { return function(y) { return x < y; }; } #-} postulate _>JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _>JS_ function(x) { return function(y) { return x > y; }; } #-} postulate _≥JS_ : JSValue → JSValue → Bool {-# COMPILED_JS _≥JS_ function(x) { return function(y) { return x >= y; }; } #-} postulate _===_ : JSValue → JSValue → Bool {-# COMPILED_JS _===_ function(x) { return function(y) { return x === y; }; } #-} postulate reverse : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS reverse function(ty) { return function(x) { return x.reverse(); }; } #-} postulate sort : {A : Set} → JSArray A → JSArray A {-# COMPILED_JS sort function(ty) { return function(x) { return x.sort(); }; } #-} postulate split : (sep target : String) → JSArray String {-# COMPILED_JS split function(sep) { return function(target) { return target.split(sep); }; } #-} postulate join : (sep : String)(target : JSArray String) → String {-# COMPILED_JS join function(sep) { return function(target) { return target.join(sep); }; } #-} postulate fromList : {A B : Set}(xs : List A)(fromElt : A → B) → JSArray B {-# COMPILED_JS fromList require("libagda").fromList #-} postulate length : String → Number {-# COMPILED_JS length function(s) { return s.length; } #-} postulate JSON-stringify : JSValue → String {-# COMPILED_JS JSON-stringify JSON.stringify #-} postulate JSON-parse : String → JSValue {-# COMPILED_JS JSON-parse JSON.parse #-} postulate toString : JSValue → String {-# COMPILED_JS toString function(x) { return x.toString(); } #-} postulate fromBool : Bool → JSValue {-# COMPILED_JS fromBool function(x) { return x; } #-} postulate fromString : String → JSValue {-# COMPILED_JS fromString function(x) { return x; } #-} postulate fromChar : Char → JSValue {-# COMPILED_JS fromChar String #-} postulate Char▹String : Char → String {-# COMPILED_JS Char▹String String #-} postulate fromNumber : Number → JSValue {-# COMPILED_JS fromNumber function(x) { return x; } #-} postulate fromJSArray : {A : Set} → JSArray A → JSValue {-# COMPILED_JS fromJSArray function(ty) { return function(x) { return x; }; } #-} postulate fromJSObject : JSObject → JSValue {-# COMPILED_JS fromJSObject function(x) { return x; } #-} postulate objectFromList : {A : Set}(xs : List A)(fromKey : A → String)(fromVal : A → JSValue) → JSObject {-# COMPILED_JS objectFromList require("libagda").objectFromList #-} postulate decodeJSArray : {A B : Set}(arr : JSArray A)(fromElt : Number → A → B) → List B {-# COMPILED_JS decodeJSArray require("libagda").decodeJSArray #-} postulate castNumber : JSValue → Number {-# COMPILED_JS castNumber Number #-} postulate castString : JSValue → String {-# COMPILED_JS castString String #-} -- TODO dyn check of length 1? postulate castChar : JSValue → Char {-# COMPILED_JS castChar String #-} -- TODO dyn check of length 1? postulate String▹Char : String → Char {-# COMPILED_JS String▹Char String #-} -- TODO dyn check? postulate castJSArray : JSValue → JSArray JSValue {-# COMPILED_JS castJSArray function(x) { return x; } #-} -- TODO dyn check? postulate castJSObject : JSValue → JSObject {-# COMPILED_JS castJSObject function(x) { return x; } #-} postulate nullJS : JSValue {-# COMPILED_JS nullJS null #-} postulate _·[_] : JSValue → JSValue → JSValue {-# COMPILED_JS _·[_] require("libagda").readProp #-} postulate _Array[_] : {A : Set} → JSArray A → Number → A {-# COMPILED_JS _Array[_] function(ty) { return require("libagda").readProp; } #-} postulate onJSArray : {A : Set} (f : JSArray JSValue → A) → JSValue → A {-# COMPILED_JS onJSArray require("libagda").onJSArray #-} postulate onString : {A : Set} (f : String → A) → JSValue → A {-# COMPILED_JS onString require("libagda").onString #-} -- Writes 'msg' and 'inp' to the console and then returns `f inp` postulate trace : {A B : Set}(msg : String)(inp : A)(f : A → B) → B {-# COMPILED_JS trace require("libagda").trace #-} postulate throw : {A : Set} → String → A → A {-# COMPILED_JS throw require("libagda").throw #-} postulate is-null : JSValue → Bool {-# COMPILED_JS is-null function(x) { return (x == null); } #-} data Value : Set₀ where array : List Value → Value object : List (String × Value) → Value string : String → Value number : Number → Value bool : Bool → Value null : Value Object = List (String × JSValue) postulate fromValue : Value → JSValue {-# COMPILED_JS fromValue require("libagda").fromValue #-} -- TODO we could make it a COMPILED type and remove the encoding by using JSValue as the internal repr. data ValueView : Set₀ where array : JSArray JSValue → ValueView object : JSObject → ValueView string : String → ValueView number : Number → ValueView bool : Bool → ValueView null : ValueView -- TODO not yet tested postulate viewJSValue : JSValue → ValueView {-# COMPILED_JS viewJSValue require("libagda").viewJSValue #-} Bool▹String : Bool → String Bool▹String true = "true" Bool▹String false = "false" List▹String : List Char → String List▹String xs = join "" (fromList xs Char▹String) String▹List : String → List Char String▹List s = decodeJSArray (split "" s) (λ _ → String▹Char) Number▹String : Number → String Number▹String = castString ∘ fromNumber JSArray▹ListString : {A : Set} → JSArray A → List A JSArray▹ListString a = decodeJSArray a (λ _ → id) fromObject : Object → JSObject fromObject o = objectFromList o fst snd _≤Char_ : Char → Char → Bool x ≤Char y = fromChar x ≤JS fromChar y _<Char_ : Char → Char → Bool x <Char y = fromChar x <JS fromChar y _>Char_ : Char → Char → Bool x >Char y = fromChar x >JS fromChar y _≥Char_ : Char → Char → Bool x ≥Char y = fromChar x ≥JS fromChar y _≤String_ : String → String → Bool x ≤String y = fromString x ≤JS fromString y _<String_ : String → String → Bool x <String y = fromString x <JS fromString y _>String_ : String → String → Bool x >String y = fromString x >JS fromString y _≥String_ : String → String → Bool x ≥String y = fromString x ≥JS fromString y _≤Number_ : Number → Number → Bool x ≤Number y = fromNumber x ≤JS fromNumber y _<Number_ : Number → Number → Bool x <Number y = fromNumber x <JS fromNumber y _>Number_ : Number → Number → Bool x >Number y = fromNumber x >JS fromNumber y _≥Number_ : Number → Number → Bool x ≥Number y = fromNumber x ≥JS fromNumber y _·«_» : JSValue → String → JSValue v ·« s » = v ·[ fromString s ] _·«_»A : JSValue → String → JSArray JSValue v ·« s »A = castJSArray (v ·« s ») trace-call : {A B : Set} → String → (A → B) → A → B trace-call s f x = trace s (f x) id postulate JSCmd : Set → Set Callback1 : Set → Set Callback1 A = JSCmd ((A → 𝟘) → 𝟘) Callback0 : Set Callback0 = Callback1 𝟙 Callback2 : Set → Set → Set Callback2 A B = JSCmd ((A → B → 𝟘) → 𝟘) postulate assert : Bool → Callback0 {-# COMPILED_JS assert require("libagda").assert #-} check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A check true errmsg x = x check false errmsg x = throw (errmsg _) x warn-check : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A warn-check true errmsg x = x warn-check false errmsg x = trace ("Warning: " ++ errmsg _) x id infixr 0 _>>_ _!₁_ _!₂_ data JS! : Set₁ where end : JS! _!₁_ : {A : Set}(cmd : Callback1 A)(cb : A → JS!) → JS! _!₂_ : {A B : Set}(cmd : JSCmd ((A → B → 𝟘) → 𝟘))(cb : A → B → JS!) → JS! _>>_ : Callback0 → JS! → JS! cmd >> cont = cmd !₁ λ _ → cont -- -} -- -} -- -} -- -} -- -}
add is-null
JS: add is-null
Agda
bsd-3-clause
crypto-agda/agda-libjs
7b2c31fcd7415cecc448653df3d386001cbebf1b
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open import Syntax.Context {Type} data Term (Γ : Context) : (τ : Type) → Set where const : ∀ {τ} → (c : C τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
import Syntax.Type.Plotkin as Type module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open import Syntax.Context {Type} data Term (Γ : Context) : (τ : Type) → Set where const : ∀ {τ} → (c : C τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x)
Put constructor arguments on different lines.
Put constructor arguments on different lines. Old-commit-hash: 02f9c59c59ddef7050c2c035457c98ecb00464dc
Agda
mit
inc-lc/ilc-agda
fbbd955ba2c82259764f220c075ee5ab09f0a3c1
models/Desc.agda
models/Desc.agda
{-# OPTIONS --type-in-type --no-termination-check --no-positivity-check #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where record One : Set where --**************** -- Sum and friends --**************** data _+_ (A B : Set) : Set where l : A -> A + B r : B -> A + B --******************************************** -- Desc code --******************************************** -- Inductive types are implemented as a Universe. Hence, in this -- section, we implement their code. -- We can read this code as follow (see Conor's "Ornamental -- algebras"): a description in |Desc| is a program to read one node -- of the described tree. data Desc : Set where Arg : (X : Set) -> (X -> Desc) -> Desc -- Read a field in |X|; continue, given its value -- Often, |X| is an |EnumT|, hence allowing to choose a constructor -- among a finite set of constructors Ind : (H : Set) -> Desc -> Desc -- Read a field in H; read a recursive subnode given the field, -- continue regarless of the subnode -- Often, |H| is |1|, hence |Ind| simplifies to |Inf : Desc -> Desc|, -- meaning: read a recursive subnode and continue regardless Done : Desc -- Stop reading --******************************************** -- Desc decoder --******************************************** -- Provided the type of the recursive subnodes |R|, we decode a -- description as a record describing the node. [|_|]_ : Desc -> Set -> Set [| Arg A D |] R = Sigma A (\ a -> [| D a |] R) [| Ind H D |] R = (H -> R) * [| D |] R [| Done |] R = One --******************************************** -- Functions on codes --******************************************** -- Saying that a "predicate" |p| holds everywhere in |v| amounts to -- write something of the following type: Everywhere : (d : Desc) (D : Set) (bp : D -> Set) (V : [| d |] D) -> Set Everywhere (Arg A f) d p v = Everywhere (f (fst v)) d p (snd v) -- It must hold for this constructor Everywhere (Ind H x) d p v = ((y : H) -> p (fst v y)) * Everywhere x d p (snd v) -- It must hold for the subtrees Everywhere Done _ _ _ = _ -- It trivially holds at endpoints -- Then, we can build terms that inhabits this type. That is, a -- function that takes a "predicate" |bp| and makes it hold everywhere -- in the data-structure. It is the equivalent of a "map", but in a -- dependently-typed setting. everywhere : (d : Desc) (D : Set) (bp : D -> Set) -> ((y : D) -> bp y) -> (v : [| d |] D) -> Everywhere d D bp v everywhere (Arg a f) d bp p v = everywhere (f (fst v)) d bp p (snd v) -- It holds everywhere on this constructor everywhere (Ind H x) d bp p v = (\y -> p (fst v y)) , everywhere x d bp p (snd v) -- It holds here, and down in the recursive subtrees everywhere Done _ _ _ _ = One -- Nothing needs to be done on endpoints -- Looking at the decoder, a natural thing to do is to define its -- fixpoint |Mu D|, hence instantiating |R| with |Mu D| itself. data Mu (D : Desc) : Set where Con : [| D |] (Mu D) -> Mu D -- Using the "map" defined by |everywhere|, we can implement a "fold" -- over the |Mu| fixpoint: foldDesc : (D : Desc) (bp : Mu D -> Set) -> ((x : [| D |] (Mu D)) -> Everywhere D (Mu D) bp x -> bp (Con x)) -> (v : Mu D) -> bp v foldDesc D bp p (Con v) = p v (everywhere D (Mu D) bp (\x -> foldDesc D bp p x) v) --******************************************** -- Nat --******************************************** data NatConst : Set where ZE : NatConst SU : NatConst natc : NatConst -> Desc natc ZE = Done natc SU = Ind One Done natd : Desc natd = Arg NatConst natc nat : Set nat = Mu natd zero : nat zero = Con ( ZE , _ ) suc : nat -> nat suc n = Con ( SU , ( (\_ -> n) , _ ) ) two : nat two = suc (suc zero) four : nat four = suc (suc (suc (suc zero))) sum : nat -> ((x : Sigma NatConst (\ a -> [| natc a |] Mu (Arg NatConst natc))) -> Everywhere (natc (fst x)) (Mu (Arg NatConst natc)) (\ _ -> Mu (Arg NatConst natc)) (snd x) -> Mu (Arg NatConst natc)) sum n2 (ZE , _) p = n2 sum n2 (SU , f) p = suc ( fst p _) plus : nat -> nat -> nat plus n1 n2 = foldDesc natd (\_ -> nat) (sum n2) n1 x : nat x = plus two two
{-# OPTIONS --type-in-type #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** data Desc : Set where id : Desc const : Set -> Desc prod : Desc -> Desc -> Desc sigma : (S : Set) -> (S -> Desc) -> Desc pi : (S : Set) -> (S -> Desc) -> Desc --******************************************** -- Desc interpretation --******************************************** [|_|]_ : Desc -> Set -> Set [| id |] Z = Z [| const X |] Z = X [| prod D D' |] Z = [| D |] Z * [| D' |] Z [| sigma S T |] Z = Sigma S (\s -> [| T s |] Z) [| pi S T |] Z = (s : S) -> [| T s |] Z --******************************************** -- Fixpoint construction --******************************************** data Mu (D : Desc) : Set where con : [| D |] (Mu D) -> Mu D --******************************************** -- Predicate: All --******************************************** All : (D : Desc)(X : Set)(P : X -> Set) -> [| D |] X -> Set All id X P x = P x All (const Z) X P x = Z All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d') All (sigma S T) X P (a , b) = All (T a) X P b All (pi S T) X P f = (s : S) -> All (T s) X P (f s) all : (D : Desc)(X : Set)(P : X -> Set)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x all id X P R x = R x all (const Z) X P R z = z all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d' all (sigma S T) X P R (a , b) = all (T a) X P R b all (pi S T) X P R f = \ s -> all (T s) X P R (f s) --******************************************** -- Elimination principle: induction --******************************************** {- induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms (con xs) = ms xs (all D (Mu D) P (\x -> induction D P ms x) xs) -} module Elim (D : Desc) (P : Mu D -> Set) (ms : (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) where mutual induction : (x : Mu D) -> P x induction (con xs) = ms xs (hyps D xs) hyps : (D' : Desc) (xs : [| D' |] (Mu D)) -> All D' (Mu D) P xs hyps id x = induction x hyps (const Z) z = z hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (sigma S T) (a , b) = hyps (T a) b hyps (pi S T) f = \s -> hyps (T s) (f s) induction : (D : Desc) (P : Mu D -> Set) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v induction D P ms x = Elim.induction D P ms x --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Suc : NatConst natCases : NatConst -> Desc natCases Ze = const Unit natCases Suc = id NatD : Desc NatD = sigma NatConst natCases Nat : Set Nat = Mu NatD ze : Nat ze = con (Ze , Void) suc : Nat -> Nat suc n = con (Suc , n) --**************** -- List --**************** data ListConst : Set where Nil : ListConst Cons : ListConst listCases : Set -> ListConst -> Desc listCases X Nil = const Unit listCases X Cons = sigma X (\_ -> id) ListD : Set -> Desc ListD X = sigma ListConst (listCases X) List : Set -> Set List X = Mu (ListD X) nil : {X : Set} -> List X nil = con ( Nil , Void ) cons : {X : Set} -> X -> List X -> List X cons x t = con ( Cons , ( x , t )) --**************** -- Tree --**************** data TreeConst : Set where Leaf : TreeConst Node : TreeConst treeCases : Set -> TreeConst -> Desc treeCases X Leaf = const Unit treeCases X Node = sigma X (\_ -> prod id id) TreeD : Set -> Desc TreeD X = sigma TreeConst (treeCases X) Tree : Set -> Set Tree X = Mu (TreeD X) leaf : {X : Set} -> Tree X leaf = con (Leaf , Void) node : {X : Set} -> X -> Tree X -> Tree X -> Tree X node x le ri = con (Node , (x , (le , ri))) --******************************************** -- Finite sets --******************************************** EnumU : Set EnumU = Nat nilE : EnumU nilE = ze consE : EnumU -> EnumU consE e = suc e {- data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU -} data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) casesSpi : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set) -> Set) xs -> (P' : EnumT (con xs) -> Set) -> Set casesSpi (Ze , Void) hs P' = Unit casesSpi (Suc , n) hs P' = P' EZe * hs (\e -> P' (ESu e)) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi e P = induction NatD (\e -> (P : EnumT e -> Set) -> Set) casesSpi e P {- spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) -} casesSwitch : (xs : [| NatD |] Nat) -> All NatD Nat (\e -> (P' : EnumT e -> Set)(b' : spi e P')(x' : EnumT e) -> P' x') xs -> (P' : EnumT (con xs) -> Set)(b' : spi (con xs) P')(x' : EnumT (con xs)) -> P' x' casesSwitch (Ze , Void) hs P' b' () casesSwitch (Suc , n) hs P' b' EZe = fst b' casesSwitch (Suc , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e' switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch e P b x = induction NatD (\e -> (P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x) casesSwitch e P b x {- switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n -} --******************************************** -- Tagged description --******************************************** TagDesc : Set TagDesc = Sigma EnumU (\e -> spi e (\_ -> Desc)) toDesc : TagDesc -> Desc toDesc (B , F) = sigma (EnumT B) (\e -> switch B (\_ -> Desc) F e) --******************************************** -- Catamorphism --******************************************** cata : (D : Desc) (T : Set) -> ([| D |] T -> T) -> (Mu D) -> T cata D T phi x = induction D (\_ -> T) (\x ms -> phi (replace D T x ms )) x where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T replace id T x y = y replace (const Z) T z z' = z' replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Free monad construction --******************************************** _**_ : TagDesc -> (X : Set) -> TagDesc (e , D) ** X = consE e , (const X , D) --******************************************** -- Substitution --******************************************** apply : (D : TagDesc)(X Y : Set) -> (X -> Mu (toDesc (D ** Y))) -> [| toDesc (D ** X) |] (Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) apply (E , B) X Y sig (EZe , x) = sig x apply (E , B) X Y sig (ESu n , t) = con (ESu n , t) subst : (D : TagDesc)(X Y : Set) -> Mu (toDesc (D ** X)) -> (X -> Mu (toDesc (D ** Y))) -> Mu (toDesc (D ** Y)) subst D X Y x sig = cata (toDesc (D ** X)) (Mu (toDesc (D ** Y))) (apply D X Y sig) x
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Update Desc model. Follow ICFP paper. With type-in-type, but termination-checker-friendly.
Agda
mit
mietek/epigram2,larrytheliquid/pigit,mietek/epigram2
bb08669e1bdc2f7d2df9bb9289bda1b42f3dece8
lib/Algebra/FunctionProperties/Eq.agda
lib/Algebra/FunctionProperties/Eq.agda
{-# OPTIONS --without-K #-} -- Like Algebra.FunctionProperties but specialized to _≡_ and using implict arguments -- Moreover there is some extensions such as: -- * interchange -- * non-zero inversions -- * cancelation and non-zero cancelation -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Function using (flip) open import Data.Product open import Relation.Nullary open import Relation.Binary.NP open import Relation.Binary.PropositionalEquality.NP -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties.Eq {a} {A : Set a} where ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _·_ = ∀ {x y z} → ((x · y) · z) ≡ (x · (y · z)) Commutative : Op₂ A → Set _ Commutative _·_ = ∀ {x y} → (x · y) ≡ (y · x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _·_ = ∀ {x} → (e · x) ≡ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _·_ = ∀ {x} → (x · e) ≡ x Identity : A → Op₂ A → Set _ Identity e · = LeftIdentity e · × RightIdentity e · LeftZero : A → Op₂ A → Set _ LeftZero z _·_ = ∀ {x} → (z · x) ≡ z RightZero : A → Op₂ A → Set _ RightZero z _·_ = ∀ {x} → (x · z) ≡ z Zero : A → Op₂ A → Set _ Zero z · = LeftZero z · × RightZero z · LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _·_ = ∀ {x} → (x ⁻¹ · x) ≡ e LeftInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ LeftInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x ⁻¹ · x) ≡ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _·_ = ∀ {x} → (x · (x ⁻¹)) ≡ e RightInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ RightInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x · (x ⁻¹)) ≡ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · InverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ InverseNonZero zero e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ {x y z} → (x * (y + z)) ≡ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ {x y z} → ((y + z) * x) ≡ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _·_ IdempotentOn x = (x · x) ≡ x Idempotent : Op₂ A → Set _ Idempotent · = ∀ {x} → · IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ {x} → f (f x) ≡ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _·_ Absorbs _∘_ = ∀ {x y} → (x · (x ∘ y)) ≡ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive · ∘ = (· Absorbs ∘) × (∘ Absorbs ·) Involutive : Op₁ A → Set _ Involutive f = ∀ {x} → f (f x) ≡ x Interchange : Op₂ A → Op₂ A → Set _ Interchange _·_ _∘_ = ∀ {x y z t} → ((x · y) ∘ (z · t)) ≡ ((x ∘ z) · (y ∘ t)) LeftCancel : Op₂ A → Set _ LeftCancel _·_ = ∀ {c x y} → c · x ≡ c · y → x ≡ y RightCancel : Op₂ A → Set _ RightCancel _·_ = ∀ {c x y} → x · c ≡ y · c → x ≡ y LeftCancelNonZero : A → Op₂ A → Set _ LeftCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → c · x ≡ c · y → x ≡ y RightCancelNonZero : A → Op₂ A → Set _ RightCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → x · c ≡ y · c → x ≡ y module InterchangeFromAssocComm (_·_ : Op₂ A) (·-assoc : Associative _·_) (·-comm : Commutative _·_) where open ≡-Reasoning ·= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → (x · y) ≡ (x' · y') ·= refl refl = refl ·-interchange : Interchange _·_ _·_ ·-interchange {x} {y} {z} {t} = (x · y) · (z · t) ≡⟨ ·-assoc ⟩ x · (y · (z · t)) ≡⟨ ·= refl (! ·-assoc) ⟩ x · ((y · z) · t) ≡⟨ ·= refl (·= ·-comm refl) ⟩ x · ((z · y) · t) ≡⟨ ·= refl ·-assoc ⟩ x · (z · (y · t)) ≡⟨ ! ·-assoc ⟩ (x · z) · (y · t) ∎ module _ {b} {B : Set b} (f : A → B) where Injective : Set (b ⊔ a) Injective = ∀ {x y} → f x ≡ f y → x ≡ y Conflict : Set (b ⊔ a) Conflict = ∃ λ x → ∃ λ y → (x ≢ y) × f x ≡ f y module _ {b} {B : Set b} {f : A → B} where Injective-¬Conflict : Injective f → ¬ (Conflict f) Injective-¬Conflict inj (x , y , x≢y , fx≡fy) = x≢y (inj fx≡fy) Conflict-¬Injective : Conflict f → ¬ (Injective f) Conflict-¬Injective = flip Injective-¬Conflict -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} -- Like Algebra.FunctionProperties but specialized to _≡_ and using implict arguments -- Moreover there is some extensions such as: -- * interchange -- * non-zero inversions -- * cancelation and non-zero cancelation -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Function.NP using (_$⟨_⟩_; flip) open import Data.Nat.Base using (ℕ) open import Data.Product open import Relation.Nullary open import Relation.Binary.NP open import Relation.Binary.PropositionalEquality.NP -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties.Eq {a} {A : Set a} where ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _·_ = ∀ {x y z} → ((x · y) · z) ≡ (x · (y · z)) Commutative : Op₂ A → Set _ Commutative _·_ = ∀ {x y} → (x · y) ≡ (y · x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _·_ = ∀ {x} → (e · x) ≡ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _·_ = ∀ {x} → (x · e) ≡ x Identity : A → Op₂ A → Set _ Identity e · = LeftIdentity e · × RightIdentity e · LeftZero : A → Op₂ A → Set _ LeftZero z _·_ = ∀ {x} → (z · x) ≡ z RightZero : A → Op₂ A → Set _ RightZero z _·_ = ∀ {x} → (x · z) ≡ z Zero : A → Op₂ A → Set _ Zero z · = LeftZero z · × RightZero z · LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _·_ = ∀ {x} → (x ⁻¹ · x) ≡ e LeftInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ LeftInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x ⁻¹ · x) ≡ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _·_ = ∀ {x} → (x · (x ⁻¹)) ≡ e RightInverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ RightInverseNonZero zero e _⁻¹ _·_ = ∀ {x} → x ≢ zero → (x · (x ⁻¹)) ≡ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · InverseNonZero : (zero e : A) → Op₁ A → Op₂ A → Set _ InverseNonZero zero e ⁻¹ · = LeftInverse e ⁻¹ · × RightInverse e ⁻¹ · _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ {x y z} → (x * (y + z)) ≡ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ {x y z} → ((y + z) * x) ≡ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _·_ IdempotentOn x = (x · x) ≡ x Idempotent : Op₂ A → Set _ Idempotent · = ∀ {x} → · IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ {x} → f (f x) ≡ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _·_ Absorbs _∘_ = ∀ {x y} → (x · (x ∘ y)) ≡ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive · ∘ = (· Absorbs ∘) × (∘ Absorbs ·) Involutive : Op₁ A → Set _ Involutive f = ∀ {x} → f (f x) ≡ x Interchange : Op₂ A → Op₂ A → Set _ Interchange _·_ _∘_ = ∀ {x y z t} → ((x · y) ∘ (z · t)) ≡ ((x ∘ z) · (y ∘ t)) LeftCancel : Op₂ A → Set _ LeftCancel _·_ = ∀ {c x y} → c · x ≡ c · y → x ≡ y RightCancel : Op₂ A → Set _ RightCancel _·_ = ∀ {c x y} → x · c ≡ y · c → x ≡ y LeftCancelNonZero : A → Op₂ A → Set _ LeftCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → c · x ≡ c · y → x ≡ y RightCancelNonZero : A → Op₂ A → Set _ RightCancelNonZero zero _·_ = ∀ {c x y} → c ≢ zero → x · c ≡ y · c → x ≡ y module InterchangeFromAssocComm (_·_ : Op₂ A) (·-assoc : Associative _·_) (·-comm : Commutative _·_) where open ≡-Reasoning ·= : ∀ {x x' y y'} → x ≡ x' → y ≡ y' → (x · y) ≡ (x' · y') ·= refl refl = refl ·-interchange : Interchange _·_ _·_ ·-interchange {x} {y} {z} {t} = (x · y) · (z · t) ≡⟨ ·-assoc ⟩ x · (y · (z · t)) ≡⟨ ·= refl (! ·-assoc) ⟩ x · ((y · z) · t) ≡⟨ ·= refl (·= ·-comm refl) ⟩ x · ((z · y) · t) ≡⟨ ·= refl ·-assoc ⟩ x · (z · (y · t)) ≡⟨ ! ·-assoc ⟩ (x · z) · (y · t) ∎ module _ {b} {B : Set b} (f : A → B) where Injective : Set (b ⊔ a) Injective = ∀ {x y} → f x ≡ f y → x ≡ y Conflict : Set (b ⊔ a) Conflict = ∃ λ x → ∃ λ y → (x ≢ y) × f x ≡ f y module _ {b} {B : Set b} {f : A → B} where Injective-¬Conflict : Injective f → ¬ (Conflict f) Injective-¬Conflict inj (x , y , x≢y , fx≡fy) = x≢y (inj fx≡fy) Conflict-¬Injective : Conflict f → ¬ (Injective f) Conflict-¬Injective = flip Injective-¬Conflict module Endo {f : A → A} where Cycle^ : ℕ → Set _ Cycle^ n = ∃ λ x → f $⟨ n ⟩ x ≡ x Cycle = ∃ Cycle^ -- -} -- -} -- -} -- -}
add Endo.Cycle
Alegbra.FunctionProperties.Eq: add Endo.Cycle
Agda
bsd-3-clause
crypto-agda/agda-nplib
675459709ff3563cde300754c35f229c6b963f10
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field ΔVal-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → ΔVal-base ι → Set apply-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ΔVal-base ι → ⟦ ι ⟧Base diff-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ΔVal-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-ΔVal-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-ΔVal-base ι v (diff-ΔVal-base ι u v) ≡ u --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set apply-ΔVal : ∀ τ → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ diff-ΔVal : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ infixl 6 apply-ΔVal diff-ΔVal -- as with + - in GHC.Num syntax apply-ΔVal τ v dv = v ⊞₍ τ ₎ dv syntax diff-ΔVal τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- ΔVal : Type → Set ΔVal (base ι) = ΔVal-base ι ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-ΔVal-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ m ⊟₍ base ι ₎ n = diff-ΔVal-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv-Entry : Type → Set ΔEnv-Entry τ = Triple ⟦ τ ⟧ (λ _ → ΔVal τ) (λ v dv → valid {τ} v dv) ΔEnv : Context → Set ΔEnv = DependentList ΔEnv-Entry ignore-entry : ΔEnv-Entry ⊆ ⟦_⟧ ignore-entry (cons v _ _) = v update-entry : ΔEnv-Entry ⊆ ⟦_⟧ update-entry {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-entry {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-entry {τ})
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field ΔVal-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → ΔVal-base ι → Set apply-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ΔVal-base ι → ⟦ ι ⟧Base diff-ΔVal-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ΔVal-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-ΔVal-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-ΔVal-base ι v (diff-ΔVal-base ι u v) ≡ u --------------- -- Interface -- --------------- ΔVal : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set apply-ΔVal : ∀ τ → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ diff-ΔVal : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ infixl 6 apply-ΔVal diff-ΔVal -- as with + - in GHC.Num syntax apply-ΔVal τ v dv = v ⊞₍ τ ₎ dv syntax diff-ΔVal τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (ΔVal τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (ΔVal (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- ΔVal τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- ΔVal : Type → Set ΔVal (base ι) = ΔVal-base ι ΔVal (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : ΔVal σ) → valid v dv → ΔVal τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-ΔVal-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ m ⊟₍ base ι ₎ n = diff-ΔVal-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : ΔVal σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → ΔVal τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ΔVal τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → ΔVal τ) (λ v dv → valid {τ} v dv) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore-valid-change : ValidChange ⊆ ⟦_⟧ ignore-valid-change (cons v _ _) = v update-valid-change : ValidChange ⊆ ⟦_⟧ update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-valid-change {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-valid-change {τ})
Rename ΔEnv-Entry to ValidChange.
Rename ΔEnv-Entry to ValidChange. Also rename operations related to ΔEnv-Entry. Old-commit-hash: 35ab981b89bab6eced9a7b20753bb140f6caf7a8
Agda
mit
inc-lc/ilc-agda
0e5b51a126b354cb6a2c34c080deb1fdcc75c7cb
Denotational/Environments.agda
Denotational/Environments.agda
module Denotational.Environments (Type : Set) (⟦_⟧Type : Type → Set) where -- ENVIRONMENTS -- -- This module defines the meaning of contexts, that is, -- the type of environments that fit a context, together -- with operations and properties of these operations. -- -- This module is parametric in the syntax and semantics -- of types, so it can be reused for different calculi -- and models. open import Relation.Binary.PropositionalEquality open import Syntactic.Contexts Type open import Denotational.Notation private meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- TYPING CONTEXTS -- Denotational Semantics : Contexts Represent Environments data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B ⟦_⟧Context : Context → Set ⟦ ∅ ⟧Context = Empty ⟦ τ • Γ ⟧Context = Bind ⟦ τ ⟧ ⟦ Γ ⟧Context meaningOfContext : Meaning Context meaningOfContext = meaning ⟦_⟧Context -- VARIABLES -- Denotational Semantics ⟦_⟧Var : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ this ⟧Var (v • ρ) = v ⟦ that x ⟧Var (v • ρ) = ⟦ x ⟧Var ρ meaningOfVar : ∀ {Γ τ} → Meaning (Var Γ τ) meaningOfVar = meaning ⟦_⟧Var -- WEAKENING -- Remove a variable from an environment ⟦_⟧≼ : ∀ {Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) → ⟦ Γ₂ ⟧ → ⟦ Γ₁ ⟧ ⟦ ∅ ⟧≼ ∅ = ∅ ⟦ keep τ • Γ′ ⟧≼ (v • ρ) = v • ⟦ Γ′ ⟧≼ ρ ⟦ drop τ • Γ′ ⟧≼ (v • ρ) = ⟦ Γ′ ⟧≼ ρ meaningOf≼ : ∀ {Γ₁ Γ₂} → Meaning (Γ₁ ≼ Γ₂) meaningOf≼ = meaning ⟦_⟧≼ -- Properties ⟦⟧-≼-trans : ∀ {Γ₃ Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) (Γ″ : Γ₂ ≼ Γ₃) → ∀ (ρ : ⟦ Γ₃ ⟧) → ⟦ ≼-trans Γ′ Γ″ ⟧ ρ ≡ ⟦ Γ′ ⟧ (⟦ Γ″ ⟧ ρ) ⟦⟧-≼-trans Γ′ ∅ ∅ = refl ⟦⟧-≼-trans (keep τ • Γ′) (keep .τ • Γ″) (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-trans Γ′ Γ″ ρ) ⟦⟧-≼-trans (drop τ • Γ′) (keep .τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-trans Γ′ (drop τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-refl : ∀ {Γ : Context} → ∀ (ρ : ⟦ Γ ⟧) → ⟦ ≼-refl ⟧ ρ ≡ ρ ⟦⟧-≼-refl {∅} ∅ = refl ⟦⟧-≼-refl {τ • Γ} (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-refl ρ) -- SOUNDNESS of variable lifting lift-sound : ∀ {Γ₁ Γ₂ τ} (Γ′ : Γ₁ ≼ Γ₂) (x : Var Γ₁ τ) → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ lift Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (⟦ Γ′ ⟧ ρ) lift-sound ∅ () ρ lift-sound (keep τ • Γ′) this (v • ρ) = refl lift-sound (keep τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ x ρ lift-sound (drop τ • Γ′) this (v • ρ) = lift-sound Γ′ this ρ lift-sound (drop τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ (that x) ρ
module Denotational.Environments (Type : Set) {ℓ} (⟦_⟧Type : Type → Set ℓ) where -- ENVIRONMENTS -- -- This module defines the meaning of contexts, that is, -- the type of environments that fit a context, together -- with operations and properties of these operations. -- -- This module is parametric in the syntax and semantics -- of types, so it can be reused for different calculi -- and models. open import Relation.Binary.PropositionalEquality open import Syntactic.Contexts Type open import Denotational.Notation private meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- TYPING CONTEXTS -- Denotational Semantics : Contexts Represent Environments data Empty : Set ℓ where ∅ : Empty data Bind A B : Set ℓ where _•_ : (v : A) (ρ : B) → Bind A B ⟦_⟧Context : Context → Set ℓ ⟦ ∅ ⟧Context = Empty ⟦ τ • Γ ⟧Context = Bind ⟦ τ ⟧ ⟦ Γ ⟧Context meaningOfContext : Meaning Context meaningOfContext = meaning ⟦_⟧Context -- VARIABLES -- Denotational Semantics ⟦_⟧Var : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ this ⟧Var (v • ρ) = v ⟦ that x ⟧Var (v • ρ) = ⟦ x ⟧Var ρ meaningOfVar : ∀ {Γ τ} → Meaning (Var Γ τ) meaningOfVar = meaning ⟦_⟧Var -- WEAKENING -- Remove a variable from an environment ⟦_⟧≼ : ∀ {Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) → ⟦ Γ₂ ⟧ → ⟦ Γ₁ ⟧ ⟦ ∅ ⟧≼ ∅ = ∅ ⟦ keep τ • Γ′ ⟧≼ (v • ρ) = v • ⟦ Γ′ ⟧≼ ρ ⟦ drop τ • Γ′ ⟧≼ (v • ρ) = ⟦ Γ′ ⟧≼ ρ meaningOf≼ : ∀ {Γ₁ Γ₂} → Meaning (Γ₁ ≼ Γ₂) meaningOf≼ = meaning ⟦_⟧≼ -- Properties ⟦⟧-≼-trans : ∀ {Γ₃ Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) (Γ″ : Γ₂ ≼ Γ₃) → ∀ (ρ : ⟦ Γ₃ ⟧) → ⟦ ≼-trans Γ′ Γ″ ⟧ ρ ≡ ⟦ Γ′ ⟧ (⟦ Γ″ ⟧ ρ) ⟦⟧-≼-trans Γ′ ∅ ∅ = refl ⟦⟧-≼-trans (keep τ • Γ′) (keep .τ • Γ″) (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-trans Γ′ Γ″ ρ) ⟦⟧-≼-trans (drop τ • Γ′) (keep .τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-trans Γ′ (drop τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ ⟦⟧-≼-refl : ∀ {Γ : Context} → ∀ (ρ : ⟦ Γ ⟧) → ⟦ ≼-refl ⟧ ρ ≡ ρ ⟦⟧-≼-refl {∅} ∅ = refl ⟦⟧-≼-refl {τ • Γ} (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-refl ρ) -- SOUNDNESS of variable lifting lift-sound : ∀ {Γ₁ Γ₂ τ} (Γ′ : Γ₁ ≼ Γ₂) (x : Var Γ₁ τ) → ∀ (ρ : ⟦ Γ₂ ⟧) → ⟦ lift Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (⟦ Γ′ ⟧ ρ) lift-sound ∅ () ρ lift-sound (keep τ • Γ′) this (v • ρ) = refl lift-sound (keep τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ x ρ lift-sound (drop τ • Γ′) this (v • ρ) = lift-sound Γ′ this ρ lift-sound (drop τ • Γ′) (that x) (v • ρ) = lift-sound Γ′ (that x) ρ
Generalize environments to values in higher universes.
Generalize environments to values in higher universes. Old-commit-hash: 4ff4102742306da9be77151d785aa608f8558977
Agda
mit
inc-lc/ilc-agda
0ab0b0012d2db6e26ec2716c2d95f3743111df4d
Parametric/Syntax/MType.agda
Parametric/Syntax/MType.agda
import Parametric.Syntax.Type as Type module Parametric.Syntax.MType where module Structure (Base : Type.Structure) where open Type.Structure Base mutual -- Derived from CBPV data ValType : Set where U : (c : CompType) → ValType B : (ι : Base) → ValType vUnit : ValType _v×_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType _v+_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType data CompType : Set where F : ValType → CompType _⇛_ : ValType → CompType → CompType -- We did not use this in CBPV, so dropped. -- _Π_ : CompType → CompType → CompType cbnToCompType : Type → CompType cbnToCompType (base ι) = F (B ι) cbnToCompType (σ ⇒ τ) = U (cbnToCompType σ) ⇛ cbnToCompType τ cbvToValType : Type → ValType cbvToValType (base ι) = B ι cbvToValType (σ ⇒ τ) = U (cbvToValType σ ⇛ F (cbvToValType τ)) open import Base.Syntax.Context ValType public using () renaming ( ∅ to ∅∅ ; _•_ to _••_ ; mapContext to mapValCtx ; Var to ValVar ; Context to ValContext ; this to vThis; that to vThat) cbnToValType : Type → ValType cbnToValType τ = U (cbnToCompType τ) cbvToCompType : Type → CompType cbvToCompType τ = F (cbvToValType τ) fromCBNCtx : Context → ValContext fromCBNCtx Γ = mapValCtx cbnToValType Γ fromCBVCtx : Context → ValContext fromCBVCtx Γ = mapValCtx cbvToValType Γ open import Data.List open Data.List using (List) public fromCBVToCompList : Context → List CompType fromCBVToCompList Γ = mapValCtx cbvToCompType Γ fromVar : ∀ {Γ τ} → (f : Type → ValType) → Var Γ τ → ValVar (mapValCtx f Γ) (f τ) fromVar {x • Γ} f this = vThis fromVar {x • Γ} f (that v) = vThat (fromVar f v)
import Parametric.Syntax.Type as Type module Parametric.Syntax.MType where module Structure (Base : Type.Structure) where open Type.Structure Base mutual -- Derived from CBPV data ValType : Set where U : (c : CompType) → ValType B : (ι : Base) → ValType vUnit : ValType _v×_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType _v+_ : (τ₁ : ValType) → (τ₂ : ValType) → ValType -- Same associativity as the standard _×_ infixr 2 _v×_ data CompType : Set where F : ValType → CompType _⇛_ : ValType → CompType → CompType -- We did not use this in CBPV, so dropped. -- _Π_ : CompType → CompType → CompType cbnToCompType : Type → CompType cbnToCompType (base ι) = F (B ι) cbnToCompType (σ ⇒ τ) = U (cbnToCompType σ) ⇛ cbnToCompType τ cbvToValType : Type → ValType cbvToValType (base ι) = B ι cbvToValType (σ ⇒ τ) = U (cbvToValType σ ⇛ F (cbvToValType τ)) open import Base.Syntax.Context ValType public using () renaming ( ∅ to ∅∅ ; _•_ to _••_ ; mapContext to mapValCtx ; Var to ValVar ; Context to ValContext ; this to vThis; that to vThat) cbnToValType : Type → ValType cbnToValType τ = U (cbnToCompType τ) cbvToCompType : Type → CompType cbvToCompType τ = F (cbvToValType τ) fromCBNCtx : Context → ValContext fromCBNCtx Γ = mapValCtx cbnToValType Γ fromCBVCtx : Context → ValContext fromCBVCtx Γ = mapValCtx cbvToValType Γ open import Data.List open Data.List using (List) public fromCBVToCompList : Context → List CompType fromCBVToCompList Γ = mapValCtx cbvToCompType Γ fromVar : ∀ {Γ τ} → (f : Type → ValType) → Var Γ τ → ValVar (mapValCtx f Γ) (f τ) fromVar {x • Γ} f this = vThis fromVar {x • Γ} f (that v) = vThat (fromVar f v)
Fix arity of _v×_
MType: Fix arity of _v×_
Agda
mit
inc-lc/ilc-agda
dd73b5a36235448b400cd9d02d7983b1155617bc
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
Reorder definitions of Term and Terms.
Reorder definitions of Term and Terms. The order of definitions should follow the order of declaration, and this code seems easier to understand when one looks at Term first. Old-commit-hash: 517547b8eebe1b8803d9f30fa3945f02685b6cc5
Agda
mit
inc-lc/ilc-agda
8d03eb08a3d8dc237fc96cbdf430c73571ead581
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ {{ca}} x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil {{ca}} x) ≡⟨ update-nil {{ca}} x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ {{ca}} x) → x ⊞ dx ≡ x → _≙_ {{ca}} dx (nil {{ca}} x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil {{ca}} x) ⟩ x ⊞ nil {{ca}} x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff {{ca}} x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ {{ca}} x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : _⊞_ {{ca}} x (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff {{ca}} (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization; DerivativeAsChange) open FC.FunctionChange equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → _≙_ {{changeAlgebra}} df₁ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx : Δ x} {f : A → B} {df₁ df₂ : Δ f} → _≙_ {{changeAlgebra}} df₁ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx₁ dx₂ → _≙_ {{CA}} dx₁ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil {{CA}} x)) ≡⟨ ext (λ x → cong f (update-nil {{CA}} x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil {{CA}} v) ≙ nil {{CB}} (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil {{CB}} (f v) lemma = begin f v ⊞ df v (nil {{CA}} v) ≡⟨ proof v (nil {{CA}} v) ⟩ f (v ⊞ (nil {{CA}} v)) ≡⟨ cong f (update-nil {{CA}} v) ⟩ f v ≡⟨ sym (update-nil {{CB}} (f v)) ⟩ f v ⊞ nil {{CB}} (f v) ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ {{ca}} x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil {{ca}} x) ≡⟨ update-nil {{ca}} x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ {{ca}} x) → x ⊞ dx ≡ x → _≙_ {{ca}} dx (nil {{ca}} x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil {{ca}} x) ⟩ x ⊞ nil {{ca}} x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff {{ca}} x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ {{ca}} x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : _⊞_ {{ca}} x (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff {{ca}} (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization; DerivativeAsChange) open FC.FunctionChange equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → _≙_ {{changeAlgebra}} df₁ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx : Δ x} {f : A → B} {df₁ df₂ : Δ f} → _≙_ {{changeAlgebra}} df₁ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) derivative-doe-characterization : ∀ {a : A} {da : Δ a} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CB}} (df a da) (f (a ⊞ da) ⊟ f a) derivative-doe-characterization {a} {da} {f} {df} is-derivative = doe lemma where open ≡-Reasoning lemma : f a ⊞ df a da ≡ f a ⊞ (f (a ⊞ da) ⊟ f a) lemma = begin (f a ⊞ df a da) ≡⟨ is-derivative a da ⟩ (f (a ⊞ da)) ≡⟨ sym (update-diff (f (a ⊞ da)) (f a)) ⟩ (f a ⊞ (f (a ⊞ da) ⊟ f a)) ∎ derivative-respects-doe : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CA}} dx₁ dx₂ → _≙_ {{CB}} (df x dx₁) (df x dx₂) derivative-respects-doe {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = begin df x dx₁ ≙⟨ derivative-doe-characterization is-derivative ⟩ f (x ⊞ dx₁) ⊟ f x ≡⟨ cong (λ v → f v ⊟ f x) (proof dx₁≙dx₂) ⟩ f (x ⊞ dx₂) ⊟ f x ≙⟨ ≙-sym (derivative-doe-characterization is-derivative) ⟩ df x dx₂ ∎ where open ≙-Reasoning -- This is also a corollary of fun-changes-respect derivative-respects-doe-alt : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → _≙_ {{CA}} dx₁ dx₂ → _≙_ {{CB}} (df x dx₁) (df x dx₂) derivative-respects-doe-alt {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = fun-change-respects (DerivativeAsChange is-derivative) dx₁≙dx₂ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx₁ dx₂ → _≙_ {{CA}} dx₁ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil {{CA}} x)) ≡⟨ ext (λ x → cong f (update-nil {{CA}} x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil {{CA}} v) ≙ nil {{CB}} (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil {{CB}} (f v) lemma = begin f v ⊞ df v (nil {{CA}} v) ≡⟨ proof v (nil {{CA}} v) ⟩ f (v ⊞ (nil {{CA}} v)) ≡⟨ cong f (update-nil {{CA}} v) ⟩ f v ≡⟨ sym (update-nil {{CB}} (f v)) ⟩ f v ⊞ nil {{CB}} (f v) ∎
Add new lemmas on change equivalence
Add new lemmas on change equivalence
Agda
mit
inc-lc/ilc-agda
ca0490d3e647551767333fe1b8af760d98b01dfa
Syntax/Term/Popl14.agda
Syntax/Term/Popl14.agda
module Syntax.Term.Popl14 where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer data Term (Γ : Context) : Type -> Set where int : (n : ℤ) → Term Γ int add : (s : Term Γ int) (t : Term Γ int) → Term Γ int minus : (t : Term Γ int) → Term Γ int empty : Term Γ bag insert : (s : Term Γ int) (t : Term Γ bag) → Term Γ bag union : (s : Term Γ bag) → (t : Term Γ bag) → Term Γ bag negate : (t : Term Γ bag) → Term Γ bag flatmap : (s : Term Γ (int ⇒ bag)) (t : Term Γ bag) → Term Γ bag sum : (t : Term Γ bag) → Term Γ int var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} → (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} → (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (int x) = int x weaken Γ₁≼Γ₂ (add s t) = add (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (minus t) = minus (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ empty = empty weaken Γ₁≼Γ₂ (insert s t) = insert (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (union s t) = union (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (negate t) = negate (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (flatmap s t) = flatmap (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (sum t) = sum (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (var x) = var (weakenVar Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {τ} t) = abs (weaken (keep τ • Γ₁≼Γ₂) t) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) apply-term {int} = let Δx = var (that this) x = var this in abs (abs (add x Δx)) apply-term {bag} = let Δx = var (that this) x = var this in abs (abs (union x Δx)) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app (app apply-term (app (app Δf x) (app (app diff-term x) x))) (app f x)))) diff-term {int} = let x = var (that this) y = var this in abs (abs (add x (minus y))) diff-term {bag} = let x = var (that this) y = var this in abs (abs (union x (negate y))) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app (app diff-term (app g (app (app apply-term Δx) x))) (app f x))))) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t
module Syntax.Term.Popl14 where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer data Term (Γ : Context) : Type -> Set where int : (n : ℤ) → Term Γ int add : (s : Term Γ int) (t : Term Γ int) → Term Γ int minus : (t : Term Γ int) → Term Γ int empty : Term Γ bag insert : (s : Term Γ int) (t : Term Γ bag) → Term Γ bag union : (s : Term Γ bag) → (t : Term Γ bag) → Term Γ bag negate : (t : Term Γ bag) → Term Γ bag flatmap : (s : Term Γ (int ⇒ bag)) (t : Term Γ bag) → Term Γ bag sum : (t : Term Γ bag) → Term Γ int var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} → (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} → (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (int x) = int x weaken Γ₁≼Γ₂ (add s t) = add (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (minus t) = minus (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ empty = empty weaken Γ₁≼Γ₂ (insert s t) = insert (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (union s t) = union (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (negate t) = negate (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (flatmap s t) = flatmap (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (sum t) = sum (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (var x) = var (weakenVar Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {τ} t) = abs (weaken (keep τ • Γ₁≼Γ₂) t) fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-term {int} = let Δx = var (that this) x = var this in abs (abs (add x Δx)) apply-term {bag} = let Δx = var (that this) x = var this in abs (abs (union x Δx)) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-term {int} = let x = var (that this) y = var this in abs (abs (add x (minus y))) diff-term {bag} = let x = var (that this) y = var this in abs (abs (union x (negate y))) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
use ⊕ and ⊝ also when defining diff-term and apply-term
agda: use ⊕ and ⊝ also when defining diff-term and apply-term Goal: make diff-term and apply-term themselves more readable. Old-commit-hash: fc206b02d6057172e7f49c02eb521abaaafcb1e8
Agda
mit
inc-lc/ilc-agda
f994df78d5187cf478e9bd11ea4ef31f16894f95
New/NewNew.agda
New/NewNew.agda
module New.NewNew where open import New.Changes open import New.LangChanges open import New.Lang open import New.Types open import New.Derive [_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set [ σ ⇒ τ ] df from f1 to f2 = ∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) → [ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2 [ int ] dv from v1 to v2 = v2 ≡ v1 + dv [ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2 [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set [ ∅ ]Γ ∅ from ∅ to ∅ = ⊤ [ τ • Γ ]Γ (dv • v1' • dρ) from (v1 • ρ1) to (v2 • ρ2) = [ τ ] dv from v1 to v2 × v1 ≡ v1' × [ Γ ]Γ dρ from ρ1 to ρ2 ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ1 ρ2 : ⟦ Γ ⟧Context) (dρ : eCh Γ) → [ Γ ]Γ dρ from ρ1 to ρ2 → ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ ∅ ∅ ∅ tt = refl ⟦Γ≼ΔΓ⟧ (v1 • ρ1) (v2 • ρ2) (dv • .v1 • dρ) (dvv , refl , dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ1 ρ2 dρ dρρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ1 ρ2 : ⟦ Γ ⟧Context) (dρ : eCh Γ) → [ Γ ]Γ dρ from ρ1 to ρ2 → ⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ fit-sound t ρ1 ρ2 dρ dρρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ1 ρ2 dρ dρρ)) (sym (weaken-sound t _)) fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → (dρ : eCh Γ) (ρ1 ρ2 : ⟦ Γ ⟧Context) → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2) fromtoDeriveVar this (dv • .v1 • dρ) (v1 • ρ1) (v2 • ρ2) (dvv , refl , dρρ) = dvv fromtoDeriveVar (that x) (dv • .v1 • dρ) (v1 • ρ1) (v2 • ρ2) (dvv , refl , dρρ) = fromtoDeriveVar x dρ ρ1 ρ2 dρρ fromtoDeriveConst : ∀ {τ} c → [ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db} fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db} fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) → {dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2) fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c fromtoDerive τ (var x) dρρ = fromtoDeriveVar x _ _ _ dρρ fromtoDerive τ (app {σ} s t) {dρ} {ρ1} {ρ2} dρρ rewrite sym (fit-sound t ρ1 ρ2 dρ dρρ) = let fromToF = fromtoDerive (σ ⇒ τ) s dρρ in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ da a1 a2 daa → fromtoDerive τ t (daa , refl , dρρ)
module New.NewNew where open import New.Changes open import New.LangChanges open import New.Lang open import New.Types open import New.Derive [_]_from_to_ : ∀ (τ : Type) → (dv : Cht τ) → (v1 v2 : ⟦ τ ⟧Type) → Set [ σ ⇒ τ ] df from f1 to f2 = ∀ (da : Cht σ) (a1 a2 : ⟦ σ ⟧Type) → [ σ ] da from a1 to a2 → [ τ ] df a1 da from f1 a1 to f2 a2 [ int ] dv from v1 to v2 = v2 ≡ v1 + dv [ pair σ τ ] (da , db) from (a1 , b1) to (a2 , b2) = [ σ ] da from a1 to a2 × [ τ ] db from b1 to b2 -- XXX This would be more elegant as a datatype — that would avoid the need for -- an equality proof. [_]Γ_from_to_ : ∀ Γ → eCh Γ → (ρ1 ρ2 : ⟦ Γ ⟧Context) → Set [ ∅ ]Γ ∅ from ∅ to ∅ = ⊤ [ τ • Γ ]Γ (dv • v1' • dρ) from (v1 • ρ1) to (v2 • ρ2) = [ τ ] dv from v1 to v2 × v1 ≡ v1' × [ Γ ]Γ dρ from ρ1 to ρ2 ⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → [ Γ ]Γ dρ from ρ1 to ρ2 → ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ {∅} {∅} {∅} {∅} tt = refl ⟦Γ≼ΔΓ⟧ {_ • _} {v1 • ρ1} {v2 • ρ2} {dv • .v1 • dρ} (dvv , refl , dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → ∀ {ρ1 ρ2 dρ} → [ Γ ]Γ dρ from ρ1 to ρ2 → ⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ fit-sound t dρρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ)) (sym (weaken-sound t _)) fromtoDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → (dρ : eCh Γ) (ρ1 ρ2 : ⟦ Γ ⟧Context) → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ] (⟦ x ⟧ΔVar ρ1 dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2) fromtoDeriveVar this (dv • .v1 • dρ) (v1 • ρ1) (v2 • ρ2) (dvv , refl , dρρ) = dvv fromtoDeriveVar (that x) (dv • .v1 • dρ) (v1 • ρ1) (v2 • ρ2) (dvv , refl , dρρ) = fromtoDeriveVar x dρ ρ1 ρ2 dρρ fromtoDeriveConst : ∀ {τ} c → [ τ ] ⟦ deriveConst c ⟧Term ∅ from ⟦ c ⟧Const to ⟦ c ⟧Const fromtoDeriveConst plus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb = mn·pq=mp·nq {a1} {da} {b1} {db} fromtoDeriveConst minus da a1 a2 daa db b1 b2 dbb rewrite daa | dbb | sym (-m·-n=-mn {b1} {db}) = mn·pq=mp·nq {a1} {da} { - b1} { - db} fromtoDeriveConst cons da a1 a2 daa db b1 b2 dbb = daa , dbb fromtoDeriveConst fst (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = daa fromtoDeriveConst snd (da , db) (a1 , b1) (a2 , b2) (daa , dbb) = dbb fromtoDerive : ∀ {Γ} τ → (t : Term Γ τ) → {dρ : eCh Γ} {ρ1 ρ2 : ⟦ Γ ⟧Context} → [ Γ ]Γ dρ from ρ1 to ρ2 → [ τ ] (⟦ t ⟧ΔTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2) fromtoDerive τ (const c) {dρ} {ρ1} dρρ rewrite ⟦ c ⟧ΔConst-rewrite ρ1 dρ = fromtoDeriveConst c fromtoDerive τ (var x) dρρ = fromtoDeriveVar x _ _ _ dρρ fromtoDerive τ (app {σ} s t) dρρ rewrite sym (fit-sound t dρρ) = let fromToF = fromtoDerive (σ ⇒ τ) s dρρ in let fromToB = fromtoDerive σ t dρρ in fromToF _ _ _ fromToB fromtoDerive (σ ⇒ τ) (abs t) dρρ = λ da a1 a2 daa → fromtoDerive τ t (daa , refl , dρρ)
Hide deducible arguments
NewNew.agda: Hide deducible arguments
Agda
mit
inc-lc/ilc-agda
1ae2c016233ad8fa076a9b194e880387b889b8b0
Search/Searchable/Sum.agda
Search/Searchable/Sum.agda
open import Function.NP open import Data.Nat using (_+_) import Level as L import Function.Inverse.NP as FI import Function.Related as FR open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from) open import Function.Related.TypeIsomorphisms.NP open import Data.Product.NP open import Data.Sum open import Data.Fin using (Fin) open import Search.Type open import Search.Searchable open import Relation.Binary.Sum open import Relation.Binary.PropositionalEquality.NP using (_≡_ ; module ≡-Reasoning; cong) module Search.Searchable.Sum where infixr 4 _⊎-search_ _⊎-search_ : ∀ {m A B} → Search m A → Search m B → Search m (A ⊎ B) (searchᴬ ⊎-search searchᴮ) _∙_ f = searchᴬ _∙_ (f ∘ inj₁) ∙ searchᴮ _∙_ (f ∘ inj₂) _⊎-search-ind_ : ∀ {m p A B} {sᴬ : Search m A} {sᴮ : Search m B} → SearchInd p sᴬ → SearchInd p sᴮ → SearchInd p (sᴬ ⊎-search sᴮ) (Psᴬ ⊎-search-ind Psᴮ) P P∙ Pf = P∙ (Psᴬ (λ s → P (λ _ f → s _ (f ∘ inj₁))) P∙ (Pf ∘ inj₁)) (Psᴮ (λ s → P (λ _ f → s _ (f ∘ inj₂))) P∙ (Pf ∘ inj₂)) infixr 4 _⊎-sum_ _⊎-sum_ : ∀ {A B} → Sum A → Sum B → Sum (A ⊎ B) (sumᴬ ⊎-sum sumᴮ) f = sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂) module _ {A B} {sumᴬ : Sum A} {sumᴮ : Sum B} where sumᴬᴮ = sumᴬ ⊎-sum sumᴮ _⊎-adequate-sum_ : AdequateSum sumᴬ → AdequateSum sumᴮ → AdequateSum sumᴬᴮ (asumᴬ ⊎-adequate-sum asumᴮ) f = (Fin (sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂))) ↔⟨ FI.sym (Fin-⊎-+ _ _) ⟩ (Fin (sumᴬ (f ∘ inj₁)) ⊎ Fin (sumᴮ (f ∘ inj₂))) ↔⟨ asumᴬ (f ∘ inj₁) ⊎-cong asumᴮ (f ∘ inj₂) ⟩ (Σ A (Fin ∘ f ∘ inj₁) ⊎ Σ B (Fin ∘ f ∘ inj₂)) ↔⟨ FI.sym Σ⊎-distrib ⟩ Σ (A ⊎ B) (Fin ∘ f) ∎ where open FR.EquationalReasoning _⊎-μ_ : ∀ {A B} → Searchable A → Searchable B → Searchable (A ⊎ B) μA ⊎-μ μB = mk _ (search-ind μA ⊎-search-ind search-ind μB) (adequate-sum μA ⊎-adequate-sum adequate-sum μB) module _ {A B} {sᴬ : Search₁ A} {sᴮ : Search₁ B} where sᴬ⁺ᴮ = sᴬ ⊎-search sᴮ _⊎-focus_ : Focus sᴬ → Focus sᴮ → Focus sᴬ⁺ᴮ (fᴬ ⊎-focus fᴮ) (inj₁ x , y) = inj₁ (fᴬ (x , y)) (fᴬ ⊎-focus fᴮ) (inj₂ x , y) = inj₂ (fᴮ (x , y)) _⊎-unfocus_ : Unfocus sᴬ → Unfocus sᴮ → Unfocus sᴬ⁺ᴮ _⊎-unfocus_ fᴬ fᴮ (inj₁ x) = first inj₁ (fᴬ x) _⊎-unfocus_ fᴬ fᴮ (inj₂ y) = first inj₂ (fᴮ y) {- _⊎-focused_ : Focused sᴬ → Focused sᴮ → Focused {L.zero} sᴬ⁺ᴮ _⊎-focused_ fᴬ fᴮ {B} = inverses (to fᴬ ⊎-focus to fᴮ) (from fᴬ ⊎-unfocus from fᴮ) (⇒) (⇐) where ⇒ : (x : Σ (A ⊎ {!!}) {!!}) → _ ⇒ (x , y) = {!!} ⇐ : (x : sᴬ _⊎_ (B ∘ inj₁) ⊎ sᴮ _⊎_ (B ∘ inj₂)) → _ ⇐ (inj₁ x) = cong inj₁ {!!} ⇐ (inj₂ x) = cong inj₂ {!!} -} _⊎-lookup_ : Lookup sᴬ → Lookup sᴮ → Lookup (sᴬ ⊎-search sᴮ) (lookupᴬ ⊎-lookup lookupᴮ) (x , y) = [ lookupᴬ x , lookupᴮ y ] _⊎-reify_ : Reify sᴬ → Reify sᴮ → Reify (sᴬ ⊎-search sᴮ) (reifyᴬ ⊎-reify reifyᴮ) f = (reifyᴬ (f ∘ inj₁)) , (reifyᴮ (f ∘ inj₂)) -- -} -- -} -- -}
open import Function.NP open import Data.Nat using (_+_) import Level as L import Function.Inverse.NP as FI import Function.Related as FR open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from) open import Function.Related.TypeIsomorphisms.NP open import Data.Product.NP open import Data.Sum open import Data.Bits open import Data.Fin using (Fin) open import Search.Type open import Search.Searchable open import Relation.Binary.Sum import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_ ; module ≡-Reasoning; cong) module Search.Searchable.Sum where infixr 4 _⊎-search_ _⊎-search_ : ∀ {m A B} → Search m A → Search m B → Search m (A ⊎ B) (searchᴬ ⊎-search searchᴮ) _∙_ f = searchᴬ _∙_ (f ∘ inj₁) ∙ searchᴮ _∙_ (f ∘ inj₂) _⊎-search-ind_ : ∀ {m p A B} {sᴬ : Search m A} {sᴮ : Search m B} → SearchInd p sᴬ → SearchInd p sᴮ → SearchInd p (sᴬ ⊎-search sᴮ) (Psᴬ ⊎-search-ind Psᴮ) P P∙ Pf = P∙ (Psᴬ (λ s → P (λ _ f → s _ (f ∘ inj₁))) P∙ (Pf ∘ inj₁)) (Psᴮ (λ s → P (λ _ f → s _ (f ∘ inj₂))) P∙ (Pf ∘ inj₂)) infixr 4 _⊎-sum_ _⊎-sum_ : ∀ {A B} → Sum A → Sum B → Sum (A ⊎ B) (sumᴬ ⊎-sum sumᴮ) f = sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂) module _ {A B} {sumᴬ : Sum A} {sumᴮ : Sum B} where sumᴬᴮ = sumᴬ ⊎-sum sumᴮ _⊎-adequate-sum_ : AdequateSum sumᴬ → AdequateSum sumᴮ → AdequateSum sumᴬᴮ (asumᴬ ⊎-adequate-sum asumᴮ) f = (Fin (sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂))) ↔⟨ FI.sym (Fin-⊎-+ _ _) ⟩ (Fin (sumᴬ (f ∘ inj₁)) ⊎ Fin (sumᴮ (f ∘ inj₂))) ↔⟨ asumᴬ (f ∘ inj₁) ⊎-cong asumᴮ (f ∘ inj₂) ⟩ (Σ A (Fin ∘ f ∘ inj₁) ⊎ Σ B (Fin ∘ f ∘ inj₂)) ↔⟨ FI.sym Σ⊎-distrib ⟩ Σ (A ⊎ B) (Fin ∘ f) ∎ where open FR.EquationalReasoning _⊎-μ_ : ∀ {A B} → Searchable A → Searchable B → Searchable (A ⊎ B) μA ⊎-μ μB = mk _ (search-ind μA ⊎-search-ind search-ind μB) (adequate-sum μA ⊎-adequate-sum adequate-sum μB) module _ {A B} {sᴬ : Search₁ A} {sᴮ : Search₁ B} where sᴬ⁺ᴮ = sᴬ ⊎-search sᴮ _⊎-focus_ : Focus sᴬ → Focus sᴮ → Focus sᴬ⁺ᴮ (fᴬ ⊎-focus fᴮ) (inj₁ x , y) = inj₁ (fᴬ (x , y)) (fᴬ ⊎-focus fᴮ) (inj₂ x , y) = inj₂ (fᴮ (x , y)) _⊎-unfocus_ : Unfocus sᴬ → Unfocus sᴮ → Unfocus sᴬ⁺ᴮ _⊎-unfocus_ fᴬ fᴮ (inj₁ x) = first inj₁ (fᴬ x) _⊎-unfocus_ fᴬ fᴮ (inj₂ y) = first inj₂ (fᴮ y) {- _⊎-focused_ : Focused sᴬ → Focused sᴮ → Focused {L.zero} sᴬ⁺ᴮ _⊎-focused_ fᴬ fᴮ {B} = inverses (to fᴬ ⊎-focus to fᴮ) (from fᴬ ⊎-unfocus from fᴮ) (⇒) (⇐) where ⇒ : (x : Σ (A ⊎ {!!}) {!!}) → _ ⇒ (x , y) = {!!} ⇐ : (x : sᴬ _⊎_ (B ∘ inj₁) ⊎ sᴮ _⊎_ (B ∘ inj₂)) → _ ⇐ (inj₁ x) = cong inj₁ {!!} ⇐ (inj₂ x) = cong inj₂ {!!} -} _⊎-lookup_ : Lookup sᴬ → Lookup sᴮ → Lookup (sᴬ ⊎-search sᴮ) (lookupᴬ ⊎-lookup lookupᴮ) (x , y) = [ lookupᴬ x , lookupᴮ y ] _⊎-reify_ : Reify sᴬ → Reify sᴮ → Reify (sᴬ ⊎-search sᴮ) (reifyᴬ ⊎-reify reifyᴮ) f = (reifyᴬ (f ∘ inj₁)) , (reifyᴮ (f ∘ inj₂)) searchBit : ∀ {m} → Search m Bit searchBit _∙_ f = f 0b ∙ f 1b searchBit-ind : ∀ {m p} → SearchInd p {m} searchBit searchBit-ind _ _P∙_ Pf = Pf 0b P∙ Pf 1b μBit : Searchable Bit μBit = μ-iso (FI.sym Bit↔⊤⊎⊤) (μ⊤ ⊎-μ μ⊤) focusBit : ∀ {a} → Focus {a} searchBit focusBit (false , x) = inj₁ x focusBit (true , x) = inj₂ x focusedBit : Focused {L.zero} searchBit focusedBit {B} = inverses focusBit unfocus (⇒) (⇐) where open Searchable₁₁ searchBit-ind ⇒ : (x : Σ Bit B) → _ ⇒ (false , x) = ≡.refl ⇒ (true , x) = ≡.refl ⇐ : (x : B 0b ⊎ B 1b) → _ ⇐ (inj₁ x) = ≡.refl ⇐ (inj₂ x) = ≡.refl lookupBit : ∀ {a} → Lookup {a} searchBit lookupBit = proj -- -} -- -} -- -}
add bit
Searchable.Sum: add bit
Agda
bsd-3-clause
crypto-agda/crypto-agda
7540b79d7380f6d1c7ca7db983d990a2aab84b00
lib/Explore/GroupHomomorphism.agda
lib/Explore/GroupHomomorphism.agda
{-# OPTIONS --without-K #-} module Explore.GroupHomomorphism where open import Level open import Algebra.FunctionProperties open import Data.Product open import Function using (_∘_ ; flip) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Relation.Binary.PropositionalEquality.NP hiding (_∙_) open import Explore.Core open import Explore.Properties open import Explore.Sum record Group (G : Set) : Set where field _∙_ : G → G → G ε : G -_ : G → G -- laws field assoc : Associative _≡_ _∙_ identity : Identity _≡_ ε _∙_ inverse : Inverse _≡_ ε -_ _∙_ GroupHomomorphism : ∀ {A B : Set} → Group A → Group B →(A → B) → Set GroupHomomorphism GA GB f = ∀ x y → f (x + y) ≡ f x * f y where open Group GA renaming (_∙_ to _+_) open Group GB renaming (_∙_ to _*_) module _ {A B}(GA : Group A)(GB : Group B) (f : A → B) (exploreA : Explore zero A)(f-homo : GroupHomomorphism GA GB f) ([f] : B → A)(f-sur : ∀ b → f ([f] b) ≡ b) (explore-ext : ExploreExt exploreA) where open Group GA using (-_) renaming (_∙_ to _+_ ; ε to 0g) open Group GB using () renaming (_∙_ to _*_ ; ε to 1g ; -_ to 1/_) {- How all this is related to elgamal the Group GA is ℤq with modular addition as operation the Group GB is the cyclic group with order q f is g^, the proof only need that it is a group homomorphism and that it has a right inverse we require that the explore (for type A) function (should work with only summation) is Stable under addition of GA (notice that we have flip in there that is so that we don't need commutativity finally we require that the explore function respects extensionality -} {- I had some problems with using the standard library definiton of Groups so I rolled my own, therefor I need some boring proofs first -} help : ∀ x y → x ≡ (x * y) * 1/ y help x y = x ≡⟨ sym (proj₂ identity x) ⟩ x * 1g ≡⟨ cong (_*_ x) (sym (proj₂ inverse y)) ⟩ x * (y * 1/ y) ≡⟨ sym (assoc x y (1/ y)) ⟩ (x * y) * (1/ y) ∎ where open ≡-Reasoning open Group GB unique-1g : ∀ x y → x * y ≡ y → x ≡ 1g unique-1g x y eq = x ≡⟨ help x y ⟩ (x * y) * 1/ y ≡⟨ cong (flip _*_ (1/ y)) eq ⟩ y * 1/ y ≡⟨ proj₂ inverse y ⟩ 1g ∎ where open ≡-Reasoning open Group GB unique-/ : ∀ x y → x * y ≡ 1g → x ≡ 1/ y unique-/ x y eq = x ≡⟨ help x y ⟩ (x * y) * 1/ y ≡⟨ cong (flip _*_ (1/ y)) eq ⟩ 1g * 1/ y ≡⟨ proj₁ identity (1/ y) ⟩ 1/ y ∎ where open ≡-Reasoning open Group GB f-pres-ε : f 0g ≡ 1g f-pres-ε = unique-1g (f 0g) (f 0g) part where open ≡-Reasoning open Group GA part = f 0g * f 0g ≡⟨ sym (f-homo 0g 0g) ⟩ f (0g + 0g) ≡⟨ cong f (proj₁ identity 0g) ⟩ f 0g ∎ f-pres-inv : ∀ x → f (- x) ≡ 1/ f x f-pres-inv x = unique-/ (f (- x)) (f x) part where open ≡-Reasoning open Group GA hiding (-_) part = f (- x) * f x ≡⟨ sym (f-homo (- x) x) ⟩ f (- x + x) ≡⟨ cong f (proj₁ inverse x) ⟩ f 0g ≡⟨ f-pres-ε ⟩ 1g ∎ {- While this proof looks complicated it basically just adds inverse of m₀ and then adds m₁ (from image of f) we need the homomorphic property to pull out the values. -} module _ {X}(z : X)(op : X → X → X) (sui : ∀ k → StableUnder' exploreA z op (flip (Group._∙_ GA) k)) where -- this proof isn't actually any hard.. thm : ∀ (O : B → X) m₀ m₁ → exploreA z op (λ x → O (f x * m₀)) ≡ exploreA z op (λ x → O (f x * m₁)) thm O m₀ m₁ = explore (λ x → O (f x * m₀)) ≡⟨ sui (- [f] m₀) (λ x → O (f x * m₀)) ⟩ explore (λ x → O (f (x + - [f] m₀) * m₀)) ≡⟨ explore-ext z op (λ x → cong O (lemma1 x)) ⟩ explore (λ x → O (f x )) ≡⟨ sui ([f] m₁) (O ∘ f) ⟩ explore (λ x → O (f (x + [f] m₁))) ≡⟨ explore-ext z op (λ x → cong O (lemma2 x)) ⟩ explore (λ x → O (f x * m₁)) ∎ where open ≡-Reasoning explore = exploreA z op lemma1 : ∀ x → f (x + - [f] m₀) * m₀ ≡ f x lemma1 x rewrite f-homo x (- [f] m₀) | f-pres-inv ([f] m₀) | f-sur m₀ | Group.assoc GB (f x) (1/ m₀) m₀ | proj₁ (Group.inverse GB) m₀ | proj₂ (Group.identity GB) (f x) = refl lemma2 : ∀ x → f (x + [f] m₁) ≡ f x * m₁ lemma2 x rewrite f-homo x ([f] m₁) | f-sur m₁ = refl
{-# OPTIONS --without-K #-} module Explore.GroupHomomorphism where open import Level open import Algebra.FunctionProperties open import Data.Product open import Function using (_∘_ ; flip) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Relation.Binary.PropositionalEquality.NP hiding (_∙_) open import Explore.Core open import Explore.Properties open import Explore.Sum {- I had some problems with using the standard library definiton of Groups so I rolled my own, therefor I need some boring proofs first -} record Group (G : Set) : Set where field _∙_ : G → G → G ε : G -_ : G → G -- laws field assoc : Associative _≡_ _∙_ identity : Identity _≡_ ε _∙_ inverse : Inverse _≡_ ε -_ _∙_ -- derived property help : ∀ x y → x ≡ (x ∙ y) ∙ - y help x y = x ≡⟨ sym (proj₂ identity x) ⟩ x ∙ ε ≡⟨ cong (_∙_ x) (sym (proj₂ inverse y)) ⟩ x ∙ (y ∙ - y) ≡⟨ sym (assoc x y (- y)) ⟩ (x ∙ y) ∙ (- y) ∎ where open ≡-Reasoning unique-1g : ∀ x y → x ∙ y ≡ y → x ≡ ε unique-1g x y eq = x ≡⟨ help x y ⟩ (x ∙ y) ∙ - y ≡⟨ cong (flip _∙_ (- y)) eq ⟩ y ∙ - y ≡⟨ proj₂ inverse y ⟩ ε ∎ where open ≡-Reasoning unique-/ : ∀ x y → x ∙ y ≡ ε → x ≡ - y unique-/ x y eq = x ≡⟨ help x y ⟩ (x ∙ y) ∙ - y ≡⟨ cong (flip _∙_ (- y)) eq ⟩ ε ∙ - y ≡⟨ proj₁ identity (- y) ⟩ - y ∎ where open ≡-Reasoning module _ {A B : Set}(GA : Group A)(GB : Group B) where open Group GA using (-_) renaming (_∙_ to _+_; ε to 0g) open Group GB using (unique-1g ; unique-/) renaming (_∙_ to _*_; ε to 1g; -_ to 1/_) GroupHomomorphism : (A → B) → Set GroupHomomorphism f = ∀ x y → f (x + y) ≡ f x * f y module GroupHomomorphismProp {f}(f-homo : GroupHomomorphism f) where f-pres-ε : f 0g ≡ 1g f-pres-ε = unique-1g (f 0g) (f 0g) part where open ≡-Reasoning open Group GA using (identity) part = f 0g * f 0g ≡⟨ sym (f-homo 0g 0g) ⟩ f (0g + 0g) ≡⟨ cong f (proj₁ identity 0g) ⟩ f 0g ∎ f-pres-inv : ∀ x → f (- x) ≡ 1/ f x f-pres-inv x = unique-/ (f (- x)) (f x) part where open ≡-Reasoning open Group GA using (inverse) part = f (- x) * f x ≡⟨ sym (f-homo (- x) x) ⟩ f (- x + x) ≡⟨ cong f (proj₁ inverse x) ⟩ f 0g ≡⟨ f-pres-ε ⟩ 1g ∎ module _ {A B}(GA : Group A)(GB : Group B) (f : A → B) (exploreA : Explore zero A)(f-homo : GroupHomomorphism GA GB f) ([f] : B → A)(f-sur : ∀ b → f ([f] b) ≡ b) (explore-ext : ExploreExt exploreA) where open Group GA using (-_) renaming (_∙_ to _+_ ; ε to 0g) open Group GB using () renaming (_∙_ to _*_ ; ε to 1g ; -_ to 1/_) open GroupHomomorphismProp GA GB f-homo {- How all this is related to elgamal the Group GA is ℤq with modular addition as operation the Group GB is the cyclic group with order q f is g^, the proof only need that it is a group homomorphism and that it has a right inverse we require that the explore (for type A) function (should work with only summation) is Stable under addition of GA (notice that we have flip in there that is so that we don't need commutativity finally we require that the explore function respects extensionality -} {- While this proof looks complicated it basically just adds inverse of m₀ and then adds m₁ (from image of f) we need the homomorphic property to pull out the values. -} module _ {X}(z : X)(op : X → X → X) (sui : ∀ k → StableUnder' exploreA z op (flip (Group._∙_ GA) k)) where -- this proof isn't actually any hard.. thm : ∀ (O : B → X) m₀ m₁ → exploreA z op (λ x → O (f x * m₀)) ≡ exploreA z op (λ x → O (f x * m₁)) thm O m₀ m₁ = explore (λ x → O (f x * m₀)) ≡⟨ sui (- [f] m₀) (λ x → O (f x * m₀)) ⟩ explore (λ x → O (f (x + - [f] m₀) * m₀)) ≡⟨ explore-ext z op (λ x → cong O (lemma1 x)) ⟩ explore (λ x → O (f x )) ≡⟨ sui ([f] m₁) (O ∘ f) ⟩ explore (λ x → O (f (x + [f] m₁))) ≡⟨ explore-ext z op (λ x → cong O (lemma2 x)) ⟩ explore (λ x → O (f x * m₁)) ∎ where open ≡-Reasoning explore = exploreA z op lemma1 : ∀ x → f (x + - [f] m₀) * m₀ ≡ f x lemma1 x rewrite f-homo x (- [f] m₀) | f-pres-inv ([f] m₀) | f-sur m₀ | Group.assoc GB (f x) (1/ m₀) m₀ | proj₁ (Group.inverse GB) m₀ | proj₂ (Group.identity GB) (f x) = refl lemma2 : ∀ x → f (x + [f] m₁) ≡ f x * m₁ lemma2 x rewrite f-homo x ([f] m₁) | f-sur m₁ = refl
refactor grouphomomorphism
refactor grouphomomorphism
Agda
bsd-3-clause
crypto-agda/explore
e4762e8af8591526fcb5395b9c63888ed89cadd2
Syntax/Type/Plotkin.agda
Syntax/Type/Plotkin.agda
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift₀ : ∀ {B} → (B → B) → (Type B → Type B) lift₀ f (base ι) = base (f ι) lift₀ f (σ ⇒ τ) = let Δ = lift₀ f in σ ⇒ Δ σ ⇒ Δ τ -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift₁ : ∀ {B} → (B → Type B) → (Type B → Type B) lift₁ f (base ι) = f ι lift₁ f (σ ⇒ τ) = let Δ = lift₁ f in σ ⇒ Δ σ ⇒ Δ τ
module Syntax.Type.Plotkin where -- Types for language description à la Plotkin (LCF as PL) -- -- Given base types, we build function types. infixr 5 _⇒_ data Type (B : Set {- of base types -}) : Set where base : (ι : B) → Type B _⇒_ : (σ : Type B) → (τ : Type B) → Type B -- Lift (Δ : B → Type B) to (Δtype : Type B → Type B) -- according to Δ (σ ⇒ τ) = σ ⇒ Δ σ ⇒ Δ τ lift₁ : ∀ {B} → (B → Type B) → (Type B → Type B) lift₁ f (base ι) = f ι lift₁ f (σ ⇒ τ) = let Δ = lift₁ f in σ ⇒ Δ σ ⇒ Δ τ -- Note: the above is monadic bind with a different argument order. open import Function -- Variant of lift₁ for (Δ : B → B). lift₀ : ∀ {B} → (B → B) → (Type B → Type B) lift₀ f = lift₁ $ base ∘ f -- If lift₁ is a monadic bind, this is fmap, -- and base is return. -- -- Similarly, for collections map can be defined from flatMap, like lift₀ can be -- defined in terms of lift₁.
Remove code duplication
agda: Remove code duplication The current code defines two overloads of the same function independently, with duplicated documentation. However, one can be defined in terms of the other. Note: I could not fully test this code, since it is not yet clear which file is the main one. I typechecked Syntax.Language.Atlas, I hope this was enough. I couldn't test this change because of #41: without fixing it, either I risk breaking code, or I can't fix issues I spot. Old-commit-hash: b481a293cbc77ca4b2981761c15e7771d95216af
Agda
mit
inc-lc/ilc-agda
23339dd5a9e56c3c31d42252c4020b716ec77725
Base/Change/Algebra.agda
Base/Change/Algebra.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Change Structures. -- -- This module defines the notion of change structures, -- as well as change structures for groups, functions and lists. -- -- This module corresponds to Section 2 of the PLDI paper. ------------------------------------------------------------------------ module Base.Change.Algebra where open import Relation.Binary.PropositionalEquality open import Level -- Change Algebras -- =============== -- -- In the paper, change algebras are called "change structures" -- and they are described in Section 2.1. We follow the design of -- the Agda standard library and define change algebras as two -- records, so Definition 2.1 from the PLDI paper maps to the -- records IsChangeAlgebra and ChangeAlgebra. -- -- A value of type (IsChangeAlgebra Change update diff) proves that -- Change, update and diff together form a change algebra. -- -- A value of type (ChangeAlgebra Carrier) contains the necessary -- ingredients to create a change algebra for a carrier set. -- -- In the paper, Carrier is called V (Def. 2.1a), -- Change is called Δ (Def. 2.1b), -- update is written as infix ⊕ (Def. 2.1c), -- diff is written as infix ⊝ (Def. 2.1d), -- and update-diff is specified in Def. 2.1e. record IsChangeAlgebra {c} {d} {Carrier : Set c} (Change : Carrier → Set d) (update : (v : Carrier) (dv : Change v) → Carrier) (diff : (u v : Carrier) → Change v) : Set (c ⊔ d) where field update-diff : ∀ u v → update v (diff u v) ≡ u -- In the paper, this is Def. 2.2. nil : ∀ v → Change v nil v = diff v v -- In the paper, this is Lemma 2.3. update-nil : ∀ v → update v (nil v) ≡ v update-nil v = update-diff v v -- abbrevitations before : ∀ {v} → Change v → Carrier before {v} _ = v after : ∀ {v} → Change v → Carrier after {v} dv = update v dv record ChangeAlgebra {c} ℓ (Carrier : Set c) : Set (c ⊔ suc ℓ) where field Change : Carrier → Set ℓ update : (v : Carrier) (dv : Change v) → Carrier diff : (u v : Carrier) → Change v isChangeAlgebra : IsChangeAlgebra Change update diff infixl 6 update diff open IsChangeAlgebra isChangeAlgebra public -- The following open ... public statement lets us use infix ⊞ -- and ⊟ for update and diff. In the paper, we use infix ⊕ and -- ⊝. open ChangeAlgebra {{...}} public using ( update-diff ; update-nil ; nil ; before ; after ) renaming ( Change to Δ ; update to _⊞_ ; diff to _⊟_ ) -- Families of Change Algebras -- =========================== -- -- This is some Agda machinery to allow subscripting change -- algebra operations to avoid ambiguity. In the paper, -- we simply write (in the paragraph after Def. 2.1): -- -- We overload operators ∆, ⊝ and ⊕ to refer to the -- corresponding operations of different change structures; we -- will subscript these symbols when needed to prevent -- ambiguity. -- -- The following definitions implement this idea formally. record ChangeAlgebraFamily {a p} ℓ {A : Set a} (P : A → Set p): Set (suc ℓ ⊔ p ⊔ a) where constructor family field change-algebra : ∀ x → ChangeAlgebra ℓ (P x) module _ x where open ChangeAlgebra (change-algebra x) public module Family = ChangeAlgebraFamily {{...}} open Family public using ( ) renaming ( Change to Δ₍_₎ ; nil to nil₍_₎ ; update-diff to update-diff₍_₎ ; update-nil to update-nil₍_₎ ; change-algebra to change-algebra₍_₎ ; before to before₍_₎ ; after to after₍_₎ ) infixl 6 update′ diff′ update′ = Family.update syntax update′ x v dv = v ⊞₍ x ₎ dv diff′ = Family.diff syntax diff′ x u v = u ⊟₍ x ₎ v -- Derivatives -- =========== -- -- This corresponds to Def. 2.4 in the paper. Derivative : ∀ {a b c d} {A : Set a} {B : Set b} → {{CA : ChangeAlgebra c A}} → {{CB : ChangeAlgebra d B}} → (f : A → B) → (df : (a : A) (da : Δ a) → Δ (f a)) → Set (a ⊔ b ⊔ c) Derivative f df = ∀ a da → f a ⊞ df a da ≡ f (a ⊞ da) -- This is a variant of Derivative for change algebra families. Derivative₍_,_₎ : ∀ {a b p q c d} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} → {{CP : ChangeAlgebraFamily c P}} → {{CQ : ChangeAlgebraFamily d Q}} → (x : A) → (y : B) → (f : P x → Q y) → (df : (px : P x) (dpx : Δ₍ x ₎ px) → Δ₍ y ₎ (f px)) → Set (p ⊔ q ⊔ c) Derivative₍ x , y ₎ f df = Derivative f df where CPx = change-algebra₍ x ₎ CQy = change-algebra₍ y ₎ -- Abelian Groups Induce Change Algebras -- ===================================== -- -- In the paper, as the first example for change structures after -- Def. 2.1, we mention that "each abelian group ... induces a -- change structure". This is the formalization of this result. -- -- The module GroupChanges below takes a proof that A forms an -- abelian group and provides a changeAlgebra for A. The proof of -- Def 2.1e is by equational reasoning using the group axioms, in -- the definition of changeAlgebra.isChangeAlgebra.update-diff. open import Algebra.Structures open import Data.Product open import Function module GroupChanges {a} (A : Set a) {_⊕_} {ε} {_⁻¹} {{isAbelianGroup : IsAbelianGroup {A = A} _≡_ _⊕_ ε _⁻¹}} where open IsAbelianGroup isAbelianGroup hiding ( refl ) renaming ( _-_ to _⊝_ ; ∙-cong to _⟨⊕⟩_ ) open ≡-Reasoning changeAlgebra : ChangeAlgebra a A changeAlgebra = record { Change = const A ; update = _⊕_ ; diff = _⊝_ ; isChangeAlgebra = record { update-diff = λ u v → begin v ⊕ (u ⊝ v) ≡⟨ comm _ _ ⟩ (u ⊝ v ) ⊕ v ≡⟨⟩ (u ⊕ (v ⁻¹)) ⊕ v ≡⟨ assoc _ _ _ ⟩ u ⊕ ((v ⁻¹) ⊕ v) ≡⟨ refl ⟨⊕⟩ proj₁ inverse v ⟩ u ⊕ ε ≡⟨ proj₂ identity u ⟩ u ∎ } } -- Function Changes -- ================ -- -- This is one of our most important results: Change structures -- can be lifted to function spaces. We formalize this as a module -- FunctionChanges that takes the change algebras for A and B as -- arguments, and provides a changeAlgebra for (A → B). The proofs -- are by equational reasoning using 2.1e for A and B. module FunctionChanges {a} {b} {c} {d} (A : Set a) (B : Set b) {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where -- This corresponds to Definition 2.5 in the paper. record FunctionChange (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where constructor cons field -- Definition 2.5a apply : (a : A) (da : Δ a) → Δ (f a) -- Definition 2.5b. -- (for some reason, the version in the paper has the arguments of ≡ -- flipped. Since ≡ is symmetric, this doesn't matter). correct : (a : A) (da : Δ a) → f (a ⊞ da) ⊞ apply (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ apply a da open FunctionChange public open ≡-Reasoning open import Postulate.Extensionality changeAlgebra : ChangeAlgebra (a ⊔ b ⊔ c ⊔ d) (A → B) changeAlgebra = record { Change = FunctionChange -- in the paper, update and diff below are in Def. 2.6 ; update = λ f df a → f a ⊞ apply df a (nil a) ; diff = λ g f → record { apply = λ a da → g (a ⊞ da) ⊟ f a -- the proof of correct is the first half of what we -- have to prove for Theorem 2.7. ; correct = λ a da → begin f (a ⊞ da) ⊞ (g ((a ⊞ da) ⊞ nil (a ⊞ da)) ⊟ f (a ⊞ da)) ≡⟨ cong (λ □ → f (a ⊞ da) ⊞ (g □ ⊟ f (a ⊞ da))) (update-nil (a ⊞ da)) ⟩ f (a ⊞ da) ⊞ (g (a ⊞ da) ⊟ f (a ⊞ da)) ≡⟨ update-diff (g (a ⊞ da)) (f (a ⊞ da)) ⟩ g (a ⊞ da) ≡⟨ sym (update-diff (g (a ⊞ da)) (f a)) ⟩ f a ⊞ (g (a ⊞ da) ⊟ f a) ∎ } ; isChangeAlgebra = record -- the proof of update-diff is the second half of what -- we have to prove for Theorem 2.7. { update-diff = λ g f → ext (λ a → begin f a ⊞ (g (a ⊞ nil a) ⊟ f a) ≡⟨ cong (λ □ → f a ⊞ (g □ ⊟ f a)) (update-nil a) ⟩ f a ⊞ (g a ⊟ f a) ≡⟨ update-diff (g a) (f a) ⟩ g a ∎) } } -- This is Lemma 2.8 in the paper. incrementalization : ∀ (f : A → B) df a da → (f ⊞ df) (a ⊞ da) ≡ f a ⊞ apply df a da incrementalization f df a da = correct df a da -- This is Theorem 2.9 in the paper. nil-is-derivative : ∀ (f : A → B) → Derivative f (apply (nil f)) nil-is-derivative f a da = begin f a ⊞ apply (nil f) a da ≡⟨ sym (incrementalization f (nil f) a da) ⟩ (f ⊞ nil f) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) (update-nil f) ⟩ f (a ⊞ da) ∎ -- List (== Environment) Changes -- ============================= -- -- Here, we define a change structure on environments, given a -- change structure on the values in the environments. In the -- paper, we describe this in Definition 3.5. But note that this -- Agda formalization uses de Bruijn indices instead of names, so -- environments are just lists. Therefore, when we use Definition -- 3.5 in the paper, in this formalization, we use the list-like -- change structure defined here. open import Data.List open import Data.List.All data All′ {a p q} {A : Set a} {P : A → Set p} (Q : {x : A} → P x → Set q) : {xs : List A} (pxs : All P xs) → Set (p ⊔ q ⊔ a) where [] : All′ Q [] _∷_ : ∀ {x xs} {px : P x} {pxs : All P xs} (qx : Q px) (qxs : All′ Q pxs) → All′ Q (px ∷ pxs) module ListChanges {a} {c} {A : Set a} (P : A → Set) {{C : ChangeAlgebraFamily c P}} where update-all : ∀ {xs} → (pxs : All P xs) → All′ (Δ₍ _ ₎) pxs → All P xs update-all {[]} [] [] = [] update-all {x ∷ xs} (px ∷ pxs) (dpx ∷ dpxs) = (px ⊞₍ x ₎ dpx) ∷ update-all pxs dpxs diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → All′ (Δ₍ _ ₎) pxs diff-all [] [] = [] diff-all (px′ ∷ pxs′) (px ∷ pxs) = (px′ ⊟₍ _ ₎ px) ∷ diff-all pxs′ pxs update-diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → update-all pxs (diff-all pxs′ pxs) ≡ pxs′ update-diff-all [] [] = refl update-diff-all (px′ ∷ pxs′) (px ∷ pxs) = cong₂ _∷_ (update-diff₍ _ ₎ px′ px) (update-diff-all pxs′ pxs) changeAlgebra : ChangeAlgebraFamily (c ⊔ a) (All P) changeAlgebra = record { change-algebra = λ xs → record { Change = All′ Δ₍ _ ₎ ; update = update-all ; diff = diff-all ; isChangeAlgebra = record { update-diff = update-diff-all } } }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Change Structures. -- -- This module defines the notion of change structures, -- as well as change structures for groups, functions and lists. -- -- This module corresponds to Section 2 of the PLDI paper. ------------------------------------------------------------------------ module Base.Change.Algebra where open import Relation.Binary.PropositionalEquality open import Level -- Change Algebras -- =============== -- -- In the paper, change algebras are called "change structures" -- and they are described in Section 2.1. We follow the design of -- the Agda standard library and define change algebras as two -- records, so Definition 2.1 from the PLDI paper maps to the -- records IsChangeAlgebra and ChangeAlgebra. -- -- A value of type (IsChangeAlgebra Change update diff) proves that -- Change, update and diff together form a change algebra. -- -- A value of type (ChangeAlgebra Carrier) contains the necessary -- ingredients to create a change algebra for a carrier set. -- -- In the paper, Carrier is called V (Def. 2.1a), -- Change is called Δ (Def. 2.1b), -- update is written as infix ⊕ (Def. 2.1c), -- diff is written as infix ⊝ (Def. 2.1d), -- and update-diff is specified in Def. 2.1e. record IsChangeAlgebra {c} {d} {Carrier : Set c} (Change : Carrier → Set d) (update : (v : Carrier) (dv : Change v) → Carrier) (diff : (u v : Carrier) → Change v) : Set (c ⊔ d) where field update-diff : ∀ u v → update v (diff u v) ≡ u -- In the paper, this is Def. 2.2. nil : ∀ v → Change v nil v = diff v v -- In the paper, this is Lemma 2.3. update-nil : ∀ v → update v (nil v) ≡ v update-nil v = update-diff v v -- abbreviations before : ∀ {v} → Change v → Carrier before {v} _ = v after : ∀ {v} → Change v → Carrier after {v} dv = update v dv record ChangeAlgebra {c} ℓ (Carrier : Set c) : Set (c ⊔ suc ℓ) where field Change : Carrier → Set ℓ update : (v : Carrier) (dv : Change v) → Carrier diff : (u v : Carrier) → Change v isChangeAlgebra : IsChangeAlgebra Change update diff infixl 6 update diff open IsChangeAlgebra isChangeAlgebra public -- The following open ... public statement lets us use infix ⊞ -- and ⊟ for update and diff. In the paper, we use infix ⊕ and -- ⊝. open ChangeAlgebra {{...}} public using ( update-diff ; update-nil ; nil ; before ; after ) renaming ( Change to Δ ; update to _⊞_ ; diff to _⊟_ ) -- Families of Change Algebras -- =========================== -- -- This is some Agda machinery to allow subscripting change -- algebra operations to avoid ambiguity. In the paper, -- we simply write (in the paragraph after Def. 2.1): -- -- We overload operators ∆, ⊝ and ⊕ to refer to the -- corresponding operations of different change structures; we -- will subscript these symbols when needed to prevent -- ambiguity. -- -- The following definitions implement this idea formally. record ChangeAlgebraFamily {a p} ℓ {A : Set a} (P : A → Set p): Set (suc ℓ ⊔ p ⊔ a) where constructor family field change-algebra : ∀ x → ChangeAlgebra ℓ (P x) module _ x where open ChangeAlgebra (change-algebra x) public module Family = ChangeAlgebraFamily {{...}} open Family public using ( ) renaming ( Change to Δ₍_₎ ; nil to nil₍_₎ ; update-diff to update-diff₍_₎ ; update-nil to update-nil₍_₎ ; change-algebra to change-algebra₍_₎ ; before to before₍_₎ ; after to after₍_₎ ) infixl 6 update′ diff′ update′ = Family.update syntax update′ x v dv = v ⊞₍ x ₎ dv diff′ = Family.diff syntax diff′ x u v = u ⊟₍ x ₎ v -- Derivatives -- =========== -- -- This corresponds to Def. 2.4 in the paper. Derivative : ∀ {a b c d} {A : Set a} {B : Set b} → {{CA : ChangeAlgebra c A}} → {{CB : ChangeAlgebra d B}} → (f : A → B) → (df : (a : A) (da : Δ a) → Δ (f a)) → Set (a ⊔ b ⊔ c) Derivative f df = ∀ a da → f a ⊞ df a da ≡ f (a ⊞ da) -- This is a variant of Derivative for change algebra families. Derivative₍_,_₎ : ∀ {a b p q c d} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} → {{CP : ChangeAlgebraFamily c P}} → {{CQ : ChangeAlgebraFamily d Q}} → (x : A) → (y : B) → (f : P x → Q y) → (df : (px : P x) (dpx : Δ₍ x ₎ px) → Δ₍ y ₎ (f px)) → Set (p ⊔ q ⊔ c) Derivative₍ x , y ₎ f df = Derivative f df where CPx = change-algebra₍ x ₎ CQy = change-algebra₍ y ₎ -- Abelian Groups Induce Change Algebras -- ===================================== -- -- In the paper, as the first example for change structures after -- Def. 2.1, we mention that "each abelian group ... induces a -- change structure". This is the formalization of this result. -- -- The module GroupChanges below takes a proof that A forms an -- abelian group and provides a changeAlgebra for A. The proof of -- Def 2.1e is by equational reasoning using the group axioms, in -- the definition of changeAlgebra.isChangeAlgebra.update-diff. open import Algebra.Structures open import Data.Product open import Function module GroupChanges {a} (A : Set a) {_⊕_} {ε} {_⁻¹} {{isAbelianGroup : IsAbelianGroup {A = A} _≡_ _⊕_ ε _⁻¹}} where open IsAbelianGroup isAbelianGroup hiding ( refl ) renaming ( _-_ to _⊝_ ; ∙-cong to _⟨⊕⟩_ ) open ≡-Reasoning changeAlgebra : ChangeAlgebra a A changeAlgebra = record { Change = const A ; update = _⊕_ ; diff = _⊝_ ; isChangeAlgebra = record { update-diff = λ u v → begin v ⊕ (u ⊝ v) ≡⟨ comm _ _ ⟩ (u ⊝ v ) ⊕ v ≡⟨⟩ (u ⊕ (v ⁻¹)) ⊕ v ≡⟨ assoc _ _ _ ⟩ u ⊕ ((v ⁻¹) ⊕ v) ≡⟨ refl ⟨⊕⟩ proj₁ inverse v ⟩ u ⊕ ε ≡⟨ proj₂ identity u ⟩ u ∎ } } -- Function Changes -- ================ -- -- This is one of our most important results: Change structures -- can be lifted to function spaces. We formalize this as a module -- FunctionChanges that takes the change algebras for A and B as -- arguments, and provides a changeAlgebra for (A → B). The proofs -- are by equational reasoning using 2.1e for A and B. module FunctionChanges {a} {b} {c} {d} (A : Set a) (B : Set b) {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where -- This corresponds to Definition 2.6 in the paper. record FunctionChange (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where constructor cons field -- Definition 2.6a apply : (a : A) (da : Δ a) → Δ (f a) -- Definition 2.6b. -- (for some reason, the version in the paper has the arguments of ≡ -- flipped. Since ≡ is symmetric, this doesn't matter). correct : (a : A) (da : Δ a) → f (a ⊞ da) ⊞ apply (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ apply a da open FunctionChange public open ≡-Reasoning open import Postulate.Extensionality changeAlgebra : ChangeAlgebra (a ⊔ b ⊔ c ⊔ d) (A → B) changeAlgebra = record { Change = FunctionChange -- in the paper, update and diff below are in Def. 2.7 ; update = λ f df a → f a ⊞ apply df a (nil a) ; diff = λ g f → record { apply = λ a da → g (a ⊞ da) ⊟ f a -- the proof of correct is the first half of what we -- have to prove for Theorem 2.7. ; correct = λ a da → begin f (a ⊞ da) ⊞ (g ((a ⊞ da) ⊞ nil (a ⊞ da)) ⊟ f (a ⊞ da)) ≡⟨ cong (λ □ → f (a ⊞ da) ⊞ (g □ ⊟ f (a ⊞ da))) (update-nil (a ⊞ da)) ⟩ f (a ⊞ da) ⊞ (g (a ⊞ da) ⊟ f (a ⊞ da)) ≡⟨ update-diff (g (a ⊞ da)) (f (a ⊞ da)) ⟩ g (a ⊞ da) ≡⟨ sym (update-diff (g (a ⊞ da)) (f a)) ⟩ f a ⊞ (g (a ⊞ da) ⊟ f a) ∎ } ; isChangeAlgebra = record -- the proof of update-diff is the second half of what -- we have to prove for Theorem 2.8. { update-diff = λ g f → ext (λ a → begin f a ⊞ (g (a ⊞ nil a) ⊟ f a) ≡⟨ cong (λ □ → f a ⊞ (g □ ⊟ f a)) (update-nil a) ⟩ f a ⊞ (g a ⊟ f a) ≡⟨ update-diff (g a) (f a) ⟩ g a ∎) } } -- This is Theorem 2.9 in the paper. incrementalization : ∀ (f : A → B) df a da → (f ⊞ df) (a ⊞ da) ≡ f a ⊞ apply df a da incrementalization f df a da = correct df a da -- This is Theorem 2.10 in the paper. nil-is-derivative : ∀ (f : A → B) → Derivative f (apply (nil f)) nil-is-derivative f a da = begin f a ⊞ apply (nil f) a da ≡⟨ sym (incrementalization f (nil f) a da) ⟩ (f ⊞ nil f) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) (update-nil f) ⟩ f (a ⊞ da) ∎ -- List (== Environment) Changes -- ============================= -- -- Here, we define a change structure on environments, given a -- change structure on the values in the environments. In the -- paper, we describe this in Definition 3.5. But note that this -- Agda formalization uses de Bruijn indices instead of names, so -- environments are just lists. Therefore, when we use Definition -- 3.5 in the paper, in this formalization, we use the list-like -- change structure defined here. open import Data.List open import Data.List.All data All′ {a p q} {A : Set a} {P : A → Set p} (Q : {x : A} → P x → Set q) : {xs : List A} (pxs : All P xs) → Set (p ⊔ q ⊔ a) where [] : All′ Q [] _∷_ : ∀ {x xs} {px : P x} {pxs : All P xs} (qx : Q px) (qxs : All′ Q pxs) → All′ Q (px ∷ pxs) module ListChanges {a} {c} {A : Set a} (P : A → Set) {{C : ChangeAlgebraFamily c P}} where update-all : ∀ {xs} → (pxs : All P xs) → All′ (Δ₍ _ ₎) pxs → All P xs update-all {[]} [] [] = [] update-all {x ∷ xs} (px ∷ pxs) (dpx ∷ dpxs) = (px ⊞₍ x ₎ dpx) ∷ update-all pxs dpxs diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → All′ (Δ₍ _ ₎) pxs diff-all [] [] = [] diff-all (px′ ∷ pxs′) (px ∷ pxs) = (px′ ⊟₍ _ ₎ px) ∷ diff-all pxs′ pxs update-diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → update-all pxs (diff-all pxs′ pxs) ≡ pxs′ update-diff-all [] [] = refl update-diff-all (px′ ∷ pxs′) (px ∷ pxs) = cong₂ _∷_ (update-diff₍ _ ₎ px′ px) (update-diff-all pxs′ pxs) changeAlgebra : ChangeAlgebraFamily (c ⊔ a) (All P) changeAlgebra = record { change-algebra = λ xs → record { Change = All′ Δ₍ _ ₎ ; update = update-all ; diff = diff-all ; isChangeAlgebra = record { update-diff = update-diff-all } } }
Update references to paper
Update references to paper During revision, I added Lemma 2.5 to the paper, changing the numbering. This commits updates the numbering in the formalization.
Agda
mit
inc-lc/ilc-agda
2f337fa6c912b4b71f8a6539911608241ebc8524
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ s t → app₂ diffσ s t _⊝τ_ = λ s t → app₂ diffτ s t _⊕σ_ = λ t Δt → app₂ applyσ Δt t _⊕τ_ = λ t Δt → app₂ applyτ Δt t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
Use helpers for nested applications.
Use helpers for nested applications. Old-commit-hash: e4c7562ec14ff04d00f64f84b95725baa11a85ca
Agda
mit
inc-lc/ilc-agda
561e54d6fa752c3e41e0261fcb95b5fe132461b5
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ lift-η-const constant = curryTermConstructor (const constant)
Rename lift-η-const-rec to curryTermConstructor.
Rename lift-η-const-rec to curryTermConstructor. Also delete the frivolous comment, which is no longer necessary now that curryTermConstructor has a descriptive name and the matching type signature. Old-commit-hash: bcd82c9b32ab89ebe5c1badbec2d5714d0fce9bf
Agda
mit
inc-lc/ilc-agda
6e6a81d4cd5e6747138da920db56cf5c044c974c
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Changes open import ChangeContexts -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: valid-Δ : {T : Type} → ⟦ T ⟧ → ⟦ Δ-Type T ⟧ → Set valid-Δ {bool} v dv = ⊤ valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) → valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) -- LIFTING terms into Δ-Contexts lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′) -- PROPERTIES of lift-term lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) → ⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in begin ⟦ lift-term {{Γ′}} t ⟧ ρ ≡⟨⟩ ⟦ weaken Γ″ t ⟧ ρ ≡⟨ weaken-sound t ρ ⟩ ⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ) ≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩ ⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ)) ≡⟨⟩ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) ∎ where open ≡-Reasoning -- PROPERTIES of Δ Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) → let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t)) Δ-abs t = ext-t (λ ρ → refl) Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) → Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in begin ⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′ ≡⟨⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {{Γ′}} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨⟩ ⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′ ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Changes open import ChangeContexts -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set valid-Δ {bool} v dv = ⊤ valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) → valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) -- LIFTING terms into Δ-Contexts lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′) -- PROPERTIES of lift-term lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) → ⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in begin ⟦ lift-term {{Γ′}} t ⟧ ρ ≡⟨⟩ ⟦ weaken Γ″ t ⟧ ρ ≡⟨ weaken-sound t ρ ⟩ ⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ) ≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩ ⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ)) ≡⟨⟩ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) ∎ where open ≡-Reasoning -- PROPERTIES of Δ Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) → let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t)) Δ-abs t = ext-t (λ ρ → refl) Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) → Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in begin ⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′ ≡⟨⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {{Γ′}} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨⟩ ⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′ ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
rename parameter
agda: rename parameter As suggested by Tillmann. Old-commit-hash: 3b2f1506d9fc2595f06fb0d8e57a526bc30b03ac
Agda
mit
inc-lc/ilc-agda
b50b0f77764d63042aa5a88075d4320129b3681a
Syntactic/Terms/Total.agda
Syntactic/Terms/Total.agda
module Syntactic.Terms.Total where -- TERMS with a primitive for TOTAL DERIVATIVES -- -- This module defines the syntax of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Syntactic.Types open import Syntactic.Contexts Type open import Changes open import ChangeContexts open import Relation.Binary.PropositionalEquality -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- `Δ t` describes how t changes if its free variables or arguments change Δ : ∀ {Γ τ} → (t : Term Γ τ) → Term (Δ-Context Γ) (Δ-Type τ) weakenOne : ∀ Γ₁ τ₂ {Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ (τ₂ • Γ₃)) τ substTerm : ∀ {τ Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Term Γ₁ τ → Term Γ₂ τ substTerm {τ} {Γ₁} {Γ₂} ≡₁ t = subst (λ Γ → Term Γ τ) ≡₁ t
module Syntactic.Terms.Total where -- TERMS with a primitive for TOTAL DERIVATIVES -- -- This module defines the syntax of terms that support a -- primitive (Δ e) for computing the total derivative according -- to all free variables in e and all future arguments of e if e -- is a function. open import Syntactic.Types open import Syntactic.Contexts Type open import Changes open import ChangeContexts open import Relation.Binary.PropositionalEquality -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {τ₁ τ₂ Γ} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {τ₁ τ₂ Γ} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- `Δ t` describes how t changes if its free variables or arguments change Δ : ∀ {Γ τ} → (t : Term Γ τ) → Term (Δ-Context Γ) (Δ-Type τ) weakenOne : ∀ Γ₁ τ₂ {Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ (τ₂ • Γ₃)) τ substTerm : ∀ {τ Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Term Γ₁ τ → Term Γ₂ τ substTerm {τ} {Γ₁} {Γ₂} ≡₁ t = subst (λ Γ → Term Γ τ) ≡₁ t
Change order of implicit arguments of term constructors.
Change order of implicit arguments of term constructors. This simplifies extracting the argument type from a term of function type. Old-commit-hash: 2742a31a130e9d01c2283f3e7cb7fae6102a4062
Agda
mit
inc-lc/ilc-agda
53ffa41592e8de74ad057626e193d26cc8e3b78b
Theorem/Groups-Nehemiah.agda
Theorem/Groups-Nehemiah.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- About the group structure of integers and bags for Nehemiah plugin. ------------------------------------------------------------------------ module Theorem.Groups-Nehemiah where open import Structure.Bag.Nehemiah public open import Relation.Binary.PropositionalEquality open import Data.Integer open import Algebra.Structures n+[m-n]=m : ∀ {n m} → n + (m - n) ≡ m n+[m-n]=m {n} {m} = begin n + (m - n) ≡⟨ cong (λ hole → n + hole) (commutative-int m (- n)) ⟩ n + (- n + m) ≡⟨ sym (associative-int n (- n) m) ⟩ (n - n) + m ≡⟨ cong (λ hole → hole + m) (right-inv-int n) ⟩ (+ 0) + m ≡⟨ left-id-int m ⟩ m ∎ where open ≡-Reasoning a++[b\\a]=b : ∀ {a b} → a ++ (b \\ a) ≡ b a++[b\\a]=b {b} {d} = trans (cong (λ hole → b ++ hole) (commutative-bag d (negateBag b))) (trans (sym (associative-bag b (negateBag b) d)) (trans (cong (λ hole → hole ++ d) (right-inv-bag b)) (left-id-bag d))) 4-way-shuffle : ∀ {A : Set} {f} {z a b c d : A} {{comm-monoid : IsCommutativeMonoid _≡_ f z}} → f (f a b) (f c d) ≡ f (f a c) (f b d) 4-way-shuffle {f = f} {z = z} {a} {b} {c} {d} {{comm-monoid}} = let assoc = associative comm-monoid cmute = commutative comm-monoid in begin f (f a b) (f c d) ≡⟨ assoc a b (f c d) ⟩ f a (f b (f c d)) ≡⟨ cong (f a) (sym (assoc b c d)) ⟩ f a (f (f b c) d) ≡⟨ cong (λ hole → f a (f hole d)) (cmute b c) ⟩ f a (f (f c b) d) ≡⟨ cong (f a) (assoc c b d) ⟩ f a (f c (f b d)) ≡⟨ sym (assoc a c (f b d)) ⟩ f (f a c) (f b d) ∎ where open ≡-Reasoning ab·cd=ac·bd : ∀ {a b c d : Bag} → (a ++ b) ++ (c ++ d) ≡ (a ++ c) ++ (b ++ d) ab·cd=ac·bd {a} {b} {c} {d} = 4-way-shuffle {a = a} {b} {c} {d} {{comm-monoid-bag}} mn·pq=mp·nq : ∀ {m n p q : ℤ} → (m + n) + (p + q) ≡ (m + p) + (n + q) mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-int}} inverse-unique : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f a b ≡ z → b ≡ neg a inverse-unique {f = f} {neg} {z} {a} {b} {{abelian}} ab=z = let assoc = associative (IsAbelianGroup.isCommutativeMonoid abelian) cmute = commutative (IsAbelianGroup.isCommutativeMonoid abelian) in begin b ≡⟨ sym (left-identity abelian b) ⟩ f z b ≡⟨ cong (λ hole → f hole b) (sym (left-inverse abelian a)) ⟩ f (f (neg a) a) b ≡⟨ assoc (neg a) a b ⟩ f (neg a) (f a b) ≡⟨ cong (f (neg a)) ab=z ⟩ f (neg a) z ≡⟨ right-identity abelian (neg a) ⟩ neg a ∎ where open ≡-Reasoning eq1 : f (neg a) (f a b) ≡ f (neg a) z eq1 rewrite ab=z = cong (f (neg a)) refl distribute-neg : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f (neg a) (neg b) ≡ neg (f a b) distribute-neg {f = f} {neg} {z} {a} {b} {{abelian}} = inverse-unique {{abelian}} (begin f (f a b) (f (neg a) (neg b)) ≡⟨ 4-way-shuffle {{IsAbelianGroup.isCommutativeMonoid abelian}} ⟩ f (f a (neg a)) (f b (neg b)) ≡⟨ cong₂ f (inverse a) (inverse b) ⟩ f z z ≡⟨ left-identity abelian z ⟩ z ∎) where open ≡-Reasoning inverse = right-inverse abelian -a·-b=-ab : ∀ {a b : Bag} → negateBag a ++ negateBag b ≡ negateBag (a ++ b) -a·-b=-ab {a} {b} = distribute-neg {a = a} {b} {{abelian-bag}} -m·-n=-mn : ∀ {m n : ℤ} → (- m) + (- n) ≡ - (m + n) -m·-n=-mn {m} {n} = distribute-neg {a = m} {n} {{abelian-int}} [a++b]\\a=b : ∀ {a b} → (a ++ b) \\ a ≡ b [a++b]\\a=b {b} {d} = begin (b ++ d) \\ b ≡⟨ cong (λ hole → hole \\ b) (commutative-bag b d) ⟩ (d ++ b) \\ b ≡⟨ associative-bag d b (negateBag b) ⟩ d ++ (b \\ b) ≡⟨ cong (_++_ d) (right-inv-bag b) ⟩ d ++ emptyBag ≡⟨ right-id-bag d ⟩ d ∎ where open ≡-Reasoning
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- About the group structure of integers and bags for Nehemiah plugin. ------------------------------------------------------------------------ module Theorem.Groups-Nehemiah where open import Structure.Bag.Nehemiah public open import Relation.Binary.PropositionalEquality open import Algebra.Structures 4-way-shuffle : ∀ {A : Set} {f} {z a b c d : A} {{comm-monoid : IsCommutativeMonoid _≡_ f z}} → f (f a b) (f c d) ≡ f (f a c) (f b d) 4-way-shuffle {f = f} {z = z} {a} {b} {c} {d} {{comm-monoid}} = let assoc = associative comm-monoid cmute = commutative comm-monoid in begin f (f a b) (f c d) ≡⟨ assoc a b (f c d) ⟩ f a (f b (f c d)) ≡⟨ cong (f a) (sym (assoc b c d)) ⟩ f a (f (f b c) d) ≡⟨ cong (λ hole → f a (f hole d)) (cmute b c) ⟩ f a (f (f c b) d) ≡⟨ cong (f a) (assoc c b d) ⟩ f a (f c (f b d)) ≡⟨ sym (assoc a c (f b d)) ⟩ f (f a c) (f b d) ∎ where open ≡-Reasoning open import Data.Integer n+[m-n]=m : ∀ {n m} → n + (m - n) ≡ m n+[m-n]=m {n} {m} = begin n + (m - n) ≡⟨ cong (λ hole → n + hole) (commutative-int m (- n)) ⟩ n + (- n + m) ≡⟨ sym (associative-int n (- n) m) ⟩ (n - n) + m ≡⟨ cong (λ hole → hole + m) (right-inv-int n) ⟩ (+ 0) + m ≡⟨ left-id-int m ⟩ m ∎ where open ≡-Reasoning a++[b\\a]=b : ∀ {a b} → a ++ (b \\ a) ≡ b a++[b\\a]=b {b} {d} = trans (cong (λ hole → b ++ hole) (commutative-bag d (negateBag b))) (trans (sym (associative-bag b (negateBag b) d)) (trans (cong (λ hole → hole ++ d) (right-inv-bag b)) (left-id-bag d))) ab·cd=ac·bd : ∀ {a b c d : Bag} → (a ++ b) ++ (c ++ d) ≡ (a ++ c) ++ (b ++ d) ab·cd=ac·bd {a} {b} {c} {d} = 4-way-shuffle {a = a} {b} {c} {d} {{comm-monoid-bag}} mn·pq=mp·nq : ∀ {m n p q : ℤ} → (m + n) + (p + q) ≡ (m + p) + (n + q) mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-int}} inverse-unique : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f a b ≡ z → b ≡ neg a inverse-unique {f = f} {neg} {z} {a} {b} {{abelian}} ab=z = let assoc = associative (IsAbelianGroup.isCommutativeMonoid abelian) cmute = commutative (IsAbelianGroup.isCommutativeMonoid abelian) in begin b ≡⟨ sym (left-identity abelian b) ⟩ f z b ≡⟨ cong (λ hole → f hole b) (sym (left-inverse abelian a)) ⟩ f (f (neg a) a) b ≡⟨ assoc (neg a) a b ⟩ f (neg a) (f a b) ≡⟨ cong (f (neg a)) ab=z ⟩ f (neg a) z ≡⟨ right-identity abelian (neg a) ⟩ neg a ∎ where open ≡-Reasoning eq1 : f (neg a) (f a b) ≡ f (neg a) z eq1 rewrite ab=z = cong (f (neg a)) refl distribute-neg : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f (neg a) (neg b) ≡ neg (f a b) distribute-neg {f = f} {neg} {z} {a} {b} {{abelian}} = inverse-unique {{abelian}} (begin f (f a b) (f (neg a) (neg b)) ≡⟨ 4-way-shuffle {{IsAbelianGroup.isCommutativeMonoid abelian}} ⟩ f (f a (neg a)) (f b (neg b)) ≡⟨ cong₂ f (inverse a) (inverse b) ⟩ f z z ≡⟨ left-identity abelian z ⟩ z ∎) where open ≡-Reasoning inverse = right-inverse abelian -a·-b=-ab : ∀ {a b : Bag} → negateBag a ++ negateBag b ≡ negateBag (a ++ b) -a·-b=-ab {a} {b} = distribute-neg {a = a} {b} {{abelian-bag}} -m·-n=-mn : ∀ {m n : ℤ} → (- m) + (- n) ≡ - (m + n) -m·-n=-mn {m} {n} = distribute-neg {a = m} {n} {{abelian-int}} [a++b]\\a=b : ∀ {a b} → (a ++ b) \\ a ≡ b [a++b]\\a=b {b} {d} = begin (b ++ d) \\ b ≡⟨ cong (λ hole → hole \\ b) (commutative-bag b d) ⟩ (d ++ b) \\ b ≡⟨ associative-bag d b (negateBag b) ⟩ d ++ (b \\ b) ≡⟨ cong (_++_ d) (right-inv-bag b) ⟩ d ++ emptyBag ≡⟨ right-id-bag d ⟩ d ∎ where open ≡-Reasoning
reorder theorems
Groups-Nehemiah: reorder theorems
Agda
mit
inc-lc/ilc-agda
8bb712cd1a8c9c9cc0885ef29918d9cc47588189
Parametric/Denotation/Evaluation.agda
Parametric/Denotation/Evaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Evaluation for languages described in Plotkin style ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map-IVT (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation (Def. 3.3 and Fig. 4i) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value module Parametric.Denotation.Evaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality -- Extension Point: Evaluation of fully applied constants. Structure : Set Structure = ∀ {Σ τ} → Const Σ τ → ⟦ Σ ⟧ → ⟦ τ ⟧ module Structure (⟦_⟧Const : Structure) where ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦_⟧Terms : ∀ {Γ Σ} → Terms Γ Σ → ⟦ Γ ⟧ → ⟦ Σ ⟧ -- We provide: Evaluation of arbitrary terms. ⟦ const c args ⟧Term ρ = ⟦ c ⟧Const (⟦ args ⟧Terms ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ app s t ⟧Term ρ = (⟦ s ⟧Term ρ) (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) -- this is what we'd like to write. -- unfortunately termination checker complains. -- -- ⟦ terms ⟧Terms ρ = map-IVT (λ t → ⟦ t ⟧Term ρ) terms -- -- so we do explicit pattern matching instead. ⟦ ∅ ⟧Terms ρ = ∅ ⟦ s • terms ⟧Terms ρ = ⟦ s ⟧Term ρ • ⟦ terms ⟧Terms ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken Γ₁≼Γ₂ t ⟧ ρ ≡ ⟦ t ⟧ (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound : ∀ {Γ₁ Γ₂ Σ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (terms : Terms Γ₁ Σ) (ρ : ⟦ Γ₂ ⟧) → ⟦ weaken-terms Γ₁≼Γ₂ terms ⟧Terms ρ ≡ ⟦ terms ⟧Terms (⟦ Γ₁≼Γ₂ ⟧ ρ) weaken-terms-sound ∅ ρ = refl weaken-terms-sound (t • terms) ρ = cong₂ _•_ (weaken-sound t ρ) (weaken-terms-sound terms ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound {Γ₁} {Γ₂} {Γ₁≼Γ₂ = Γ₁≼Γ₂} (const {Σ} {τ} c args) ρ = cong ⟦ c ⟧Const (weaken-terms-sound args ρ)
Document P.D.Evaluation.
Document P.D.Evaluation. Old-commit-hash: a346d6ffd091c3041ecb8d087a4171aeffa63576
Agda
mit
inc-lc/ilc-agda
7b8de230698933472e580b5ece63a74cf55998a4
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in abs₄ (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = app₂ apply-term
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes (Fig. 3). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase open import Data.Product -- Extension point 1: A term for ⊝ on base types. DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) -- Extension point 2: A term for ⊕ on base types. ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) -- We provide: terms for ⊕ and ⊝ on arbitrary types. diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in abs₄ (λ g f x Δx → app g (x ⊕σ Δx) ⊝τ app f x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ τ {Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff _ = app₂ diff-term apply : ∀ τ {Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply _ = app₂ apply-term infixl 6 apply diff syntax apply τ x Δx = Δx ⊕₍ τ ₎ x syntax diff τ x y = x ⊝₍ τ ₎ y infixl 6 _⊕_ _⊝_ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) _⊝_ {τ} = diff τ _⊕_ : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ _⊕_ {τ} = app₂ apply-term
Document P.C.Term.
Document P.C.Term. Old-commit-hash: 0263f48a6674e209dc10d253b3ffab2671e313cd
Agda
mit
inc-lc/ilc-agda
1da8d765d3b45cbc385435bbd6c113c680b6f896
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ s t → app₂ diffσ s t _⊝τ_ = λ s t → app₂ diffτ s t _⊕σ_ = λ t Δt → app₂ applyσ Δt t _⊕τ_ = λ t Δt → app₂ applyτ Δt t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) lift-apply : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ})
Generalize helper methods.
Generalize helper methods. Before this commit, the helper methods worked for one particular context that was inferred from the helper's use sites. I want to change the helper's use suite in the next commit so that the context would no longer get inferred automatically, so I have to generalize the helper methods for arbitrary contexts first. Old-commit-hash: 331ecddb578d8491bb6b65d1312b789d9260ff31
Agda
mit
inc-lc/ilc-agda
ef0b3de030e69c13f6abe2f657976fd6056b39d2
example1.agda
example1.agda
module example1 where open import Data.String.Base using (String) open import Data.Product open import Data.List.Base using (List; []; _∷_) open import Data.Bool.Base open import Function open import Control.Process.Type open import FFI.JS as JS open import FFI.JS.Proc import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS postulate take-half : String → String {-# COMPILED_JS take-half function(x) { return x.substring(0,x.length/2); } #-} postulate drop-half : String → String {-# COMPILED_JS drop-half function(x) { return x.substring(x.length/2); } #-} test-value : Value test-value = object (("array" , array (array [] ∷ array (array [] ∷ []) ∷ [])) ∷ ("object" , array (object [] ∷ object (("a", string "b") ∷ []) ∷ [])) ∷ ("string" , array (string "" ∷ string "a" ∷ [])) ∷ ("number" , array (number zero ∷ number one ∷ [])) ∷ ("bool" , array (bool true ∷ bool false ∷ [])) ∷ ("null" , array (null ∷ [])) ∷ []) test = fromString (JSON-stringify (fromValue test-value)) === fromString "{\"array\":[[],[[]]],\"object\":[{},{\"a\":\"b\"}],\"string\":[\"\",\"a\"],\"number\":[0,1],\"bool\":[true,false],\"null\":[null]}" module _ {A : Set} (_≤_ : A → A → Bool) where merge-sort-list : (l₀ l₁ : List A) → List A merge-sort-list [] l₁ = l₁ merge-sort-list l₀ [] = l₀ merge-sort-list (x₀ ∷ l₀) (x₁ ∷ l₁) with x₀ ≤ x₁ ... | true = x₀ ∷ merge-sort-list l₀ (x₁ ∷ l₁) ... | false = x₁ ∷ merge-sort-list (x₀ ∷ l₀) l₁ merge-sort-string : String → String → String merge-sort-string s₀ s₁ = List▹String (merge-sort-list _≤Char_ (String▹List s₀) (String▹List s₁)) mapJSArray : (JSArray String → JSArray String) → JSValue → JSValue mapJSArray f v = fromString (onString (join "" ∘ f ∘ split "") v) reverser : URI → JSProc reverser d = recv d λ s → send d (mapJSArray JS.reverse s) end adder : URI → JSProc adder d = recv d λ s₀ → recv d λ s₁ → send d (s₀ +JS s₁) end adder-client : URI → JSValue → JSValue → JSProc adder-client d s₀ s₁ = send d s₀ (send d s₁ (recv d λ _ → end)) module _ (adder-addr reverser-addr : URI)(s : JSValue) where adder-reverser-client : JSProc adder-reverser-client = send reverser-addr s $ send adder-addr s $ recv reverser-addr λ rs → send adder-addr rs $ recv adder-addr λ res → end str-sorter₀ : URI → JSProc str-sorter₀ d = recv d λ s → send d (mapJSArray sort s) end str-sorter-client : ∀ {D} → D → JSValue → Proc D JSValue str-sorter-client d s = send d s $ recv d λ _ → end module _ (upstream helper₀ helper₁ : URI) where str-merger : JSProc str-merger = recv upstream λ s → send helper₀ (fromString (onString take-half s)) $ send helper₁ (fromString (onString drop-half s)) $ recv helper₀ λ ss₀ → recv helper₁ λ ss₁ → send upstream (fromString (onString (onString merge-sort-string ss₀) ss₁)) end dyn-merger : URI → (URI → JSProc) → JSProc dyn-merger upstream helper = spawn helper λ helper₀ → spawn helper λ helper₁ → str-merger upstream helper₀ helper₁ str-sorter₁ : URI → JSProc str-sorter₁ upstream = dyn-merger upstream str-sorter₀ str-sorter₂ : URI → JSProc str-sorter₂ upstream = dyn-merger upstream str-sorter₁ stringifier : URI → JSProc stringifier d = recv d λ v → send d (fromString (JSON-stringify v)) end stringifier-client : ∀ {D} → D → JSValue → Proc D JSValue stringifier-client d v = send d v $ recv d λ _ → end main : JS! main = Console.log "Hey!" >> assert test >> Process.argv !₁ λ argv → Console.log ("argv=" ++ join " " argv) >> Console.log "server(adder):" >> server "127.0.0.1" "1337" adder !₁ λ adder-uri → Console.log "client(adderclient):" >> client (adder-client adder-uri (fromString "Hello ") (fromString "World!")) >> client (adder-client adder-uri (fromString "Bonjour ") (fromString "monde!")) >> Console.log "server(reverser):" >> server "127.0.0.1" "1338" reverser !₁ λ reverser-uri → Console.log "client(adder-reverser-client):" >> client (adder-reverser-client adder-uri reverser-uri (fromString "red")) >> server "127.0.0.1" "1342" str-sorter₂ !₁ λ str-sorter₂-uri → Console.log "str-sorter-client:" >> client (str-sorter-client str-sorter₂-uri (fromString "Something to be sorted!")) >> server "127.0.0.1" "1343" stringifier !₁ λ stringifier-uri → client (stringifier-client stringifier-uri (fromValue test-value)) >> FS.readFile "README.md" nullJS !₂ λ err dat → Console.log ("README.md, length is " ++ Number▹String (length (castString dat))) >> Console.log "Bye!" >> end -- -} -- -} -- -} -- -}
module example1 where open import Data.String.Base using (String) open import Data.Product open import Data.List.Base using (List; []; _∷_) open import Data.Bool.Base open import Function open import Control.Process.Type open import FFI.JS as JS open import FFI.JS.Proc import FFI.JS.Console as Console import FFI.JS.Process as Process import FFI.JS.FS as FS take-half : String → String take-half s = substring s 0N (length s / 2N) drop-half : String → String drop-half s = substring1 s (length s / 2N) test-value : Value test-value = object (("array" , array (array [] ∷ array (array [] ∷ []) ∷ [])) ∷ ("object" , array (object [] ∷ object (("a", string "b") ∷ []) ∷ [])) ∷ ("string" , array (string "" ∷ string "a" ∷ [])) ∷ ("number" , array (number 0N ∷ number 1N ∷ [])) ∷ ("bool" , array (bool true ∷ bool false ∷ [])) ∷ ("null" , array (null ∷ [])) ∷ []) test = fromString (JSON-stringify (fromValue test-value)) === fromString "{\"array\":[[],[[]]],\"object\":[{},{\"a\":\"b\"}],\"string\":[\"\",\"a\"],\"number\":[0,1],\"bool\":[true,false],\"null\":[null]}" module _ {A : Set} (_≤_ : A → A → Bool) where merge-sort-list : (l₀ l₁ : List A) → List A merge-sort-list [] l₁ = l₁ merge-sort-list l₀ [] = l₀ merge-sort-list (x₀ ∷ l₀) (x₁ ∷ l₁) with x₀ ≤ x₁ ... | true = x₀ ∷ merge-sort-list l₀ (x₁ ∷ l₁) ... | false = x₁ ∷ merge-sort-list (x₀ ∷ l₀) l₁ merge-sort-string : String → String → String merge-sort-string s₀ s₁ = List▹String (merge-sort-list _≤Char_ (String▹List s₀) (String▹List s₁)) mapJSArray : (JSArray String → JSArray String) → JSValue → JSValue mapJSArray f v = fromString (join "" ∘ f ∘ split "" ∘ castString $ v) reverser : URI → JSProc reverser d = recv d λ s → send d (mapJSArray JS.reverse s) end adder : URI → JSProc adder d = recv d λ s₀ → recv d λ s₁ → send d (s₀ +JS s₁) end adder-client : URI → JSValue → JSValue → JSProc adder-client d s₀ s₁ = send d s₀ (send d s₁ (recv d λ _ → end)) module _ (adder-addr reverser-addr : URI)(s : JSValue) where adder-reverser-client : JSProc adder-reverser-client = send reverser-addr s $ send adder-addr s $ recv reverser-addr λ rs → send adder-addr rs $ recv adder-addr λ res → end str-sorter₀ : URI → JSProc str-sorter₀ d = recv d λ s → send d (mapJSArray sort s) end str-sorter-client : ∀ {D} → D → JSValue → Proc D JSValue str-sorter-client d s = send d s $ recv d λ _ → end module _ (upstream helper₀ helper₁ : URI) where str-merger : JSProc str-merger = recv upstream λ s → send helper₀ (fromString (take-half (castString s))) $ send helper₁ (fromString (drop-half (castString s))) $ recv helper₀ λ ss₀ → recv helper₁ λ ss₁ → send upstream (fromString (merge-sort-string (castString ss₀) (castString ss₁))) end dyn-merger : URI → (URI → JSProc) → JSProc dyn-merger upstream helper = spawn helper λ helper₀ → spawn helper λ helper₁ → str-merger upstream helper₀ helper₁ str-sorter₁ : URI → JSProc str-sorter₁ upstream = dyn-merger upstream str-sorter₀ str-sorter₂ : URI → JSProc str-sorter₂ upstream = dyn-merger upstream str-sorter₁ stringifier : URI → JSProc stringifier d = recv d λ v → send d (fromString (JSON-stringify v)) end stringifier-client : ∀ {D} → D → JSValue → Proc D JSValue stringifier-client d v = send d v $ recv d λ _ → end main : JS! main = Console.log "Hey!" >> assert test >> Process.argv !₁ λ argv → Console.log ("argv=" ++ join " " argv) >> Console.log "server(adder):" >> server "127.0.0.1" "1337" adder !₁ λ adder-uri → Console.log "client(adderclient):" >> client (adder-client adder-uri (fromString "Hello ") (fromString "World!")) >> client (adder-client adder-uri (fromString "Bonjour ") (fromString "monde!")) >> Console.log "server(reverser):" >> server "127.0.0.1" "1338" reverser !₁ λ reverser-uri → Console.log "client(adder-reverser-client):" >> client (adder-reverser-client adder-uri reverser-uri (fromString "red")) >> server "127.0.0.1" "1339" str-sorter₀ !₁ λ str-sorter₀-uri → Console.log "str-sorter-client for str-sorter₀:" >> client (str-sorter-client str-sorter₀-uri (fromString "Something to be sorted!")) >> server "127.0.0.1" "1342" str-sorter₂ !₁ λ str-sorter₂-uri → Console.log "str-sorter-client:" >> client (str-sorter-client str-sorter₂-uri (fromString "Something to be sorted!")) >> server "127.0.0.1" "1343" stringifier !₁ λ stringifier-uri → client (stringifier-client stringifier-uri (fromValue test-value)) >> FS.readFile "README.md" nullJS !₂ λ err dat → Console.log ("README.md, length is " ++ Number▹String (length (toString dat))) >> Console.log "Bye!" -- -} -- -} -- -} -- -}
Update example1
Update example1
Agda
bsd-3-clause
crypto-agda/agda-libjs
b3651f102b65a31ef5dd4d541002915b3e5cc9fe
Base/Data/DependentList.agda
Base/Data/DependentList.agda
module Base.Data.DependentList where open import Data.List.All public using ( head ; tail ; map ; tabulate ) renaming ( All to DependentList ; _∷_ to _•_ ; [] to ∅ ) zipWith : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} → (f : {a : A} → P a → Q a → R a) → ∀ {xs} → DependentList P xs → DependentList Q xs → DependentList R xs zipWith f ∅ ∅ = ∅ zipWith f (p • ps) (q • qs) = f p q • zipWith f ps qs
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Reexport Data.List.All from the standard library. -- -- At one point, we reinvented Data.List.All from the Agda -- standard library, under the name dependent list. We later -- replaced our reinvention by this adapter module that just -- exports the standard library's version with partly different -- names. ------------------------------------------------------------------------ module Base.Data.DependentList where open import Data.List.All public using ( head ; tail ; map ; tabulate ) renaming ( All to DependentList ; _∷_ to _•_ ; [] to ∅ ) -- Maps a binary function over two dependent lists. -- Should this be in the Agda standard library? zipWith : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} → (f : {a : A} → P a → Q a → R a) → ∀ {xs} → DependentList P xs → DependentList Q xs → DependentList R xs zipWith f ∅ ∅ = ∅ zipWith f (p • ps) (q • qs) = f p q • zipWith f ps qs
Improve commentary in Base.Data.DependentList.
Improve commentary in Base.Data.DependentList. Old-commit-hash: 7a4d9aea2f3574b1b3f21022bced5f9ef112264c
Agda
mit
inc-lc/ilc-agda
eea966329ff9f953b7330cd87ef1188ffe40f0f0
Parametric/Denotation/CachingEvaluation.agda
Parametric/Denotation/CachingEvaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality module Structure where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). open import UNDEFINED -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- TODO No caching. Uh??? What about the intermediate results of the -- arguments? Ah, they're values, so they aren't interesting (or they're -- already cached). Yu-uh! -- XXX We need a caching ValBase, so the caching type semantics needs to move. ⟦ vConst c args ⟧ValTermCache ρ = reveal UNDEFINED -- {!⟦ c ⟧ValBase !} -- The real deal, finally. -- TODO Do caching. No! Delegate to caching version of the base semantics! ⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED -- {!⟦ c ⟧CompBase (⟦ args ⟧Vals ?)!} -- XXX constants are still a slight mess because I'm abusing CBPV... -- (Actually, I just forgot the difference, and believe I had too little clue -- when I wrote these constructors... but some of them did make sense). ⟦_⟧CompTermCache (cConstB c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstVB c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstVB2 c args) ρ = reveal UNDEFINED -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- Here, in an actual implementation, we would return the actual cache with -- all variables. -- -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). open import UNDEFINED -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- XXX constants are still a slight mess because I'm abusing CBPV... -- (Actually, I just forgot the difference, and believe I had too little clue -- when I wrote these constructors... but some of them did make sense). ⟦_⟧CompTermCache (cConstB c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstVB c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstVB2 c args) ρ = reveal UNDEFINED -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- Here, in an actual implementation, we would return the actual cache with -- all variables. -- -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
Correct caching for constants (by delegation)
Correct caching for constants (by delegation) This defines the plugin interface for constants (with a type that makes semantic sense), and delegates to that, while stipulating: * what are the appropriate types; * that constant arguments needn't be cached because they are values.
Agda
mit
inc-lc/ilc-agda
308d57f744384b21a2811f278b455dfb952dd324
Syntax/Language/Popl14.agda
Syntax/Language/Popl14.agda
module Syntax.Language.Popl14 where open import Syntax.Term.Popl14 open import Syntax.Context.Plotkin Popl14-type open import Data.Integer
module Syntax.Language.Popl14 where open import Syntax.Term.Popl14 open import Syntax.Context.Plotkin Popl14-type open import Data.Integer import Syntax.Language.Calculus as Calc ΔConst : ∀ {Γ Σ τ} → Const Σ τ → Term Γ (internalizeContext (Calc.ΔContext′ (Calc.Type Popl14-type) ΔType Σ) (ΔType τ)) -- These helpers hide deBrujin indexes, providing an interface which is as -- comfortable as HOAS. This should be generalized and moved to Syntax.Term.Plotkin ΔConst (intlit-c n) = intlit (+ 0) ΔConst add-c = abs₄ (λ x Δx y Δy → add Δx Δy) ΔConst minus-c = abs₂ (λ x Δx → minus Δx) ΔConst empty-c = empty ΔConst insert-c = abs₄ (λ x Δx y Δy → insert (x ⊕ Δx) (y ⊕ Δy) ⊝ insert x y) ΔConst union-c = abs₄ (λ x Δx y Δy → union Δx Δy) ΔConst negate-c = abs₂ (λ x Δx → negate Δx) ΔConst flatmap-c = abs₄ (λ x Δx y Δy → flatmap (x ⊕ Δx) (y ⊕ Δy) ⊝ flatmap x y) ΔConst sum-c = abs₂ (λ x Δx → sum Δx) Popl14 = Calc.calculus-with Popl14-type Const ΔType ΔConst
Define ΔConst for Popl14 and fill in calculus-with
Define ΔConst for Popl14 and fill in calculus-with Old-commit-hash: c1cdbc71d45afdb85da9ac22b3207d1cb03e0bf7
Agda
mit
inc-lc/ilc-agda
5ea0220b999f1d1ef9f072ca4bedfb82dc747ca1
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. _≙_ : ∀ dx dy → Set a dx ≙ dy = x ⊞ dx ≡ x ⊞ dy -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = sym ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = trans ≙₁ ≙₂ ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-symm ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ = df-x-dx≙dg-x-dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning {- lemma : nil f ≙ dg -- Goes through --lemma = sym (derivative-is-nil dg fdg) -- Generates tons of crazy yellow ambiguities of equality type. Apparently, unifying against ≙ does not work so well. lemma = ≙-symm {{changeAlgebra}} {f} {dg} {nil f} (derivative-is-nil dg fdg) -} -- We could also use derivative-is-⊞-unit, but the proof above matches better -- with the text above.
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-symm : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-symm ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-symm ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ cong (f ⊞ df₁) $ proof dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ cong (λ f → f (x ⊞ dx₂)) $ proof df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-symm (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-symm (derivative-is-nil dg fdg)
Use a record for doe, as suggested by Tillmann
Use a record for doe, as suggested by Tillmann Old-commit-hash: f1a0e47b6fd1c171f165e2a9ba96fd258042a8ae
Agda
mit
inc-lc/ilc-agda
de617d2ad76260052f9d6ecbf3c054fc7eb183ef
Parametric/Change/Value.agda
Parametric/Change/Value.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Change.Type as ChangeType module Parametric.Change.Value {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (ΔBase : ChangeType.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open ChangeType.Structure Base ΔBase open import Base.Denotation.Notation open import Data.Integer open import Structure.Bag.Popl14 -- `diff` and `apply`, without validity proofs ApplyStructure : Set ApplyStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base → ⟦ ι ⟧Base DiffStructure : Set DiffStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base module Structure (⟦apply-base⟧ : ApplyStructure) (⟦diff-base⟧ : DiffStructure) where ⟦apply⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ ⟦diff⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ infixl 6 ⟦apply⟧ ⟦diff⟧ syntax ⟦apply⟧ τ v dv = v ⟦⊕₍ τ ₎⟧ dv syntax ⟦diff⟧ τ u v = u ⟦⊝₍ τ ₎⟧ v v ⟦⊕₍ base ι ₎⟧ Δv = ⟦apply-base⟧ ι v Δv f ⟦⊕₍ σ ⇒ τ ₎⟧ Δf = λ v → f v ⟦⊕₍ τ ₎⟧ Δf v (v ⟦⊝₍ σ ₎⟧ v) u ⟦⊝₍ base ι ₎⟧ v = ⟦diff-base⟧ ι u v g ⟦⊝₍ σ ⇒ τ ₎⟧ f = λ v Δv → (g (v ⟦⊕₍ σ ₎⟧ Δv)) ⟦⊝₍ τ ₎⟧ (f v) _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊕⟧_ {τ} = ⟦apply⟧ τ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊝⟧_ {τ} = ⟦diff⟧ τ alternate : ∀ {Γ} → ⟦ Γ ⟧ → ⟦ mapContext ΔType Γ ⟧ → ⟦ ΔContext Γ ⟧ alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Change.Type as ChangeType module Parametric.Change.Value {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (ΔBase : ChangeType.Structure Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open ChangeType.Structure Base ΔBase open import Base.Denotation.Notation -- `diff` and `apply`, without validity proofs ApplyStructure : Set ApplyStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base → ⟦ ι ⟧Base DiffStructure : Set DiffStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Base module Structure (⟦apply-base⟧ : ApplyStructure) (⟦diff-base⟧ : DiffStructure) where ⟦apply⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ ⟦diff⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ infixl 6 ⟦apply⟧ ⟦diff⟧ syntax ⟦apply⟧ τ v dv = v ⟦⊕₍ τ ₎⟧ dv syntax ⟦diff⟧ τ u v = u ⟦⊝₍ τ ₎⟧ v v ⟦⊕₍ base ι ₎⟧ Δv = ⟦apply-base⟧ ι v Δv f ⟦⊕₍ σ ⇒ τ ₎⟧ Δf = λ v → f v ⟦⊕₍ τ ₎⟧ Δf v (v ⟦⊝₍ σ ₎⟧ v) u ⟦⊝₍ base ι ₎⟧ v = ⟦diff-base⟧ ι u v g ⟦⊝₍ σ ⇒ τ ₎⟧ f = λ v Δv → (g (v ⟦⊕₍ σ ₎⟧ Δv)) ⟦⊝₍ τ ₎⟧ (f v) _⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧ _⟦⊕⟧_ {τ} = ⟦apply⟧ τ _⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ _⟦⊝⟧_ {τ} = ⟦diff⟧ τ alternate : ∀ {Γ} → ⟦ Γ ⟧ → ⟦ mapContext ΔType Γ ⟧ → ⟦ ΔContext Γ ⟧ alternate {∅} ∅ ∅ = ∅ alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ
Remove unused imports violating architectural constraints
Agda: Remove unused imports violating architectural constraints The parametric formalization shouldn't import stuff specific to the POPL14 calculus. Old-commit-hash: 30c3071e33a99422b2c878f7bca7937e8b1c216f
Agda
mit
inc-lc/ilc-agda
b0acfde8e76ff27fb9d7b8609c3d7acf1ccf1ef2
PLDI14-List-of-Theorems.agda
PLDI14-List-of-Theorems.agda
module PLDI14-List-of-Theorems where -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important names. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.5 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.6 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.7 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.7 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Lemma 2.8 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.9 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- Definition 3.1 (Domains) import Parametric.Denotation.Value open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Definition 3.2 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.3 (Evaluation) import Parametric.Denotation.Evaluation open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Definition 3.4 (Changes) -- Definition 3.5 (Change environments) import Parametric.Change.Validity open Parametric.Change.Validity.Structure using (change-algebra) open Parametric.Change.Validity.Structure using (environment-changes) -- Definition 3.6 (Change semantics) -- Lemma 3.7 (Change semantics is the derivative of semantics) import Parametric.Change.Specification open Parametric.Change.Specification.Structure using (⟦_⟧Δ) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.8 (Erasure) -- Lemma 3.9 (The erased version of a change is almost the same) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.10 (⟦ t ⟧Δ erases to Derive(t)) -- Theorem 3.11 (Correctness of differentiation) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) open Parametric.Change.Correctness.Structure using (main-theorem)
module PLDI14-List-of-Theorems where -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important names. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.5 (Behavior of derivatives on nil) open import Base.Change.Equivalence using (deriv-zero) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.6 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.7 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.8 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.8 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.9 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.10 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- Definition 3.1 (Domains) import Parametric.Denotation.Value open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Definition 3.2 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.3 (Evaluation) import Parametric.Denotation.Evaluation open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Definition 3.4 (Changes) -- Definition 3.5 (Change environments) import Parametric.Change.Validity open Parametric.Change.Validity.Structure using (change-algebra) open Parametric.Change.Validity.Structure using (environment-changes) -- Definition 3.6 (Change semantics) -- Lemma 3.7 (Change semantics is the derivative of semantics) import Parametric.Change.Specification open Parametric.Change.Specification.Structure using (⟦_⟧Δ) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.8 (Erasure) -- Lemma 3.9 (The erased version of a change is almost the same) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.10 (⟦ t ⟧Δ erases to Derive(t)) -- Theorem 3.11 (Correctness of differentiation) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) open Parametric.Change.Correctness.Structure using (main-theorem)
update PLDI14-List-of-Theorems.agda for consistency with #4
update PLDI14-List-of-Theorems.agda for consistency with #4 Camera-ready version inserts a "lemma 2.5", which means math items 2.5--2.9 should be renumbered 2.6--2.10. Relevant commits: 23339dd5a9e56c3c31d42252c4020b716ec77725 0c1e97fbf3b62bddf23559545a4c801b4189cb29
Agda
mit
inc-lc/ilc-agda
8fbacc398d3d884274c0a5d0564e3802b8ff356b
lib/Explore/Dice.agda
lib/Explore/Dice.agda
{-# OPTIONS --without-K #-} open import Type open import Data.Fin using (Fin; zero; suc; #_) import Function.Inverse.NP as Inv open import Relation.Binary.PropositionalEquality using (_≡_; refl) open Inv using (_↔_) open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Explore.Universe module Explore.Dice where data Dice : ★₀ where ⚀ ⚁ ⚂ ⚃ ⚄ ⚅ : Dice module ByHand where exploreDice : ∀ {m} → Explore m Dice exploreDice ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅)))) exploreDice-ind : ∀ {m p} → ExploreInd p (exploreDice {m}) exploreDice-ind P ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅)))) open Explorable₀ exploreDice-ind public using () renaming (sum to sumDice; product to productDice) open Explorable₁₀ exploreDice-ind public using () renaming (reify to reifyDice) open Explorable₁₁ exploreDice-ind public using () renaming (unfocus to unfocusDice) Dice↔Fin6 : Dice ↔ Fin 6 Dice↔Fin6 = Inv.inverses (⇒) (⇐) ⇐⇒ ⇒⇐ module Dice↔Fin6 where S = Dice T = Fin 6 ⇒ : S → T ⇒ ⚀ = # 0 ⇒ ⚁ = # 1 ⇒ ⚂ = # 2 ⇒ ⚃ = # 3 ⇒ ⚄ = # 4 ⇒ ⚅ = # 5 ⇐ : T → S ⇐ zero = ⚀ ⇐ (suc zero) = ⚁ ⇐ (suc (suc zero)) = ⚂ ⇐ (suc (suc (suc zero))) = ⚃ ⇐ (suc (suc (suc (suc zero)))) = ⚄ ⇐ (suc (suc (suc (suc (suc zero))))) = ⚅ ⇐ (suc (suc (suc (suc (suc (suc ())))))) ⇐⇒ : ∀ x → ⇐ (⇒ x) ≡ x ⇐⇒ ⚀ = refl ⇐⇒ ⚁ = refl ⇐⇒ ⚂ = refl ⇐⇒ ⚃ = refl ⇐⇒ ⚄ = refl ⇐⇒ ⚅ = refl ⇒⇐ : ∀ x → ⇒ (⇐ x) ≡ x ⇒⇐ zero = refl ⇒⇐ (suc zero) = refl ⇒⇐ (suc (suc zero)) = refl ⇒⇐ (suc (suc (suc zero))) = refl ⇒⇐ (suc (suc (suc (suc zero)))) = refl ⇒⇐ (suc (suc (suc (suc (suc zero))))) = refl ⇒⇐ (suc (suc (suc (suc (suc (suc ())))))) open Explore.Universe.Isomorphism (FinU 6) (Inv.sym Dice↔Fin6 Inv.∘ FinU↔Fin 6) public renaming ( isoᵉ to Diceᵉ ; isoⁱ to Diceⁱ ; isoˡ to Diceˡ ; isoᶠ to Diceᶠ ; isoˢ to Diceˢ ; isoᵖ to Diceᵖ ; isoʳ to Diceʳ ; isoᵘ to Diceᵘ ; isoˢ-ok to Diceˢ-ok ; isoˢ-stableUnder to Diceˢ-stableUnder ; μiso to μDice )
{-# OPTIONS --without-K #-} open import Type open import Data.Fin using (Fin; zero; suc; #_) import Function.Inverse.NP as Inv open import Relation.Binary.PropositionalEquality using (_≡_; refl) open Inv using (_↔_) open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Explore.Universe module Explore.Dice where data Dice : ★₀ where ⚀ ⚁ ⚂ ⚃ ⚄ ⚅ : Dice module ByHand where exploreDice : ∀ {m} → Explore m Dice exploreDice ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅)))) exploreDice-ind : ∀ {m p} → ExploreInd p (exploreDice {m}) exploreDice-ind P ε _∙_ f = f ⚀ ∙ (f ⚁ ∙ (f ⚂ ∙ (f ⚃ ∙ (f ⚄ ∙ f ⚅)))) open Explorable₀ exploreDice-ind public using () renaming (sum to sumDice; product to productDice) open Explorable₁₀ exploreDice-ind public using () renaming (reify to reifyDice) open Explorable₁₁ exploreDice-ind public using () renaming (unfocus to unfocusDice) Dice↔Fin6 : Dice ↔ Fin 6 Dice↔Fin6 = Inv.inverses (⇒) (⇐) ⇐⇒ ⇒⇐ module Dice↔Fin6 where S = Dice T = Fin 6 ⇒ : S → T ⇒ ⚀ = # 0 ⇒ ⚁ = # 1 ⇒ ⚂ = # 2 ⇒ ⚃ = # 3 ⇒ ⚄ = # 4 ⇒ ⚅ = # 5 ⇐ : T → S ⇐ zero = ⚀ ⇐ (suc zero) = ⚁ ⇐ (suc (suc zero)) = ⚂ ⇐ (suc (suc (suc zero))) = ⚃ ⇐ (suc (suc (suc (suc zero)))) = ⚄ ⇐ (suc (suc (suc (suc (suc zero))))) = ⚅ ⇐ (suc (suc (suc (suc (suc (suc ())))))) ⇐⇒ : ∀ x → ⇐ (⇒ x) ≡ x ⇐⇒ ⚀ = refl ⇐⇒ ⚁ = refl ⇐⇒ ⚂ = refl ⇐⇒ ⚃ = refl ⇐⇒ ⚄ = refl ⇐⇒ ⚅ = refl ⇒⇐ : ∀ x → ⇒ (⇐ x) ≡ x ⇒⇐ zero = refl ⇒⇐ (suc zero) = refl ⇒⇐ (suc (suc zero)) = refl ⇒⇐ (suc (suc (suc zero))) = refl ⇒⇐ (suc (suc (suc (suc zero)))) = refl ⇒⇐ (suc (suc (suc (suc (suc zero))))) = refl ⇒⇐ (suc (suc (suc (suc (suc (suc ())))))) -- By using FinU' instead of FinU one get a special case for Fin 1 thus avoiding -- a final ε in the exploration function. open Explore.Universe.Isomorphism (FinU' 6) (Inv.sym Dice↔Fin6 Inv.∘ FinU'↔Fin 6) public renaming ( isoᵉ to Diceᵉ ; isoⁱ to Diceⁱ ; isoˡ to Diceˡ ; isoᶠ to Diceᶠ ; isoˢ to Diceˢ ; isoᵖ to Diceᵖ ; isoʳ to Diceʳ ; isoᵘ to Diceᵘ ; isoˢ-ok to Diceˢ-ok ; isoˢ-stableUnder to Diceˢ-stableUnder ; μiso to μDice ) module _ {m} where open ByHand _≡ᵉ_ : (e₀ e₁ : Explore m Dice) → ★_ _ _≡ᵉ_ = _≡_ same-as-by-hand : exploreDice ≡ᵉ Diceᵉ same-as-by-hand = refl
use the second flavor of Fin exploration to show that it behave as expected
Dice: use the second flavor of Fin exploration to show that it behave as expected
Agda
bsd-3-clause
crypto-agda/explore
c691b85f8bfd7f9b4a97533c4013b53d694c2eb0
Parametric/Syntax/MTerm.agda
Parametric/Syntax/MTerm.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType module Parametric.Syntax.MTerm {Base : Type.Structure} (Const : Term.Structure Base) where open Type.Structure Base open MType.Structure Base open Term.Structure Base Const -- Our extension points are sets of primitives, indexed by the -- types of their arguments and their return type. -- We want different types of constants; some produce values, some produce -- computations. In all cases, arguments are assumed to be values (though -- individual primitives might require thunks). ValConstStructure : Set₁ ValConstStructure = ValContext → ValType → Set CompConstStructure : Set₁ CompConstStructure = ValContext → CompType → Set module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where mutual -- Analogues of Terms Vals : ValContext → ValContext → Set Vals Γ = DependentList (Val Γ) Comps : ValContext → List CompType → Set Comps Γ = DependentList (Comp Γ) data Val Γ : (τ : ValType) → Set where vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ -- XXX Do we need thunks? The draft in the paper doesn't have them. -- However, they will start being useful if we deal with CBN source -- languages. vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ) vConst : ∀ {Σ τ} → (c : ValConst Σ τ) → (args : Vals Γ Σ) → Val Γ τ data Comp Γ : (τ : CompType) → Set where cConst : ∀ {Σ τ} → (c : CompConst Σ τ) → (args : Vals Γ Σ) → Comp Γ τ cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ) {- -- Originally, M to x in N. But here we have no names! _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) τ) → Comp Γ τ -} -- The following constructor is the main difference between CBPV and this -- monadic calculus. This is better for the caching transformation. _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) (F τ)) → Comp Γ (F τ) cAbs : ∀ {σ τ} → (t : Comp (σ •• Γ) τ) → Comp Γ (σ ⇛ τ) cApp : ∀ {σ τ} → (s : Comp Γ (σ ⇛ τ)) → (t : Val Γ σ) → Comp Γ τ weaken-val : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Val Γ₁ τ → Val Γ₂ τ weaken-comp : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Comp Γ₁ τ → Comp Γ₂ τ weaken-vals : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Vals Γ₁ Σ → Vals Γ₂ Σ weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x) weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v) weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁) weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c) weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t) weaken-vals Γ₁≼Γ₂ ∅ = ∅ weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts) fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ) fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ) fromCBNTerms ∅ = ∅ fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts open import UNDEFINED -- This is really supposed to be part of the plugin interface. cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ) cbnToCompConst = reveal UNDEFINED fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args) fromCBN (var x) = cForce (vVar (fromVar cbnToValType x)) fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t)) fromCBN (abs t) = cAbs (fromCBN t) -- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context. -- But let's ignore that. {-# NO_TERMINATION_CHECK #-} fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- This is really supposed to be part of the plugin interface. cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ) cbvToCompConst = reveal UNDEFINED cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ) cbvTermsToComps ∅ = ∅ cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts module _ where dequeValContexts : ValContext → ValContext → ValContext dequeValContexts ∅ Γ = Γ dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ) dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ dequeValContexts≼≼ ∅ Γ = ≼≼-refl dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) -- dequeContexts : Context → Context → ValContext dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ) fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ) fromCBVArg t k = (fromCBV t) into k (vVar vThis) fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ) fromCBVArgs ∅ k = k ∅ fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs))) -- Transform a constant application into -- -- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))). fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- pass that as a closure to compose with (_•_ x) for each new variable. fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) -- fromCBVConstCPSDo ts {!cConst (cbvToCompConst c)!} -- In the beginning, we should get a function that expects a whole set of -- arguments (Vals Γ Σ) for c, in the initial context Γ. -- Later, each call should match: -- - Σ = τΣ • Σ′, then we recurse with Γ′ = τΣ • Γ and Σ′. Terms ought to be -- weakened. The result of f (or the arguments) also ought to be weakened! So f should weaken -- all arguments. -- - Σ = ∅. fromCBV (const c args) = fromCBVConstCPSRoot c args fromCBV (app s t) = (fromCBV s) into (fromCBV (weaken (drop _ • ≼-refl) t) into cApp (cForce (vVar (vThat vThis))) (vVar vThis)) -- Values fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x)) fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t))) -- This reflects the CBV conversion of values in TLCA '99, but we can't write -- this because it's partial on the Term type. Instead, we duplicate thunking -- at the call site. {- fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ) fromCBVToVal (var x) = vVar (fromVar cbvToValType x) fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t)) fromCBVToVal (const c args) = {!!} fromCBVToVal (app t t₁) = {!!} -- Not a value -}
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType module Parametric.Syntax.MTerm {Base : Type.Structure} (Const : Term.Structure Base) where open Type.Structure Base open MType.Structure Base open Term.Structure Base Const -- Our extension points are sets of primitives, indexed by the -- types of their arguments and their return type. -- We want different types of constants; some produce values, some produce -- computations. In all cases, arguments are assumed to be values (though -- individual primitives might require thunks). ValConstStructure : Set₁ ValConstStructure = ValContext → ValType → Set CompConstStructure : Set₁ CompConstStructure = ValContext → CompType → Set module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where mutual -- Analogues of Terms Vals : ValContext → ValContext → Set Vals Γ = DependentList (Val Γ) Comps : ValContext → List CompType → Set Comps Γ = DependentList (Comp Γ) data Val Γ : (τ : ValType) → Set where vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ -- XXX Do we need thunks? The draft in the paper doesn't have them. -- However, they will start being useful if we deal with CBN source -- languages. vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ) vConst : ∀ {Σ τ} → (c : ValConst Σ τ) → (args : Vals Γ Σ) → Val Γ τ data Comp Γ : (τ : CompType) → Set where cConst : ∀ {Σ τ} → (c : CompConst Σ τ) → (args : Vals Γ Σ) → Comp Γ τ cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ) {- -- Originally, M to x in N. But here we have no names! _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) τ) → Comp Γ τ -} -- The following constructor is the main difference between CBPV and this -- monadic calculus. This is better for the caching transformation. _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) (F τ)) → Comp Γ (F τ) cAbs : ∀ {σ τ} → (t : Comp (σ •• Γ) τ) → Comp Γ (σ ⇛ τ) cApp : ∀ {σ τ} → (s : Comp Γ (σ ⇛ τ)) → (t : Val Γ σ) → Comp Γ τ weaken-val : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Val Γ₁ τ → Val Γ₂ τ weaken-comp : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Comp Γ₁ τ → Comp Γ₂ τ weaken-vals : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Vals Γ₁ Σ → Vals Γ₂ Σ weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x) weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v) weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁) weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c) weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t) weaken-vals Γ₁≼Γ₂ ∅ = ∅ weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts) fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ) fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ) fromCBNTerms ∅ = ∅ fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts open import UNDEFINED -- This is really supposed to be part of the plugin interface. cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ) cbnToCompConst = reveal UNDEFINED fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args) fromCBN (var x) = cForce (vVar (fromVar cbnToValType x)) fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t)) fromCBN (abs t) = cAbs (fromCBN t) -- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context. -- But let's ignore that. {-# NO_TERMINATION_CHECK #-} fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- This is really supposed to be part of the plugin interface. cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ) cbvToCompConst = reveal UNDEFINED cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ) cbvTermsToComps ∅ = ∅ cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts module _ where dequeValContexts : ValContext → ValContext → ValContext dequeValContexts ∅ Γ = Γ dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ) dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ dequeValContexts≼≼ ∅ Γ = ≼≼-refl dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) dequeContexts : Context → Context → ValContext dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ) fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ) fromCBVArg t k = (fromCBV t) into k (vVar vThis) fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ) fromCBVArgs ∅ k = k ∅ fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs))) -- Transform a constant application into -- -- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))). fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- pass that as a closure to compose with (_•_ x) for each new variable. fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) fromCBV (const c args) = fromCBVConstCPSRoot c args fromCBV (app s t) = (fromCBV s) into (fromCBV (weaken (drop _ • ≼-refl) t) into cApp (cForce (vVar (vThat vThis))) (vVar vThis)) -- Values fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x)) fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t))) -- This reflects the CBV conversion of values in TLCA '99, but we can't write -- this because it's partial on the Term type. Instead, we duplicate thunking -- at the call site. {- fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ) fromCBVToVal (var x) = vVar (fromVar cbvToValType x) fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t)) fromCBVToVal (const c args) = {!!} fromCBVToVal (app t t₁) = {!!} -- Not a value -}
Drop more dead comments
Drop more dead comments
Agda
mit
inc-lc/ilc-agda
c1960f9f07f5b25dbb7225149d30534a5c8f3464
Theorem/Groups-Nehemiah.agda
Theorem/Groups-Nehemiah.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- About the group structure of integers and bags for Nehemiah plugin. ------------------------------------------------------------------------ module Theorem.Groups-Nehemiah where open import Structure.Bag.Nehemiah public open import Relation.Binary.PropositionalEquality open import Algebra.Structures 4-way-shuffle : ∀ {A : Set} {f} {z a b c d : A} {{comm-monoid : IsCommutativeMonoid _≡_ f z}} → f (f a b) (f c d) ≡ f (f a c) (f b d) 4-way-shuffle {f = f} {z = z} {a} {b} {c} {d} {{comm-monoid}} = let assoc = associative comm-monoid cmute = commutative comm-monoid in begin f (f a b) (f c d) ≡⟨ assoc a b (f c d) ⟩ f a (f b (f c d)) ≡⟨ cong (f a) (sym (assoc b c d)) ⟩ f a (f (f b c) d) ≡⟨ cong (λ hole → f a (f hole d)) (cmute b c) ⟩ f a (f (f c b) d) ≡⟨ cong (f a) (assoc c b d) ⟩ f a (f c (f b d)) ≡⟨ sym (assoc a c (f b d)) ⟩ f (f a c) (f b d) ∎ where open ≡-Reasoning open import Data.Integer n+[m-n]=m : ∀ {n m} → n + (m - n) ≡ m n+[m-n]=m {n} {m} = begin n + (m - n) ≡⟨ cong (λ hole → n + hole) (commutative-int m (- n)) ⟩ n + (- n + m) ≡⟨ sym (associative-int n (- n) m) ⟩ (n - n) + m ≡⟨ cong (λ hole → hole + m) (right-inv-int n) ⟩ (+ 0) + m ≡⟨ left-id-int m ⟩ m ∎ where open ≡-Reasoning a++[b\\a]=b : ∀ {a b} → a ++ (b \\ a) ≡ b a++[b\\a]=b {b} {d} = trans (cong (λ hole → b ++ hole) (commutative-bag d (negateBag b))) (trans (sym (associative-bag b (negateBag b) d)) (trans (cong (λ hole → hole ++ d) (right-inv-bag b)) (left-id-bag d))) ab·cd=ac·bd : ∀ {a b c d : Bag} → (a ++ b) ++ (c ++ d) ≡ (a ++ c) ++ (b ++ d) ab·cd=ac·bd {a} {b} {c} {d} = 4-way-shuffle {a = a} {b} {c} {d} {{comm-monoid-bag}} mn·pq=mp·nq : ∀ {m n p q : ℤ} → (m + n) + (p + q) ≡ (m + p) + (n + q) mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-int}} inverse-unique : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f a b ≡ z → b ≡ neg a inverse-unique {f = f} {neg} {z} {a} {b} {{abelian}} ab=z = let assoc = associative (IsAbelianGroup.isCommutativeMonoid abelian) cmute = commutative (IsAbelianGroup.isCommutativeMonoid abelian) in begin b ≡⟨ sym (left-identity abelian b) ⟩ f z b ≡⟨ cong (λ hole → f hole b) (sym (left-inverse abelian a)) ⟩ f (f (neg a) a) b ≡⟨ assoc (neg a) a b ⟩ f (neg a) (f a b) ≡⟨ cong (f (neg a)) ab=z ⟩ f (neg a) z ≡⟨ right-identity abelian (neg a) ⟩ neg a ∎ where open ≡-Reasoning eq1 : f (neg a) (f a b) ≡ f (neg a) z eq1 rewrite ab=z = cong (f (neg a)) refl distribute-neg : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f (neg a) (neg b) ≡ neg (f a b) distribute-neg {f = f} {neg} {z} {a} {b} {{abelian}} = inverse-unique {{abelian}} (begin f (f a b) (f (neg a) (neg b)) ≡⟨ 4-way-shuffle {{IsAbelianGroup.isCommutativeMonoid abelian}} ⟩ f (f a (neg a)) (f b (neg b)) ≡⟨ cong₂ f (inverse a) (inverse b) ⟩ f z z ≡⟨ left-identity abelian z ⟩ z ∎) where open ≡-Reasoning inverse = right-inverse abelian -a·-b=-ab : ∀ {a b : Bag} → negateBag a ++ negateBag b ≡ negateBag (a ++ b) -a·-b=-ab {a} {b} = distribute-neg {a = a} {b} {{abelian-bag}} -m·-n=-mn : ∀ {m n : ℤ} → (- m) + (- n) ≡ - (m + n) -m·-n=-mn {m} {n} = distribute-neg {a = m} {n} {{abelian-int}} [a++b]\\a=b : ∀ {a b} → (a ++ b) \\ a ≡ b [a++b]\\a=b {b} {d} = begin (b ++ d) \\ b ≡⟨ cong (λ hole → hole \\ b) (commutative-bag b d) ⟩ (d ++ b) \\ b ≡⟨ associative-bag d b (negateBag b) ⟩ d ++ (b \\ b) ≡⟨ cong (_++_ d) (right-inv-bag b) ⟩ d ++ emptyBag ≡⟨ right-id-bag d ⟩ d ∎ where open ≡-Reasoning
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- About the group structure of integers and bags for Nehemiah plugin. ------------------------------------------------------------------------ module Theorem.Groups-Nehemiah where open import Structure.Bag.Nehemiah public open import Relation.Binary.PropositionalEquality open import Algebra.Structures 4-way-shuffle : ∀ {A : Set} {f} {z a b c d : A} {{comm-monoid : IsCommutativeMonoid _≡_ f z}} → f (f a b) (f c d) ≡ f (f a c) (f b d) 4-way-shuffle {f = f} {z = z} {a} {b} {c} {d} {{comm-monoid}} = let assoc = associative comm-monoid cmute = commutative comm-monoid in begin f (f a b) (f c d) ≡⟨ assoc a b (f c d) ⟩ f a (f b (f c d)) ≡⟨ cong (f a) (sym (assoc b c d)) ⟩ f a (f (f b c) d) ≡⟨ cong (λ hole → f a (f hole d)) (cmute b c) ⟩ f a (f (f c b) d) ≡⟨ cong (f a) (assoc c b d) ⟩ f a (f c (f b d)) ≡⟨ sym (assoc a c (f b d)) ⟩ f (f a c) (f b d) ∎ where open ≡-Reasoning module _ where open import Data.Nat -- Apologies for irregular name. ℕ-mn·pq=mp·nq : ∀ {m n p q : ℕ} → (m + n) + (p + q) ≡ (m + p) + (n + q) ℕ-mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-nat}} open import Data.Integer n+[m-n]=m : ∀ {n m} → n + (m - n) ≡ m n+[m-n]=m {n} {m} = begin n + (m - n) ≡⟨ cong (λ hole → n + hole) (commutative-int m (- n)) ⟩ n + (- n + m) ≡⟨ sym (associative-int n (- n) m) ⟩ (n - n) + m ≡⟨ cong (λ hole → hole + m) (right-inv-int n) ⟩ (+ 0) + m ≡⟨ left-id-int m ⟩ m ∎ where open ≡-Reasoning a++[b\\a]=b : ∀ {a b} → a ++ (b \\ a) ≡ b a++[b\\a]=b {b} {d} = trans (cong (λ hole → b ++ hole) (commutative-bag d (negateBag b))) (trans (sym (associative-bag b (negateBag b) d)) (trans (cong (λ hole → hole ++ d) (right-inv-bag b)) (left-id-bag d))) ab·cd=ac·bd : ∀ {a b c d : Bag} → (a ++ b) ++ (c ++ d) ≡ (a ++ c) ++ (b ++ d) ab·cd=ac·bd {a} {b} {c} {d} = 4-way-shuffle {a = a} {b} {c} {d} {{comm-monoid-bag}} mn·pq=mp·nq : ∀ {m n p q : ℤ} → (m + n) + (p + q) ≡ (m + p) + (n + q) mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-int}} inverse-unique : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f a b ≡ z → b ≡ neg a inverse-unique {f = f} {neg} {z} {a} {b} {{abelian}} ab=z = let assoc = associative (IsAbelianGroup.isCommutativeMonoid abelian) cmute = commutative (IsAbelianGroup.isCommutativeMonoid abelian) in begin b ≡⟨ sym (left-identity abelian b) ⟩ f z b ≡⟨ cong (λ hole → f hole b) (sym (left-inverse abelian a)) ⟩ f (f (neg a) a) b ≡⟨ assoc (neg a) a b ⟩ f (neg a) (f a b) ≡⟨ cong (f (neg a)) ab=z ⟩ f (neg a) z ≡⟨ right-identity abelian (neg a) ⟩ neg a ∎ where open ≡-Reasoning eq1 : f (neg a) (f a b) ≡ f (neg a) z eq1 rewrite ab=z = cong (f (neg a)) refl distribute-neg : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f (neg a) (neg b) ≡ neg (f a b) distribute-neg {f = f} {neg} {z} {a} {b} {{abelian}} = inverse-unique {{abelian}} (begin f (f a b) (f (neg a) (neg b)) ≡⟨ 4-way-shuffle {{IsAbelianGroup.isCommutativeMonoid abelian}} ⟩ f (f a (neg a)) (f b (neg b)) ≡⟨ cong₂ f (inverse a) (inverse b) ⟩ f z z ≡⟨ left-identity abelian z ⟩ z ∎) where open ≡-Reasoning inverse = right-inverse abelian -a·-b=-ab : ∀ {a b : Bag} → negateBag a ++ negateBag b ≡ negateBag (a ++ b) -a·-b=-ab {a} {b} = distribute-neg {a = a} {b} {{abelian-bag}} -m·-n=-mn : ∀ {m n : ℤ} → (- m) + (- n) ≡ - (m + n) -m·-n=-mn {m} {n} = distribute-neg {a = m} {n} {{abelian-int}} [a++b]\\a=b : ∀ {a b} → (a ++ b) \\ a ≡ b [a++b]\\a=b {b} {d} = begin (b ++ d) \\ b ≡⟨ cong (λ hole → hole \\ b) (commutative-bag b d) ⟩ (d ++ b) \\ b ≡⟨ associative-bag d b (negateBag b) ⟩ d ++ (b \\ b) ≡⟨ cong (_++_ d) (right-inv-bag b) ⟩ d ++ emptyBag ≡⟨ right-id-bag d ⟩ d ∎ where open ≡-Reasoning
add variant of 4-way-shuffle for naturals
Groups-Nehemiah: add variant of 4-way-shuffle for naturals
Agda
mit
inc-lc/ilc-agda
f8bd15f415762af0fce2117302889b7e97a25936
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply diff-base apply {base ι} = diff-base , apply lift-diff-apply diff-base apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff-base apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff-base apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff diff-base apply = λ {τ Γ} → proj₁ (lift-diff-apply diff-base apply {τ} {Γ}) lift-apply : DiffStructure → ApplyStructure → ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply diff-base apply = λ {τ Γ} → proj₂ (lift-diff-apply diff-base apply {τ} {Γ})
Rename diff to diff-base.
Rename diff to diff-base. I want to move code between Parametric.Syntax.Term and Atlas.Syntax.Term, but I have to unify the naming conventions first. Old-commit-hash: 73a829a379ce12d2c01dbaf184ae2d380ad9abb1
Agda
mit
inc-lc/ilc-agda
be6f1fa3a0adbb680ac349286c28d45c17722184
Prob.agda
Prob.agda
module Prob where open import Data.Bool open import Data.Nat open import Data.Vec open import Function open import Relation.Binary.PropositionalEquality.NP open import Relation.Nullary record ]0,1]-ops (]0,1] : Set) : Set where field 1E : ]0,1] _+E_ : ]0,1] → ]0,1] → ]0,1] _·E_ : ]0,1] → ]0,1] → ]0,1] 1/E_ : ]0,1] → ]0,1] module [0,1] {]0,1]}(]0,1]R : ]0,1]-ops ]0,1]) where open ]0,1]-ops ]0,1]R public infixl 6 _+I_ infix 4 _≤I_ data [0,1] : Set where 0I : [0,1] _I : ]0,1] → [0,1] 1I : [0,1] 1I = 1E I Pos : [0,1] → Set Pos x = ¬ (x ≡ 0I) _<_> : (x : [0,1]) → Pos x → ]0,1] 0I < pos > with pos refl ... | () (x I) < pos > = x _+I_ : [0,1] → [0,1] → [0,1] 0I +I x = x x I +I 0I = x I x I +I x₁ I = (x +E x₁) I _·I_ : [0,1] → [0,1] → [0,1] 0I ·I y = 0I (x I) ·I 0I = 0I (x I) ·I (x₁ I) = (x ·E x₁) I 1/I_ : ]0,1] → [0,1] 1/I x = (1/E x) I _/I_ : [0,1] → ]0,1] → [0,1] x /I y = x ·I (1/I y) +I-identity : (x : [0,1]) → x ≡ 0I +I x +I-identity x = refl postulate +I-sym : (x y : [0,1]) → x +I y ≡ y +I x +I-assoc : (x y z : [0,1]) → x +I y +I z ≡ x +I (y +I z) _≤I_ : [0,1] → [0,1] → Set ≤I-refl : {x : [0,1]} → x ≤I x ≤I-trans : {x y z : [0,1]} → x ≤I y → y ≤I z → x ≤I z ≤I-mono : (x : [0,1]){y z : [0,1]} → y ≤I z → y ≤I z +I x ≤I-pres : (x : [0,1]){y z : [0,1]} → y ≤I z → x +I y ≤I x +I z module Univ ( ]0,1] : Set)(]0,1]R : ]0,1]-ops ]0,1]) (U : Set) (size-1 : ℕ) (allU : Vec U (suc size-1)) (x∈allU : (x : U) → x ∈ allU) where open [0,1] ]0,1]R sumP : {n : ℕ} → (U → [0,1]) → Vec U n → [0,1] sumP P [] = 0I sumP P (x ∷ xs) = (P x) +I (sumP P xs) module Prob (P : U → [0,1]) (sumP≡1 : sumP P allU ≡ 1I) where Event : Set Event = U → Bool pr_∋_ : Event → U → [0,1] pr A ∋ x = if A x then P x else 0I _∪_ : Event → Event → Event A₁ ∪ A₂ = λ x → A₁ x ∨ A₂ x _∩_ : Event → Event → Event A₁ ∩ A₂ = λ x → A₁ x ∧ A₂ x ℂ[_] : Event → Event ℂ[ A ] = not ∘ A Pr[_] : Event → [0,1] Pr[ A ] = sumP (pr_∋_ A) allU Pr[_∣_]<_> : (A B : Event)(pf : Pos Pr[ B ]) → [0,1] Pr[ A ∣ B ]< pr > = Pr[ A ∩ B ] /I Pr[ B ] < pr > _ind_ : (A B : Event) → Set A ind B = Pr[ A ] ·I Pr[ B ] ≡ Pr[ A ∩ B ] union-bound : (A₁ A₂ : Event) → Pr[ (A₁ ∪ A₂) ] ≤I Pr[ A₁ ] +I Pr[ A₂ ] union-bound A₁ A₂ = go allU where sA₁ : {n : ℕ} → Vec U n → [0,1] sA₁ = λ xs → sumP (pr_∋_ A₁) xs sA₂ : {n : ℕ} → Vec U n → [0,1] sA₂ = sumP (pr_∋_ A₂) go : {n : ℕ}(xs : Vec U n) → sumP (pr_∋_ (A₁ ∪ A₂)) xs ≤I sumP (pr_∋_ A₁) xs +I sumP (pr_∋_ A₂) xs go [] = ≤I-refl go (x ∷ xs) with A₁ x | A₂ x ... | true | true rewrite +I-assoc (P x) (sA₁ xs) (P x +I sA₂ xs) | +I-sym (P x) (sA₂ xs) | sym (+I-assoc (sA₁ xs) (sA₂ xs) (P x)) = ≤I-pres (P x) (≤I-mono (P x) (go xs)) ... | true | false rewrite +I-assoc (P x) (sA₁ xs) (sA₂ xs) = ≤I-pres (P x) (go xs) ... | false | true rewrite sym (+I-assoc (sA₁ xs) (P x) (sA₂ xs)) | +I-sym (sA₁ xs) (P x) | +I-assoc (P x) (sA₁ xs) (sA₂ xs) = ≤I-pres (P x) (go xs) ... | false | false = go xs module RandomVar (V : Set) (_==V_ : V → V → Bool) where RV : Set RV = U → V _^-1_ : RV → V → Event RV ^-1 v = λ x → RV x ==V v _≡r_ : RV → V → Event RV ≡r v = RV ^-1 v -- sugar, socker et sucre Pr[_≡_] : RV → V → [0,1] Pr[ X ≡ v ] = Pr[ X ≡r v ] -- ∀ (a b) . Pr[X = a and Y = b] = Pr[X = a] · Pr[Y = b] _indRV_ : RV → RV → Set X indRV Y = (a b : V) → (X ^-1 a) ind (Y ^-1 b)
module Prob where open import Data.Bool open import Data.Nat open import Data.Vec open import Data.Unit using (⊤) open import Data.Empty using (⊥) open import Function open import Relation.Binary.PropositionalEquality.NP open import Relation.Nullary record ]0,1]-ops (]0,1] : Set) (_≤E_ : ]0,1] → ]0,1] → Set) : Set where constructor mk field 1E : ]0,1] _+E_ : ]0,1] → ]0,1] → ]0,1] _·E_ : ]0,1] → ]0,1] → ]0,1] _/E_<_> : (x y : ]0,1]) → x ≤E y → ]0,1] module [0,1] {]0,1] _≤E_} (]0,1]R : ]0,1]-ops ]0,1] _≤E_) where open ]0,1]-ops ]0,1]R public infixl 6 _+I_ infix 4 _≤I_ data [0,1] : Set where 0I : [0,1] _I : ]0,1] → [0,1] data _≤I_ : [0,1] → [0,1] → Set where z≤n : ∀ {n} → 0I ≤I n E≤E : ∀ {x y} → x ≤E y → (x I) ≤I (y I) 1I : [0,1] 1I = 1E I Pos : [0,1] → Set Pos 0I = ⊥ Pos (_ I) = ⊤ _<_> : (x : [0,1]) → Pos x → ]0,1] 0I < () > (x I) < pos > = x _+I_ : [0,1] → [0,1] → [0,1] 0I +I x = x x I +I 0I = x I x I +I x₁ I = (x +E x₁) I _·I_ : [0,1] → [0,1] → [0,1] 0I ·I y = 0I (x I) ·I 0I = 0I (x I) ·I (x₁ I) = (x ·E x₁) I -- 1/I1+_ : ℕ → [0,1] _/I_<_,_> : (x y : [0,1]) → x ≤I y → Pos y → [0,1] _ /I 0I < _ , () > 0I /I _ < _ , _ > = 0I (x I) /I (y I) < E≤E pf , _ > = (x /E y < pf >)I +I-identity : (x : [0,1]) → x ≡ 0I +I x +I-identity x = refl postulate +I-sym : (x y : [0,1]) → x +I y ≡ y +I x +I-assoc : (x y z : [0,1]) → x +I y +I z ≡ x +I (y +I z) ≤I-refl : {x : [0,1]} → x ≤I x ≤I-trans : {x y z : [0,1]} → x ≤I y → y ≤I z → x ≤I z ≤I-mono : (x : [0,1]){y z : [0,1]} → y ≤I z → y ≤I z +I x ≤I-pres : (x : [0,1]){y z : [0,1]} → y ≤I z → x +I y ≤I x +I z module Univ {]0,1] _≤E_} (]0,1]R : ]0,1]-ops ]0,1] _≤E_) (U : Set) (size-1 : ℕ) (allU : Vec U (suc size-1)) (x∈allU : (x : U) → x ∈ allU) where open [0,1] ]0,1]R sumP : {n : ℕ} → (U → [0,1]) → Vec U n → [0,1] sumP P [] = 0I sumP P (x ∷ xs) = (P x) +I (sumP P xs) module Prob (P : U → [0,1]) (sumP≡1 : sumP P allU ≡ 1I) where Event : Set Event = U → Bool pr_∋_ : Event → U → [0,1] pr A ∋ x = if A x then P x else 0I _∪_ : Event → Event → Event A₁ ∪ A₂ = λ x → A₁ x ∨ A₂ x _∩_ : Event → Event → Event A₁ ∩ A₂ = λ x → A₁ x ∧ A₂ x _⊆_ : Event → Event → Set A ⊆ B = ∀ x → T(A x) → T(B x) ℂ[_] : Event → Event ℂ[ A ] = not ∘ A Pr[_] : Event → [0,1] Pr[ A ] = sumP (pr_∋_ A) allU postulate Pr-mono : ∀ {A B} → A ⊆ B → Pr[ A ] ≤I Pr[ B ] ∪-lem : ∀ {A} B → A ⊆ (A ∪ B) ∪-lem {A} _ x with A x ... | true = id ... | false = λ() ∩-lem : ∀ A {B} → (A ∩ B) ⊆ B ∩-lem A x with A x ... | true = id ... | false = λ() Pr[_∣_]<_> : (A B : Event)(pf : Pos Pr[ B ]) → [0,1] Pr[ A ∣ B ]< pr > = Pr[ A ∩ B ] /I Pr[ B ] < Pr-mono (∩-lem A) , pr > _ind_ : (A B : Event) → Set A ind B = Pr[ A ] ·I Pr[ B ] ≡ Pr[ A ∩ B ] union-bound : (A₁ A₂ : Event) → Pr[ (A₁ ∪ A₂) ] ≤I Pr[ A₁ ] +I Pr[ A₂ ] union-bound A₁ A₂ = go allU where sA₁ : {n : ℕ} → Vec U n → [0,1] sA₁ = λ xs → sumP (pr_∋_ A₁) xs sA₂ : {n : ℕ} → Vec U n → [0,1] sA₂ = sumP (pr_∋_ A₂) go : {n : ℕ}(xs : Vec U n) → sumP (pr_∋_ (A₁ ∪ A₂)) xs ≤I sumP (pr_∋_ A₁) xs +I sumP (pr_∋_ A₂) xs go [] = ≤I-refl go (x ∷ xs) with A₁ x | A₂ x ... | true | true rewrite +I-assoc (P x) (sA₁ xs) (P x +I sA₂ xs) | +I-sym (P x) (sA₂ xs) | sym (+I-assoc (sA₁ xs) (sA₂ xs) (P x)) = ≤I-pres (P x) (≤I-mono (P x) (go xs)) ... | true | false rewrite +I-assoc (P x) (sA₁ xs) (sA₂ xs) = ≤I-pres (P x) (go xs) ... | false | true rewrite sym (+I-assoc (sA₁ xs) (P x) (sA₂ xs)) | +I-sym (sA₁ xs) (P x) | +I-assoc (P x) (sA₁ xs) (sA₂ xs) = ≤I-pres (P x) (go xs) ... | false | false = go xs module RandomVar (V : Set) (_==V_ : V → V → Bool) where RV : Set RV = U → V _^-1_ : RV → V → Event RV ^-1 v = λ x → RV x ==V v _≡r_ : RV → V → Event RV ≡r v = RV ^-1 v -- sugar, socker et sucre Pr[_≡_] : RV → V → [0,1] Pr[ X ≡ v ] = Pr[ X ≡r v ] -- ∀ (a b) . Pr[X = a and Y = b] = Pr[X = a] · Pr[Y = b] _indRV_ : RV → RV → Set X indRV Y = (a b : V) → (X ^-1 a) ind (Y ^-1 b)
Fix some concrete non-sense about the division
Fix some concrete non-sense about the division
Agda
bsd-3-clause
crypto-agda/crypto-agda
a0c26d1d2731a3ccca7b00c77068c7bb3491ecab
FiniteField/JS.agda
FiniteField/JS.agda
{-# OPTIONS --without-K #-} open import Function.NP open import FFI.JS using (Number; Bool; true; false; String; warn-check; check; trace-call; _++_) open import FFI.JS.BigI open import Data.List.Base hiding (sum; _++_) {- open import Algebra.Raw open import Algebra.Field -} module FiniteField.JS (q : BigI) where abstract ℤq : Set ℤq = BigI private mod-q : BigI → ℤq mod-q x = mod x q -- There is two ways to go from BigI to ℤq: check and mod-q -- Use check for untrusted input data and mod-q for internal -- computation. BigI▹ℤq : BigI → ℤq BigI▹ℤq = -- trace-call "BigI▹ℤq " λ x → mod-q (warn-check (x <I q) (λ _ → "Not below the modulus: " ++ toString q ++ " < " ++ toString x) (warn-check (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") x)) check-non-zero : ℤq → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check (x >I 0I) (λ _ → "Should be non zero") x repr : ℤq → BigI repr x = x 0# 1# : ℤq 0# = 0I 1# = 1I 1/_ : Op₁ ℤq 1/ x = modInv (check-non-zero x) q _^_ : Op₂ ℤq x ^ y = modPow (repr x) (repr y) q _+_ _−_ _*_ _/_ : Op₂ ℤq x + y = mod-q (add (repr x) (repr y)) x − y = mod-q (subtract (repr x) (repr y)) x * y = mod-q (multiply (repr x) (repr y)) x / y = x * 1/ y 0−_ : Op₁ ℤq 0− x = mod-q (negate (repr x)) _==_ : (x y : ℤq) → Bool x == y = equals (repr x) (repr y) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# {- +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct -- -} -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Function.NP open import FFI.JS using (𝟙; Number; Bool; true; false; String; warn-check; check; trace-call; _++_) open import FFI.JS.BigI open import Data.List.Base hiding (sum; _++_) {- open import Algebra.Raw open import Algebra.Field -} module FiniteField.JS (q : BigI) where abstract 𝔽 : Set 𝔽 = BigI private mod-q : BigI → 𝔽 mod-q x = mod x q check' : {A : Set}(pred : Bool)(errmsg : 𝟙 → String)(input : A) → A -- check' = warn-check check' = check -- There is two ways to go from BigI to ℤq: check and mod-q -- Use check for untrusted input data and mod-q for internal -- computation. fromBigI : BigI → 𝔽 fromBigI = -- trace-call "BigI▹ℤq " λ x → (check' (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) (check' (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") x)) check-non-zero : 𝔽 → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check (x >I 0I) (λ _ → "Should be non zero") x repr : 𝔽 → BigI repr x = x 0# 1# : 𝔽 0# = 0I 1# = 1I 1/_ : Op₁ 𝔽 1/ x = modInv (check-non-zero x) q _^_ : Op₂ 𝔽 x ^ y = modPow (repr x) (repr y) q _+_ _−_ _*_ _/_ : Op₂ 𝔽 x + y = mod-q (add (repr x) (repr y)) x − y = mod-q (subtract (repr x) (repr y)) x * y = mod-q (multiply (repr x) (repr y)) x / y = x * 1/ y 0−_ : Op₁ 𝔽 0− x = mod-q (negate (repr x)) _==_ : (x y : 𝔽) → Bool x == y = equals (repr x) (repr y) sum prod : List 𝔽 → 𝔽 sum = foldr _+_ 0# prod = foldr _*_ 1# {- +-mon-ops : Monoid-Ops 𝔽 +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops 𝔽 +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops 𝔽 *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops 𝔽 *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops 𝔽 fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field 𝔽 fld = fld-ops , fld-struct -- -} -- -} -- -} -- -} -- -}
rename ℤq to 𝔽
FiniteField.JS: rename ℤq to 𝔽
Agda
bsd-3-clause
crypto-agda/crypto-agda
0f09d9f4ac44a07ba808622a5206a04b696a6f76
derivation.agda
derivation.agda
module derivation where open import lambda -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ Δ-Type bool = {!!} apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) apply {bool} = {!!} compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app (compose {τ₂}) (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) compose {bool} = {!!} nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs (nil {τ₂}) -- λx. nil nil {bool} = {!!} -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGE VARIABLES -- changes 'x' to 'dx' rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) rename this = that this rename (that x) = that (that (rename x)) adaptVar : ∀ {τ} Γ₁ Γ₂ → Var (Γ₁ ⋎ Γ₂) τ → Var (Γ₁ ⋎ Δ-Context Γ₂) τ adaptVar ∅ (τ₂ • Γ₂) this = this adaptVar ∅ (τ₂ • Γ₂) (that x) = that (that (adaptVar ∅ Γ₂ x)) adaptVar (τ₁ • Γ₁) Γ₂ this = this adaptVar (τ₁ • Γ₁) Γ₂ (that x) = that (adaptVar Γ₁ Γ₂ x) adapt : ∀ {τ} Γ₁ Γ₂ → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) τ adapt {τ₁ ⇒ τ₂} Γ₁ Γ₂ (abs t) = abs (adapt (τ₁ • Γ₁) Γ₂ t) adapt Γ₁ Γ₂ (app t₁ t₂) = app (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂) adapt Γ₁ Γ₂ (var t) = var (adaptVar Γ₁ Γ₂ t) adapt Γ₁ Γ₂ true = true adapt Γ₁ Γ₂ false = false adapt Γ₁ Γ₂ (cond tc t₁ t₂) = cond (adapt Γ₁ Γ₂ tc) (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂) -- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound) Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ) Δ-var {∅} x = var (rename x) Δ-var {τ • Γ} this = nil {τ} Δ-var {τ • Γ} (that x) = Δ-var {Γ} x -- Note: this should be the derivative with respect to the first variable. nabla : ∀ {Γ τ₁ τ₂} → (t₀ : Term Γ (τ₁ ⇒ τ₂)) → Term Γ (τ₁ ⇒ Δ-Type τ₁ ⇒ Δ-Type τ₂) nabla = {!!} -- CHANGE TERMS Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ₁} {Γ₂} {τ} (app t₁ t₂) = app (app (compose {τ}) (app (Δ-term {Γ₁} t₁) (adapt Γ₁ Γ₂ t₂))) (app (adapt Γ₁ Γ₂ (app (nabla {Γ₁ ⋎ Γ₂} t₁) t₂)) (Δ-term {Γ₁} {Γ₂} t₂)) Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x) Δ-term {Γ} true = {!!} Δ-term {Γ} false = {!!} Δ-term {Γ} (cond t₁ t₂ t₃) = {!!}
module derivation where open import lambda -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ Δ-Type bool = {!!} apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) apply {bool} = {!!} compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app (compose {τ₂}) (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) compose {bool} = {!!} nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs (nil {τ₂}) -- λx. nil nil {bool} = {!!} -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGE VARIABLES -- changes 'x' to 'dx' rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) rename this = that this rename (that x) = that (that (rename x)) -- Weakening of a term needed during derivation - change x to x in a context which also includes dx. -- The actual specification is more complicated, study the type signature. adaptVar : ∀ {τ} Γ₁ Γ₂ → Var (Γ₁ ⋎ Γ₂) τ → Var (Γ₁ ⋎ Δ-Context Γ₂) τ adaptVar ∅ (τ₂ • Γ₂) this = this adaptVar ∅ (τ₂ • Γ₂) (that x) = that (that (adaptVar ∅ Γ₂ x)) adaptVar (τ₁ • Γ₁) Γ₂ this = this adaptVar (τ₁ • Γ₁) Γ₂ (that x) = that (adaptVar Γ₁ Γ₂ x) adapt : ∀ {τ} Γ₁ Γ₂ → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) τ adapt {τ₁ ⇒ τ₂} Γ₁ Γ₂ (abs t) = abs (adapt (τ₁ • Γ₁) Γ₂ t) adapt Γ₁ Γ₂ (app t₁ t₂) = app (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂) adapt Γ₁ Γ₂ (var t) = var (adaptVar Γ₁ Γ₂ t) adapt Γ₁ Γ₂ true = true adapt Γ₁ Γ₂ false = false adapt Γ₁ Γ₂ (cond tc t₁ t₂) = cond (adapt Γ₁ Γ₂ tc) (adapt Γ₁ Γ₂ t₁) (adapt Γ₁ Γ₂ t₂) -- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound) Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ) Δ-var {∅} x = var (rename x) Δ-var {τ • Γ} this = nil {τ} Δ-var {τ • Γ} (that x) = Δ-var {Γ} x -- Note: this should be the derivative with respect to the first variable. nabla : ∀ {Γ τ₁ τ₂} → (t₀ : Term Γ (τ₁ ⇒ τ₂)) → Term Γ (τ₁ ⇒ Δ-Type τ₁ ⇒ Δ-Type τ₂) nabla = {!!} -- CHANGE TERMS Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) -- To recheck: which is the order in which to apply the changes? When I did my live proof to Klaus, I came up with this order: -- (Δ-term t₁) (t₂ ⊕ (Δ-term t₂)) ∘ (∇ t₁) t₂ (Δ-term t₂) -- corresponding to: Δ-term {Γ₁} {Γ₂} {τ} (app t₁ t₂) = app (app (compose {τ}) (app (Δ-term {Γ₁} t₁) (app (app apply (Δ-term {Γ₁} {Γ₂} t₂)) (adapt Γ₁ Γ₂ t₂)))) (app (adapt Γ₁ Γ₂ (app (nabla {Γ₁ ⋎ Γ₂} t₁) t₂)) (Δ-term {Γ₁} {Γ₂} t₂)) Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x) Δ-term {Γ} true = {!!} Δ-term {Γ} false = {!!} Δ-term {Γ} (cond t₁ t₂ t₃) = {!!}
correct Δ-term, more comments
agda/derivation.agda: correct Δ-term, more comments In the previous commit I forgot some comments and I forgot applying some changes, something the typechecker unfortunately would not detect. Fix that. Old-commit-hash: 9a72bde5058103929f5d3c0eda97b9850a5d7c9c
Agda
mit
inc-lc/ilc-agda
8f895d5906dc2d743ba0dc39c4f907e17931b4f9
Denotational/ValidChanges.agda
Denotational/ValidChanges.agda
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data Valid-Δ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Valid-Δ {bool} v dv = ⊤ Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} → Valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) invalid-changes-exist : ¬ (∀ {τ} v dv → Valid-Δ {τ} v dv) invalid-changes-exist k with k (λ x → x) (λ x dx → false) false true ... | _ , () diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data Valid-Δ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Valid-Δ {bool} v dv = ⊤ Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} → Valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) invalid-changes-exist : ¬ (∀ {τ} v dv → Valid-Δ {τ} v dv) invalid-changes-exist k with k (λ x → x) (λ x dx → false) false true ... | _ , () diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db open import Syntactic.Contexts Type open import Denotational.Environments Type ⟦_⟧Type open import Changes open import ChangeContexts ProofVal : Type → Set ProofVal τ = Σ[ v ∈ ⟦ τ ⟧ ] (Σ[ dv ∈ ⟦ Δ-Type τ ⟧ ] Valid-Δ v dv) import Denotational.Environments Type ProofVal as ProofEnv eraseVal : ∀ {τ} → ProofVal τ → ⟦ τ ⟧ eraseVal (v , dv , dv-valid) = v -- Specification: eraseEnv = map eraseVal eraseEnv : ∀ {Γ} → ProofEnv.⟦ Γ ⟧Context → ⟦ Γ ⟧ eraseEnv {∅} ∅ = ∅ eraseEnv {τ • Γ} (v • ρ) = eraseVal v • eraseEnv ρ eraseProofs : ∀ {Γ} → ProofEnv.⟦ Γ ⟧Context → ⟦ Δ-Context Γ ⟧ eraseProofs {∅} ∅ = ∅ eraseProofs {τ • Γ} ((v , dv , dv-valid) • ρ) = dv • v • eraseProofs ρ
implement proof-decorated environments (#33)
agda: implement proof-decorated environments (#33) Old-commit-hash: eb0097a135a39c572cfb62c967a388632b42f839
Agda
mit
inc-lc/ilc-agda
7c497fbc194526d5d3f1a4335a6f74574050c633
TotalNaturalSemantics.agda
TotalNaturalSemantics.agda
module TotalNaturalSemantics where open import Relation.Binary.PropositionalEquality open import meaning open import Model --open import Changes --open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = ≡-refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = ≡-refl ↓-sound (app ↓₁ ↓₂ ↓′) = ≡-trans (≡-cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦
module TotalNaturalSemantics where open import Relation.Binary.PropositionalEquality open import meaning open import Model --open import Changes --open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms open import Relation.Binary.PropositionalEquality -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = ≡-refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = ≡-refl ↓-sound (app ↓₁ ↓₂ ↓′) = ≡-trans (≡-cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦
Fix TotalNaturalSemantics.agda (fix #32).
Fix TotalNaturalSemantics.agda (fix #32). Old-commit-hash: 3665667d355c2d049d92115cd27f98cc9dc4f3a2
Agda
mit
inc-lc/ilc-agda
3ecae75aaafb233597792507020b6d74bee0ecfe
Data/NatBag.agda
Data/NatBag.agda
-- An agda type isomorphic to bags of natural numbers -- How to import this file from anywhere in the world -- -- 1. M-x customize-group RET agda2 RET -- 2. Look for the option `Agda2 Include Dirs` -- 3. Insert "$ILC/agda", where $ILC is path to ILC repo on your computer -- 4. "Save for future sessions" -- 5. open import Data.NatBag module Data.NatBag where open import Data.Nat hiding (zero) renaming (_+_ to plus) open import Data.Integer renaming (suc to +1 ; pred to -1) open import Data.Maybe.Core open import Data.Sum ----------- -- Types -- ----------- data Nonzero : ℤ → Set where negative : (n : ℕ) → Nonzero -[1+ n ] positive : (n : ℕ) → Nonzero (+ (suc n)) data EmptyBag : Set where ∅ : EmptyBag data NonemptyBag : Set where singleton : (i : ℤ) → (i≠0 : Nonzero i) → NonemptyBag _∷_ : (i : ℤ) → (bag : NonemptyBag) → NonemptyBag infixr 5 _∷_ Bag : Set Bag = EmptyBag ⊎ NonemptyBag ------------------- -- Bag interface -- ------------------- empty : Bag insert : ℕ → Bag → Bag delete : ℕ → Bag → Bag lookup : ℕ → Bag → ℤ update : ℕ → ℤ → Bag → Bag updateWith : ℕ → (ℤ → ℤ) → Bag → Bag map₁ : (ℕ → ℕ) → Bag → Bag -- map on bags, mapKeys on maps map₂ : (ℤ → ℤ) → Bag → Bag -- mapValues on maps {- TODO: Wait for map. zipWith : (ℤ → ℤ → ℤ) → Bag → Bag → Bag _++_ : Bag → Bag → Bag infixr 5 _++_ -- right-associativity follows Haskell, for efficiency _\\_ : Bag → Bag → Bag infixl 9 _\\_ -- fixity follows Haskell's Data.Map.(\\) -} -------------------- -- Implementation -- -------------------- insert n bag = updateWith n +1 bag delete n bag = updateWith n -1 bag update n i bag = updateWith n (λ _ → i) bag zero : ℤ zero = + 0 -- It is very easy to compute a proof that an integer is -- nonzero whenever such a thing exists. nonzero? : (i : ℤ) → Maybe (Nonzero i) nonzero? (+ 0) = nothing nonzero? (+ (suc n)) = just (positive n) nonzero? -[1+ n ] = just (negative n) empty = inj₁ ∅ makeSingleton : ℕ → (i : ℤ) → Nonzero i → NonemptyBag makeSingleton 0 i i≠0 = singleton i i≠0 makeSingleton (suc n) i i≠0 = (+ 0) ∷ makeSingleton n i i≠0 updateWith n f (inj₁ ∅) with nonzero? (f zero) ... | nothing = empty ... | just i≠0 = inj₂ (makeSingleton n (f zero) i≠0) updateWith 0 f (inj₂ (singleton i i≠0)) with nonzero? (f i) ... | nothing = empty ... | just j≠0 = inj₂ (singleton (f i) j≠0) updateWith (suc n) f (inj₂ (singleton i i≠0)) with nonzero? (f zero) ... | nothing = inj₂ (singleton i i≠0) ... | just j≠0 = inj₂ (i ∷ makeSingleton n (f zero) j≠0) updateWith 0 f (inj₂ (i ∷ bag)) = inj₂ (f i ∷ bag) updateWith (suc n) f (inj₂ (i ∷ y)) with updateWith n f (inj₂ y) | nonzero? i ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just i≠0 = inj₂ (singleton i i≠0) ... | inj₂ bag | _ = inj₂ (i ∷ bag) lookupNonempty : ℕ → NonemptyBag → ℤ lookupNonempty 0 (singleton i i≠0) = i lookupNonempty (suc n) (singleton i i≠0) = zero lookupNonempty 0 (i ∷ bag) = i lookupNonempty (suc n) (i ∷ bag) = lookupNonempty n bag lookup n (inj₁ ∅) = zero lookup n (inj₂ bag) = lookupNonempty n bag -- It is possible to get empty bags by mapping over a nonempty bag: -- map₁ (λ _ → 3) { 1 ⇒ 5 , 2 ⇒ -5 } mapKeysFrom : ℕ → (ℕ → ℕ) → NonemptyBag → Bag mapKeysFrom n f (singleton i i≠0) = inj₂ (makeSingleton (f n) i i≠0) mapKeysFrom n f (i ∷ bag) with nonzero? i ... | nothing = mapKeysFrom (suc n) f bag ... | just i≠0 = updateWith (f n) (λ j → j + i) (mapKeysFrom (suc n) f bag) map₁ f (inj₁ ∅) = empty map₁ f (inj₂ bag) = mapKeysFrom 0 f bag map₂ f (inj₁ ∅) = empty map₂ f (inj₂ (singleton i i≠0)) = {!!} map₂ f (inj₂ (i ∷ bag₀)) with map₂ f (inj₂ bag₀) | nonzero? i | nonzero? (f i) -- If an element has multiplicity 0, it should not be mapped over. -- Conceptually, we are mapping over the values of this infinite -- map not by f, but by {case 0 => 0}.orElse(f). ... | inj₁ ∅ | nothing | _ = empty ... | inj₂ bag | nothing | _ = inj₂ (zero ∷ bag) ... | inj₁ ∅ | just i≠0 | nothing = empty ... | inj₁ ∅ | just i≠0 | just j≠0 = inj₂ (singleton (f i) j≠0) ... | inj₂ bag | just i≠0 | _ = inj₂ (f i ∷ bag) {- TODO: Redefine in terms of zipWith, which will be defined in terms of map. -- The union of nonempty bags (with possibly negative -- multiplicities) can be empty. unionNonempty : NonemptyBag → NonemptyBag → Bag unionNonempty (singleton i i≠0) (singleton j j≠0) with nonzero? (i + j) ... | nothing = empty ... | just k≠0 = inj₂ (singleton (i + j) k≠0) unionNonempty (singleton i i≠0) (j ∷ b₂) = inj₂ (i + j ∷ b₂) inj₁ ∅ ++ b₂ = b₂ b₁ ++ inj₁ ∅ = b₁ (inj₂ b₁) ++ (inj₂ b₂) = (unionNonempty b₁ b₂) -}
-- An agda type isomorphic to bags of natural numbers -- How to import this file from anywhere in the world -- -- 1. M-x customize-group RET agda2 RET -- 2. Look for the option `Agda2 Include Dirs` -- 3. Insert "$ILC/agda", where $ILC is path to ILC repo on your computer -- 4. "Save for future sessions" -- 5. open import Data.NatBag module Data.NatBag where open import Data.Nat hiding (zero) renaming (_+_ to plus) open import Data.Integer renaming (suc to +1 ; pred to -1) open import Data.Maybe.Core open import Data.Sum hiding (map) ----------- -- Types -- ----------- data Nonzero : ℤ → Set where negative : (n : ℕ) → Nonzero -[1+ n ] positive : (n : ℕ) → Nonzero (+ (suc n)) data EmptyBag : Set where ∅ : EmptyBag data NonemptyBag : Set where singleton : (i : ℤ) → (i≠0 : Nonzero i) → NonemptyBag _∷_ : (i : ℤ) → (bag : NonemptyBag) → NonemptyBag infixr 5 _∷_ Bag : Set Bag = EmptyBag ⊎ NonemptyBag ------------------- -- Bag interface -- ------------------- empty : Bag insert : ℕ → Bag → Bag delete : ℕ → Bag → Bag lookup : ℕ → Bag → ℤ update : ℕ → ℤ → Bag → Bag updateWith : ℕ → (ℤ → ℤ) → Bag → Bag map : (ℕ → ℕ) → Bag → Bag -- map on bags, mapKeys on maps map₂ : (ℤ → ℤ) → Bag → Bag -- mapValues on maps zipWith : (ℤ → ℤ → ℤ) → Bag → Bag → Bag _++_ : Bag → Bag → Bag infixr 5 _++_ -- right-associativity follows Haskell, for efficiency _\\_ : Bag → Bag → Bag infixl 9 _\\_ -- fixity follows Haskell's Data.Map.(\\) -------------------- -- Implementation -- -------------------- insert n bag = updateWith n +1 bag delete n bag = updateWith n -1 bag update n i bag = updateWith n (λ _ → i) bag _++_ = zipWith _+_ _\\_ = zipWith _-_ zero : ℤ zero = + 0 -- It is very easy to compute a proof that an integer is -- nonzero whenever such a thing exists. nonzero? : (i : ℤ) → Maybe (Nonzero i) nonzero? (+ 0) = nothing nonzero? (+ (suc n)) = just (positive n) nonzero? -[1+ n ] = just (negative n) empty = inj₁ ∅ makeSingleton : ℕ → (i : ℤ) → Nonzero i → NonemptyBag makeSingleton 0 i i≠0 = singleton i i≠0 makeSingleton (suc n) i i≠0 = (+ 0) ∷ makeSingleton n i i≠0 updateWith n f (inj₁ ∅) with nonzero? (f zero) ... | nothing = empty ... | just i≠0 = inj₂ (makeSingleton n (f zero) i≠0) updateWith 0 f (inj₂ (singleton i i≠0)) with nonzero? (f i) ... | nothing = empty ... | just j≠0 = inj₂ (singleton (f i) j≠0) updateWith (suc n) f (inj₂ (singleton i i≠0)) with nonzero? (f zero) ... | nothing = inj₂ (singleton i i≠0) ... | just j≠0 = inj₂ (i ∷ makeSingleton n (f zero) j≠0) updateWith 0 f (inj₂ (i ∷ bag)) = inj₂ (f i ∷ bag) updateWith (suc n) f (inj₂ (i ∷ y)) with updateWith n f (inj₂ y) | nonzero? i ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just i≠0 = inj₂ (singleton i i≠0) ... | inj₂ bag | _ = inj₂ (i ∷ bag) lookupNonempty : ℕ → NonemptyBag → ℤ lookupNonempty 0 (singleton i i≠0) = i lookupNonempty (suc n) (singleton i i≠0) = zero lookupNonempty 0 (i ∷ bag) = i lookupNonempty (suc n) (i ∷ bag) = lookupNonempty n bag lookup n (inj₁ ∅) = zero lookup n (inj₂ bag) = lookupNonempty n bag -- It is possible to get empty bags by mapping over a nonempty bag: -- map (λ _ → 3) { 1 ⇒ 5 , 2 ⇒ -5 } mapKeysFrom : ℕ → (ℕ → ℕ) → NonemptyBag → Bag mapKeysFrom n f (singleton i i≠0) = inj₂ (makeSingleton (f n) i i≠0) mapKeysFrom n f (i ∷ bag) with nonzero? i ... | nothing = mapKeysFrom (suc n) f bag ... | just i≠0 = updateWith (f n) (λ j → j + i) (mapKeysFrom (suc n) f bag) map f (inj₁ ∅) = empty map f (inj₂ bag) = mapKeysFrom 0 f bag mapNonempty₂ : (ℤ → ℤ) → NonemptyBag → Bag mapNonempty₂ f (singleton i i≠0) with nonzero? (f i) ... | nothing = empty ... | just j≠0 = inj₂ (singleton (f i) j≠0) mapNonempty₂ f (i ∷ bag₀) with mapNonempty₂ f bag₀ | nonzero? (f i) ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just j≠0 = inj₂ (singleton (f i) j≠0) ... | inj₂ bag | _ = inj₂ (f i ∷ bag) map₂ f (inj₁ ∅) = empty map₂ f (inj₂ b) = mapNonempty₂ f b zipLeft : (ℤ → ℤ → ℤ) → NonemptyBag → Bag zipLeft f b₁ = mapNonempty₂ (λ x → f x zero) b₁ zipRight : (ℤ → ℤ → ℤ) → NonemptyBag → Bag zipRight f b₂ = mapNonempty₂ (λ y → f zero y) b₂ zipNonempty : (ℤ → ℤ → ℤ) → NonemptyBag → NonemptyBag → Bag zipNonempty f (singleton i i≠0) (singleton j j≠0) with nonzero? (f i j) ... | nothing = empty ... | just k≠0 = inj₂ (singleton (f i j) k≠0) zipNonempty f (singleton i i≠0) (j ∷ b₂) with zipRight f b₂ | nonzero? (f i j) ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just k≠0 = inj₂ (singleton (f i j) k≠0) ... | inj₂ bag | _ = inj₂ (f i j ∷ bag) zipNonempty f (i ∷ b₁) (singleton j j≠0) with zipLeft f b₁ | nonzero? (f i j) ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just k≠0 = inj₂ (singleton (f i j) k≠0) ... | inj₂ bag | _ = inj₂ (f i j ∷ bag) zipNonempty f (i ∷ b₁) (j ∷ b₂) with zipNonempty f b₁ b₂ | nonzero? (f i j) ... | inj₁ ∅ | nothing = empty ... | inj₁ ∅ | just k≠0 = inj₂ (singleton (f i j) k≠0) ... | inj₂ bag | _ = inj₂ (f i j ∷ bag) zipWith f (inj₁ ∅) (inj₁ ∅) = empty zipWith f (inj₁ ∅) (inj₂ b₂) = zipRight f b₂ zipWith f (inj₂ b₁) (inj₁ ∅) = zipLeft f b₁ zipWith f (inj₂ b₁) (inj₂ b₂) = zipNonempty f b₁ b₂
Implement map, union, difference on bags of natural numbers (#51)
Implement map, union, difference on bags of natural numbers (#51) TODO before closing the issue: - Introduce bags and prove the stupid derivative of map correct. Old-commit-hash: 76c8ff03739579a6839431ba637557395ccbf8b2
Agda
mit
inc-lc/ilc-agda
f44ff9c8dc76e1365c69137588490cc7705c8477
Denotational/ValidChanges.agda
Denotational/ValidChanges.agda
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set valid-Δ {bool} v dv = ⊤ valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : valid-Δ s ds) -} → valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Valid-Δ {bool} v dv = ⊤ Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} → Valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db
rename datatype valid-Δ |-> Valid-Δ
agda: rename datatype valid-Δ |-> Valid-Δ Old-commit-hash: 37b8db1e2601a886b5bcd31b170ad1560352b8a7
Agda
mit
inc-lc/ilc-agda
2c0998148ca4d0f531c98144173c0d27ec548b8a
ZK/Schnorr.agda
ZK/Schnorr.agda
module ZK.Schnorr where open import Type open import Data.Two open import Relation.Binary.PropositionalEquality.NP import ZK.Sigma-Protocol module Shnorr-protocol (G ℤq : ★) (g : G) (_^_ : G → ℤq → G) (_·_ : G → G → G) (_/_ : G → G → G) (_+_ : ℤq → ℤq → ℤq) (_*_ : ℤq → ℤq → ℤq) (_==_ : (x y : G) → 𝟚) where Commitment = G Challenge = ℤq Response = ℤq open ZK.Sigma-Protocol Commitment Challenge Response module _ (x w : ℤq) where prover-commitment : Commitment prover-commitment = g ^ w prover-response : Challenge → Response prover-response c = w + (x * c) prover : Prover prover = prover-commitment , prover-response module _ (y : G) where verifier : Verifier verifier (mk A c s) = (g ^ s) == (A · (y ^ c)) -- This simulator shows why it is so important for the -- challenge to be picked once the commitment is known. -- To fake a transcript, the challenge and response can -- be arbitrarily chosen. However to be indistinguishable -- from a valid proof it they need to be picked at random. module _ (c : Challenge) (s : Response) where -- Compute A, such that the verifier accepts! private A = (g ^ s) / (y ^ c) simulate-commitment : Commitment simulate-commitment = A simulate : Transcript simulate = mk simulate-commitment c s module Correct-simulation (✓-== : ∀ {x y} → x ≡ y → ✓ (x == y)) (/-· : ∀ {P Q} → P ≡ (P / Q) · Q) where correct-simulation : ✓(verifier simulate) correct-simulation = ✓-== /-· module Correctness-proof (✓-== : ∀ {x y} → x ≡ y → ✓ (x == y)) (^-+ : ∀ {b x y} → b ^(x + y) ≡ (b ^ x) · (b ^ y)) (^-* : ∀ {b x y} → b ^(x * y) ≡ (b ^ x) ^ y) (x r : ℤq) where open ≡-Reasoning gʳ = g ^ r correctness : Correctness (prover x r) (verifier (g ^ x)) correctness c = ✓-== (g ^(r + (x * c)) ≡⟨ ^-+ ⟩ gʳ · (g ^(x * c)) ≡⟨ ap (λ z → gʳ · z) ^-* ⟩ gʳ · ((g ^ x) ^ c) ∎) -- -} -- -} -- -} -- -}
open import Type using (Type) open import Data.Bool.Minimal using (Bool) renaming (T to ✓) open import Relation.Binary.PropositionalEquality.NP using (_≡_; idp; ap; ap₂; !_; module ≡-Reasoning) open import ZK.Types using (Cyclic-group; module Cyclic-group ; Cyclic-group-properties; module Cyclic-group-properties) import ZK.SigmaProtocol module ZK.Schnorr {G ℤq : Type} (cg : Cyclic-group G ℤq) where open Cyclic-group cg Commitment = G Challenge = ℤq Response = ℤq open ZK.SigmaProtocol Commitment Challenge Response module _ (x a : ℤq) where prover-commitment : Commitment prover-commitment = g ^ a prover-response : Challenge → Response prover-response c = a + (x * c) prover : Prover prover = prover-commitment , prover-response module _ (y : G) where verifier : Verifier verifier (mk A c s) = (g ^ s) == (A · (y ^ c)) -- This simulator shows why it is so important for the -- challenge to be picked once the commitment is known. -- To fake a transcript, the challenge and response can -- be arbitrarily chosen. However to be indistinguishable -- from a valid proof it they need to be picked at random. simulator : Simulator simulator c s = A where -- Compute A, such that the verifier accepts! A = (g ^ s) / (y ^ c) witness-extractor : Transcript² verifier → ℤq witness-extractor t² = x module Witness-extractor where open Transcript² t² fd = get-f₀ - get-f₁ cd = get-c₀ - get-c₁ x = fd * modinv cd extractor : ∀ a → Extractor verifier extractor a t² = prover (witness-extractor t²) a module Proofs (cg-props : Cyclic-group-properties cg) where open Cyclic-group-properties cg-props correct : ∀ x a → Correct (prover x a) (let y = g ^ x in verifier y) correct x a c = ✓-== (g ^(a + (x * c)) ≡⟨ ^-+ ⟩ gʷ · (g ^(x * c)) ≡⟨ ap (λ z → gʷ · z) ^-* ⟩ gʷ · (y ^ c) ∎) where open ≡-Reasoning gʷ = g ^ a y = g ^ x module _ (y : G) where shvzk : Special-Honest-Verifier-Zero-Knowledge (verifier y) shvzk = record { simulator = simulator y ; correct-simulator = λ _ _ → ✓-== /-· } module _ (x : ℤq) (t² : Transcript² (verifier (g ^ x))) where private y = g ^ x x' = witness-extractor y t² open Transcript² t² renaming (get-A to A; get-c₀ to c₀; get-c₁ to c₁ ;get-f₀ to f₀; get-f₁ to f₁) open Witness-extractor y t² hiding (x) open ≡-Reasoning g^xcd≡g^fd = g ^(x * cd) ≡⟨ ^-* ⟩ y ^ (c₀ - c₁) ≡⟨ ^-- ⟩ (y ^ c₀) / (y ^ c₁) ≡⟨ ! cancels-/ ⟩ (A · (y ^ c₀)) / (A · (y ^ c₁)) ≡⟨ ap₂ _/_ (! ==-✓ verify₀) (! ==-✓ verify₁) ⟩ (g ^ f₀) / (g ^ f₁) ≡⟨ ! ^-- ⟩ g ^ fd ∎ -- The extracted x is correct x≡x' : x ≡ x' x≡x' = left-*-to-right-/ (^-inj g^xcd≡g^fd) extractor-exact : ∀ a → EqProver (extractor y a t²) (prover x a) extractor-exact a = idp , (λ c → ap (λ z → _+_ a (_*_ z c)) (! x≡x')) special-soundness : Special-Soundness (verifier y) special-soundness = record { extractor = extractor y a ; extractor-correct = extractor-correct } -- -} -- -} -- -} -- -}
Update and extend ZK/Schnorr
Update and extend ZK/Schnorr
Agda
bsd-3-clause
crypto-agda/crypto-agda
70def950c8925dc369db199a79e13cb59ff30970
adder.agda
adder.agda
{-# OPTIONS --without-K #-} open import Type open import Data.Nat.NP open import Data.Bool using (if_then_else_) import Data.Vec as V open V using (Vec; []; _∷_) open import Function.NP hiding (id) open import FunUniverse.Core hiding (_,_) open import Data.Fin using (Fin; zero; suc; #_; inject+; raise) renaming (toℕ to Fin▹ℕ) module adder where module FunAdder {t} {T : ★_ t} {funU : FunUniverse T} (funOps : FunOps funU) where open FunUniverse funU open FunOps funOps renaming (_∘_ to _`∘_) --iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ `Vec B n iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ S `× `Vec B n iter {zero} F = second <[]> iter {suc n} F = second uncons ⁏ assoc-first F ⁏ around (iter F) ⁏ second <∷> msb-adder : ∀ {n} → `Bits n `× `Bits n `→ `Bits n msb-adder = <tt⁏ <0b> , zip > ⁏ iter full-adder ⁏ snd -- TODO reverses all over the places... switch to lsb first? -- lsb adder : ∀ {n} → `Bits n `× `Bits n `→ `Bits n adder = < reverse × reverse > ⁏ msb-adder ⁏ reverse open import Data.Digit ℕ▹`Bits : ∀ ℓ → ℕ → `𝟙 `→ `Bits ℓ ℕ▹`Bits ℓ n₀ = constBits (V.reverse (L▹V (L.map F▹𝟚 (proj₁ (toDigits 2 n₀))))) where open import Data.List as L open import Data.Product open import Data.Two L▹V : ∀ {n} → List 𝟚 → Vec 𝟚 n L▹V {zero} xs = [] L▹V {suc n} [] = V.replicate 0₂ L▹V {suc n} (x ∷ xs) = x ∷ L▹V xs F▹𝟚 : Fin 2 → 𝟚 F▹𝟚 zero = 0₂ F▹𝟚 (suc _) = 1₂ {- open import IO import IO.Primitive -} open import Data.One open import Data.Two open import Data.Product --open import Coinduction open import FunUniverse.Agda --open import Data.Nat.Show open FunAdder agdaFunOps open FunOps agdaFunOps import FunUniverse.Cost as Cost module TimeCost = FunOps Cost.timeOps {- putBit : 𝟚 → IO 𝟙 putBit 1₂ = putStr "1" putBit 0₂ = putStr "0" putBits : ∀ {n} → Vec 𝟚 n → IO 𝟙 putBits [] = return _ putBits (x ∷ bs) = ♯ putBit x >> ♯ putBits bs -} arg1 = ℕ▹`Bits 8 0x0b _ arg2 = ℕ▹`Bits 8 0x1f _ result = adder (arg1 , arg2) adder-cost : ℕ → ℕ adder-cost n = FunAdder.adder Cost.timeOps {n} {- mainIO : IO 𝟙 mainIO = ♯ putBits arg1 >> ♯ (♯ putStr " + " >> ♯ (♯ putBits arg2 >> ♯ (♯ putStr " = " >> ♯ (♯ putBits result >> ♯ (♯ putStr " cost:" >> ♯ putStr (show (adder-cost 8))))))) main : IO.Primitive.IO 𝟙 main = IO.run mainIO -}
{-# OPTIONS --without-K #-} open import Type open import Data.Nat.NP open import Data.Bool using (if_then_else_) import Data.Vec as V open V using (Vec; []; _∷_) open import Function.NP hiding (id) open import FunUniverse.Core hiding (_,_) open import Data.Fin using (Fin; zero; suc; #_; inject+; raise) renaming (toℕ to Fin▹ℕ) module adder where module FunAdder {t} {T : ★_ t} {funU : FunUniverse T} (funOps : FunOps funU) where open FunUniverse funU open FunOps funOps renaming (_∘_ to _`∘_) --iter : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ `Vec B n msb-adder : ∀ {n} → `Bits n `× `Bits n `→ `Bits n msb-adder = <tt⁏ <0₂> , zip > ⁏ mapAccum full-adder ⁏ snd -- TODO reverses all over the places... switch to lsb first? -- lsb adder : ∀ {n} → `Bits n `× `Bits n `→ `Bits n adder = < reverse × reverse > ⁏ msb-adder ⁏ reverse open import Data.Digit ℕ▹`Bits : ∀ ℓ → ℕ → `𝟙 `→ `Bits ℓ ℕ▹`Bits ℓ n₀ = constBits (V.reverse (L▹V (L.map F▹𝟚 (proj₁ (toDigits 2 n₀))))) where open import Data.List as L open import Data.Product open import Data.Two L▹V : ∀ {n} → List 𝟚 → Vec 𝟚 n L▹V {zero} xs = [] L▹V {suc n} [] = V.replicate 0₂ L▹V {suc n} (x ∷ xs) = x ∷ L▹V xs F▹𝟚 : Fin 2 → 𝟚 F▹𝟚 zero = 0₂ F▹𝟚 (suc _) = 1₂ {- open import IO import IO.Primitive -} open import Data.One open import Data.Two open import Data.Product --open import Coinduction open import FunUniverse.Agda --open import Data.Nat.Show open FunAdder agdaFunOps open FunOps agdaFunOps import FunUniverse.Cost as Cost module TimeCost = FunOps Cost.timeOps {- putBit : 𝟚 → IO 𝟙 putBit 1₂ = putStr "1" putBit 0₂ = putStr "0" putBits : ∀ {n} → Vec 𝟚 n → IO 𝟙 putBits [] = return _ putBits (x ∷ bs) = ♯ putBit x >> ♯ putBits bs -} arg1 = ℕ▹`Bits 8 0x0b _ arg2 = ℕ▹`Bits 8 0x1f _ result = adder (arg1 , arg2) adder-cost : ℕ → ℕ adder-cost n = FunAdder.adder Cost.timeOps {n} {- mainIO : IO 𝟙 mainIO = ♯ putBits arg1 >> ♯ (♯ putStr " + " >> ♯ (♯ putBits arg2 >> ♯ (♯ putStr " = " >> ♯ (♯ putBits result >> ♯ (♯ putStr " cost:" >> ♯ putStr (show (adder-cost 8))))))) main : IO.Primitive.IO 𝟙 main = IO.run mainIO -}
use mapAccum
adder: use mapAccum
Agda
bsd-3-clause
crypto-agda/crypto-agda