commit
stringlengths
40
40
old_file
stringlengths
2
205
new_file
stringlengths
2
205
old_contents
stringlengths
0
32.9k
new_contents
stringlengths
1
38.9k
subject
stringlengths
3
9.4k
message
stringlengths
6
9.84k
lang
stringlengths
3
13
license
stringclasses
13 values
repos
stringlengths
6
115k
1b5c3931a31ac1d019f7a68f56a036201f92a46e
lambda.agda
lambda.agda
module lambda where open import Relation.Binary.PropositionalEquality open import Syntactic.Types public open import Syntactic.Contexts Type public open import Denotational.Notation open import Denotational.Values public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v if-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ if t₁ t₂ t₃ ↓ v₂ if-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ if t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (if-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (if-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Term Γ₁ τ → Term Γ₂ τ weaken ≼₁ (abs t) = abs (weaken (keep _ • ≼₁) t) weaken ≼₁ (app t₁ t₂) = app (weaken ≼₁ t₁) (weaken ≼₁ t₂) weaken ≼₁ (var x) = var (lift ≼₁ x) weaken ≼₁ true = true weaken ≼₁ false = false weaken ≼₁ (if e₁ e₂ e₃) = if (weaken ≼₁ e₁) (weaken ≼₁ e₂) (weaken ≼₁ e₃) -- SYMBOLIC EXECUTION -- -- Naming Convention: -- Γ ⟪_⟫X is like ⟦_⟧X but for symbolic execution in context Γ. _⟪_⟫Type : Context → Type → Set Γ₁ ⟪ τ₁ ⇒ τ₂ ⟫Type = ∀ {Γ₂} → Γ₁ ≼ Γ₂ → Γ₂ ⟪ τ₁ ⟫Type → Γ₂ ⟪ τ₂ ⟫Type Γ₁ ⟪ bool ⟫Type = Term Γ₁ bool module _ (Γ : Context) where import Denotational.Environments module SymEnv = Denotational.Environments Type (λ τ → Γ ⟪ τ ⟫Type) open SymEnv public using () renaming (⟦_⟧Context to _⟪_⟫Context; ⟦_⟧Var to _⟪_⟫Var_) liftVal : ∀ {τ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ τ ⟫Type → Γ₂ ⟪ τ ⟫Type liftVal {τ₁ ⇒ τ₂} ≼₁ v₁ = λ ≼₂ v₂ → v₁ (≼-trans ≼₁ ≼₂) v₂ liftVal {bool} ≼₁ v = weaken ≼₁ v liftEnv : ∀ {Γ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ Γ ⟫Context → Γ₂ ⟪ Γ ⟫Context liftEnv {∅} ≼₁ ∅ = SymEnv.∅ liftEnv {τ • Γ} ≼₁ (v • ρ) = liftVal ≼₁ v SymEnv.• liftEnv ≼₁ ρ mixed-if : ∀ {Γ₁} τ → (t₁ : Term Γ₁ bool) (v₂ v₃ : Γ₁ ⟪ τ ⟫Type) → Γ₁ ⟪ τ ⟫Type mixed-if (τ₁ ⇒ τ₂) t₁ v₂ v₃ = λ ≼₁ v → mixed-if τ₂ (weaken ≼₁ t₁) (v₃ ≼₁ v) (v₃ ≼₁ v) mixed-if bool t₁ t₂ t₃ = if t₁ t₂ t₃ _⟪_⟫Term_ : ∀ Γ₁ {Γ τ} → Term Γ τ → Γ₁ ⟪ Γ ⟫Context → Γ₁ ⟪ τ ⟫Type Γ₁ ⟪ abs t ⟫Term ρ = λ {Γ₂} ≼₁ v → Γ₂ ⟪ t ⟫Term (v SymEnv.• liftEnv ≼₁ ρ) Γ₁ ⟪ app t₁ t₂ ⟫Term ρ = (Γ₁ ⟪ t₁ ⟫Term ρ) ≼-refl (Γ₁ ⟪ t₂ ⟫Term ρ) Γ₁ ⟪ var x ⟫Term ρ = Γ₁ ⟪ x ⟫Var ρ Γ₁ ⟪ true ⟫Term ρ = true Γ₁ ⟪ false ⟫Term ρ = false Γ₁ ⟪ if t₁ t₂ t₃ ⟫Term ρ = mixed-if _ (Γ₁ ⟪ t₁ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) ↓ : ∀ {Γ} τ → Γ ⟪ τ ⟫Type → Term Γ τ ↑ : ∀ {Γ} τ → Term Γ τ → Γ ⟪ τ ⟫Type ↓ (τ₁ ⇒ τ₂) v = abs (↓ τ₂ (v (drop τ₁ • ≼-refl) (↑ τ₁ (var this)))) ↓ bool v = v ↑ (τ₁ ⇒ τ₂) t = λ ≼₁ v → ↑ τ₂ (app (weaken ≼₁ t) (↓ τ₁ v)) ↑ bool t = t ↑-Context : ∀ {Γ} → Γ ⟪ Γ ⟫Context ↑-Context {∅} = SymEnv.∅ ↑-Context {τ • Γ} = ↑ τ (var this) SymEnv.• liftEnv (drop τ • ≼-refl) ↑-Context norm : ∀ {Γ τ} → Term Γ τ → Term Γ τ norm {Γ} {τ} t = ↓ τ (Γ ⟪ t ⟫Term ↑-Context)
module lambda where open import Relation.Binary.PropositionalEquality open import Syntactic.Types public open import Syntactic.Contexts Type public open import Denotational.Notation open import Denotational.Values public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v if-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ if t₁ t₂ t₃ ↓ v₂ if-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ if t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (if-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (if-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Term Γ₁ τ → Term Γ₂ τ weaken ≼₁ (abs t) = abs (weaken (keep _ • ≼₁) t) weaken ≼₁ (app t₁ t₂) = app (weaken ≼₁ t₁) (weaken ≼₁ t₂) weaken ≼₁ (var x) = var (lift ≼₁ x) weaken ≼₁ true = true weaken ≼₁ false = false weaken ≼₁ (if e₁ e₂ e₃) = if (weaken ≼₁ e₁) (weaken ≼₁ e₂) (weaken ≼₁ e₃) -- SYMBOLIC EXECUTION -- -- Naming Convention: -- Γ ⟪_⟫X is like ⟦_⟧X but for symbolic execution in context Γ. _⟪_⟫Type : Context → Type → Set Γ₁ ⟪ τ₁ ⇒ τ₂ ⟫Type = ∀ {Γ₂} → Γ₁ ≼ Γ₂ → Γ₂ ⟪ τ₁ ⟫Type → Γ₂ ⟪ τ₂ ⟫Type Γ₁ ⟪ bool ⟫Type = Term Γ₁ bool module _ (Γ : Context) where import Denotational.Environments module SymEnv = Denotational.Environments Type (λ τ → Γ ⟪ τ ⟫Type) open SymEnv public using () renaming (⟦_⟧Context to _⟪_⟫Context; ⟦_⟧Var to _⟪_⟫Var_) liftVal : ∀ {τ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ τ ⟫Type → Γ₂ ⟪ τ ⟫Type liftVal {τ₁ ⇒ τ₂} ≼₁ v₁ = λ ≼₂ v₂ → v₁ (≼-trans ≼₁ ≼₂) v₂ liftVal {bool} ≼₁ v = weaken ≼₁ v liftEnv : ∀ {Γ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ Γ ⟫Context → Γ₂ ⟪ Γ ⟫Context liftEnv {∅} ≼₁ ∅ = SymEnv.∅ liftEnv {τ • Γ} ≼₁ (v • ρ) = liftVal ≼₁ v SymEnv.• liftEnv ≼₁ ρ mixed-if : ∀ {Γ₁} τ → (t₁ : Term Γ₁ bool) (v₂ v₃ : Γ₁ ⟪ τ ⟫Type) → Γ₁ ⟪ τ ⟫Type mixed-if (τ₁ ⇒ τ₂) t₁ v₂ v₃ = λ ≼₁ v → mixed-if τ₂ (weaken ≼₁ t₁) (v₂ ≼₁ v) (v₃ ≼₁ v) mixed-if bool t₁ t₂ t₃ = if t₁ t₂ t₃ _⟪_⟫Term_ : ∀ Γ₁ {Γ τ} → Term Γ τ → Γ₁ ⟪ Γ ⟫Context → Γ₁ ⟪ τ ⟫Type Γ₁ ⟪ abs t ⟫Term ρ = λ {Γ₂} ≼₁ v → Γ₂ ⟪ t ⟫Term (v SymEnv.• liftEnv ≼₁ ρ) Γ₁ ⟪ app t₁ t₂ ⟫Term ρ = (Γ₁ ⟪ t₁ ⟫Term ρ) ≼-refl (Γ₁ ⟪ t₂ ⟫Term ρ) Γ₁ ⟪ var x ⟫Term ρ = Γ₁ ⟪ x ⟫Var ρ Γ₁ ⟪ true ⟫Term ρ = true Γ₁ ⟪ false ⟫Term ρ = false Γ₁ ⟪ if t₁ t₂ t₃ ⟫Term ρ = mixed-if _ (Γ₁ ⟪ t₁ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) ↓ : ∀ {Γ} τ → Γ ⟪ τ ⟫Type → Term Γ τ ↑ : ∀ {Γ} τ → Term Γ τ → Γ ⟪ τ ⟫Type ↓ (τ₁ ⇒ τ₂) v = abs (↓ τ₂ (v (drop τ₁ • ≼-refl) (↑ τ₁ (var this)))) ↓ bool v = v ↑ (τ₁ ⇒ τ₂) t = λ ≼₁ v → ↑ τ₂ (app (weaken ≼₁ t) (↓ τ₁ v)) ↑ bool t = t ↑-Context : ∀ {Γ} → Γ ⟪ Γ ⟫Context ↑-Context {∅} = SymEnv.∅ ↑-Context {τ • Γ} = ↑ τ (var this) SymEnv.• liftEnv (drop τ • ≼-refl) ↑-Context norm : ∀ {Γ τ} → Term Γ τ → Term Γ τ norm {Γ} {τ} t = ↓ τ (Γ ⟪ t ⟫Term ↑-Context)
Fix mixed-if.
Fix mixed-if. Old-commit-hash: 18ad0d9a08607bece81abf4bedc81a7763b56b9a
Agda
mit
inc-lc/ilc-agda
998682f0d09f06ad7918732abe550b386afe02e2
Syntax/Type/Popl14.agda
Syntax/Type/Popl14.agda
module Syntax.Type.Popl14 where -- Types of Calculus Popl14 infixr 5 _⇒_ data Type : Set where int : Type bag : Type _⇒_ : (σ : Type) → (τ : Type) → Type ΔType : Type → Type ΔType int = int ΔType bag = bag ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ
module Syntax.Type.Popl14 where -- Types of Calculus Popl14 data Popl14-type : Set where base-int : Popl14-type base-bag : Popl14-type open import Syntax.Type.Plotkin Popl14-type public pattern int = base base-int pattern bag = base base-bag Popl14-Δbase : Popl14-type → Popl14-type Popl14-Δbase base-int = base-int Popl14-Δbase base-bag = base-bag ΔType : Type → Type ΔType = lift-Δtype₀ Popl14-Δbase
Make Syntax.Type.Popl14 use Syntax.Type.Plotkin
Make Syntax.Type.Popl14 use Syntax.Type.Plotkin Old-commit-hash: 031c97aee2022a85ee855ec3149f0f8cd160d5af
Agda
mit
inc-lc/ilc-agda
47b55ae0449921322131bd6dbdab41837ccb68c8
flat-funs.agda
flat-funs.agda
module flat-funs where open import Data.Nat import Level as L open import composable open import vcomp record FlatFuns {t} (T : Set t) : Set (L.suc t) where constructor mk field `Bits : ℕ → T `Bit : T _`×_ : T → T → T _`→_ : T → T → Set infixr 2 _`×_ infix 0 _`→_ record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where constructor mk open FlatFuns ♭Funs field idO : ∀ {A} → A `→ A isComposable : Composable _`→_ isVComposable : VComposable _`×_ _`→_ -- Fanout _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C open FlatFuns ♭Funs public open Composable isComposable public open VComposable isVComposable public open import Data.Bits open import Data.Product open import Function fun♭Funs : FlatFuns Set fun♭Funs = mk Bits Bit _×_ (λ A B → A → B) bitsfun♭Funs : FlatFuns ℕ bitsfun♭Funs = mk id 1 _+_ (λ i o → Bits i → Bits o) fun♭Ops : FlatFunsOps fun♭Funs fun♭Ops = mk id funComp funVComp _&&&_ where _&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C (f &&& g) x = (f x , g x)
module flat-funs where open import Data.Nat import Level as L open import composable open import vcomp record FlatFuns {t} (T : Set t) : Set (L.suc t) where constructor mk field `⊤ : T `Bit : T _`×_ : T → T → T _`^_ : T → ℕ → T _`→_ : T → T → Set `Vec : T → ℕ → T `Vec A n = A `^ n `Bits : ℕ → T `Bits n = `Bit `^ n infixr 2 _`×_ infixl 2 _`^_ infix 0 _`→_ record FlatFunsOps {t} {T : Set t} (♭Funs : FlatFuns T) : Set t where constructor mk open FlatFuns ♭Funs field idO : ∀ {A} → A `→ A isComposable : Composable _`→_ isVComposable : VComposable _`×_ _`→_ -- Fanout _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C fst : ∀ {A B} → A `× B `→ A snd : ∀ {A B} → A `× B `→ B open FlatFuns ♭Funs public open Composable isComposable public open VComposable isVComposable public open import Data.Unit using (⊤) open import Data.Vec open import Data.Bits open import Data.Product open import Function fun♭Funs : FlatFuns Set fun♭Funs = mk ⊤ Bit _×_ Vec (λ A B → A → B) bitsFun♭Funs : FlatFuns ℕ bitsFun♭Funs = mk 0 1 _+_ _*_ (λ i o → Bits i → Bits o) fun♭Ops : FlatFunsOps fun♭Funs fun♭Ops = mk id funComp funVComp _&&&_ proj₁ proj₂ where _&&&_ : ∀ {A B C : Set} → (A → B) → (A → C) → A → B × C (f &&& g) x = (f x , g x) bitsFun♭Ops : FlatFunsOps bitsFun♭Funs bitsFun♭Ops = mk id bitsFunComp bitsFunVComp _&&&_ (λ {A} → take A) (λ {A} → drop A) where open FlatFuns bitsFun♭Funs _&&&_ : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C (f &&& g) x = (f x ++ g x)
Add support for general vector to our flat-funs abstraction
Add support for general vector to our flat-funs abstraction
Agda
bsd-3-clause
crypto-agda/crypto-agda
fce4641e9e8aec601f2ab48e128ad529e5ac3a98
Thesis/SIRelBigStep/DeriveCorrect.agda
Thesis/SIRelBigStep/DeriveCorrect.agda
-- -- In this module we conclude our proof: we have shown that t, derive-dterm t -- and produce related values (in the sense of the fundamental property, -- rfundamental3), and for related values v1, dv and v2 we have v1 ⊕ dv ≡ -- v2 (because ⊕ agrees with validity, rrelV3→⊕). -- -- We now put these facts together via derive-correct-si and derive-correct. -- This is immediate, even though I spend so much code on it: -- Indeed, all theorems are immediate corollaries of what we established (as -- explained above); only the statements are longer, especially because I bother -- expanding them. module Thesis.SIRelBigStep.DeriveCorrect where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR open import Thesis.SIRelBigStep.FundamentalProperty -- Theorem statement. This theorem still mentions step-indexes explicitly. derive-correct-si-type = ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t (derive-dterm t) t ρ1 dρ ρ2 k -- A verified expansion of the theorem statement. derive-correct-si-type-means : derive-correct-si-type ≡ ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → (v1 v2 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct-si-type-means = refl derive-correct-si : derive-correct-si-type derive-correct-si t ρ1 dρ ρ2 ρρ = rrelT3→⊕ t (derive-dterm t) t ρ1 dρ ρ2 (rfundamental3 _ t ρ1 dρ ρ2 ρρ) -- Infinitely related environments: rrelρ3-inf : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set rrelρ3-inf Γ ρ1 dρ ρ2 = ∀ k → rrelρ3 Γ ρ1 dρ ρ2 k -- A theorem statement for infinitely-related environments. On paper, if we informally -- omit the arbitrary derivation step-index as usual, we get a statement without -- step-indexes. derive-correct : ∀ {τ Γ} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3-inf Γ ρ1 dρ ρ2) → (v1 v2 : Val τ) → ∀ j → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct t ρ1 dρ ρ2 ρρ v1 v2 j = derive-correct-si t ρ1 dρ ρ2 (ρρ (suc j)) v1 v2 j ≤-refl open import Data.Unit nilρ : ∀ {Γ n} (ρ : ⟦ Γ ⟧Context) → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ dρ ρ n nilV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n nilV (closure t ρ) = let dρ , ρρ = nilρ ρ in dclosure (derive-dterm t) ρ dρ , rfundamental3svv _ (abs t) ρ dρ ρ ρρ nilV (natV n₁) = dnatV zero , refl nilV (pairV a b) = let 0a , aa = nilV a; 0b , bb = nilV b in dpairV 0a 0b , aa , bb nilρ ∅ = ∅ , tt nilρ (v • ρ) = let dv , vv = nilV v ; dρ , ρρ = nilρ ρ in dv • dρ , vv , ρρ -- Try to prove to define validity-preserving change composition. -- Sadly, if we don't store proofs that environment changes in closures are valid, we can't finish the proof for the closure case :-(. -- Moreover, the proof is annoying to do unless we build a datatype to invert -- validity proofs (as suggested by Ezyang in -- http://blog.ezyang.com/2013/09/induction-and-logical-relations/). -- ocomposeρ : ∀ {Γ} n ρ1 dρ1 ρ2 dρ2 ρ3 → rrelρ3 Γ ρ1 dρ1 ρ2 n → rrelρ3 Γ ρ2 dρ2 ρ3 n → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ1 dρ ρ3 n -- ocomposev : ∀ {τ} n v1 dv1 v2 dv2 v3 → rrelV3 τ v1 dv1 v2 n → rrelV3 τ v2 dv2 v3 n → Σ[ dv ∈ DVal τ ] rrelV3 τ v1 dv v3 n -- ocomposev n v1 dv1 v2 (bang v3) .v3 vv1 refl = bang v3 , refl -- ocomposev n v1 (bang x) v2 (dclosure dt ρ dρ) v3 vv1 vv2 = {!!} -- ocomposev n (closure t ρ) (dclosure .(derive-dterm t) .ρ dρ1) (closure .t .(ρ ⊕ρ dρ1)) (dclosure .(derive-dterm t) .(ρ ⊕ρ dρ1) dρ2) (closure .t .((ρ ⊕ρ dρ1) ⊕ρ dρ2)) ((refl , refl) , refl , refl , refl , refl , p5) ((refl , refl) , refl , refl , refl , refl , p5q) = -- let dρ , ρρ = ocomposeρ n ρ dρ1 (ρ ⊕ρ dρ1) dρ2 ((ρ ⊕ρ dρ1) ⊕ρ dρ2) {!!} {!!} -- in dclosure (derive-dterm t) ρ dρ , (refl , refl) , refl , {!!} , refl , refl , -- λ { k (s≤s k<n) v1 dv v2 vv → -- rfundamental3 k t (v1 • ρ) (dv • dρ) (v2 • ((ρ ⊕ρ dρ1) ⊕ρ dρ2)) (vv , rrelρ3-mono k n (≤-step k<n) _ ρ dρ ((ρ ⊕ρ dρ1) ⊕ρ dρ2) ρρ)} -- -- p1 , p2 , p3 , p4 , p5 -- ocomposev n v1 dv1 v2 (dnatV n₁) v3 vv1 vv2 = {!!} -- ocomposev n v1 dv1 v2 (dpairV dv2 dv3) v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (bang v2) .v2 dv2 v3 refl vv2 = bang (v2 ⊕ dv2) , rrelV3→⊕ v2 dv2 v3 vv2 -- -- ocomposev n v1 (dclosure dt ρ dρ) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dnatV n₁) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dpairV dv1 dv2) v2 dv3 v3 vv1 vv2 = {!!} -- -- ocomposeV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n -- ocomposeρ {∅} n ∅ dρ1 ρ2 dρ2 ∅ ρρ1 ρρ2 = ∅ , tt -- ocomposeρ {τ • Γ} n (v1 • ρ1) (dv1 • dρ1) (v2 • ρ2) (dv2 • dρ2) (v3 • ρ3) (vv1 , ρρ1) (vv2 , ρρ2) = -- let dv , vv = ocomposev n v1 dv1 v2 dv2 v3 vv1 vv2 -- dρ , ρρ = ocomposeρ n ρ1 dρ1 ρ2 dρ2 ρ3 ρρ1 ρρ2 -- in dv • dρ , vv , ρρ -- But we sort of know how to store environments validity proofs in closures, you just need to use well-founded inductions, even if you're using types. Sad, yes, that's insanely tedious. Let's leave that to Coq. -- What is also interesting: if that were fixed, could we prove correct -- composition for change *terms* and rrelT3? And for *open expressions*? The -- last is the main problem Ahmed run into.
-- -- In this module we conclude our proof: we have shown that t, derive-dterm t -- and produce related values (in the sense of the fundamental property, -- rfundamental3), and for related values v1, dv and v2 we have v1 ⊕ dv ≡ -- v2 (because ⊕ agrees with validity, rrelV3→⊕). -- -- We now put these facts together via derive-correct-si and derive-correct. -- This is immediate, even though I spend so much code on it: -- Indeed, all theorems are immediate corollaries of what we established (as -- explained above); only the statements are longer, especially because I bother -- expanding them. module Thesis.SIRelBigStep.DeriveCorrect where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR open import Thesis.SIRelBigStep.FundamentalProperty -- Theorem statement. This theorem still mentions step-indexes explicitly. derive-correct-si-type = ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t (derive-dterm t) t ρ1 dρ ρ2 k -- A verified expansion of the theorem statement. derive-correct-si-type-means : derive-correct-si-type ≡ ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → (v1 v2 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct-si-type-means = refl derive-correct-si : derive-correct-si-type derive-correct-si t ρ1 dρ ρ2 ρρ = rrelT3→⊕ t (derive-dterm t) t ρ1 dρ ρ2 (rfundamental3 _ t ρ1 dρ ρ2 ρρ) -- Infinitely related environments: rrelρ3-inf : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set rrelρ3-inf Γ ρ1 dρ ρ2 = ∀ k → rrelρ3 Γ ρ1 dρ ρ2 k -- A theorem statement for infinitely-related environments. On paper, if we informally -- omit the arbitrary derivation step-index as usual, we get a statement without -- step-indexes. derive-correct : ∀ {τ Γ} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3-inf Γ ρ1 dρ ρ2) → (v1 v2 : Val τ) → ∀ j → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct t ρ1 dρ ρ2 ρρ v1 v2 j = derive-correct-si t ρ1 dρ ρ2 (ρρ (suc j)) v1 v2 j ≤-refl open import Data.Unit nilρ : ∀ {Γ n} (ρ : ⟦ Γ ⟧Context) → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ dρ ρ n nilV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n nilV (closure t ρ) = let dρ , ρρ = nilρ ρ in dclosure (derive-dterm t) ρ dρ , rfundamental3svv _ (abs t) ρ dρ ρ ρρ nilV (natV n₁) = dnatV zero , refl nilV (pairV a b) = let 0a , aa = nilV a; 0b , bb = nilV b in dpairV 0a 0b , aa , bb nilρ ∅ = ∅ , tt nilρ (v • ρ) = let dv , vv = nilV v ; dρ , ρρ = nilρ ρ in dv • dρ , vv , ρρ -- -- Try to prove to define validity-preserving change composition. -- -- If we don't store proofs that environment changes in closures are valid, we -- -- can't finish the proof for the closure case using the Fundamental property. -- -- But it seems that's not the approach we need to use: we might need -- -- environment validity elsewhere. -- -- Moreover, the proof is annoying to do unless we build a datatype to invert -- -- validity proofs (as suggested by Ezyang in -- -- http://blog.ezyang.com/2013/09/induction-and-logical-relations/). -- ocomposeρ : ∀ {Γ} n ρ1 dρ1 ρ2 dρ2 ρ3 → rrelρ3 Γ ρ1 dρ1 ρ2 n → rrelρ3 Γ ρ2 dρ2 ρ3 n → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ1 dρ ρ3 n -- ocomposev : ∀ {τ} n v1 dv1 v2 dv2 v3 → rrelV3 τ v1 dv1 v2 n → rrelV3 τ v2 dv2 v3 n → Σ[ dv ∈ DVal τ ] rrelV3 τ v1 dv v3 n -- ocomposev n v1 dv1 v2 (bang v3) .v3 vv1 refl = bang v3 , refl -- ocomposev n v1 (bang x) v2 (dclosure dt ρ dρ) v3 vv1 vv2 = {!!} -- ocomposev n (closure t ρ) (dclosure .(derive-dterm t) .ρ dρ1) (closure .t .(ρ ⊕ρ dρ1)) (dclosure .(derive-dterm t) .(ρ ⊕ρ dρ1) dρ2) (closure .t .((ρ ⊕ρ dρ1) ⊕ρ dρ2)) ((refl , refl) , refl , refl , refl , refl , vv1) ((refl , refl) , refl , refl , refl , refl , vv2) = -- let dρ , ρρ = ocomposeρ n ρ dρ1 (ρ ⊕ρ dρ1) dρ2 ((ρ ⊕ρ dρ1) ⊕ρ dρ2) {!!} {!!} -- in dclosure (derive-dterm t) ρ dρ , (refl , refl) , refl , {!!} , refl , refl , -- λ { k (s≤s k≤n) v1 dv v2 vv → -- let nilv2 , nilv2v = nilV v2 -- -- vv1 k ? v1 dv v2 vv -- -- vv2 k ? v2 nilv2 v2 nilv2v -- in {!!} -- } -- -- rfundamental3 k t (v1 • ρ) (dv • dρ) (v2 • ((ρ ⊕ρ dρ1) ⊕ρ dρ2)) (vv , rrelρ3-mono k n (≤-step k<n) _ ρ dρ ((ρ ⊕ρ dρ1) ⊕ρ dρ2) ρρ)} -- -- p1 , p2 , p3 , p4 , p5 -- ocomposev n v1 dv1 v2 (dnatV n₁) v3 vv1 vv2 = {!!} -- ocomposev n v1 dv1 v2 (dpairV dv2 dv3) v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (bang v2) .v2 dv2 v3 refl vv2 = bang (v2 ⊕ dv2) , rrelV3→⊕ v2 dv2 v3 vv2 -- -- ocomposev n v1 (dclosure dt ρ dρ) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dnatV n₁) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dpairV dv1 dv2) v2 dv3 v3 vv1 vv2 = {!!} -- -- ocomposeV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n -- ocomposeρ {∅} n ∅ dρ1 ρ2 dρ2 ∅ ρρ1 ρρ2 = ∅ , tt -- ocomposeρ {τ • Γ} n (v1 • ρ1) (dv1 • dρ1) (v2 • ρ2) (dv2 • dρ2) (v3 • ρ3) (vv1 , ρρ1) (vv2 , ρρ2) = -- let dv , vv = ocomposev n v1 dv1 v2 dv2 v3 vv1 vv2 -- dρ , ρρ = ocomposeρ n ρ1 dρ1 ρ2 dρ2 ρ3 ρρ1 ρρ2 -- in dv • dρ , vv , ρρ -- -- But we sort of know how to store environments validity proofs in closures, you just need to use well-founded inductions, even if you're using types. Sad, yes, that's insanely tedious. Let's leave that to Coq. -- -- What is also interesting: if that were fixed, could we prove correct -- -- composition for change *terms* and rrelT3? And for *open expressions*? The -- -- last is the main problem Ahmed run into. -- 1: the proof of transitivity of rrelT by Ahmed is for the case where the second rrelT holds at arbitrary step counts :-) -- 2: that proof doesn't go through for us. If de1 : e1 -> e2 and de2 : e2 -> -- e3, we must show that if e1 and e3 evaluate something happens, but to use our -- hypothesis we need that e2 also terminates, which in our case does not -- follow. For Ahmed 2006, instead, e1 terminates and e1 ≤ e2 implies that e2 -- terminates. -- -- Indeed, it seems that we can have a change from e1 to looping e2 and a change -- from looping e2 to e3, and I don't expect the composition of such changes to -- satisfy anything. -- -- Indeed, "Imperative self-adjusting computation" does not mention any -- transitivity result (even in the technical report).
Clarify the problem even more
Clarify the problem even more
Agda
mit
inc-lc/ilc-agda
6ecbb2d5d6f0f6024afa19dfbd12fdcad3b23439
incremental.agda
incremental.agda
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGE VARIABLES -- changes 'x' to 'dx' rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) rename this = that this rename (that x) = that (that (rename x)) -- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound) Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ) Δ-var {∅} x = var (rename x) Δ-var {τ • Γ} this = nil Δ-var {τ • Γ} (that x) = Δ-var {Γ} x -- CHANGE TERMS Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Denotational Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Denotational Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Denotational Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Denotational Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGE VARIABLES -- changes 'x' to 'dx' rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) rename this = that this rename (that x) = that (that (rename x)) -- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound) Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ) Δ-var {∅} x = var (rename x) Δ-var {τ • Γ} this = nil Δ-var {τ • Γ} (that x) = Δ-var {Γ} x -- CHANGE TERMS Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
Implement natural semantics.
Implement natural semantics. Natural semantics (= big-step operational semantics) came up in a Skype chat with Paolo. Old-commit-hash: 40138450230bdc6326bbd4d47b011921433466b1
Agda
mit
inc-lc/ilc-agda
64e621c3d2a135c31988f71656671c97b59d8eca
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or true = true true or false = true false or true = true false or false = false ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
data Bool : Set where true : Bool false : Bool _or_ : Bool → Bool → Bool true or true = true true or false = true false or true = true false or false = false ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) apply : {A B : Set} → (A → B) → List A → List B apply _ ∘ = ∘ apply f (x ∷ xs) = (f x) ∷ (apply f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation _,_⊨_ : Separation → List Arrow → ℕ → Bool ((model holds _) , cs ⊨ n) = (cs , holds ⊢ n) _,_¬⊨_ : Separation → List Arrow → ℕ → Bool ((model _ fails) , cs ¬⊨ n) = any (_∋_ (closure cs (n ∷ ∘))) fails --_,_,_¬⊨_ : List Separation → List Arrow → List ℕ → ℕ → Bool
Add separations
Add separations
Agda
mit
louisswarren/hieretikz
af9d23c116a68842dcbe0843b111aba0220b3560
Atlas/Change/Term.agda
Atlas/Change/Term.agda
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ diff-base : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) diff-base {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) diff-base {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs diff-base) m₁ m₂) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-apply {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-apply) m₁ m₂) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff diff-base Atlas-apply) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply diff-base Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ diff-base : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) diff-base {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) diff-base {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs diff-base) m₁ m₂) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm apply-base : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) apply-base {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) apply-base {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs apply-base) m₁ m₂) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff diff-base apply-base) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply diff-base apply-base) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
Rename Atlas-apply to apply-base.
Rename Atlas-apply to apply-base. Old-commit-hash: aa571d5b9c41b6b4aa16886b55721dc3dbd9e033
Agda
mit
inc-lc/ilc-agda
aa15436d10416e76d1a5f6494f6bf9dfde53c404
Thesis/SIRelBigStep/DSyntax.agda
Thesis/SIRelBigStep/DSyntax.agda
module Thesis.SIRelBigStep.DSyntax where open import Thesis.SIRelBigStep.Syntax public -- data DType : Set where -- _⇒_ : (σ τ : DType) → DType -- int : DType DType = Type import Base.Syntax.Context module DC = Base.Syntax.Context DType Δτ : Type → DType Δτ (σ ⇒ τ) = σ ⇒ Δτ σ ⇒ Δτ τ Δτ (pair τ1 τ2) = pair (Δτ τ1) (Δτ τ2) Δτ nat = nat ΔΔ : Context → DC.Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = Δτ τ • ΔΔ Γ --ΔΔ Γ = Γ -- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces -- a result of type (Δt τ). data DTerm (Δ : Context) (τ : DType) : Set data DSVal (Δ : Context) : (τ : DType) → Set where dvar : ∀ {τ} → (x : Var Δ τ) → DSVal Δ τ dabs : ∀ {σ τ} (dt : DTerm (σ • Δ) τ) → DSVal Δ (σ ⇒ τ) dcons : ∀ {τ1 τ2} (dsv1 : DSVal Δ τ1) (dsv2 : DSVal Δ τ2) → DSVal Δ (pair τ1 τ2) dconst : ∀ {τ} → (dc : Const (Δτ τ)) → DSVal Δ τ data DTerm (Δ : Context) (τ : DType) where dval : DSVal Δ τ → DTerm Δ τ dprimapp : ∀ {σ} (p : Primitive (σ ⇒ τ)) → (sv : SVal Δ σ) → (dsv : DSVal Δ σ) → DTerm Δ τ dconst : (c : Const τ) → DTerm Δ τ dapp : ∀ {σ} (dvs : DSVal Δ (σ ⇒ τ)) → (vt : SVal Δ σ) → (dvt : DSVal Δ σ) → DTerm Δ τ dlett : ∀ {σ} (s : Term Δ σ) → (ds : DTerm Δ σ) → (dt : DTerm (σ • Δ) τ) → DTerm Δ τ
module Thesis.SIRelBigStep.DSyntax where open import Thesis.SIRelBigStep.Syntax public -- data DType : Set where -- _⇒_ : (σ τ : DType) → DType -- int : DType DType = Type import Base.Syntax.Context module DC = Base.Syntax.Context DType Δτ : Type → DType Δτ (σ ⇒ τ) = σ ⇒ Δτ σ ⇒ Δτ τ Δτ (pair τ1 τ2) = pair (Δτ τ1) (Δτ τ2) Δτ nat = nat ΔΔ : Context → DC.Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = Δτ τ • ΔΔ Γ --ΔΔ Γ = Γ -- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces -- a result of type (Δt τ). data DTerm (Δ : Context) (τ : DType) : Set data DSVal (Δ : Context) : (τ : DType) → Set where dvar : ∀ {τ} → (x : Var Δ τ) → DSVal Δ τ dabs : ∀ {σ τ} (dt : DTerm (σ • Δ) τ) → DSVal Δ (σ ⇒ τ) dcons : ∀ {τ1 τ2} (dsv1 : DSVal Δ τ1) (dsv2 : DSVal Δ τ2) → DSVal Δ (pair τ1 τ2) dconst : ∀ {τ} → (dc : Const (Δτ τ)) → DSVal Δ τ data DTerm (Δ : Context) (τ : DType) where dval : DSVal Δ τ → DTerm Δ τ dprimapp : ∀ {σ} (p : Primitive (σ ⇒ τ)) → (sv : SVal Δ σ) → (dsv : DSVal Δ σ) → DTerm Δ τ dapp : ∀ {σ} (dvs : DSVal Δ (σ ⇒ τ)) → (vt : SVal Δ σ) → (dvt : DSVal Δ σ) → DTerm Δ τ dlett : ∀ {σ} (s : Term Δ σ) → (ds : DTerm Δ σ) → (dt : DTerm (σ • Δ) τ) → DTerm Δ τ
Drop unused redundant case
Drop unused redundant case
Agda
mit
inc-lc/ilc-agda
9e3f211e88b705e21001d83b692c5504a15a4f1a
lib/Data/Bits.agda
lib/Data/Bits.agda
module Data.Bits where -- cleanup open import Category.Applicative open import Category.Monad open import Data.Nat.NP hiding (_≤_; _==_) open import Data.Nat.DivMod open import Data.Bool.NP hiding (_==_) open import Data.Bool.Properties using (not-involutive) open import Data.Maybe import Data.Fin as Fin open Fin using (Fin; zero; suc; #_; inject₁; inject+; raise) open import Data.Vec.NP hiding (_⊛_) renaming (map to vmap) open import Data.Vec.N-ary.NP open import Data.Unit using (⊤) open import Data.Empty using (⊥) open import Data.Product using (_×_; _,_; uncurry; proj₁; proj₂) open import Function.NP hiding (_→⟨_⟩_) import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ open import Algebra.FunctionProperties import Data.List as L open import Data.Bool.NP public using (_xor_) open import Data.Vec.NP public using ([]; _∷_; head; tail; replicate) Bit : Set Bit = Bool module Defs where 0b = false 1b = true module Patterns where pattern 0b = false pattern 1b = true open Patterns Bits : ℕ → Set Bits = Vec Bit _→ᵇ_ : ℕ → ℕ → Set i →ᵇ o = Bits i → Bits o 0ⁿ : ∀ {n} → Bits n 0ⁿ = replicate 0b -- Warning: 0ⁿ {0} ≡ 1ⁿ {0} 1ⁿ : ∀ {n} → Bits n 1ⁿ = replicate 1b 0∷_ : ∀ {n} → Bits n → Bits (suc n) 0∷ xs = 0b ∷ xs -- can't we make these pattern aliases? 1∷_ : ∀ {n} → Bits n → Bits (suc n) 1∷ xs = 1b ∷ xs _!_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A _!_ = flip lookup _==ᵇ_ : (b₀ b₁ : Bit) → Bool b₀ ==ᵇ b₁ = not (b₀ xor b₁) _==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bool [] == [] = true (b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁ infixr 5 _⊕_ _⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n _⊕_ = zipWith _xor_ vnot : ∀ {n} → Endo (Bits n) vnot = _⊕_ 1ⁿ vnot∘vnot≗id : ∀ {n} → vnot {n} ∘ vnot ≗ id vnot∘vnot≗id [] = refl vnot∘vnot≗id (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot≗id xs) ⊕-assoc : ∀ {n} → Associative _≡_ (_⊕_ {n}) ⊕-assoc [] [] [] = refl ⊕-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite ⊕-assoc xs ys zs | Xor°.+-assoc x y z = refl ⊕-comm : ∀ {n} → Commutative _≡_ (_⊕_ {n}) ⊕-comm [] [] = refl ⊕-comm (x ∷ xs) (y ∷ ys) rewrite ⊕-comm xs ys | Xor°.+-comm x y = refl ⊕-left-identity : ∀ {n} → LeftIdentity _≡_ 0ⁿ (_⊕_ {n}) ⊕-left-identity [] = refl ⊕-left-identity (x ∷ xs) rewrite ⊕-left-identity xs = refl ⊕-right-identity : ∀ {n} → RightIdentity _≡_ 0ⁿ (_⊕_ {n}) ⊕-right-identity [] = refl ⊕-right-identity (x ∷ xs) rewrite ⊕-right-identity xs | proj₂ Xor°.+-identity x = refl ⊕-≡ : ∀ {n} (x : Bits n) → x ⊕ x ≡ 0ⁿ ⊕-≡ [] = refl ⊕-≡ (x ∷ xs) rewrite ⊕-≡ xs | proj₂ Xor°.-‿inverse x = refl ⊕-≢ : ∀ {n} (x : Bits n) → x ⊕ vnot x ≡ 1ⁿ ⊕-≢ x = x ⊕ vnot x ≡⟨ refl ⟩ x ⊕ (1ⁿ ⊕ x) ≡⟨ cong (_⊕_ x) (⊕-comm 1ⁿ x) ⟩ x ⊕ (x ⊕ 1ⁿ) ≡⟨ sym (⊕-assoc x x 1ⁿ) ⟩ (x ⊕ x) ⊕ 1ⁿ ≡⟨ cong (flip _⊕_ 1ⁿ) (⊕-≡ x) ⟩ 0ⁿ ⊕ 1ⁿ ≡⟨ ⊕-left-identity 1ⁿ ⟩ 1ⁿ ∎ where open ≡-Reasoning msb : ∀ k {n} → Bits (k + n) → Bits k msb = take lsb : ∀ {n} k → Bits (n + k) → Bits k lsb {n} k rewrite ℕ°.+-comm n k = reverse ∘ msb k ∘ reverse msb₂ : ∀ {n} → Bits (2 + n) → Bits 2 msb₂ = msb 2 lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2 lsb₂ = reverse ∘ msb 2 ∘ reverse #1 : ∀ {n} → Bits n → Fin (suc n) #1 [] = zero #1 (0b ∷ bs) = inject₁ (#1 bs) #1 (1b ∷ bs) = suc (#1 bs) #0 : ∀ {n} → Bits n → Fin (suc n) #0 = #1 ∘ vmap not private module M {a} {A : Set a} {M : Set a → Set a} (appl : RawApplicative M) where open RawApplicative appl replicateM : ∀ {n} → M A → M (Vec A n) replicateM {n = zero} _ = pure [] replicateM {n = suc n} x = pure _∷_ ⊛ x ⊛ replicateM x open M public allBitsL : ∀ n → L.List (Bits n) allBitsL _ = replicateM rawIApplicative (toList (0b ∷ 1b ∷ [])) where open RawMonad L.monad allBits : ∀ n → Vec (Bits n) (2 ^ n) allBits zero = [] ∷ [] allBits (suc n) rewrite ℕ°.+-comm (2 ^ n) 0 = vmap 0∷_ bs ++ vmap 1∷_ bs where bs = allBits n #⟨_⟩ : ∀ {n} → (Bits n → Bool) → Fin (suc (2 ^ n)) #⟨ pred ⟩ = count pred (allBits _) sucBCarry : ∀ {n} → Bits n → Bits (1 + n) sucBCarry [] = 0b ∷ [] sucBCarry (0b ∷ xs) = 0b ∷ sucBCarry xs sucBCarry (1b ∷ xs) with sucBCarry xs ... | 0b ∷ bs = 0b ∷ 1b ∷ bs ... | 1b ∷ bs = 1b ∷ 0b ∷ bs sucB : ∀ {n} → Bits n → Bits n sucB = tail ∘ sucBCarry _[mod_] : ℕ → ℕ → Set a [mod b ] = DivMod' a b proj : ∀ {a} {A : Set a} → A × A → Bit → A proj (x₀ , x₁) 0b = x₀ proj (x₀ , x₁) 1b = x₁ module ReversedBits where sucRB : ∀ {n} → Bits n → Bits n sucRB [] = [] sucRB (0b ∷ xs) = 1b ∷ xs sucRB (1b ∷ xs) = 0b ∷ sucRB xs toFin : ∀ {n} → Bits n → Fin (2 ^ n) toFin [] = zero toFin (0b ∷ xs) = inject+ _ (toFin xs) toFin {suc n} (1b ∷ xs) = raise (2 ^ n) (inject+ 0 (toFin xs)) {- toℕ : ∀ {n} → Bits n → ℕ toℕ = Fin.toℕ ∘ toFin -} toℕ : ∀ {n} → Bits n → ℕ toℕ [] = zero toℕ (0b ∷ xs) = toℕ xs toℕ {suc n} (1b ∷ xs) = 2 ^ n + toℕ xs fromℕ : ∀ {n} → ℕ → Bits n fromℕ = fold 0ⁿ sucB fromFin : ∀ {n} → Fin (2 ^ n) → Bits n fromFin = fromℕ ∘ Fin.toℕ lookupTbl : ∀ {n a} {A : Set a} → Bits n → Vec A (2 ^ n) → A lookupTbl [] (x ∷ []) = x lookupTbl (0b ∷ key) tbl = lookupTbl key (take _ tbl) lookupTbl {suc n} (1b ∷ key) tbl = lookupTbl key (take (2 ^ n) (drop (2 ^ n) tbl)) funFromTbl : ∀ {n a} {A : Set a} → Vec A (2 ^ n) → (Bits n → A) funFromTbl = flip lookupTbl tblFromFun : ∀ {n a} {A : Set a} → (Bits n → A) → Vec A (2 ^ n) -- tblFromFun f = tabulate (f ∘ fromFin) tblFromFun {zero} f = f [] ∷ [] tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_) ++ [] funFromTbl∘tblFromFun : ∀ {n a} {A : Set a} (fun : Bits n → A) → funFromTbl (tblFromFun fun) ≗ fun funFromTbl∘tblFromFun {zero} f [] = refl funFromTbl∘tblFromFun {suc n} f (0b ∷ xs) rewrite take-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) = funFromTbl∘tblFromFun {n} (f ∘ 0∷_) xs funFromTbl∘tblFromFun {suc n} f (1b ∷ xs) rewrite drop-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) | take-++ (2 ^ n) (tblFromFun {n} (f ∘ 1∷_)) [] = funFromTbl∘tblFromFun {n} (f ∘ 1∷_) xs tblFromFun∘funFromTbl : ∀ {n a} {A : Set a} (tbl : Vec A (2 ^ n)) → tblFromFun {n} (funFromTbl tbl) ≡ tbl tblFromFun∘funFromTbl {zero} (x ∷ []) = refl tblFromFun∘funFromTbl {suc n} tbl rewrite tblFromFun∘funFromTbl {n} (take _ tbl) | tblFromFun∘funFromTbl {n} (take (2 ^ n) (drop (2 ^ n) tbl)) | take-them-all (2 ^ n) (drop (2 ^ n) tbl) | take-drop-lem (2 ^ n) tbl = refl {- sucB-lem : ∀ {n} x → toℕ {2 ^ n} (sucB x) [mod 2 ^ n ] ≡ (suc (toℕ x)) [mod 2 ^ n ] sucB-lem x = {!!} -- sucB-lem : ∀ {n} x → (sucB (fromℕ x)) [mod 2 ^ n ] ≡ fromℕ ((suc x) [mod 2 ^ n ]) toℕ∘fromℕ : ∀ {n} x → toℕ (fromℕ {n} x) ≡ x toℕ∘fromℕ zero = {!!} toℕ∘fromℕ (suc x) = {!toℕ∘fromℕ x!} toℕ∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toℕ (fromFin x) ≡ Fin.toℕ x toℕ∘fromFin x = {!!} toFin∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toFin (fromFin x) ≡ x toFin∘fromFin x = {!!} -- _ᴮ : (s : String) {pf : IsBitString s} → Bits (length s) -- _ᴮ = -} open Defs public
module Data.Bits where -- cleanup open import Category.Applicative open import Category.Monad open import Data.Nat.NP hiding (_≤_; _==_) open import Data.Nat.DivMod open import Data.Bool.NP hiding (_==_) open import Data.Bool.Properties using (not-involutive) open import Data.Maybe import Data.Fin as Fin open Fin using (Fin; zero; suc; #_; inject₁; inject+; raise) open import Data.Vec.NP hiding (_⊛_) renaming (map to vmap) open import Data.Vec.N-ary.NP open import Data.Unit using (⊤) open import Data.Empty using (⊥) open import Data.Product using (_×_; _,_; uncurry; proj₁; proj₂) open import Function.NP hiding (_→⟨_⟩_) import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ open import Algebra.FunctionProperties import Data.List as L open import Data.Bool.NP public using (_xor_) open import Data.Vec.NP public using ([]; _∷_; head; tail; replicate) Bit : Set Bit = Bool module Defs where 0b = false 1b = true module Patterns where pattern 0b = false pattern 1b = true open Patterns Bits : ℕ → Set Bits = Vec Bit _→ᵇ_ : ℕ → ℕ → Set i →ᵇ o = Bits i → Bits o 0ⁿ : ∀ {n} → Bits n 0ⁿ = replicate 0b -- Warning: 0ⁿ {0} ≡ 1ⁿ {0} 1ⁿ : ∀ {n} → Bits n 1ⁿ = replicate 1b 0∷_ : ∀ {n} → Bits n → Bits (suc n) 0∷ xs = 0b ∷ xs -- can't we make these pattern aliases? 1∷_ : ∀ {n} → Bits n → Bits (suc n) 1∷ xs = 1b ∷ xs _!_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A _!_ = flip lookup _==ᵇ_ : (b₀ b₁ : Bit) → Bool b₀ ==ᵇ b₁ = not (b₀ xor b₁) _==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bool [] == [] = true (b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁ infixr 5 _⊕_ _⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n _⊕_ = zipWith _xor_ vnot : ∀ {n} → Endo (Bits n) vnot = _⊕_ 1ⁿ vnot∘vnot≗id : ∀ {n} → vnot {n} ∘ vnot ≗ id vnot∘vnot≗id [] = refl vnot∘vnot≗id (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot≗id xs) ⊕-assoc : ∀ {n} → Associative _≡_ (_⊕_ {n}) ⊕-assoc [] [] [] = refl ⊕-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite ⊕-assoc xs ys zs | Xor°.+-assoc x y z = refl ⊕-comm : ∀ {n} → Commutative _≡_ (_⊕_ {n}) ⊕-comm [] [] = refl ⊕-comm (x ∷ xs) (y ∷ ys) rewrite ⊕-comm xs ys | Xor°.+-comm x y = refl ⊕-left-identity : ∀ {n} → LeftIdentity _≡_ 0ⁿ (_⊕_ {n}) ⊕-left-identity [] = refl ⊕-left-identity (x ∷ xs) rewrite ⊕-left-identity xs = refl ⊕-right-identity : ∀ {n} → RightIdentity _≡_ 0ⁿ (_⊕_ {n}) ⊕-right-identity [] = refl ⊕-right-identity (x ∷ xs) rewrite ⊕-right-identity xs | proj₂ Xor°.+-identity x = refl ⊕-≡ : ∀ {n} (x : Bits n) → x ⊕ x ≡ 0ⁿ ⊕-≡ [] = refl ⊕-≡ (x ∷ xs) rewrite ⊕-≡ xs | proj₂ Xor°.-‿inverse x = refl ⊕-≢ : ∀ {n} (x : Bits n) → x ⊕ vnot x ≡ 1ⁿ ⊕-≢ x = x ⊕ vnot x ≡⟨ refl ⟩ x ⊕ (1ⁿ ⊕ x) ≡⟨ cong (_⊕_ x) (⊕-comm 1ⁿ x) ⟩ x ⊕ (x ⊕ 1ⁿ) ≡⟨ sym (⊕-assoc x x 1ⁿ) ⟩ (x ⊕ x) ⊕ 1ⁿ ≡⟨ cong (flip _⊕_ 1ⁿ) (⊕-≡ x) ⟩ 0ⁿ ⊕ 1ⁿ ≡⟨ ⊕-left-identity 1ⁿ ⟩ 1ⁿ ∎ where open ≡-Reasoning msb : ∀ k {n} → Bits (k + n) → Bits k msb = take lsb : ∀ {n} k → Bits (n + k) → Bits k lsb {n} k rewrite ℕ°.+-comm n k = reverse ∘ msb k ∘ reverse msb₂ : ∀ {n} → Bits (2 + n) → Bits 2 msb₂ = msb 2 lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2 lsb₂ = reverse ∘ msb 2 ∘ reverse #1 : ∀ {n} → Bits n → Fin (suc n) #1 [] = zero #1 (0b ∷ bs) = inject₁ (#1 bs) #1 (1b ∷ bs) = suc (#1 bs) #0 : ∀ {n} → Bits n → Fin (suc n) #0 = #1 ∘ vmap not private module M {a} {A : Set a} {M : Set a → Set a} (appl : RawApplicative M) where open RawApplicative appl replicateM : ∀ {n} → M A → M (Vec A n) replicateM {n = zero} _ = pure [] replicateM {n = suc n} x = pure _∷_ ⊛ x ⊛ replicateM x open M public allBitsL : ∀ n → L.List (Bits n) allBitsL _ = replicateM rawIApplicative (toList (0b ∷ 1b ∷ [])) where open RawMonad L.monad allBits : ∀ n → Vec (Bits n) (2^ n) allBits zero = [] ∷ [] allBits (suc n) = vmap 0∷_ bs ++ vmap 1∷_ bs where bs = allBits n #⟨_⟩ : ∀ {n} → (Bits n → Bool) → Fin (suc (2^ n)) #⟨ pred ⟩ = count pred (allBits _) sucBCarry : ∀ {n} → Bits n → Bits (1 + n) sucBCarry [] = 0b ∷ [] sucBCarry (0b ∷ xs) = 0b ∷ sucBCarry xs sucBCarry (1b ∷ xs) with sucBCarry xs ... | 0b ∷ bs = 0b ∷ 1b ∷ bs ... | 1b ∷ bs = 1b ∷ 0b ∷ bs sucB : ∀ {n} → Bits n → Bits n sucB = tail ∘ sucBCarry _[mod_] : ℕ → ℕ → Set a [mod b ] = DivMod' a b proj : ∀ {a} {A : Set a} → A × A → Bit → A proj (x₀ , x₁) 0b = x₀ proj (x₀ , x₁) 1b = x₁ module ReversedBits where sucRB : ∀ {n} → Bits n → Bits n sucRB [] = [] sucRB (0b ∷ xs) = 1b ∷ xs sucRB (1b ∷ xs) = 0b ∷ sucRB xs toFin : ∀ {n} → Bits n → Fin (2 ^ n) toFin [] = zero toFin (0b ∷ xs) = inject+ _ (toFin xs) toFin {suc n} (1b ∷ xs) = raise (2 ^ n) (inject+ 0 (toFin xs)) {- toℕ : ∀ {n} → Bits n → ℕ toℕ = Fin.toℕ ∘ toFin -} toℕ : ∀ {n} → Bits n → ℕ toℕ [] = zero toℕ (0b ∷ xs) = toℕ xs toℕ {suc n} (1b ∷ xs) = 2 ^ n + toℕ xs fromℕ : ∀ {n} → ℕ → Bits n fromℕ = fold 0ⁿ sucB fromFin : ∀ {n} → Fin (2 ^ n) → Bits n fromFin = fromℕ ∘ Fin.toℕ lookupTbl : ∀ {n a} {A : Set a} → Bits n → Vec A (2 ^ n) → A lookupTbl [] (x ∷ []) = x lookupTbl (0b ∷ key) tbl = lookupTbl key (take _ tbl) lookupTbl {suc n} (1b ∷ key) tbl = lookupTbl key (take (2 ^ n) (drop (2 ^ n) tbl)) funFromTbl : ∀ {n a} {A : Set a} → Vec A (2 ^ n) → (Bits n → A) funFromTbl = flip lookupTbl tblFromFun : ∀ {n a} {A : Set a} → (Bits n → A) → Vec A (2 ^ n) -- tblFromFun f = tabulate (f ∘ fromFin) tblFromFun {zero} f = f [] ∷ [] tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_) ++ [] funFromTbl∘tblFromFun : ∀ {n a} {A : Set a} (fun : Bits n → A) → funFromTbl (tblFromFun fun) ≗ fun funFromTbl∘tblFromFun {zero} f [] = refl funFromTbl∘tblFromFun {suc n} f (0b ∷ xs) rewrite take-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) = funFromTbl∘tblFromFun {n} (f ∘ 0∷_) xs funFromTbl∘tblFromFun {suc n} f (1b ∷ xs) rewrite drop-++ (2 ^ n) (tblFromFun {n} (f ∘ 0∷_)) (tblFromFun {n} (f ∘ 1∷_) ++ []) | take-++ (2 ^ n) (tblFromFun {n} (f ∘ 1∷_)) [] = funFromTbl∘tblFromFun {n} (f ∘ 1∷_) xs tblFromFun∘funFromTbl : ∀ {n a} {A : Set a} (tbl : Vec A (2 ^ n)) → tblFromFun {n} (funFromTbl tbl) ≡ tbl tblFromFun∘funFromTbl {zero} (x ∷ []) = refl tblFromFun∘funFromTbl {suc n} tbl rewrite tblFromFun∘funFromTbl {n} (take _ tbl) | tblFromFun∘funFromTbl {n} (take (2 ^ n) (drop (2 ^ n) tbl)) | take-them-all (2 ^ n) (drop (2 ^ n) tbl) | take-drop-lem (2 ^ n) tbl = refl {- sucB-lem : ∀ {n} x → toℕ {2 ^ n} (sucB x) [mod 2 ^ n ] ≡ (suc (toℕ x)) [mod 2 ^ n ] sucB-lem x = {!!} -- sucB-lem : ∀ {n} x → (sucB (fromℕ x)) [mod 2 ^ n ] ≡ fromℕ ((suc x) [mod 2 ^ n ]) toℕ∘fromℕ : ∀ {n} x → toℕ (fromℕ {n} x) ≡ x toℕ∘fromℕ zero = {!!} toℕ∘fromℕ (suc x) = {!toℕ∘fromℕ x!} toℕ∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toℕ (fromFin x) ≡ Fin.toℕ x toℕ∘fromFin x = {!!} toFin∘fromFin : ∀ {n} (x : Fin (2 ^ n)) → toFin (fromFin x) ≡ x toFin∘fromFin x = {!!} -- _ᴮ : (s : String) {pf : IsBitString s} → Bits (length s) -- _ᴮ = -} open Defs public
use 2^ instead of _^_ 2 in allBits and #⟨_⟩
Data.Bits: use 2^ instead of _^_ 2 in allBits and #⟨_⟩
Agda
bsd-3-clause
crypto-agda/agda-nplib
00065eb75ec8eb897e66dfd3bfb4c202d976fd57
Denotational/Values.agda
Denotational/Values.agda
module Denotational.Values where -- VALUES -- -- This module defines the model theory of simple types, that is, -- it defines for every type, the set of values of that type. -- -- In fact, we only describe a single model here. import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import Denotational.Notation open import Syntactic.Types -- Denotational Semantics data Bool : Set where true false : Bool not : Bool → Bool not true = false not false = true _xor_ : Bool → Bool → Bool true xor b = not b false xor b = b ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ bool ⟧Type = Bool meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- Value Equivalence open import Level using (zero) open import Relation.Binary.PropositionalEquality postulate ext : Extensionality zero zero not-not : ∀ a → a ≡ not (not a) not-not true = refl not-not false = refl a-xor-a-false : ∀ a → (a xor a) ≡ false a-xor-a-false true = refl a-xor-a-false false = refl a-xor-false-a : ∀ a → (false xor a) ≡ a a-xor-false-a b = refl xor-associative : ∀ a b c → ((b xor c) xor a) ≡ (b xor (c xor a)) xor-associative a true true = not-not a xor-associative a true false = refl xor-associative a false c = refl a-xor-false : ∀ a → a xor false ≡ a a-xor-false true = refl a-xor-false false = refl a-xor-true : ∀ a → a xor true ≡ not a a-xor-true true = refl a-xor-true false = refl xor-commutative : ∀ a b → a xor b ≡ b xor a xor-commutative true b rewrite a-xor-true b = refl xor-commutative false b rewrite a-xor-false b = refl xor-cancellative-2 : ∀ a b → (b xor (a xor a)) ≡ b xor-cancellative-2 a b rewrite a-xor-a-false a = a-xor-false b xor-cancellative : ∀ a b → ((b xor a) xor a) ≡ b xor-cancellative a b rewrite xor-associative a b a = xor-cancellative-2 a b ≡-refl : ∀ {τ} {v : ⟦ τ ⟧} → v ≡ v ≡-refl = refl ≡-sym : ∀ {τ} {v₁ v₂ : ⟦ τ ⟧} → v₁ ≡ v₂ → v₂ ≡ v₁ ≡-sym = sym ≡-trans : ∀ {τ} {v₁ v₂ v₃ : ⟦ τ ⟧} → v₁ ≡ v₂ → v₂ ≡ v₃ → v₁ ≡ v₃ ≡-trans = trans ≡-cong : ∀ {τ₂ τ₁ v₁ v₂} (f : ⟦ τ₁ ⟧ → ⟦ τ₂ ⟧) → v₁ ≡ v₂ → f v₁ ≡ f v₂ ≡-cong f = cong f ≡-cong₂ : ∀ {τ₃ τ₁ τ₂ v₁ v₂ v₃ v₄} (f : ⟦ τ₁ ⟧ → ⟦ τ₂ ⟧ → ⟦ τ₃ ⟧) → v₁ ≡ v₂ → v₃ ≡ v₄ → f v₁ v₃ ≡ f v₂ v₄ ≡-cong₂ f = cong₂ f ≡-app : ∀ {τ₁ τ₂} {v₁ v₂ : ⟦ τ₁ ⇒ τ₂ ⟧} {v₃ v₄ : ⟦ τ₁ ⟧} → v₁ ≡ v₂ → v₃ ≡ v₄ → v₁ v₃ ≡ v₂ v₄ ≡-app = ≡-cong₂ (λ x y → x y) ≡-isEquivalence : ∀ {τ : Set} → IsEquivalence (_≡_ {A = τ}) ≡-isEquivalence = isEquivalence ≡-setoid : Type → Setoid _ _ ≡-setoid τ = record { Carrier = ⟦ τ ⟧ ; _≈_ = _≡_ ; isEquivalence = ≡-isEquivalence } ≡-consistent : ¬ (∀ (τ : Type) → (v₁ v₂ : ⟦ τ ⟧) → v₁ ≡ v₂) ≡-consistent H with H bool true false ... | ()
module Denotational.Values where -- VALUES -- -- This module defines the model theory of simple types, that is, -- it defines for every type, the set of values of that type. -- -- In fact, we only describe a single model here. open import Data.Bool public import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import Denotational.Notation open import Syntactic.Types -- Denotational Semantics ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ bool ⟧Type = Bool meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type -- Value Equivalence open import Level using (zero) open import Relation.Binary.PropositionalEquality postulate ext : Extensionality zero zero not-not : ∀ a → a ≡ not (not a) not-not true = refl not-not false = refl a-xor-a-false : ∀ a → (a xor a) ≡ false a-xor-a-false true = refl a-xor-a-false false = refl a-xor-false-a : ∀ a → (false xor a) ≡ a a-xor-false-a b = refl xor-associative : ∀ a b c → ((b xor c) xor a) ≡ (b xor (c xor a)) xor-associative a true true = not-not a xor-associative a true false = refl xor-associative a false c = refl a-xor-false : ∀ a → a xor false ≡ a a-xor-false true = refl a-xor-false false = refl a-xor-true : ∀ a → a xor true ≡ not a a-xor-true true = refl a-xor-true false = refl xor-commutative : ∀ a b → a xor b ≡ b xor a xor-commutative true b rewrite a-xor-true b = refl xor-commutative false b rewrite a-xor-false b = refl xor-cancellative-2 : ∀ a b → (b xor (a xor a)) ≡ b xor-cancellative-2 a b rewrite a-xor-a-false a = a-xor-false b xor-cancellative : ∀ a b → ((b xor a) xor a) ≡ b xor-cancellative a b rewrite xor-associative a b a = xor-cancellative-2 a b ≡-refl : ∀ {τ} {v : ⟦ τ ⟧} → v ≡ v ≡-refl = refl ≡-sym : ∀ {τ} {v₁ v₂ : ⟦ τ ⟧} → v₁ ≡ v₂ → v₂ ≡ v₁ ≡-sym = sym ≡-trans : ∀ {τ} {v₁ v₂ v₃ : ⟦ τ ⟧} → v₁ ≡ v₂ → v₂ ≡ v₃ → v₁ ≡ v₃ ≡-trans = trans ≡-cong : ∀ {τ₂ τ₁ v₁ v₂} (f : ⟦ τ₁ ⟧ → ⟦ τ₂ ⟧) → v₁ ≡ v₂ → f v₁ ≡ f v₂ ≡-cong f = cong f ≡-cong₂ : ∀ {τ₃ τ₁ τ₂ v₁ v₂ v₃ v₄} (f : ⟦ τ₁ ⟧ → ⟦ τ₂ ⟧ → ⟦ τ₃ ⟧) → v₁ ≡ v₂ → v₃ ≡ v₄ → f v₁ v₃ ≡ f v₂ v₄ ≡-cong₂ f = cong₂ f ≡-app : ∀ {τ₁ τ₂} {v₁ v₂ : ⟦ τ₁ ⇒ τ₂ ⟧} {v₃ v₄ : ⟦ τ₁ ⟧} → v₁ ≡ v₂ → v₃ ≡ v₄ → v₁ v₃ ≡ v₂ v₄ ≡-app = ≡-cong₂ (λ x y → x y) ≡-isEquivalence : ∀ {τ : Set} → IsEquivalence (_≡_ {A = τ}) ≡-isEquivalence = isEquivalence ≡-setoid : Type → Setoid _ _ ≡-setoid τ = record { Carrier = ⟦ τ ⟧ ; _≈_ = _≡_ ; isEquivalence = ≡-isEquivalence } ≡-consistent : ¬ (∀ (τ : Type) → (v₁ v₂ : ⟦ τ ⟧) → v₁ ≡ v₂) ≡-consistent H with H bool true false ... | ()
Use booleans from Data.Bool (fix #31).
Use booleans from Data.Bool (fix #31). Old-commit-hash: c2de96202cc68d0b06b45d3c977bdf935e14eec1
Agda
mit
inc-lc/ilc-agda
64a0d4678c9a3cfe69e473c9b5f335cd071c1e13
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where -- change algebras open CA public renaming ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra -- function changes open FunctionChanges public using (cons) module _ {τ₁ τ₂ : Type} where open FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎
Move import to more sensible place
Move import to more sensible place
Agda
mit
inc-lc/ilc-agda
a6bbe5d2b2206e1090e8303580a73956ec707683
formalization/agda/Spire/Examples/DarkwingDuck/Primitive.agda
formalization/agda/Spire/Examples/DarkwingDuck/Primitive.agda
module Spire.Examples.DarkwingDuck.Primitive where ---------------------------------------------------------------------- infixr 4 _,_ infixr 5 _∷_ ---------------------------------------------------------------------- postulate String : Set {-# BUILTIN STRING String #-} ---------------------------------------------------------------------- data ⊤ : Set where tt : ⊤ elimUnit : (P : ⊤ → Set) (ptt : P tt) (u : ⊤) → P u elimUnit P ptt tt = ptt ---------------------------------------------------------------------- data Σ (A : Set) (B : A → Set) : Set where _,_ : (a : A) (b : B a) → Σ A B elimPair : {A : Set} {B : A → Set} (P : Σ A B → Set) (ppair : (a : A) (b : B a) → P (a , b)) (ab : Σ A B) → P ab elimPair P ppair (a , b) = ppair a b ---------------------------------------------------------------------- data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x elimEq : {A : Set} {x : A} (P : (y : A) → x ≡ y → Set) (prefl : P x refl) (y : A) (q : x ≡ y) → P y q elimEq P prefl x refl = prefl ---------------------------------------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A elimList : {A : Set} (P : List A → Set) (pnil : P []) (pcons : (x : A) (xs : List A) → P xs → P (x ∷ xs)) (xs : List A) → P xs elimList P pnil pcons [] = pnil elimList P pnil pcons (x ∷ xs) = pcons x xs (elimList P pnil pcons xs) ---------------------------------------------------------------------- data Point (A : Set) : List A → Set where here : ∀{x xs} → Point A (x ∷ xs) there : ∀{x xs} → Point A xs → Point A (x ∷ xs) elimPoint : {A : Set} (P : (xs : List A) → Point A xs → Set) (phere : (x : A) (xs : List A) → P (x ∷ xs) here) (pthere : (x : A) (xs : List A) (t : Point A xs) → P xs t → P (x ∷ xs) (there t)) (xs : List A) (t : Point A xs) → P xs t elimPoint P phere pthere (x ∷ xs) here = phere x xs elimPoint P phere pthere (x ∷ xs) (there t) = pthere x xs t (elimPoint P phere pthere xs t) ---------------------------------------------------------------------- data Tel : Set₁ where End : Tel Arg : (A : Set) (B : A → Tel) → Tel elimTel : (P : Tel → Set) (pend : P End) (parg : (A : Set) (B : A → Tel) (pb : (a : A) → P (B a)) → P (Arg A B)) (T : Tel) → P T elimTel P pend parg End = pend elimTel P pend parg (Arg A B) = parg A B (λ a → elimTel P pend parg (B a)) ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I elimDesc : {I : Set} (P : Desc I → Set) (pend : (i : I) → P (End i)) (prec : (i : I) (D : Desc I) (pd : P D) → P (Rec i D)) (parg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (Arg A B)) (D : Desc I) → P D elimDesc P pend prec parg (End i) = pend i elimDesc P pend prec parg (Rec i D) = prec i D (elimDesc P pend prec parg D) elimDesc P pend prec parg (Arg A B) = parg A B (λ a → elimDesc P pend prec parg (B a)) Elᴰ : {I : Set} (D : Desc I) → (I → Set) → I → Set Elᴰ (End j) X i = j ≡ i Elᴰ (Rec j D) X i = Σ (X j) (λ _ → Elᴰ D X i) Elᴰ (Arg A B) X i = Σ A (λ a → Elᴰ (B a) X i) Hyps : {I : Set} (D : Desc I) (X : I → Set) (P : (i : I) → X i → Set) (i : I) (xs : Elᴰ D X i) → Set Hyps (End j) X P i q = ⊤ Hyps (Rec j D) X P i (x , xs) = Σ (P j x) (λ _ → Hyps D X P i xs) Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) (i : I) : Set where init : Elᴰ D (μ D) i → μ D i ind : {I : Set} (D : Desc I) (M : (i : I) → μ D i → Set) (α : ∀ i (xs : Elᴰ D (μ D) i) (ihs : Hyps D (μ D) M i xs) → M i (init xs)) (i : I) (x : μ D i) → M i x prove : {I : Set} (D E : Desc I) (M : (i : I) → μ E i → Set) (α : ∀ i (xs : Elᴰ E (μ E) i) (ihs : Hyps E (μ E) M i xs) → M i (init xs)) (i : I) (xs : Elᴰ D (μ E) i) → Hyps D (μ E) M i xs ind D M α i (init xs) = α i xs (prove D D M α i xs) prove (End j) E M α i q = tt prove (Rec j D) E M α i (x , xs) = ind E M α j x , prove D E M α i xs prove (Arg A B) E M α i (a , xs) = prove (B a) E M α i xs ----------------------------------------------------------------------
module Spire.Examples.DarkwingDuck.Primitive where ---------------------------------------------------------------------- infixr 4 _,_ infixr 5 _∷_ ---------------------------------------------------------------------- postulate String : Set {-# BUILTIN STRING String #-} ---------------------------------------------------------------------- data ⊥ : Set where elimBot : (P : ⊥ → Set) (v : ⊥) → P v elimBot P () ---------------------------------------------------------------------- data ⊤ : Set where tt : ⊤ elimUnit : (P : ⊤ → Set) (ptt : P tt) (u : ⊤) → P u elimUnit P ptt tt = ptt ---------------------------------------------------------------------- data Σ (A : Set) (B : A → Set) : Set where _,_ : (a : A) (b : B a) → Σ A B elimPair : {A : Set} {B : A → Set} (P : Σ A B → Set) (ppair : (a : A) (b : B a) → P (a , b)) (ab : Σ A B) → P ab elimPair P ppair (a , b) = ppair a b ---------------------------------------------------------------------- data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x elimEq : {A : Set} {x : A} (P : (y : A) → x ≡ y → Set) (prefl : P x refl) (y : A) (q : x ≡ y) → P y q elimEq P prefl x refl = prefl ---------------------------------------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A elimList : {A : Set} (P : List A → Set) (pnil : P []) (pcons : (x : A) (xs : List A) → P xs → P (x ∷ xs)) (xs : List A) → P xs elimList P pnil pcons [] = pnil elimList P pnil pcons (x ∷ xs) = pcons x xs (elimList P pnil pcons xs) ---------------------------------------------------------------------- data Point (A : Set) : List A → Set where here : ∀{x xs} → Point A (x ∷ xs) there : ∀{x xs} → Point A xs → Point A (x ∷ xs) elimPoint : {A : Set} (P : (xs : List A) → Point A xs → Set) (phere : (x : A) (xs : List A) → P (x ∷ xs) here) (pthere : (x : A) (xs : List A) (t : Point A xs) → P xs t → P (x ∷ xs) (there t)) (xs : List A) (t : Point A xs) → P xs t elimPoint P phere pthere (x ∷ xs) here = phere x xs elimPoint P phere pthere (x ∷ xs) (there t) = pthere x xs t (elimPoint P phere pthere xs t) ---------------------------------------------------------------------- data Tel : Set₁ where End : Tel Arg : (A : Set) (B : A → Tel) → Tel elimTel : (P : Tel → Set) (pend : P End) (parg : (A : Set) (B : A → Tel) (pb : (a : A) → P (B a)) → P (Arg A B)) (T : Tel) → P T elimTel P pend parg End = pend elimTel P pend parg (Arg A B) = parg A B (λ a → elimTel P pend parg (B a)) ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I elimDesc : {I : Set} (P : Desc I → Set) (pend : (i : I) → P (End i)) (prec : (i : I) (D : Desc I) (pd : P D) → P (Rec i D)) (parg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (Arg A B)) (D : Desc I) → P D elimDesc P pend prec parg (End i) = pend i elimDesc P pend prec parg (Rec i D) = prec i D (elimDesc P pend prec parg D) elimDesc P pend prec parg (Arg A B) = parg A B (λ a → elimDesc P pend prec parg (B a)) Elᴰ : {I : Set} (D : Desc I) → (I → Set) → I → Set Elᴰ (End j) X i = j ≡ i Elᴰ (Rec j D) X i = Σ (X j) (λ _ → Elᴰ D X i) Elᴰ (Arg A B) X i = Σ A (λ a → Elᴰ (B a) X i) Hyps : {I : Set} (D : Desc I) (X : I → Set) (P : (i : I) → X i → Set) (i : I) (xs : Elᴰ D X i) → Set Hyps (End j) X P i q = ⊤ Hyps (Rec j D) X P i (x , xs) = Σ (P j x) (λ _ → Hyps D X P i xs) Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) (i : I) : Set where init : Elᴰ D (μ D) i → μ D i ind : {I : Set} (D : Desc I) (M : (i : I) → μ D i → Set) (α : ∀ i (xs : Elᴰ D (μ D) i) (ihs : Hyps D (μ D) M i xs) → M i (init xs)) (i : I) (x : μ D i) → M i x prove : {I : Set} (D E : Desc I) (M : (i : I) → μ E i → Set) (α : ∀ i (xs : Elᴰ E (μ E) i) (ihs : Hyps E (μ E) M i xs) → M i (init xs)) (i : I) (xs : Elᴰ D (μ E) i) → Hyps D (μ E) M i xs ind D M α i (init xs) = α i xs (prove D D M α i xs) prove (End j) E M α i q = tt prove (Rec j D) E M α i (x , xs) = ind E M α j x , prove D E M α i xs prove (Arg A B) E M α i (a , xs) = prove (B a) E M α i xs ----------------------------------------------------------------------
Add bot to primitives.
Add bot to primitives. Consistency at last.
Agda
bsd-3-clause
spire/spire
6dbde1e52f3b14199a1e9ee7097d079561b3923e
Thesis/SIRelBigStep/FundamentalProperty.agda
Thesis/SIRelBigStep/FundamentalProperty.agda
module Thesis.SIRelBigStep.FundamentalProperty where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR rfundamentalV3v : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → ∀ ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 n) → rrelV3 τ (⟦ x ⟧Var ρ1) (D.⟦ x ⟧Var dρ) (⟦ x ⟧Var ρ2) n rfundamentalV3v x n ρ1 dρ ρ2 ρρ = ⟦ x ⟧RelVar3 ρρ rfundamental3constV : ∀ {τ} k (c : Const τ) → rrelV3 τ (eval-const c) (deval (derive-const c) ∅ ∅) (eval-const c) k rfundamental3constV k (lit n) = refl rfundamental3 : ∀ {τ Γ} k (t : Term Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3 t (derive-dterm t) t ρ1 dρ ρ2 k rfundamental3svv : ∀ {τ Γ} k (sv : SVal Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelV3 τ (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) k rfundamental3svv k (var x) ρ1 dρ ρ2 ρρ = rfundamentalV3v x k ρ1 dρ ρ2 ρρ rfundamental3svv k (cons sv1 sv2) ρ1 dρ ρ2 ρρ = rfundamental3svv k sv1 ρ1 dρ ρ2 ρρ , rfundamental3svv k sv2 ρ1 dρ ρ2 ρρ rfundamental3svv k (const c) ρ1 dρ ρ2 ρρ rewrite deval-derive-const-inv c ρ1 dρ = rfundamental3constV k c rfundamental3svv k (abs t) ρ1 dρ ρ2 ρρ = (refl , refl) , refl , rrelρ3→⊕ ρ1 dρ ρ2 ρρ , refl , refl , λ k₁ k<n v1 dv v2 vv → rfundamental3 k₁ t (v1 • ρ1) (dv • dρ) (v2 • ρ2) (vv , rrelρ3-mono k₁ k (lt1 k<n) _ _ _ _ ρρ) rfundamental3sv : ∀ {τ Γ} k (sv : SVal Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3 (val sv) (dval (derive-dsval sv)) (val sv) ρ1 dρ ρ2 k rfundamental3sv k sv ρ1 dρ ρ2 ρρ .(eval sv ρ1) .(eval sv ρ2) .0 j<k (val .sv) (val .sv) = deval (derive-dsval sv) ρ1 dρ , dval (derive-dsval sv) , rfundamental3svv k sv ρ1 dρ ρ2 ρρ open import Theorem.Groups-Nehemiah rfundamental3primv : ∀ {σ τ} k p → ∀ v1 dv v2 → (vv : rrelV3 σ v1 dv v2 k) → rrelV3 τ (eval-primitive p v1) (deval-primitive p v1 dv) (eval-primitive p v2) k rfundamental3primv k succ (natV n₁) (bang .(natV n)) (natV n) refl = refl rfundamental3primv k succ (natV n) (dnatV dn) (natV .(dn + n)) refl = +-suc dn n rfundamental3primv k add (pairV (natV a1) (natV b1)) (dpairV (dnatV da) (dnatV db)) (pairV (natV .(da + a1)) (natV .(db + b1))) (refl , refl) = ℕ-mn·pq=mp·nq {da} {db} {a1} {b1} rfundamental3primv k add (pairV a1 b1) (dpairV (dnatV da) (bang b2)) (pairV a2 .b2) (aa , refl) rewrite rrelV3→⊕ a1 (dnatV da) a2 aa = refl rfundamental3primv k add (pairV a1 b1) (dpairV (bang a2) db) (pairV .a2 b2) (refl , bb) rewrite rrelV3→⊕ b1 db b2 bb = refl rfundamental3primv k add (pairV a1 b1) (bang p2) .p2 refl = refl -- Warning: names like ρ1⊢t1↓[j]v1 are all broken, sorry for not fixing them. rfundamental3 k (val sv) = rfundamental3sv k sv rfundamental3 (suc k) (primapp p sv) ρ1 dρ ρ2 ρρ .(eval-primitive p (eval sv ρ1)) .(eval-primitive p (eval sv ρ2)) .1 (s≤s j<k) (primapp .p .sv) (primapp .p .sv) = deval-primitive p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) , dprimapp p sv (derive-dsval sv) , rfundamental3primv k p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) (rfundamental3svv k sv ρ1 dρ ρ2 (rrelρ3-mono k (suc k) (≤-step ≤-refl) _ ρ1 dρ ρ2 ρρ)) -- (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) k rfundamental3 (suc (suc k)) (app vs vt) ρ1 dρ ρ2 ρρ v1 v2 .(suc j) (s≤s (s≤s j<k)) (app j vtv1 ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2 ρ1⊢t1↓[j]v3) (app n₁ vtv2 ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3 ρ2⊢t2↓[n2]v4) with rfundamental3 (suc (suc k)) (val vs) ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 | rfundamental3 (suc (suc k)) (val vt) ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3 ... | bang f2 , vs↓dsv , refl | dtv , vt↓dvv , dtvv rewrite sym (rrelV3→⊕ vtv1 dtv vtv2 dtvv) = bang v2 , bangapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ρ2⊢t2↓[n2]v4 , refl ... | dclosure dt ρ dρ₁ , vs↓dsv , (refl , refl) , refl , refl , refl , refl , dsvv | dtv , vt↓dvv , dtvv with dsvv (suc k) ≤-refl vtv1 dtv vtv2 (rrelV3-mono (suc k) (suc (suc k)) (s≤s (≤-step ≤-refl)) _ vtv1 dtv vtv2 dtvv) v1 v2 j (s≤s j<k) ρ1⊢t1↓[j]v3 ρ2⊢t2↓[n2]v4 ... | dv , ↓dv , dvv = dv , dapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ↓dv , dvv rfundamental3 (suc (suc k)) (lett s t) ρ1 dρ ρ2 ρρ v1 v2 .(suc (n1 + n2)) (s≤s (s≤s n1+n2≤k)) (lett n1 n2 vs1 .s .t ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2) (lett _ _ vs2 .s .t ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3) with rfundamental3 (suc (suc k)) s ρ1 dρ ρ2 ρρ vs1 vs2 n1 (s≤s (≤-trans (≤-trans (m≤m+n n1 n2) n1+n2≤k) (≤-step ≤-refl))) ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 ... | dsv , ↓dsv , vsv with rfundamental3 (suc (suc k) ∸ n1) t (vs1 • ρ1) (dsv • dρ) (vs2 • ρ2) (vsv , rrelρ3-mono (suc (suc k) ∸ n1) (suc (suc k)) (m∸n≤m (suc (suc k)) n1) _ _ _ _ ρρ) v1 v2 n2 (sub∸ n1 (suc n2) (suc (suc k)) n1+[1+n2]≤2+k) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3 where n1+[1+n2]≤2+k : n1 + suc n2 ≤ suc (suc k) n1+[1+n2]≤2+k rewrite +-suc n1 n2 = ≤-step (s≤s n1+n2≤k) ... | dv , ↓dv , dvv = dv , dlett ρ1⊢t1↓[j]v1 ↓dsv ↓dv , rrelV3-mono (suc k ∸ (n1 + n2)) (suc (suc k) ∸ n1 ∸ n2) 1+k-[n1+n2]≤2+k-n1-n2 _ v1 dv v2 dvv where 1+k-[n1+n2]≤2+k-n1-n2 : suc k ∸ (n1 + n2) ≤ suc (suc k) ∸ n1 ∸ n2 1+k-[n1+n2]≤2+k-n1-n2 rewrite ∸-+-assoc (suc (suc k)) n1 n2 = ∸-mono {suc k} {suc (suc k)} {n1 + n2} {n1 + n2} (≤-step ≤-refl) ≤-refl
module Thesis.SIRelBigStep.FundamentalProperty where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR rfundamentalV3v : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → ∀ ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 n) → rrelV3 τ (⟦ x ⟧Var ρ1) (D.⟦ x ⟧Var dρ) (⟦ x ⟧Var ρ2) n rfundamentalV3v x n ρ1 dρ ρ2 ρρ = ⟦ x ⟧RelVar3 ρρ rfundamental3constV : ∀ {τ} k (c : Const τ) → rrelV3 τ (eval-const c) (deval (derive-const c) ∅ ∅) (eval-const c) k rfundamental3constV k (lit n) = refl rfundamental3 : ∀ {τ Γ} k (t : Term Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3 t (derive-dterm t) t ρ1 dρ ρ2 k rfundamental3svv : ∀ {τ Γ} k (sv : SVal Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelV3 τ (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) k rfundamental3svv k (var x) ρ1 dρ ρ2 ρρ = rfundamentalV3v x k ρ1 dρ ρ2 ρρ rfundamental3svv k (cons sv1 sv2) ρ1 dρ ρ2 ρρ = rfundamental3svv k sv1 ρ1 dρ ρ2 ρρ , rfundamental3svv k sv2 ρ1 dρ ρ2 ρρ rfundamental3svv k (const c) ρ1 dρ ρ2 ρρ rewrite deval-derive-const-inv c ρ1 dρ = rfundamental3constV k c rfundamental3svv k (abs t) ρ1 dρ ρ2 ρρ = (refl , refl) , refl , rrelρ3→⊕ ρ1 dρ ρ2 ρρ , refl , refl , λ j j<k v1 dv v2 vv → rfundamental3 j t (v1 • ρ1) (dv • dρ) (v2 • ρ2) (vv , rrelρ3-mono j k (lt1 j<k) _ _ _ _ ρρ) rfundamental3sv : ∀ {τ Γ} k (sv : SVal Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3 (val sv) (dval (derive-dsval sv)) (val sv) ρ1 dρ ρ2 k rfundamental3sv k sv ρ1 dρ ρ2 ρρ .(eval sv ρ1) .(eval sv ρ2) .0 j<k (val .sv) (val .sv) = deval (derive-dsval sv) ρ1 dρ , dval (derive-dsval sv) , rfundamental3svv k sv ρ1 dρ ρ2 ρρ open import Theorem.Groups-Nehemiah rfundamental3primv : ∀ {σ τ} k p → ∀ v1 dv v2 → (vv : rrelV3 σ v1 dv v2 k) → rrelV3 τ (eval-primitive p v1) (deval-primitive p v1 dv) (eval-primitive p v2) k rfundamental3primv k succ (natV n₁) (bang .(natV n)) (natV n) refl = refl rfundamental3primv k succ (natV n) (dnatV dn) (natV .(dn + n)) refl = +-suc dn n rfundamental3primv k add (pairV (natV a1) (natV b1)) (dpairV (dnatV da) (dnatV db)) (pairV (natV .(da + a1)) (natV .(db + b1))) (refl , refl) = ℕ-mn·pq=mp·nq {da} {db} {a1} {b1} rfundamental3primv k add (pairV a1 b1) (dpairV (dnatV da) (bang b2)) (pairV a2 .b2) (aa , refl) rewrite rrelV3→⊕ a1 (dnatV da) a2 aa = refl rfundamental3primv k add (pairV a1 b1) (dpairV (bang a2) db) (pairV .a2 b2) (refl , bb) rewrite rrelV3→⊕ b1 db b2 bb = refl rfundamental3primv k add (pairV a1 b1) (bang p2) .p2 refl = refl -- Warning: names like ρ1⊢t1↓[j]v1 are all broken, sorry for not fixing them. rfundamental3 k (val sv) = rfundamental3sv k sv rfundamental3 (suc k) (primapp p sv) ρ1 dρ ρ2 ρρ .(eval-primitive p (eval sv ρ1)) .(eval-primitive p (eval sv ρ2)) .1 (s≤s j<k) (primapp .p .sv) (primapp .p .sv) = deval-primitive p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) , dprimapp p sv (derive-dsval sv) , rfundamental3primv k p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) (rfundamental3svv k sv ρ1 dρ ρ2 (rrelρ3-mono k (suc k) (≤-step ≤-refl) _ ρ1 dρ ρ2 ρρ)) -- (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) k rfundamental3 (suc (suc k)) (app vs vt) ρ1 dρ ρ2 ρρ v1 v2 .(suc j) (s≤s (s≤s j<k)) (app j vtv1 ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2 ρ1⊢t1↓[j]v3) (app n₁ vtv2 ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3 ρ2⊢t2↓[n2]v4) with rfundamental3 (suc (suc k)) (val vs) ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 | rfundamental3 (suc (suc k)) (val vt) ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3 ... | bang f2 , vs↓dsv , refl | dtv , vt↓dvv , dtvv rewrite sym (rrelV3→⊕ vtv1 dtv vtv2 dtvv) = bang v2 , bangapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ρ2⊢t2↓[n2]v4 , refl ... | dclosure dt ρ dρ₁ , vs↓dsv , (refl , refl) , refl , refl , refl , refl , dsvv | dtv , vt↓dvv , dtvv with dsvv (suc k) ≤-refl vtv1 dtv vtv2 (rrelV3-mono (suc k) (suc (suc k)) (s≤s (≤-step ≤-refl)) _ vtv1 dtv vtv2 dtvv) v1 v2 j (s≤s j<k) ρ1⊢t1↓[j]v3 ρ2⊢t2↓[n2]v4 ... | dv , ↓dv , dvv = dv , dapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ↓dv , dvv rfundamental3 (suc (suc k)) (lett s t) ρ1 dρ ρ2 ρρ v1 v2 .(suc (n1 + n2)) (s≤s (s≤s n1+n2≤k)) (lett n1 n2 vs1 .s .t ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2) (lett _ _ vs2 .s .t ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3) with rfundamental3 (suc (suc k)) s ρ1 dρ ρ2 ρρ vs1 vs2 n1 (s≤s (≤-trans (≤-trans (m≤m+n n1 n2) n1+n2≤k) (≤-step ≤-refl))) ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 ... | dsv , ↓dsv , vsv with rfundamental3 (suc (suc k) ∸ n1) t (vs1 • ρ1) (dsv • dρ) (vs2 • ρ2) (vsv , rrelρ3-mono (suc (suc k) ∸ n1) (suc (suc k)) (m∸n≤m (suc (suc k)) n1) _ _ _ _ ρρ) v1 v2 n2 (sub∸ n1 (suc n2) (suc (suc k)) n1+[1+n2]≤2+k) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3 where n1+[1+n2]≤2+k : n1 + suc n2 ≤ suc (suc k) n1+[1+n2]≤2+k rewrite +-suc n1 n2 = ≤-step (s≤s n1+n2≤k) ... | dv , ↓dv , dvv = dv , dlett ρ1⊢t1↓[j]v1 ↓dsv ↓dv , rrelV3-mono (suc k ∸ (n1 + n2)) (suc (suc k) ∸ n1 ∸ n2) 1+k-[n1+n2]≤2+k-n1-n2 _ v1 dv v2 dvv where 1+k-[n1+n2]≤2+k-n1-n2 : suc k ∸ (n1 + n2) ≤ suc (suc k) ∸ n1 ∸ n2 1+k-[n1+n2]≤2+k-n1-n2 rewrite ∸-+-assoc (suc (suc k)) n1 n2 = ∸-mono {suc k} {suc (suc k)} {n1 + n2} {n1 + n2} (≤-step ≤-refl) ≤-refl
Correct local variable name
Correct local variable name
Agda
mit
inc-lc/ilc-agda
fb73c4c68d0d9e00dac3fd35d9b93d3d01182522
Popl14/Change/Term.agda
Popl14/Change/Term.agda
module Popl14.Change.Term where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer open import Popl14.Syntax.Term public diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-term {int} = let Δx = var (that this) x = var this in abs (abs (add x Δx)) apply-term {bag} = let Δx = var (that this) x = var this in abs (abs (union x Δx)) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-term {int} = let x = var (that this) y = var this in abs (abs (add x (minus y))) diff-term {bag} = let x = var (that this) y = var this in abs (abs (union x (negate y))) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
module Popl14.Change.Term where -- Terms Calculus Popl14 -- -- Contents -- - Term constructors -- - Weakening on terms -- - `fit`: weaken a term to its ΔContext -- - diff-term, apply-term and their syntactic sugars open import Syntax.Context.Popl14 public open import Data.Integer open import Popl14.Syntax.Term public diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) -- Sugars for diff-term and apply-term infixl 6 _⊕_ _⊝_ _⊕_ : ∀ {τ Γ} → Term Γ τ → Term Γ (ΔType τ) → Term Γ τ _⊝_ : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) t ⊕ Δt = app (app apply-term Δt) t s ⊝ t = app (app diff-term s) t apply-term {int} = abs₂ (λ Δx x → add x Δx) apply-term {bag} = abs₂ (λ Δx x → union x Δx) apply-term {σ ⇒ τ} = let Δf = var (that (that this)) f = var (that this) x = var this in -- Δf f x abs (abs (abs (app f x ⊕ app (app Δf x) (x ⊝ x)))) diff-term {int} = abs₂ (λ x y → add x (minus y)) diff-term {bag} = abs₂ (λ x y → union x (negate y)) diff-term {σ ⇒ τ} = let g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this in -- g f x Δx abs (abs (abs (abs (app g (x ⊕ Δx) ⊝ app f x))))
Use HOAS-enabled helpers for nested abstractions.
Use HOAS-enabled helpers for nested abstractions. Old-commit-hash: cffcfea69d7b1877dc5d63b49ee0ed9f24dce0d2
Agda
mit
inc-lc/ilc-agda
9d1e02a049e0eac1e796dc1d74d47064871effb3
otp-sem-sec.agda
otp-sem-sec.agda
module otp-sem-sec where import Level as L open import Function open import Data.Nat.NP open import Data.Bits open import Data.Bool open import Data.Bool.Properties open import Data.Vec hiding (_>>=_) open import Data.Product.NP hiding (_⟦×⟧_) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import flipbased-implem open ≡-Reasoning open import Data.Unit using (⊤) open import composable open import vcomp open import forkable open import flat-funs proj : ∀ {a} {A : Set a} → A × A → Bit → A proj (x₀ , x₁) 0b = x₀ proj (x₀ , x₁) 1b = x₁ module BitsExtra where splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) } vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id vnot∘vnot [] = refl vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs) open BitsExtra Coins = ℕ record PrgDist : Set₁ where constructor mk field _]-[_ : ∀ {c} (f g : ↺ c Bit) → Set ]-[-cong : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' breaks : ∀ {c} (EXP : Bit → ↺ c Bit) → Set breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b _≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ↺ c Bit) → Set ⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b ≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c}) ≗⅁-trans p q b R = trans (p b R) (q b R) -- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁ _⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ↺ c₀ Bit) (⅁₁ : Bit → ↺ c₁ Bit) → Set ⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁ extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ↺ c Bit} → ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁ extensional-reduction same-games = ]-[-cong (same-games 0b) (same-games 1b) module Guess (Power : Set) (coins : Power → Coins) (prgDist : PrgDist) where open PrgDist prgDist GuessAdv : Coins → Set GuessAdv c = ↺ c Bit runGuess⅁ : ∀ {ca} (A : GuessAdv ca) (b : Bit) → ↺ ca Bit runGuess⅁ A _ = A -- An oracle: an adversary who can break the guessing game. Oracle : Power → Set Oracle power = ∃ (λ (A : GuessAdv (coins power)) → breaks (runGuess⅁ A)) -- Any adversary cannot do better than a random guess. GuessSec : Power → Set GuessSec power = ∀ (A : GuessAdv (coins power)) → ¬(breaks (runGuess⅁ A)) module AbsSemSec (|M| |C| : ℕ) {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs M = `Bits |M| C = `Bits |C| record AbsSemSecAdv (|R| : Coins) : Set where constructor mk field {|S|} : ℕ S = `Bits |S| R = `Bits |R| field step₀ : R `→ (M `× M) `× S step₁ : C `× S `→ `Bit -- step₀ : ⟨ p₀ ⟩ R ↝ (M `× M) `× S -- step₁ : ⟨ p₁ ⟩ C `× S ↝ `Bit SemSecReduction : ∀ (f : Coins → Coins) → Set SemSecReduction f = ∀ {c} → AbsSemSecAdv c → AbsSemSecAdv (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) (|M| |C| : ℕ) where open PrgDist prgDist open AbsSemSec |M| |C| fun♭Funs open FlatFunsOps fun♭Ops M² = Bit → M Enc : ∀ cc → Set Enc cc = M → ↺ cc C Tr : (cc₀ cc₁ : Coins) → Set Tr cc₀ cc₁ = Enc cc₀ → Enc cc₁ FunSemSecAdv : Coins → Set FunSemSecAdv = AbsSemSecAdv module FunSemSecAdv {|R|} (A : FunSemSecAdv |R|) where open AbsSemSecAdv A public step₀F : R → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R| (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit _⇄_ = runSemSec runAdv : ∀ {|R|} → FunSemSecAdv |R| → C → Bits |R| → (M × M) × Bit runAdv (mk A-step₀ A-step₁) C = A-step₀ >>> id *** (const C &&& id >>> A-step₁) _≗A_ : ∀ {p} (A₁ A₂ : FunSemSecAdv p) → Set A₀ ≗A A₁ = ∀ C R → runAdv A₀ C R ≡ runAdv A₁ C R change-adv : ∀ {cc ca} {E : Enc cc} {A₁ A₂ : FunSemSecAdv ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂) change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , refl = trans (cong proj₂ (helper₀ A₁)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post) pre helper₂ = cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre))) (helper₀ A₂) SafeSemSecReduction : ∀ (f : Coins → Coins) {cc₀ cc₁} (E₀ : Enc cc₀) (E₁ : Enc cc₁) → Set SafeSemSecReduction f E₀ E₁ = ∃ λ (red : SemSecReduction f) → ∀ {c} A → (E₀ ⇄ A) ⇓ (E₁ ⇄ red {c} A) SemSecTr : ∀ {cc₀ cc₁} (f : Coins → Coins) (tr : Tr cc₀ cc₁) → Set SemSecTr {cc₀} f tr = ∀ {E : Enc cc₀} → SafeSemSecReduction f (tr E) E module PostCompSec (prgDist : PrgDist) (|M| |C| : ℕ) where module PostCompRed {t} {T : Set t} {♭Funs : FlatFuns T} (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops open AbsSemSec |M| |C| ♭Funs post-comp-red : (post-E : C `→ C) → SemSecReduction _ post-comp-red post-E (mk A₀ A₁) = mk A₀ (post-E *** idO >>> A₁) open PrgDist prgDist open PostCompRed fun♭Ops open FlatFunsOps fun♭Ops open FunSemSec prgDist |M| |C| open AbsSemSec |M| |C| fun♭Funs post-comp : ∀ {cc} (post-E : C → C) → Tr cc cc post-comp post-E E = E >>> map↺ post-E post-comp-pres-sem-sec : ∀ {cc} (post-E : C → C) → SemSecTr id (post-comp {cc} post-E) post-comp-pres-sem-sec post-E = post-comp-red post-E , (λ _ → id) post-comp-pres-sem-sec' : ∀ (post-E post-E⁻¹ : C → C) (post-E-inv : post-E⁻¹ ∘ post-E ≗ id) {cc} {E : Enc cc} → SafeSemSecReduction id E (post-comp post-E E) post-comp-pres-sem-sec' post-E post-E⁻¹ post-E-inv {cc} {E} = red , helper where E' = post-comp post-E E red : SemSecReduction id red = post-comp-red post-E⁻¹ helper : ∀ {p} A → (E ⇄ A) ⇓ (E' ⇄ red {p} A) helper {c} A A-breaks-E = A'-breaks-E' where open FunSemSecAdv A renaming (step₀F to A₀F) A' = red {c} A same-games : (E ⇄ A) ≗⅁ (E' ⇄ A') same-games b R rewrite post-E-inv (run↺ (E (proj₁ (A₀F (take c R)) b)) (drop c R)) = refl A'-breaks-E' : breaks (E' ⇄ A') A'-breaks-E' = extensional-reduction same-games A-breaks-E post-neg : ∀ {cc} → Tr cc cc post-neg = post-comp vnot post-neg-pres-sem-sec : ∀ {cc} → SemSecTr id (post-neg {cc}) post-neg-pres-sem-sec {cc} {E} = post-comp-pres-sem-sec vnot {E} post-neg-pres-sem-sec' : ∀ {cc} {E : Enc cc} → SafeSemSecReduction id E (post-neg E) post-neg-pres-sem-sec' {cc} {E} = post-comp-pres-sem-sec' vnot vnot vnot∘vnot {cc} {E} open import diff import Data.Fin as Fin _]-_-[_ : ∀ {c} (f : ↺ c Bit) k (g : ↺ c Bit) → Set _]-_-[_ {c} f k g = diff (Fin.toℕ #⟨ run↺ f ⟩) (Fin.toℕ #⟨ run↺ g ⟩) ≥ 2^(c ∸ k) -- diff (#1 f) (#1 g) ≥ 2^(-k) * 2^ c -- diff (#1 f) (#1 g) ≥ ε * 2^ c -- dist (#1 f) (#1 g) ≥ ε * 2^ c -- where ε = 2^ -k -- {!dist (#1 f / 2^ c) (#1 g / 2^ c) > ε !} open import Data.Vec.NP using (count) ext-count : ∀ {n a} {A : Set a} {f g : A → Bool} → f ≗ g → (xs : Vec A n) → count f xs ≡ count g xs ext-count f≗g [] = refl ext-count f≗g (x ∷ xs) rewrite ext-count f≗g xs | f≗g x = refl ext-# : ∀ {c} {f g : Bits c → Bit} → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩ ext-# f≗g = ext-count f≗g (allBits _) ]-[-cong : ∀ {k c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]- k -[ f' → g ]- k -[ g' ]-[-cong f≗g f'≗g' f]-[f' rewrite ext-# f≗g | ext-# f'≗g' = f]-[f' module Concrete k where _]-[_ : ∀ {c} (f g : ↺ c Bit) → Set _]-[_ f g = f ]- k -[ g cong' : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' cong' = ]-[-cong {k} prgDist : PrgDist prgDist = mk _]-[_ cong' module Guess' = Guess Coins id prgDist module FunSemSec' = FunSemSec prgDist module PostCompSec' = PostCompSec prgDist
module otp-sem-sec where import Level as L open import Function open import Data.Nat.NP open import Data.Bits open import Data.Bool open import Data.Bool.Properties open import Data.Vec hiding (_>>=_) open import Data.Product.NP hiding (_⟦×⟧_) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import flipbased-implem open ≡-Reasoning open import Data.Unit using (⊤) open import composable open import vcomp open import forkable open import flat-funs proj : ∀ {a} {A : Set a} → A × A → Bit → A proj (x₀ , x₁) 0b = x₀ proj (x₀ , x₁) 1b = x₁ module BitsExtra where splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) } vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id vnot∘vnot [] = refl vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs) open BitsExtra Coins = ℕ record PrgDist : Set₁ where constructor mk field _]-[_ : ∀ {c} (f g : ↺ c Bit) → Set ]-[-cong : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' breaks : ∀ {c} (EXP : Bit → ↺ c Bit) → Set breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b _≗⅁_ : ∀ {c} (⅁₀ ⅁₁ : Bit → ↺ c Bit) → Set ⅁₀ ≗⅁ ⅁₁ = ∀ b → ⅁₀ b ≗↺ ⅁₁ b ≗⅁-trans : ∀ {c} → Transitive (_≗⅁_ {c}) ≗⅁-trans p q b R = trans (p b R) (q b R) -- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁ _⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ↺ c₀ Bit) (⅁₁ : Bit → ↺ c₁ Bit) → Set ⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁ extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ↺ c Bit} → ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁ extensional-reduction same-games = ]-[-cong (same-games 0b) (same-games 1b) module Guess (prgDist : PrgDist) where open PrgDist prgDist GuessAdv : Coins → Set GuessAdv c = ↺ c Bit runGuess⅁ : ∀ {ca} (A : GuessAdv ca) (b : Bit) → ↺ ca Bit runGuess⅁ A _ = A -- An oracle: an adversary who can break the guessing game. Oracle : Coins → Set Oracle ca = ∃ (λ (A : GuessAdv ca) → breaks (runGuess⅁ A)) -- Any adversary cannot do better than a random guess. GuessSec : Coins → Set GuessSec ca = ∀ (A : GuessAdv ca) → ¬(breaks (runGuess⅁ A)) module AbsSemSec (|M| |C| : ℕ) {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs M = `Bits |M| C = `Bits |C| record AbsSemSecAdv (|R| : Coins) : Set where constructor mk field {|S|} : ℕ S = `Bits |S| R = `Bits |R| field step₀ : R `→ (M `× M) `× S step₁ : C `× S `→ `Bit -- step₀ : ⟨ p₀ ⟩ R ↝ (M `× M) `× S -- step₁ : ⟨ p₁ ⟩ C `× S ↝ `Bit SemSecReduction : ∀ (f : Coins → Coins) → Set SemSecReduction f = ∀ {c} → AbsSemSecAdv c → AbsSemSecAdv (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) (|M| |C| : ℕ) where open PrgDist prgDist open AbsSemSec |M| |C| fun♭Funs open FlatFunsOps fun♭Ops M² = Bit → M Enc : ∀ cc → Set Enc cc = M → ↺ cc C Tr : (cc₀ cc₁ : Coins) → Set Tr cc₀ cc₁ = Enc cc₀ → Enc cc₁ FunSemSecAdv : Coins → Set FunSemSecAdv = AbsSemSecAdv module FunSemSecAdv {|R|} (A : FunSemSecAdv |R|) where open AbsSemSecAdv A public step₀F : R → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R| (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {cc ca} (E : Enc cc) (A : FunSemSecAdv ca) b → ↺ (ca + cc) Bit _⇄_ = runSemSec runAdv : ∀ {|R|} → FunSemSecAdv |R| → C → Bits |R| → (M × M) × Bit runAdv (mk A-step₀ A-step₁) C = A-step₀ >>> id *** (const C &&& id >>> A-step₁) _≗A_ : ∀ {p} (A₁ A₂ : FunSemSecAdv p) → Set A₀ ≗A A₁ = ∀ C R → runAdv A₀ C R ≡ runAdv A₁ C R change-adv : ∀ {cc ca} {E : Enc cc} {A₁ A₂ : FunSemSecAdv ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂) change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , refl = trans (cong proj₂ (helper₀ A₁)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post) pre helper₂ = cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre))) (helper₀ A₂) SafeSemSecReduction : ∀ (f : Coins → Coins) {cc₀ cc₁} (E₀ : Enc cc₀) (E₁ : Enc cc₁) → Set SafeSemSecReduction f E₀ E₁ = ∃ λ (red : SemSecReduction f) → ∀ {c} A → (E₀ ⇄ A) ⇓ (E₁ ⇄ red {c} A) SemSecTr : ∀ {cc₀ cc₁} (f : Coins → Coins) (tr : Tr cc₀ cc₁) → Set SemSecTr {cc₀} f tr = ∀ {E : Enc cc₀} → SafeSemSecReduction f (tr E) E module PostCompSec (prgDist : PrgDist) (|M| |C| : ℕ) where module PostCompRed {t} {T : Set t} {♭Funs : FlatFuns T} (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops open AbsSemSec |M| |C| ♭Funs post-comp-red : (post-E : C `→ C) → SemSecReduction _ post-comp-red post-E (mk A₀ A₁) = mk A₀ (post-E *** idO >>> A₁) open PrgDist prgDist open PostCompRed fun♭Ops open FlatFunsOps fun♭Ops open FunSemSec prgDist |M| |C| open AbsSemSec |M| |C| fun♭Funs post-comp : ∀ {cc} (post-E : C → C) → Tr cc cc post-comp post-E E = E >>> map↺ post-E post-comp-pres-sem-sec : ∀ {cc} (post-E : C → C) → SemSecTr id (post-comp {cc} post-E) post-comp-pres-sem-sec post-E = post-comp-red post-E , (λ _ → id) post-comp-pres-sem-sec' : ∀ (post-E post-E⁻¹ : C → C) (post-E-inv : post-E⁻¹ ∘ post-E ≗ id) {cc} {E : Enc cc} → SafeSemSecReduction id E (post-comp post-E E) post-comp-pres-sem-sec' post-E post-E⁻¹ post-E-inv {cc} {E} = red , helper where E' = post-comp post-E E red : SemSecReduction id red = post-comp-red post-E⁻¹ helper : ∀ {p} A → (E ⇄ A) ⇓ (E' ⇄ red {p} A) helper {c} A A-breaks-E = A'-breaks-E' where open FunSemSecAdv A renaming (step₀F to A₀F) A' = red {c} A same-games : (E ⇄ A) ≗⅁ (E' ⇄ A') same-games b R rewrite post-E-inv (run↺ (E (proj₁ (A₀F (take c R)) b)) (drop c R)) = refl A'-breaks-E' : breaks (E' ⇄ A') A'-breaks-E' = extensional-reduction same-games A-breaks-E post-neg : ∀ {cc} → Tr cc cc post-neg = post-comp vnot post-neg-pres-sem-sec : ∀ {cc} → SemSecTr id (post-neg {cc}) post-neg-pres-sem-sec {cc} {E} = post-comp-pres-sem-sec vnot {E} post-neg-pres-sem-sec' : ∀ {cc} {E : Enc cc} → SafeSemSecReduction id E (post-neg E) post-neg-pres-sem-sec' {cc} {E} = post-comp-pres-sem-sec' vnot vnot vnot∘vnot {cc} {E} open import diff import Data.Fin as Fin _]-_-[_ : ∀ {c} (f : ↺ c Bit) k (g : ↺ c Bit) → Set _]-_-[_ {c} f k g = diff (Fin.toℕ #⟨ run↺ f ⟩) (Fin.toℕ #⟨ run↺ g ⟩) ≥ 2^(c ∸ k) -- diff (#1 f) (#1 g) ≥ 2^(-k) * 2^ c -- diff (#1 f) (#1 g) ≥ ε * 2^ c -- dist (#1 f) (#1 g) ≥ ε * 2^ c -- where ε = 2^ -k -- {!dist (#1 f / 2^ c) (#1 g / 2^ c) > ε !} open import Data.Vec.NP using (count) ext-count : ∀ {n a} {A : Set a} {f g : A → Bool} → f ≗ g → (xs : Vec A n) → count f xs ≡ count g xs ext-count f≗g [] = refl ext-count f≗g (x ∷ xs) rewrite ext-count f≗g xs | f≗g x = refl ext-# : ∀ {c} {f g : Bits c → Bit} → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩ ext-# f≗g = ext-count f≗g (allBits _) ]-[-cong : ∀ {k c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]- k -[ f' → g ]- k -[ g' ]-[-cong f≗g f'≗g' f]-[f' rewrite ext-# f≗g | ext-# f'≗g' = f]-[f' module Concrete k where _]-[_ : ∀ {c} (f g : ↺ c Bit) → Set _]-[_ f g = f ]- k -[ g cong' : ∀ {c} {f f' g g' : ↺ c Bit} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' cong' = ]-[-cong {k} prgDist : PrgDist prgDist = mk _]-[_ cong' module Guess' = Guess prgDist module FunSemSec' = FunSemSec prgDist module PostCompSec' = PostCompSec prgDist
Remove power from the guessing game
Remove power from the guessing game
Agda
bsd-3-clause
crypto-agda/crypto-agda
242a602d070c3965f3dedd346bff306ec822c452
lib/Algebra/Group/Homomorphism.agda
lib/Algebra/Group/Homomorphism.agda
{-# OPTIONS --without-K #-} module Algebra.Group.Homomorphism where open import Type using (Type_) open import Function.NP using (Op₂; _∘_) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid open import Algebra.Monoid.Homomorphism open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Constructions open import Level.NP open import Data.Product.NP open import Data.Nat.NP using (1+_) open import Data.Integer.NP using (ℤ; -[1+_]; +_; -_; module ℤ°) open import Relation.Binary.PropositionalEquality.NP open ≡-Reasoning record GroupHomomorphism {a}{A : Type a}{b}{B : Type b} (grpA0+ : Group A)(grpB1* : Group B) (f : A → B) : Type (a ⊔ b) where constructor mk open Additive-Group grpA0+ open Multiplicative-Group grpB1* field hom : Homomorphic₂ f _+_ _*_ pres-unit : f 0# ≡ 1# pres-unit = unique-1-left part where part = f 0# * f 0# ≡⟨ ! hom ⟩ f (0# + 0#) ≡⟨ ap f (fst +-identity) ⟩ f 0# ∎ mon-hom : MonoidHomomorphism +-mon *-mon f mon-hom = pres-unit , hom open MonoidHomomorphism mon-hom public pres-inv : ∀ {x} → f (0− x) ≡ (f x)⁻¹ pres-inv {x} = unique-⁻¹ part where part = f (0− x) * f x ≡⟨ ! hom ⟩ f (0− x + x) ≡⟨ ap f (fst 0−-inverse) ⟩ f 0# ≡⟨ pres-unit ⟩ 1# ∎ 0−-⁻¹ = pres-inv −-/ : ∀ {x y} → f (x − y) ≡ f x / f y −-/ {x} {y} = f (x − y) ≡⟨ hom ⟩ f x * f (0− y) ≡⟨ ap (_*_ (f x)) pres-inv ⟩ f x / f y ∎ hom-iterated⁻ : ∀ {x} n → f (x ⊗⁻ n) ≡ f x ^⁻ n hom-iterated⁻ {x} n = f (x ⊗⁻ n) ≡⟨by-definition⟩ f (0−(x ⊗⁺ n)) ≡⟨ pres-inv ⟩ f(x ⊗⁺ n)⁻¹ ≡⟨ ap _⁻¹ (hom-iterated⁺ n) ⟩ (f x ^⁺ n)⁻¹ ≡⟨by-definition⟩ f x ^⁻ n ∎ hom-iterated : ∀ {x} i → f (x ⊗ i) ≡ f x ^ i hom-iterated -[1+ n ] = hom-iterated⁻ (1+ n) hom-iterated (+ n) = hom-iterated⁺ n ℤ+-grp-ops : Group-Ops ℤ ℤ+-grp-ops = ℤ+-mon-ops , -_ ℤ+-grp-struct : Group-Struct ℤ+-grp-ops ℤ+-grp-struct = ℤ+-mon-struct , (λ{x} → fst ℤ°.-‿inverse x) , (λ{x} → snd ℤ°.-‿inverse x) ℤ+-grp : Group ℤ ℤ+-grp = _ , ℤ+-grp-struct module ℤ+ = Additive-Group ℤ+-grp module _ {ℓ}{G : Type ℓ}(𝔾 : Group G) where open Groupᵒᵖ open Group 𝔾 module ⁻¹-Hom where -- The proper type for ⁻¹-hom′ ⁻¹-hom' : GroupHomomorphism 𝔾 (𝔾 ᵒᵖ) _⁻¹ ⁻¹-hom' = mk ⁻¹-hom′ open GroupHomomorphism ⁻¹-hom' public module ℤ+-^-Hom {b} where ^-+-hom : GroupHomomorphism ℤ+-grp 𝔾 (_^_ b) ^-+-hom = mk (λ {i} {j} → ^-+ i j) open GroupHomomorphism ^-+-hom public module Stability-Minimal {a}{A : Type a} {b}{B : Type b} (φ : A → B) (_+_ : Op₂ A) (_*_ : Op₂ B) (φ-+-* : ∀ {x y} → φ (x + y) ≡ φ x * φ y) {c}{C : Type c} (F : (A → B) → C) (F= : ∀ {f g : A → B} → f ≗ g → F f ≡ F g) (Fφ* : ∀ {k} → F φ ≡ F (_*_ k ∘ φ)) where +-stable : ∀ {k} → F φ ≡ F (φ ∘ _+_ k) +-stable {k} = F φ ≡⟨ Fφ* ⟩ F (_*_ (φ k) ∘ φ) ≡⟨ F= (λ x → ! φ-+-*) ⟩ F (φ ∘ _+_ k) ∎ module Stability {a}{A : Type a} {b}{B : Type b} (G+ : Group A) (G* : Group B) (φ : A → B) (φ-hom : GroupHomomorphism G+ G* φ) where open Additive-Group G+ open Multiplicative-Group G* open GroupHomomorphism φ-hom open Stability-Minimal φ _+_ _*_ hom public -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} module Algebra.Group.Homomorphism where open import Type using (Type_) open import Function.NP using (Op₂; _∘_; id) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Implicits open import Algebra.Monoid open import Algebra.Monoid.Homomorphism open import Algebra.Raw open import Algebra.Group open import Algebra.Group.Constructions open import Level.NP open import Data.Product.NP open import Data.Nat.NP using (1+_) open import Data.Integer.NP using (ℤ; -[1+_]; +_; -_; module ℤ°) open import Relation.Binary.PropositionalEquality.NP open ≡-Reasoning record GroupHomomorphism {a}{A : Type a}{b}{B : Type b} (grpA0+ : Group A)(grpB1* : Group B) (f : A → B) : Type (a ⊔ b) where constructor mk open Additive-Group grpA0+ open Multiplicative-Group grpB1* field hom : Homomorphic₂ f _+_ _*_ pres-unit : f 0# ≡ 1# pres-unit = unique-1-left part where part = f 0# * f 0# ≡⟨ ! hom ⟩ f (0# + 0#) ≡⟨ ap f (fst +-identity) ⟩ f 0# ∎ mon-hom : MonoidHomomorphism +-mon *-mon f mon-hom = pres-unit , hom open MonoidHomomorphism mon-hom public pres-inv : ∀ {x} → f (0− x) ≡ (f x)⁻¹ pres-inv {x} = unique-⁻¹ part where part = f (0− x) * f x ≡⟨ ! hom ⟩ f (0− x + x) ≡⟨ ap f (fst 0−-inverse) ⟩ f 0# ≡⟨ pres-unit ⟩ 1# ∎ 0−-⁻¹ = pres-inv −-/ : ∀ {x y} → f (x − y) ≡ f x / f y −-/ {x} {y} = f (x − y) ≡⟨ hom ⟩ f x * f (0− y) ≡⟨ ap (_*_ (f x)) pres-inv ⟩ f x / f y ∎ hom-iterated⁻ : ∀ {x} n → f (x ⊗⁻ n) ≡ f x ^⁻ n hom-iterated⁻ {x} n = f (x ⊗⁻ n) ≡⟨by-definition⟩ f (0−(x ⊗⁺ n)) ≡⟨ pres-inv ⟩ f(x ⊗⁺ n)⁻¹ ≡⟨ ap _⁻¹ (hom-iterated⁺ n) ⟩ (f x ^⁺ n)⁻¹ ≡⟨by-definition⟩ f x ^⁻ n ∎ hom-iterated : ∀ {x} i → f (x ⊗ i) ≡ f x ^ i hom-iterated -[1+ n ] = hom-iterated⁻ (1+ n) hom-iterated (+ n) = hom-iterated⁺ n ℤ+-grp-ops : Group-Ops ℤ ℤ+-grp-ops = ℤ+-mon-ops , -_ ℤ+-grp-struct : Group-Struct ℤ+-grp-ops ℤ+-grp-struct = ℤ+-mon-struct , (λ{x} → fst ℤ°.-‿inverse x) , (λ{x} → snd ℤ°.-‿inverse x) ℤ+-grp : Group ℤ ℤ+-grp = _ , ℤ+-grp-struct module ℤ+ = Additive-Group ℤ+-grp module _ {ℓ}{G : Type ℓ}(𝔾 : Group G) where open Groupᵒᵖ open Group 𝔾 module ⁻¹-Hom where -- The proper type for ⁻¹-hom′ ⁻¹-hom' : GroupHomomorphism 𝔾 (𝔾 ᵒᵖ) _⁻¹ ⁻¹-hom' = mk ⁻¹-hom′ open GroupHomomorphism ⁻¹-hom' public module ℤ+-^-Hom {b} where ^-+-hom : GroupHomomorphism ℤ+-grp 𝔾 (_^_ b) ^-+-hom = mk (λ {i} {j} → ^-+ i j) open GroupHomomorphism ^-+-hom public module Stability-Minimal {a}{A : Type a} {b}{B : Type b} (φ : A → B) (_+_ : Op₂ A) (_*_ : Op₂ B) (φ-+-* : ∀ {x y} → φ (x + y) ≡ φ x * φ y) {c}{C : Type c} (F : (A → B) → C) (F= : ∀ {f g : A → B} → f ≗ g → F f ≡ F g) (Fφ* : ∀ {k} → F φ ≡ F (_*_ k ∘ φ)) where +-stable : ∀ {k} → F φ ≡ F (φ ∘ _+_ k) +-stable {k} = F φ ≡⟨ Fφ* ⟩ F (_*_ (φ k) ∘ φ) ≡⟨ F= (λ x → ! φ-+-*) ⟩ F (φ ∘ _+_ k) ∎ module Stability {a}{A : Type a} {b}{B : Type b} (G+ : Group A) (G* : Group B) (φ : A → B) (φ-hom : GroupHomomorphism G+ G* φ) where open Additive-Group G+ open Multiplicative-Group G* open GroupHomomorphism φ-hom open Stability-Minimal φ _+_ _*_ hom public open GroupHomomorphism module Identity {a}{A : Type a} (𝔸 : Group A) where id-hom : GroupHomomorphism 𝔸 𝔸 id id-hom = mk refl module Compose {a}{A : Type a} {b}{B : Type b} {c}{C : Type c} (𝔸 : Group A) (𝔹 : Group B) (ℂ : Group C) (ψ : A → B) (ψ-hom : GroupHomomorphism 𝔸 𝔹 ψ) (φ : B → C) (φ-hom : GroupHomomorphism 𝔹 ℂ φ) where ∘-hom : GroupHomomorphism 𝔸 ℂ (φ ∘ ψ) ∘-hom = mk (ap φ (hom ψ-hom) ∙ hom φ-hom) module Delta {a}{A : Type a} (𝔸 : Group A) where open Algebra.Group.Constructions.Product Δ-hom : GroupHomomorphism 𝔸 (×-grp 𝔸 𝔸) (λ x → x , x) Δ-hom = mk refl module Zip {a₀}{A₀ : Type a₀} {a₁}{A₁ : Type a₁} {b₀}{B₀ : Type b₀} {b₁}{B₁ : Type b₁} (𝔸₀ : Group A₀) (𝔸₁ : Group A₁) (𝔹₀ : Group B₀) (𝔹₁ : Group B₁) (φ₀ : A₀ → B₀) (φ₀-hom : GroupHomomorphism 𝔸₀ 𝔹₀ φ₀) (φ₁ : A₁ → B₁) (φ₁-hom : GroupHomomorphism 𝔸₁ 𝔹₁ φ₁) where open Algebra.Group.Constructions.Product zip-hom : GroupHomomorphism (×-grp 𝔸₀ 𝔸₁) (×-grp 𝔹₀ 𝔹₁) (map φ₀ φ₁) zip-hom = mk (ap₂ _,_ (hom φ₀-hom) (hom φ₁-hom)) module Pair {a}{A : Type a} {b₀}{B₀ : Type b₀} {b₁}{B₁ : Type b₁} (𝔸 : Group A) (𝔹₀ : Group B₀) (𝔹₁ : Group B₁) (φ₀ : A → B₀) (φ₀-hom : GroupHomomorphism 𝔸 𝔹₀ φ₀) (φ₁ : A → B₁) (φ₁-hom : GroupHomomorphism 𝔸 𝔹₁ φ₁) where -- pair = zip ∘ Δ pair-hom : GroupHomomorphism 𝔸 (Product.×-grp 𝔹₀ 𝔹₁) < φ₀ , φ₁ > pair-hom = Compose.∘-hom _ _ _ _ (Delta.Δ-hom 𝔸) _ (Zip.zip-hom _ _ _ _ _ φ₀-hom _ φ₁-hom) -- OR: pair-hom = mk (ap₂ _,_ (hom φ₀-hom) (hom φ₁-hom)) -- -} -- -} -- -} -- -}
add id, ∘, Δ, zip, pair
Group.Homomorphism: add id, ∘, Δ, zip, pair
Agda
bsd-3-clause
crypto-agda/agda-nplib
39d9e13ae25672af17181a0c3d1fee2118ac33c9
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → CurriedTermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
Introduce and use UncurriedTermConstructor.
Introduce and use UncurriedTermConstructor. Old-commit-hash: d36f33b097ddb2444e6409de52048ef9bf94b001
Agda
mit
inc-lc/ilc-agda
81c758c5545a825b9152e8e2ab898c688bf0d4a9
Solver/Linear/Parser.agda
Solver/Linear/Parser.agda
open import Data.Vec as Vec using ([]; _∷_) open import Text.Parser open import Data.One open import Data.Char open import Data.Nat open import Data.List open import Data.Product hiding (map) open import Data.String as String renaming (toList to S▹L; fromList to L▹S) open import Solver.Linear.Syntax open import Data.Maybe.NP hiding (Eq) open import Relation.Binary.PropositionalEquality module Solver.Linear.Parser where spaces : Parser 𝟙 spaces = manyOneOfˢ " \t\n\r" *> pure _ pIdent : Parser String pIdent = someNoneOfˢ "(,)↦_ \t\n\r" <* spaces tokᶜ : Char → Parser 𝟙 tokᶜ c = char c <* spaces tokˢ : String → Parser 𝟙 tokˢ s = string s <* spaces --pPair : ∀ {A B} → Parser A → Parser B → Parser (A × B) --pPair pA pB = tokᶜ '(' *> ⟪ _,_ · pA <* tokᶜ ',' · pB ⟫ <* tokᶜ ')' module _ {A} (pA : Parser A) where pSimpleSyn pSyn : ℕ → Parser (Syn A) pSimpleSyn n = pure tt <* oneOfˢ "_𝟙" ⟨|⟩ tokᶜ '(' *> pSyn n <* tokᶜ ')' ⟨|⟩ ⟪ var · pA ⟫ pSyn zero = empty pSyn (suc n) = ⟪ tuple _ · pSimpleSyn n · many n (tokᶜ ',' *> pSyn n) ⟫ pEq : ℕ → Parser (Eq A) pEq n = ⟪ _↦_ · pSyn n <* tokᶜ '↦' · pSyn n ⟫ pSynˢ : ℕ → Parser (Syn String) pSynˢ = pSyn pIdent pEqˢ : ℕ → Parser (Eq String) pEqˢ = pEq pIdent parseSynˢ? : String →? Syn String parseSynˢ? s = runParser (pSynˢ n <* eof) ℓ where ℓ = S▹L s n = length ℓ parseSynˢ : T[ parseSynˢ? ] parseSynˢ = F[ parseSynˢ? ] parseEqˢ? : String →? Eq String parseEqˢ? s = runParser (spaces *> pEqˢ (2 * n) <* eof) ℓ where ℓ = S▹L s n = length ℓ parseEqˢ : T[ parseEqˢ? ] parseEqˢ = F[ parseEqˢ? ] ex-A⇒B : Eq String ex-A⇒B = parseEqˢ "A↦B" ex-𝟙⇒𝟙 : Eq String ex-𝟙⇒𝟙 = parseEqˢ "𝟙↦𝟙" ex₁ : Eq String ex₁ = parseEqˢ " ( A , B,(𝟙,C),(D))↦ B,C , A" test-ex₁ : ex₁ ≡ ((var"A" , (var"B", (tt , var"C") , var"D")) ↦ (var"B" , var"C" , var"A")) test-ex₁ = refl -- -}
open import Data.Vec as Vec using ([]; _∷_) open import Text.Parser open import Data.One open import Data.Char open import Data.Nat open import Data.List open import Data.Product hiding (map) open import Data.String as String renaming (toList to S▹L; fromList to L▹S) open import Solver.Linear.Syntax open import Data.Maybe.NP hiding (Eq) open import Relation.Binary.PropositionalEquality module Solver.Linear.Parser where spaces : Parser 𝟙 spaces = manyOneOfˢ " \t\n\r" *> pure _ pIdent : Parser String pIdent = someNoneOfˢ "(,)↦_ \t\n\r" <* spaces tokᶜ : Char → Parser 𝟙 tokᶜ c = char c <* spaces tokˢ : String → Parser 𝟙 tokˢ s = string s <* spaces --pPair : ∀ {A B} → Parser A → Parser B → Parser (A × B) --pPair pA pB = tokᶜ '(' *> ⟪ _,_ · pA <* tokᶜ ',' · pB ⟫ <* tokᶜ ')' module _ {A} (pA : Parser A) where pSimpleSyn pSyn : ℕ → Parser (Syn A) pSimpleSyn n = pure tt <* oneOfˢ "_𝟙" ⟨|⟩ tokᶜ '(' *> pSyn n <* tokᶜ ')' ⟨|⟩ ⟪ var · pA ⟫ pSyn zero = empty pSyn (suc n) = ⟪ tuple _ · pSimpleSyn n · many n (tokᶜ ',' *> pSyn n) ⟫ pEq : ℕ → Parser (Eq A) pEq n = ⟪ _↦_ · pSyn n <* tokᶜ '↦' · pSyn n ⟫ pSynˢ : ℕ → Parser (Syn String) pSynˢ = pSyn pIdent pEqˢ : ℕ → Parser (Eq String) pEqˢ = pEq pIdent parseSynˢ? : String →? Syn String parseSynˢ? s = runParser (pSynˢ n <* eof) ℓ where ℓ = S▹L s n = length ℓ parseSynˢ : T[ parseSynˢ? ] parseSynˢ = F[ parseSynˢ? ] parseEqˢ? : String →? Eq String parseEqˢ? s = runParser (spaces *> pEqˢ (2 * n) <* eof) ℓ where ℓ = S▹L s n = length ℓ parseEqˢ : T[ parseEqˢ? ] parseEqˢ = F[ parseEqˢ? ] ex-A⇒B : Eq String ex-A⇒B = parseEqˢ "A↦B" ex-𝟙⇒𝟙 : Eq String ex-𝟙⇒𝟙 = parseEqˢ "𝟙↦𝟙" ex₁ : Eq String ex₁ = parseEqˢ " ( A , B,(𝟙,C),(D))↦ B,C , A" {- test-ex₁ : ex₁ ≡ ((var"A" , (var"B", (tt , var"C") , var"D")) ↦ (var"B" , var"C" , var"A")) test-ex₁ = refl -} -- -}
comment out the example (long to check)
Solver.Linear.Parser: comment out the example (long to check)
Agda
bsd-3-clause
crypto-agda/crypto-agda
32b4e15a9837ed6e6276af1fd200e4a3dffc2223
flipbased.agda
flipbased.agda
module flipbased where open import Algebra import Level as L open L using () renaming (_⊔_ to _L⊔_) open import Function hiding (_⟨_⟩_) open import Data.Nat.NP open import Data.Bool open import Data.Nat.Properties open import Data.Product using (proj₁; proj₂; _,_; swap; _×_) open import Data.Bits hiding (replicateM) open import Data.Bool open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail) open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) record M {a} n (A : Set a) : Set a where constructor mk field run : Bits n → A toss′ : M 1 Bit toss′ = mk head return′ : ∀ {a} {A : Set a} → A → M 0 A return′ = mk ∘ const pure′ : ∀ {a} {A : Set a} → A → M 0 A pure′ = return′ comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A comap f (mk g) = mk (g ∘ f) weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A weaken {m} = comap (drop m) weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A weaken′ = comap (take _) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A weaken≤ p = comap (take≤ p) coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A coerce ≡.refl = id toss : ∀ {n} → M (1 + n) Bit toss = weaken′ toss′ return : ∀ {n a} {A : Set a} → A → M n A return = weaken′ ∘ return′ pure : ∀ {n a} {A : Set a} → A → M n A pure = return _>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B _>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs)) _>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B _>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_ _>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → M n₂ B → M (n₁ + n₂) B _>>_ {n₁} x y = x >>= const y map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B map f x = mk (f ∘ M.run x) -- map f x ≗ x >>=′ (return {0} ∘ f) join : ∀ {n₁ n₂ a} {A : Set a} → M n₁ (M n₂ A) → M (n₁ + n₂) A join x = x >>= id infixl 4 _⊛_ _⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B _⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → M m A → (A → B → C) → M n B → M (m + n) C x ⟨ f ⟩ y = map f x ⊛ y ⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A ⟪_⟫ = pure ⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A ⟪_⟫′ = pure′ ⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B ⟪ f · x ⟫ = map f x ⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → (A → B → C) → M m A → M n B → M (m + n) C ⟪ f · x · y ⟫ = map f x ⊛ y ⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} → (A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D ⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z choose : ∀ {n a} {A : Set a} → M n A → M n A → M (suc n) A choose x y = ⟪ if_then_else_ · toss · x · y ⟫ _⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B) x ⟨,⟩ y = ⟪ _,_ · x · y ⟫ _⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫ _⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m) x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫ replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n) replicateM {zero} _ = ⟪ [] ⟫ replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫ random : ∀ {n} → M n (Bits n) -- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce random {zero} = ⟪ [] ⟫ random {suc _} = ⟪ _∷_ · toss′ · random ⟫ randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m)) randomTbl m n = replicateM random randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n) randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫ randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A) randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs) 2*_ : ℕ → ℕ 2* x = x + x 2^_ : ℕ → ℕ 2^ 0 = 1 2^ (suc n) = 2* (2^ n) costRndFun : ℕ → ℕ → ℕ costRndFun zero n = n costRndFun (suc m) n = 2* (costRndFun m n) lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n) randomFun′ {zero} = ⟪ const · random ⟫ randomFun′ {suc m} = randomFunExt (randomFun′ {m}) record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where infix 2 _≈_ _≋_ field _≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ refl : ∀ {n A} → Reflexive {A = M n A} _≈_ sym : ∀ {n A} → Symmetric {A = M n A} _≈_ -- not strictly transitive reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A} reflexive ≡.refl = refl _≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂) where m≤n⊔m : ∀ m n → m ≤ n ⊔ m m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n -- Another name for _≋_ _looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _looks_ = _≋_ module WithEquiv (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set SecPRG prg = this looks random where this = ⟪ prg · random ⟫ record PRG k n : Set where constructor _,_ field prg : Bits k → Bits n sec : SecPRG prg OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in this looks random record PRF k m n : Set where constructor _,_ field prf : Bits k → Bits m → Bits n sec : OneTimeSecPRF prf OTP : ∀ {n} → Bits n → Bits n → Bits n OTP key msg = key ⊕ msg init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A init f = ⟪ f · random ⟫ module Examples (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq open WithEquiv progEq left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g) assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g)) ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫ ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′ ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key) ex₅ = ∀ {k n} → PRG k n → PRF k n n
module flipbased where open import Algebra import Level as L open L using () renaming (_⊔_ to _L⊔_) open import Function hiding (_⟨_⟩_) open import Data.Nat.NP open import Data.Bool open import Data.Nat.Properties open import Data.Product using (proj₁; proj₂; _,_; swap; _×_) open import Data.Bits hiding (replicateM) open import Data.Bool open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail) open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) record M {a} n (A : Set a) : Set a where constructor mk field run : Bits n → A toss′ : M 1 Bit toss′ = mk head return′ : ∀ {a} {A : Set a} → A → M 0 A return′ = mk ∘ const pure′ : ∀ {a} {A : Set a} → A → M 0 A pure′ = return′ comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A comap f (mk g) = mk (g ∘ f) weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A weaken {m} = comap (drop m) weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A weaken′ = comap (take _) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A weaken≤ p = comap (take≤ p) coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A coerce ≡.refl = id toss : ∀ {n} → M (1 + n) Bit toss = weaken′ toss′ return : ∀ {n a} {A : Set a} → A → M n A return = weaken′ ∘ return′ pure : ∀ {n a} {A : Set a} → A → M n A pure = return _>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B _>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs)) _>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B _>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_ _>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → M n₂ B → M (n₁ + n₂) B _>>_ {n₁} x y = x >>= const y map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B map f x = mk (f ∘ M.run x) -- map f x ≗ x >>=′ (return {0} ∘ f) join : ∀ {n₁ n₂ a} {A : Set a} → M n₁ (M n₂ A) → M (n₁ + n₂) A join x = x >>= id infixl 4 _⊛_ _⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B _⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → M m A → (A → B → C) → M n B → M (m + n) C x ⟨ f ⟩ y = map f x ⊛ y ⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A ⟪_⟫ = pure ⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A ⟪_⟫′ = pure′ ⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B ⟪ f · x ⟫ = map f x ⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → (A → B → C) → M m A → M n B → M (m + n) C ⟪ f · x · y ⟫ = map f x ⊛ y ⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} → (A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D ⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z choose : ∀ {n a} {A : Set a} → M n A → M n A → M (suc n) A choose x y = toss′ >>= λ b → if b then x else y _⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B) x ⟨,⟩ y = ⟪ _,_ · x · y ⟫ _⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫ _⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m) x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫ replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n) replicateM {zero} _ = ⟪ [] ⟫ replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫ random : ∀ {n} → M n (Bits n) -- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce random {zero} = ⟪ [] ⟫ random {suc _} = ⟪ _∷_ · toss′ · random ⟫ randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m)) randomTbl m n = replicateM random randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n) randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫ randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A) randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs) 2*_ : ℕ → ℕ 2* x = x + x 2^_ : ℕ → ℕ 2^ 0 = 1 2^ (suc n) = 2* (2^ n) costRndFun : ℕ → ℕ → ℕ costRndFun zero n = n costRndFun (suc m) n = 2* (costRndFun m n) lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n) randomFun′ {zero} = ⟪ const · random ⟫ randomFun′ {suc m} = randomFunExt (randomFun′ {m}) record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where infix 2 _≈_ _≋_ field _≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ refl : ∀ {n A} → Reflexive {A = M n A} _≈_ sym : ∀ {n A} → Symmetric {A = M n A} _≈_ -- not strictly transitive reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A} reflexive ≡.refl = refl _≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂) where m≤n⊔m : ∀ m n → m ≤ n ⊔ m m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n -- Another name for _≋_ _looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _looks_ = _≋_ module WithEquiv (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set SecPRG prg = this looks random where this = ⟪ prg · random ⟫ record PRG k n : Set where constructor _,_ field prg : Bits k → Bits n sec : SecPRG prg OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in this looks random record PRF k m n : Set where constructor _,_ field prf : Bits k → Bits m → Bits n sec : OneTimeSecPRF prf OTP : ∀ {n} → Bits n → Bits n → Bits n OTP key msg = key ⊕ msg init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A init f = ⟪ f · random ⟫ module Examples (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq open WithEquiv progEq left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g) assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g)) ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫ ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′ ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key) ex₅ = ∀ {k n} → PRG k n → PRF k n n
fix choose
flipbased: fix choose
Agda
bsd-3-clause
crypto-agda/crypto-agda
df41c005d15604256ca7d340975689955ae6729f
protocols.agda
protocols.agda
module protocols where import Control.Protocol import Control.Protocol.Additive import Control.Protocol.CLL import Control.Protocol.ClientServer import Control.Protocol.Examples import Control.Protocol.MultiParty import Control.Protocol.Multiplicative import Control.Protocol.Relation import Control.Protocol.Sequence
module protocols where import Control.Protocol import Control.Protocol.Additive import Control.Protocol.CLL import Control.Protocol.ClientServer import Control.Protocol.Examples import Control.Protocol.Extend import Control.Protocol.Lift import Control.Protocol.MultiParty import Control.Protocol.Multiplicative import Control.Protocol.Relation import Control.Protocol.Sequence
update protocols.agda
update protocols.agda
Agda
bsd-3-clause
crypto-agda/protocols
a3a6c0d7b42940b151354af420f8d4469955d5c8
Atlas/Change/Term.agda
Atlas/Change/Term.agda
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) Atlas-diff {Bool} = abs (abs (curriedConst xor (var (that this)) (var this))) Atlas-diff {Map κ ι} = abs (abs (curriedConst zip (abs Atlas-diff) (var (that this)) (var this))) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = abs (abs (curriedConst xor (var (that this)) (var this))) Atlas-apply {Map κ ι} = abs (abs (curriedConst zip (abs Atlas-apply) (var (that this)) (var this))) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff Atlas-diff Atlas-apply) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply Atlas-diff Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) Atlas-diff {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-diff {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-diff) m₁ m₂) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-apply {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-apply) m₁ m₂) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff Atlas-diff Atlas-apply) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply Atlas-diff Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
Simplify Atlas-diff and Atlas-apply.
Simplify Atlas-diff and Atlas-apply. Old-commit-hash: ada22ebb7416f8c4fb19882d4080166628b1b292
Agda
mit
inc-lc/ilc-agda
d41e35b9fb769cc937f3fa2787fe655ac719f13a
Syntax/Language/Atlas.agda
Syntax/Language/Atlas.agda
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- union s t should be: -- 1. equal to t if s is neutral -- 2. equal to s if t is neutral -- 3. equal to s if s == t -- 4. whatever it wants to be otherwise -- -- On Booleans, only conjunction can be union. -- -- TODO (later): support conjunction, probably by Boolean -- elimination form if-then-else postulate and! : ∀ {Γ} → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = and! s t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const lookup : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const fold : ∀ {κ a b : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) Atlas-lookup (lookup {κ} {ι}) = base κ ⇒ base (Map κ ι) ⇒ base ι -- Model of zip = Haskell Data.List.zipWith -- -- zipWith :: (a → b → c) → [a] → [b] → [c] -- -- Behavioral difference: all key-value pairs present -- in *either* (m₁ : Map κ a) *or* (m₂ : Map κ b) will -- be iterated over. Neutral element of type `a` or `b` -- will be supplied if the key is missing in the -- corresponding map. Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) -- Model of fold = Haskell Data.Map.foldWithKey -- -- foldWithKey :: (k → a → b → b) → b → Map k a → b -- Atlas-lookup (fold {κ} {a} {b}) = (base κ ⇒ base a ⇒ base b ⇒ base b) ⇒ base b ⇒ base (Map κ a) ⇒ base b Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! = app₃ (const update) lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = app₂ (const lookup) zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! = app₃ (const zip) fold! : ∀ {κ a b Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base b) → Atlas-term Γ (base b) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base b) fold! = app₃ (const fold) -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Nonfunctional products can be encoded. -- The incremental behavior of products thus encoded is weird: -- Δ(α × β) = α × Δβ Pair : Atlas-type → Atlas-type → Atlas-type Pair α β = Map α β pair : ∀ {α β Γ} → Atlas-term Γ (base α) → Atlas-term Γ (base β) → Atlas-term Γ (base (Pair α β)) pair s t = update! s t (const empty) pair-term : ∀ {α β Γ} → Atlas-term Γ (base α ⇒ base β ⇒ base (Pair α β)) pair-term = abs (abs (pair (var (that this)) (var this))) uncurry : ∀ {α β γ Γ} → Atlas-term Γ (base α ⇒ base β ⇒ base γ) → Atlas-term Γ (base (Pair α β)) → Atlas-term Γ (base γ) uncurry f p = let a = var (that (that this)) b = var (that this) g = abs (abs (abs (app₂ (weaken₃ f) a b))) in fold! g neutral-term p zip-pair : ∀ {κ a b Γ} → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ (Pair a b))) zip-pair = zip! (abs pair-term) -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff = app₂ (lift-diff Atlas-diff Atlas-apply) apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply = app₂ (lift-apply Atlas-diff Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e -- zip₄ f m₁ m₂ m₃ m₄ = -- zip (λ k p₁₂ p₃₄ → uncurry (λ v₁ v₂ → uncurry (λ v₃ v₄ → -- f k v₁ v₂ v₃ v₄) -- p₃₄) p₁₂) -- (zip-pair m₁ m₂) (zip-pair m₃ m₄) zip4! f m₁ m₂ m₃ m₄ = let f′ = weaken₃ (weaken₃ (weaken₁ f)) k = var (that (that (that (that (that (that this)))))) p₁₂ = var (that this) p₃₄ = var (that (that this)) v₁ = var (that (that (that this))) v₂ = var (that (that this)) v₃ = var (that this) v₄ = var this g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs (app₅ f′ k v₁ v₂ v₃ v₄))) p₃₄))) p₁₂))) in zip! g (zip-pair m₁ m₂) (zip-pair m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app₂ (const xor) Δx Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k) -- ... | true = lookup k Δm -- ... | false = -- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm) -- ⊝ lookup k m -- -- Only the false-branch is implemented. Atlas-Δconst lookup = let k = var (that (that (that this))) Δk = var (that (that this)) m = var (that this) Δm = var this k′ = apply Δk k in abs (abs (abs (abs (diff (apply (lookup! k′ Δm) (lookup! k′ m)) (lookup! k m))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app₂ (weaken₁ Δf) (var this) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) -- Δfold f Δf z Δz m Δm = proj₂ -- (fold (λ k [a,Δa] [b,Δb] → -- uncurry (λ a Δa → uncurry (λ b Δb → -- pair (f k a b) (Δf k nil a Δa b Δb)) -- [b,Δb]) [a,Δa]) -- (pair z Δz) -- (zip-pair m Δm)) -- -- Δfold is efficient only if evaluation is lazy and Δf is -- self-maintainable: it doesn't look at the argument -- (b = fold f k a b₀) at all. Atlas-Δconst (fold {κ} {α} {β}) = let -- TODO (tedius): write weaken₇ f = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that (that this)))))))) Δf = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that this))))))) z = var (that (that (that this))) Δz = var (that (that this)) m = var (that this) Δm = var this k = weaken₃ (weaken₁ (var (that (that this)))) [a,Δa] = var (that this) [b,Δb] = var this a = var (that (that (that this))) Δa = var (that (that this)) b = var (that this) Δb = var this g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs (pair (app₃ f k a b) (app₆ Δf k nil-term a Δa b Δb)))) (weaken₂ [b,Δb])))) [a,Δa]))) proj₂ = uncurry (abs (abs (var this))) in abs (abs (abs (abs (abs (abs (proj₂ (fold! g (pair z Δz) (zip-pair m Δm)))))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
add primitives `lookup`, `fold` and various improvements
Atlas: add primitives `lookup`, `fold` and various improvements Improvements: - speed up derivative of zip - less verbose term constructors for constants - remove need to support conjunction and union directly Future work: - elimination forms: if-then-else, if-nonempty Old-commit-hash: 9aafd0c2835ff027b57e44ed2930f4f57147e0de
Agda
mit
inc-lc/ilc-agda
233ce4867a6fc1f8c29c642b2516cc11c7edd483
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply {base ι} = diff-base , apply-base lift-diff-apply {σ ⇒ τ} = (let diffτ = λ {Γ} → proj₁ (lift-diff-apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply {σ} {Γ}) _⊝τ_ = λ {Γ} s t → app₂ (diffτ {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (applyσ {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)) , (let diffσ = λ {Γ} → proj₁ (lift-diff-apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply {τ} {Γ}) _⊝σ_ = λ {Γ} s t → app₂ (diffσ {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (applyτ {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) diff-term = λ {τ Γ} → proj₁ (lift-diff-apply {τ} {Γ}) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) apply-term = λ {τ Γ} → proj₂ (lift-diff-apply {τ} {Γ}) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ diff-term apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ apply-term
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product DiffStructure : Set DiffStructure = ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ base (ΔBase ι)) ApplyStructure : Set ApplyStructure = ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) module Structure (diff-base : DiffStructure) (apply-base : ApplyStructure) where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) diff-term : ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) apply-term : ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) diff-term {base ι} = diff-base diff-term {σ ⇒ τ} = (let _⊝τ_ = λ {Γ} s t → app₂ (diff-term {τ} {Γ}) s t _⊕σ_ = λ {Γ} t Δt → app₂ (apply-term {σ} {Γ}) Δt t in abs₄ (λ g f x Δx → app f (x ⊕σ Δx) ⊝τ app g x)) apply-term {base ι} = apply-base apply-term {σ ⇒ τ} = (let _⊝σ_ = λ {Γ} s t → app₂ (diff-term {σ} {Γ}) s t _⊕τ_ = λ {Γ} t Δt → app₂ (apply-term {τ} {Γ}) Δt t in abs₃ (λ Δh h y → app h y ⊕τ app (app Δh y) (y ⊝σ y))) diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ diff-term apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ apply-term
Implement apply-term and diff-term directly.
Implement apply-term and diff-term directly. Before this commit: Mutual recursion of apply-term and diff-term encoded explicitly via a product type. After this commit: Mutual recursion expressed with Agda mutual recursion. Old-commit-hash: 9a7571f8ef5cf6765629a001c46870e002f54d7e
Agda
mit
inc-lc/ilc-agda
b51a3256a3c1252ef33def3ad7127f444c50c44e
incremental.agda
incremental.agda
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Γ -- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = {!!}
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = {!!}
Fix Δ-Context.
Fix Δ-Context. Old-commit-hash: ce2c7324266f9f7511dd78f63accb2c3ae8c54fb
Agda
mit
inc-lc/ilc-agda
c1ff9f6bce16be7d52bc424c1c012656dec37587
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : (ι : Base) → ⟦ ι ⟧Base → Set apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : (τ : Type) → ⟦ τ ⟧ → Set nil-change : ∀ τ v → Change τ v apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧ diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set Change (base ι) v = Change-base ι v Change (σ ⇒ τ) f = Pair (∀ v → Change σ v → Change τ (f v)) (λ Δf → ∀ v dv → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv) open Pair public using () renaming ( cdr to is-valid ; car to call-change ) nil-change τ v = diff-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ apply-change (base ι) n Δn = apply-change-base ι n Δn apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ diff-change (base ι) m n = diff-change-base ι m n diff-change (σ ⇒ τ) g f = cons (λ v dv → g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) (λ v dv → begin f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv)))) (v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩ f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩ f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) ∎) where open ≡-Reasoning -- call this lemma "replace"? -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v _⊟_ {τ} u v = u ⊟₍ τ ₎ v -- abbrevitations before : ∀ {τ v} → Change τ v → ⟦ τ ⟧ before {τ} {v} _ = v after : ∀ {τ v} → Change τ v → ⟦ τ ⟧ after {τ} {v} dv = v ⊞₍ τ ₎ dv ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where ∅ : ΔEnv ∅ ∅ _•_ : ∀ {τ Γ v ρ} → (dv : Change τ v) → (dρ : ΔEnv Γ ρ) → ΔEnv (τ • Γ) (v • ρ) ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ ignore {Γ} {ρ} _ = ρ update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ update ∅ = ∅ update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : (ι : Base) → ⟦ ι ⟧Base → Set apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : (τ : Type) → ⟦ τ ⟧ → Set nil-change : ∀ τ v → Change τ v apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧ diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set Change (base ι) v = Change-base ι v Change (σ ⇒ τ) f = Pair (∀ v → Change σ v → Change τ (f v)) (λ Δf → ∀ v dv → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv) open Pair public using () renaming ( cdr to is-valid ; car to call-change ) nil-change τ v = diff-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ apply-change (base ι) n Δn = apply-change-base ι n Δn apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ diff-change (base ι) m n = diff-change-base ι m n diff-change (σ ⇒ τ) g f = cons (λ v dv → g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) (λ v dv → begin f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv)))) (v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩ f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩ f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) ∎) where open ≡-Reasoning -- call this lemma "replace"? -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v _⊟_ {τ} u v = u ⊟₍ τ ₎ v -- abbrevitations before : ∀ {τ v} → Change τ v → ⟦ τ ⟧ before {τ} {v} _ = v after : ∀ {τ v} → Change τ v → ⟦ τ ⟧ after {τ} {v} dv = v ⊞₍ τ ₎ dv ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where ∅ : ΔEnv ∅ ∅ _•_ : ∀ {τ Γ v ρ} → (dv : Change τ v) → (dρ : ΔEnv Γ ρ) → ΔEnv (τ • Γ) (v • ρ) ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ ignore {Γ} {ρ} _ = ρ update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ update ∅ = ∅ update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ apply-env : ∀ Γ → (ρ : ⟦ Γ ⟧) → (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ apply-env Γ ρ dρ = update {Γ} dρ diff-env : ∀ Γ → (π ρ : ⟦ Γ ⟧) → ΔEnv Γ ρ diff-env ∅ ∅ ∅ = ∅ diff-env (τ • Γ) (u • ρ) (v • π) = diff-change τ u v • diff-env Γ ρ π
Implement apply-env and diff-env.
Implement apply-env and diff-env. Old-commit-hash: 0a4d0485631257cbfb9ee522e8ac6facb88f0721
Agda
mit
inc-lc/ilc-agda
79eb1bff6fe6f19057332ff8737b10e85457ff5f
Parametric/Denotation/CachingEvaluation.agda
Parametric/Denotation/CachingEvaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- Here, in an actual implementation, we would return the actual cache with -- all variables. -- -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType import Parametric.Syntax.MTerm as MTerm import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Denotation.MValue as MValue import Parametric.Denotation.CachingMValue as CachingMValue import Parametric.Denotation.MEvaluation as MEvaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ValConst : MTerm.ValConstStructure Const) (CompConst : MTerm.CompConstStructure Const) -- I should really switch to records - can it get sillier than this? (⟦_⟧ValBase : MEvaluation.ValStructure Const ⟦_⟧Base ValConst CompConst) (⟦_⟧CompBase : MEvaluation.CompStructure Const ⟦_⟧Base ValConst CompConst) where open Type.Structure Base open Term.Structure Base Const open MType.Structure Base open MTerm.Structure Const ValConst CompConst open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open MValue.Structure Base ⟦_⟧Base open CachingMValue.Structure Base ⟦_⟧Base open MEvaluation.Structure Const ⟦_⟧Base ValConst CompConst ⟦_⟧ValBase ⟦_⟧CompBase open import Base.Denotation.Notation -- Extension Point: Evaluation of fully applied constants. ValStructure : Set ValStructure = ∀ {Σ τ} → ValConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache CompStructure : Set CompStructure = ∀ {Σ τ} → CompConst Σ τ → ⟦ Σ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache module Structure (⟦_⟧ValBaseTermCache : ValStructure) (⟦_⟧CompBaseTermCache : CompStructure) where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Unit -- Defining a caching semantics for Term proves to be hard, requiring to -- insert and remove caches where we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache ⟦_⟧ValsTermCache : ∀ {Γ Σ} → Vals Γ Σ → ⟦ Γ ⟧ValCtxHidCache → ⟦ Σ ⟧ValCtxHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVarHidCache) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- Copy of ⟦_⟧Vals ⟦ ∅ ⟧ValsTermCache ρ = ∅ ⟦ vt • valtms ⟧ValsTermCache ρ = ⟦ vt ⟧ValTermCache ρ • ⟦ valtms ⟧ValsTermCache ρ -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVarHidCache ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- No caching, because the arguments are values, so evaluating them does not -- produce intermediate results. ⟦ vConst c args ⟧ValTermCache ρ = ⟦ c ⟧ValBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- The only caching is done by the interpretation of the constant (because the -- arguments are values so need no caching). ⟦_⟧CompTermCache (cConst c args) ρ = ⟦ c ⟧CompBaseTermCache (⟦ args ⟧ValsTermCache ρ) -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ = λ x → ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ) ⟦_⟧TermCacheCBV : ∀ {τ Γ} → Term Γ τ → ⟦ fromCBVCtx Γ ⟧ValCtxHidCache → ⟦ cbvToCompType τ ⟧CompTypeHidCache ⟦ t ⟧TermCacheCBV = ⟦ fromCBV t ⟧CompTermCache
Drop dead comment
Drop dead comment
Agda
mit
inc-lc/ilc-agda
1dd4f0f861df9af4f01a33af2bb834b72be708cc
Base/Data/DependentList.agda
Base/Data/DependentList.agda
module Base.Data.DependentList where open import Level open import Data.Unit open import Data.Product using (Σ ; _×_ ; _,_) import Data.List as List open List using (List ; [] ; _∷_) data DependentList {a b} {A : Set a} (F : A → Set b) : (type-args : List A) → Set (a ⊔ b) where ∅ : DependentList F [] _•_ : ∀ {type-arg} {other-type-args} (head : F type-arg) (tail : DependentList F other-type-args) → DependentList F (type-arg ∷ other-type-args) infixr 5 _•_
module Base.Data.DependentList where open import Data.List.All public renaming ( All to DependentList ; _∷_ to _•_ ; [] to ∅ )
Implement DependentList on top of Data.List.All.
Implement DependentList on top of Data.List.All. Old-commit-hash: 32c7c7edadf9940f3c013ca3d4ebfdc8b3cbc4f4
Agda
mit
inc-lc/ilc-agda
816cffb53d3bae1af15f0f477ac1a68ccfa88b05
Control/Protocol/Sequence.agda
Control/Protocol/Sequence.agda
{-# OPTIONS --without-K #-} open import Function.NP open import Type open import Data.Product.NP using (Σ; _×_; _,_; first) renaming (proj₁ to fst; proj₂ to snd) open import Data.Two hiding (_≟_) open import Data.Nat hiding (_⊔_) open import Relation.Binary.PropositionalEquality.NP using (_≡_; _∙_; refl; ap; coe; coe!; !_ ; tr)-- renaming (subst to tr) open import Function.Extensionality open import HoTT open Equivalences open import Type.Identities open import Control.Protocol.Core module Control.Protocol.Sequence where infixl 1 _>>=_ _>>_ _>>=_ : (P : Proto) → (Log P → Proto) → Proto end >>= Q = Q _ com q P >>= Q = com q λ m → P m >>= λ ms → Q (m , ms) _>>_ : Proto → Proto → Proto P >> Q = P >>= λ _ → Q >>=-fst : ∀ P {Q} → ⟦ P >>= Q ⟧ → ⟦ P ⟧ >>=-fst end q = end >>=-fst (recv P) pq = λ m → >>=-fst (P m) (pq m) >>=-fst (send P) (m , pq) = m , >>=-fst (P m) pq >>=-snd : ∀ P {Q}(pq : ⟦ P >>= Q ⟧)(p : ⟦ P ⊥⟧) → ⟦ Q (telecom P (>>=-fst P pq) p) ⟧ >>=-snd end q end = q >>=-snd (recv P) pq (m , p) = >>=-snd (P m) (pq m) p >>=-snd (send P) (m , pq) p = >>=-snd (P m) pq (p m) [_]_>>>=_ : ∀ P {Q} → ⟦ P ⟧ → ((log : Log P) → ⟦ Q log ⟧) → ⟦ P >>= Q ⟧ [ end ] p >>>= q = q _ [ recv P ] p >>>= q = λ m → [ P m ] p m >>>= λ log → q (m , log) [ send P ] (m , p) >>>= q = m , [ P m ] p >>>= λ log → q (m , log) [_]_>>>_ : ∀ P {Q} → ⟦ P ⟧ → ⟦ Q ⟧ → ⟦ P >> Q ⟧ [ P ] p >>> q = [ P ] p >>>= λ _ → q module _ {{_ : FunExt}} where >>=-fst-inv : ∀ P {Q}(p : ⟦ P ⟧)(q : ((log : Log P) → ⟦ Q log ⟧)) → >>=-fst P {Q} ([ P ] p >>>= q) ≡ p >>=-fst-inv end end q = refl >>=-fst-inv (recv P) p q = λ= λ m → >>=-fst-inv (P m) (p m) λ log → q (m , log) >>=-fst-inv (send P) (m , p) q = snd= (>>=-fst-inv (P m) p λ log → q (m , log)) >>=-snd-inv : ∀ P {Q}(p : ⟦ P ⟧)(q : ((log : Log P) → ⟦ Q log ⟧))(p' : ⟦ P ⊥⟧) → tr (λ x → ⟦ Q (telecom P x p') ⟧) (>>=-fst-inv P p q) (>>=-snd P {Q} ([ P ] p >>>= q) p') ≡ q (telecom P p p') >>=-snd-inv end end q p' = refl >>=-snd-inv (recv P) {Q} p q (m , p') = ap (flip _$_ (>>=-snd (P m) ([ P m ] p m >>>= (λ log → q (m , log))) p')) (tr-λ= (λ z → ⟦ Q (m , telecom (P m) z p') ⟧) (λ m → >>=-fst-inv (P m) {Q ∘ _,_ m} (p m) (q ∘ _,_ m))) ∙ >>=-snd-inv (P m) {Q ∘ _,_ m} (p m) (q ∘ _,_ m) p' >>=-snd-inv (send P) {Q} (m , p) q p' = tr-snd= (λ { (m , p) → ⟦ Q (m , telecom (P m) p (p' m)) ⟧ }) (>>=-fst-inv (P m) p (q ∘ _,_ m)) (>>=-snd (P m) {Q ∘ _,_ m} ([ P m ] p >>>= (q ∘ _,_ m)) (p' m)) ∙ >>=-snd-inv (P m) {Q ∘ _,_ m} p (λ log → q (m , log)) (p' m) {- hmmm... >>=-uniq : ∀ P {Q} (pq : ⟦ P >>= Q ⟧)(p' : ⟦ P ⊥⟧) → pq ≡ [ P ] (>>=-fst P {Q} pq) >>>= (λ log → {!>>=-snd P {Q} pq p'!}) >>=-uniq = {!!} -} replicateᴾ : ℕ → Proto → Proto replicateᴾ 0 P = end replicateᴾ (suc n) P = P >> replicateᴾ n P replicate-proc : ∀ n P → ⟦ P ⟧ → ⟦ replicateᴾ n P ⟧ replicate-proc zero P p = end replicate-proc (suc n) P p = [ P ] p >>> replicate-proc n P p module _ {{_ : FunExt}}{{_ : UA}} where Log->>=-Σ : ∀ (P : Proto){Q} → Log (P >>= Q) ≡ Σ (Log P) (Log ∘ Q) Log->>=-Σ end = ! (×= End-uniq refl ∙ 𝟙×-snd) Log->>=-Σ (com _ P) = Σ=′ _ (λ m → Log->>=-Σ (P m)) ∙ Σ-assoc Log->>-× : ∀ (P : Proto){Q} → Log (P >> Q) ≡ (Log P × Log Q) Log->>-× P = Log->>=-Σ P ++Log' : ∀ (P : Proto){Q : Log P → Proto} (xs : Log P) → Log (Q xs) → Log (P >>= Q) ++Log' P p q = coe! (Log->>=-Σ P) (p , q) -- Same as ++Log' but computes better ++Log : ∀ (P : Proto){Q : Log P → Proto} (xs : Log P) → Log (Q xs) → Log (P >>= Q) ++Log end _ ys = ys ++Log (com q P) (x , xs) ys = x , ++Log (P x) xs ys module _ {{_ : FunExt}}{{_ : UA}} where module _ {{_ : FunExt}} where >>-right-unit : ∀ P → (P >> end) ≡ P >>-right-unit end = refl >>-right-unit (com q P) = com= refl refl λ m → >>-right-unit (P m) >>=-assoc : ∀ (P : Proto)(Q : Log P → Proto)(R : Log (P >>= Q) → Proto) → (P >>= (λ x → Q x >>= (λ y → R (++Log P x y)))) ≡ ((P >>= Q) >>= R) >>=-assoc end Q R = refl >>=-assoc (com q P) Q R = com= refl refl λ m → >>=-assoc (P m) (λ ms → Q (m , ms)) (λ ms → R (m , ms)) ap->>= : ∀ P {Q₀ Q₁} → (∀ {log} → ⟦ Q₀ log ⟧ ≡ ⟦ Q₁ log ⟧) → ⟦ P >>= Q₀ ⟧ ≡ ⟦ P >>= Q₁ ⟧ ap->>= end Q= = Q= ap->>= (send P) Q= = Σ=′ _ λ m → ap->>= (P m) Q= ap->>= (recv P) Q= = Π=′ _ λ m → ap->>= (P m) Q= dual->> : ∀ P Q → dual (P >> Q) ≡ (dual P >> dual Q) dual->> end Q = refl dual->> (com io P) Q = com= refl refl λ m → dual->> (P m) Q {- My coe-ap-fu is lacking... dual->>= : ∀ P (Q : Log P → Proto) → dual (P >>= Q) ≡ dual P >>= (dual ∘ Q ∘ coe (dual-Log P)) dual->>= end Q = refl dual->>= (com io P) Q = com= refl refl λ m → dual->>= (P m) (Q ∘ _,_ m) ∙ ap (_>>=_ (dual (P m))) (λ= λ ms → ap (λ x → dual (Q x)) (pair= {!!} {!!})) -} dual-replicateᴾ : ∀ n P → dual (replicateᴾ n P) ≡ replicateᴾ n (dual P) dual-replicateᴾ zero P = refl dual-replicateᴾ (suc n) P = dual->> P (replicateᴾ n P) ∙ ap (_>>_ (dual P)) (dual-replicateᴾ n P) {- An incremental telecom function which makes processes communicate during a matching initial protocol. -} >>=-telecom : (P : Proto){Q : Log P → Proto}{R : Log P → Proto} → ⟦ P >>= Q ⟧ → ⟦ P >>= R ⊥⟧ → Σ (Log P) (λ t → ⟦ Q t ⟧ × ⟦ R t ⊥⟧) >>=-telecom end p0 p1 = _ , p0 , p1 >>=-telecom (send P) (m , p0) p1 = first (_,_ m) (>>=-telecom (P m) p0 (p1 m)) >>=-telecom (recv P) p0 (m , p1) = first (_,_ m) (>>=-telecom (P m) (p0 m) p1) >>-telecom : (P : Proto){Q R : Proto} → ⟦ P >> Q ⟧ → ⟦ P >> R ⊥⟧ → Log P × ⟦ Q ⟧ × ⟦ R ⊥⟧ >>-telecom P p q = >>=-telecom P p q
{-# OPTIONS --without-K #-} open import Function.NP open import Type open import Data.Product.NP using (Σ; _×_; _,_; first) renaming (proj₁ to fst; proj₂ to snd) open import Data.Two hiding (_≟_) open import Data.Nat hiding (_⊔_) open import Relation.Binary.PropositionalEquality.NP using (_≡_; _∙_; refl; ap; coe; coe!; !_ ; tr)-- renaming (subst to tr) open import Function.Extensionality open import HoTT open Equivalences open import Type.Identities open import Control.Protocol.Core module Control.Protocol.Sequence where infixl 1 _>>=_ _>>_ _>>=_ : (P : Proto) → (Log P → Proto) → Proto end >>= Q = Q _ com q P >>= Q = com q λ m → P m >>= λ ms → Q (m , ms) _>>_ : Proto → Proto → Proto P >> Q = P >>= λ _ → Q >>=-fst : ∀ P {Q} → ⟦ P >>= Q ⟧ → ⟦ P ⟧ >>=-fst end q = end >>=-fst (recv P) pq = λ m → >>=-fst (P m) (pq m) >>=-fst (send P) (m , pq) = m , >>=-fst (P m) pq >>=-snd : ∀ P {Q}(pq : ⟦ P >>= Q ⟧)(p : ⟦ P ⊥⟧) → ⟦ Q (telecom P (>>=-fst P pq) p) ⟧ >>=-snd end q end = q >>=-snd (recv P) pq (m , p) = >>=-snd (P m) (pq m) p >>=-snd (send P) (m , pq) p = >>=-snd (P m) pq (p m) >>-snd : ∀ P {Q} (pq : ⟦ P >> Q ⟧)(p : ⟦ P ⊥⟧) → ⟦ Q ⟧ >>-snd P = >>=-snd P [_]_>>>=_ : ∀ P {Q} → ⟦ P ⟧ → ((log : Log P) → ⟦ Q log ⟧) → ⟦ P >>= Q ⟧ [ end ] p >>>= q = q _ [ recv P ] p >>>= q = λ m → [ P m ] p m >>>= λ log → q (m , log) [ send P ] (m , p) >>>= q = m , [ P m ] p >>>= λ log → q (m , log) [_]_>>>ᴸ_ : ∀ P {Q} → ⟦ P ⟧ → (Log P → ⟦ Q ⟧) → ⟦ P >> Q ⟧ [ P ] p >>>ᴸ q = [ P ] p >>>= q [_]_>>>_ : ∀ P {Q} → ⟦ P ⟧ → ⟦ Q ⟧ → ⟦ P >> Q ⟧ [ P ] p >>> q = [ P ] p >>>ᴸ (const q) module _ {{_ : FunExt}} where >>=-fst-inv : ∀ P {Q}(p : ⟦ P ⟧)(q : ((log : Log P) → ⟦ Q log ⟧)) → >>=-fst P {Q} ([ P ] p >>>= q) ≡ p >>=-fst-inv end end q = refl >>=-fst-inv (recv P) p q = λ= λ m → >>=-fst-inv (P m) (p m) λ log → q (m , log) >>=-fst-inv (send P) (m , p) q = snd= (>>=-fst-inv (P m) p λ log → q (m , log)) >>=-snd-inv : ∀ P {Q}(p : ⟦ P ⟧)(q : ((log : Log P) → ⟦ Q log ⟧))(p' : ⟦ P ⊥⟧) → tr (λ x → ⟦ Q (telecom P x p') ⟧) (>>=-fst-inv P p q) (>>=-snd P {Q} ([ P ] p >>>= q) p') ≡ q (telecom P p p') >>=-snd-inv end end q p' = refl >>=-snd-inv (recv P) {Q} p q (m , p') = ap (flip _$_ (>>=-snd (P m) ([ P m ] p m >>>= (λ log → q (m , log))) p')) (tr-λ= (λ z → ⟦ Q (m , telecom (P m) z p') ⟧) (λ m → >>=-fst-inv (P m) {Q ∘ _,_ m} (p m) (q ∘ _,_ m))) ∙ >>=-snd-inv (P m) {Q ∘ _,_ m} (p m) (q ∘ _,_ m) p' >>=-snd-inv (send P) {Q} (m , p) q p' = tr-snd= (λ { (m , p) → ⟦ Q (m , telecom (P m) p (p' m)) ⟧ }) (>>=-fst-inv (P m) p (q ∘ _,_ m)) (>>=-snd (P m) {Q ∘ _,_ m} ([ P m ] p >>>= (q ∘ _,_ m)) (p' m)) ∙ >>=-snd-inv (P m) {Q ∘ _,_ m} p (λ log → q (m , log)) (p' m) {- hmmm... >>=-uniq : ∀ P {Q} (pq : ⟦ P >>= Q ⟧)(p' : ⟦ P ⊥⟧) → pq ≡ [ P ] (>>=-fst P {Q} pq) >>>= (λ log → {!>>=-snd P {Q} pq p'!}) >>=-uniq = {!!} -} replicateᴾ : ℕ → Proto → Proto replicateᴾ 0 P = end replicateᴾ (suc n) P = P >> replicateᴾ n P replicate-proc : ∀ n P → ⟦ P ⟧ → ⟦ replicateᴾ n P ⟧ replicate-proc zero P p = end replicate-proc (suc n) P p = [ P ] p >>> replicate-proc n P p module _ {{_ : FunExt}}{{_ : UA}} where Log->>=-Σ : ∀ (P : Proto){Q} → Log (P >>= Q) ≡ Σ (Log P) (Log ∘ Q) Log->>=-Σ end = ! (×= End-uniq refl ∙ 𝟙×-snd) Log->>=-Σ (com _ P) = Σ=′ _ (λ m → Log->>=-Σ (P m)) ∙ Σ-assoc Log->>-× : ∀ (P : Proto){Q} → Log (P >> Q) ≡ (Log P × Log Q) Log->>-× P = Log->>=-Σ P ++Log' : ∀ (P : Proto){Q : Log P → Proto} (xs : Log P) → Log (Q xs) → Log (P >>= Q) ++Log' P p q = coe! (Log->>=-Σ P) (p , q) -- Same as ++Log' but computes better ++Log : ∀ (P : Proto){Q : Log P → Proto} (xs : Log P) → Log (Q xs) → Log (P >>= Q) ++Log end _ ys = ys ++Log (com q P) (x , xs) ys = x , ++Log (P x) xs ys module _ {{_ : FunExt}}{{_ : UA}} where ++Log≡++Log' : ∀ P {Q} xs ys → ++Log P {Q} xs ys ≡ ++Log' P xs ys ++Log≡++Log' end xs ys = ! coe-β _ _ ∙ ap (coe 𝟙×-snd) (! coe×= End-uniq refl) ∙ coe∘coe 𝟙×-snd (×= End-uniq refl) (xs , ys) ∙ coe-same (! (!-inv (×= End-uniq refl ∙ 𝟙×-snd))) (xs , ys) ++Log≡++Log' (com io P) (m , xs) ys = ap (_,_ m) (++Log≡++Log' (P m) xs ys) ∙ ! coe!Σ=′ _ (λ m → Log->>=-Σ (P m)) ∙ ap (coe (! Σ=′ _ (λ m₁ → Log->>=-Σ (P m₁)))) (! coe!-β _ _) ∙ coe∘coe (! Σ=′ _ (λ m → Log->>=-Σ (P m))) (! Σ-assoc) ((m , xs) , ys) ∙ coe-same (! (hom-!-∙ (Σ=′ _ (λ m → Log->>=-Σ (P m))) Σ-assoc)) ((m , xs) , ys) module _ {{_ : FunExt}} where >>-right-unit : ∀ P → (P >> end) ≡ P >>-right-unit end = refl >>-right-unit (com q P) = com= refl refl λ m → >>-right-unit (P m) >>=-assoc : ∀ (P : Proto)(Q : Log P → Proto)(R : Log (P >>= Q) → Proto) → (P >>= (λ x → Q x >>= (λ y → R (++Log P x y)))) ≡ ((P >>= Q) >>= R) >>=-assoc end Q R = refl >>=-assoc (com q P) Q R = com= refl refl λ m → >>=-assoc (P m) (λ ms → Q (m , ms)) (λ ms → R (m , ms)) ap->>= : ∀ P {Q₀ Q₁} → (∀ {log} → ⟦ Q₀ log ⟧ ≡ ⟦ Q₁ log ⟧) → ⟦ P >>= Q₀ ⟧ ≡ ⟦ P >>= Q₁ ⟧ ap->>= end Q= = Q= ap->>= (send P) Q= = Σ=′ _ λ m → ap->>= (P m) Q= ap->>= (recv P) Q= = Π=′ _ λ m → ap->>= (P m) Q= dual->> : ∀ P Q → dual (P >> Q) ≡ (dual P >> dual Q) dual->> end Q = refl dual->> (com io P) Q = com= refl refl λ m → dual->> (P m) Q {- My coe-ap-fu is lacking... dual->>= : ∀ P (Q : Log P → Proto) → dual (P >>= Q) ≡ dual P >>= (dual ∘ Q ∘ coe (dual-Log P)) dual->>= end Q = refl dual->>= (com io P) Q = com= refl refl λ m → dual->>= (P m) (Q ∘ _,_ m) ∙ ap (_>>=_ (dual (P m))) (λ= λ ms → ap (λ x → dual (Q x)) (pair= {!!} {!!})) -} dual-replicateᴾ : ∀ n P → dual (replicateᴾ n P) ≡ replicateᴾ n (dual P) dual-replicateᴾ zero P = refl dual-replicateᴾ (suc n) P = dual->> P (replicateᴾ n P) ∙ ap (_>>_ (dual P)) (dual-replicateᴾ n P) {- An incremental telecom function which makes processes communicate during a matching initial protocol. -} >>=-telecom : (P : Proto){Q : Log P → Proto}{R : Log P → Proto} → ⟦ P >>= Q ⟧ → ⟦ P >>= R ⊥⟧ → Σ (Log P) (λ t → ⟦ Q t ⟧ × ⟦ R t ⊥⟧) >>=-telecom end p0 p1 = _ , p0 , p1 >>=-telecom (send P) (m , p0) p1 = first (_,_ m) (>>=-telecom (P m) p0 (p1 m)) >>=-telecom (recv P) p0 (m , p1) = first (_,_ m) (>>=-telecom (P m) (p0 m) p1) >>-telecom : (P : Proto){Q R : Proto} → ⟦ P >> Q ⟧ → ⟦ P >> R ⊥⟧ → Log P × ⟦ Q ⟧ × ⟦ R ⊥⟧ >>-telecom P p q = >>=-telecom P p q >>-compose : (P Q : Proto){R : Proto} → ⟦ P >> Q ⟧ → ⟦ dual Q >> R ⟧ → ⟦ P >> R ⟧ >>-compose end end p>>q q>>r = q>>r >>-compose end (send P) (m , p>>q) q>>r = >>-compose end (P m) p>>q (q>>r m) >>-compose end (recv P) p>>q (m , q>>r) = >>-compose end (P m) (p>>q m) q>>r >>-compose (send P) Q (m , p>>q) q>>r = m , >>-compose (P m) Q p>>q q>>r >>-compose (recv P) Q p>>q q>>r m = >>-compose (P m) Q (p>>q m) q>>r
add more composision with >>
add more composision with >>
Agda
bsd-3-clause
crypto-agda/protocols
11dd97138b62b839e6eff70a2897426660d4fd10
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) Change (base ι) = Change-base ι Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ ignore-valid-change : ValidChange ⊆ ⟦_⟧ ignore-valid-change (cons v _ _) = v update-valid-change : ValidChange ⊆ ⟦_⟧ update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-valid-change {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-valid-change {τ})
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) Change (base ι) = Change-base ι Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ before : ValidChange ⊆ ⟦_⟧ before (cons v _ _) = v after : ValidChange ⊆ ⟦_⟧ after {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → before {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → after {τ})
Rename (ignore|update)-valid-change to (before|after).
Rename (ignore|update)-valid-change to (before|after). Old-commit-hash: 16288a40704567fce8f03420af8050326b9b9b34
Agda
mit
inc-lc/ilc-agda
75429bb69a022fe800c050d4e53fdc2a9ccc9261
PLDI14-List-of-Theorems.agda
PLDI14-List-of-Theorems.agda
module PLDI14-List-of-Theorems where open import Function -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important names. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.5 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.6 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.7 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.7 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Lemma 2.8 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.9 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- For each plugin requirement, we include its definition and -- a concrete instantiation called "Nehemiah" with integers and -- bags of integers as base types. -- Plugin Requirement 3.1 (Domains of base types) open import Parametric.Denotation.Value using (Structure) open import Nehemiah.Denotation.Value using (⟦_⟧Base) -- Definition 3.2 (Domains) open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Plugin Requirement 3.3 (Evaluation of constants) open import Parametric.Denotation.Evaluation using (Structure) open import Nehemiah.Denotation.Evaluation using (⟦_⟧Const) -- Definition 3.4 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.5 (Evaluation) open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Plugin Requirement 3.6 (Changes on base types) open import Parametric.Change.Validity using (Structure) open import Nehemiah.Change.Validity using (change-algebra-base-family) -- Definition 3.7 (Changes) open Parametric.Change.Validity.Structure using (change-algebra) -- Definition 3.8 (Change environments) open Parametric.Change.Validity.Structure using (environment-changes) -- Plugin Requirement 3.9 (Change semantics for constants) open import Parametric.Change.Specification using (Structure) open import Nehemiah.Change.Specification using (specification-structure) -- Definition 3.10 (Change semantics) open Parametric.Change.Specification.Structure using (⟦_⟧Δ) -- Lemma 3.11 (Change semantics is the derivative of semantics) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.12 (Erasure) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open import Nehemiah.Change.Implementation using (implements-base) -- Lemma 3.13 (The erased version of a change is almost the same) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t)) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) -- Theorem 3.15 (Correctness of differentiation) open Parametric.Change.Correctness.Structure using (main-theorem)
module PLDI14-List-of-Theorems where -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important names. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.5 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.6 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.7 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.7 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Lemma 2.8 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.9 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- Definition 3.1 (Domains) import Parametric.Denotation.Value open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Definition 3.2 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.3 (Evaluation) import Parametric.Denotation.Evaluation open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Definition 3.4 (Changes) -- Definition 3.5 (Change environments) import Parametric.Change.Validity open Parametric.Change.Validity.Structure using (change-algebra) open Parametric.Change.Validity.Structure using (environment-changes) -- Definition 3.6 (Change semantics) -- Lemma 3.7 (Change semantics is the derivative of semantics) import Parametric.Change.Specification open Parametric.Change.Specification.Structure using (⟦_⟧Δ) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.8 (Erasure) -- Lemma 3.9 (The erased version of a change is almost the same) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.10 (⟦ t ⟧Δ erases to Derive(t)) -- Theorem 3.11 (Correctness of differentiation) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) open Parametric.Change.Correctness.Structure using (main-theorem)
Update PLDI14-List-of-Theorems.agda (for #275).
Update PLDI14-List-of-Theorems.agda (for #275). The list included plugin requirements, but we left them out of the paper, so the theorem numbers were off. Old-commit-hash: d4ea643c7474f10c798fcb0d494db9f941e3deb5
Agda
mit
inc-lc/ilc-agda
ef3f46045d85fef7b038b4703fc7d2fee8d29a8a
Denotational/Equivalence.agda
Denotational/Equivalence.agda
module Denotational.Equivalence where -- TERM EQUIVALENCE -- -- This module defines term equivalence as the relation that -- identifies terms with the same meaning. open import Relation.Nullary using (¬_) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Changes open import ChangeContexts -- TERMS -- Term Equivalence module _ {Γ} {τ} where data _≈_ (t₁ t₂ : Term Γ τ) : Set where ext-t : (∀ ρ → ⟦ t₁ ⟧ ρ ≡ ⟦ t₂ ⟧ ρ) → t₁ ≈ t₂ ≈-refl : Reflexive _≈_ ≈-refl = ext-t (λ ρ → ≡-refl) ≈-sym : Symmetric _≈_ ≈-sym (ext-t ≈) = ext-t (λ ρ → ≡-sym (≈ ρ)) ≈-trans : Transitive _≈_ ≈-trans (ext-t ≈₁) (ext-t ≈₂) = ext-t (λ ρ → ≡-trans (≈₁ ρ) (≈₂ ρ)) ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Context → Type → Setoid _ _ ≈-setoid Γ τ = record { Carrier = Term Γ τ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } ≈-app : ∀ {Γ τ₁ τ₂} {t₁ t₂ : Term Γ (τ₁ ⇒ τ₂)} {t₃ t₄ : Term Γ τ₁} → t₁ ≈ t₂ → t₃ ≈ t₄ → app t₁ t₃ ≈ app t₂ t₄ ≈-app (ext-t ≈₁) (ext-t ≈₂) = ext-t (λ ρ → ≡-cong₂ (λ x y → x y) (≈₁ ρ) (≈₂ ρ)) ≈-abs : ∀ {Γ τ₁ τ₂} {t₁ t₂ : Term (τ₁ • Γ) τ₂} → t₁ ≈ t₂ → abs t₁ ≈ abs t₂ ≈-abs (ext-t ≈) = ext-t (λ ρ → ext (λ v → ≈ (v • ρ))) ≈-Δ : ∀ {τ Γ} {t₁ t₂ : Term Γ τ} → t₁ ≈ t₂ → Δ t₁ ≈ Δ t₂ ≈-Δ (ext-t ≈) = ext-t (λ ρ → ≡-diff (≈ (update ρ)) (≈ (ignore ρ))) module ≈-Reasoning where module _ {Γ : Context} {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid Γ τ) public hiding (_≡⟨_⟩_) ≈-consistent : ¬ (∀ {Γ τ} (t₁ t₂ : Term Γ τ) → t₁ ≈ t₂) ≈-consistent H with H {∅} true false ... | ext-t x with x ∅ ... | ()
module Denotational.Equivalence where -- TERM EQUIVALENCE -- -- This module defines term equivalence as the relation that -- identifies terms with the same meaning. open import Relation.Nullary using (¬_) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality open import Denotational.Notation -- TERMS -- Term Equivalence -- -- This module is parametric in the syntax and semantics of types -- and terms to make it work for different calculi. module _ where open import Syntactic.Contexts open import Denotational.Environments module MakeEquivalence (Type : Set) (⟦_⟧Type : Type → Set) (Term : Context Type → Type → Set) (⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦_⟧Context Type ⟦_⟧Type Γ → ⟦ τ ⟧Type) where module _ {Γ} {τ} where data _≈_ (t₁ t₂ : Term Γ τ) : Set where ext-t : (∀ ρ → ⟦ t₁ ⟧Term ρ ≡ ⟦ t₂ ⟧Term ρ) → t₁ ≈ t₂ ≈-refl : Reflexive _≈_ ≈-refl = ext-t (λ ρ → refl) ≈-sym : Symmetric _≈_ ≈-sym (ext-t ≈) = ext-t (λ ρ → sym (≈ ρ)) ≈-trans : Transitive _≈_ ≈-trans (ext-t ≈₁) (ext-t ≈₂) = ext-t (λ ρ → trans (≈₁ ρ) (≈₂ ρ)) ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } ≈-setoid : Context Type → Type → Setoid _ _ ≈-setoid Γ τ = record { Carrier = Term Γ τ ; _≈_ = _≈_ ; isEquivalence = ≈-isEquivalence } module ≈-Reasoning where module _ {Γ : Context Type} {τ : Type} where open import Relation.Binary.EqReasoning (≈-setoid Γ τ) public hiding (_≡⟨_⟩_) open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Changes open import ChangeContexts -- Export a version of the equivalence for terms with total -- derivatives open MakeEquivalence Type ⟦_⟧ Term ⟦_⟧ public -- Specialized congruence rules ≈-app : ∀ {Γ τ₁ τ₂} {t₁ t₂ : Term Γ (τ₁ ⇒ τ₂)} {t₃ t₄ : Term Γ τ₁} → t₁ ≈ t₂ → t₃ ≈ t₄ → app t₁ t₃ ≈ app t₂ t₄ ≈-app (ext-t ≈₁) (ext-t ≈₂) = ext-t (λ ρ → ≡-cong₂ (λ x y → x y) (≈₁ ρ) (≈₂ ρ)) ≈-abs : ∀ {Γ τ₁ τ₂} {t₁ t₂ : Term (τ₁ • Γ) τ₂} → t₁ ≈ t₂ → abs t₁ ≈ abs t₂ ≈-abs (ext-t ≈) = ext-t (λ ρ → ext (λ v → ≈ (v • ρ))) ≈-Δ : ∀ {τ Γ} {t₁ t₂ : Term Γ τ} → t₁ ≈ t₂ → Δ t₁ ≈ Δ t₂ ≈-Δ (ext-t ≈) = ext-t (λ ρ → ≡-diff (≈ (update ρ)) (≈ (ignore ρ))) -- Consistency ≈-consistent : ¬ (∀ {Γ τ} (t₁ t₂ : Term Γ τ) → t₁ ≈ t₂) ≈-consistent H with H {∅} true false ... | ext-t x with x ∅ ... | ()
Generalize term equivalence to arbitrary calculi.
Generalize term equivalence to arbitrary calculi. Old-commit-hash: 239a4be82a8af884669ca62db624782bee407ca1
Agda
mit
inc-lc/ilc-agda
90e62144b22dcc8d6181e110e5f313f406aff57f
proposal/examples/TacticsMatchingFunctionCalls.agda
proposal/examples/TacticsMatchingFunctionCalls.agda
{- This file demonstrates a technique that simulates the ability to pattern match against function calls rather than just variables or constructors. This technique is necessary to write certain kinds of tactics as generic functions. -} module TacticsMatchingFunctionCalls where open import Data.Bool hiding ( _≟_ ) open import Data.Nat open import Data.Fin hiding ( _+_ ) open import Data.Product hiding ( map ) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function ---------------------------------------------------------------------- {- Zero is the right identity of addition on the natural numbers. -} plusrident : (n : ℕ) → n ≡ n + 0 plusrident zero = refl plusrident (suc n) = cong suc (plusrident n) ---------------------------------------------------------------------- {- Arith is a universe of codes representing the natural numbers along with a limited set of functions over them. We would like to write tactics that pattern match against types indexed by applications of these functions. -} data Arith : Set where `zero : Arith `suc : (a : Arith) → Arith _`+_ _`*_ : (a₁ a₂ : Arith) → Arith eval : Arith → ℕ eval `zero = zero eval (`suc a) = suc (eval a) eval (a₁ `+ a₂) = eval a₁ + eval a₂ eval (a₁ `* a₂) = eval a₁ * eval a₂ ---------------------------------------------------------------------- {- An alternative to the Arith codes is to create a *view* of the natural numbers along with a collection of functions over them. -} data ArithView : ℕ → Set where `nat : (n : ℕ) → ArithView n _`+_ : (n₁ n₂ : ℕ) → ArithView (n₁ + n₂) _`*_ : (n₁ n₂ : ℕ) → ArithView (n₁ * n₂) ---------------------------------------------------------------------- {- Φ (standing for *function*-indexed types) represents an indexed type, but we *can* pattern match on function calls in its index position. A - The type of codes, including constructors and functions. i.e. Arith A′ - The model underlying the codes. i.e. ℕ el - The evaluation function from code values to model values. i.e. eval B - The genuine indexed datatype that Φ represents. i.e. Fin a - The index value as a code, which may be a function call and hence supports pattern matching. i.e. (a `+ `zero) -} data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where φ : (b : B (el a)) → Φ A A′ el B a ---------------------------------------------------------------------- {- Alternatively, we can specialize Φ to our Arith universe. This may be a good use of our ability to cheaply define new datatypes via Desc. -} data ΦArith (B : ℕ → Set) (a : Arith) : Set where φ : (b : B (eval a)) → ΦArith B a ---------------------------------------------------------------------- {- Going further, we could even specialize B in ΦArith to Fin. -} data Fin₂ (a : Arith) : Set where fin : (i : Fin (eval a)) → Fin₂ a ---------------------------------------------------------------------- {- Here is the ArithView specialized into the Fin type. -} data Fin₃ : ℕ → Set where fin : (n : ℕ) (i : Fin n) → Fin₃ n fin+ : (n₁ n₂ : ℕ) (i : Fin (n₁ + n₂)) → Fin₃ (n₁ + n₂) fin* : (n₁ n₂ : ℕ) (i : Fin (n₁ * n₂)) → Fin₃ (n₁ * n₂) ---------------------------------------------------------------------- {- A small universe of dependent types that is sufficient for the examples given below. -} data Type : Set ⟦_⟧ : Type → Set data Type where `Bool `ℕ `Arith : Type `ArithView `Fin : (n : ℕ) → Type `Φ : (A A′ : Type) (el : ⟦ A ⟧ → ⟦ A′ ⟧) (B : ⟦ A′ ⟧ → Type) (a : ⟦ A ⟧) → Type `ΦArith : (B : ℕ → Type) (a : Arith) → Type `Fin₂ : (a : Arith) → Type `Fin₃ : (n : ℕ) → Type `Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type `Id : (A : Type) (x y : ⟦ A ⟧) → Type ⟦ `Bool ⟧ = Bool ⟦ `ℕ ⟧ = ℕ ⟦ `Arith ⟧ = Arith ⟦ `ArithView n ⟧ = ArithView n ⟦ `Fin n ⟧ = Fin n ⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a ⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a ⟦ `Fin₂ a ⟧ = Fin₂ a ⟦ `Fin₃ n ⟧ = Fin₃ n ⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧ ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧) ⟦ `Id A x y ⟧ = x ≡ y _`→_ : (A B : Type) → Type A `→ B = `Π A (const B) _`×_ : (A B : Type) → Type A `× B = `Σ A (const B) ---------------------------------------------------------------------- {- Tactics are represented as generic functions taking a Dynamic value (of any type), and returning a Dynamic value (at a possibly different type). The convention is to behave like the identity function if the tactic doesn't match the current value or fails. In practice, the context will be a List of Dynamic values, and a tactic will map a Context to a Context. For simplicity, the tactics I give below only map a Dynamic to a Dynamic. -} Dynamic : Set Dynamic = Σ Type ⟦_⟧ Tactic : Set Tactic = Dynamic → Dynamic ---------------------------------------------------------------------- {- Here is an example of a tactic that only needs to pattern match on a variable or constructor, but not a function. We don't encounter any problems when writing this kind of a tactic. The tactic below changes a `Fin n` value into a `Fin (n + 0)` value. -} add-plus0-Fin : Tactic add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i add-plus0-Fin x = x ---------------------------------------------------------------------- {- In contrast, it is not straightforward to write tactics that need to pattern match on function calls. For example, below is ideally what we want to write to change a value of `Fin (n + 0)` to a value of `Fin n`. -} -- rm-plus0-Fin : Tactic -- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i -- rm-plus0-Fin x = x ---------------------------------------------------------------------- {- Instead of matching directly on `Fin, we can match on a `Φ that represents `Fin. This allows us to match on the the `+ function call in the index position. Because we cannot match against the function `el` (we would like to match it against `eval`), we add to our return type that proves the extentional equality between `el` and `eval`. Also note that the tactic below can be used for any type indexed by ℕ, not just Fin. -} rm-plus0 : Tactic rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) = `Π `Arith (λ x → `Id `ℕ (el x) (eval x)) `→ `Φ `Arith `ℕ el B a , λ f → φ (subst (λ x → ⟦ B x ⟧) (sym (f a)) (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) (subst (λ x → ⟦ B x ⟧) (f (a `+ `zero)) b))) rm-plus0 x = x ---------------------------------------------------------------------- {- Now it is possible to apply the generic tactic to a specific value and have the desired behavior occur. Notice that the generated extentional equality premise is trivially provable because eval is always equal to eval. -} eg-rm-plus0 : (a : Arith) → ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧ → ⟦ `Φ `Arith `ℕ eval `Fin a ⟧ eg-rm-plus0 a (φ i) = proj₂ (rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i)) (λ _ → refl) ---------------------------------------------------------------------- {- Here is the same tactic but using the specialized ΦArith type. -} rm-plus0-Arith : Tactic rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) = `ΦArith B a , φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Arith x = x ---------------------------------------------------------------------- {- And the same example usage, this time without needing to prove a premise. -} eg-rm-plus0-Arith : (a : Arith) → ⟦ `ΦArith `Fin (a `+ `zero) ⟧ → ⟦ `ΦArith `Fin a ⟧ eg-rm-plus0-Arith a (φ i) = proj₂ (rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i)) ---------------------------------------------------------------------- {- Finally, here is the same tactic but using the even more specialized Fin₂ type. -} rm-plus0-Fin₂ : Tactic rm-plus0-Fin₂ (`Fin₂ (a `+ `zero) , fin i) = `Fin₂ a , fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Fin₂ x = x ---------------------------------------------------------------------- eg-rm-plus0-Fin₂ : (a : Arith) → ⟦ `Fin₂ (a `+ `zero) ⟧ → ⟦ `Fin₂ a ⟧ eg-rm-plus0-Fin₂ a (fin i) = proj₂ (rm-plus0-Fin₂ (`Fin₂ (a `+ `zero) , fin i)) ---------------------------------------------------------------------- {- A tactic that simplifies an ArithView index. To target Fin, ideally you want to match on something like: `Σ `ℕ (λ n → `ArithView n `× Fin n) But this requires matching on a λ, and a non-linear occurrence of n. The example after this one accomplishes the same thing via the specialized Fin₃ type instead. -} rm-plus0-ArithView : Tactic rm-plus0-ArithView (`ArithView .(n + 0) , (n `+ 0)) = `ArithView n , `nat n rm-plus0-ArithView x = x ---------------------------------------------------------------------- {- A tactic to simplify to simplify the "view"-based Fin type Fin₃. This is most similar to rm-plus0-Fin₂, except Fin₃ is view-based while Fin₂ is universe-based (where the universe is the codes of possible operations). On one hand this Fin₃ approach is simpler than Fin₂, because you do not need to write an eval function or tell it to reduce definitional equalities explicitly (like you would to get Arith to compute). On the other hand, the Fin₂ approach is more powerful because it allows you to control when things reduce. This is more like Coq tactics, where you might not want something to reduce and you use "simpl" explicitly when you do. The "simpl" tactic is defined below via the eval₂ function. -} rm-plus0-Fin₃ : Tactic rm-plus0-Fin₃ (`Fin₃ .(n + 0) , fin+ n 0 i) = `Fin₃ n , fin n (subst Fin (sym (plusrident n)) i) rm-plus0-Fin₃ x = x ---------------------------------------------------------------------- {- A tactic to simplify by one step of `+. -} simp-step-plus0-Fin : Tactic simp-step-plus0-Fin (`Fin₂ (`zero `+ a) , fin i) = `Fin₂ a , fin i simp-step-plus0-Fin (`Fin₂ (`suc a₁ `+ a₂) , fin i) = `Fin₂ (`suc (a₁ `+ a₂)) , fin i simp-step-plus0-Fin x = x simp-step-n-plus0-Fin : ℕ → Tactic simp-step-n-plus0-Fin zero x = x simp-step-n-plus0-Fin (suc n) x = simp-step-n-plus0-Fin n (simp-step-plus0-Fin x) ---------------------------------------------------------------------- {- A semantics-preserving definitional evaluator, and a tactic to simplify as far as possible using definitional equality. This is like the "simp" tactic in Coq. -} eval₂ : (a₁ : Arith) → Σ Arith (λ a₂ → eval a₁ ≡ eval a₂) eval₂ `zero = `zero , refl eval₂ (`suc a) with eval₂ a ... | a′ , p rewrite p = `suc a′ , refl eval₂ (`zero `+ a₂) = eval₂ a₂ eval₂ (`suc a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = `suc (a₁′ `+ a₂′) , refl eval₂ (a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `+ a₂′) , refl eval₂ (`zero `* a₂) = `zero , refl eval₂ (`suc a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = a₂′ `+ (a₁′ `* a₂′) , refl eval₂ (a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `* a₂′) , refl simp-Fin : Tactic simp-Fin (`Fin₂ a , fin i) with eval₂ a ... | a′ , p rewrite p = `Fin₂ a′ , fin i simp-Fin x = x ----------------------------------------------------------------------
{- This file demonstrates a technique that simulates the ability to pattern match against function calls rather than just variables or constructors. This technique is necessary to write certain kinds of tactics as generic functions. -} module TacticsMatchingFunctionCalls where open import Data.Bool hiding ( _≟_ ) open import Data.Nat open import Data.Fin hiding ( _+_ ) open import Data.Product hiding ( map ) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function ---------------------------------------------------------------------- {- Zero is the right identity of addition on the natural numbers. -} plusrident : (n : ℕ) → n ≡ n + 0 plusrident zero = refl plusrident (suc n) = cong suc (plusrident n) ---------------------------------------------------------------------- {- Arith is a universe of codes representing the natural numbers along with a limited set of functions over them. We would like to write tactics that pattern match against types indexed by applications of these functions. -} data Arith : Set where `zero : Arith `suc : (a : Arith) → Arith _`+_ _`*_ : (a₁ a₂ : Arith) → Arith eval : Arith → ℕ eval `zero = zero eval (`suc a) = suc (eval a) eval (a₁ `+ a₂) = eval a₁ + eval a₂ eval (a₁ `* a₂) = eval a₁ * eval a₂ ---------------------------------------------------------------------- {- An alternative to the Arith codes is to create a *view* of the natural numbers along with a collection of functions over them. -} data ArithView : ℕ → Set where `nat : (n : ℕ) → ArithView n _`+_ : (n₁ n₂ : ℕ) → ArithView (n₁ + n₂) _`*_ : (n₁ n₂ : ℕ) → ArithView (n₁ * n₂) ---------------------------------------------------------------------- {- Φ (standing for *function*-indexed types) represents an indexed type, but we *can* pattern match on function calls in its index position. A - The type of codes, including constructors and functions. i.e. Arith A′ - The model underlying the codes. i.e. ℕ el - The evaluation function from code values to model values. i.e. eval B - The genuine indexed datatype that Φ represents. i.e. Fin a - The index value as a code, which may be a function call and hence supports pattern matching. i.e. (a `+ `zero) -} data Φ (A A′ : Set) (el : A → A′) (B : A′ → Set) (a : A) : Set where φ : (b : B (el a)) → Φ A A′ el B a ---------------------------------------------------------------------- {- Alternatively, we can specialize Φ to our Arith universe. This may be a good use of our ability to cheaply define new datatypes via Desc. -} data ΦArith (B : ℕ → Set) (a : Arith) : Set where φ : (b : B (eval a)) → ΦArith B a ---------------------------------------------------------------------- {- Going further, we could even specialize B in ΦArith with Fin. -} data Fin₂ (a : Arith) : Set where fin : (i : Fin (eval a)) → Fin₂ a ---------------------------------------------------------------------- {- Here is the ArithView specialized with the Fin type. -} data Fin₃ : ℕ → Set where fin : (n : ℕ) (i : Fin n) → Fin₃ n fin+ : (n₁ n₂ : ℕ) (i : Fin (n₁ + n₂)) → Fin₃ (n₁ + n₂) fin* : (n₁ n₂ : ℕ) (i : Fin (n₁ * n₂)) → Fin₃ (n₁ * n₂) ---------------------------------------------------------------------- {- A small universe of dependent types that is sufficient for the examples given below. -} data Type : Set ⟦_⟧ : Type → Set data Type where `Bool `ℕ `Arith : Type `ArithView `Fin : (n : ℕ) → Type `Φ : (A A′ : Type) (el : ⟦ A ⟧ → ⟦ A′ ⟧) (B : ⟦ A′ ⟧ → Type) (a : ⟦ A ⟧) → Type `ΦArith : (B : ℕ → Type) (a : Arith) → Type `Fin₂ : (a : Arith) → Type `Fin₃ : (n : ℕ) → Type `Π `Σ : (A : Type) (B : ⟦ A ⟧ → Type) → Type `Id : (A : Type) (x y : ⟦ A ⟧) → Type ⟦ `Bool ⟧ = Bool ⟦ `ℕ ⟧ = ℕ ⟦ `Arith ⟧ = Arith ⟦ `ArithView n ⟧ = ArithView n ⟦ `Fin n ⟧ = Fin n ⟦ `Φ A A′ el B a ⟧ = Φ ⟦ A ⟧ ⟦ A′ ⟧ el (λ a → ⟦ B a ⟧) a ⟦ `ΦArith B a ⟧ = ΦArith (λ x → ⟦ B x ⟧) a ⟦ `Fin₂ a ⟧ = Fin₂ a ⟦ `Fin₃ n ⟧ = Fin₃ n ⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧ ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧) ⟦ `Id A x y ⟧ = x ≡ y _`→_ : (A B : Type) → Type A `→ B = `Π A (const B) _`×_ : (A B : Type) → Type A `× B = `Σ A (const B) ---------------------------------------------------------------------- {- Tactics are represented as generic functions taking a Dynamic value (of any type), and returning a Dynamic value (at a possibly different type). The convention is to behave like the identity function if the tactic doesn't match the current value or fails. In practice, the context will be a List of Dynamic values, and a tactic will map a Context to a Context. For simplicity, the tactics I give below only map a Dynamic to a Dynamic. -} Dynamic : Set Dynamic = Σ Type ⟦_⟧ Tactic : Set Tactic = Dynamic → Dynamic ---------------------------------------------------------------------- {- Here is an example of a tactic that only needs to pattern match on a variable or constructor, but not a function. We don't encounter any problems when writing this kind of a tactic. The tactic below changes a `Fin n` value into a `Fin (n + 0)` value. -} add-plus0-Fin : Tactic add-plus0-Fin (`Fin n , i) = `Fin (n + 0) , subst Fin (plusrident n) i add-plus0-Fin x = x ---------------------------------------------------------------------- {- In contrast, it is not straightforward to write tactics that need to pattern match on function calls. For example, below is ideally what we want to write to change a value of `Fin (n + 0)` to a value of `Fin n`. -} -- rm-plus0-Fin : Tactic -- rm-plus0-Fin (`Fin (n + 0) , i) = `Fin n , subst Fin (sym (plusrident n)) i -- rm-plus0-Fin x = x ---------------------------------------------------------------------- {- Instead of matching directly on `Fin, we can match on a `Φ that represents `Fin. This allows us to match on the the `+ function call in the index position. Because we cannot match against the function `el` (we would like to match it against `eval`), we add to our return type that proves the extentional equality between `el` and `eval`. Also note that the tactic below can be used for any type indexed by ℕ, not just Fin. -} rm-plus0 : Tactic rm-plus0 (`Φ `Arith `ℕ el B (a `+ `zero) , φ b) = `Π `Arith (λ x → `Id `ℕ (el x) (eval x)) `→ `Φ `Arith `ℕ el B a , λ f → φ (subst (λ x → ⟦ B x ⟧) (sym (f a)) (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) (subst (λ x → ⟦ B x ⟧) (f (a `+ `zero)) b))) rm-plus0 x = x ---------------------------------------------------------------------- {- Now it is possible to apply the generic tactic to a specific value and have the desired behavior occur. Notice that the generated extentional equality premise is trivially provable because eval is always equal to eval. -} eg-rm-plus0 : (a : Arith) → ⟦ `Φ `Arith `ℕ eval `Fin (a `+ `zero) ⟧ → ⟦ `Φ `Arith `ℕ eval `Fin a ⟧ eg-rm-plus0 a (φ i) = proj₂ (rm-plus0 (`Φ `Arith `ℕ eval `Fin (a `+ `zero) , φ i)) (λ _ → refl) ---------------------------------------------------------------------- {- Here is the same tactic but using the specialized ΦArith type. -} rm-plus0-Arith : Tactic rm-plus0-Arith (`ΦArith B (a `+ `zero) , φ i) = `ΦArith B a , φ (subst (λ x → ⟦ B x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Arith x = x ---------------------------------------------------------------------- {- And the same example usage, this time without needing to prove a premise. -} eg-rm-plus0-Arith : (a : Arith) → ⟦ `ΦArith `Fin (a `+ `zero) ⟧ → ⟦ `ΦArith `Fin a ⟧ eg-rm-plus0-Arith a (φ i) = proj₂ (rm-plus0-Arith (`ΦArith `Fin (a `+ `zero) , φ i)) ---------------------------------------------------------------------- {- Finally, here is the same tactic but using the even more specialized Fin₂ type. -} rm-plus0-Fin₂ : Tactic rm-plus0-Fin₂ (`Fin₂ (a `+ `zero) , fin i) = `Fin₂ a , fin (subst (λ x → ⟦ `Fin x ⟧) (sym (plusrident (eval a))) i) rm-plus0-Fin₂ x = x ---------------------------------------------------------------------- eg-rm-plus0-Fin₂ : (a : Arith) → ⟦ `Fin₂ (a `+ `zero) ⟧ → ⟦ `Fin₂ a ⟧ eg-rm-plus0-Fin₂ a (fin i) = proj₂ (rm-plus0-Fin₂ (`Fin₂ (a `+ `zero) , fin i)) ---------------------------------------------------------------------- {- A tactic that simplifies an ArithView index. To target Fin, ideally you want to match on something like: `Σ `ℕ (λ n → `ArithView n `× Fin n) But this requires matching on a λ, and a non-linear occurrence of n. The example after this one accomplishes the same thing via the specialized Fin₃ type instead. -} rm-plus0-ArithView : Tactic rm-plus0-ArithView (`ArithView .(n + 0) , (n `+ 0)) = `ArithView n , `nat n rm-plus0-ArithView x = x ---------------------------------------------------------------------- {- A tactic to simplify to simplify the "view"-based Fin type Fin₃. This is most similar to rm-plus0-Fin₂, except Fin₃ is view-based while Fin₂ is universe-based (where the universe is the codes of possible operations). On one hand this Fin₃ approach is simpler than Fin₂, because you do not need to write an eval function or tell it to reduce definitional equalities explicitly (like you would to get Arith to compute). On the other hand, the Fin₂ approach is more powerful because it allows you to control when things reduce. This is more like Coq tactics, where you might not want something to reduce and you use "simpl" explicitly when you do. The "simpl" tactic is defined below via the eval₂ function. -} rm-plus0-Fin₃ : Tactic rm-plus0-Fin₃ (`Fin₃ .(n + 0) , fin+ n 0 i) = `Fin₃ n , fin n (subst Fin (sym (plusrident n)) i) rm-plus0-Fin₃ x = x ---------------------------------------------------------------------- {- A tactic to simplify by one step of `+. -} simp-step-plus0-Fin : Tactic simp-step-plus0-Fin (`Fin₂ (`zero `+ a) , fin i) = `Fin₂ a , fin i simp-step-plus0-Fin (`Fin₂ (`suc a₁ `+ a₂) , fin i) = `Fin₂ (`suc (a₁ `+ a₂)) , fin i simp-step-plus0-Fin x = x simp-step-n-plus0-Fin : ℕ → Tactic simp-step-n-plus0-Fin zero x = x simp-step-n-plus0-Fin (suc n) x = simp-step-n-plus0-Fin n (simp-step-plus0-Fin x) ---------------------------------------------------------------------- {- A semantics-preserving definitional evaluator, and a tactic to simplify as far as possible using definitional equality. This is like the "simp" tactic in Coq. -} eval₂ : (a₁ : Arith) → Σ Arith (λ a₂ → eval a₁ ≡ eval a₂) eval₂ `zero = `zero , refl eval₂ (`suc a) with eval₂ a ... | a′ , p rewrite p = `suc a′ , refl eval₂ (`zero `+ a₂) = eval₂ a₂ eval₂ (`suc a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = `suc (a₁′ `+ a₂′) , refl eval₂ (a₁ `+ a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `+ a₂′) , refl eval₂ (`zero `* a₂) = `zero , refl eval₂ (`suc a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = a₂′ `+ (a₁′ `* a₂′) , refl eval₂ (a₁ `* a₂) with eval₂ a₁ | eval₂ a₂ ... | a₁′ , p | a₂′ , q rewrite p | q = (a₁′ `* a₂′) , refl simp-Fin : Tactic simp-Fin (`Fin₂ a , fin i) with eval₂ a ... | a′ , p rewrite p = `Fin₂ a′ , fin i simp-Fin x = x ----------------------------------------------------------------------
change wording
change wording
Agda
bsd-3-clause
spire/spire
224bef483393cb10b22b2f51c63865cc5ddf471f
partial.agda
partial.agda
module partial where -- INCREMENTAL λ-CALCULUS -- with (one-variable) partial derivatives -- -- Features: -- * Changes and derivatives are different. -- * Δ x e maps changes of x to changes of e. -- * a full denotational semantics is given. -- * the domain of change types `⟦Δ τ⟧` is uniformly defined as `⟦τ⟧ → ⟦τ⟧`. open import Relation.Binary.PropositionalEquality open import meaning -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type -- `Δ τ` is the type of changes to `τ` Δ : (τ : Type) → Type infixr 5 _⇒_ -- Denotational Semantics ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ Δ τ ⟧Type = ⟦ τ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning Set ⟦_⟧Type -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- `Δ x dx t` maps changes `dx` in `x` to changes in `t` Δ : ∀ {Γ τ₁ τ₂} → (x : Var Γ τ₁) (dx : Var Γ (Δ τ₁)) → (t : Term Γ τ₂) → Term Γ (Δ τ₂) -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ Δ x dx t ⟧Term ρ = λ _ → ⟦ t ⟧Term (update x (⟦ dx ⟧ ρ) ρ) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm {Γ} {τ} = meaning (⟦ Γ ⟧ → ⟦ τ ⟧) ⟦_⟧Term -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv {Γ} = meaning ⟦ Γ ⟧ ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal {τ} = meaning ⟦ τ ⟧ ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} (Δ x dx t) = Δ (lift {Γ₁} {Γ₂} x) (lift {Γ₁} {Γ₂} dx) (weaken {Γ₁} {Γ₂} t)
module partial where -- INCREMENTAL λ-CALCULUS -- with (one-variable) partial derivatives -- -- Features: -- * Changes and derivatives are different. -- * Δ x dx e describes how e changes if x changes by dx. -- * a full denotational semantics is given. -- * the domain of change types `⟦Δ τ⟧` is uniformly defined as `⟦τ⟧ → ⟦τ⟧`. open import Relation.Binary.PropositionalEquality open import meaning -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type -- `Δ τ` is the type of changes to `τ` Δ : (τ : Type) → Type infixr 5 _⇒_ -- Denotational Semantics ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ Δ τ ⟧Type = ⟦ τ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning Set ⟦_⟧Type -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- `Δ x dx t` maps changes `dx` in `x` to changes in `t` Δ : ∀ {Γ τ₁ τ₂} → (x : Var Γ τ₁) (dx : Var Γ (Δ τ₁)) → (t : Term Γ τ₂) → Term Γ (Δ τ₂) -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ Δ x dx t ⟧Term ρ = λ _ → ⟦ t ⟧Term (update x (⟦ dx ⟧ ρ) ρ) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm {Γ} {τ} = meaning (⟦ Γ ⟧ → ⟦ τ ⟧) ⟦_⟧Term -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv {Γ} = meaning ⟦ Γ ⟧ ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal {τ} = meaning ⟦ τ ⟧ ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} (Δ x dx t) = Δ (lift {Γ₁} {Γ₂} x) (lift {Γ₁} {Γ₂} dx) (weaken {Γ₁} {Γ₂} t)
Fix comment (fix #20).
Fix comment (fix #20). Old-commit-hash: d5a7ef44c7c38bf82aa00466ee0bac803dd860d3
Agda
mit
inc-lc/ilc-agda
64c7aa44ab0d86c66f744241c812cc27ab7fb2c6
Base/Change/Sums.agda
Base/Change/Sums.agda
module Base.Change.Sums where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Base.Change.Equivalence open import Postulate.Extensionality open import Data.Sum module SumChanges ℓ (X Y : Set ℓ) {{CX : ChangeAlgebra ℓ X}} {{CY : ChangeAlgebra ℓ Y}} where open ≡-Reasoning data SumChange : X ⊎ Y → Set ℓ where ch₁ : ∀ {x} → (dx : Δ x) → SumChange (inj₁ x) rp₁₂ : ∀ {x} → (y : Y) → SumChange (inj₁ x) ch₂ : ∀ {y} → (dy : Δ y) → SumChange (inj₂ y) rp₂₁ : ∀ {y} → (x : X) → SumChange (inj₂ y) _⊕_ : (v : X ⊎ Y) → SumChange v → X ⊎ Y inj₁ x ⊕ ch₁ dx = inj₁ (x ⊞ dx) inj₂ y ⊕ ch₂ dy = inj₂ (y ⊞ dy) inj₁ x ⊕ rp₁₂ y = inj₂ y inj₂ y ⊕ rp₂₁ x = inj₁ x _⊝_ : ∀ (v₂ v₁ : X ⊎ Y) → SumChange v₁ inj₁ x₂ ⊝ inj₁ x₁ = ch₁ (x₂ ⊟ x₁) inj₂ y₂ ⊝ inj₂ y₁ = ch₂ (y₂ ⊟ y₁) inj₂ y₂ ⊝ inj₁ x₁ = rp₁₂ y₂ inj₁ x₂ ⊝ inj₂ y₁ = rp₂₁ x₂ s-nil : (v : X ⊎ Y) → SumChange v s-nil (inj₁ x) = ch₁ (nil x) s-nil (inj₂ y) = ch₂ (nil y) s-update-diff : ∀ (u v : X ⊎ Y) → v ⊕ (u ⊝ v) ≡ u s-update-diff (inj₁ x₂) (inj₁ x₁) = cong inj₁ (update-diff x₂ x₁) s-update-diff (inj₂ y₂) (inj₂ y₁) = cong inj₂ (update-diff y₂ y₁) s-update-diff (inj₁ x₂) (inj₂ y₁) = refl s-update-diff (inj₂ y₂) (inj₁ x₁) = refl s-update-nil : ∀ v → v ⊕ (s-nil v) ≡ v s-update-nil (inj₁ x) = cong inj₁ (update-nil x) s-update-nil (inj₂ y) = cong inj₂ (update-nil y) instance changeAlgebra : ChangeAlgebra ℓ (X ⊎ Y) changeAlgebra = record { Change = SumChange ; update = _⊕_ ; diff = _⊝_ ; nil = s-nil ; isChangeAlgebra = record { update-diff = s-update-diff ; update-nil = s-update-nil } } -- Encode infix ascription. as' : ∀ {ℓ} (A : Set ℓ) (a : A) → A as' _ a = a syntax as' A a = a as A inj₁′ : RawChange (inj₁ as (X → (X ⊎ Y))) inj₁′ x dx = ch₁ dx inj₁′Derivative : IsDerivative (inj₁ as (X → (X ⊎ Y))) inj₁′ inj₁′Derivative x dx = refl inj₂′ : RawChange (inj₂ as (Y → (X ⊎ Y))) inj₂′ y dy = ch₂ dy inj₂′Derivative : IsDerivative (inj₂ as (Y → (X ⊎ Y))) inj₂′ inj₂′Derivative y dy = refl -- Elimination form for sums. This is a less dependently-typed version of -- [_,_]. match : ∀ {Z : Set ℓ} → (X → Z) → (Y → Z) → X ⊎ Y → Z match f g (inj₁ x) = f x match f g (inj₂ y) = g y module _ {Z : Set ℓ} {{CZ : ChangeAlgebra ℓ Z}} where instance X→Z = FunctionChanges.changeAlgebra X Z {{CX}} {{CZ}} --module ΔX→Z = FunctionChanges X Z {{CX}} {{CZ}} Y→Z = FunctionChanges.changeAlgebra Y Z {{CY}} {{CZ}} --module ΔY→Z = FunctionChanges Y Z {{CY}} {{CZ}} X⊎Y→Z = FunctionChanges.changeAlgebra (X ⊎ Y) Z {{changeAlgebra}} {{CZ}} Y→Z→X⊎Y→Z = FunctionChanges.changeAlgebra (Y → Z) (X ⊎ Y → Z) {{Y→Z}} {{X⊎Y→Z}} open FunctionChanges using (apply; correct) match′₀-realizer : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → (s : X ⊎ Y) → Δ s → Δ (match f g s) match′₀-realizer f df g dg (inj₁ x) (ch₁ dx) = apply df x dx match′₀-realizer f df g dg (inj₁ x) (rp₁₂ y) = ((g ⊞ dg) y) ⊟ (f x) match′₀-realizer f df g dg (inj₂ y) (rp₂₁ x) = ((f ⊞ df) x) ⊟ (g y) match′₀-realizer f df g dg (inj₂ y) (ch₂ dy) = apply dg y dy match′₀-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (ds : Δ s) → match f g (s ⊕ ds) ⊞ match′₀-realizer f df g dg (s ⊕ ds) (nil (s ⊕ ds)) ≡ match f g s ⊞ match′₀-realizer f df g dg s ds match′₀-realizer-correct f df g dg (inj₁ x) (ch₁ dx) = correct df x dx match′₀-realizer-correct f df g dg (inj₂ y) (ch₂ dy) = correct dg y dy match′₀-realizer-correct f df g dg (inj₁ x) (rp₁₂ y) rewrite update-diff ((g ⊞ dg) y) (f x) = refl match′₀-realizer-correct f df g dg (inj₂ y) (rp₂₁ x) rewrite update-diff ((f ⊞ df) x) (g y) = refl match′₀ : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → Δ (match f g) match′₀ f df g dg = record { apply = match′₀-realizer f df g dg ; correct = match′₀-realizer-correct f df g dg } match′-realizer-correct-body : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (match f (g ⊞ dg) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg))) s ≡ (match f g ⊞ match′₀ f df g dg) s match′-realizer-correct-body f df g dg (inj₁ x) = refl -- refl doesn't work here. That seems a *huge* bad smell. However, that's simply because we're only updating g, not f match′-realizer-correct-body f df g dg (inj₂ y) rewrite update-nil y = update-diff (g y ⊞ apply dg y (nil y)) (g y ⊞ apply dg y (nil y)) match′-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (match f (g ⊞ dg)) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg)) ≡ match f g ⊞ match′₀ f df g dg match′-realizer-correct f df g dg = ext (match′-realizer-correct-body f df g dg) match′ : (f : X → Z) → Δ f → Δ (match f) match′ f df = record { apply = λ g dg → match′₀ f df g dg ; correct = match′-realizer-correct f df }
module Base.Change.Sums where open import Relation.Binary.PropositionalEquality open import Level open import Base.Change.Algebra open import Base.Change.Equivalence open import Postulate.Extensionality open import Data.Sum module SumChanges ℓ (X Y : Set ℓ) {{CX : ChangeAlgebra ℓ X}} {{CY : ChangeAlgebra ℓ Y}} where open ≡-Reasoning -- This is an indexed datatype, so it has two constructors per argument. But -- erasure would probably not be smart enough to notice. -- Should we rewrite this as two separate datatypes? data SumChange : X ⊎ Y → Set ℓ where ch₁ : ∀ {x} → (dx : Δ x) → SumChange (inj₁ x) rp₁₂ : ∀ {x} → (y : Y) → SumChange (inj₁ x) ch₂ : ∀ {y} → (dy : Δ y) → SumChange (inj₂ y) rp₂₁ : ∀ {y} → (x : X) → SumChange (inj₂ y) _⊕_ : (v : X ⊎ Y) → SumChange v → X ⊎ Y inj₁ x ⊕ ch₁ dx = inj₁ (x ⊞ dx) inj₂ y ⊕ ch₂ dy = inj₂ (y ⊞ dy) inj₁ x ⊕ rp₁₂ y = inj₂ y inj₂ y ⊕ rp₂₁ x = inj₁ x _⊝_ : ∀ (v₂ v₁ : X ⊎ Y) → SumChange v₁ inj₁ x₂ ⊝ inj₁ x₁ = ch₁ (x₂ ⊟ x₁) inj₂ y₂ ⊝ inj₂ y₁ = ch₂ (y₂ ⊟ y₁) inj₂ y₂ ⊝ inj₁ x₁ = rp₁₂ y₂ inj₁ x₂ ⊝ inj₂ y₁ = rp₂₁ x₂ s-nil : (v : X ⊎ Y) → SumChange v s-nil (inj₁ x) = ch₁ (nil x) s-nil (inj₂ y) = ch₂ (nil y) s-update-diff : ∀ (u v : X ⊎ Y) → v ⊕ (u ⊝ v) ≡ u s-update-diff (inj₁ x₂) (inj₁ x₁) = cong inj₁ (update-diff x₂ x₁) s-update-diff (inj₂ y₂) (inj₂ y₁) = cong inj₂ (update-diff y₂ y₁) s-update-diff (inj₁ x₂) (inj₂ y₁) = refl s-update-diff (inj₂ y₂) (inj₁ x₁) = refl s-update-nil : ∀ v → v ⊕ (s-nil v) ≡ v s-update-nil (inj₁ x) = cong inj₁ (update-nil x) s-update-nil (inj₂ y) = cong inj₂ (update-nil y) instance changeAlgebra : ChangeAlgebra ℓ (X ⊎ Y) changeAlgebra = record { Change = SumChange ; update = _⊕_ ; diff = _⊝_ ; nil = s-nil ; isChangeAlgebra = record { update-diff = s-update-diff ; update-nil = s-update-nil } } -- Encode infix ascription. as' : ∀ {ℓ} (A : Set ℓ) (a : A) → A as' _ a = a syntax as' A a = a as A inj₁′ : RawChange (inj₁ as (X → (X ⊎ Y))) inj₁′ x dx = ch₁ dx inj₁′Derivative : IsDerivative (inj₁ as (X → (X ⊎ Y))) inj₁′ inj₁′Derivative x dx = refl inj₂′ : RawChange (inj₂ as (Y → (X ⊎ Y))) inj₂′ y dy = ch₂ dy inj₂′Derivative : IsDerivative (inj₂ as (Y → (X ⊎ Y))) inj₂′ inj₂′Derivative y dy = refl -- Elimination form for sums. This is a less dependently-typed version of -- [_,_]. match : ∀ {Z : Set ℓ} → (X → Z) → (Y → Z) → X ⊎ Y → Z match f g (inj₁ x) = f x match f g (inj₂ y) = g y module _ {Z : Set ℓ} {{CZ : ChangeAlgebra ℓ Z}} where instance X→Z = FunctionChanges.changeAlgebra X Z {{CX}} {{CZ}} --module ΔX→Z = FunctionChanges X Z {{CX}} {{CZ}} Y→Z = FunctionChanges.changeAlgebra Y Z {{CY}} {{CZ}} --module ΔY→Z = FunctionChanges Y Z {{CY}} {{CZ}} X⊎Y→Z = FunctionChanges.changeAlgebra (X ⊎ Y) Z {{changeAlgebra}} {{CZ}} Y→Z→X⊎Y→Z = FunctionChanges.changeAlgebra (Y → Z) (X ⊎ Y → Z) {{Y→Z}} {{X⊎Y→Z}} open FunctionChanges using (apply; correct) match′₀-realizer : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → (s : X ⊎ Y) → Δ s → Δ (match f g s) match′₀-realizer f df g dg (inj₁ x) (ch₁ dx) = apply df x dx match′₀-realizer f df g dg (inj₁ x) (rp₁₂ y) = ((g ⊞ dg) y) ⊟ (f x) match′₀-realizer f df g dg (inj₂ y) (rp₂₁ x) = ((f ⊞ df) x) ⊟ (g y) match′₀-realizer f df g dg (inj₂ y) (ch₂ dy) = apply dg y dy match′₀-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (ds : Δ s) → match f g (s ⊕ ds) ⊞ match′₀-realizer f df g dg (s ⊕ ds) (nil (s ⊕ ds)) ≡ match f g s ⊞ match′₀-realizer f df g dg s ds match′₀-realizer-correct f df g dg (inj₁ x) (ch₁ dx) = correct df x dx match′₀-realizer-correct f df g dg (inj₂ y) (ch₂ dy) = correct dg y dy match′₀-realizer-correct f df g dg (inj₁ x) (rp₁₂ y) rewrite update-diff ((g ⊞ dg) y) (f x) = refl match′₀-realizer-correct f df g dg (inj₂ y) (rp₂₁ x) rewrite update-diff ((f ⊞ df) x) (g y) = refl match′₀ : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → Δ (match f g) match′₀ f df g dg = record { apply = match′₀-realizer f df g dg ; correct = match′₀-realizer-correct f df g dg } match′-realizer-correct-body : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (match f (g ⊞ dg) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg))) s ≡ (match f g ⊞ match′₀ f df g dg) s match′-realizer-correct-body f df g dg (inj₁ x) = refl -- refl doesn't work here. That seems a *huge* bad smell. However, that's simply because we're only updating g, not f match′-realizer-correct-body f df g dg (inj₂ y) rewrite update-nil y = update-diff (g y ⊞ apply dg y (nil y)) (g y ⊞ apply dg y (nil y)) match′-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (match f (g ⊞ dg)) ⊞ match′₀ f df (g ⊞ dg) (nil (g ⊞ dg)) ≡ match f g ⊞ match′₀ f df g dg match′-realizer-correct f df g dg = ext (match′-realizer-correct-body f df g dg) match′ : (f : X → Z) → Δ f → Δ (match f) match′ f df = record { apply = λ g dg → match′₀ f df g dg ; correct = match′-realizer-correct f df }
Add TODO
Add TODO
Agda
mit
inc-lc/ilc-agda
e0b2a2036942b7b9010a4d1e45e94ed00a26742d
Atlas/Change/Term.agda
Atlas/Change/Term.agda
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) Atlas-diff {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-diff {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-diff) m₁ m₂) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-apply {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-apply) m₁ m₂) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff Atlas-diff Atlas-apply) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply Atlas-diff Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
module Atlas.Change.Term where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type -- nil-changes nil-const : ∀ {ι : Base} → Const ∅ (base (ΔBase ι)) nil-const {ι} = neutral {ΔBase ι} nil-term : ∀ {ι Γ} → Term Γ (base (ΔBase ι)) nil-term {Bool} = curriedConst (nil-const {Bool}) nil-term {Map κ ι} = curriedConst (nil-const {Map κ ι}) -- diff-term and apply-term open import Parametric.Change.Term Const ΔBase -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ diff-base : ∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι)) diff-base {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) diff-base {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs diff-base) m₁ m₂) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = abs₂ (λ b₁ b₂ → xor! b₁ b₂) Atlas-apply {Map κ ι} = abs₂ (λ m₁ m₂ → zip! (abs Atlas-apply) m₁ m₂) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (ΔType τ) diff = app₂ (lift-diff diff-base Atlas-apply) apply : ∀ {τ Γ} → Term Γ (ΔType τ) → Term Γ τ → Term Γ τ apply = app₂ (lift-apply diff-base Atlas-apply) -- Shorthands for creating changes corresponding to -- insertion/deletion. insert : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → -- last argument is the change accumulator Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) delete : ∀ {κ ι Γ} → Term Γ (base κ) → Term Γ (base ι) → Term Γ (ΔType (base (Map κ ι))) → Term Γ (ΔType (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc
Rename Atlas-diff to diff-base.
Rename Atlas-diff to diff-base. Old-commit-hash: 8940b78431520f22d625a114d12ce0faee05542c
Agda
mit
inc-lc/ilc-agda
5a499d733fe3968065e0ae2b47d1393cf5980209
lib/Data/Two.agda
lib/Data/Two.agda
{-# OPTIONS --without-K #-} module Data.Two where open import Data.Bool public hiding (if_then_else_) renaming (Bool to 𝟚; false to 0₂; true to 1₂; T to ✓) open import Data.Bool.Properties public using (isCommutativeSemiring-∨-∧ ;commutativeSemiring-∨-∧ ;module RingSolver ;isCommutativeSemiring-∧-∨ ;commutativeSemiring-∧-∨ ;isBooleanAlgebra ;booleanAlgebra ;commutativeRing-xor-∧ ;module XorRingSolver ;not-involutive ;not-¬ ;¬-not ;⇔→≡ ;proof-irrelevance) renaming (T-≡ to ✓-≡ ;T-∧ to ✓-∧ ;T-∨ to ✓-∨) open import Type using (★_) open import Algebra using (module CommutativeRing; module CommutativeSemiring) open import Algebra.FunctionProperties using (Op₁; Op₂) open import Data.Nat using (ℕ; _≤_; z≤n; s≤s; _⊓_; _⊔_; _∸_) open import Data.Zero using (𝟘-elim) open import Data.One using (𝟙) open import Data.Product using (proj₁; proj₂; uncurry; _×_; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function.Equivalence using (module Equivalence) open import Function.Equality using (_⟨$⟩_) open import Function.NP using (id; _∘_; _⟨_⟩°_) open import Relation.Binary.PropositionalEquality.NP using (_≡_; _≢_; refl; idp; _∙_; !_) open import Relation.Nullary using (¬_; Dec; yes; no) open Equivalence using (to; from) module Xor° = CommutativeRing commutativeRing-xor-∧ module 𝟚° = CommutativeSemiring commutativeSemiring-∧-∨ module _ {p} {P : 𝟚 → ★ p} where [0:_1:_] : P 0₂ → P 1₂ → (b : 𝟚) → P b [0: e₀ 1: e₁ ] 0₂ = e₀ [0: e₀ 1: e₁ ] 1₂ = e₁ tabulate₂ : ((b : 𝟚) → P b) → P 0₂ × P 1₂ tabulate₂ f = f 0₂ , f 1₂ η-[0:1:] : ∀ (f : (b : 𝟚) → P b) b → [0: f 0₂ 1: f 1₂ ] b ≡ f b η-[0:1:] f 0₂ = refl η-[0:1:] f 1₂ = refl proj : P 0₂ × P 1₂ → (b : 𝟚) → P b proj = uncurry [0:_1:_] proj-tabulate₂ : ∀ (f : (b : 𝟚) → P b) b → proj (tabulate₂ f) b ≡ f b proj-tabulate₂ = η-[0:1:] module _ {a} {A : ★ a} where [0:_1:_]′ : A → A → 𝟚 → A [0:_1:_]′ = [0:_1:_] case_0:_1:_ : 𝟚 → A → A → A case b 0: e₀ 1: e₁ = [0: e₀ 1: e₁ ] b proj′ : A × A → 𝟚 → A proj′ = proj proj[_] : 𝟚 → A × A → A proj[_] = [0: proj₁ 1: proj₂ ] mux : 𝟚 × (A × A) → A mux (s , eᵢ) = proj eᵢ s nor : (b₀ b₁ : 𝟚) → 𝟚 nor b₀ b₁ = not (b₀ ∨ b₁) nand : (b₀ b₁ : 𝟚) → 𝟚 nand b₀ b₁ = not (b₀ ∧ b₁) -- For properties about _==_ see Data.Two.Equality _==_ : (b₀ b₁ : 𝟚) → 𝟚 b₀ == b₁ = (not b₀) xor b₁ ≡→✓ : ∀ {b} → b ≡ 1₂ → ✓ b ≡→✓ refl = _ ≡→✓not : ∀ {b} → b ≡ 0₂ → ✓ (not b) ≡→✓not refl = _ ✓→≡ : ∀ {b} → ✓ b → b ≡ 1₂ ✓→≡ {1₂} _ = refl ✓→≡ {0₂} () ✓not→≡ : ∀ {b} → ✓ (not b) → b ≡ 0₂ ✓not→≡ {0₂} _ = refl ✓not→≡ {1₂} () ✓∧ : ∀ {b₁ b₂} → ✓ b₁ → ✓ b₂ → ✓ (b₁ ∧ b₂) ✓∧ p q = _⟨$⟩_ (from ✓-∧) (p , q) ✓∧₁ : ∀ {b₁ b₂} → ✓ (b₁ ∧ b₂) → ✓ b₁ ✓∧₁ = proj₁ ∘ _⟨$⟩_ (to ✓-∧) ✓∧₂ : ∀ {b₁ b₂} → ✓ (b₁ ∧ b₂) → ✓ b₂ ✓∧₂ {b₁} = proj₂ ∘ _⟨$⟩_ (to (✓-∧ {b₁})) ✓∨-⊎ : ∀ {b₁ b₂} → ✓ (b₁ ∨ b₂) → ✓ b₁ ⊎ ✓ b₂ ✓∨-⊎ {b₁} = _⟨$⟩_ (to (✓-∨ {b₁})) ✓∨₁ : ∀ {b₁ b₂} → ✓ b₁ → ✓ (b₁ ∨ b₂) ✓∨₁ = _⟨$⟩_ (from ✓-∨) ∘ inj₁ ✓∨₂ : ∀ {b₁ b₂} → ✓ b₂ → ✓ (b₁ ∨ b₂) ✓∨₂ {b₁} = _⟨$⟩_ (from (✓-∨ {b₁})) ∘ inj₂ ✓-not-¬ : ∀ {b} → ✓ (not b) → ¬ (✓ b) ✓-not-¬ {0₂} _ = λ() ✓-not-¬ {1₂} () ✓-¬-not : ∀ {b} → ¬ (✓ b) → ✓ (not b) ✓-¬-not {0₂} _ = _ ✓-¬-not {1₂} f = f _ ∧⇒∨ : ∀ x y → ✓ (x ∧ y) → ✓ (x ∨ y) ∧⇒∨ 0₂ _ = λ () ∧⇒∨ 1₂ _ = _ ✓dec : ∀ b → Dec (✓ b) ✓dec = [0: no (λ()) 1: yes _ ] de-morgan : ∀ x y → not (x ∨ y) ≡ not x ∧ not y de-morgan 0₂ _ = refl de-morgan 1₂ _ = refl ≢0→≡1 : ∀ {x} → x ≢ 0₂ → x ≡ 1₂ ≢0→≡1 {1₂} p = refl ≢0→≡1 {0₂} p = 𝟘-elim (p refl) ≢1→≡0 : ∀ {x} → x ≢ 1₂ → x ≡ 0₂ ≢1→≡0 {0₂} p = refl ≢1→≡0 {1₂} p = 𝟘-elim (p refl) -- 0₂ is 0 and 1₂ is 1 𝟚▹ℕ : 𝟚 → ℕ 𝟚▹ℕ = [0: 0 1: 1 ] 𝟚▹ℕ≤1 : ∀ b → 𝟚▹ℕ b ≤ 1 𝟚▹ℕ≤1 = [0: z≤n 1: s≤s z≤n ] 𝟚▹ℕ-⊓ : ∀ a b → 𝟚▹ℕ a ⊓ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∧ b) 𝟚▹ℕ-⊓ 1₂ 0₂ = refl 𝟚▹ℕ-⊓ 1₂ 1₂ = refl 𝟚▹ℕ-⊓ 0₂ _ = refl 𝟚▹ℕ-⊔ : ∀ a b → 𝟚▹ℕ a ⊔ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∨ b) 𝟚▹ℕ-⊔ 1₂ 0₂ = refl 𝟚▹ℕ-⊔ 1₂ 1₂ = refl 𝟚▹ℕ-⊔ 0₂ _ = refl 𝟚▹ℕ-∸ : ∀ a b → 𝟚▹ℕ a ∸ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∧ not b) 𝟚▹ℕ-∸ 0₂ 0₂ = refl 𝟚▹ℕ-∸ 0₂ 1₂ = refl 𝟚▹ℕ-∸ 1₂ 0₂ = refl 𝟚▹ℕ-∸ 1₂ 1₂ = refl xor-not-not : ∀ x y → (not x) xor (not y) ≡ x xor y xor-not-not 0₂ y = not-involutive y xor-not-not 1₂ _ = refl not-inj : ∀ {x y} → not x ≡ not y → x ≡ y not-inj {0₂} {0₂} _ = refl not-inj {1₂} {1₂} _ = refl not-inj {0₂} {1₂} () not-inj {1₂} {0₂} () xor-inj₁ : ∀ x {y z} → (x xor y) ≡ (x xor z) → y ≡ z xor-inj₁ 0₂ = id xor-inj₁ 1₂ = not-inj xor-inj₂ : ∀ x {y z} → (y xor x) ≡ (z xor x) → y ≡ z xor-inj₂ x {y} {z} p = xor-inj₁ x (Xor°.+-comm x y ∙ p ∙ Xor°.+-comm z x) check : ∀ b → {pf : ✓ b} → 𝟙 check = _ module Indexed {a} {A : ★ a} where _∧°_ : Op₂ (A → 𝟚) x ∧° y = x ⟨ _∧_ ⟩° y _∨°_ : Op₂ (A → 𝟚) x ∨° y = x ⟨ _∨_ ⟩° y _xor°_ : Op₂ (A → 𝟚) x xor° y = x ⟨ _xor_ ⟩° y _==°_ : Op₂ (A → 𝟚) x ==° y = x ⟨ _==_ ⟩° y not° : Op₁ (A → 𝟚) not° f = not ∘ f -- -} -- -} -- -}
{-# OPTIONS --without-K #-} module Data.Two where open import Data.Bool public hiding (if_then_else_) renaming (Bool to 𝟚; false to 0₂; true to 1₂; T to ✓) open import Data.Bool.Properties public using (isCommutativeSemiring-∨-∧ ;commutativeSemiring-∨-∧ ;module RingSolver ;isCommutativeSemiring-∧-∨ ;commutativeSemiring-∧-∨ ;isBooleanAlgebra ;booleanAlgebra ;commutativeRing-xor-∧ ;module XorRingSolver ;not-involutive ;not-¬ ;¬-not ;⇔→≡ ;proof-irrelevance) renaming (T-≡ to ✓-≡ ;T-∧ to ✓-∧ ;T-∨ to ✓-∨) open import Type using (★_) open import Algebra using (module CommutativeRing; module CommutativeSemiring) open import Algebra.FunctionProperties using (Op₁; Op₂) open import Data.Nat using (ℕ; _≤_; z≤n; s≤s; _⊓_; _⊔_; _∸_) open import Data.Zero using (𝟘-elim) open import Data.One using (𝟙) open import Data.Product using (proj₁; proj₂; uncurry; _×_; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function.Equivalence using (module Equivalence) open import Function.Equality using (_⟨$⟩_) open import Function.NP using (id; _∘_; _⟨_⟩°_) open import Relation.Binary.PropositionalEquality.NP using (_≡_; _≢_; refl; idp; _∙_; !_) open import Relation.Nullary using (¬_; Dec; yes; no) open Equivalence using (to; from) module Xor° = CommutativeRing commutativeRing-xor-∧ module 𝟚° = CommutativeSemiring commutativeSemiring-∧-∨ _² : ∀ {a} → ★ a → ★ a A ² = 𝟚 → A module _ {p} {P : 𝟚 → ★ p} where [0:_1:_] : P 0₂ → P 1₂ → (b : 𝟚) → P b [0: e₀ 1: e₁ ] 0₂ = e₀ [0: e₀ 1: e₁ ] 1₂ = e₁ tabulate₂ : ((b : 𝟚) → P b) → P 0₂ × P 1₂ tabulate₂ f = f 0₂ , f 1₂ η-[0:1:] : ∀ (f : (b : 𝟚) → P b) b → [0: f 0₂ 1: f 1₂ ] b ≡ f b η-[0:1:] f 0₂ = refl η-[0:1:] f 1₂ = refl proj : P 0₂ × P 1₂ → (b : 𝟚) → P b proj = uncurry [0:_1:_] proj-tabulate₂ : ∀ (f : (b : 𝟚) → P b) b → proj (tabulate₂ f) b ≡ f b proj-tabulate₂ = η-[0:1:] module _ {a} {A : ★ a} where [0:_1:_]′ : A → A → A ² [0:_1:_]′ = [0:_1:_] case_0:_1:_ : 𝟚 → A → A → A case b 0: e₀ 1: e₁ = [0: e₀ 1: e₁ ] b proj′ : A × A → A ² proj′ = proj proj[_] : 𝟚 → A × A → A proj[_] = [0: proj₁ 1: proj₂ ] mux : 𝟚 × (A × A) → A mux (s , eᵢ) = proj eᵢ s nor : (b₀ b₁ : 𝟚) → 𝟚 nor b₀ b₁ = not (b₀ ∨ b₁) nand : (b₀ b₁ : 𝟚) → 𝟚 nand b₀ b₁ = not (b₀ ∧ b₁) -- For properties about _==_ see Data.Two.Equality _==_ : (b₀ b₁ : 𝟚) → 𝟚 b₀ == b₁ = (not b₀) xor b₁ ≡→✓ : ∀ {b} → b ≡ 1₂ → ✓ b ≡→✓ refl = _ ≡→✓not : ∀ {b} → b ≡ 0₂ → ✓ (not b) ≡→✓not refl = _ ✓→≡ : ∀ {b} → ✓ b → b ≡ 1₂ ✓→≡ {1₂} _ = refl ✓→≡ {0₂} () ✓not→≡ : ∀ {b} → ✓ (not b) → b ≡ 0₂ ✓not→≡ {0₂} _ = refl ✓not→≡ {1₂} () ✓∧ : ∀ {b₁ b₂} → ✓ b₁ → ✓ b₂ → ✓ (b₁ ∧ b₂) ✓∧ p q = _⟨$⟩_ (from ✓-∧) (p , q) ✓∧₁ : ∀ {b₁ b₂} → ✓ (b₁ ∧ b₂) → ✓ b₁ ✓∧₁ = proj₁ ∘ _⟨$⟩_ (to ✓-∧) ✓∧₂ : ∀ {b₁ b₂} → ✓ (b₁ ∧ b₂) → ✓ b₂ ✓∧₂ {b₁} = proj₂ ∘ _⟨$⟩_ (to (✓-∧ {b₁})) ✓∨-⊎ : ∀ {b₁ b₂} → ✓ (b₁ ∨ b₂) → ✓ b₁ ⊎ ✓ b₂ ✓∨-⊎ {b₁} = _⟨$⟩_ (to (✓-∨ {b₁})) ✓∨₁ : ∀ {b₁ b₂} → ✓ b₁ → ✓ (b₁ ∨ b₂) ✓∨₁ = _⟨$⟩_ (from ✓-∨) ∘ inj₁ ✓∨₂ : ∀ {b₁ b₂} → ✓ b₂ → ✓ (b₁ ∨ b₂) ✓∨₂ {b₁} = _⟨$⟩_ (from (✓-∨ {b₁})) ∘ inj₂ ✓-not-¬ : ∀ {b} → ✓ (not b) → ¬ (✓ b) ✓-not-¬ {0₂} _ = λ() ✓-not-¬ {1₂} () ✓-¬-not : ∀ {b} → ¬ (✓ b) → ✓ (not b) ✓-¬-not {0₂} _ = _ ✓-¬-not {1₂} f = f _ ∧⇒∨ : ∀ x y → ✓ (x ∧ y) → ✓ (x ∨ y) ∧⇒∨ 0₂ _ = λ () ∧⇒∨ 1₂ _ = _ ✓dec : ∀ b → Dec (✓ b) ✓dec = [0: no (λ()) 1: yes _ ] de-morgan : ∀ x y → not (x ∨ y) ≡ not x ∧ not y de-morgan 0₂ _ = refl de-morgan 1₂ _ = refl ≢0→≡1 : ∀ {x} → x ≢ 0₂ → x ≡ 1₂ ≢0→≡1 {1₂} p = refl ≢0→≡1 {0₂} p = 𝟘-elim (p refl) ≢1→≡0 : ∀ {x} → x ≢ 1₂ → x ≡ 0₂ ≢1→≡0 {0₂} p = refl ≢1→≡0 {1₂} p = 𝟘-elim (p refl) -- 0₂ is 0 and 1₂ is 1 𝟚▹ℕ : 𝟚 → ℕ 𝟚▹ℕ = [0: 0 1: 1 ] 𝟚▹ℕ≤1 : ∀ b → 𝟚▹ℕ b ≤ 1 𝟚▹ℕ≤1 = [0: z≤n 1: s≤s z≤n ] 𝟚▹ℕ-⊓ : ∀ a b → 𝟚▹ℕ a ⊓ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∧ b) 𝟚▹ℕ-⊓ 1₂ 0₂ = refl 𝟚▹ℕ-⊓ 1₂ 1₂ = refl 𝟚▹ℕ-⊓ 0₂ _ = refl 𝟚▹ℕ-⊔ : ∀ a b → 𝟚▹ℕ a ⊔ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∨ b) 𝟚▹ℕ-⊔ 1₂ 0₂ = refl 𝟚▹ℕ-⊔ 1₂ 1₂ = refl 𝟚▹ℕ-⊔ 0₂ _ = refl 𝟚▹ℕ-∸ : ∀ a b → 𝟚▹ℕ a ∸ 𝟚▹ℕ b ≡ 𝟚▹ℕ (a ∧ not b) 𝟚▹ℕ-∸ 0₂ 0₂ = refl 𝟚▹ℕ-∸ 0₂ 1₂ = refl 𝟚▹ℕ-∸ 1₂ 0₂ = refl 𝟚▹ℕ-∸ 1₂ 1₂ = refl xor-not-not : ∀ x y → (not x) xor (not y) ≡ x xor y xor-not-not 0₂ y = not-involutive y xor-not-not 1₂ _ = refl not-inj : ∀ {x y} → not x ≡ not y → x ≡ y not-inj {0₂} {0₂} _ = refl not-inj {1₂} {1₂} _ = refl not-inj {0₂} {1₂} () not-inj {1₂} {0₂} () xor-inj₁ : ∀ x {y z} → (x xor y) ≡ (x xor z) → y ≡ z xor-inj₁ 0₂ = id xor-inj₁ 1₂ = not-inj xor-inj₂ : ∀ x {y z} → (y xor x) ≡ (z xor x) → y ≡ z xor-inj₂ x {y} {z} p = xor-inj₁ x (Xor°.+-comm x y ∙ p ∙ Xor°.+-comm z x) check : ∀ b → {pf : ✓ b} → 𝟙 check = _ module Indexed {a} {A : ★ a} where _∧°_ : Op₂ (A → 𝟚) x ∧° y = x ⟨ _∧_ ⟩° y _∨°_ : Op₂ (A → 𝟚) x ∨° y = x ⟨ _∨_ ⟩° y _xor°_ : Op₂ (A → 𝟚) x xor° y = x ⟨ _xor_ ⟩° y _==°_ : Op₂ (A → 𝟚) x ==° y = x ⟨ _==_ ⟩° y not° : Op₁ (A → 𝟚) not° f = not ∘ f -- -} -- -} -- -}
add _²
Data.Two: add _²
Agda
bsd-3-clause
crypto-agda/agda-nplib
6ad96baab8d36671b146b356a5a446ae10e1b832
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra as CA using ( ChangeAlgebra ; ChangeAlgebraFamily ; change-algebra₍_₎ ; family ) open import Level Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra ---------------- -- Parameters -- ---------------- Change-base : (ι : Base) → ⟦ ι ⟧Base → Set Change-base = CA.Δ₍_₎ diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v diff-change-base = CA.diff′ --------------- -- Interface -- --------------- open CA public using ( ) renaming ( Δ₍_₎ to Change ; update′ to apply-change ; diff′ to diff-change ; nil₍_₎ to nil-change ) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u v+[u-v]=u {τ} {u} {v} = CA.update-diff₍ τ ₎ u v -------------------- -- Implementation -- -------------------- module _ {τ₁ τ₂ : Type} where open CA.FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public using ( ) renaming ( correct to is-valid ; apply to call-change ) open CA public using ( before ; after ; before₍_₎ ; after₍_₎ ) ------------------ -- Environments -- ------------------ open CA.FunctionChanges public using (cons) open CA public using () renaming ( [] to ∅ ; _∷_ to _•_ ) open CA.ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set ΔEnv Γ ρ = CA.Δ₍ Γ ₎ ρ after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎ apply-env : ∀ Γ → (ρ : ⟦ Γ ⟧) → (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ apply-env = CA.update′ diff-env : ∀ Γ → (π ρ : ⟦ Γ ⟧) → ΔEnv Γ ρ diff-env = CA.diff′
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra as CA using ( ChangeAlgebra ; ChangeAlgebraFamily ; change-algebra₍_₎ ; family ) open import Level Structure : Set₁ Structure = ChangeAlgebraFamily zero ⟦_⟧Base module Structure (change-algebra-base : Structure) where change-algebra : ∀ τ → ChangeAlgebra zero ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = CA.FunctionChanges.changeAlgebra _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily zero ⟦_⟧Type change-algebra-family = family change-algebra ---------------- -- Parameters -- ---------------- Change-base : (ι : Base) → ⟦ ι ⟧Base → Set Change-base = CA.Δ₍_₎ diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v diff-change-base = CA.diff′ --------------- -- Interface -- --------------- open CA public using ( ) renaming ( Δ₍_₎ to Change ; update′ to apply-change ; diff′ to diff-change ; nil₍_₎ to nil-change ) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u v+[u-v]=u {τ} {u} {v} = CA.update-diff₍ τ ₎ u v -------------------- -- Implementation -- -------------------- module _ {τ₁ τ₂ : Type} where open CA.FunctionChanges.FunctionChange _ _ {{change-algebra τ₁}} {{change-algebra τ₂}} public using ( ) renaming ( correct to is-valid ; apply to call-change ) open CA public using ( before ; after ; before₍_₎ ; after₍_₎ ) ------------------ -- Environments -- ------------------ open CA.FunctionChanges public using (cons) open CA public using () renaming ( [] to ∅ ; _∷_ to _•_ ) open CA.ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebra to environment-changes ) ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set ΔEnv Γ ρ = CA.Δ₍ Γ ₎ ρ after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍ Γ ₎
Remove apply-env and diff-env.
Remove apply-env and diff-env. Old-commit-hash: 0901643e49a0e4ff70db8f16278c25bd28348d3a
Agda
mit
inc-lc/ilc-agda
973a194f1e408a138980b8d9e4156302e223bc75
Thesis/SIRelBigStep/DeriveCorrect.agda
Thesis/SIRelBigStep/DeriveCorrect.agda
-- -- In this module we conclude our proof: we have shown that t, derive-dterm t -- and produce related values (in the sense of the fundamental property, -- rfundamental3), and for related values v1, dv and v2 we have v1 ⊕ dv ≡ -- v2 (because ⊕ agrees with validity, rrelV3→⊕). -- -- We now put these facts together via derive-correct-si and derive-correct. -- This is immediate, even though I spend so much code on it: -- Indeed, all theorems are immediate corollaries of what we established (as -- explained above); only the statements are longer, especially because I bother -- expanding them. module Thesis.SIRelBigStep.DeriveCorrect where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR open import Thesis.SIRelBigStep.FundamentalProperty -- Theorem statement. This theorem still mentions step-indexes explicitly. derive-correct-si-type = ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t (derive-dterm t) t ρ1 dρ ρ2 k -- A verified expansion of the theorem statement. derive-correct-si-type-means : derive-correct-si-type ≡ ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → (v1 v2 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct-si-type-means = refl derive-correct-si : derive-correct-si-type derive-correct-si t ρ1 dρ ρ2 ρρ = rrelT3→⊕ t (derive-dterm t) t ρ1 dρ ρ2 (rfundamental3 _ t ρ1 dρ ρ2 ρρ) -- Infinitely related environments: rrelρ3-inf : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set rrelρ3-inf Γ ρ1 dρ ρ2 = ∀ k → rrelρ3 Γ ρ1 dρ ρ2 k -- A theorem statement for infinitely-related environments. On paper, if we informally -- omit the arbitrary derivation step-index as usual, we get a statement without -- step-indexes. derive-correct : ∀ {τ Γ} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3-inf Γ ρ1 dρ ρ2) → (v1 v2 : Val τ) → ∀ j → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct t ρ1 dρ ρ2 ρρ v1 v2 j = derive-correct-si t ρ1 dρ ρ2 (ρρ (suc j)) v1 v2 j ≤-refl
-- -- In this module we conclude our proof: we have shown that t, derive-dterm t -- and produce related values (in the sense of the fundamental property, -- rfundamental3), and for related values v1, dv and v2 we have v1 ⊕ dv ≡ -- v2 (because ⊕ agrees with validity, rrelV3→⊕). -- -- We now put these facts together via derive-correct-si and derive-correct. -- This is immediate, even though I spend so much code on it: -- Indeed, all theorems are immediate corollaries of what we established (as -- explained above); only the statements are longer, especially because I bother -- expanding them. module Thesis.SIRelBigStep.DeriveCorrect where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR open import Thesis.SIRelBigStep.FundamentalProperty -- Theorem statement. This theorem still mentions step-indexes explicitly. derive-correct-si-type = ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t (derive-dterm t) t ρ1 dρ ρ2 k -- A verified expansion of the theorem statement. derive-correct-si-type-means : derive-correct-si-type ≡ ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → (v1 v2 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct-si-type-means = refl derive-correct-si : derive-correct-si-type derive-correct-si t ρ1 dρ ρ2 ρρ = rrelT3→⊕ t (derive-dterm t) t ρ1 dρ ρ2 (rfundamental3 _ t ρ1 dρ ρ2 ρρ) -- Infinitely related environments: rrelρ3-inf : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set rrelρ3-inf Γ ρ1 dρ ρ2 = ∀ k → rrelρ3 Γ ρ1 dρ ρ2 k -- A theorem statement for infinitely-related environments. On paper, if we informally -- omit the arbitrary derivation step-index as usual, we get a statement without -- step-indexes. derive-correct : ∀ {τ Γ} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3-inf Γ ρ1 dρ ρ2) → (v1 v2 : Val τ) → ∀ j → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct t ρ1 dρ ρ2 ρρ v1 v2 j = derive-correct-si t ρ1 dρ ρ2 (ρρ (suc j)) v1 v2 j ≤-refl open import Data.Unit nilρ : ∀ {Γ n} (ρ : ⟦ Γ ⟧Context) → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ dρ ρ n nilV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n nilV (closure t ρ) = let dρ , ρρ = nilρ ρ in dclosure (derive-dterm t) ρ dρ , rfundamental3svv _ (abs t) ρ dρ ρ ρρ nilV (natV n₁) = dnatV zero , refl nilV (pairV a b) = let 0a , aa = nilV a; 0b , bb = nilV b in dpairV 0a 0b , aa , bb nilρ ∅ = ∅ , tt nilρ (v • ρ) = let dv , vv = nilV v ; dρ , ρρ = nilρ ρ in dv • dρ , vv , ρρ
Define a correct nil on values and environments
Define a correct nil on values and environments Compose is trickier because I must match on two validity proofs, need an inversion lemma for that.
Agda
mit
inc-lc/ilc-agda
1da0c206672cf5880079e99b71f1940b6df8932e
lambda.agda
lambda.agda
module lambda where open import Relation.Binary.PropositionalEquality open import Syntactic.Types public open import Syntactic.Contexts Type public open import Denotational.Notation open import Denotational.Values public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v if-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ if t₁ t₂ t₃ ↓ v₂ if-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ if t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (if-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (if-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Term Γ₁ τ → Term Γ₂ τ weaken ≼₁ (abs t) = abs (weaken (keep _ • ≼₁) t) weaken ≼₁ (app t₁ t₂) = app (weaken ≼₁ t₁) (weaken ≼₁ t₂) weaken ≼₁ (var x) = var (lift ≼₁ x) weaken ≼₁ true = true weaken ≼₁ false = false weaken ≼₁ (if e₁ e₂ e₃) = if (weaken ≼₁ e₁) (weaken ≼₁ e₂) (weaken ≼₁ e₃)
module lambda where open import Relation.Binary.PropositionalEquality open import Syntactic.Types public open import Syntactic.Contexts Type public open import Denotational.Notation open import Denotational.Values public open import Denotational.Environments Type ⟦_⟧Type public -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ true false : ∀ {Γ} → Term Γ bool if : ∀ {Γ τ} → (t₁ : Term Γ bool) (t₂ t₃ : Term Γ τ) → Term Γ τ -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ true ⟧Term ρ = true ⟦ false ⟧Term ρ = false ⟦ if t₁ t₂ t₃ ⟧Term ρ with ⟦ t₁ ⟧Term ρ ... | true = ⟦ t₂ ⟧Term ρ ... | false = ⟦ t₃ ⟧Term ρ meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm = meaning ⟦_⟧Term -- NATURAL SEMANTICS -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) true : Val bool false : Val bool data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v if-true : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₂ : Val τ} → ρ ⊢ t₁ ↓ true → ρ ⊢ t₂ ↓ v₂ → ρ ⊢ if t₁ t₂ t₃ ↓ v₂ if-false : ∀ {Γ τ} {ρ : Env Γ} {t₁ t₂ t₃} {v₃ : Val τ} → ρ ⊢ t₁ ↓ false → ρ ⊢ t₃ ↓ v₃ → ρ ⊢ if t₁ t₂ t₃ ↓ v₃ -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) ⟦ true ⟧Val = true ⟦ false ⟧Val = false meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv = meaning ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal = meaning ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ ↓-sound (if-true ↓₁ ↓₂) rewrite ↓-sound ↓₁ = ↓-sound ↓₂ ↓-sound (if-false ↓₁ ↓₃) rewrite ↓-sound ↓₁ = ↓-sound ↓₃ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Term Γ₁ τ → Term Γ₂ τ weaken ≼₁ (abs t) = abs (weaken (keep _ • ≼₁) t) weaken ≼₁ (app t₁ t₂) = app (weaken ≼₁ t₁) (weaken ≼₁ t₂) weaken ≼₁ (var x) = var (lift ≼₁ x) weaken ≼₁ true = true weaken ≼₁ false = false weaken ≼₁ (if e₁ e₂ e₃) = if (weaken ≼₁ e₁) (weaken ≼₁ e₂) (weaken ≼₁ e₃) -- SYMBOLIC EXECUTION -- -- Naming Convention: -- Γ ⟪_⟫X is like ⟦_⟧X but for symbolic execution in context Γ. _⟪_⟫Type : Context → Type → Set Γ₁ ⟪ τ₁ ⇒ τ₂ ⟫Type = ∀ {Γ₂} → Γ₁ ≼ Γ₂ → Γ₂ ⟪ τ₁ ⟫Type → Γ₂ ⟪ τ₂ ⟫Type Γ₁ ⟪ bool ⟫Type = Term Γ₁ bool module _ (Γ : Context) where import Denotational.Environments module SymEnv = Denotational.Environments Type (λ τ → Γ ⟪ τ ⟫Type) open SymEnv public using () renaming (⟦_⟧Context to _⟪_⟫Context; ⟦_⟧Var to _⟪_⟫Var_) liftVal : ∀ {τ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ τ ⟫Type → Γ₂ ⟪ τ ⟫Type liftVal {τ₁ ⇒ τ₂} ≼₁ v₁ = λ ≼₂ v₂ → v₁ (≼-trans ≼₁ ≼₂) v₂ liftVal {bool} ≼₁ v = weaken ≼₁ v liftEnv : ∀ {Γ Γ₁ Γ₂} → Γ₁ ≼ Γ₂ → Γ₁ ⟪ Γ ⟫Context → Γ₂ ⟪ Γ ⟫Context liftEnv {∅} ≼₁ ∅ = SymEnv.∅ liftEnv {τ • Γ} ≼₁ (v • ρ) = liftVal ≼₁ v SymEnv.• liftEnv ≼₁ ρ mixed-if : ∀ {Γ₁} τ → (t₁ : Term Γ₁ bool) (v₂ v₃ : Γ₁ ⟪ τ ⟫Type) → Γ₁ ⟪ τ ⟫Type mixed-if (τ₁ ⇒ τ₂) t₁ v₂ v₃ = λ ≼₁ v → mixed-if τ₂ (weaken ≼₁ t₁) (v₃ ≼₁ v) (v₃ ≼₁ v) mixed-if bool t₁ t₂ t₃ = if t₁ t₂ t₃ _⟪_⟫Term_ : ∀ Γ₁ {Γ τ} → Term Γ τ → Γ₁ ⟪ Γ ⟫Context → Γ₁ ⟪ τ ⟫Type Γ₁ ⟪ abs t ⟫Term ρ = λ {Γ₂} ≼₁ v → Γ₂ ⟪ t ⟫Term (v SymEnv.• liftEnv ≼₁ ρ) Γ₁ ⟪ app t₁ t₂ ⟫Term ρ = (Γ₁ ⟪ t₁ ⟫Term ρ) ≼-refl (Γ₁ ⟪ t₂ ⟫Term ρ) Γ₁ ⟪ var x ⟫Term ρ = Γ₁ ⟪ x ⟫Var ρ Γ₁ ⟪ true ⟫Term ρ = true Γ₁ ⟪ false ⟫Term ρ = false Γ₁ ⟪ if t₁ t₂ t₃ ⟫Term ρ = mixed-if _ (Γ₁ ⟪ t₁ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) (Γ₁ ⟪ t₂ ⟫Term ρ) ↓ : ∀ {Γ} τ → Γ ⟪ τ ⟫Type → Term Γ τ ↑ : ∀ {Γ} τ → Term Γ τ → Γ ⟪ τ ⟫Type ↓ (τ₁ ⇒ τ₂) v = abs (↓ τ₂ (v (drop τ₁ • ≼-refl) (↑ τ₁ (var this)))) ↓ bool v = v ↑ (τ₁ ⇒ τ₂) t = λ ≼₁ v → ↑ τ₂ (app (weaken ≼₁ t) (↓ τ₁ v)) ↑ bool t = t ↑-Context : ∀ {Γ} → Γ ⟪ Γ ⟫Context ↑-Context {∅} = SymEnv.∅ ↑-Context {τ • Γ} = ↑ τ (var this) SymEnv.• liftEnv (drop τ • ≼-refl) ↑-Context norm : ∀ {Γ τ} → Term Γ τ → Term Γ τ norm {Γ} {τ} t = ↓ τ (Γ ⟪ t ⟫Term ↑-Context)
Implement NbE for lambda calculus with conditionals (see #50).
Implement NbE for lambda calculus with conditionals (see #50). This version is simpler than the code in NormalizationByEvaluation in the following ways: - Instead of supporting arbitrary base types and constants, bool, true, false, and if are hard-coded. - Instead of supporting arbitrary Kripke structures, metacircular evaluation and symbolic evaluation are hard-coded. Old-commit-hash: d25aa0871f3efecd4932029a007775f4c22568fb
Agda
mit
inc-lc/ilc-agda
2bc86b16750cda8c1189ff286ba5405a47076a56
README.agda
README.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Machine-checked formalization of the theoretical results presented -- in the paper: -- -- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann. -- A Theory of Changes for Higher-Order Languages: -- Incrementalizing λ-Calculi by Static Differentiation. -- To appear at PLDI, ACM 2014. -- -- We claim that this formalization -- -- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper, -- (2) formally specifies the interface between our incrementalization -- framework and potential plugins, and -- (3) shows that the plugin interface can be instantiated. -- -- The first claim is the main reason for a machine-checked -- proof: We want to be sure that we got the proofs right. -- -- The second claim is about reusability and applicability: Only -- a clearly defined interface allows other researchers to -- provide plugins for our framework. -- -- The third claim is to show that the plugin interface is -- consistent: An inconsistent plugin interface would allow to -- prove arbitrary results in the framework. ------------------------------------------------------------------------ module README where -- We know two good ways to read this code base. You can either -- use Emacs with agda2-mode to interact with the source files, -- or you can use a web browser to view the pretty-printed and -- hyperlinked source files. For Agda power users, we also -- include basic setup information for your own machine. -- IF YOU WANT TO USE A BROWSER -- ============================ -- -- Start with *HTML* version of this readme. On the AEC -- submission website (online or inside the VM), follow the link -- "view the Agda code in their browser" to the file -- agda/README.html. -- -- The source code is syntax highlighted and hyperlinked. You can -- click on module names to open the corresponding files, or you -- can click on identifiers to jump to their definition. In -- general, a Agda file with name `Foo/Bar/Baz.agda` contains a -- module `Foo.Bar.Baz` and is shown in an HTML file -- `Foo.Bar.Baz.html`. -- -- Note that we also include the HTML files generated for our -- transitive dependencies from the Agda standard library. This -- allows you to follow hyperlinks to the Agda standard -- library. It is the default behavior of `agda --html` which we -- used to generate the HTML. -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE EMACS -- ======================== -- -- Open this file in Emacs with agda2-mode installed. See below -- for which Agda version you need to install. On the VM image, -- everything is setup for you and you can just open this file in -- Emacs. -- -- C-c C-l Load code. Type checks and syntax highlights. Use -- this if the code is not syntax highlighted, or -- after you changed something that you want to type -- check. -- -- M-. Jump to definition of identifier at the point. -- M-* Jump back. -- -- Note that README.agda imports Everything.agda which imports -- every Agda file in our formalization. So if README.agda type -- checks successfully, everything does. If you want to type -- check everything from scratch, delete the *.agdai files to -- disable separate compilation. You can use "find . -name -- '*.agdai' | xargs rm" to do that. -- -- More information on the Agda mode is available on the Agda wiki: -- -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE YOUR OWN SETUP -- ================================= -- -- To typecheck this formalization, you need to install the appropriate version -- of Agda, the Agda standard library (version 0.7), generate Everything.agda -- with the attached Haskell helper, and finally run Agda on this file. -- -- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh -- script and following instructions given on output will eventually generate -- Everything.agda and proceed to type check everything on command line. -- -- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but -- has some bugs with serialization of code using some recent syntactic sugar -- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it -- might work or not. When it does not, removing Agda caches (.agdai files) -- appears to often help. You can use "find . -name '*.agdai' | xargs rm" to do -- that. -- -- If you're not an Agda power user, it is probably easier to use -- the VM image or look at the pretty-printed and hyperlinked -- HTML files, see above. -- WHERE TO START READING? -- ======================= -- -- modules.pdf -- The graph of dependencies between Agda modules. -- Good if you want to get a broad overview. -- -- README.agda -- This file. A coarse-grained introduction to the Agda -- formalization. Good if you want to begin at the beginning -- and understand the structure of our code. -- -- PLDI14-List-of-Theorems.agda -- Pointers to the Agda formalizations of all theorems, lemmas -- or definitions in the PLDI paper. Good if you want to read -- the paper and the Agda code side by side. -- -- Here is an import of this file, so you can jump to it -- directly (use M-. in Emacs or click the module name in the -- Browser): import PLDI14-List-of-Theorems -- Everything.agda -- Imports every Agda module in our formalization. Good if you -- want to make sure you don't miss anything. -- -- Again, here's is an import of this file so you can navigate -- there: import Everything -- (This import is also important to ensure that if we typecheck -- README.agda, we also typecheck every other file of our -- formalization). -- THE AGDA CODE -- ============= -- -- The formalization has four parts: -- -- 1. A formalization of change structures. This lives in -- Base.Change.Algebra. (What we call "change structure" in the -- paper, we call "change algebra" in the Agda code. We changed -- the name when writing the paper, and never got around to -- updating the name in the Agda code). -- -- 2. Incrementalization framework for first-class functions, -- with extension points for plugging in data types and their -- incrementalization. This lives in the Parametric.* -- hierarchy. -- -- 3. An example plugin that provides integers and bags -- with negative multiplicity. This lives in the Nehemiah.* -- hierarchy. (For some reason, we choose to call this -- particular incarnation of the plugin Nehemiah). -- -- 4. Other material that is unrelated to the framework/plugin -- distinction. This is all other files. -- FORMALIZATION OF CHANGE STRUCTURES -- ================================== -- -- Section 2 of the paper, and Base.Change.Algebra in Agda. import Base.Change.Algebra -- INCREMENTALIZATION FRAMEWORK -- ============================ -- -- Section 3 of the paper, and Parametric.* hierarchy in Agda. -- -- The extension points are implemented as module parameters. See -- detailed explanation in Parametric.Syntax.Type and -- Parametric.Syntax.Term. Some extension points are for types, -- some for values, and some for proof fragments. In Agda, these -- three kinds of entities are unified anyway, so we can encode -- all of them as module parameters. -- -- Every module in the Parametric.* hierarchy adds at least one -- extension point, so the module hierarchy of a plugin will -- typically mirror the Parametric.* hierarchy, defining the -- values for these extension points. -- -- Firstly, we have the syntax of types and terms, the erased -- change structure for function types and incrementalization as -- a term-to-term transformation. The contents of these modules -- formalizes Sec. 3.1 and 3.2 of the paper, except for the -- second and third line of Figure 3, which is formalized further -- below. import Parametric.Syntax.Type -- syntax of types import Parametric.Syntax.Term -- syntax of terms import Parametric.Change.Type -- simply-typed changes import Parametric.Change.Derive -- incrementalization -- Secondly, we define the usual denotational semantics of the -- simply-typed lambda calculus in terms of total functions, and -- the change semantics in terms of a change structure on total -- functions. The contents of these modules formalize Sec. 3.3, -- 3.4 and 3.5 of the paper. import Parametric.Denotation.Value -- standard values import Parametric.Denotation.Evaluation -- standard evaluation import Parametric.Change.Validity -- dependently-typed changes import Parametric.Change.Specification -- change evaluation -- Thirdly, we define terms that operate on simply-typed changes, -- and connect them to their values. The concents of these -- modules formalize the second and third line of Figure 3, as -- well as the semantics of these lines. import Parametric.Change.Term -- terms that operate on simply-typed changes import Parametric.Change.Value -- the values of these terms import Parametric.Change.Evaluation -- connecting the terms and their values -- Finally, we prove correctness by connecting the (syntactic) -- incrementalization to the (semantic) change evaluation by a -- logical relation, and a proof that the values of terms -- produced by the incrementalization transformation are related -- to the change values of the original terms. The contents of -- these modules formalize Sec. 3.6. import Parametric.Change.Implementation -- logical relation import Parametric.Change.Correctness -- main correctness proof -- EXAMPLE PLUGIN -- ============== -- -- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda. -- -- The module structure of the plugin follows the structure of -- the Parametric.* hierarchy. For example, the extension point -- defined in Parametric.Syntax.Term is instantiated in -- Nehemiah.Syntax.Term. -- -- As discussed in Sec. 3.7 of the paper, the point of this -- plugin is not to speed up any real programs, but to show "that -- the interface for proof plugins can be implemented". As a -- first step towards proving correctness of the more complicated -- plugin with integers, bags and finite maps we implement in -- Scala, we choose to define plugin with integers and bags in -- Agda. Instead of implementing bags (with negative -- multiplicities, like in the paper) in Agda, though, we -- postulate that a group of such bags exist. Note that integer -- bags with integer multiplicities are actually the free group -- given a singleton operation `Integer -> Bag`, so this should -- be easy to formalize in principle. -- Before we start with the plugin, we postulate an abstract data -- type for integer bags. import Postulate.Bag-Nehemiah -- Firstly, we extend the syntax of types and terms, the erased -- change structure for function types, and incrementalization as -- a term-to-term transformation to account for the data types of -- the Nehemiah language. The contents of these modules -- instantiate the extension points in Sec. 3.1 and 3.2 of the -- paper, except for the second and third line of Figure 3, which -- is instantiated further below. import Nehemiah.Syntax.Type import Nehemiah.Syntax.Term import Nehemiah.Change.Type import Nehemiah.Change.Derive -- Secondly, we extend the usual denotational semantics and the -- change semantics to account for the data types of the Nehemiah -- language. The contents of these modules instantiate the -- extension points in Sec. 3.3, 3.4 and 3.5 of the paper. import Nehemiah.Denotation.Value import Nehemiah.Denotation.Evaluation import Nehemiah.Change.Validity import Nehemiah.Change.Specification -- Thirdly, we extend the terms that operate on simply-typed -- changes, and the connection to their values to account for the -- data types of the Nehemiah language. The concents of these -- modules instantiate the extension points in the second and -- third line of Figure 3. import Nehemiah.Change.Term import Nehemiah.Change.Value import Nehemiah.Change.Evaluation -- Finally, we extend the logical relation and the main -- correctness proof to account for the data types in the -- Nehemiah language. The contents of these modules instantiate -- the extension points defined in Sec. 3.6. import Nehemiah.Change.Implementation import Nehemiah.Change.Correctness -- OTHER MATERIAL -- ============== -- -- We postulate extensionality of Agda functions. This postulate -- is well known to be compatible with Agda's type theory. import Postulate.Extensionality -- For historical reasons, we reexport Data.List.All from the -- standard library under the name DependentList. import Base.Data.DependentList -- This module supports overloading the ⟦_⟧ notation based on -- Agda's instance arguments. import Base.Denotation.Notation -- These modules implement contexts including typed de Bruijn -- indices to represent bound variables, sets of bound variables, -- and environments. These modules are parametric in the set of -- types (that are stored in contexts) and the set of values -- (that are stored in environments). So these modules are even -- more parametric than the Parametric.* hierarchy. import Base.Syntax.Context import Base.Syntax.Vars import Base.Denotation.Environment -- This module contains some helper definitions to merge a -- context of values and a context of changes. import Base.Change.Context
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Machine-checked formalization of the theoretical results presented -- in the paper: -- -- Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann. -- A Theory of Changes for Higher-Order Languages: -- Incrementalizing λ-Calculi by Static Differentiation. -- To appear at PLDI, ACM 2014. -- -- We claim that this formalization -- -- (1) proves every lemma and theorem in Sec. 2 and 3 of the paper, -- (2) formally specifies the interface between our incrementalization -- framework and potential plugins, and -- (3) shows that the plugin interface can be instantiated. -- -- The first claim is the main reason for a machine-checked -- proof: We want to be sure that we got the proofs right. -- -- The second claim is about reusability and applicability: Only -- a clearly defined interface allows other researchers to -- provide plugins for our framework. -- -- The third claim is to show that the plugin interface is -- consistent: An inconsistent plugin interface would allow to -- prove arbitrary results in the framework. ------------------------------------------------------------------------ module README where -- We know two good ways to read this code base. You can either -- use Emacs with agda2-mode to interact with the source files, -- or you can use a web browser to view the pretty-printed and -- hyperlinked source files. For Agda power users, we also -- include basic setup information for your own machine. -- IF YOU WANT TO USE A BROWSER -- ============================ -- -- Start with *HTML* version of this readme. On the AEC -- submission website (online or inside the VM), follow the link -- "view the Agda code in their browser" to the file -- agda/README.html. -- -- The source code is syntax highlighted and hyperlinked. You can -- click on module names to open the corresponding files, or you -- can click on identifiers to jump to their definition. In -- general, a Agda file with name `Foo/Bar/Baz.agda` contains a -- module `Foo.Bar.Baz` and is shown in an HTML file -- `Foo.Bar.Baz.html`. -- -- Note that we also include the HTML files generated for our -- transitive dependencies from the Agda standard library. This -- allows you to follow hyperlinks to the Agda standard -- library. It is the default behavior of `agda --html` which we -- used to generate the HTML. -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE EMACS -- ======================== -- -- Open this file in Emacs with agda2-mode installed. See below -- for which Agda version you need to install. On the VM image, -- everything is setup for you and you can just open this file in -- Emacs. -- -- C-c C-l Load code. Type checks and syntax highlights. Use -- this if the code is not syntax highlighted, or -- after you changed something that you want to type -- check. -- -- M-. Jump to definition of identifier at the point. -- M-* Jump back. -- -- Note that README.agda imports Everything.agda which imports -- every Agda file in our formalization. So if README.agda type -- checks successfully, everything does. If you want to type -- check everything from scratch, delete the *.agdai files to -- disable separate compilation. You can use "find . -name -- '*.agdai' | xargs rm" to do that. -- -- More information on the Agda mode is available on the Agda wiki: -- -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.QuickGuideToEditingTypeCheckingAndCompilingAgdaCode -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Docs.EmacsModeKeyCombinations -- -- To get started, continue below on "Where to start reading?". -- IF YOU WANT TO USE YOUR OWN SETUP -- ================================= -- -- To typecheck this formalization, you need to install the appropriate version -- of Agda (2.4.0), the Agda standard library (version 0.8), generate -- Everything.agda with the attached Haskell helper, and finally run Agda on -- this file. -- -- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh -- script and following instructions given on output will eventually generate -- Everything.agda and proceed to type check everything on command line. -- -- If you're not an Agda power user, it is probably easier to use -- the VM image or look at the pretty-printed and hyperlinked -- HTML files, see above. -- WHERE TO START READING? -- ======================= -- -- modules.pdf -- The graph of dependencies between Agda modules. -- Good if you want to get a broad overview. -- -- README.agda -- This file. A coarse-grained introduction to the Agda -- formalization. Good if you want to begin at the beginning -- and understand the structure of our code. -- -- PLDI14-List-of-Theorems.agda -- Pointers to the Agda formalizations of all theorems, lemmas -- or definitions in the PLDI paper. Good if you want to read -- the paper and the Agda code side by side. -- -- Here is an import of this file, so you can jump to it -- directly (use M-. in Emacs or click the module name in the -- Browser): import PLDI14-List-of-Theorems -- Everything.agda -- Imports every Agda module in our formalization. Good if you -- want to make sure you don't miss anything. -- -- Again, here's is an import of this file so you can navigate -- there: import Everything -- (This import is also important to ensure that if we typecheck -- README.agda, we also typecheck every other file of our -- formalization). -- THE AGDA CODE -- ============= -- -- The formalization has four parts: -- -- 1. A formalization of change structures. This lives in -- Base.Change.Algebra. (What we call "change structure" in the -- paper, we call "change algebra" in the Agda code. We changed -- the name when writing the paper, and never got around to -- updating the name in the Agda code). -- -- 2. Incrementalization framework for first-class functions, -- with extension points for plugging in data types and their -- incrementalization. This lives in the Parametric.* -- hierarchy. -- -- 3. An example plugin that provides integers and bags -- with negative multiplicity. This lives in the Nehemiah.* -- hierarchy. (For some reason, we choose to call this -- particular incarnation of the plugin Nehemiah). -- -- 4. Other material that is unrelated to the framework/plugin -- distinction. This is all other files. -- FORMALIZATION OF CHANGE STRUCTURES -- ================================== -- -- Section 2 of the paper, and Base.Change.Algebra in Agda. import Base.Change.Algebra -- INCREMENTALIZATION FRAMEWORK -- ============================ -- -- Section 3 of the paper, and Parametric.* hierarchy in Agda. -- -- The extension points are implemented as module parameters. See -- detailed explanation in Parametric.Syntax.Type and -- Parametric.Syntax.Term. Some extension points are for types, -- some for values, and some for proof fragments. In Agda, these -- three kinds of entities are unified anyway, so we can encode -- all of them as module parameters. -- -- Every module in the Parametric.* hierarchy adds at least one -- extension point, so the module hierarchy of a plugin will -- typically mirror the Parametric.* hierarchy, defining the -- values for these extension points. -- -- Firstly, we have the syntax of types and terms, the erased -- change structure for function types and incrementalization as -- a term-to-term transformation. The contents of these modules -- formalizes Sec. 3.1 and 3.2 of the paper, except for the -- second and third line of Figure 3, which is formalized further -- below. import Parametric.Syntax.Type -- syntax of types import Parametric.Syntax.Term -- syntax of terms import Parametric.Change.Type -- simply-typed changes import Parametric.Change.Derive -- incrementalization -- Secondly, we define the usual denotational semantics of the -- simply-typed lambda calculus in terms of total functions, and -- the change semantics in terms of a change structure on total -- functions. The contents of these modules formalize Sec. 3.3, -- 3.4 and 3.5 of the paper. import Parametric.Denotation.Value -- standard values import Parametric.Denotation.Evaluation -- standard evaluation import Parametric.Change.Validity -- dependently-typed changes import Parametric.Change.Specification -- change evaluation -- Thirdly, we define terms that operate on simply-typed changes, -- and connect them to their values. The concents of these -- modules formalize the second and third line of Figure 3, as -- well as the semantics of these lines. import Parametric.Change.Term -- terms that operate on simply-typed changes import Parametric.Change.Value -- the values of these terms import Parametric.Change.Evaluation -- connecting the terms and their values -- Finally, we prove correctness by connecting the (syntactic) -- incrementalization to the (semantic) change evaluation by a -- logical relation, and a proof that the values of terms -- produced by the incrementalization transformation are related -- to the change values of the original terms. The contents of -- these modules formalize Sec. 3.6. import Parametric.Change.Implementation -- logical relation import Parametric.Change.Correctness -- main correctness proof -- EXAMPLE PLUGIN -- ============== -- -- Sec. 3.7 in the paper, and the Nehemiah.* hierarchy in Agda. -- -- The module structure of the plugin follows the structure of -- the Parametric.* hierarchy. For example, the extension point -- defined in Parametric.Syntax.Term is instantiated in -- Nehemiah.Syntax.Term. -- -- As discussed in Sec. 3.7 of the paper, the point of this -- plugin is not to speed up any real programs, but to show "that -- the interface for proof plugins can be implemented". As a -- first step towards proving correctness of the more complicated -- plugin with integers, bags and finite maps we implement in -- Scala, we choose to define plugin with integers and bags in -- Agda. Instead of implementing bags (with negative -- multiplicities, like in the paper) in Agda, though, we -- postulate that a group of such bags exist. Note that integer -- bags with integer multiplicities are actually the free group -- given a singleton operation `Integer -> Bag`, so this should -- be easy to formalize in principle. -- Before we start with the plugin, we postulate an abstract data -- type for integer bags. import Postulate.Bag-Nehemiah -- Firstly, we extend the syntax of types and terms, the erased -- change structure for function types, and incrementalization as -- a term-to-term transformation to account for the data types of -- the Nehemiah language. The contents of these modules -- instantiate the extension points in Sec. 3.1 and 3.2 of the -- paper, except for the second and third line of Figure 3, which -- is instantiated further below. import Nehemiah.Syntax.Type import Nehemiah.Syntax.Term import Nehemiah.Change.Type import Nehemiah.Change.Derive -- Secondly, we extend the usual denotational semantics and the -- change semantics to account for the data types of the Nehemiah -- language. The contents of these modules instantiate the -- extension points in Sec. 3.3, 3.4 and 3.5 of the paper. import Nehemiah.Denotation.Value import Nehemiah.Denotation.Evaluation import Nehemiah.Change.Validity import Nehemiah.Change.Specification -- Thirdly, we extend the terms that operate on simply-typed -- changes, and the connection to their values to account for the -- data types of the Nehemiah language. The concents of these -- modules instantiate the extension points in the second and -- third line of Figure 3. import Nehemiah.Change.Term import Nehemiah.Change.Value import Nehemiah.Change.Evaluation -- Finally, we extend the logical relation and the main -- correctness proof to account for the data types in the -- Nehemiah language. The contents of these modules instantiate -- the extension points defined in Sec. 3.6. import Nehemiah.Change.Implementation import Nehemiah.Change.Correctness -- OTHER MATERIAL -- ============== -- -- We postulate extensionality of Agda functions. This postulate -- is well known to be compatible with Agda's type theory. import Postulate.Extensionality -- For historical reasons, we reexport Data.List.All from the -- standard library under the name DependentList. import Base.Data.DependentList -- This module supports overloading the ⟦_⟧ notation based on -- Agda's instance arguments. import Base.Denotation.Notation -- These modules implement contexts including typed de Bruijn -- indices to represent bound variables, sets of bound variables, -- and environments. These modules are parametric in the set of -- types (that are stored in contexts) and the set of values -- (that are stored in environments). So these modules are even -- more parametric than the Parametric.* hierarchy. import Base.Syntax.Context import Base.Syntax.Vars import Base.Denotation.Environment -- This module contains some helper definitions to merge a -- context of values and a context of changes. import Base.Change.Context
Update Agda version in README.agda
Update Agda version in README.agda
Agda
mit
inc-lc/ilc-agda
1fd2e308e6cbee61ce0c527c7a1c8fa86ae11694
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning -- Unused, but just to test that inference works. lemma : nil f ≙ dg lemma = ≙-sym (derivative-is-nil dg fdg)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function module _ {a ℓ} {A : Set a} {{ca : ChangeAlgebra ℓ A}} {x : A} where -- Delta-observational equivalence: these asserts that two changes -- give the same result when applied to a base value. -- To avoid unification problems, use a one-field record. record _≙_ dx dy : Set a where -- doe = Delta-Observational Equivalence. constructor doe field proof : x ⊞ dx ≡ x ⊞ dy open _≙_ public -- Same priority as ≡ infix 4 _≙_ open import Relation.Binary -- _≙_ is indeed an equivalence relation: ≙-refl : ∀ {dx} → dx ≙ dx ≙-refl = doe refl ≙-sym : ∀ {dx dy} → dx ≙ dy → dy ≙ dx ≙-sym ≙ = doe $ sym $ proof ≙ ≙-trans : ∀ {dx dy dz} → dx ≙ dy → dy ≙ dz → dx ≙ dz ≙-trans ≙₁ ≙₂ = doe $ trans (proof ≙₁) (proof ≙₂) -- That's standard congruence applied to ≙ ≙-cong : ∀ {b} {B : Set b} (f : A → B) {dx dy} → dx ≙ dy → f (x ⊞ dx) ≡ f (x ⊞ dy) ≙-cong f da≙db = cong f $ proof da≙db ≙-isEquivalence : IsEquivalence (_≙_) ≙-isEquivalence = record { refl = ≙-refl ; sym = ≙-sym ; trans = ≙-trans } ≙-setoid : Setoid ℓ a ≙-setoid = record { Carrier = Δ x ; _≈_ = _≙_ ; isEquivalence = ≙-isEquivalence } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR module ≙-Reasoning where open EqR ≙-setoid public renaming (_≈⟨_⟩_ to _≙⟨_⟩_) -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ dx → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ dx → x ⊞ dx ≡ x → dx ≙ nil x ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by fun-change-respects. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x module _ {a} {b} {c} {d} {A : Set a} {B : Set b} {{CA : ChangeAlgebra c A}} {{CB : ChangeAlgebra d B}} where module FC = FunctionChanges A B {{CA}} {{CB}} open FC using (changeAlgebra; incrementalization) open FC.FunctionChange fun-change-respects : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂} → df₁ ≙ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ fun-change-respects {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- We know that Derivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> Derivative f (apply df). -- Now, we try to prove that if Derivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → Derivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → Derivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) -- If we have two derivatives, they're both nil, hence they're equal. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → Derivative f (apply df) → Derivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning
Remove more dead code
Remove more dead code Old-commit-hash: 20e82287ead4c99b0bce90e095ed1f7711119d2a
Agda
mit
inc-lc/ilc-agda
e87a9fc0946ded53de5e1775b46c12ba9a8ba6dc
ZK/GroupHom/Types.agda
ZK/GroupHom/Types.agda
{-# OPTIONS --without-K #-} open import Type using (Type) open import Data.Bool.Base using (Bool) renaming (T to ✓) open import Relation.Binary.PropositionalEquality.NP using (_≡_) open import Algebra.Group open import Algebra.Group.Homomorphism module ZK.GroupHom.Types where record GrpHom (G+ G* : Type)(P : G+ → Type) : Type where field 𝔾+ : Group G+ 𝔾* : Group G* _==_ : G* → G* → Bool ✓-== : ∀ {x y} → x ≡ y → ✓ (x == y) ==-✓ : ∀ {x y} → ✓ (x == y) → x ≡ y open Additive-Group 𝔾+ hiding (_⊗_) public open Multiplicative-Group 𝔾* hiding (_^_) public field φ : G+ → G* φ-hom : GroupHomomorphism 𝔾+ 𝔾* φ y : G* φ⇒P : ∀ x → φ x ≡ y → P x P⇒φ : ∀ x → P x → φ x ≡ y
{-# OPTIONS --without-K #-} open import Type using (Type) open import Type.Eq open import Relation.Binary.PropositionalEquality.NP using (_≡_) open import Algebra.Group open import Algebra.Group.Homomorphism module ZK.GroupHom.Types where -- P is the "valid witness" predicate. record ZK-hom (G+ G* : Type)(P : G+ → Type) : Type where field 𝔾+ : Group G+ 𝔾* : Group G* {{G*-eq?}} : Eq? G* open Eq? G*-eq? open Additive-Group 𝔾+ hiding (_⊗_) public open Multiplicative-Group 𝔾* hiding (_^_) public field φ : G+ → G* φ-hom : GroupHomomorphism 𝔾+ 𝔾* φ y : G* φ⇒P : ∀ x → φ x ≡ y → P x P⇒φ : ∀ x → P x → φ x ≡ y -- -} -- -} -- -} -- -}
use Eq?
ZK.GroupHom.Types: use Eq?
Agda
bsd-3-clause
crypto-agda/crypto-agda
61adc205859b99f216096bf10da4b6ffe56adfc7
Base/Syntax/Context.agda
Base/Syntax/Context.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We provide two approaches for weakening: context prefixes and -- and subcontext relationship. In this formalization, we mostly -- (maybe exclusively?) use the latter. -- Context Prefixes -- ---------------- -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open List public using () renaming ( [] to ∅ ; _∷_ to _•_ ; map to mapContext ) Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We provide two approaches for weakening: context prefixes and -- and subcontext relationship. In this formalization, we mostly -- (maybe exclusively?) use the latter. -- Context Prefixes -- ---------------- -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context _⋎_ = List._++_ take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
Simplify _⋎_
Simplify _⋎_
Agda
mit
inc-lc/ilc-agda
b93733dc8edf5e1dc3e416dfa0bca1405b5ae331
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Changes open import ChangeContexts -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: valid-Δ : {T : Type} → ⟦ T ⟧ → ⟦ Δ-Type T ⟧ → Set valid-Δ {bool} v dv = ⊤ valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) → (valid-Δ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s)) -- LIFTING terms into Δ-Contexts lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′) -- PROPERTIES of lift-term lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) → ⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in begin ⟦ lift-term {{Γ′}} t ⟧ ρ ≡⟨⟩ ⟦ weaken Γ″ t ⟧ ρ ≡⟨ weaken-sound t ρ ⟩ ⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ) ≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩ ⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ)) ≡⟨⟩ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) ∎ where open ≡-Reasoning -- PROPERTIES of Δ Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) → let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t)) Δ-abs t = ext-t (λ ρ → refl) Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) → Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in begin ⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′ ≡⟨⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {{Γ′}} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨⟩ ⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′ ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = if a b false !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = if x false true -- XXX: to finish this, we just need to call lift-term, like in -- derive-term. Should be easy, just a bit boring. apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply-pure-term {bool} = abs {!!} apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) ({!Δ {Γ} (var this)!}))) (app (var (that this)) (var this))))) --abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x (Δx)) ( f x ) -- Term xor _xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a xor-term b = if a (! b) b diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term {τ ⇒ τ₁} = λ f₁ f₂ → {!diff-term (f₁ x) (f₂ x)!} diff-term {bool} = _xor-term_ apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term {τ ⇒ τ₁} = {!!} apply-term {bool} = _xor-term_ derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Changes open import ChangeContexts -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: valid-Δ : {T : Type} → ⟦ T ⟧ → ⟦ Δ-Type T ⟧ → Set valid-Δ {bool} v dv = ⊤ valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds (valid-w : valid-Δ s ds) → valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) -- LIFTING terms into Δ-Contexts lift-term : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ τ lift-term {Γ₁} {Γ₂} {{Γ′}} = weaken (≼-trans ≼-Δ-Context Γ′) -- PROPERTIES of lift-term lift-term-ignore : ∀ {Γ₁ Γ₂ τ} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} {ρ : ⟦ Γ₂ ⟧} (t : Term Γ₁ τ) → ⟦ lift-term {{Γ′}} t ⟧ ρ ≡ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) lift-term-ignore {{Γ′}} {ρ} t = let Γ″ = ≼-trans ≼-Δ-Context Γ′ in begin ⟦ lift-term {{Γ′}} t ⟧ ρ ≡⟨⟩ ⟦ weaken Γ″ t ⟧ ρ ≡⟨ weaken-sound t ρ ⟩ ⟦ t ⟧ (⟦ ≼-trans ≼-Δ-Context Γ′ ⟧ ρ) ≡⟨ cong (λ x → ⟦ t ⟧ x) (⟦⟧-≼-trans ≼-Δ-Context Γ′ ρ) ⟩ ⟦ t ⟧Term (⟦ ≼-Δ-Context ⟧≼ (⟦ Γ′ ⟧≼ ρ)) ≡⟨⟩ ⟦ t ⟧ (ignore (⟦ Γ′ ⟧ ρ)) ∎ where open ≡-Reasoning -- PROPERTIES of Δ Δ-abs : ∀ {τ₁ τ₂ Γ₁ Γ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t : Term (τ₁ • Γ₁) τ₂) → let Γ″ = keep Δ-Type τ₁ • keep τ₁ • Γ′ in Δ {{Γ′}} (abs t) ≈ abs (abs (Δ {τ₁ • Γ₁} t)) Δ-abs t = ext-t (λ ρ → refl) Δ-app : ∀ {Γ₁ Γ₂ τ₁ τ₂} {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} (t₁ : Term Γ₁ (τ₁ ⇒ τ₂)) (t₂ : Term Γ₁ τ₁) → Δ {{Γ′}} (app t₁ t₂) ≈ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) Δ-app {{Γ′}} t₁ t₂ = ≈-sym (ext-t (λ ρ′ → let ρ = ⟦ Γ′ ⟧ ρ′ in begin ⟦ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ⟧ ρ′ ≡⟨⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term {{Γ′}} t₂ ⟧ ρ′)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {{Γ′}} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨⟩ ⟦ Δ {{Γ′}} (app t₁ t₂) ⟧ ρ′ ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = if a b false !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = if x false true -- XXX: to finish this, we just need to call lift-term, like in -- derive-term. Should be easy, just a bit boring. apply-pure-term : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply-pure-term {bool} = abs {!!} apply-pure-term {τ₁ ⇒ τ₂} {Γ} = abs (abs (abs (app (app apply-pure-term (app (app (var (that (that this))) (var this)) ({!Δ {Γ} (var this)!}))) (app (var (that this)) (var this))))) --abs (abs (abs (app (app apply-compose-term (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x (Δx)) ( f x ) -- Term xor _xor-term_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a xor-term b = if a (! b) b diff-term : ∀ {τ Γ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term {τ ⇒ τ₁} = λ f₁ f₂ → {!diff-term (f₁ x) (f₂ x)!} diff-term {bool} = _xor-term_ apply-term : ∀ {τ Γ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term {τ ⇒ τ₁} = {!!} apply-term {bool} = _xor-term_ derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → (t : Term Γ₁ τ) → Δ {{Γ′}} t ≈ derive-term {{Γ′}} t derive-term-correct {Γ₁} {{Γ′}} (abs {τ} t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ {τ • Γ₁} t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct {τ • Γ₁} t)) ⟩ abs (abs (derive-term {τ • Γ₁} t)) ≡⟨⟩ derive-term (abs t) ∎ where open ≈-Reasoning Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term-correct {Γ₁} {{Γ′}} (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (Δ {{Γ′}} t₂) ≈⟨ ≈-app (≈-app (derive-term-correct {{Γ′}} t₁) ≈-refl) (derive-term-correct {{Γ′}} t₂) ⟩ app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) ≡⟨⟩ derive-term {{Γ′}} (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct {Γ₁} {{Γ′}} (var x) = ext-t (λ ρ → begin ⟦ Δ {{Γ′}} (var x) ⟧ ρ ≡⟨⟩ diff (⟦ x ⟧ (update (⟦ Γ′ ⟧ ρ))) (⟦ x ⟧ (ignore (⟦ Γ′ ⟧ ρ))) ≡⟨ derive-var-correct {Γ₁} (⟦ Γ′ ⟧ ρ) x ⟩ ⟦ derive-var x ⟧Var (⟦ Γ′ ⟧ ρ) ≡⟨ sym (lift-sound Γ′ (derive-var x) ρ) ⟩ ⟦ lift Γ′ (derive-var x) ⟧Var ρ ∎) where open ≡-Reasoning derive-term-correct true = ext-t (λ ρ → ≡-refl) derive-term-correct false = ext-t (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t)
Break lines.
Break lines. Old-commit-hash: c7c69f51c35066147017459aa226bebe26d68df2
Agda
mit
inc-lc/ilc-agda
fdb5d8f0195c9849f6e208db228bb650fe5eba97
Parametric/Change/Term.agda
Parametric/Change/Term.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (Δbase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base Δbase open import Data.Product module Structure where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Term {Base : Set} (Constant : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where -- Terms that operate on changes open Type.Structure Base open Term.Structure Base Constant open ChangeType.Structure Base ΔBase open import Data.Product module Structure where -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) × Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (τ ⇒ τ ⇒ ΔType τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : (∀ {ι Γ} → Term Γ (base ι ⇒ base ι ⇒ ΔType (base ι))) → (∀ {ι Γ} → Term Γ (ΔType (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → Term Γ (ΔType τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ})
Rename Δbase to ΔBase.
Rename Δbase to ΔBase. Old-commit-hash: e9efdc6e4dd5d76003e901e1ef557ec049d5e59c
Agda
mit
inc-lc/ilc-agda
7ed997a9f08476266fb59fb488eac08ad40048de
parametricity.agda
parametricity.agda
module parametricity where import Data.Bool.Param.NatBool import Data.Dec.Param.Binary import Data.Dec.Param.Unary import Data.Fin.Param.Binary import Data.Maybe.Param.Binary import Data.Maybe.Param.Unary import Data.Nat.Param.Binary import Data.One.Param.Binary import Data.One.Param.Unary import Data.Product.Param.Binary import Data.Product.Param.Unary import Data.Sum.Param.Binary import Data.Sum.Param.Unary import Data.Two.Param.Binary import Data.Two.Param.Unary import Data.Zero.Param.Binary import Data.Zero.Param.Unary import Function.Param.Binary import Function.Param.Unary import Reflection.NP import Reflection.Param import Reflection.Param.Env import Reflection.Param.Tests import Type.Param.Binary import Type.Param.Unary
module parametricity where import Data.Bool.Param.NatBool import Data.Dec.Param.Binary import Data.Dec.Param.Unary import Data.Fin.Param.Binary import Data.Maybe.Param.Binary import Data.Maybe.Param.Unary import Data.Nat.Param.Binary import Data.One.Param.Binary import Data.One.Param.Unary import Data.Product.Param.Binary import Data.Product.Param.Unary import Data.Sum.Param.Binary import Data.Sum.Param.Unary import Data.Two.Param.Binary import Data.Two.Param.Unary import Data.Zero.Param.Binary import Data.Zero.Param.Unary import Function.Param.Binary import Function.Param.Unary {- import Reflection.NP import Reflection.Param import Reflection.Param.Env import Reflection.Param.Tests -} import Type.Param.Binary import Type.Param.Unary
Disable reflection for now
Disable reflection for now
Agda
bsd-3-clause
np/agda-parametricity
5bd1cb31b6ff25934b1212da8538587845a850b9
lib/Relation/Binary/PropositionalEquality/NP.agda
lib/Relation/Binary/PropositionalEquality/NP.agda
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] {- one day this will work -} -- pattern idp = refl -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q !_ : {x y : A} → (x ≡ y → y ≡ x) !_ refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! p x = coe (! p) x cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂} → a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where J-orig : ∀ {b} (P : {x y : A} → x ≡ y → ★_ b) → (∀ {x} → P {x} {x} refl) → ∀ {x y} (p : x ≡ y) → P p J-orig P p refl = p -- This version is better suited to our identity type which has the first argument as a parameter. -- (due to Paulin-Mohring) J : ∀ {b} {x : A} (P : {y : A} → x ≡ y → ★_ b) → P {x} refl → ∀ {y} (p : x ≡ y) → P p J P p refl = p injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} Pullback : ∀ {b c} {B : ★ b} {C : ★ c} (f : A → C) (g : B → C) → ★ _ Pullback {B = B} f g = Σ A (λ x → Σ B (λ y → f x ≡ g y)) module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _≈⟨-by-definition-⟩_ to _≡⟨-by-definition-⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_; _≈⟨-by-definition-⟩_ to _≗⟨-by-definition-⟩_) data ⟦≡⟧ {a₁ a₂ aᵣ} {A₁ A₂} (Aᵣ : ⟦★⟧ {a₁} {a₂} aᵣ A₁ A₂) {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₁) (_≡_ x₂) where -- : ∀ {y₁ y₂} (yᵣ : Aᵣ y₁ y₂) → x₁ ≡ y₁ → x₂ ≡ y₂ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
{-# OPTIONS --without-K #-} -- move this to propeq module Relation.Binary.PropositionalEquality.NP where open import Type hiding (★) open import Data.One using (𝟙) open import Data.Product using (Σ; _,_) open import Relation.Binary.PropositionalEquality public hiding (module ≡-Reasoning; subst) open import Relation.Binary.NP open import Relation.Binary.Bijection open import Relation.Binary.Logical open import Relation.Nullary private module Dummy {a} {A : ★ a} where open IsEquivalence (isEquivalence {a} {A}) public hiding (refl; sym; trans) open Dummy public PathOver : ∀ {i j} {A : ★ i} (B : A → ★ j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → ★ j PathOver B refl u v = (u ≡ v) syntax PathOver B p u v = u ≡ v [ B ↓ p ] {- one day this will work -} -- pattern idp = refl -- Some definitions with the names from Agda-HoTT -- this is only a temporary state of affairs... module _ {a} {A : ★ a} where idp : {x : A} → x ≡ x idp = refl infixr 8 _∙_ _∙'_ _∙_ _∙'_ : {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∙ q = q q ∙' refl = q !_ : {x y : A} → (x ≡ y → y ≡ x) !_ refl = refl ap↓ : ∀ {i j k} {A : ★ i} {B : A → ★ j} {C : A → ★ k} (g : {a : A} → B a → C a) {x y : A} {p : x ≡ y} {u : B x} {v : B y} → (u ≡ v [ B ↓ p ] → g u ≡ g v [ C ↓ p ]) ap↓ g {p = refl} refl = refl ap : ∀ {i j} {A : ★ i} {B : ★ j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f p = ap↓ {A = 𝟙} f {p = refl} p apd : ∀ {i j} {A : ★ i} {B : A → ★ j} (f : (a : A) → B a) {x y : A} → (p : x ≡ y) → f x ≡ f y [ B ↓ p ] apd f refl = refl coe : ∀ {i} {A B : ★ i} (p : A ≡ B) → A → B coe refl x = x coe! : ∀ {i} {A B : ★ i} (p : A ≡ B) → B → A coe! p = coe (! p) module _ {ℓ ℓp} {A : Set ℓ} (P : A → Set ℓp) {x y : A} (p : x ≡ y) where tr : P x → P y tr = coe (ap P p) cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {a₀ a₁ b₀ b₁ c₀ c₁} → a₀ ≡ a₁ → b₀ ≡ b₁ → c₀ ≡ c₁ → f a₀ b₀ c₀ ≡ f a₁ b₁ c₁ cong₃ f refl refl refl = refl _≗₂_ : ∀ {a b c} {A : ★ a} {B : ★ b} {C : ★ c} (f g : A → B → C) → ★ _ f ≗₂ g = ∀ x y → f x y ≡ g x y module _ {a} {A : ★ a} where J-orig : ∀ {b} (P : (x y : A) → x ≡ y → ★_ b) → (∀ x → P x x refl) → ∀ {x y} (p : x ≡ y) → P x y p J-orig P p refl = p _ -- This version is better suited to our identity type which has the first argument as a parameter. -- (due to Paulin-Mohring) J : ∀ {b} {x : A} (P : (y : A) → x ≡ y → ★_ b) → P x refl → ∀ {y} (p : x ≡ y) → P y p J P p refl = p injective : InjectiveRel A _≡_ injective p q = p ∙ ! q surjective : SurjectiveRel A _≡_ surjective p q = ! p ∙ q bijective : BijectiveRel A _≡_ bijective = record { injectiveREL = injective; surjectiveREL = surjective } Equalizer : ∀ {b} {B : A → ★ b} (f g : (x : A) → B x) → ★ _ Equalizer f g = Σ A (λ x → f x ≡ g x) {- In a category theory context this type would the object 'E' and 'proj₁' would be the morphism 'eq : E → A' such that given any object O, and morphism 'm : O → A', there exists a unique morphism 'u : O → E' such that 'eq ∘ u ≡ m'. -} Pullback : ∀ {b c} {B : ★ b} {C : ★ c} (f : A → C) (g : B → C) → ★ _ Pullback {B = B} f g = Σ A (λ x → Σ B (λ y → f x ≡ g y)) module ≡-Reasoning {a} {A : ★ a} where open Setoid-Reasoning (setoid A) public renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _≈⟨by-definition⟩_ to _≡⟨by-definition⟩_) module ≗-Reasoning {a b} {A : ★ a} {B : ★ b} where open Setoid-Reasoning (A →-setoid B) public renaming (_≈⟨_⟩_ to _≗⟨_⟩_; _≈⟨by-definition⟩_ to _≗⟨by-definition⟩_) data ⟦≡⟧ {a₀ a₁ aᵣ} {A₀ A₁} (Aᵣ : ⟦★⟧ {a₀} {a₁} aᵣ A₀ A₁) {x₀ x₁} (xᵣ : Aᵣ x₀ x₁) : (Aᵣ ⟦→⟧ ⟦★⟧ aᵣ) (_≡_ x₀) (_≡_ x₁) where -- : ∀ {y₀ y₁} (yᵣ : Aᵣ y₀ y₁) → x₀ ≡ y₀ → x₁ ≡ y₁ → ★ ⟦refl⟧ : ⟦≡⟧ Aᵣ xᵣ xᵣ refl refl -- Double checking level 0 with a direct ⟦_⟧ encoding private ⟦≡⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ ⟦★₀⟧) _≡_ _≡_ ⟦≡⟧′ = ⟦≡⟧ ⟦refl⟧′ : (∀⟨ Aᵣ ∶ ⟦★₀⟧ ⟩⟦→⟧ ∀⟨ xᵣ ∶ Aᵣ ⟩⟦→⟧ ⟦≡⟧ Aᵣ xᵣ xᵣ) refl refl ⟦refl⟧′ _ _ = ⟦refl⟧
Hide subst, expose tr...
≡: Hide subst, expose tr...
Agda
bsd-3-clause
crypto-agda/agda-nplib
690f2df38e24ddcd80d24056254c61364cc071fd
Base/Change/Equivalence.agda
Base/Change/Equivalence.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a} {A : Set a} {{ca : ChangeAlgebra A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ x) → x ⊞ dx ≡ x → dx ≙ (nil x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x -- \begin{lemma}[Equivalence cancellation] -- |v2 `ominus` v1 `doe` dv| holds if and only if |v2 = v1 `oplus` -- dv|, for any |v1, v2 `elem` V| and |dv `elem` Dt ^ v1|. -- \end{lemma} equiv-cancel-1 : ∀ x' dx → (x' ⊟ x) ≙ dx → x' ≡ x ⊞ dx equiv-cancel-1 x' dx (doe x'⊟x≙dx) = trans (sym (update-diff x' x)) x'⊟x≙dx equiv-cancel-2 : ∀ x' dx → x' ≡ x ⊞ dx → x' ⊟ x ≙ dx equiv-cancel-2 _ dx refl = diff-update module _ {a} {b} {A : Set a} {B : Set b} {{CA : ChangeAlgebra A}} {{CB : ChangeAlgebra B}} where equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂ : Δ f} → df₁ ≙₍ f ₎ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx} {f : A → B} {df₁ df₂} → df₁ ≙₍ f ₎ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) derivative-doe-characterization : ∀ {a : A} {da : Δ a} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → df a da ≙ f (a ⊞ da) ⊟ f a derivative-doe-characterization {a} {da} {f} {df} is-derivative = doe lemma where open ≡-Reasoning lemma : f a ⊞ df a da ≡ f a ⊞ (f (a ⊞ da) ⊟ f a) lemma = begin (f a ⊞ df a da) ≡⟨ is-derivative a da ⟩ (f (a ⊞ da)) ≡⟨ sym (update-diff (f (a ⊞ da)) (f a)) ⟩ (f a ⊞ (f (a ⊞ da) ⊟ f a)) ∎ derivative-respects-doe : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = begin df x dx₁ ≙⟨ derivative-doe-characterization is-derivative ⟩ f (x ⊞ dx₁) ⊟ f x ≡⟨ cong (λ v → f v ⊟ f x) (proof dx₁≙dx₂) ⟩ f (x ⊞ dx₂) ⊟ f x ≙⟨ ≙-sym (derivative-doe-characterization is-derivative) ⟩ df x dx₂ ∎ where open ≙-Reasoning -- This is also a corollary of fun-changes-respect derivative-respects-doe-alt : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe-alt {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = fun-change-respects (DerivativeAsChange is-derivative) dx₁≙dx₂ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x (dx₁ dx₂ : Δ x) → dx₁ ≙₍ x ₎ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df nil-is-derivative : ∀ (f : A → B) → IsDerivative f (apply (nil f)) nil-is-derivative f a da = begin f a ⊞ apply (nil f) a da ≡⟨ sym (incrementalization f (nil f) a da) ⟩ (f ⊞ nil f) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) (update-nil f) ⟩ f (a ⊞ da) ∎ where open ≡-Reasoning -- If we have two derivatives, they're both nil, hence they're equivalent. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning equiv-derivative-is-derivative : ∀ {f : A → B} df₁ df₂ → IsDerivative f (apply df₁) → df₁ ≙₍ f ₎ df₂ → IsDerivative f (apply df₂) equiv-derivative-is-derivative {f} df₁ df₂ IsDerivative-f-df₁ df₁≙df₂ a da = begin f a ⊞ apply df₂ a da ≡⟨ sym (incrementalization f df₂ a da) ⟩ (f ⊞ df₂) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) lemma ⟩ f (a ⊞ da) ∎ where open ≡-Reasoning lemma : f ⊞ df₂ ≡ f lemma = begin f ⊞ df₂ ≡⟨ proof (≙-sym df₁≙df₂) ⟩ f ⊞ df₁ ≡⟨ derivative-is-⊞-unit df₁ IsDerivative-f-df₁ ⟩ f ∎ -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil v) ≙ nil (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil (f v) lemma = begin f v ⊞ df v (nil v) ≡⟨ proof v (nil v) ⟩ f (v ⊞ (nil v)) ≡⟨ cong f (update-nil v) ⟩ f v ≡⟨ sym (update-nil (f v)) ⟩ f v ⊞ nil (f v) ∎
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a} {A : Set a} {{ca : ChangeAlgebra A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ x) → x ⊞ dx ≡ x → dx ≙ (nil x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x -- \begin{lemma}[Equivalence cancellation] -- |v2 `ominus` v1 `doe` dv| holds if and only if |v2 = v1 `oplus` -- dv|, for any |v1, v2 `elem` V| and |dv `elem` Dt ^ v1|. -- \end{lemma} equiv-cancel-1 : ∀ x' dx → (x' ⊟ x) ≙ dx → x' ≡ x ⊞ dx equiv-cancel-1 x' dx (doe x'⊟x≙dx) = trans (sym (update-diff x' x)) x'⊟x≙dx equiv-cancel-2 : ∀ x' dx → x' ≡ x ⊞ dx → x' ⊟ x ≙ dx equiv-cancel-2 _ dx refl = diff-update module _ {a} {b} {A : Set a} {B : Set b} {{CA : ChangeAlgebra A}} {{CB : ChangeAlgebra B}} where ≙-cong₂ : ∀ {c} {C : Set c} {x y} (f : A → B → C) {dx1 dx2 dy1 dy2} → dx1 ≙ dx2 → dy1 ≙ dy2 → f (x ⊞ dx1) (y ⊞ dy1) ≡ f (x ⊞ dx2) (y ⊞ dy2) ≙-cong₂ f dx1≙dx2 dy1≙dy2 = cong₂ f (proof dx1≙dx2) (proof dy1≙dy2) equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂ : Δ f} → df₁ ≙₍ f ₎ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx} {f : A → B} {df₁ df₂} → df₁ ≙₍ f ₎ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) derivative-doe-characterization : ∀ {a : A} {da : Δ a} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → df a da ≙ f (a ⊞ da) ⊟ f a derivative-doe-characterization {a} {da} {f} {df} is-derivative = doe lemma where open ≡-Reasoning lemma : f a ⊞ df a da ≡ f a ⊞ (f (a ⊞ da) ⊟ f a) lemma = begin (f a ⊞ df a da) ≡⟨ is-derivative a da ⟩ (f (a ⊞ da)) ≡⟨ sym (update-diff (f (a ⊞ da)) (f a)) ⟩ (f a ⊞ (f (a ⊞ da) ⊟ f a)) ∎ derivative-respects-doe : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = begin df x dx₁ ≙⟨ derivative-doe-characterization is-derivative ⟩ f (x ⊞ dx₁) ⊟ f x ≡⟨ cong (λ v → f v ⊟ f x) (proof dx₁≙dx₂) ⟩ f (x ⊞ dx₂) ⊟ f x ≙⟨ ≙-sym (derivative-doe-characterization is-derivative) ⟩ df x dx₂ ∎ where open ≙-Reasoning -- This is also a corollary of fun-changes-respect derivative-respects-doe-alt : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe-alt {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = fun-change-respects (DerivativeAsChange is-derivative) dx₁≙dx₂ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x (dx₁ dx₂ : Δ x) → dx₁ ≙₍ x ₎ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df nil-is-derivative : ∀ (f : A → B) → IsDerivative f (apply (nil f)) nil-is-derivative f a da = begin f a ⊞ apply (nil f) a da ≡⟨ sym (incrementalization f (nil f) a da) ⟩ (f ⊞ nil f) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) (update-nil f) ⟩ f (a ⊞ da) ∎ where open ≡-Reasoning -- If we have two derivatives, they're both nil, hence they're equivalent. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning equiv-derivative-is-derivative : ∀ {f : A → B} df₁ df₂ → IsDerivative f (apply df₁) → df₁ ≙₍ f ₎ df₂ → IsDerivative f (apply df₂) equiv-derivative-is-derivative {f} df₁ df₂ IsDerivative-f-df₁ df₁≙df₂ a da = begin f a ⊞ apply df₂ a da ≡⟨ sym (incrementalization f df₂ a da) ⟩ (f ⊞ df₂) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) lemma ⟩ f (a ⊞ da) ∎ where open ≡-Reasoning lemma : f ⊞ df₂ ≡ f lemma = begin f ⊞ df₂ ≡⟨ proof (≙-sym df₁≙df₂) ⟩ f ⊞ df₁ ≡⟨ derivative-is-⊞-unit df₁ IsDerivative-f-df₁ ⟩ f ∎ -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil v) ≙ nil (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil (f v) lemma = begin f v ⊞ df v (nil v) ≡⟨ proof v (nil v) ⟩ f (v ⊞ (nil v)) ≡⟨ cong f (update-nil v) ⟩ f v ≡⟨ sym (update-nil (f v)) ⟩ f v ⊞ nil (f v) ∎
Add ≙-cong₂
Add ≙-cong₂ Useful for next steps.
Agda
mit
inc-lc/ilc-agda
c68ae3394af059da44a270c4286cea18d3987019
Syntax/Term/Plotkin.agda
Syntax/Term/Plotkin.agda
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
import Syntax.Type.Plotkin as Type import Syntax.Context as Context module Syntax.Term.Plotkin {B : Set {- of base types -}} {C : Context.Context {Type.Type B} → Type.Type B → Set {- of constants -}} where -- Terms of languages described in Plotkin style open import Function using (_∘_) open import Data.Product open Type B open Context {Type} open import Denotation.Environment Type open import Syntax.Context.Plotkin B -- Declarations of Term and Terms to enable mutual recursion data Term (Γ : Context) : (τ : Type) → Set data Terms (Γ : Context) : (Σ : Context) → Set -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where const : ∀ {Σ τ} → (c : C Σ τ) → Terms Γ Σ → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. data Terms Γ where ∅ : Terms Γ ∅ _•_ : ∀ {τ Σ} → Term Γ τ → Terms Γ Σ → Terms Γ (τ • Σ) infixr 9 _•_ -- g ⊝ f = λ x . λ Δx . g (x ⊕ Δx) ⊝ f x -- f ⊕ Δf = λ x . f x ⊕ Δf x (x ⊝ x) lift-diff-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) × term Γ (Δtype τ ⇒ τ ⇒ τ) lift-diff-apply diff apply {base ι} = diff , apply lift-diff-apply diff apply {σ ⇒ τ} = let -- for diff g = var (that (that (that this))) f = var (that (that this)) x = var (that this) Δx = var this -- for apply Δh = var (that (that this)) h = var (that this) y = var this -- syntactic sugars diffσ = λ {Γ} → proj₁ (lift-diff-apply diff apply {σ} {Γ}) diffτ = λ {Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) applyσ = λ {Γ} → proj₂ (lift-diff-apply diff apply {σ} {Γ}) applyτ = λ {Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) _⊝σ_ = λ s t → app (app diffσ s) t _⊝τ_ = λ s t → app (app diffτ s) t _⊕σ_ = λ t Δt → app (app applyσ Δt) t _⊕τ_ = λ t Δt → app (app applyτ Δt) t in abs (abs (abs (abs (app f (x ⊕σ Δx) ⊝τ app g x)))) , abs (abs (abs (app h y ⊕τ app (app Δh y) (y ⊝σ y)))) lift-diff : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (τ ⇒ τ ⇒ Δtype τ) lift-diff diff apply = λ {τ Γ} → proj₁ (lift-diff-apply diff apply {τ} {Γ}) lift-apply : ∀ {Δbase : B → Type} → let Δtype = lift-Δtype Δbase term = Term in (∀ {ι Γ} → term Γ (base ι ⇒ base ι ⇒ Δtype (base ι))) → (∀ {ι Γ} → term Γ (Δtype (base ι) ⇒ base ι ⇒ base ι)) → ∀ {τ Γ} → term Γ (Δtype τ ⇒ τ ⇒ τ) lift-apply diff apply = λ {τ Γ} → proj₂ (lift-diff-apply diff apply {τ} {Γ}) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weakenAll : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weakenAll Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (lift Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weakenAll Γ₁≼Γ₂ ∅ = ∅ weakenAll Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weakenAll Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) TermConstructor : (Γ Σ : Context) (τ : Type) → Set TermConstructor Γ ∅ τ′ = Term Γ τ′ TermConstructor Γ (τ • Σ) τ′ = Term Γ τ → TermConstructor Γ Σ τ′ -- helper for lift-η-const, don't try to understand at home lift-η-const-rec : ∀ {Σ Γ τ} → (Terms Γ Σ → Term Γ τ) → TermConstructor Γ Σ τ lift-η-const-rec {∅} k = k ∅ lift-η-const-rec {τ • Σ} k = λ t → lift-η-const-rec (λ ts → k (t • ts)) lift-η-const : ∀ {Σ τ} → C Σ τ → ∀ {Γ} → TermConstructor Γ Σ τ lift-η-const constant = lift-η-const-rec (const constant)
Document Term and Terms.
Document Term and Terms. Old-commit-hash: 7f9cbb4cffc6d9343c93f495fd39e0d6b1bcd855
Agda
mit
inc-lc/ilc-agda
f5b981ea7905d4deb015eced08bb201e6b26490f
Crypto/JS/BigI/FiniteField.agda
Crypto/JS/BigI/FiniteField.agda
{-# OPTIONS --without-K #-} open import Type.Eq open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import FFI.JS using (Bool; trace-call; _++_) open import FFI.JS.Check renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where abstract -- ℤq 𝔽 : Set 𝔽 = BigI private mod-q : BigI → 𝔽 mod-q x = mod x q -- There are two ways to go from BigI to 𝔽: BigI▹𝔽 and mod-q -- Use BigI▹𝔽 for untrusted input data and mod-q for internal -- computation. BigI▹𝔽 : BigI → 𝔽 BigI▹𝔽 = -- trace-call "BigI▹𝔽 " λ x → (check? (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) (check? (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") x)) check-non-zero : 𝔽 → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : 𝔽 → BigI repr x = x 0# 1# : 𝔽 0# = 0I 1# = 1I 1/_ : 𝔽 → 𝔽 1/ x = modInv (check-non-zero x) q _^_ : 𝔽 → BigI → 𝔽 x ^ y = modPow x y q _⊗_ : 𝔽 → BigI → 𝔽 x ⊗ y = mod-q (multiply (repr x) y) _+_ _−_ _*_ _/_ : 𝔽 → 𝔽 → 𝔽 x + y = mod-q (add (repr x) (repr y)) x − y = mod-q (subtract (repr x) (repr y)) x * y = x ⊗ repr y x / y = x * 1/ y 0−_ : 𝔽 → 𝔽 0− x = mod-q (negate (repr x)) sum prod : List 𝔽 → 𝔽 sum = foldr _+_ 0# prod = foldr _*_ 1# instance 𝔽-Eq? : Eq? 𝔽 𝔽-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : 𝔽 → 𝔽 → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y +-mon-ops : Monoid-Ops 𝔽 +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops 𝔽 +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops 𝔽 *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops 𝔽 *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops 𝔽 fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field 𝔽 fld = fld-ops , fld-struct module fld = Field fld open fld using (+-grp) public -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type.Eq open import Data.Two hiding (_==_) open import Relation.Binary.PropositionalEquality open import FFI.JS using (JS[_]; _++_; return; _>>_) open import FFI.JS.Check using (check!) renaming (check to check?) --renaming (warn-check to check?) open import FFI.JS.BigI open import Data.List.Base using (List; foldr) open import Algebra.Raw open import Algebra.Field -- TODO carry on a primality proof of q module Crypto.JS.BigI.FiniteField (q : BigI) where abstract ℤ[_] : Set ℤ[_] = BigI private ℤq : Set ℤq = ℤ[_] mod-q : BigI → ℤq mod-q x = mod x q -- There are two ways to go from BigI to ℤq: BigI▹ℤ[ q ] and mod-q -- Use BigI▹ℤ[ q ] for untrusted input data and mod-q for internal -- computation. BigI▹ℤ[_] : BigI → JS[ ℤq ] BigI▹ℤ[_] x = -- Console.log "BigI▹ℤ[_]" check! "below the modulus" (x <I q) (λ _ → "Not below the modulus: q:" ++ toString q ++ " is less than x:" ++ toString x) >> check! "positivity" (x ≥I 0I) (λ _ → "Should be positive: " ++ toString x ++ " < 0") >> return x check-non-zero : ℤq → BigI check-non-zero = -- trace-call "check-non-zero " λ x → check? (x >I 0I) (λ _ → "Should be non zero") x repr : ℤq → BigI repr x = x 0# 1# : ℤq 0# = 0I 1# = 1I -- One could choose here to return a dummy value when 0 is given. -- Instead we throw an exception which in some circumstances could -- be bad if the runtime semantics is too eager. 1/_ : ℤq → ℤq 1/ x = modInv (check-non-zero x) q _^_ : ℤq → BigI → ℤq x ^ y = modPow x y q _⊗_ : ℤq → BigI → ℤq x ⊗ y = mod-q (multiply (repr x) y) _+_ _−_ _*_ _/_ : ℤq → ℤq → ℤq x + y = mod-q (add (repr x) (repr y)) x − y = mod-q (subtract (repr x) (repr y)) x * y = x ⊗ repr y x / y = x * 1/ y 0−_ : ℤq → ℤq 0− x = mod-q (negate (repr x)) sum prod : List ℤq → ℤq sum = foldr _+_ 0# prod = foldr _*_ 1# instance ℤ[_]-Eq? : Eq? ℤq ℤ[_]-Eq? = record { _==_ = _=='_ ; ≡⇒== = ≡⇒==' ; ==⇒≡ = ==⇒≡' } where _=='_ : ℤq → ℤq → 𝟚 x ==' y = equals (repr x) (repr y) postulate ≡⇒==' : ∀ {x y} → x ≡ y → ✓ (x ==' y) ==⇒≡' : ∀ {x y} → ✓ (x ==' y) → x ≡ y +-mon-ops : Monoid-Ops ℤq +-mon-ops = _+_ , 0# +-grp-ops : Group-Ops ℤq +-grp-ops = +-mon-ops , 0−_ *-mon-ops : Monoid-Ops ℤq *-mon-ops = _*_ , 1# *-grp-ops : Group-Ops ℤq *-grp-ops = *-mon-ops , 1/_ fld-ops : Field-Ops ℤq fld-ops = +-grp-ops , *-grp-ops postulate fld-struct : Field-Struct fld-ops fld : Field ℤq fld = fld-ops , fld-struct module fld = Field fld open fld using (+-grp) public -- -} -- -} -- -} -- -}
rename as ℤ[_], and improve imports from BigI
FiniteField: rename as ℤ[_], and improve imports from BigI
Agda
bsd-3-clause
crypto-agda/crypto-agda
5d3aa98ffc0c22e45257913557e911cc654c4777
Popl14/Change/Evaluation.agda
Popl14/Change/Evaluation.agda
module Popl14.Change.Evaluation where open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Change.Type open import Popl14.Change.Term open import Popl14.Change.Value open import Popl14.Denotation.Value open import Popl14.Denotation.Evaluation open import Relation.Binary.PropositionalEquality open import Base.Denotation.Notation open import Postulate.Extensionality -- unique names with unambiguous types -- to help type inference figure things out private module Disambiguation where infixr 9 _⋆_ _⋆_ : Type → Context → Context _⋆_ = _•_ -- Relating `diff` with `diff-term`, `apply` with `apply-term` meaning-⊕ : ∀ {τ Γ} {t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} → let _+_ = _⟦⊕⟧_ {τ} in ⟦ t ⟧ ρ + ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕ Δt ⟧ ρ meaning-⊝ : ∀ {τ Γ} {s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} → let _-_ = _⟦⊝⟧_ {τ} in ⟦ s ⟧ ρ - ⟦ t ⟧ ρ ≡ ⟦ s ⊝ t ⟧ ρ meaning-⊕ {base base-int} = refl meaning-⊕ {base base-bag} = refl meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v → let Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧ ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ _-₀_ = _⟦⊝⟧_ {σ} _+₁_ = _⟦⊕⟧_ {τ} x : Term Γ′ σ x = var this f : Term Γ′ (σ ⇒ τ) f = var (that this) Δf : Term Γ′ (ΔType (σ ⇒ τ)) Δf = var (that (that this)) y = app f x Δy = app (app Δf x) (x ⊝ x) in begin ⟦ t ⟧ ρ v +₁ ⟦ Δt ⟧ ρ v (v -₀ v) ≡⟨ cong (λ hole → ⟦ t ⟧ ρ v +₁ ⟦ Δt ⟧ ρ v hole) (meaning-⊝ {s = x} {x} {ρ′}) ⟩ ⟦ t ⟧ ρ v +₁ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′) ≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩ ⟦ y ⊕ Δy ⟧ ρ′ ∎) where open ≡-Reasoning open Disambiguation meaning-⊝ {int} = refl meaning-⊝ {bag} = refl meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} = ext (λ v → ext (λ Δv → let Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧Context ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ Δx : Term Γ′ (ΔType σ) Δx = var this x : Term Γ′ σ x = var (that this) f : Term Γ′ (σ ⇒ τ) f = var (that (that this)) g : Term Γ′ (σ ⇒ τ) g = var (that (that (that this))) y = app f x y′ = app g (x ⊕ Δx) _+₀_ = _⟦⊕⟧_ {σ} _-₁_ = _⟦⊝⟧_ {τ} in begin ⟦ s ⟧ ρ (v +₀ Δv) -₁ ⟦ t ⟧ ρ v ≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole -₁ ⟦ t ⟧ ρ v) (meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩ ⟦ s ⟧ ρ (⟦ x ⊕ Δx ⟧ ρ′) -₁ ⟦ t ⟧ ρ v ≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩ ⟦ y′ ⊝ y ⟧ ρ′ ∎)) where open ≡-Reasoning open Disambiguation
module Popl14.Change.Evaluation where open import Popl14.Syntax.Type open import Popl14.Syntax.Term open import Popl14.Change.Type open import Popl14.Change.Term open import Popl14.Change.Value open import Popl14.Denotation.Value open import Popl14.Denotation.Evaluation open import Relation.Binary.PropositionalEquality open import Base.Denotation.Notation open import Postulate.Extensionality -- unique names with unambiguous types -- to help type inference figure things out private module Disambiguation where infixr 9 _⋆_ _⋆_ : Type → Context → Context _⋆_ = _•_ -- Relating `diff` with `diff-term`, `apply` with `apply-term` meaning-⊕ : ∀ {τ Γ} {t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} → ⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕ Δt ⟧ ρ meaning-⊝ : ∀ {τ Γ} {s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} → ⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝ t ⟧ ρ meaning-⊕ {base base-int} = refl meaning-⊕ {base base-bag} = refl meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v → let Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧ ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ x : Term Γ′ σ x = var this f : Term Γ′ (σ ⇒ τ) f = var (that this) Δf : Term Γ′ (ΔType (σ ⇒ τ)) Δf = var (that (that this)) y = app f x Δy = app (app Δf x) (x ⊝ x) in begin ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (v ⟦⊝₍ σ ₎⟧ v) ≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole) (meaning-⊝ {s = x} {x} {ρ′}) ⟩ ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′) ≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩ ⟦ y ⊕ Δy ⟧ ρ′ ∎) where open ≡-Reasoning open Disambiguation meaning-⊝ {int} = refl meaning-⊝ {bag} = refl meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} = ext (λ v → ext (λ Δv → let Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧Context ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ Δx : Term Γ′ (ΔType σ) Δx = var this x : Term Γ′ σ x = var (that this) f : Term Γ′ (σ ⇒ τ) f = var (that (that this)) g : Term Γ′ (σ ⇒ τ) g = var (that (that (that this))) y = app f x y′ = app g (x ⊕ Δx) in begin ⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v) (meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩ ⟦ s ⟧ ρ (⟦ x ⊕ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩ ⟦ y′ ⊝ y ⟧ ρ′ ∎)) where open ≡-Reasoning open Disambiguation
Use ⟦⊕₍_₎⟧ and ⟦⊝₍_₎⟧ in Popl14.Change.Evaluation.
Use ⟦⊕₍_₎⟧ and ⟦⊝₍_₎⟧ in Popl14.Change.Evaluation. Old-commit-hash: a05b08ff42508e49817f899523f4849e9334e057
Agda
mit
inc-lc/ilc-agda
69fe0b1567d5b5439ff7565a79deffd679e3a82b
Parametric/Change/Type.agda
Parametric/Change/Type.agda
module Parametric.Change.Type (Base : Set) where import Parametric.Syntax.Type as Type open Type.Structure Base Structure : Set Structure = Base → Base module Structure (ΔBase : Structure) where ΔType : Type → Type ΔType (base ι) = base (ΔBase ι) ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ open import Base.Change.Context ΔType public
import Parametric.Syntax.Type as Type module Parametric.Change.Type (Base : Type.Structure) where open Type.Structure Base Structure : Set Structure = Base → Base module Structure (ΔBase : Structure) where ΔType : Type → Type ΔType (base ι) = base (ΔBase ι) ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ open import Base.Change.Context ΔType public
Make P.C.Type conform to plugin pattern.
Make P.C.Type conform to plugin pattern. Old-commit-hash: 8dc76b168a0b8d9f859a69834d52d91e2f34b235
Agda
mit
inc-lc/ilc-agda
799ecf7906eb3e8eafef355dc3f96dfd5a71014e
one-time-semantic-security.agda
one-time-semantic-security.agda
module one-time-semantic-security where open import Function open import Data.Nat open import Data.Product using (∃; module Σ; _×_; _,_; proj₁; proj₂) open import Data.Vec using (splitAt; take; drop) import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≗_) open import Data.Bits open import flat-funs open import program-distance open import flipbased-implem -- Capture the various size parameters required -- for a cipher. -- -- M is the message space (|M| is the size of messages) -- C is the cipher text space -- Rᵉ is the randomness used by the cipher. record EncParams : Set where constructor mk field |M| |C| |R|ᵉ : ℕ M = Bits |M| C = Bits |C| Rᵉ = Bits |R|ᵉ -- The type of the encryption function Enc : Set Enc = M → ↺ |R|ᵉ C module EncParams² (ep₀ ep₁ : EncParams) where open EncParams ep₀ public using () renaming (|M| to |M|₀; |C| to |C|₀; |R|ᵉ to |R|ᵉ₀; M to M₀; C to C₀; Rᵉ to Rᵉ₀; Enc to Enc₀) open EncParams ep₁ public using () renaming (|M| to |M|₁; |C| to |C|₁; |R|ᵉ to |R|ᵉ₁; M to M₁; C to C₁; Rᵉ to Rᵉ₁; Enc to Enc₁) Tr = Enc₀ → Enc₁ Tr⁻¹ = Enc₁ → Enc₀ module EncParams²-same-|R|ᵉ (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where ep₁ = EncParams.mk |M|₁ |C|₁ (EncParams.|R|ᵉ ep₀) open EncParams² ep₀ ep₁ public module ♭EncParams {t} {T : Set t} (♭Funs : FlatFuns T) (ep : EncParams) where open FlatFuns ♭Funs open EncParams ep public `M = `Bits |M| `C = `Bits |C| `Rᵉ = `Bits |R|ᵉ module ♭EncParams² {t} {T : Set t} (♭Funs : FlatFuns T) (ep₀ ep₁ : EncParams) where open EncParams² ep₀ ep₁ public open ♭EncParams ♭Funs ep₀ public using () renaming (`M to `M₀; `C to `C₀; `Rᵉ to `Rᵉ₀) open ♭EncParams ♭Funs ep₁ public using () renaming (`M to `M₁; `C to `C₁; `Rᵉ to `Rᵉ₁) module AbsSemSec {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs record SemSecAdv (ep : EncParams) |R|ᵃ : Set where constructor mk open ♭EncParams ♭Funs ep field {|S|} : ℕ `S = `Bits |S| S = Bits |S| -- Randomness adversary `Rᵃ = `Bits |R|ᵃ Rᵃ = Bits |R|ᵃ field step₀ : `Rᵃ `→ (`M `× `M) `× `S step₁ : `C `× `S `→ `Bit M² = Bit → M `M² = `Bit `→ `M module Ops (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops observe : `C `× `Rᵃ `→ (`M `× `M) `× `Bit observe = idO *** step₀ >>> ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ >>> idO *** step₁ where ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ = < snd >>> fst , < fst , snd >>> snd > > open ♭EncParams ♭Funs ep public SemSecReduction : ∀ ep₀ ep₁ (f : Coins → Coins) → Set SemSecReduction ep₀ ep₁ f = ∀ {c} → SemSecAdv ep₀ c → SemSecAdv ep₁ (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) where open PrgDist prgDist open AbsSemSec fun♭Funs open FlatFunsOps fun♭Ops module FunSemSecAdv {ep : EncParams} {|R|ᵃ} (A : SemSecAdv ep |R|ᵃ) where open SemSecAdv A public open Ops fun♭Ops public step₀F : Rᵃ → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R|ᵃ (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) module RunSemSec (ep : EncParams) where open EncParams ep using (M; C; |R|ᵉ; Enc) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit _⇄_ = runSemSec _≗A_ : ∀ {p} (A₁ A₂ : SemSecAdv ep p) → Set A₀ ≗A A₁ = observe A₀ ≗ observe A₁ where open FunSemSecAdv change-adv : ∀ {ca E} {A₁ A₂ : SemSecAdv ep ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂) change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , ≡.refl = ≡.trans (≡.cong proj₂ (helper₀ A₁)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post , pre) helper₂ = ≡.cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre))) (helper₀ A₂) _≗E_ : ∀ (E₀ E₁ : Enc) → Set E₀ ≗E E₁ = ∀ m → E₀ m ≗↺ E₁ m ≗E→≗⅁ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ≗⅁ (E₁ ⇄ A) ≗E→≗⅁ E₀≗E₁ {c} A b R rewrite E₀≗E₁ (proj (proj₁ (SemSecAdv.step₀ A (take c R))) b) (drop c R) = ≡.refl ≗E→⇓ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ⇓ (E₁ ⇄ A) ≗E→⇓ E₀≗E₁ A = extensional-reduction (≗E→≗⅁ E₀≗E₁ A) module SemSecReductions (ep₀ ep₁ : EncParams) (f : Coins → Coins) where open EncParams² ep₀ ep₁ open RunSemSec ep₀ public using () renaming (_⇄_ to _⇄₀_; _≗E_ to _≗E₀_; ≗E→⇓ to ≗E→⇓₀) open RunSemSec ep₁ public using () renaming (_⇄_ to _⇄₁_; _≗E_ to _≗E₁_; ≗E→⇓ to ≗E→⇓₁) Reduction : Set Reduction = SemSecReduction ep₁ ep₀ f SemSecTr : Tr → Set SemSecTr tr = ∃ λ (red : Reduction) → ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) SemSecTr⁻¹ : Tr⁻¹ → Set SemSecTr⁻¹ tr⁻¹ = ∃ λ (red : Reduction) → ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) SemSecTr→SemSecTr⁻¹ : ∀ tr tr⁻¹ (tr-right-inv : ∀ E → tr (tr⁻¹ E) ≗E₁ E) → SemSecTr tr → SemSecTr⁻¹ tr⁻¹ SemSecTr→SemSecTr⁻¹ _ tr⁻¹ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) helper E A A-breaks-E = pf (tr⁻¹ E) A A-breaks-tr-tr⁻¹-E where A-breaks-tr-tr⁻¹-E = ≗E→⇓₁ (λ m R → ≡.sym (tr-inv E m R)) A A-breaks-E SemSecTr⁻¹→SemSecTr : ∀ tr tr⁻¹ (tr-left-inv : ∀ E → tr⁻¹ (tr E) ≗E₀ E) → SemSecTr⁻¹ tr⁻¹ → SemSecTr tr SemSecTr⁻¹→SemSecTr tr _ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) helper E {c} A A-breaks-E = ≗E→⇓₀ (tr-inv E) (red A) (pf (tr E) A A-breaks-E)
module one-time-semantic-security where open import Function open import Data.Nat open import Data.Product using (∃; module Σ; _×_; _,_; proj₁; proj₂) open import Data.Vec using (splitAt; take; drop) import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≗_) open import Data.Bits open import flat-funs open import program-distance open import flipbased-implem -- Capture the various size parameters required -- for a cipher. -- -- M is the message space (|M| is the size of messages) -- C is the cipher text space -- Rᵉ is the randomness used by the cipher. record EncParams : Set where constructor mk field |M| |C| |R|ᵉ : ℕ M = Bits |M| C = Bits |C| Rᵉ = Bits |R|ᵉ -- The type of the encryption function Enc : Set Enc = M → ↺ |R|ᵉ C module EncParams² (ep₀ ep₁ : EncParams) where open EncParams ep₀ public using () renaming (|M| to |M|₀; |C| to |C|₀; |R|ᵉ to |R|ᵉ₀; M to M₀; C to C₀; Rᵉ to Rᵉ₀; Enc to Enc₀) open EncParams ep₁ public using () renaming (|M| to |M|₁; |C| to |C|₁; |R|ᵉ to |R|ᵉ₁; M to M₁; C to C₁; Rᵉ to Rᵉ₁; Enc to Enc₁) Tr = Enc₀ → Enc₁ Tr⁻¹ = Enc₁ → Enc₀ module EncParams²-same-|R|ᵉ (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where ep₁ = EncParams.mk |M|₁ |C|₁ (EncParams.|R|ᵉ ep₀) open EncParams² ep₀ ep₁ public module ♭EncParams {t} {T : Set t} (♭Funs : FlatFuns T) (ep : EncParams) where open FlatFuns ♭Funs open EncParams ep public `M = `Bits |M| `C = `Bits |C| `Rᵉ = `Bits |R|ᵉ module ♭EncParams² {t} {T : Set t} (♭Funs : FlatFuns T) (ep₀ ep₁ : EncParams) where open EncParams² ep₀ ep₁ public open ♭EncParams ♭Funs ep₀ public using () renaming (`M to `M₀; `C to `C₀; `Rᵉ to `Rᵉ₀) open ♭EncParams ♭Funs ep₁ public using () renaming (`M to `M₁; `C to `C₁; `Rᵉ to `Rᵉ₁) module AbsSemSec {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs record SemSecAdv (ep : EncParams) |R|ᵃ : Set where constructor mk open ♭EncParams ♭Funs ep field {|S|} : ℕ `S = `Bits |S| S = Bits |S| -- Randomness adversary `Rᵃ = `Bits |R|ᵃ Rᵃ = Bits |R|ᵃ field step₀ : `Rᵃ `→ (`M `× `M) `× `S step₁ : `C `× `S `→ `Bit M² = Bit → M `M² = `Bit `→ `M module Ops (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops observe : `C `× `Rᵃ `→ (`M `× `M) `× `Bit observe = idO *** step₀ >>> ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ >>> idO *** step₁ where ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ = < snd >>> fst , < fst , snd >>> snd > > open ♭EncParams ♭Funs ep public SemSecReduction : ∀ ep₀ ep₁ (f : Coins → Coins) → Set SemSecReduction ep₀ ep₁ f = ∀ {c} → SemSecAdv ep₀ c → SemSecAdv ep₁ (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) where open PrgDist prgDist open AbsSemSec fun♭Funs open FlatFunsOps fun♭Ops module FunSemSecAdv {ep : EncParams} {|R|ᵃ} (A : SemSecAdv ep |R|ᵃ) where open SemSecAdv A public open Ops fun♭Ops public step₀F : Rᵃ → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R|ᵃ (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) module RunSemSec (ep : EncParams) where open EncParams ep using (M; C; |R|ᵉ; Enc) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit _⇄_ = runSemSec _≗A_ : ∀ {p} (A₁ A₂ : SemSecAdv ep p) → Set A₀ ≗A A₁ = observe A₀ ≗ observe A₁ where open FunSemSecAdv change-adv : ∀ {ca} (A₀ A₁ : SemSecAdv ep ca) E → A₀ ≗A A₁ → (E ⇄ A₀) ≗⅁ (E ⇄ A₁) change-adv {ca} _ _ _ pf b R with splitAt ca R change-adv A₀ A₁ E pf b ._ | pre Σ., post , ≡.refl = ≡.trans (≡.cong proj₂ (helper₀ A₀)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post , pre) helper₂ = ≡.cong (λ m → step₁ A₁ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₁ pre))) (helper₀ A₁) _≗E_ : ∀ (E₀ E₁ : Enc) → Set E₀ ≗E E₁ = ∀ m → E₀ m ≗↺ E₁ m ≗E→≗⅁ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ≗⅁ (E₁ ⇄ A) ≗E→≗⅁ E₀≗E₁ {c} A b R rewrite E₀≗E₁ (proj (proj₁ (SemSecAdv.step₀ A (take c R))) b) (drop c R) = ≡.refl ≗A→⇓ : ∀ {c} (A₀ A₁ : SemSecAdv ep c) → A₀ ≗A A₁ → ∀ E → (E ⇄ A₀) ⇓ (E ⇄ A₁) ≗A→⇓ A₀ A₁ A₀≗A₁ E = extensional-reduction (change-adv A₀ A₁ E A₀≗A₁) ≗E→⇓ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ⇓ (E₁ ⇄ A) ≗E→⇓ E₀≗E₁ A = extensional-reduction (≗E→≗⅁ E₀≗E₁ A) module SemSecReductions (ep₀ ep₁ : EncParams) (f : Coins → Coins) where open EncParams² ep₀ ep₁ open RunSemSec ep₀ public using () renaming (_⇄_ to _⇄₀_; _≗E_ to _≗E₀_; ≗E→⇓ to ≗E→⇓₀) open RunSemSec ep₁ public using () renaming (_⇄_ to _⇄₁_; _≗E_ to _≗E₁_; ≗E→⇓ to ≗E→⇓₁) Reduction : Set Reduction = SemSecReduction ep₁ ep₀ f SemSecTr : Tr → Set SemSecTr tr = ∃ λ (red : Reduction) → ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) SemSecTr⁻¹ : Tr⁻¹ → Set SemSecTr⁻¹ tr⁻¹ = ∃ λ (red : Reduction) → ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) SemSecTr→SemSecTr⁻¹ : ∀ tr tr⁻¹ (tr-right-inv : ∀ E → tr (tr⁻¹ E) ≗E₁ E) → SemSecTr tr → SemSecTr⁻¹ tr⁻¹ SemSecTr→SemSecTr⁻¹ _ tr⁻¹ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) helper E A A-breaks-E = pf (tr⁻¹ E) A A-breaks-tr-tr⁻¹-E where A-breaks-tr-tr⁻¹-E = ≗E→⇓₁ (λ m R → ≡.sym (tr-inv E m R)) A A-breaks-E SemSecTr⁻¹→SemSecTr : ∀ tr tr⁻¹ (tr-left-inv : ∀ E → tr⁻¹ (tr E) ≗E₀ E) → SemSecTr⁻¹ tr⁻¹ → SemSecTr tr SemSecTr⁻¹→SemSecTr tr _ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) helper E {c} A A-breaks-E = ≗E→⇓₀ (tr-inv E) (red A) (pf (tr E) A A-breaks-E)
Improve change-adv and add ≗A→⇓
one-time-semantic-security: Improve change-adv and add ≗A→⇓
Agda
bsd-3-clause
crypto-agda/crypto-agda
ab1099f8573c544e98531d58aac709002e109268
lib/Type.agda
lib/Type.agda
module Type where ★₂ : Set₃ ★₂ = Set₂ ★₁ : ★₂ ★₁ = Set₁ ★ : ★₁ ★ = Set
module Type where open import Level ★₂ : Set₃ ★₂ = Set₂ ★₁ : ★₂ ★₁ = Set₁ ★₀ : ★₁ ★₀ = Set ★ : ★₁ ★ = ★₀ ★_ : ∀ ℓ → Set (suc ℓ) ★_ ℓ = Set ℓ
add ★_ for the universal type of type
Type: add ★_ for the universal type of type
Agda
bsd-3-clause
crypto-agda/agda-nplib
244c3b4285d455271121fa1cc4982d804ffe9437
Solver/Linear.agda
Solver/Linear.agda
-- NOTE with-K module Solver.Linear where open import FunUniverse.Types open import FunUniverse.Rewiring.Linear open import Data.Two hiding (_≟_) open import Data.Nat as ℕ using (ℕ) import Solver.Linear.Syntax as LinSyn open import Relation.Nullary.Decidable open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_ ; refl; _≢_) open import Relation.Nullary import Data.String as String module String≤ = StrictTotalOrder String.strictTotalOrder open import Data.Fin using (Fin) open import Data.Fin.Props using (strictTotalOrder) renaming (_≟_ to _≟ᶠ_) open import Data.Vec using (Vec; lookup) open import Data.Vec.N-ary using (N-ary ; _$ⁿ_) open import Data.Vec using (allFin) renaming (map to vmap) module Syntax {Var : Set} (_≤V₂_ : Var → Var → 𝟚) (_≟V_ : Decidable (_≡_ {A = Var})) {a} {A : Set a} {funU : FunUniverse A} (linRewiring : LinRewiring funU) (Γ : Var → A) where open FunUniverse funU open LinRewiring linRewiring open LinSyn Var eval : Syn → A eval (var x) = Γ x eval tt = `⊤ eval (s , s₁) = eval s `× eval s₁ EvalEq : Eq → Set EvalEq e = eval (LHS e) `→ eval (RHS e) data R : Syn → Syn → Set a where _``∻_ : ∀ {A B C} → R A B → R B C → R A C `<id,tt>⁻¹ : ∀ {A} → R (A , tt) A `<tt,id>⁻¹ : ∀ {A} → R (tt , A) A `<tt,id> : ∀ {A} → R A (tt , A) `<id,tt> : ∀ {A} → R A (A , tt) ⟨_``×_⟩ : ∀ {A B C D} → R A C → R B D → R (A , B) (C , D) `assoc : ∀ {A B C} → R (A , (B , C)) ((A , B) , C) `assoc⁻¹ : ∀ {A B C} → R ((A , B) , C) (A , (B , C)) `id : ∀ {A} → R A A `swap : ∀ {A B} → R (A , B) (B , A) `⟨_×_⟩ : ∀ {A B C D} → R A C → R B D → R (A , B) (C , D) `⟨ `id × `id ⟩ = `id `⟨ r₁ × r₂ ⟩ = ⟨ r₁ ``× r₂ ⟩ _∻_ : ∀ {A B C} → R A B → R B C → R A C `id ∻ r₂ = r₂ r₁ ∻ `id = r₁ `<tt,id>⁻¹ ∻ `<tt,id> = `id `<id,tt>⁻¹ ∻ `<id,tt> = `id `<tt,id> ∻ `<tt,id>⁻¹ = `id `<id,tt> ∻ `<id,tt>⁻¹ = `id `swap ∻ `<id,tt>⁻¹ = `<tt,id>⁻¹ `swap ∻ `<tt,id>⁻¹ = `<id,tt>⁻¹ `<id,tt> ∻ `swap = `<tt,id> `<tt,id> ∻ `swap = `<id,tt> `assoc ∻ `assoc⁻¹ = `id `assoc ∻ (`assoc⁻¹ ``∻ r) = r `assoc⁻¹ ∻ `assoc = `id `assoc⁻¹ ∻ (`assoc ``∻ r) = r `swap ∻ `swap = `id `swap ∻ (`swap ``∻ r) = r (r₁ ``∻ r₂) ∻ r₃ = r₁ ``∻ (r₂ ∻ r₃) ⟨ r₁ ``× r₂ ⟩ ∻ ⟨ r₃ ``× r₄ ⟩ = ⟨ r₁ ∻ r₃ ``× r₂ ∻ r₄ ⟩ ⟨ r₁ ``× r₂ ⟩ ∻ ( ⟨ r₃ ``× r₄ ⟩ ``∻ r₅) with ⟨ r₁ ∻ r₃ ``× r₂ ∻ r₄ ⟩ ... | `id = r₅ ... | r₆ = r₆ ``∻ r₅ r₁ ∻ r₂ = r₁ ``∻ r₂ sym : ∀ {S S'} → R S S' → R S' S sym (r ``∻ r₁) = sym r₁ ∻ sym r sym `<id,tt> = `<id,tt>⁻¹ sym `<tt,id> = `<tt,id>⁻¹ sym `<id,tt>⁻¹ = `<id,tt> sym `<tt,id>⁻¹ = `<tt,id> sym ⟨ r ``× r₁ ⟩ = ⟨ sym r ``× sym r₁ ⟩ sym `assoc = `assoc⁻¹ sym `assoc⁻¹ = `assoc sym `id = `id sym `swap = `swap proof₁ : ∀ {S S'} → R S S' → eval S `→ eval S' proof₁ (r ``∻ r₁) = proof₁ r ⁏ proof₁ r₁ proof₁ `<id,tt> = <id,tt> proof₁ `<tt,id> = <tt,id> proof₁ `<id,tt>⁻¹ = fst<,tt> proof₁ `<tt,id>⁻¹ = snd<tt,> proof₁ ⟨ `id ``× r ⟩ = second (proof₁ r) proof₁ ⟨ r ``× `id ⟩ = first (proof₁ r) proof₁ ⟨ r ``× r₁ ⟩ = < proof₁ r × proof₁ r₁ > proof₁ `assoc = assoc′ proof₁ `assoc⁻¹ = assoc proof₁ `id = id proof₁ `swap = swap proof₂ : ∀ {S S'} → R S S' → eval S' `→ eval S proof₂ r = proof₁ (sym r) data NF : Syn → Set a where tt : NF tt var : ∀ x → NF (var x) var_::_ : ∀ {S} i → NF S → NF (var i , S) record NFP S : Set a where constructor _⊢_ field {S'} : Syn term : NF S' proof : R S' S merge : ∀ {S S'} → NF S → NF S' → NFP (S , S') merge tt n2 = n2 ⊢ `<tt,id> merge (var i) n2 = (var i :: n2) ⊢ `id merge (var i :: n1) n2 with merge n1 n2 ... | t ⊢ p = (var i :: t) ⊢ (⟨ `id ``× p ⟩ ∻ `assoc) norm : (x : Syn) → NFP x norm (var x) = (var x) ⊢ `id norm tt = tt ⊢ `id norm (x , x₁) with norm x | norm x₁ ... | t1 ⊢ p1 | t2 ⊢ p2 with merge t1 t2 ... | t3 ⊢ p3 = t3 ⊢ (p3 ∻ ⟨ p1 ``× p2 ⟩) insert : ∀ {S} x → NF S → NFP (var x , S) insert y tt = (var y) ⊢ `<id,tt> insert y (var i) with y ≤V₂ i ... | 1₂ = (var y :: var i) ⊢ `id ... | 0₂ = (var i :: var y) ⊢ `swap insert y (var i :: n1) with y ≤V₂ i ... | 1₂ = (var y :: (var i :: n1)) ⊢ `id ... | 0₂ with insert y n1 ... | t ⊢ p = (var i :: t) ⊢ (⟨ `id ``× p ⟩ ∻ (`assoc ∻ (⟨ `swap ``× `id ⟩ ∻ `assoc⁻¹))) sort : ∀ {x : Syn} → NF x → NFP x sort tt = tt ⊢ `id sort (var i) = var i ⊢ `id sort (var i :: n1) with sort n1 ... | t1 ⊢ p1 with insert i t1 ... | t2 ⊢ p2 = t2 ⊢ (p2 ∻ ⟨ `id ``× p1 ⟩) normal : (x : Syn) → NFP x normal x with norm x ... | t1 ⊢ p1 with sort t1 ... | t2 ⊢ p2 = t2 ⊢ (p2 ∻ p1) import Data.Unit import Data.Empty id≡ : ∀ {S S'} → S ≡ S' → R S S' id≡ refl = `id var-inj : ∀ {i j} → i ≢ j → Syn.var i ≢ var j var-inj p refl = p refl ,-inj₁ : ∀ {x y a b} → x ≢ y → (x Syn., a) ≢ (y , b) ,-inj₁ p refl = p refl ,-inj₂ : ∀ {x y a b} → a ≢ b → (x Syn., a) ≢ (y , b) ,-inj₂ p refl = p refl _≟_ : (x y : Syn) → Dec (x ≡ y) var x ≟ var x₁ with x ≟V x₁ var .x₁ ≟ var x₁ | yes refl = yes refl ... | no p = no (var-inj p) var x ≟ tt = no (λ ()) var x ≟ (y , y₁) = no (λ ()) tt ≟ var x = no (λ ()) tt ≟ tt = yes refl tt ≟ (y , y₁) = no (λ ()) (x , x₁) ≟ var x₂ = no (λ ()) (x , x₁) ≟ tt = no (λ ()) (x , x₁) ≟ (y , y₁) with x ≟ y | x₁ ≟ y₁ (x , x₁) ≟ (.x , .x₁) | yes refl | yes refl = yes refl (x , x₁) ≟ (y , y₁) | yes p | no ¬p = no (,-inj₂ ¬p) (x , x₁) ≟ (y , y₁) | no ¬p | q = no (,-inj₁ ¬p) data equation-not-ok : Set where CHECK : Syn → Syn → Set CHECK s1 s2 with s1 ≟ s2 ... | yes p = Data.Unit.⊤ ... | no p = equation-not-ok EqOk? : Eq → Set EqOk? e = CHECK (NFP.S' (normal (LHS e))) (NFP.S' (normal (RHS e))) rewire : (e : Eq) {prf : EqOk? e} → EvalEq e rewire (s₁ ↦ s₂) {eq} with NFP.S' (normal s₁) ≟ NFP.S' (normal s₂) ... | yes p = proof₁ ((sym (NFP.proof (normal s₁)) ∻ id≡ p) ∻ NFP.proof (normal s₂)) rewire (_ ↦ _) {()} | no _ -- proof₂ (NFP.proof (normal s₁)) ∻' (eq ∻' proof₁ (NFP.proof (normal s₂))) module Syntaxᶠ {a} {A : Set a} {funU : FunUniverse A} (linRewiring : LinRewiring funU) where module _ {n} where open LinSyn (Fin n) public module _ {n} (Γ : Vec A n) (f : N-ary n (LinSyn.Syn (Fin n)) (LinSyn.Eq (Fin n))) where open Syntax {Fin n} ((λ x y → ⌊ StrictTotalOrder._<?_ (strictTotalOrder n) x y ⌋)) _≟ᶠ_ {a} {A} {funU} linRewiring (λ i → lookup i Γ) public private e = f $ⁿ vmap Syn.var (allFin n) rewireᶠ : {e-ok : EqOk? e} → EvalEq e rewireᶠ {e-ok} = rewire e {e-ok} module Syntaxˢ {a} {A} {funU} linRewiring Γ where open Syntax (λ x y → ⌊ String≤._<?_ x y ⌋) String._≟_ {a} {A} {funU} linRewiring Γ public open import Solver.Linear.Parser rewireˢ : ∀ s {s-ok} → let e = parseEqˢ s {s-ok} in {e-ok : EqOk? e} → EvalEq e rewireˢ s {s-ok} {e-ok} = rewire (parseEqˢ s {s-ok}) {e-ok} -- -} -- -} -- -}
-- NOTO with-K module Solver.Linear where open import FunUniverse.Types open import FunUniverse.Rewiring.Linear open import Data.Two hiding (_≟_) open import Data.Nat as ℕ using (ℕ) import Solver.Linear.Syntax as LinSyn open import Relation.Nullary.Decidable open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_ ; refl; _≢_) open import Relation.Nullary import Data.String as String module String≤ = StrictTotalOrder String.strictTotalOrder open import Data.Fin using (Fin) open import Data.Fin.Props using (strictTotalOrder) renaming (_≟_ to _≟ᶠ_) open import Data.Vec using (Vec; lookup) open import Data.Vec.N-ary using (N-ary ; _$ⁿ_) open import Data.Vec using (allFin) renaming (map to vmap) module Syntax {Var : Set} (_≤V₂_ : Var → Var → 𝟚) (_≟V_ : Decidable (_≡_ {A = Var})) {a} {A : Set a} {funU : FunUniverse A} (linRewiring : LinRewiring funU) (Γ : Var → A) where open FunUniverse funU open LinRewiring linRewiring open LinSyn Var eval : Syn → A eval (var x) = Γ x eval tt = `⊤ eval (s , s₁) = eval s `× eval s₁ EvalEq : Eq → Set EvalEq e = eval (LHS e) `→ eval (RHS e) data R : Syn → Syn → Set a where _``∻_ : ∀ {A B C} → R A B → R B C → R A C `<id,tt>⁻¹ : ∀ {A} → R (A , tt) A `<tt,id>⁻¹ : ∀ {A} → R (tt , A) A `<tt,id> : ∀ {A} → R A (tt , A) `<id,tt> : ∀ {A} → R A (A , tt) ⟨_``×_⟩ : ∀ {A B C D} → R A C → R B D → R (A , B) (C , D) `assoc : ∀ {A B C} → R (A , (B , C)) ((A , B) , C) `assoc⁻¹ : ∀ {A B C} → R ((A , B) , C) (A , (B , C)) `id : ∀ {A} → R A A `swap : ∀ {A B} → R (A , B) (B , A) `⟨_×_⟩ : ∀ {A B C D} → R A C → R B D → R (A , B) (C , D) `⟨ `id × `id ⟩ = `id `⟨ r₁ × r₂ ⟩ = ⟨ r₁ ``× r₂ ⟩ _∻_ : ∀ {A B C} → R A B → R B C → R A C `id ∻ r₂ = r₂ r₁ ∻ `id = r₁ `<tt,id>⁻¹ ∻ `<tt,id> = `id `<id,tt>⁻¹ ∻ `<id,tt> = `id `<tt,id> ∻ `<tt,id>⁻¹ = `id `<id,tt> ∻ `<id,tt>⁻¹ = `id `swap ∻ `<id,tt>⁻¹ = `<tt,id>⁻¹ `swap ∻ `<tt,id>⁻¹ = `<id,tt>⁻¹ `<id,tt> ∻ `swap = `<tt,id> `<tt,id> ∻ `swap = `<id,tt> `assoc ∻ `assoc⁻¹ = `id `assoc ∻ (`assoc⁻¹ ``∻ r) = r `assoc⁻¹ ∻ `assoc = `id `assoc⁻¹ ∻ (`assoc ``∻ r) = r `swap ∻ `swap = `id `swap ∻ (`swap ``∻ r) = r (r₁ ``∻ r₂) ∻ r₃ = r₁ ``∻ (r₂ ∻ r₃) ⟨ r₁ ``× r₂ ⟩ ∻ ⟨ r₃ ``× r₄ ⟩ = ⟨ r₁ ∻ r₃ ``× r₂ ∻ r₄ ⟩ ⟨ r₁ ``× r₂ ⟩ ∻ ( ⟨ r₃ ``× r₄ ⟩ ``∻ r₅) with ⟨ r₁ ∻ r₃ ``× r₂ ∻ r₄ ⟩ ... | `id = r₅ ... | r₆ = r₆ ``∻ r₅ r₁ ∻ r₂ = r₁ ``∻ r₂ sym : ∀ {S S'} → R S S' → R S' S sym (r ``∻ r₁) = sym r₁ ∻ sym r sym `<id,tt> = `<id,tt>⁻¹ sym `<tt,id> = `<tt,id>⁻¹ sym `<id,tt>⁻¹ = `<id,tt> sym `<tt,id>⁻¹ = `<tt,id> sym ⟨ r ``× r₁ ⟩ = ⟨ sym r ``× sym r₁ ⟩ sym `assoc = `assoc⁻¹ sym `assoc⁻¹ = `assoc sym `id = `id sym `swap = `swap proof₁ : ∀ {S S'} → R S S' → eval S `→ eval S' proof₁ (r ``∻ r₁) = proof₁ r ⁏ proof₁ r₁ proof₁ `<id,tt> = <id,tt> proof₁ `<tt,id> = <tt,id> proof₁ `<id,tt>⁻¹ = fst<,tt> proof₁ `<tt,id>⁻¹ = snd<tt,> proof₁ ⟨ `id ``× r ⟩ = second (proof₁ r) proof₁ ⟨ r ``× `id ⟩ = first (proof₁ r) proof₁ ⟨ r ``× r₁ ⟩ = < proof₁ r × proof₁ r₁ > proof₁ `assoc = assoc′ proof₁ `assoc⁻¹ = assoc proof₁ `id = id proof₁ `swap = swap proof₂ : ∀ {S S'} → R S S' → eval S' `→ eval S proof₂ r = proof₁ (sym r) data NF : Syn → Set a where tt : NF tt var : ∀ x → NF (var x) var_::_ : ∀ {S} i → NF S → NF (var i , S) record NFP S : Set a where constructor _⊢_ field {S'} : Syn term : NF S' proof : R S' S merge : ∀ {S S'} → NF S → NF S' → NFP (S , S') merge tt n2 = n2 ⊢ `<tt,id> merge (var i) n2 = (var i :: n2) ⊢ `id merge (var i :: n1) n2 with merge n1 n2 ... | t ⊢ p = (var i :: t) ⊢ (⟨ `id ``× p ⟩ ∻ `assoc) norm : (x : Syn) → NFP x norm (var x) = (var x) ⊢ `id norm tt = tt ⊢ `id norm (x , x₁) with norm x | norm x₁ ... | t1 ⊢ p1 | t2 ⊢ p2 with merge t1 t2 ... | t3 ⊢ p3 = t3 ⊢ (p3 ∻ ⟨ p1 ``× p2 ⟩) insert : ∀ {S} x → NF S → NFP (var x , S) insert y tt = (var y) ⊢ `<id,tt> insert y (var i) with y ≤V₂ i ... | 1₂ = (var y :: var i) ⊢ `id ... | 0₂ = (var i :: var y) ⊢ `swap insert y (var i :: n1) with y ≤V₂ i ... | 1₂ = (var y :: (var i :: n1)) ⊢ `id ... | 0₂ with insert y n1 ... | t ⊢ p = (var i :: t) ⊢ (⟨ `id ``× p ⟩ ∻ (`assoc ∻ (⟨ `swap ``× `id ⟩ ∻ `assoc⁻¹))) sort : ∀ {x : Syn} → NF x → NFP x sort tt = tt ⊢ `id sort (var i) = var i ⊢ `id sort (var i :: n1) with sort n1 ... | t1 ⊢ p1 with insert i t1 ... | t2 ⊢ p2 = t2 ⊢ (p2 ∻ ⟨ `id ``× p1 ⟩) normal : (x : Syn) → NFP x normal x with norm x ... | t1 ⊢ p1 with sort t1 ... | t2 ⊢ p2 = t2 ⊢ (p2 ∻ p1) import Data.Unit import Data.Empty id≡ : ∀ {S S'} → S ≡ S' → R S S' id≡ refl = `id var-inj : ∀ {i j} → i ≢ j → Syn.var i ≢ var j var-inj p refl = p refl ,-inj₁ : ∀ {x y a b} → x ≢ y → (x Syn., a) ≢ (y , b) ,-inj₁ p refl = p refl ,-inj₂ : ∀ {x y a b} → a ≢ b → (x Syn., a) ≢ (y , b) ,-inj₂ p refl = p refl _≟_ : (x y : Syn) → Dec (x ≡ y) var x ≟ var x₁ with x ≟V x₁ var .x₁ ≟ var x₁ | yes refl = yes refl ... | no p = no (var-inj p) var x ≟ tt = no (λ ()) var x ≟ (y , y₁) = no (λ ()) tt ≟ var x = no (λ ()) tt ≟ tt = yes refl tt ≟ (y , y₁) = no (λ ()) (x , x₁) ≟ var x₂ = no (λ ()) (x , x₁) ≟ tt = no (λ ()) (x , x₁) ≟ (y , y₁) with x ≟ y | x₁ ≟ y₁ (x , x₁) ≟ (.x , .x₁) | yes refl | yes refl = yes refl (x , x₁) ≟ (y , y₁) | yes p | no ¬p = no (,-inj₂ ¬p) (x , x₁) ≟ (y , y₁) | no ¬p | q = no (,-inj₁ ¬p) data equation-not-ok : Set where CHECK : Syn → Syn → Set CHECK s1 s2 with s1 ≟ s2 ... | yes p = Data.Unit.⊤ ... | no p = equation-not-ok EqOk? : Eq → Set EqOk? e = CHECK (NFP.S' (normal (LHS e))) (NFP.S' (normal (RHS e))) rewire : (e : Eq) {prf : EqOk? e} → EvalEq e rewire (s₁ ↦ s₂) {eq} with NFP.S' (normal s₁) ≟ NFP.S' (normal s₂) ... | yes p = proof₁ ((sym (NFP.proof (normal s₁)) ∻ id≡ p) ∻ NFP.proof (normal s₂)) rewire (_ ↦ _) {()} | no _ -- proof₂ (NFP.proof (normal s₁)) ∻' (eq ∻' proof₁ (NFP.proof (normal s₂))) module Syntaxᶠ {a} {A : Set a} {funU : FunUniverse A} (linRewiring : LinRewiring funU) where module _ {n} where open LinSyn (Fin n) public module _ {n} (Γ : Vec A n) (f : N-ary n (LinSyn.Syn (Fin n)) (LinSyn.Eq (Fin n))) where open Syntax {Fin n} ((λ x y → ⌊ StrictTotalOrder._<?_ (strictTotalOrder n) x y ⌋)) _≟ᶠ_ {a} {A} {funU} linRewiring (λ i → lookup i Γ) public private e = f $ⁿ vmap Syn.var (allFin n) rewireᶠ : {e-ok : EqOk? e} → EvalEq e rewireᶠ {e-ok} = rewire e {e-ok} module Syntaxˢ {a} {A} {funU} linRewiring Γ where open Syntax (λ x y → ⌊ String≤._<?_ x y ⌋) String._≟_ {a} {A} {funU} linRewiring Γ public open import Solver.Linear.Parser rewireˢ : ∀ s {s-ok} → let e = parseEqˢ s {s-ok} in {e-ok : EqOk? e} → EvalEq e rewireˢ s {s-ok} {e-ok} = rewire (parseEqˢ s {s-ok}) {e-ok} -- -} -- -} -- -}
Fix a note
Fix a note
Agda
bsd-3-clause
crypto-agda/crypto-agda
23195232ac9f45758a208ab48715260ca5c37781
FunUniverse/Rewiring/Linear.agda
FunUniverse/Rewiring/Linear.agda
{-# OPTIONS --without-K #-} open import Level.NP open import Type open import FunUniverse.Types open import Data.One using (𝟙) import Data.Vec as V open V using (Vec; []; _∷_) open import Data.Nat.NP using (ℕ; zero; suc; _+_; _*_; 2^_) import FunUniverse.Category import FunUniverse.Defaults.FirstPart as Defaults⟨first-part⟩ module FunUniverse.Rewiring.Linear where record LinRewiring {t} {T : ★_ t} (funU : FunUniverse T) : ★_ t where constructor mk open FunUniverse funU open FunUniverse.Category _`→_ field cat : Category open Category cat field -- Products (group 2 primitive functions or derived from group 1) first : ∀ {A B C} → (A `→ C) → (A `× B) `→ (C `× B) swap : ∀ {A B} → (A `× B) `→ (B `× A) assoc : ∀ {A B C} → ((A `× B) `× C) `→ (A `× (B `× C)) <tt,id> : ∀ {A} → A `→ `𝟙 `× A snd<tt,> : ∀ {A} → `𝟙 `× A `→ A -- Products (derived from group 1 or 2) <_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) second : ∀ {A B C} → (B `→ C) → (A `× B) `→ (A `× C) -- Vectors tt→[] : ∀ {A} → `𝟙 `→ `Vec A 0 []→tt : ∀ {A} → `Vec A 0 `→ `𝟙 <∷> : ∀ {n A} → (A `× `Vec A n) `→ `Vec A (1 + n) uncons : ∀ {n A} → `Vec A (1 + n) `→ (A `× `Vec A n) open Defaults⟨first-part⟩ funU open CompositionNotations _∘_ public open DefaultAssoc′ _∘_ assoc swap first public infixr 3 _***_ _***_ : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) f *** g = < f × g > <id,tt> : ∀ {A} → A `→ A `× `𝟙 <id,tt> = <tt,id> ⁏ swap <tt⁏_,_> : ∀ {A B C} → (`𝟙 `→ B) → (A `→ C) → A `→ B `× C <tt⁏ f , g > = <tt,id> ⁏ < f × g > <_,tt⁏_> : ∀ {A B C} → (A `→ B) → (`𝟙 `→ C) → A `→ B `× C < f ,tt⁏ g > = <tt⁏ g , f > ⁏ swap fst<,tt> : ∀ {A} → A `× `𝟙 `→ A fst<,tt> = swap ⁏ snd<tt,> fst<,[]> : ∀ {A B} → A `× `Vec B 0 `→ A fst<,[]> = second []→tt ⁏ fst<,tt> snd<[],> : ∀ {A B} → `Vec A 0 `× B `→ B snd<[],> = first []→tt ⁏ snd<tt,> -- Like first, but applies on a triple associated the other way assoc-first : ∀ {A B C D E} → (A `× B `→ D `× E) → A `× B `× C `→ D `× E `× C assoc-first f = assoc′ ⁏ first f ⁏ assoc -- Like assoc-first but for second assoc-second : ∀ {A B C D E} → (B `× C `→ E `× D) → (A `× B) `× C `→ (A `× E) `× D assoc-second f = assoc ⁏ second f ⁏ assoc′ swap-top : ∀ {A B C} → A `× B `× C `→ B `× A `× C swap-top = assoc-first swap around : ∀ {A B C D X} → (A `× B `→ C `× D) → A `× X `× B `→ C `× X `× D around f = swap-top ⁏ second f ⁏ swap-top inner : ∀ {A B C D} → (A `→ B) → C `× A `× D `→ C `× B `× D inner f = swap-top ⁏ first f ⁏ swap-top {- X ------------> X +---+ A --->| |---> C | f | B --->| |---> D +---+ Y ------------> Y -} inner2 : ∀ {A B C D X Y} → (A `× B `→ C `× D) → (X `× A) `× (B `× Y) `→ (X `× C) `× (D `× Y) inner2 f = assoc-first (assoc-second f) <_×₁_> : ∀ {A B C D E F} → (A `× B `→ D `× E) → (C `→ F) → A `× B `× C `→ D `× E `× F < f ×₁ g > = assoc′ ⁏ < f × g > ⁏ assoc <_×₂_> : ∀ {A B C D E F} → (A `→ D) → (B `× C `→ E `× F) → (A `× B) `× C `→ (D `× E) `× F < f ×₂ g > = assoc ⁏ < f × g > ⁏ assoc′ <_`zip`_> : ∀ {A B C D E F} → ((A `× B) `→ C) → ((D `× E) `→ F) → ((A `× D) `× (B `× E)) `→ (C `× F) < f `zip` g > = inner2 swap ⁏ < f × g > <_∷′_> : ∀ {n A B C} → (A `→ C) → (B `→ `Vec C n) → A `× B `→ `Vec C (1 + n) < f ∷′ g > = < f × g > ⁏ <∷> <_∷_> : ∀ {m n A B} → (A `→ B) → (`Vec A m `→ `Vec B n) → `Vec A (1 + m) `→ `Vec B (1 + n) < f ∷ g > = uncons ⁏ < f ∷′ g > <tt⁏_∷′_> : ∀ {n A B} → (`𝟙 `→ B) → (A `→ `Vec B n) → A `→ `Vec B (1 + n) <tt⁏ f ∷′ g > = <tt⁏ f , g > ⁏ <∷> <_∷′tt⁏_> : ∀ {n A B} → (A `→ B) → (`𝟙 `→ `Vec B n) → A `→ `Vec B (1 + n) < f ∷′tt⁏ g > = < f ,tt⁏ g > ⁏ <∷> <_∷[]> : ∀ {A B} → (A `→ B) → A `→ `Vec B 1 < f ∷[]> = < f ∷′tt⁏ tt→[] > <∷[]> : ∀ {A} → A `→ `Vec A 1 <∷[]> = < id ∷[]> <[],_> : ∀ {A B C} → (A `→ B) → A `→ `Vec C 0 `× B <[], f > = <tt⁏ tt→[] , f > <_,[]> : ∀ {A B C} → (A `→ B) → A `→ B `× `Vec C 0 < f ,[]> = < f ,tt⁏ tt→[] > head<∷> : ∀ {A} → `Vec A 1 `→ A head<∷> = uncons ⁏ fst<,[]> constVec⊤ : ∀ {n a} {A : ★_ a} {B} → (A → `𝟙 `→ B) → Vec A n → `𝟙 `→ `Vec B n constVec⊤ f [] = tt→[] constVec⊤ f (x ∷ xs) = <tt⁏ f x ∷′ constVec⊤ f xs > []→[] : ∀ {A B} → `Vec A 0 `→ `Vec B 0 []→[] = []→tt ⁏ tt→[] <[],[]>→[] : ∀ {A B C} → (`Vec A 0 `× `Vec B 0) `→ `Vec C 0 <[],[]>→[] = fst<,[]> ⁏ []→[] <_⊛> : ∀ {n A B} → Vec (A `→ B) n → `Vec A n `→ `Vec B n <_⊛> [] = []→[] <_⊛> (f ∷ fs) = < f ∷ < fs ⊛> > foldl : ∀ {n A B} → (B `× A `→ B) → (B `× `Vec A n) `→ B foldl {zero} f = fst<,[]> foldl {suc n} f = second uncons ⁏ assoc′ ⁏ first f ⁏ foldl f foldl₁ : ∀ {n A} → (A `× A `→ A) → `Vec A (1 + n) `→ A foldl₁ f = uncons ⁏ foldl f foldr : ∀ {n A B} → (A `× B `→ B) → (`Vec A n `× B) `→ B foldr {zero} f = snd<[],> foldr {suc n} f = first uncons ⁏ assoc ⁏ second (foldr f) ⁏ f foldr₁ : ∀ {n A} → (A `× A `→ A) → `Vec A (1 + n) `→ A foldr₁ f = uncons ⁏ swap ⁏ foldr f map : ∀ {n A B} → (A `→ B) → (`Vec A n `→ `Vec B n) map f = < V.replicate f ⊛> zipWith : ∀ {n A B C} → ((A `× B) `→ C) → (`Vec A n `× `Vec B n) `→ `Vec C n zipWith {zero} f = <[],[]>→[] zipWith {suc n} f = < uncons × uncons > ⁏ < f `zip` (zipWith f) > ⁏ <∷> zip : ∀ {n A B} → (`Vec A n `× `Vec B n) `→ `Vec (A `× B) n zip = zipWith id snoc : ∀ {n A} → (`Vec A n `× A) `→ `Vec A (1 + n) snoc {zero} = < snd<[],> ∷[]> snoc {suc n} = first uncons ⁏ assoc ⁏ second snoc ⁏ <∷> reverse : ∀ {n A} → `Vec A n `→ `Vec A n reverse {zero} = id reverse {suc n} = uncons ⁏ swap ⁏ first reverse ⁏ snoc append : ∀ {m n A} → (`Vec A m `× `Vec A n) `→ `Vec A (m + n) append {zero} = snd<[],> append {suc m} = first uncons ⁏ assoc ⁏ second append ⁏ <∷> <_++_> : ∀ {m n A} → (`𝟙 `→ `Vec A m) → (`𝟙 `→ `Vec A n) → `𝟙 `→ `Vec A (m + n) < f ++ g > = <tt⁏ f , g > ⁏ append splitAt : ∀ m {n A} → `Vec A (m + n) `→ (`Vec A m `× `Vec A n) splitAt zero = <[], id > splitAt (suc m) = uncons ⁏ second (splitAt m) ⁏ assoc′ ⁏ first <∷> rot-left : ∀ m {n A} → `Vec A (m + n) `→ `Vec A (n + m) rot-left m = splitAt m ⁏ swap ⁏ append rot-right : ∀ {m} n {A} → `Vec A (m + n) `→ `Vec A (n + m) rot-right {m} _ = rot-left m folda : ∀ n {A} → (A `× A `→ A) → `Vec A (2^ n) `→ A folda zero f = head<∷> folda (suc n) f = splitAt (2^ n) ⁏ < folda n f × folda n f > ⁏ f concat : ∀ {m n A} → `Vec (`Vec A m) n `→ `Vec A (n * m) concat {n = zero} = []→[] concat {n = suc n} = uncons ⁏ second concat ⁏ append group : ∀ {A} n k → `Vec A (n * k) `→ `Vec (`Vec A k) n group zero k = []→[] group (suc n) k = splitAt k ⁏ second (group n k) ⁏ <∷> bind : ∀ {m n A B} → (A `→ `Vec B m) → `Vec A n `→ `Vec B (n * m) bind f = map f ⁏ concat replicate⊤ : ∀ n → `𝟙 `→ `Vec `𝟙 n replicate⊤ _ = constVec⊤ (λ _ → id) (V.replicate {A = 𝟙} _) open Category cat public
{-# OPTIONS --without-K #-} open import Level.NP open import Type open import FunUniverse.Types open import Data.One using (𝟙) import Data.Vec as V open V using (Vec; []; _∷_) open import Data.Nat.NP using (ℕ; zero; suc; _+_; _*_; 2^_) import FunUniverse.Category import FunUniverse.Defaults.FirstPart as Defaults⟨first-part⟩ module FunUniverse.Rewiring.Linear where record LinRewiring {t} {T : ★_ t} (funU : FunUniverse T) : ★_ t where constructor mk open FunUniverse funU open FunUniverse.Category _`→_ field cat : Category open Category cat field -- Products (group 2 primitive functions or derived from group 1) first : ∀ {A B C} → (A `→ C) → (A `× B) `→ (C `× B) swap : ∀ {A B} → (A `× B) `→ (B `× A) assoc : ∀ {A B C} → ((A `× B) `× C) `→ (A `× (B `× C)) <tt,id> : ∀ {A} → A `→ `𝟙 `× A snd<tt,> : ∀ {A} → `𝟙 `× A `→ A -- Products (derived from group 1 or 2) <_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) second : ∀ {A B C} → (B `→ C) → (A `× B) `→ (A `× C) -- Vectors tt→[] : ∀ {A} → `𝟙 `→ `Vec A 0 []→tt : ∀ {A} → `Vec A 0 `→ `𝟙 <∷> : ∀ {n A} → (A `× `Vec A n) `→ `Vec A (1 + n) uncons : ∀ {n A} → `Vec A (1 + n) `→ (A `× `Vec A n) open Defaults⟨first-part⟩ funU open CompositionNotations _∘_ public open DefaultAssoc′ _∘_ assoc swap first public infixr 3 _***_ _***_ : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D) f *** g = < f × g > <id,tt> : ∀ {A} → A `→ A `× `𝟙 <id,tt> = <tt,id> ⁏ swap <tt⁏_,_> : ∀ {A B C} → (`𝟙 `→ B) → (A `→ C) → A `→ B `× C <tt⁏ f , g > = <tt,id> ⁏ < f × g > <_,tt⁏_> : ∀ {A B C} → (A `→ B) → (`𝟙 `→ C) → A `→ B `× C < f ,tt⁏ g > = <tt⁏ g , f > ⁏ swap fst<,tt> : ∀ {A} → A `× `𝟙 `→ A fst<,tt> = swap ⁏ snd<tt,> fst<,[]> : ∀ {A B} → A `× `Vec B 0 `→ A fst<,[]> = second []→tt ⁏ fst<,tt> snd<[],> : ∀ {A B} → `Vec A 0 `× B `→ B snd<[],> = first []→tt ⁏ snd<tt,> -- Like first, but applies on a triple associated the other way assoc-first : ∀ {A B C D E} → (A `× B `→ D `× E) → A `× B `× C `→ D `× E `× C assoc-first f = assoc′ ⁏ first f ⁏ assoc -- Like assoc-first but for second assoc-second : ∀ {A B C D E} → (B `× C `→ E `× D) → (A `× B) `× C `→ (A `× E) `× D assoc-second f = assoc ⁏ second f ⁏ assoc′ swap-top : ∀ {A B C} → A `× B `× C `→ B `× A `× C swap-top = assoc-first swap around : ∀ {A B C D X} → (A `× B `→ C `× D) → A `× X `× B `→ C `× X `× D around f = swap-top ⁏ second f ⁏ swap-top inner : ∀ {A B C D} → (A `→ B) → C `× A `× D `→ C `× B `× D inner f = swap-top ⁏ first f ⁏ swap-top {- X ------------> X +---+ A --->| |---> C | f | B --->| |---> D +---+ Y ------------> Y -} inner2 : ∀ {A B C D X Y} → (A `× B `→ C `× D) → (X `× A) `× (B `× Y) `→ (X `× C) `× (D `× Y) inner2 f = assoc-first (assoc-second f) <_×₁_> : ∀ {A B C D E F} → (A `× B `→ D `× E) → (C `→ F) → A `× B `× C `→ D `× E `× F < f ×₁ g > = assoc′ ⁏ < f × g > ⁏ assoc <_×₂_> : ∀ {A B C D E F} → (A `→ D) → (B `× C `→ E `× F) → (A `× B) `× C `→ (D `× E) `× F < f ×₂ g > = assoc ⁏ < f × g > ⁏ assoc′ <_`zip`_> : ∀ {A B C D E F} → ((A `× B) `→ C) → ((D `× E) `→ F) → ((A `× D) `× (B `× E)) `→ (C `× F) < f `zip` g > = inner2 swap ⁏ < f × g > <_∷′_> : ∀ {n A B C} → (A `→ C) → (B `→ `Vec C n) → A `× B `→ `Vec C (1 + n) < f ∷′ g > = < f × g > ⁏ <∷> <_∷_> : ∀ {m n A B} → (A `→ B) → (`Vec A m `→ `Vec B n) → `Vec A (1 + m) `→ `Vec B (1 + n) < f ∷ g > = uncons ⁏ < f ∷′ g > <tt⁏_∷′_> : ∀ {n A B} → (`𝟙 `→ B) → (A `→ `Vec B n) → A `→ `Vec B (1 + n) <tt⁏ f ∷′ g > = <tt⁏ f , g > ⁏ <∷> <_∷′tt⁏_> : ∀ {n A B} → (A `→ B) → (`𝟙 `→ `Vec B n) → A `→ `Vec B (1 + n) < f ∷′tt⁏ g > = < f ,tt⁏ g > ⁏ <∷> <_∷[]> : ∀ {A B} → (A `→ B) → A `→ `Vec B 1 < f ∷[]> = < f ∷′tt⁏ tt→[] > <∷[]> : ∀ {A} → A `→ `Vec A 1 <∷[]> = < id ∷[]> <[],_> : ∀ {A B C} → (A `→ B) → A `→ `Vec C 0 `× B <[], f > = <tt⁏ tt→[] , f > <_,[]> : ∀ {A B C} → (A `→ B) → A `→ B `× `Vec C 0 < f ,[]> = < f ,tt⁏ tt→[] > head<∷> : ∀ {A} → `Vec A 1 `→ A head<∷> = uncons ⁏ fst<,[]> constVec⊤ : ∀ {n a} {A : ★_ a} {B} → (A → `𝟙 `→ B) → Vec A n → `𝟙 `→ `Vec B n constVec⊤ f [] = tt→[] constVec⊤ f (x ∷ xs) = <tt⁏ f x ∷′ constVec⊤ f xs > []→[] : ∀ {A B} → `Vec A 0 `→ `Vec B 0 []→[] = []→tt ⁏ tt→[] <[],[]>→[] : ∀ {A B C} → (`Vec A 0 `× `Vec B 0) `→ `Vec C 0 <[],[]>→[] = fst<,[]> ⁏ []→[] <_⊛> : ∀ {n A B} → Vec (A `→ B) n → `Vec A n `→ `Vec B n <_⊛> [] = []→[] <_⊛> (f ∷ fs) = < f ∷ < fs ⊛> > foldl : ∀ {n A B} → (B `× A `→ B) → (B `× `Vec A n) `→ B foldl {zero} f = fst<,[]> foldl {suc n} f = second uncons ⁏ assoc′ ⁏ first f ⁏ foldl f foldl₁ : ∀ {n A} → (A `× A `→ A) → `Vec A (1 + n) `→ A foldl₁ f = uncons ⁏ foldl f foldr : ∀ {n A B} → (A `× B `→ B) → (`Vec A n `× B) `→ B foldr {zero} f = snd<[],> foldr {suc n} f = first uncons ⁏ assoc ⁏ second (foldr f) ⁏ f foldr₁ : ∀ {n A} → (A `× A `→ A) → `Vec A (1 + n) `→ A foldr₁ f = uncons ⁏ swap ⁏ foldr f map : ∀ {n A B} → (A `→ B) → (`Vec A n `→ `Vec B n) map f = < V.replicate f ⊛> mapAccum : ∀ {n A B S} → (S `× A `→ S `× B) → S `× `Vec A n `→ S `× `Vec B n mapAccum {zero} F = second []→[] mapAccum {suc n} F = second uncons ⁏ assoc-first F ⁏ around (mapAccum F) ⁏ second <∷> zipWith : ∀ {n A B C} → ((A `× B) `→ C) → (`Vec A n `× `Vec B n) `→ `Vec C n zipWith {zero} f = <[],[]>→[] zipWith {suc n} f = < uncons × uncons > ⁏ < f `zip` (zipWith f) > ⁏ <∷> zip : ∀ {n A B} → (`Vec A n `× `Vec B n) `→ `Vec (A `× B) n zip = zipWith id snoc : ∀ {n A} → (`Vec A n `× A) `→ `Vec A (1 + n) snoc {zero} = < snd<[],> ∷[]> snoc {suc n} = first uncons ⁏ assoc ⁏ second snoc ⁏ <∷> reverse : ∀ {n A} → `Vec A n `→ `Vec A n reverse {zero} = id reverse {suc n} = uncons ⁏ swap ⁏ first reverse ⁏ snoc append : ∀ {m n A} → (`Vec A m `× `Vec A n) `→ `Vec A (m + n) append {zero} = snd<[],> append {suc m} = first uncons ⁏ assoc ⁏ second append ⁏ <∷> <_++_> : ∀ {m n A} → (`𝟙 `→ `Vec A m) → (`𝟙 `→ `Vec A n) → `𝟙 `→ `Vec A (m + n) < f ++ g > = <tt⁏ f , g > ⁏ append splitAt : ∀ m {n A} → `Vec A (m + n) `→ (`Vec A m `× `Vec A n) splitAt zero = <[], id > splitAt (suc m) = uncons ⁏ second (splitAt m) ⁏ assoc′ ⁏ first <∷> rot-left : ∀ m {n A} → `Vec A (m + n) `→ `Vec A (n + m) rot-left m = splitAt m ⁏ swap ⁏ append rot-right : ∀ {m} n {A} → `Vec A (m + n) `→ `Vec A (n + m) rot-right {m} _ = rot-left m folda : ∀ n {A} → (A `× A `→ A) → `Vec A (2^ n) `→ A folda zero f = head<∷> folda (suc n) f = splitAt (2^ n) ⁏ < folda n f × folda n f > ⁏ f concat : ∀ {m n A} → `Vec (`Vec A m) n `→ `Vec A (n * m) concat {n = zero} = []→[] concat {n = suc n} = uncons ⁏ second concat ⁏ append group : ∀ {A} n k → `Vec A (n * k) `→ `Vec (`Vec A k) n group zero k = []→[] group (suc n) k = splitAt k ⁏ second (group n k) ⁏ <∷> bind : ∀ {m n A B} → (A `→ `Vec B m) → `Vec A n `→ `Vec B (n * m) bind f = map f ⁏ concat replicate⊤ : ∀ n → `𝟙 `→ `Vec `𝟙 n replicate⊤ _ = constVec⊤ (λ _ → id) (V.replicate {A = 𝟙} _) open Category cat public
add mapAccum
FunUniverse/Rewiring/Linear: add mapAccum
Agda
bsd-3-clause
crypto-agda/crypto-agda
2c661467da93de9a39c40cddc61abeeca5350793
Denotation/Specification/Canon-Popl14.agda
Denotation/Specification/Canon-Popl14.agda
module Denotation.Specification.Canon-Popl14 where -- Denotation-as-specification for Calculus Popl14 -- -- Contents -- - ⟦_⟧Δ : binding-time-shifted derive -- - Validity and correctness lemmas for ⟦_⟧Δ -- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments -- - `corollary-closed`: binding-time-shifted main theorem open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Validity open import Popl14.Denotation.Evaluation public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 open import Theorem.Groups-Popl14 open import Theorem.CongApp open import Postulate.Extensionality ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ -- better name is: ⟦_⟧Δ reacts to future arguments validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) → valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) -- better name is: ⟦_⟧Δ reacts to free variables correctness : ∀ {τ Γ} {t : Term Γ τ} {dρ : ΔEnv Γ} → ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ) ⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ ⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv ⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (intlit n) dρ = + 0 ⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ ⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ ⟦_⟧Δ empty dρ = emptyBag ⟦_⟧Δ (insert s t) dρ = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in (singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b) ⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ ⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (flatmap s t) dρ = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b ⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (app {σ} {τ} s t) dρ = (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) ⟦_⟧Δ (abs t) dρ = λ v → ⟦ t ⟧Δ (v • dρ) validVar : ∀ {τ Γ} (x : Var Γ τ) → ∀ {dρ : ΔEnv Γ} → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ) validVar this {cons v Δv R[v,Δv] • _} = R[v,Δv] validVar {τ} (that x) {cons _ _ _ • dρ} = validVar {τ} x validity (intlit n) dρ = tt validity (add s t) dρ = tt validity (minus t) dρ = tt validity (empty) dρ = tt validity (insert s t) dρ = tt validity (union s t) dρ = tt validity (negate t) dρ = tt validity (flatmap s t) dρ = tt validity (sum t) dρ = tt validity {τ} (var x) dρ = validVar {τ} x validity (app s t) dρ = let v = ⟦ t ⟧ (ignore dρ) Δv = ⟦ t ⟧Δ dρ in proj₁ (validity s dρ (cons v Δv (validity t dρ))) validity {σ ⇒ τ} (abs t) dρ = λ v → let v′ = after {σ} v Δv′ = v′ ⊟₍ σ ₎ v′ dρ₁ = v • dρ dρ₂ = nil-valid-change σ v′ • dρ in validity t dρ₁ , (begin ⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂ ≡⟨ correctness {t = t} {dρ₂} ⟩ ⟦ t ⟧ (update dρ₂) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (update dρ₁) ≡⟨ sym (correctness {t = t} {dρ₁}) ⟩ ⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁ ∎) where open ≡-Reasoning correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} → ⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ) correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ} correctness {t = intlit n} = right-id-int n correctness {t = add s t} {dρ} = trans (mn·pq=mp·nq {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _+_ (correctness {t = s}) (correctness {t = t})) correctness {t = minus t} {dρ} = trans (-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong -_ (correctness {t = t})) correctness {t = empty} = right-id-bag emptyBag correctness {t = insert s t} {dρ} = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) n′ = ⟦ s ⟧ (update dρ) b′ = ⟦ t ⟧ (update dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in begin (singletonBag n ++ b) ++ (singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b) ≡⟨ a++[b\\a]=b ⟩ singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb) ≡⟨ cong₂ _++_ (cong singletonBag (correctness {t = s})) (correctness {t = t}) ⟩ singletonBag n′ ++ b′ ∎ where open ≡-Reasoning correctness {t = union s t} {dρ} = trans (ab·cd=ac·bd {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _++_ (correctness {t = s}) (correctness {t = t})) correctness {t = negate t} {dρ} = trans (-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong negateBag (correctness {t = t})) correctness {t = flatmap s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in trans (a++[b\\a]=b {flatmapBag f b} {flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf) (b ⊞₍ base base-bag ₎ Δb)}) (cong₂ flatmapBag (correctness {t = s}) (correctness {t = t})) correctness {t = sum t} {dρ} = let b = ⟦ t ⟧ (ignore dρ) Δb = ⟦ t ⟧Δ dρ in trans (sym homo-sum) (cong sumBag (correctness {t = t})) correctness {τ} {t = var x} = correctVar {τ} {x = x} correctness {t = app {σ} {τ} s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) g = ⟦ s ⟧ (update dρ) u = ⟦ t ⟧ (ignore dρ) v = ⟦ t ⟧ (update dρ) Δf = ⟦ s ⟧Δ dρ Δu = ⟦ t ⟧Δ dρ in begin f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ)) ≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} {t = s} ⟨$⟩ correctness {σ} {t = t} ⟩ g v ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} {abs t} {dρ} = ext (λ v → let dρ′ : ΔEnv (σ • Γ) dρ′ = nil-valid-change σ v • dρ in begin ⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′ ≡⟨ correctness {τ} {t = t} {dρ′} ⟩ ⟦ t ⟧ (update dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (v • update dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} → (⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ) (⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ) ≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ)) ⊞₍ τ ₎ (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) corollary {σ} {τ} s t {dρ} = proj₂ (validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))) corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)} (v : ValidChange σ) → ⟦ t ⟧ ∅ (after {σ} v) ≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v corollary-closed {σ} {τ} {t = t} v = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ in begin f (after {σ} v) ≡⟨ cong (λ hole → hole (after {σ} v)) (sym (correctness {σ ⇒ τ} {t = t})) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v) ≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩ f (before {σ} v) ⊞₍ τ ₎ Δf v ∎ where open ≡-Reasoning
module Denotation.Specification.Canon-Popl14 where -- Denotation-as-specification for Calculus Popl14 -- -- Contents -- - ⟦_⟧Δ : binding-time-shifted derive -- - Validity and correctness lemmas for ⟦_⟧Δ -- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments -- - `corollary-closed`: binding-time-shifted main theorem open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Validity open import Popl14.Denotation.Evaluation public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 open import Theorem.Groups-Popl14 open import Theorem.CongApp open import Postulate.Extensionality ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ -- better name is: ⟦_⟧Δ reacts to future arguments validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) → valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) -- better name is: ⟦_⟧Δ reacts to free variables correctness : ∀ {τ Γ} {t : Term Γ τ} {dρ : ΔEnv Γ} → ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ) ⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ ⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv ⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (intlit n) dρ = + 0 ⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ ⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ ⟦_⟧Δ empty dρ = emptyBag ⟦_⟧Δ (insert s t) dρ = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in (singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b) ⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ ⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (flatmap s t) dρ = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b ⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (app {σ} {τ} s t) dρ = (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) ⟦_⟧Δ (abs t) dρ = λ v → ⟦ t ⟧Δ (v • dρ) validVar : ∀ {τ Γ} (x : Var Γ τ) → (dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ) validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv] validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ validity (intlit n) dρ = tt validity (add s t) dρ = tt validity (minus t) dρ = tt validity (empty) dρ = tt validity (insert s t) dρ = tt validity (union s t) dρ = tt validity (negate t) dρ = tt validity (flatmap s t) dρ = tt validity (sum t) dρ = tt validity {τ} (var x) dρ = validVar {τ} x dρ validity (app s t) dρ = let v = ⟦ t ⟧ (ignore dρ) Δv = ⟦ t ⟧Δ dρ in proj₁ (validity s dρ (cons v Δv (validity t dρ))) validity {σ ⇒ τ} (abs t) dρ = λ v → let v′ = after {σ} v Δv′ = v′ ⊟₍ σ ₎ v′ dρ₁ = v • dρ dρ₂ = nil-valid-change σ v′ • dρ in validity t dρ₁ , (begin ⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂ ≡⟨ correctness {t = t} {dρ₂} ⟩ ⟦ t ⟧ (update dρ₂) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (update dρ₁) ≡⟨ sym (correctness {t = t} {dρ₁}) ⟩ ⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁ ∎) where open ≡-Reasoning correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} → ⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ) correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ} correctness {t = intlit n} = right-id-int n correctness {t = add s t} {dρ} = trans (mn·pq=mp·nq {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _+_ (correctness {t = s}) (correctness {t = t})) correctness {t = minus t} {dρ} = trans (-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong -_ (correctness {t = t})) correctness {t = empty} = right-id-bag emptyBag correctness {t = insert s t} {dρ} = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) n′ = ⟦ s ⟧ (update dρ) b′ = ⟦ t ⟧ (update dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in begin (singletonBag n ++ b) ++ (singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b) ≡⟨ a++[b\\a]=b ⟩ singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb) ≡⟨ cong₂ _++_ (cong singletonBag (correctness {t = s})) (correctness {t = t}) ⟩ singletonBag n′ ++ b′ ∎ where open ≡-Reasoning correctness {t = union s t} {dρ} = trans (ab·cd=ac·bd {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _++_ (correctness {t = s}) (correctness {t = t})) correctness {t = negate t} {dρ} = trans (-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong negateBag (correctness {t = t})) correctness {t = flatmap s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in trans (a++[b\\a]=b {flatmapBag f b} {flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf) (b ⊞₍ base base-bag ₎ Δb)}) (cong₂ flatmapBag (correctness {t = s}) (correctness {t = t})) correctness {t = sum t} {dρ} = let b = ⟦ t ⟧ (ignore dρ) Δb = ⟦ t ⟧Δ dρ in trans (sym homo-sum) (cong sumBag (correctness {t = t})) correctness {τ} {t = var x} = correctVar {τ} {x = x} correctness {t = app {σ} {τ} s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) g = ⟦ s ⟧ (update dρ) u = ⟦ t ⟧ (ignore dρ) v = ⟦ t ⟧ (update dρ) Δf = ⟦ s ⟧Δ dρ Δu = ⟦ t ⟧Δ dρ in begin f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ)) ≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} {t = s} ⟨$⟩ correctness {σ} {t = t} ⟩ g v ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} {abs t} {dρ} = ext (λ v → let dρ′ : ΔEnv (σ • Γ) dρ′ = nil-valid-change σ v • dρ in begin ⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′ ≡⟨ correctness {τ} {t = t} {dρ′} ⟩ ⟦ t ⟧ (update dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (v • update dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} → (⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ) (⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ) ≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ)) ⊞₍ τ ₎ (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) corollary {σ} {τ} s t {dρ} = proj₂ (validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))) corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)} (v : ValidChange σ) → ⟦ t ⟧ ∅ (after {σ} v) ≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v corollary-closed {σ} {τ} {t = t} v = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ in begin f (after {σ} v) ≡⟨ cong (λ hole → hole (after {σ} v)) (sym (correctness {σ ⇒ τ} {t = t})) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v) ≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩ f (before {σ} v) ⊞₍ τ ₎ Δf v ∎ where open ≡-Reasoning
Make some arguments of validVar explicit.
Make some arguments of validVar explicit. Old-commit-hash: dc6d178e02b8bdd4f772dddbba1bf337f3b1d74c
Agda
mit
inc-lc/ilc-agda
3ee4b4fed60cc477d5e3672148d7f6f90db3368f
arrow.agda
arrow.agda
open import Data.Bool open import Data.List open import Data.Nat ---------------------------------------- _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- _∈_ : ℕ → List ℕ → Bool x ∈ [] = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) ∧ (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ [] = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure [] found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) ∨ (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs []) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ []))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) ∧ (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ [] ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) ∨ (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ [] cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ []) (5 ∷ 3 ∷ 7 ∷ 7 ∷ [])) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (5 ∷ [])) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ []) (6 ∷ 3 ∷ [])) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ []) (6 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ []) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ [])) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ []) (3 ∷ [])) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ [])) ∷ (model (10 ∷ 9 ∷ []) (1 ∷ [])) ∷ (model (3 ∷ 4 ∷ 11 ∷ []) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ [])) ∷ (model (12 ∷ 7 ∷ 1 ∷ []) (4 ∷ 11 ∷ 8 ∷ [])) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ []) (11 ∷ [])) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ []) (11 ∷ 3 ∷ [])) ∷ (model (3 ∷ 6 ∷ 5 ∷ []) ([])) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ []) (12 ∷ [])) ∷ [] testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1)) main = (closure proofs (5 ∷ []))
open import Agda.Builtin.Bool _or_ : Bool → Bool → Bool true or _ = true _ or true = true false or false = false _and_ : Bool → Bool → Bool false and _ = false _ and false = false true and true = true ---------------------------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false ---------------------------------------- infixr 5 _∷_ data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL ∘ #-} {-# BUILTIN CONS _∷_ #-} any : {A : Set} → (A → Bool) → List A → Bool any _ ∘ = false any f (x ∷ xs) = (f x) or (any f xs) _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys _∋_ : List ℕ → ℕ → Bool xs ∋ y = y ∈ xs ---------------------------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow _≡≡_ : Arrow → Arrow → Bool (⇒ q) ≡≡ (⇒ s) = q ≡ s (p ⇒ q) ≡≡ (r ⇒ s) = (p ≡ r) and (q ≡≡ s) _ ≡≡ _ = false _∈∈_ : Arrow → List Arrow → Bool x ∈∈ ∘ = false x ∈∈ (y ∷ ys) with x ≡≡ y ... | true = true ... | false = x ∈∈ ys closure : List Arrow → List ℕ → List ℕ closure ∘ found = found closure ((⇒ n) ∷ rest) found = n ∷ (closure rest (n ∷ found)) closure ((n ⇒ q) ∷ rest) found with (n ∈ found) or (n ∈ (closure rest found)) ... | true = closure (q ∷ rest) found ... | false = closure rest found _,_⊢_ : List Arrow → List ℕ → ℕ → Bool cs , ps ⊢ q = q ∈ (closure cs ps) _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (closure cs ∘) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q ---------------------------------------- data Separation : Set where model : List ℕ → List ℕ → Separation modelsupports : Separation → List Arrow → ℕ → Bool modelsupports (model holds _) cs n = cs , holds ⊢ n modeldenies : Separation → List Arrow → ℕ → Bool modeldenies (model _ fails) cs n = any (_∋_ (closure cs (n ∷ ∘))) fails _⟪!_⟫_ : List Arrow → Separation → Arrow → Bool cs ⟪! m ⟫ (⇒ q) = modeldenies m cs q cs ⟪! m ⟫ (p ⇒ q) = (modelsupports m cs p) and (cs ⟪! m ⟫ q) _⟪_⟫_ : List Arrow → List Separation → Arrow → Bool cs ⟪ ∘ ⟫ arr = false cs ⟪ m ∷ ms ⟫ arr = (cs ⟪! m ⟫ arr) or (cs ⟪ ms ⟫ arr) ---------------------------------------- data Relation : Set where Proved : Relation Derivable : Relation Separated : Relation Unknown : Relation consider : List Arrow → List Separation → Arrow → Relation consider cs ms arr with (arr ∈∈ cs) ... | true = Proved ... | false with (cs ⊢ arr) ... | true = Derivable ... | false with (cs ⟪ ms ⟫ arr) ... | true = Separated ... | false = Unknown proofs : List Arrow proofs = (3 ⇒ (⇒ 4)) ∷ -- (5 ⇒ (⇒ 4)) ∷ (6 ⇒ (⇒ 4)) ∷ (3 ⇒ (⇒ 3)) ∷ (3 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (9 ⇒ (⇒ 3)) ∷ (5 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 7)) ∷ (6 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 8)) ∷ (10 ⇒ (⇒ 7)) ∷ (5 ⇒ (⇒ 10)) ∷ (10 ⇒ (⇒ 4)) ∷ (5 ⇒ (⇒ 11)) ∷ (6 ⇒ (⇒ 11)) ∷ (11 ⇒ (⇒ 4)) ∷ (10 ⇒ (⇒ 7)) ∷ (8 ⇒ (⇒ 4)) ∷ (9 ⇒ (⇒ 7)) ∷ (9 ⇒ (⇒ 8)) ∷ (3 ⇒ (⇒ 8)) ∷ (5 ⇒ (3 ⇒ (⇒ 9))) ∷ (6 ⇒ (7 ⇒ (⇒ 10))) ∷ (6 ⇒ (3 ⇒ (⇒ 3))) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (⇒ 7)) ∷ (7 ⇒ (8 ⇒ (⇒ 10))) ∷ (3 ⇒ (10 ⇒ (⇒ 9))) ∷ (5 ⇒ (⇒ 1)) ∷ (3 ⇒ (1 ⇒ (⇒ 9))) ∷ (1 ⇒ (⇒ 2)) ∷ (10 ⇒ (⇒ 2)) ∷ ∘ cms : List Separation cms = (model (12 ∷ 6 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (5 ∷ 3 ∷ 7 ∷ 7 ∷ ∘)) ∷ (model (6 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (5 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 11 ∷ 4 ∷ 1 ∷ ∘) (6 ∷ 3 ∷ ∘)) ∷ (model (5 ∷ 3 ∷ 11 ∷ 4 ∷ 7 ∷ 8 ∷ 3 ∷ 9 ∷ 10 ∷ 1 ∷ ∘) (6 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ ∘) (5 ∷ 6 ∷ 3 ∷ 8 ∷ 9 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 5 ∷ 6 ∷ 4 ∷ 11 ∷ 1 ∷ ∘) (3 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 11 ∷ 7 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 8 ∷ 1 ∷ ∘)) ∷ (model (10 ∷ 9 ∷ ∘) (1 ∷ ∘)) ∷ (model (3 ∷ 4 ∷ 11 ∷ ∘) (9 ∷ 5 ∷ 6 ∷ 10 ∷ 7 ∷ 1 ∷ ∘)) ∷ (model (12 ∷ 7 ∷ 1 ∷ ∘) (4 ∷ 11 ∷ 8 ∷ ∘)) ∷ (model (9 ∷ 3 ∷ 10 ∷ 8 ∷ 1 ∷ ∘) (11 ∷ ∘)) ∷ (model (12 ∷ 4 ∷ 10 ∷ 1 ∷ ∘) (11 ∷ 3 ∷ ∘)) ∷ (model (3 ∷ 6 ∷ 5 ∷ ∘) (∘)) ∷ (model (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ ∘) (12 ∷ ∘)) ∷ ∘ testp : Arrow testp = (5 ⇒ (⇒ 10)) testd : Arrow testd = (5 ⇒ (⇒ 4)) tests : Arrow tests = (5 ⇒ (⇒ 3)) testu : Arrow testu = (6 ⇒ (⇒ 1)) main = (closure proofs (5 ∷ ∘))
Revert "Convert to stdlib"
Revert "Convert to stdlib" This reverts commit 68af677d56d4f0a4c1aaa95134ae06f0813500c1.
Agda
mit
louisswarren/hieretikz
ca3585f55fde86ac7d664ac346618396c7308e11
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) -- Change : Type → Set Change (base ι) = Change-base ι Change (σ ⇒ τ) = ValidChange σ → Change τ before : ValidChange ⊆ ⟦_⟧ before (cons v _ _) = v after : ValidChange ⊆ ⟦_⟧ after {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv change : ValidChange ⊆ Change change (cons _ dv _) = dv diff-valid-change : ∀ τ → (u v : ⟦ τ ⟧) → ValidChange τ diff-valid-change τ u v = cons v (u ⊟₍ τ ₎ v) (R[v,u-v] {τ} {u} {v}) nil-valid-change : ∀ τ → ⟦ τ ⟧ → ValidChange τ nil-valid-change τ v = diff-valid-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf (nil-valid-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v → g (after v) ⊟₍ τ ₎ f (before v) -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ValidChange σ) → valid {τ} (f (before v)) (Δf v) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (after v) ≡ f (before v) ⊞₍ τ ₎ Δf v -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w → let w′ = after {σ} w in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v (before {σ} w)}) ⟩ v (before {σ} w) ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v -- applicative structure call-valid-change : ∀ σ τ → ValidChange (σ ⇒ τ) → ValidChange σ → ValidChange τ call-valid-change σ τ (cons f Δf R[f,Δf]) Δv = cons (f (before {σ} Δv)) (Δf Δv) (proj₁ (R[f,Δf] Δv)) ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → before {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → after {τ})
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) -- Change : Type → Set Change (base ι) = Change-base ι Change (σ ⇒ τ) = ValidChange σ → Change τ before : ValidChange ⊆ ⟦_⟧ before (cons v _ _) = v after : ValidChange ⊆ ⟦_⟧ after {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv change : ValidChange ⊆ Change change (cons _ dv _) = dv apply-valid-change : ∀ τ → (v : ⟦ τ ⟧) (dv : ValidChange τ) → ⟦ τ ⟧ apply-valid-change τ v dv = apply-change τ v (change dv) diff-valid-change : ∀ τ → (u v : ⟦ τ ⟧) → ValidChange τ diff-valid-change τ u v = cons v (u ⊟₍ τ ₎ v) (R[v,u-v] {τ} {u} {v}) nil-valid-change : ∀ τ → ⟦ τ ⟧ → ValidChange τ nil-valid-change τ v = diff-valid-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf (nil-valid-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v → g (after v) ⊟₍ τ ₎ f (before v) -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ValidChange σ) → valid {τ} (f (before v)) (Δf v) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (after v) ≡ f (before v) ⊞₍ τ ₎ Δf v -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w → let w′ = after {σ} w in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v (before {σ} w)}) ⟩ v (before {σ} w) ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v -- applicative structure call-valid-change : ∀ σ τ → ValidChange (σ ⇒ τ) → ValidChange σ → ValidChange τ call-valid-change σ τ (cons f Δf R[f,Δf]) Δv = cons (f (before {σ} Δv)) (Δf Δv) (proj₁ (R[f,Δf] Δv)) ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → before {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → after {τ})
Implement apply-valid-change.
Implement apply-valid-change. Old-commit-hash: 64cc4483b462c94a945aa312124cbdf090ffd619
Agda
mit
inc-lc/ilc-agda
fbf5d17dabb1058927efc56a1b0c092c4e68e355
incremental.agda
incremental.agda
module incremental where open import Relation.Binary.PropositionalEquality open import meaning -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type -- `Δ τ` is the type of changes to `τ` Δ : (τ : Type) → Type infixr 5 _⇒_ -- Denotational Semantics ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ Δ τ ⟧Type = ⟦ τ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning Set ⟦_⟧Type -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- `Δ x t` maps changes in `x` to changes in `t` Δ : ∀ {Γ τ₁ τ₂} → (x : Var Γ τ₁) → (t : Term Γ τ₂) → Term Γ (Δ τ₁ ⇒ Δ τ₂) -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ Δ x t ⟧Term ρ = λ Δx _ → ⟦ t ⟧Term (update x Δx ρ) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm {Γ} {τ} = meaning (⟦ Γ ⟧ → ⟦ τ ⟧) ⟦_⟧Term -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv {Γ} = meaning ⟦ Γ ⟧ ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal {τ} = meaning ⟦ τ ⟧ ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} (Δ x t) = Δ (lift {Γ₁} {Γ₂} x) (weaken {Γ₁} {Γ₂} t)
module incremental where open import Relation.Binary.PropositionalEquality open import meaning -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type -- `Δ τ` is the type of changes to `τ` Δ : (τ : Type) → Type infixr 5 _⇒_ -- Denotational Semantics ⟦_⟧Type : Type -> Set ⟦ τ₁ ⇒ τ₂ ⟧Type = ⟦ τ₁ ⟧Type → ⟦ τ₂ ⟧Type ⟦ Δ τ ⟧Type = ⟦ τ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning Set ⟦_⟧Type -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- `Δ x dx t` maps changes `dx` in `x` to changes in `t` Δ : ∀ {Γ τ₁ τ₂} → (x : Var Γ τ₁) (dx : Var Γ (Δ τ₁)) → (t : Term Γ τ₂) → Term Γ (Δ τ₂) -- Denotational Semantics ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧ ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) ⟦ app t₁ t₂ ⟧Term ρ = (⟦ t₁ ⟧Term ρ) (⟦ t₂ ⟧Term ρ) ⟦ var x ⟧Term ρ = ⟦ x ⟧ ρ ⟦ Δ x dx t ⟧Term ρ = λ _ → ⟦ t ⟧Term (update x (⟦ dx ⟧ ρ) ρ) meaningOfTerm : ∀ {Γ τ} → Meaning (Term Γ τ) meaningOfTerm {Γ} {τ} = meaning (⟦ Γ ⟧ → ⟦ τ ⟧) ⟦_⟧Term -- NATURAL SEMANTICS -- (without support for Δ for now) -- Syntax data Env : Context → Set data Val : Type → Set data Val where ⟨abs_,_⟩ : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) (ρ : Env Γ) → Val (τ₁ ⇒ τ₂) data Env where ∅ : Env ∅ _•_ : ∀ {Γ τ} → Val τ → Env Γ → Env (τ • Γ) -- Lookup infixr 8 _⊢_↓_ _⊢_↦_ data _⊢_↦_ : ∀ {Γ τ} → Env Γ → Var Γ τ → Val τ → Set where this : ∀ {Γ τ} {ρ : Env Γ} {v : Val τ} → v • ρ ⊢ this ↦ v that : ∀ {Γ τ₁ τ₂ x} {ρ : Env Γ} {v₁ : Val τ₁} {v₂ : Val τ₂} → ρ ⊢ x ↦ v₂ → v₁ • ρ ⊢ that x ↦ v₂ -- Reduction data _⊢_↓_ : ∀ {Γ τ} → Env Γ → Term Γ τ → Val τ → Set where abs : ∀ {Γ τ₁ τ₂ ρ} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓ ⟨abs t , ρ ⟩ app : ∀ {Γ Γ′ τ₁ τ₂ ρ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓ ⟨abs t′ , ρ′ ⟩ → ρ ⊢ t₂ ↓ v₂ → v₂ • ρ′ ⊢ t′ ↓ v′ → ρ ⊢ app t₁ t₂ ↓ v′ var : ∀ {Γ τ x} {ρ : Env Γ} {v : Val τ}→ ρ ⊢ x ↦ v → ρ ⊢ var x ↓ v -- SOUNDNESS of natural semantics ⟦_⟧Env : ∀ {Γ} → Env Γ → ⟦ Γ ⟧ ⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧ ⟦ ∅ ⟧Env = ∅ ⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env ⟦ ⟨abs t , ρ ⟩ ⟧Val = λ v → ⟦ t ⟧ (v • ⟦ ρ ⟧Env) meaningOfEnv : ∀ {Γ} → Meaning (Env Γ) meaningOfEnv {Γ} = meaning ⟦ Γ ⟧ ⟦_⟧Env meaningOfVal : ∀ {τ} → Meaning (Val τ) meaningOfVal {τ} = meaning ⟦ τ ⟧ ⟦_⟧Val ↦-sound : ∀ {Γ τ ρ v} {x : Var Γ τ} → ρ ⊢ x ↦ v → ⟦ x ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↦-sound this = refl ↦-sound (that ↦) = ↦-sound ↦ ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → ρ ⊢ t ↓ v → ⟦ t ⟧ ⟦ ρ ⟧ ≡ ⟦ v ⟧ ↓-sound abs = refl ↓-sound (app ↓₁ ↓₂ ↓′) = trans (cong₂ (λ x y → x y) (↓-sound ↓₁) (↓-sound ↓₂)) (↓-sound ↓′) ↓-sound (var ↦) = ↦-sound ↦ -- WEAKENING -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) weaken {Γ₁} {Γ₂} (Δ x dx t) = Δ (lift {Γ₁} {Γ₂} x) (lift {Γ₁} {Γ₂} dx) (weaken {Γ₁} {Γ₂} t)
Change Δ to expect the change in a free variable.
Change Δ to expect the change in a free variable. Proposed by Paolo in a whiteboard discussion today. Old-commit-hash: bce0357c249c6ae66ad8fe002147ad07623d842f
Agda
mit
inc-lc/ilc-agda
1d32ad0cbc8582d30660167abe83ddda4a4cf6d1
lib/Relation/Nullary/NP.agda
lib/Relation/Nullary/NP.agda
module Relation.Nullary.NP where open import Type open import Data.Sum open import Relation.Nullary public module _ {a b} {A : ★_ a} {B : ★_ b} where Dec-⊎ : Dec A → Dec B → Dec (A ⊎ B) Dec-⊎ (yes p) _ = yes (inj₁ p) Dec-⊎ (no ¬p) (yes p) = yes (inj₂ p) Dec-⊎ (no ¬p) (no ¬q) = no [ ¬p , ¬q ] module _ (to : A → B)(from : B → A) where map-Dec : Dec A → Dec B map-Dec (yes p) = yes (to p) map-Dec (no ¬p) = no (λ z → ¬p (from z))
module Relation.Nullary.NP where open import Type open import Function open import Data.Zero open import Data.One open import Data.Sum open import Data.Product renaming (proj₁ to fst; proj₂ to snd) open import Relation.Nullary public Dec-𝟘 : Dec 𝟘 Dec-𝟘 = no id Dec-𝟙 : Dec 𝟙 Dec-𝟙 = yes _ module _ {a b} {A : ★_ a} {B : ★_ b} where Dec-⊎ : Dec A → Dec B → Dec (A ⊎ B) Dec-⊎ (yes p) _ = yes (inj₁ p) Dec-⊎ (no ¬p) (yes q) = yes (inj₂ q) Dec-⊎ (no ¬p) (no ¬q) = no [ ¬p , ¬q ] Dec-× : Dec A → Dec B → Dec (A × B) Dec-× (no ¬p) _ = no (¬p ∘ fst) Dec-× (yes _) (no ¬q) = no (¬q ∘ snd) Dec-× (yes p) (yes q) = yes (p , q) Dec-→ : Dec A → Dec B → Dec (A → B) Dec-→ _ (yes q) = yes (λ _ → q) Dec-→ (no ¬p) _ = yes (𝟘-elim ∘ ¬p) Dec-→ (yes p) (no ¬q) = no (λ f → ¬q (f p)) module _ (to : A → B)(from : B → A) where map-Dec : Dec A → Dec B map-Dec (yes p) = yes (to p) map-Dec (no ¬p) = no (¬p ∘ from)
add Dec-{𝟘,𝟙,×,→}
Dec: add Dec-{𝟘,𝟙,×,→}
Agda
bsd-3-clause
crypto-agda/agda-nplib
0ea795d1835bb4e398a04244310fe6e1eed4388f
one-time-semantic-security.agda
one-time-semantic-security.agda
module one-time-semantic-security where open import Function open import Data.Nat open import Data.Product open import Data.Vec using (splitAt; take; drop) import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≗_) open import Data.Bits open import flat-funs open import program-distance open import flipbased-implem -- Capture the various size parameters required -- for a cipher. -- -- M is the message space (|M| is the size of messages) -- C is the cipher text space -- Rᵉ is the randomness used by the cipher. record EncParams : Set where constructor mk field |M| |C| |R|ᵉ : ℕ M = Bits |M| C = Bits |C| Rᵉ = Bits |R|ᵉ -- The type of the encryption function Enc : Set Enc = M → ↺ |R|ᵉ C module EncParams² (ep₀ ep₁ : EncParams) where open EncParams ep₀ public using () renaming (|M| to |M|₀; |C| to |C|₀; |R|ᵉ to |R|ᵉ₀; M to M₀; C to C₀; Rᵉ to Rᵉ₀; Enc to Enc₀) open EncParams ep₁ public using () renaming (|M| to |M|₁; |C| to |C|₁; |R|ᵉ to |R|ᵉ₁; M to M₁; C to C₁; Rᵉ to Rᵉ₁; Enc to Enc₁) Tr = Enc₀ → Enc₁ Tr⁻¹ = Enc₁ → Enc₀ module EncParams²-same-|R|ᵉ (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where ep₁ = EncParams.mk |M|₁ |C|₁ (EncParams.|R|ᵉ ep₀) open EncParams² ep₀ ep₁ public module ♭EncParams {t} {T : Set t} (♭Funs : FlatFuns T) (ep : EncParams) where open FlatFuns ♭Funs open EncParams ep public `M = `Bits |M| `C = `Bits |C| `Rᵉ = `Bits |R|ᵉ module AbsSemSec {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs record SemSecAdv (ep : EncParams) |R|ᵃ : Set where constructor mk open ♭EncParams ♭Funs ep field {|S|} : ℕ `S = `Bits |S| S = Bits |S| -- Randomness adversary `Rᵃ = `Bits |R|ᵃ Rᵃ = Bits |R|ᵃ field step₀ : `Rᵃ `→ (`M `× `M) `× `S step₁ : `C `× `S `→ `Bit M² = Bit → M `M² = `Bit `→ `M module Ops (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops observe : `C `× `Rᵃ `→ (`M `× `M) `× `Bit observe = idO *** step₀ >>> ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ >>> idO *** step₁ where ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ = < snd >>> fst , < fst , snd >>> snd > > open ♭EncParams ♭Funs ep public SemSecReduction : ∀ ep₀ ep₁ (f : Coins → Coins) → Set SemSecReduction ep₀ ep₁ f = ∀ {c} → SemSecAdv ep₀ c → SemSecAdv ep₁ (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) where open PrgDist prgDist open AbsSemSec fun♭Funs open FlatFunsOps fun♭Ops module FunSemSecAdv {ep : EncParams} {|R|ᵃ} (A : SemSecAdv ep |R|ᵃ) where open SemSecAdv A public open Ops fun♭Ops public step₀F : Rᵃ → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R|ᵃ (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) module RunSemSec (ep : EncParams) where open EncParams ep using (M; C; |R|ᵉ; Enc) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit _⇄_ = runSemSec _≗A_ : ∀ {p} (A₁ A₂ : SemSecAdv ep p) → Set A₀ ≗A A₁ = observe A₀ ≗ observe A₁ where open FunSemSecAdv change-adv : ∀ {ca E} {A₁ A₂ : SemSecAdv ep ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂) change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , ≡.refl = ≡.trans (≡.cong proj₂ (helper₀ A₁)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post , pre) helper₂ = ≡.cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre))) (helper₀ A₂) _≗E_ : ∀ (E₀ E₁ : Enc) → Set E₀ ≗E E₁ = ∀ m → E₀ m ≗↺ E₁ m ≗E→≗⅁ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ≗⅁ (E₁ ⇄ A) ≗E→≗⅁ E₀≗E₁ {c} A b R rewrite E₀≗E₁ (proj (proj₁ (SemSecAdv.step₀ A (take c R))) b) (drop c R) = ≡.refl ≗E→⇓ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ⇓ (E₁ ⇄ A) ≗E→⇓ E₀≗E₁ A = extensional-reduction (≗E→≗⅁ E₀≗E₁ A) module SemSecReductions (ep₀ ep₁ : EncParams) (f : Coins → Coins) where open EncParams² ep₀ ep₁ open RunSemSec ep₀ public using () renaming (_⇄_ to _⇄₀_; _≗E_ to _≗E₀_; ≗E→⇓ to ≗E→⇓₀) open RunSemSec ep₁ public using () renaming (_⇄_ to _⇄₁_; _≗E_ to _≗E₁_; ≗E→⇓ to ≗E→⇓₁) Reduction : Set Reduction = SemSecReduction ep₁ ep₀ f SemSecTr : Tr → Set SemSecTr tr = ∃ λ (red : Reduction) → ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) SemSecTr⁻¹ : Tr⁻¹ → Set SemSecTr⁻¹ tr⁻¹ = ∃ λ (red : Reduction) → ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) SemSecTr→SemSecTr⁻¹ : ∀ tr tr⁻¹ (tr-right-inv : ∀ E → tr (tr⁻¹ E) ≗E₁ E) → SemSecTr tr → SemSecTr⁻¹ tr⁻¹ SemSecTr→SemSecTr⁻¹ _ tr⁻¹ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) helper E A A-breaks-E = pf (tr⁻¹ E) A A-breaks-tr-tr⁻¹-E where A-breaks-tr-tr⁻¹-E = ≗E→⇓₁ (λ m R → ≡.sym (tr-inv E m R)) A A-breaks-E SemSecTr⁻¹→SemSecTr : ∀ tr tr⁻¹ (tr-left-inv : ∀ E → tr⁻¹ (tr E) ≗E₀ E) → SemSecTr⁻¹ tr⁻¹ → SemSecTr tr SemSecTr⁻¹→SemSecTr tr _ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) helper E {c} A A-breaks-E = ≗E→⇓₀ (tr-inv E) (red A) (pf (tr E) A A-breaks-E)
module one-time-semantic-security where open import Function open import Data.Nat open import Data.Product using (∃; module Σ; _×_; _,_; proj₁; proj₂) open import Data.Vec using (splitAt; take; drop) import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≗_) open import Data.Bits open import flat-funs open import program-distance open import flipbased-implem -- Capture the various size parameters required -- for a cipher. -- -- M is the message space (|M| is the size of messages) -- C is the cipher text space -- Rᵉ is the randomness used by the cipher. record EncParams : Set where constructor mk field |M| |C| |R|ᵉ : ℕ M = Bits |M| C = Bits |C| Rᵉ = Bits |R|ᵉ -- The type of the encryption function Enc : Set Enc = M → ↺ |R|ᵉ C module EncParams² (ep₀ ep₁ : EncParams) where open EncParams ep₀ public using () renaming (|M| to |M|₀; |C| to |C|₀; |R|ᵉ to |R|ᵉ₀; M to M₀; C to C₀; Rᵉ to Rᵉ₀; Enc to Enc₀) open EncParams ep₁ public using () renaming (|M| to |M|₁; |C| to |C|₁; |R|ᵉ to |R|ᵉ₁; M to M₁; C to C₁; Rᵉ to Rᵉ₁; Enc to Enc₁) Tr = Enc₀ → Enc₁ Tr⁻¹ = Enc₁ → Enc₀ module EncParams²-same-|R|ᵉ (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where ep₁ = EncParams.mk |M|₁ |C|₁ (EncParams.|R|ᵉ ep₀) open EncParams² ep₀ ep₁ public module ♭EncParams {t} {T : Set t} (♭Funs : FlatFuns T) (ep : EncParams) where open FlatFuns ♭Funs open EncParams ep public `M = `Bits |M| `C = `Bits |C| `Rᵉ = `Bits |R|ᵉ module ♭EncParams² {t} {T : Set t} (♭Funs : FlatFuns T) (ep₀ ep₁ : EncParams) where open EncParams² ep₀ ep₁ public open ♭EncParams ♭Funs ep₀ public using () renaming (`M to `M₀; `C to `C₀; `Rᵉ to `Rᵉ₀) open ♭EncParams ♭Funs ep₁ public using () renaming (`M to `M₁; `C to `C₁; `Rᵉ to `Rᵉ₁) module AbsSemSec {t} {T : Set t} (♭Funs : FlatFuns T) where open FlatFuns ♭Funs record SemSecAdv (ep : EncParams) |R|ᵃ : Set where constructor mk open ♭EncParams ♭Funs ep field {|S|} : ℕ `S = `Bits |S| S = Bits |S| -- Randomness adversary `Rᵃ = `Bits |R|ᵃ Rᵃ = Bits |R|ᵃ field step₀ : `Rᵃ `→ (`M `× `M) `× `S step₁ : `C `× `S `→ `Bit M² = Bit → M `M² = `Bit `→ `M module Ops (♭ops : FlatFunsOps ♭Funs) where open FlatFunsOps ♭ops observe : `C `× `Rᵃ `→ (`M `× `M) `× `Bit observe = idO *** step₀ >>> ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ >>> idO *** step₁ where ⟨C,⟨M,S⟩⟩→⟨M¸⟨C,S⟩⟩ = < snd >>> fst , < fst , snd >>> snd > > open ♭EncParams ♭Funs ep public SemSecReduction : ∀ ep₀ ep₁ (f : Coins → Coins) → Set SemSecReduction ep₀ ep₁ f = ∀ {c} → SemSecAdv ep₀ c → SemSecAdv ep₁ (f c) -- Here we use Agda functions for FlatFuns. module FunSemSec (prgDist : PrgDist) where open PrgDist prgDist open AbsSemSec fun♭Funs open FlatFunsOps fun♭Ops module FunSemSecAdv {ep : EncParams} {|R|ᵃ} (A : SemSecAdv ep |R|ᵃ) where open SemSecAdv A public open Ops fun♭Ops public step₀F : Rᵃ → (M² × S) step₀F = step₀ >>> proj *** idO step₀↺ : ↺ |R|ᵃ (M² × S) step₀↺ = mk step₀F step₁F : S → C → Bit step₁F s c = step₁ (c , s) module RunSemSec (ep : EncParams) where open EncParams ep using (M; C; |R|ᵉ; Enc) -- Returing 0 means Chal wins, Adv looses -- 1 means Adv wins, Chal looses runSemSec : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit runSemSec E A b = A-step₀ >>= λ { (m , s) → map↺ (A-step₁ s) (E (m b)) } where open FunSemSecAdv A renaming (step₀↺ to A-step₀; step₁F to A-step₁) _⇄_ : ∀ {|R|ᵃ} (E : Enc) (A : SemSecAdv ep |R|ᵃ) b → ↺ (|R|ᵃ + |R|ᵉ) Bit _⇄_ = runSemSec _≗A_ : ∀ {p} (A₁ A₂ : SemSecAdv ep p) → Set A₀ ≗A A₁ = observe A₀ ≗ observe A₁ where open FunSemSecAdv change-adv : ∀ {ca E} {A₁ A₂ : SemSecAdv ep ca} → A₁ ≗A A₂ → (E ⇄ A₁) ≗⅁ (E ⇄ A₂) change-adv {ca = ca} {A₁ = _} {_} pf b R with splitAt ca R change-adv {E = E} {A₁} {A₂} pf b ._ | pre Σ., post , ≡.refl = ≡.trans (≡.cong proj₂ (helper₀ A₁)) helper₂ where open FunSemSecAdv helper₀ = λ A → pf (run↺ (E (proj (proj₁ (step₀ A pre)) b)) post , pre) helper₂ = ≡.cong (λ m → step₁ A₂ (run↺ (E (proj (proj₁ m) b)) post , proj₂ (step₀ A₂ pre))) (helper₀ A₂) _≗E_ : ∀ (E₀ E₁ : Enc) → Set E₀ ≗E E₁ = ∀ m → E₀ m ≗↺ E₁ m ≗E→≗⅁ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ≗⅁ (E₁ ⇄ A) ≗E→≗⅁ E₀≗E₁ {c} A b R rewrite E₀≗E₁ (proj (proj₁ (SemSecAdv.step₀ A (take c R))) b) (drop c R) = ≡.refl ≗E→⇓ : ∀ {E₀ E₁} → E₀ ≗E E₁ → ∀ {c} (A : SemSecAdv ep c) → (E₀ ⇄ A) ⇓ (E₁ ⇄ A) ≗E→⇓ E₀≗E₁ A = extensional-reduction (≗E→≗⅁ E₀≗E₁ A) module SemSecReductions (ep₀ ep₁ : EncParams) (f : Coins → Coins) where open EncParams² ep₀ ep₁ open RunSemSec ep₀ public using () renaming (_⇄_ to _⇄₀_; _≗E_ to _≗E₀_; ≗E→⇓ to ≗E→⇓₀) open RunSemSec ep₁ public using () renaming (_⇄_ to _⇄₁_; _≗E_ to _≗E₁_; ≗E→⇓ to ≗E→⇓₁) Reduction : Set Reduction = SemSecReduction ep₁ ep₀ f SemSecTr : Tr → Set SemSecTr tr = ∃ λ (red : Reduction) → ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) SemSecTr⁻¹ : Tr⁻¹ → Set SemSecTr⁻¹ tr⁻¹ = ∃ λ (red : Reduction) → ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) SemSecTr→SemSecTr⁻¹ : ∀ tr tr⁻¹ (tr-right-inv : ∀ E → tr (tr⁻¹ E) ≗E₁ E) → SemSecTr tr → SemSecTr⁻¹ tr⁻¹ SemSecTr→SemSecTr⁻¹ _ tr⁻¹ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (E ⇄₁ A) ⇓ (tr⁻¹ E ⇄₀ red {c} A) helper E A A-breaks-E = pf (tr⁻¹ E) A A-breaks-tr-tr⁻¹-E where A-breaks-tr-tr⁻¹-E = ≗E→⇓₁ (λ m R → ≡.sym (tr-inv E m R)) A A-breaks-E SemSecTr⁻¹→SemSecTr : ∀ tr tr⁻¹ (tr-left-inv : ∀ E → tr⁻¹ (tr E) ≗E₀ E) → SemSecTr⁻¹ tr⁻¹ → SemSecTr tr SemSecTr⁻¹→SemSecTr tr _ tr-inv (red , pf) = red , helper where helper : ∀ E {c} A → (tr E ⇄₁ A) ⇓ (E ⇄₀ red {c} A) helper E {c} A A-breaks-E = ≗E→⇓₀ (tr-inv E) (red A) (pf (tr E) A A-breaks-E)
add ♭EncParams²
one-time-semantic-security: add ♭EncParams²
Agda
bsd-3-clause
crypto-agda/crypto-agda
00a7767b9e6a38ec98ff6336651129e2786a6a98
lib/Data/Fin/Logical.agda
lib/Data/Fin/Logical.agda
-- NOTE with-K module Data.Fin.Logical where open import Data.Nat.Param.Binary open import Data.Fin.Param.Binary open import Function open import Data.Fin open import Relation.Binary open import Relation.Binary.Logical private module ⟦ℕ⟧s = Setoid ⟦ℕ⟧-setoid {- data ⟦Fin⟧ : (⟦ℕ⟧ ⟦→⟧ ⟦★₀⟧) Fin Fin where ⟦zero⟧ : ∀ {n₁ n₂} {nᵣ : ⟦ℕ⟧ n₁ n₂} → ⟦Fin⟧ (suc nᵣ) zero zero ⟦suc⟧ : ∀ {n₁ n₂} {nᵣ : ⟦ℕ⟧ n₁ n₂} {x₁ x₂} (xᵣ : ⟦Fin⟧ nᵣ x₁ x₂) → ⟦Fin⟧ (suc nᵣ) (suc x₁) (suc x₂) -} private refl : ∀ {n} → Reflexive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) refl {x = zero} = ⟦zero⟧ refl {x = suc _} = ⟦suc⟧ refl sym : ∀ {n} → Symmetric (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) sym ⟦zero⟧ = ⟦zero⟧ sym (⟦suc⟧ xᵣ) = ⟦suc⟧ (sym xᵣ) trans : ∀ {n} → Transitive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) trans ⟦zero⟧ xᵣ = xᵣ trans (⟦suc⟧ xᵣ) (⟦suc⟧ yᵣ) = ⟦suc⟧ (trans xᵣ yᵣ) subst : ∀ {ℓ n} → Substitutive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) ℓ subst _ ⟦zero⟧ = id subst P (⟦suc⟧ xᵣ) = subst (P ∘ suc) xᵣ isEquivalence : ∀ {n} → IsEquivalence (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) isEquivalence = record { refl = refl; sym = sym; trans = trans }
{-# OPTIONS --with-K #-} module Data.Fin.Logical where open import Data.Nat.Logical open import Data.Nat.Param.Binary -- open import Data.Fin.Param.Binary open import Function open import Data.Fin open import Relation.Binary open import Relation.Binary.Logical private module ⟦ℕ⟧s = Setoid ⟦ℕ⟧-setoid data ⟦Fin⟧ : (⟦ℕ⟧ ⟦→⟧ ⟦★₀⟧) Fin Fin where ⟦zero⟧ : ∀ {n₁ n₂} {nᵣ : ⟦ℕ⟧ n₁ n₂} → ⟦Fin⟧ (⟦suc⟧ nᵣ) zero zero ⟦suc⟧ : ∀ {n₁ n₂} {nᵣ : ⟦ℕ⟧ n₁ n₂} {x₁ x₂} (xᵣ : ⟦Fin⟧ nᵣ x₁ x₂) → ⟦Fin⟧ (⟦suc⟧ nᵣ) (suc x₁) (suc x₂) private refl : ∀ {n} → Reflexive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) refl {x = zero} = ⟦zero⟧ refl {x = suc _} = ⟦suc⟧ refl sym : ∀ {n} → Symmetric (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) sym ⟦zero⟧ = ⟦zero⟧ sym (⟦suc⟧ xᵣ) = ⟦suc⟧ (sym xᵣ) trans : ∀ {n} → Transitive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) trans ⟦zero⟧ xᵣ = xᵣ trans (⟦suc⟧ xᵣ) (⟦suc⟧ yᵣ) = ⟦suc⟧ (trans xᵣ yᵣ) subst : ∀ {ℓ n} → Substitutive (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) ℓ subst _ ⟦zero⟧ = id subst P (⟦suc⟧ xᵣ) = subst (P ∘ suc) xᵣ isEquivalence : ∀ {n} → IsEquivalence (⟦Fin⟧ {n} ⟦ℕ⟧s.refl) isEquivalence = record { refl = refl; sym = sym; trans = trans }
Fix Data.Fin.Logical
Fix Data.Fin.Logical
Agda
bsd-3-clause
crypto-agda/agda-nplib
8403c80b80206ebcbe4f1d3acfac2cfce30552ca
Parametric/Syntax/Term.agda
Parametric/Syntax/Term.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of terms (Fig. 1a and 1b). ------------------------------------------------------------------------ -- The syntax of terms depends on the syntax of simple types -- (because terms are indexed by types in order to rule out -- ill-typed terms). But we are in the Parametric.* hierarchy, so -- we don't know the full syntax of types, only how to lift the -- syntax of base types into the syntax of simple types. This -- means that we have to be parametric in the syntax of base -- types, too. -- -- In such parametric modules that depend on other parametric -- modules, we first import our dependencies under a more -- convenient name. import Parametric.Syntax.Type as Type -- Then we start the module proper, with parameters for all -- extension points of our dependencies. Note that here, the -- "Structure" naming convenion makes some sense, because we can -- say that we need some "Type.Structure" in order to define the -- "Term.Structure". module Parametric.Syntax.Term (Base : Type.Structure) where -- Now inside the module, we can open our dependencies with the -- parameters for their extension points. Again, here the name -- "Structure" makes some sense, because we can say that we want -- to access the "Type.Structure" that is induced by Base. open Type.Structure Base -- At this point, we have dealt with the extension points of our -- dependencies, and we have all the definitions about simple -- types, contexts, variables, and variable sets in scope that we -- provided in Parametric.Syntax.Type. Now we can proceed to -- define our own extension point, following the pattern -- explained in Parametric.Syntax.Type. open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function using (_∘_) open import Data.Unit open import Data.Sum -- Our extension point is a set of primitives, indexed by the -- types of their arguments and their return type. In general, if -- you're confused about what an extension point means, you might -- want to open the corresponding module in the Nehemiah -- hierarchy to see how it is implemented in the example -- plugin. In this case, that would be the Nehemiah.Syntax.Term -- module. Structure : Set₁ Structure = Context → Type → Set module Structure (Const : Structure) where -- Declarations of Term and Terms to enable mutual recursion. -- -- Note that terms are indexed by contexts and types. In the -- paper, we define the abstract syntax of terms in Fig 1a and -- then define a type system in Fig 1b. All lemmas and theorems -- then explicitly specify that they only hold for well-typed -- terms. Here, we use the indices to define a type that can -- only hold well-typed terms in the first place. data Term (Γ : Context) : (τ : Type) → Set --open import Base.Data.DependentList public -- No -- -- Workaround https://github.com/agda/agda/issues/1985 by making this import -- private; many clients will need to start importing this now. open import Base.Data.DependentList -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. Terms : Context → Context → Set Terms Γ = DependentList (Term Γ) -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where -- constants aka. primitives can only occur fully applied. const : ∀ {Σ τ} → (c : Const Σ τ) → (args : Terms Γ Σ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indicies, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Free variables FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ FV (const ι ts) = FV-terms ts FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t FV-terms ∅ = none FV-terms (t • ts) = FV t ∪ FV-terms ts closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken-terms : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weaken-terms Γ₁≼Γ₂ ∅ = ∅ weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) UncurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set UncurriedTermConstructor Γ Σ τ = Terms Γ Σ → Term Γ τ uncurriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → UncurriedTermConstructor Γ Σ τ uncurriedConst constant = const constant CurriedTermConstructor : (Γ Σ : Context) (τ : Type) → Set CurriedTermConstructor Γ ∅ τ′ = Term Γ τ′ CurriedTermConstructor Γ (τ • Σ) τ′ = Term Γ τ → CurriedTermConstructor Γ Σ τ′ curryTermConstructor : ∀ {Σ Γ τ} → UncurriedTermConstructor Γ Σ τ → CurriedTermConstructor Γ Σ τ curryTermConstructor {∅} k = k ∅ curryTermConstructor {τ • Σ} k = λ t → curryTermConstructor (λ ts → k (t • ts)) curriedConst : ∀ {Σ τ} → Const Σ τ → ∀ {Γ} → CurriedTermConstructor Γ Σ τ curriedConst constant = curryTermConstructor (uncurriedConst constant) -- HOAS-like smart constructors for lambdas, for different arities. -- We could also write this: module NamespaceForBadAbs₁ where abs₁′ : ∀ {Γ τ₁ τ} → (Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) → (Term Γ (τ₁ ⇒ τ)) abs₁′ {Γ} {τ₁} = λ f → abs (f (var this)) -- However, this is less general, and it is harder to reuse. In particular, -- this cannot be used inside abs₂, ..., abs₆. -- Now, let's write other variants with a loop! open import Data.Vec using (_∷_; []; Vec; foldr; [_]; reverse) open import Data.Nat module AbsNHelpers where open import Function hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set hoasArgType Γ τres = foldr _ (λ a b → a → b) (Term Γ τres) ∘ Data.Vec.map (Term Γ) -- That is, --hoasArgType Γ τres [] = Term Γ τres --hoasArgType Γ τres (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τres τs hoasResType : ∀ {n} → Type → Vec Type n → Type hoasResType τres = foldr _ _⇒_ τres absNType : {n : ℕ} → Vec _ n → Set absNType τs = ∀ {Γ τres} → (f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τres τs) → Term Γ (hoasResType τres τs) drop-≼-l : ∀ {Γ Γ′ τ} → (τ • Γ ≼ Γ′) → Γ ≼ Γ′ drop-≼-l Γ′≼Γ′₁ = ≼-trans (drop _ • ≼-refl) Γ′≼Γ′₁ absN : {n : ℕ} → (τs : Vec _ n) → absNType τs absN [] f = f {Γ≼Γ′ = ≼-refl} absN (τ₁ ∷ τs) f = abs (absN τs (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = drop-≼-l Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ (var this)))) -- Using a similar trick, we can declare absV (where V stands for variadic), -- which takes the N implicit type arguments individually, collects them and -- passes them on to absN. This is inspired by the example in the Agda 2.4.0 -- release notes about support for varying arity. To collect them, we need -- to use an accumulator argument. absVType : ∀ n {m} (τs : Vec Type m) → Set absVType zero τs = absNType (reverse τs) absVType (suc n) τs = {τ₁ : Type} → absVType n (τ₁ ∷ τs) absVAux : ∀ {m} → (τs : Vec Type m) → ∀ n → absVType n τs absVAux τs zero = absN (reverse τs) -- (Support for varying arity does not work here, so {τ₁} must be bound in -- the right-hand side). absVAux τs (suc n) {τ₁} = absVAux (τ₁ ∷ τs) n --λ {τ₁} → absVAux (τ₁ ∷ τs) n -- "Initialize" accumulator to the empty list. absV = absVAux [] -- We could maybe define absV directly, without going through absN, by -- making hoasArgType and hoasResType also variadic, but I don't see a clear -- advantage. open AbsNHelpers using (absV) public {- Example types: absV 1: {τ₁ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τres) absV 2: {τ₁ : Type} {τ₁ = τ₂ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τ₂ ⇒ τres) -}
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of terms (Fig. 1a and 1b). ------------------------------------------------------------------------ -- The syntax of terms depends on the syntax of simple types -- (because terms are indexed by types in order to rule out -- ill-typed terms). But we are in the Parametric.* hierarchy, so -- we don't know the full syntax of types, only how to lift the -- syntax of base types into the syntax of simple types. This -- means that we have to be parametric in the syntax of base -- types, too. -- -- In such parametric modules that depend on other parametric -- modules, we first import our dependencies under a more -- convenient name. import Parametric.Syntax.Type as Type -- Then we start the module proper, with parameters for all -- extension points of our dependencies. Note that here, the -- "Structure" naming convenion makes some sense, because we can -- say that we need some "Type.Structure" in order to define the -- "Term.Structure". module Parametric.Syntax.Term (Base : Type.Structure) where -- Now inside the module, we can open our dependencies with the -- parameters for their extension points. Again, here the name -- "Structure" makes some sense, because we can say that we want -- to access the "Type.Structure" that is induced by Base. open Type.Structure Base -- At this point, we have dealt with the extension points of our -- dependencies, and we have all the definitions about simple -- types, contexts, variables, and variable sets in scope that we -- provided in Parametric.Syntax.Type. Now we can proceed to -- define our own extension point, following the pattern -- explained in Parametric.Syntax.Type. open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function using (_∘_) open import Data.Unit open import Data.Sum -- Our extension point is a set of primitives, indexed by the -- types of their arguments and their return type. In general, if -- you're confused about what an extension point means, you might -- want to open the corresponding module in the Nehemiah -- hierarchy to see how it is implemented in the example -- plugin. In this case, that would be the Nehemiah.Syntax.Term -- module. Structure : Set₁ Structure = Context → Type → Set module Structure (Const : Structure) where -- Declarations of Term and Terms to enable mutual recursion. -- -- Note that terms are indexed by contexts and types. In the -- paper, we define the abstract syntax of terms in Fig 1a and -- then define a type system in Fig 1b. All lemmas and theorems -- then explicitly specify that they only hold for well-typed -- terms. Here, we use the indices to define a type that can -- only hold well-typed terms in the first place. data Term (Γ : Context) : (τ : Type) → Set --open import Base.Data.DependentList public -- No -- -- Workaround https://github.com/agda/agda/issues/1985 by making this import -- private; many clients will need to start importing this now. open import Base.Data.DependentList -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. Terms : Context → Context → Set Terms Γ = DependentList (Term Γ) -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where -- constants aka. primitives can only occur fully applied. const : ∀ {Σ τ} → (c : Const Σ τ) → (args : Terms Γ Σ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indicies, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Free variables FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ FV (const ι ts) = FV-terms ts FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t FV-terms ∅ = none FV-terms (t • ts) = FV t ∪ FV-terms ts closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken-terms : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Terms Γ₁ Σ → Terms Γ₂ Σ weaken Γ₁≼Γ₂ (const c ts) = const c (weaken-terms Γ₁≼Γ₂ ts) weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) weaken-terms Γ₁≼Γ₂ ∅ = ∅ weaken-terms Γ₁≼Γ₂ (t • ts) = weaken Γ₁≼Γ₂ t • weaken-terms Γ₁≼Γ₂ ts -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) -- HOAS-like smart constructors for lambdas, for different arities. -- We could also write this: module NamespaceForBadAbs₁ where abs₁′ : ∀ {Γ τ₁ τ} → (Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) → (Term Γ (τ₁ ⇒ τ)) abs₁′ {Γ} {τ₁} = λ f → abs (f (var this)) -- However, this is less general, and it is harder to reuse. In particular, -- this cannot be used inside abs₂, ..., abs₆. -- Now, let's write other variants with a loop! open import Data.Vec using (_∷_; []; Vec; foldr; [_]; reverse) open import Data.Nat module AbsNHelpers where open import Function hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set hoasArgType Γ τres = foldr _ (λ a b → a → b) (Term Γ τres) ∘ Data.Vec.map (Term Γ) -- That is, --hoasArgType Γ τres [] = Term Γ τres --hoasArgType Γ τres (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τres τs hoasResType : ∀ {n} → Type → Vec Type n → Type hoasResType τres = foldr _ _⇒_ τres absNType : {n : ℕ} → Vec _ n → Set absNType τs = ∀ {Γ τres} → (f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τres τs) → Term Γ (hoasResType τres τs) drop-≼-l : ∀ {Γ Γ′ τ} → (τ • Γ ≼ Γ′) → Γ ≼ Γ′ drop-≼-l Γ′≼Γ′₁ = ≼-trans (drop _ • ≼-refl) Γ′≼Γ′₁ absN : {n : ℕ} → (τs : Vec _ n) → absNType τs absN [] f = f {Γ≼Γ′ = ≼-refl} absN (τ₁ ∷ τs) f = abs (absN τs (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = drop-≼-l Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ (var this)))) -- Using a similar trick, we can declare absV (where V stands for variadic), -- which takes the N implicit type arguments individually, collects them and -- passes them on to absN. This is inspired by the example in the Agda 2.4.0 -- release notes about support for varying arity. To collect them, we need -- to use an accumulator argument. absVType : ∀ n {m} (τs : Vec Type m) → Set absVType zero τs = absNType (reverse τs) absVType (suc n) τs = {τ₁ : Type} → absVType n (τ₁ ∷ τs) absVAux : ∀ {m} → (τs : Vec Type m) → ∀ n → absVType n τs absVAux τs zero = absN (reverse τs) -- (Support for varying arity does not work here, so {τ₁} must be bound in -- the right-hand side). absVAux τs (suc n) {τ₁} = absVAux (τ₁ ∷ τs) n --λ {τ₁} → absVAux (τ₁ ∷ τs) n -- "Initialize" accumulator to the empty list. absV = absVAux [] -- We could maybe define absV directly, without going through absN, by -- making hoasArgType and hoasResType also variadic, but I don't see a clear -- advantage. open AbsNHelpers using (absV) public {- Example types: absV 1: {τ₁ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τres) absV 2: {τ₁ : Type} {τ₁ = τ₂ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τ₂ ⇒ τres) -}
Drop unused defs
Drop unused defs
Agda
mit
inc-lc/ilc-agda
c7ad461731109d522f831464e795886500cbf40d
README.agda
README.agda
module README where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * multiple calculi import Popl14.Syntax.Term import Base.Syntax.Context import Base.Change.Context import Popl14.Change.Derive {- Language definition of Calc. Atlas -} import Atlas.Syntax.Term {- Terms of a calculus described in Plotkin style - types are parametric in base types - terms are parametric in constants This style of language description is employed in: G. D. Plotkin. "LCF considered as a programming language." Theoretical Computer Science 5(3) pp. 223--255, 1997. http://dx.doi.org/10.1016/0304-3975(77)90044-5 -} import Parametric.Syntax.Term import Popl14.Change.Term import Atlas.Syntax.Type import Parametric.Syntax.Type import Popl14.Syntax.Type import Base.Syntax.Vars import Popl14.Change.Validity {- Correctness theorem for canonical derivation of Calc. Popl14 -} import Popl14.Change.Correctness import Theorem.Irrelevance-Popl14 import Base.Denotation.Environment import Popl14.Denotation.Evaluation {- The idea of implementing a denotational specification for Calc. Popl14 -} import Popl14.Change.Implementation import Base.Denotation.Notation {- Denotation-as-specification for canonical derivation of Calc. Popl14 -} import Popl14.Change.Specification import Popl14.Denotation.Value import experimental.DecidableEq import experimental.FoldableBag import experimental.FoldableBagParametric import experimental.NormalizationByEvaluation import experimental.OrdBag import experimental.Sorting import Postulate.Bag-Popl14 import Postulate.Extensionality import Property.Uniqueness import Structure.Bag.Popl14 import Structure.Tuples import Theorem.CongApp import Theorem.EqualityUnique import Theorem.Groups-Popl14 import Theorem.IrrelevanceUnique-Popl14 import Theorem.ProductUnique import UNDEFINED import Everything
module README where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * multiple calculi -- -- To typecheck this formalization, you need to install the appropriate version -- of Agda, the Agda standard library (version 0.7), generate Everything.agda -- with the attached Haskell helper, and finally run Agda on this file. -- -- Given a Unix-like environment (including Cygwin), running the ./agdaCheck.sh -- script and following instructions given on output will help with the -- "generate Everything.agda" part. -- -- We use Agda HEAD from September 2013; Agda 2.3.2.1 might happen to work, but -- has some bugs with serialization of code using some recent syntactic sugar -- which we use (https://code.google.com/p/agda/issues/detail?id=756), so it -- might work or not. When it does not, removing Agda caches (.agdai files) -- appears to often help. import Popl14.Syntax.Term import Base.Syntax.Context import Base.Change.Context import Popl14.Change.Derive {- Language definition of Calc. Atlas -} import Atlas.Syntax.Term {- Terms of a calculus described in Plotkin style - types are parametric in base types - terms are parametric in constants This style of language description is employed in: G. D. Plotkin. "LCF considered as a programming language." Theoretical Computer Science 5(3) pp. 223--255, 1997. http://dx.doi.org/10.1016/0304-3975(77)90044-5 -} import Parametric.Syntax.Term import Popl14.Change.Term import Atlas.Syntax.Type import Parametric.Syntax.Type import Popl14.Syntax.Type import Base.Syntax.Vars import Popl14.Change.Validity {- Correctness theorem for canonical derivation of Calc. Popl14 -} import Popl14.Change.Correctness import Theorem.Irrelevance-Popl14 import Base.Denotation.Environment import Popl14.Denotation.Evaluation {- The idea of implementing a denotational specification for Calc. Popl14 -} import Popl14.Change.Implementation import Base.Denotation.Notation {- Denotation-as-specification for canonical derivation of Calc. Popl14 -} import Popl14.Change.Specification import Popl14.Denotation.Value import experimental.DecidableEq import experimental.FoldableBag import experimental.FoldableBagParametric import experimental.NormalizationByEvaluation import experimental.OrdBag import experimental.Sorting import Postulate.Bag-Popl14 import Postulate.Extensionality import Property.Uniqueness import Structure.Bag.Popl14 import Structure.Tuples import Theorem.CongApp import Theorem.EqualityUnique import Theorem.Groups-Popl14 import Theorem.IrrelevanceUnique-Popl14 import Theorem.ProductUnique import UNDEFINED import Everything
Add instructions for users to README.agda
Add instructions for users to README.agda Old-commit-hash: c0018596eda8908801ba4aa7eeec5aa0ef9452b5
Agda
mit
inc-lc/ilc-agda
97ac1ebb0cbaecc1af38b1d9916fb946e06656a7
PLDI14-List-of-Theorems.agda
PLDI14-List-of-Theorems.agda
module PLDI14-List-of-Theorems where open import Function -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important name. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) -- (d) ChangeAlgebra.diff -- (e) IsChangeAlgebra.update-diff open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.5 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.6 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.7 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.7 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Lemma 2.8 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.9 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- For each plugin requirement, we include its definition and -- a concrete instantiation called "Popl14" with integers and -- bags of integers as base types. -- Plugin Requirement 3.1 (Domains of base types) open import Parametric.Denotation.Value using (Structure) open import Popl14.Denotation.Value using (⟦_⟧Base) -- Definition 3.2 (Domains) open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Plugin Requirement 3.3 (Evaluation of constants) open import Parametric.Denotation.Evaluation using (Structure) open import Popl14.Denotation.Evaluation using (⟦_⟧Const) -- Definition 3.4 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.5 (Evaluation) open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Plugin Requirement 3.6 (Changes on base types) open import Parametric.Change.Validity using (Structure) open import Popl14.Change.Validity using (change-algebra-base-family) -- Definition 3.7 (Changes) open Parametric.Change.Validity.Structure using (change-algebra) -- Definition 3.8 (Change environments) open Parametric.Change.Validity.Structure using (environment-changes) -- Plugin Requirement 3.9 (Change semantics for constants) open import Parametric.Change.Specification using (Structure) open import Popl14.Change.Specification using (specification-structure) -- Definition 3.10 (Change semantics) open Parametric.Change.Specification.Structure using (⟦_⟧Δ) -- Lemma 3.11 (Change semantics is the derivative of semantics) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.12 (Erasure) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open import Popl14.Change.Implementation using (implements-base) -- Lemma 3.13 (The erased version of a change is almost the same) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t)) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) -- Theorem 3.15 (Correctness of differentiation) open Parametric.Change.Correctness.Structure using (main-theorem)
module PLDI14-List-of-Theorems where open import Function -- List of theorems in PLDI submission -- -- For hints about installation and execution, please refer -- to README.agda. -- -- Agda modules corresponding to definitions, lemmas and theorems -- are listed here with the most important name. For example, -- after this file type checks (C-C C-L), placing the cursor -- on the purple "Base.Change.Algebra" and pressing M-. will -- bring you to the file where change structures are defined. -- The name for change structures in that file is -- "ChangeAlgebra", given in the using-clause. -- Definition 2.1 (Change structures) open import Base.Change.Algebra using (ChangeAlgebra) ---- Carrier in record ChangeAlgebra --(a) open Base.Change.Algebra.ChangeAlgebra using (Change) --(b) open Base.Change.Algebra.ChangeAlgebra using (update) --(c) open Base.Change.Algebra.ChangeAlgebra using (diff) --(d) open Base.Change.Algebra.IsChangeAlgebra using (update-diff)--(e) -- Definition 2.2 (Nil change) -- IsChangeAlgebra.nil open Base.Change.Algebra using (IsChangeAlgebra) -- Lemma 2.3 (Behavior of nil) -- IsChangeAlgebra.update-nil open Base.Change.Algebra using (IsChangeAlgebra) -- Definition 2.4 (Derivatives) open Base.Change.Algebra using (Derivative) -- Definition 2.5 (Carrier set of function changes) open Base.Change.Algebra.FunctionChanges -- Definition 2.6 (Operations on function changes) -- ChangeAlgebra.update FunctionChanges.changeAlgebra -- ChangeAlgebra.diff FunctionChanges.changeAlgebra open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Theorem 2.7 (Function changes form a change structure) -- (In Agda, the proof of Theorem 2.7 has to be included in the -- definition of function changes, here -- FunctionChanges.changeAlgebra.) open Base.Change.Algebra.FunctionChanges using (changeAlgebra) -- Lemma 2.8 (Incrementalization) open Base.Change.Algebra.FunctionChanges using (incrementalization) -- Theorem 2.9 (Nil changes are derivatives) open Base.Change.Algebra.FunctionChanges using (nil-is-derivative) -- For each plugin requirement, we include its definition and -- a concrete instantiation called "Popl14" with integers and -- bags of integers as base types. -- Plugin Requirement 3.1 (Domains of base types) open import Parametric.Denotation.Value using (Structure) open import Popl14.Denotation.Value using (⟦_⟧Base) -- Definition 3.2 (Domains) open Parametric.Denotation.Value.Structure using (⟦_⟧Type) -- Plugin Requirement 3.3 (Evaluation of constants) open import Parametric.Denotation.Evaluation using (Structure) open import Popl14.Denotation.Evaluation using (⟦_⟧Const) -- Definition 3.4 (Environments) open import Base.Denotation.Environment using (⟦_⟧Context) -- Definition 3.5 (Evaluation) open Parametric.Denotation.Evaluation.Structure using (⟦_⟧Term) -- Plugin Requirement 3.6 (Changes on base types) open import Parametric.Change.Validity using (Structure) open import Popl14.Change.Validity using (change-algebra-base-family) -- Definition 3.7 (Changes) open Parametric.Change.Validity.Structure using (change-algebra) -- Definition 3.8 (Change environments) open Parametric.Change.Validity.Structure using (environment-changes) -- Plugin Requirement 3.9 (Change semantics for constants) open import Parametric.Change.Specification using (Structure) open import Popl14.Change.Specification using (specification-structure) -- Definition 3.10 (Change semantics) open Parametric.Change.Specification.Structure using (⟦_⟧Δ) -- Lemma 3.11 (Change semantics is the derivative of semantics) open Parametric.Change.Specification.Structure using (correctness) -- Definition 3.12 (Erasure) import Parametric.Change.Implementation open Parametric.Change.Implementation.Structure using (_≈_) open import Popl14.Change.Implementation using (implements-base) -- Lemma 3.13 (The erased version of a change is almost the same) open Parametric.Change.Implementation.Structure using (carry-over) -- Lemma 3.14 (⟦ t ⟧Δ erases to Derive(t)) import Parametric.Change.Correctness open Parametric.Change.Correctness.Structure using (derive-correct-closed) -- Theorem 3.15 (Correctness of differentiation) open Parametric.Change.Correctness.Structure using (main-theorem)
remove redundant comment
remove redundant comment Old-commit-hash: 72138e09941c4514d0acef9dc39a91cd83e8077c
Agda
mit
inc-lc/ilc-agda
ceb7acd1c67116365b51503065e55f947cda63a5
total.agda
total.agda
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore Γ′ t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore ∅ (τ₂ • Γrest) t₁ = weakenOne ∅ (Δ-Type τ₂) (doWeakenMore (τ₂ • ∅) Γrest t₁) doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) prefix : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context prefix Γ Γ′ = take (Δ-Context Γ) Γ′ rest : ∀ Γ → (Γ′ : Prefix (Δ-Context Γ)) → Context rest Γ Γ′ = drop (Δ-Context Γ) Γ′ weakenMore2 : ∀ Γ Γ′ {τ} → Term Γ τ → Term (prefix Γ Γ′ ⋎ Δ-Context (rest Γ Γ′)) (Δ-Type τ) weakenMore2 Γ Γ′ t = doWeakenMore (prefix Γ Γ′) (rest Γ Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t)) weakenMore : ∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore {Γ} Γ′ t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (weakenMore2 Γ Γ′ t) lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
module total where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation import Relation.Binary as B open import Relation.Binary using (IsEquivalence; Setoid; Reflexive; Symmetric; Transitive) import Relation.Binary.EqReasoning as EqR open import Relation.Nullary using (¬_) open import meaning open import IlcModel open import Changes open import ChangeContexts open import binding Type ⟦_⟧Type open import TotalTerms -- LIFTING terms into Δ-Contexts lift-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) τ lift-var this = that this lift-var (that x) = that (that (lift-var x)) lift-var′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Var Γ τ → Var (Δ-Context′ Γ Γ′) τ lift-var′ ∅ x = lift-var x lift-var′ (τ • Γ′) this = this lift-var′ (τ • Γ′) (that x) = that (lift-var′ Γ′ x) lift-term′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) → Term Γ τ → Term (Δ-Context′ Γ Γ′) τ lift-term′ Γ′ (abs t) = abs (lift-term′ (_ • Γ′) t) lift-term′ Γ′ (app t₁ t₂) = app (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) lift-term′ Γ′ (var x) = var (lift-var′ Γ′ x) lift-term′ Γ′ true = true lift-term′ Γ′ false = false lift-term′ Γ′ (if t₁ t₂ t₃) = if (lift-term′ Γ′ t₁) (lift-term′ Γ′ t₂) (lift-term′ Γ′ t₃) lift-term′ {.(Δ-Context Γ)} {.(Δ-Type τ)} Γ′ (Δ {Γ} {τ} t) = weakenMore Γ′ t where open import Relation.Binary.PropositionalEquality using (sym) doWeakenMore : ∀ Γprefix Γrest {τ} → Term (Γprefix ⋎ Γrest) (Δ-Type τ) → Term (Γprefix ⋎ Δ-Context Γrest) (Δ-Type τ) doWeakenMore Γprefix ∅ t₁ = t₁ doWeakenMore Γprefix (τ₂ • Γrest) {τ} t₁ = weakenOne Γprefix (Δ-Type τ₂) (substTerm (sym (move-prefix Γprefix τ₂ (Δ-Context Γrest))) (doWeakenMore (Γprefix ⋎ (τ₂ • ∅)) Γrest (substTerm (move-prefix Γprefix τ₂ Γrest) t₁))) weakenMore : ∀ {Γ τ} Γ′ → Term Γ τ → Term (Δ-Context′ (Δ-Context Γ) Γ′) (Δ-Type τ) weakenMore {Γ} Γ′ t = substTerm (sym (take-⋎-Δ-Context-drop-Δ-Context′ (Δ-Context Γ) Γ′)) (doWeakenMore (take (Δ-Context Γ) Γ′) (drop (Δ-Context Γ) Γ′) ( substTerm (sym (take-drop (Δ-Context Γ) Γ′)) (Δ t))) lift-term′ {._} {_} _ (weakenOne _ _ {_} {._} _) = {!!} lift-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) τ lift-term = lift-term′ ∅ -- PROPERTIES of lift-term lift-var-ignore : ∀ {Γ τ} (ρ : ⟦ Δ-Context Γ ⟧) (x : Var Γ τ) → ⟦ lift-var x ⟧ ρ ≡ ⟦ x ⟧ (ignore ρ) lift-var-ignore (v • dv • ρ) this = ≡-refl lift-var-ignore (v • dv • ρ) (that x) = lift-var-ignore ρ x lift-var-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) (ρ : ⟦ Δ-Context′ Γ Γ′ ⟧) (x : Var Γ τ) → ⟦ lift-var′ Γ′ x ⟧ ρ ≡ ⟦ x ⟧ (ignore′ Γ′ ρ) lift-var-ignore′ ∅ ρ x = lift-var-ignore ρ x lift-var-ignore′ (τ • Γ′) (v • ρ) this = ≡-refl lift-var-ignore′ (τ • Γ′) (v • ρ) (that x) = lift-var-ignore′ Γ′ ρ x lift-term-ignore′ : ∀ {Γ τ} → (Γ′ : Prefix Γ) {ρ : ⟦ Δ-Context′ Γ Γ′ ⟧} (t : Term Γ τ) → ⟦ lift-term′ Γ′ t ⟧ ρ ≡ ⟦ t ⟧ (ignore′ Γ′ ρ) lift-term-ignore′ Γ′ (abs t) = ext (λ v → lift-term-ignore′ (_ • Γ′) t) lift-term-ignore′ Γ′ (app t₁ t₂) = ≡-app (lift-term-ignore′ Γ′ t₁) (lift-term-ignore′ Γ′ t₂) lift-term-ignore′ Γ′ (var x) = lift-var-ignore′ Γ′ _ x lift-term-ignore′ Γ′ true = ≡-refl lift-term-ignore′ Γ′ false = ≡-refl lift-term-ignore′ Γ′ {ρ} (if t₁ t₂ t₃) with ⟦ lift-term′ Γ′ t₁ ⟧ ρ | ⟦ t₁ ⟧ (ignore′ Γ′ ρ) | lift-term-ignore′ Γ′ {ρ} t₁ ... | true | true | bool = lift-term-ignore′ Γ′ t₂ ... | false | false | bool = lift-term-ignore′ Γ′ t₃ lift-term-ignore′ Γ′ (Δ t) = {!!} lift-term-ignore′ _ (weakenOne _ _ {_} {._} _) = {!!} lift-term-ignore : ∀ {Γ τ} {ρ : ⟦ Δ-Context Γ ⟧} (t : Term Γ τ) → ⟦ lift-term t ⟧ ρ ≡ ⟦ t ⟧ (ignore ρ) lift-term-ignore = lift-term-ignore′ ∅ -- PROPERTIES of Δ Δ-abs : ∀ {Γ τ₁ τ₂} (t : Term (τ₁ • Γ) τ₂) → Δ (abs t) ≈ abs (abs (Δ t)) Δ-abs t = ext (λ ρ → ≡-refl) Δ-app : ∀ {Γ τ₁ τ₂} (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Δ (app t₁ t₂) ≈ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) Δ-app t₁ t₂ = ≈-sym (ext (λ ρ → begin diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ lift-term t₂ ⟧ ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ lift-term t₂ ⟧ ρ)) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) x)) (⟦ t₁ ⟧ (ignore ρ) x)) (lift-term-ignore {ρ = ρ} t₂) ⟩ diff (⟦ t₁ ⟧ (update ρ) (apply (diff (⟦ t₂ ⟧ (update ρ)) (⟦ t₂ ⟧ (ignore ρ))) (⟦ t₂ ⟧ (ignore ρ)))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ≡⟨ ≡-cong (λ x → diff (⟦ t₁ ⟧ (update ρ) x) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ)))) (apply-diff (⟦ t₂ ⟧ (ignore ρ)) (⟦ t₂ ⟧ (update ρ))) ⟩ diff (⟦ t₁ ⟧ (update ρ) (⟦ t₂ ⟧ (update ρ))) (⟦ t₁ ⟧ (ignore ρ) (⟦ t₂ ⟧ (ignore ρ))) ∎)) where open ≡-Reasoning -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) diff-term : ∀ {Γ τ} → Term Γ τ → Term Γ τ → Term Γ (Δ-Type τ) diff-term = {!!} apply-term : ∀ {Γ τ} → Term Γ (Δ-Type τ) → Term Γ τ → Term Γ τ apply-term = {!!} _and_ : ∀ {Γ} → Term Γ bool → Term Γ bool → Term Γ bool a and b = {!!} !_ : ∀ {Γ} → Term Γ bool → Term Γ bool ! x = {!!} derive-term : ∀ {Γ τ} → Term Γ τ → Term (Δ-Context Γ) (Δ-Type τ) derive-term (abs t) = abs (abs (derive-term t)) derive-term (app t₁ t₂) = app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) derive-term (var x) = var (derive-var x) derive-term true = false derive-term false = false derive-term (if c t e) = if ((derive-term c) and (lift-term c)) (diff-term (apply-term (derive-term e) (lift-term e)) (lift-term t)) (if ((derive-term c) and (lift-term (! c))) (diff-term (apply-term (derive-term t) (lift-term t)) (lift-term e)) (if (lift-term c) (derive-term t) (derive-term e))) derive-term (Δ t) = Δ (derive-term t) derive-term (weakenOne Γ₁ τ₂ {Γ₃} t) = substTerm (Δ-Context-⋎-expanded Γ₁ τ₂ Γ₃) (weakenOne (Δ-Context Γ₁) (Δ-Type τ₂) (weakenOne (Δ-Context Γ₁) τ₂ (substTerm (Δ-Context-⋎ Γ₁ Γ₃) (derive-term t)))) -- CORRECTNESS of derivation derive-var-correct : ∀ {Γ τ} → (ρ : ⟦ Δ-Context Γ ⟧) → (x : Var Γ τ) → diff (⟦ x ⟧ (update ρ)) (⟦ x ⟧ (ignore ρ)) ≡ ⟦ derive-var x ⟧ ρ derive-var-correct (dv • v • ρ) this = diff-apply dv v derive-var-correct (dv • v • ρ) (that x) = derive-var-correct ρ x derive-term-correct : ∀ {Γ τ} → (t : Term Γ τ) → Δ t ≈ derive-term t derive-term-correct {Γ} (abs t) = begin Δ (abs t) ≈⟨ Δ-abs t ⟩ abs (abs (Δ t)) ≈⟨ ≈-abs (≈-abs (derive-term-correct t)) ⟩ abs (abs (derive-term t)) ≈⟨ ≈-refl ⟩ derive-term (abs t) ∎ where open ≈-Reasoning derive-term-correct (app t₁ t₂) = begin Δ (app t₁ t₂) ≈⟨ Δ-app t₁ t₂ ⟩ app (app (Δ t₁) (lift-term t₂)) (Δ t₂) ≈⟨ ≈-app (≈-app (derive-term-correct t₁) ≈-refl) (derive-term-correct t₂) ⟩ app (app (derive-term t₁) (lift-term t₂)) (derive-term t₂) ≈⟨ ≈-refl ⟩ derive-term (app t₁ t₂) ∎ where open ≈-Reasoning derive-term-correct (var x) = ext (λ ρ → derive-var-correct ρ x) derive-term-correct true = ext (λ ρ → ≡-refl) derive-term-correct false = ext (λ ρ → ≡-refl) derive-term-correct (if t₁ t₂ t₃) = {!!} derive-term-correct (Δ t) = ≈-Δ (derive-term-correct t) derive-term-correct (weakenOne _ _ t) = {!!}
simplify weakenMore
agda/...: simplify weakenMore * Inline some definitions where appropriate. * Remove useless pattern matching on context. Old-commit-hash: a4c4aee377597f7c17b5fa7d8b1c8a02492041c0
Agda
mit
inc-lc/ilc-agda
a737167afb8fb406b75d8e0d52fdfb3fa6c50035
Parametric/Change/Specification.agda
Parametric/Change/Specification.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Change evaluation (Def 3.6 and Fig. 4h). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity module Parametric.Change.Specification {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) {{validity-structure : Validity.Structure ⟦_⟧Base}} where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality module Structure where --------------- -- Interface -- --------------- -- We provide: Derivatives of terms. ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ) -- And we provide correctness proofs about the derivatives. correctness : ∀ {τ Γ} (t : Term Γ τ) → IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ -------------------- -- Implementation -- -------------------- ⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ) ⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv ⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ ⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ ⟦ c ⟧Const ⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ ⟦_⟧Δ (app {σ} {τ} s t) ρ dρ = call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) ⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record { apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ) ; correct = λ v dv → begin ⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩ ⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)) ≡⟨⟩ ⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩ ⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ) ≡⟨⟩ ⟦ t ⟧ (after-env (dv • dρ)) ≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩ ⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ) ∎ } where open ≡-Reasoning correctVar : ∀ {τ Γ} (x : Var Γ τ) → IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar correctVar (this) (v • ρ) (dv • dρ) = refl correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ correctness (app {σ} {τ} s t) ρ dρ = let f = ⟦ s ⟧ ρ g = ⟦ s ⟧ (after-env dρ) u = ⟦ t ⟧ ρ v = ⟦ t ⟧ (after-env dρ) Δf = ⟦ s ⟧Δ ρ dρ Δu = ⟦ t ⟧Δ ρ dρ in begin f u ⊞₍ τ ₎ call-change {σ} {τ} Δf u Δu ≡⟨ sym (is-valid {σ} {τ} Δf u Δu) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩ g v ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v → let -- dρ′ : ΔEnv (σ • Γ) (v • ρ) dρ′ = nil₍ σ ₎ v • dρ in begin ⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′ ≡⟨ correctness {τ} t _ dρ′ ⟩ ⟦ t ⟧ (after-env dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩ ⟦ t ⟧ (v • after-env dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → (⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ) ≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ) ⊞₍ τ ₎ (call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) corollary {σ} {τ} s t ρ dρ = is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ)) (v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v) → ⟦ t ⟧ ∅ (after₍ σ ₎ dv) ≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv corollary-closed {σ} {τ} t v dv = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ ∅ in begin f (after₍ σ ₎ dv) ≡⟨ cong (λ hole → hole (after₍ σ ₎ dv)) (sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv) ≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩ f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv ∎ where open ≡-Reasoning
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Change evaluation (Def 3.6 and Fig. 4h). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity module Parametric.Change.Specification {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) {{validity-structure : Validity.Structure ⟦_⟧Base}} where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Theorem.CongApp open import Postulate.Extensionality module Structure where --------------- -- Interface -- --------------- -- We provide: Derivatives of terms. ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ) -- And we provide correctness proofs about the derivatives. correctness : ∀ {τ Γ} (t : Term Γ τ) → IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ -------------------- -- Implementation -- -------------------- ⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ) ⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv ⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ ⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ ⟦ c ⟧Const ⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ ⟦_⟧Δ (app {σ} {τ} s t) ρ dρ = call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) ⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = record { apply = λ v dv → ⟦ t ⟧Δ (v • ρ) (dv • dρ) ; correct = λ v dv → begin ⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ≡⟨ correctness t (v ⊞₍ σ ₎ dv • ρ) (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ) ⟩ ⟦ t ⟧ (after-env (nil₍ σ ₎ (v ⊞₍ σ ₎ dv) • dρ)) ≡⟨⟩ ⟦ t ⟧ (((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) • after-env dρ) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ (v ⊞₍ σ ₎ dv)) ⟩ ⟦ t ⟧ (v ⊞₍ σ ₎ dv • after-env dρ) ≡⟨⟩ ⟦ t ⟧ (after-env (dv • dρ)) ≡⟨ sym (correctness t (v • ρ) (dv • dρ)) ⟩ ⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ (v • ρ) (dv • dρ) ∎ } where open ≡-Reasoning correctVar : ∀ {τ Γ} (x : Var Γ τ) → IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar correctVar (this) (v • ρ) (dv • dρ) = refl correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ correctness (app {σ} {τ} s t) ρ dρ = let f₁ = ⟦ s ⟧ ρ f₂ = ⟦ s ⟧ (after-env dρ) Δf = ⟦ s ⟧Δ ρ dρ u₁ = ⟦ t ⟧ ρ u₂ = ⟦ t ⟧ (after-env dρ) Δu = ⟦ t ⟧Δ ρ dρ in begin f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu ≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩ (f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩ f₂ u₂ ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = ext (λ v → let -- dρ′ : ΔEnv (σ • Γ) (v • ρ) dρ′ = nil₍ σ ₎ v • dρ in begin ⟦ t ⟧ (v • ρ) ⊞₍ τ ₎ ⟦ t ⟧Δ _ dρ′ ≡⟨ correctness {τ} t _ dρ′ ⟩ ⟦ t ⟧ (after-env dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • after-env dρ)) (update-nil₍ σ ₎ v) ⟩ ⟦ t ⟧ (v • after-env dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → (⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ) ≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ) ⊞₍ τ ₎ (call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) corollary {σ} {τ} s t ρ dρ = is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ)) (v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v) → ⟦ t ⟧ ∅ (after₍ σ ₎ dv) ≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv corollary-closed {σ} {τ} t v dv = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ ∅ in begin f (after₍ σ ₎ dv) ≡⟨ cong (λ hole → hole (after₍ σ ₎ dv)) (sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv) ≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩ f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv ∎ where open ≡-Reasoning
Rename locals in proof for clarity
Rename locals in proof for clarity Was re-reading this proof for the thesis.
Agda
mit
inc-lc/ilc-agda
a06adfefda06e416bc4f111d7085cd3b5ad42568
Parametric/Change/Evaluation.agda
Parametric/Change/Evaluation.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue module Parametric.Change.Evaluation {Base : Type.Structure} {Const : Term.Structure Base} (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open import Relation.Binary.PropositionalEquality open import Base.Denotation.Notation open import Postulate.Extensionality -- Relating `diff` with `diff-term`, `apply` with `apply-term` ApplyStructure : Set ApplyStructure = ∀ ι {Γ} → {t : Term Γ (base ι)} {Δt : Term Γ (ΔType (base ι))} {ρ : ⟦ Γ ⟧} → ⟦ t ⟧ ρ ⟦⊕₍ base ι ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ base ι ₎ Δt ⟧ ρ DiffStructure : Set DiffStructure = ∀ ι {Γ} → {s : Term Γ (base ι)} {t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} → ⟦ s ⟧ ρ ⟦⊝₍ base ι ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ base ι ₎ t ⟧ ρ module Structure (meaning-⊕-base : ApplyStructure) (meaning-⊝-base : DiffStructure) where -- unique names with unambiguous types -- to help type inference figure things out private module Disambiguation where infixr 9 _⋆_ _⋆_ : Type → Context → Context _⋆_ = _•_ meaning-⊕ : ∀ {τ Γ} {t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} → ⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ τ ₎ Δt ⟧ ρ meaning-⊝ : ∀ {τ Γ} {s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} → ⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ τ ₎ t ⟧ ρ meaning-⊕ {base ι} {Γ} {τ} {Δt} {ρ} = meaning-⊕-base ι {Γ} {τ} {Δt} {ρ} meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v → let Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧ ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ x : Term Γ′ σ x = var this f : Term Γ′ (σ ⇒ τ) f = var (that this) Δf : Term Γ′ (ΔType (σ ⇒ τ)) Δf = var (that (that this)) y = app f x Δy = app (app Δf x) (x ⊝ x) in begin ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (v ⟦⊝₍ σ ₎⟧ v) ≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole) (meaning-⊝ {s = x} {x} {ρ′}) ⟩ ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′) ≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩ ⟦ y ⊕₍ τ ₎ Δy ⟧ ρ′ ∎) where open ≡-Reasoning open Disambiguation meaning-⊝ {base ι} {Γ} {s} {t} {ρ} = meaning-⊝-base ι {Γ} {s} {t} {ρ} meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} = ext (λ v → ext (λ Δv → let Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧Context ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ Δx : Term Γ′ (ΔType σ) Δx = var this x : Term Γ′ σ x = var (that this) f : Term Γ′ (σ ⇒ τ) f = var (that (that this)) g : Term Γ′ (σ ⇒ τ) g = var (that (that (that this))) y = app f x y′ = app g (x ⊕₍ σ ₎ Δx) in begin ⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v) (meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩ ⟦ s ⟧ ρ (⟦ x ⊕₍ σ ₎ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩ ⟦ y′ ⊝ y ⟧ ρ′ ∎)) where open ≡-Reasoning open Disambiguation
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Connecting Parametric.Change.Term and Parametric.Change.Value. ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue module Parametric.Change.Evaluation {Base : Type.Structure} {Const : Term.Structure Base} (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open import Relation.Binary.PropositionalEquality open import Base.Denotation.Notation open import Postulate.Extensionality -- Extension point 1: Relating ⊝ and its value on base types ApplyStructure : Set ApplyStructure = ∀ ι {Γ} → {t : Term Γ (base ι)} {Δt : Term Γ (ΔType (base ι))} {ρ : ⟦ Γ ⟧} → ⟦ t ⟧ ρ ⟦⊕₍ base ι ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ base ι ₎ Δt ⟧ ρ -- Extension point 2: Relating ⊕ and its value on base types DiffStructure : Set DiffStructure = ∀ ι {Γ} → {s : Term Γ (base ι)} {t : Term Γ (base ι)} {ρ : ⟦ Γ ⟧} → ⟦ s ⟧ ρ ⟦⊝₍ base ι ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ base ι ₎ t ⟧ ρ module Structure (meaning-⊕-base : ApplyStructure) (meaning-⊝-base : DiffStructure) where -- unique names with unambiguous types -- to help type inference figure things out private module Disambiguation where infixr 9 _⋆_ _⋆_ : Type → Context → Context _⋆_ = _•_ -- We provide: Relating ⊕ and ⊝ and their values on arbitrary types. meaning-⊕ : ∀ {τ Γ} {t : Term Γ τ} {Δt : Term Γ (ΔType τ)} {ρ : ⟦ Γ ⟧} → ⟦ t ⟧ ρ ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ ≡ ⟦ t ⊕₍ τ ₎ Δt ⟧ ρ meaning-⊝ : ∀ {τ Γ} {s : Term Γ τ} {t : Term Γ τ} {ρ : ⟦ Γ ⟧} → ⟦ s ⟧ ρ ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ ≡ ⟦ s ⊝₍ τ ₎ t ⟧ ρ meaning-⊕ {base ι} {Γ} {τ} {Δt} {ρ} = meaning-⊕-base ι {Γ} {τ} {Δt} {ρ} meaning-⊕ {σ ⇒ τ} {Γ} {t} {Δt} {ρ} = ext (λ v → let Γ′ = σ ⋆ (σ ⇒ τ) ⋆ ΔType (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧ ρ′ = v • (⟦ t ⟧ ρ) • (⟦ Δt ⟧ ρ) • ρ x : Term Γ′ σ x = var this f : Term Γ′ (σ ⇒ τ) f = var (that this) Δf : Term Γ′ (ΔType (σ ⇒ τ)) Δf = var (that (that this)) y = app f x Δy = app (app Δf x) (x ⊝ x) in begin ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (v ⟦⊝₍ σ ₎⟧ v) ≡⟨ cong (λ hole → ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v hole) (meaning-⊝ {s = x} {x} {ρ′}) ⟩ ⟦ t ⟧ ρ v ⟦⊕₍ τ ₎⟧ ⟦ Δt ⟧ ρ v (⟦ x ⊝ x ⟧ ρ′) ≡⟨ meaning-⊕ {t = y} {Δt = Δy} {ρ′} ⟩ ⟦ y ⊕₍ τ ₎ Δy ⟧ ρ′ ∎) where open ≡-Reasoning open Disambiguation meaning-⊝ {base ι} {Γ} {s} {t} {ρ} = meaning-⊝-base ι {Γ} {s} {t} {ρ} meaning-⊝ {σ ⇒ τ} {Γ} {s} {t} {ρ} = ext (λ v → ext (λ Δv → let Γ′ = ΔType σ ⋆ σ ⋆ (σ ⇒ τ) ⋆ (σ ⇒ τ) ⋆ Γ ρ′ : ⟦ Γ′ ⟧Context ρ′ = Δv • v • ⟦ t ⟧Term ρ • ⟦ s ⟧Term ρ • ρ Δx : Term Γ′ (ΔType σ) Δx = var this x : Term Γ′ σ x = var (that this) f : Term Γ′ (σ ⇒ τ) f = var (that (that this)) g : Term Γ′ (σ ⇒ τ) g = var (that (that (that this))) y = app f x y′ = app g (x ⊕₍ σ ₎ Δx) in begin ⟦ s ⟧ ρ (v ⟦⊕₍ σ ₎⟧ Δv) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ cong (λ hole → ⟦ s ⟧ ρ hole ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v) (meaning-⊕ {t = x} {Δt = Δx} {ρ′}) ⟩ ⟦ s ⟧ ρ (⟦ x ⊕₍ σ ₎ Δx ⟧ ρ′) ⟦⊝₍ τ ₎⟧ ⟦ t ⟧ ρ v ≡⟨ meaning-⊝ {s = y′} {y} {ρ′} ⟩ ⟦ y′ ⊝ y ⟧ ρ′ ∎)) where open ≡-Reasoning open Disambiguation
Document P.C.Evaluation.
Document P.C.Evaluation. Old-commit-hash: d56cb423e28dc729478353d4e2d2c4fb422d2f8f
Agda
mit
inc-lc/ilc-agda
61de78a178ea4a23092e726b277f92787528c970
Denotation/Specification/Canon-Popl14.agda
Denotation/Specification/Canon-Popl14.agda
module Denotation.Specification.Canon-Popl14 where -- Denotation-as-specification for Calculus Popl14 -- -- Contents -- - ⟦_⟧Δ : binding-time-shifted derive -- - Validity and correctness lemmas for ⟦_⟧Δ -- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments -- - `corollary-closed`: binding-time-shifted main theorem open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Validity open import Popl14.Denotation.Evaluation public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 open import Theorem.Groups-Popl14 open import Theorem.CongApp open import Postulate.Extensionality ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ -- better name is: ⟦_⟧Δ reacts to future arguments validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) → valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) -- better name is: ⟦_⟧Δ reacts to free variables correctness : ∀ {τ Γ} {t : Term Γ τ} {dρ : ΔEnv Γ} → ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ) ⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ ⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv ⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (intlit n) dρ = + 0 ⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ ⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ ⟦_⟧Δ empty dρ = emptyBag ⟦_⟧Δ (insert s t) dρ = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in (singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b) ⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ ⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (flatmap s t) dρ = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b ⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (app {σ} {τ} s t) dρ = (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) ⟦_⟧Δ (abs t) dρ = λ v → ⟦ t ⟧Δ (v • dρ) validVar : ∀ {τ Γ} (x : Var Γ τ) → (dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ) validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv] validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ validity (intlit n) dρ = tt validity (add s t) dρ = tt validity (minus t) dρ = tt validity (empty) dρ = tt validity (insert s t) dρ = tt validity (union s t) dρ = tt validity (negate t) dρ = tt validity (flatmap s t) dρ = tt validity (sum t) dρ = tt validity {τ} (var x) dρ = validVar {τ} x dρ validity (app s t) dρ = let v = ⟦ t ⟧ (ignore dρ) Δv = ⟦ t ⟧Δ dρ in proj₁ (validity s dρ (cons v Δv (validity t dρ))) validity {σ ⇒ τ} (abs t) dρ = λ v → let v′ = after {σ} v Δv′ = v′ ⊟₍ σ ₎ v′ dρ₁ = v • dρ dρ₂ = nil-valid-change σ v′ • dρ in validity t dρ₁ , (begin ⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂ ≡⟨ correctness {t = t} {dρ₂} ⟩ ⟦ t ⟧ (update dρ₂) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (update dρ₁) ≡⟨ sym (correctness {t = t} {dρ₁}) ⟩ ⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁ ∎) where open ≡-Reasoning correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} → ⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ) correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ} correctness {t = intlit n} = right-id-int n correctness {t = add s t} {dρ} = trans (mn·pq=mp·nq {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _+_ (correctness {t = s}) (correctness {t = t})) correctness {t = minus t} {dρ} = trans (-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong -_ (correctness {t = t})) correctness {t = empty} = right-id-bag emptyBag correctness {t = insert s t} {dρ} = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) n′ = ⟦ s ⟧ (update dρ) b′ = ⟦ t ⟧ (update dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in begin (singletonBag n ++ b) ++ (singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b) ≡⟨ a++[b\\a]=b ⟩ singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb) ≡⟨ cong₂ _++_ (cong singletonBag (correctness {t = s})) (correctness {t = t}) ⟩ singletonBag n′ ++ b′ ∎ where open ≡-Reasoning correctness {t = union s t} {dρ} = trans (ab·cd=ac·bd {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _++_ (correctness {t = s}) (correctness {t = t})) correctness {t = negate t} {dρ} = trans (-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong negateBag (correctness {t = t})) correctness {t = flatmap s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in trans (a++[b\\a]=b {flatmapBag f b} {flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf) (b ⊞₍ base base-bag ₎ Δb)}) (cong₂ flatmapBag (correctness {t = s}) (correctness {t = t})) correctness {t = sum t} {dρ} = let b = ⟦ t ⟧ (ignore dρ) Δb = ⟦ t ⟧Δ dρ in trans (sym homo-sum) (cong sumBag (correctness {t = t})) correctness {τ} {t = var x} = correctVar {τ} {x = x} correctness {t = app {σ} {τ} s t} {dρ} = let f = ⟦ s ⟧ (ignore dρ) g = ⟦ s ⟧ (update dρ) u = ⟦ t ⟧ (ignore dρ) v = ⟦ t ⟧ (update dρ) Δf = ⟦ s ⟧Δ dρ Δu = ⟦ t ⟧Δ dρ in begin f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ)) ≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} {t = s} ⟨$⟩ correctness {σ} {t = t} ⟩ g v ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} {abs t} {dρ} = ext (λ v → let dρ′ : ΔEnv (σ • Γ) dρ′ = nil-valid-change σ v • dρ in begin ⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′ ≡⟨ correctness {τ} {t = t} {dρ′} ⟩ ⟦ t ⟧ (update dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (v • update dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} → (⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ) (⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ) ≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ)) ⊞₍ τ ₎ (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) corollary {σ} {τ} s t {dρ} = proj₂ (validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))) corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)} (v : ValidChange σ) → ⟦ t ⟧ ∅ (after {σ} v) ≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v corollary-closed {σ} {τ} {t = t} v = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ in begin f (after {σ} v) ≡⟨ cong (λ hole → hole (after {σ} v)) (sym (correctness {σ ⇒ τ} {t = t})) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v) ≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩ f (before {σ} v) ⊞₍ τ ₎ Δf v ∎ where open ≡-Reasoning
module Denotation.Specification.Canon-Popl14 where -- Denotation-as-specification for Calculus Popl14 -- -- Contents -- - ⟦_⟧Δ : binding-time-shifted derive -- - Validity and correctness lemmas for ⟦_⟧Δ -- - `corollary`: ⟦_⟧Δ reacts to both environment and arguments -- - `corollary-closed`: binding-time-shifted main theorem open import Popl14.Syntax.Term open import Popl14.Denotation.Value open import Popl14.Change.Validity open import Popl14.Denotation.Evaluation public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Product open import Data.Integer open import Structure.Bag.Popl14 open import Theorem.Groups-Popl14 open import Theorem.CongApp open import Postulate.Extensionality ⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (dρ : ΔEnv Γ) → Change τ -- better name is: ⟦_⟧Δ reacts to future arguments validity : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) → valid {τ} (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) -- better name is: ⟦_⟧Δ reacts to free variables correctness : ∀ {τ Γ} (t : Term Γ τ) (dρ : ΔEnv Γ) → ⟦ t ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ ≡ ⟦ t ⟧ (update dρ) ⟦_⟧ΔVar : ∀ {τ Γ} → Var Γ τ → ΔEnv Γ → Change τ ⟦ this ⟧ΔVar (cons v dv R[v,dv] • dρ) = dv ⟦ that x ⟧ΔVar (cons v dv R[v,dv] • dρ) = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (intlit n) dρ = + 0 ⟦_⟧Δ (add s t) dρ = ⟦ s ⟧Δ dρ + ⟦ t ⟧Δ dρ ⟦_⟧Δ (minus t) dρ = - ⟦ t ⟧Δ dρ ⟦_⟧Δ empty dρ = emptyBag ⟦_⟧Δ (insert s t) dρ = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in (singletonBag (n ⊞₍ int ₎ Δn) ++ (b ⊞₍ bag ₎ Δb)) ⊟₍ bag ₎ (singletonBag n ++ b) ⟦_⟧Δ (union s t) dρ = ⟦ s ⟧Δ dρ ++ ⟦ t ⟧Δ dρ ⟦_⟧Δ (negate t) dρ = negateBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (flatmap s t) dρ = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in flatmapBag (f ⊞₍ int ⇒ bag ₎ Δf) (b ⊞₍ bag ₎ Δb) ⊟₍ bag ₎ flatmapBag f b ⟦_⟧Δ (sum t) dρ = sumBag (⟦ t ⟧Δ dρ) ⟦_⟧Δ (var x) dρ = ⟦ x ⟧ΔVar dρ ⟦_⟧Δ (app {σ} {τ} s t) dρ = (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) ⟦_⟧Δ (abs t) dρ = λ v → ⟦ t ⟧Δ (v • dρ) validVar : ∀ {τ Γ} (x : Var Γ τ) → (dρ : ΔEnv Γ) → valid {τ} (⟦ x ⟧ (ignore dρ)) (⟦ x ⟧ΔVar dρ) validVar this (cons v Δv R[v,Δv] • _) = R[v,Δv] validVar {τ} (that x) (cons _ _ _ • dρ) = validVar {τ} x dρ validity (intlit n) dρ = tt validity (add s t) dρ = tt validity (minus t) dρ = tt validity (empty) dρ = tt validity (insert s t) dρ = tt validity (union s t) dρ = tt validity (negate t) dρ = tt validity (flatmap s t) dρ = tt validity (sum t) dρ = tt validity {τ} (var x) dρ = validVar {τ} x dρ validity (app s t) dρ = let v = ⟦ t ⟧ (ignore dρ) Δv = ⟦ t ⟧Δ dρ in proj₁ (validity s dρ (cons v Δv (validity t dρ))) validity {σ ⇒ τ} (abs t) dρ = λ v → let v′ = after {σ} v Δv′ = v′ ⊟₍ σ ₎ v′ dρ₁ = v • dρ dρ₂ = nil-valid-change σ v′ • dρ in validity t dρ₁ , (begin ⟦ t ⟧ (ignore dρ₂) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₂ ≡⟨ correctness t dρ₂ ⟩ ⟦ t ⟧ (update dρ₂) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (update dρ₁) ≡⟨ sym (correctness t dρ₁) ⟩ ⟦ t ⟧ (ignore dρ₁) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ₁ ∎) where open ≡-Reasoning correctVar : ∀ {τ Γ} {x : Var Γ τ} {dρ : ΔEnv Γ} → ⟦ x ⟧ (ignore dρ) ⊞₍ τ ₎ ⟦ x ⟧ΔVar dρ ≡ ⟦ x ⟧ (update dρ) correctVar {x = this } {cons v dv R[v,dv] • dρ} = refl correctVar {x = that y} {cons v dv R[v,dv] • dρ} = correctVar {x = y} {dρ} correctness (intlit n) dρ = right-id-int n correctness (add s t) dρ = trans (mn·pq=mp·nq {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _+_ (correctness s dρ) (correctness t dρ)) correctness (minus t) dρ = trans (-m·-n=-mn {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong -_ (correctness t dρ)) correctness empty dρ = right-id-bag emptyBag correctness (insert s t) dρ = let n = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) n′ = ⟦ s ⟧ (update dρ) b′ = ⟦ t ⟧ (update dρ) Δn = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in begin (singletonBag n ++ b) ++ (singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb)) \\ (singletonBag n ++ b) ≡⟨ a++[b\\a]=b ⟩ singletonBag (n ⊞₍ base base-int ₎ Δn) ++ (b ⊞₍ base base-bag ₎ Δb) ≡⟨ cong₂ _++_ (cong singletonBag (correctness s dρ)) (correctness t dρ) ⟩ singletonBag n′ ++ b′ ∎ where open ≡-Reasoning correctness (union s t) dρ = trans (ab·cd=ac·bd {⟦ s ⟧ (ignore dρ)} {⟦ t ⟧ (ignore dρ)} {⟦ s ⟧Δ dρ} {⟦ t ⟧Δ dρ}) (cong₂ _++_ (correctness s dρ) (correctness t dρ)) correctness (negate t) dρ = trans (-a·-b=-ab {⟦ t ⟧ (ignore dρ)} {⟦ t ⟧Δ dρ}) (cong negateBag (correctness t dρ)) correctness (flatmap s t) dρ = let f = ⟦ s ⟧ (ignore dρ) b = ⟦ t ⟧ (ignore dρ) Δf = ⟦ s ⟧Δ dρ Δb = ⟦ t ⟧Δ dρ in trans (a++[b\\a]=b {flatmapBag f b} {flatmapBag (f ⊞₍ base base-int ⇒ base base-bag ₎ Δf) (b ⊞₍ base base-bag ₎ Δb)}) (cong₂ flatmapBag (correctness s dρ) (correctness t dρ)) correctness (sum t) dρ = let b = ⟦ t ⟧ (ignore dρ) Δb = ⟦ t ⟧Δ dρ in trans (sym homo-sum) (cong sumBag (correctness t dρ)) correctness {τ} (var x) dρ = correctVar {τ} {x = x} correctness (app {σ} {τ} s t) dρ = let f = ⟦ s ⟧ (ignore dρ) g = ⟦ s ⟧ (update dρ) u = ⟦ t ⟧ (ignore dρ) v = ⟦ t ⟧ (update dρ) Δf = ⟦ s ⟧Δ dρ Δu = ⟦ t ⟧Δ dρ in begin f u ⊞₍ τ ₎ Δf (cons u Δu (validity {σ} t dρ)) ≡⟨ sym (proj₂ (validity {σ ⇒ τ} s dρ (cons u Δu (validity {σ} t dρ)))) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (u ⊞₍ σ ₎ Δu) ≡⟨ correctness {σ ⇒ τ} s dρ ⟨$⟩ correctness {σ} t dρ ⟩ g v ∎ where open ≡-Reasoning correctness {σ ⇒ τ} {Γ} (abs t) dρ = ext (λ v → let dρ′ : ΔEnv (σ • Γ) dρ′ = nil-valid-change σ v • dρ in begin ⟦ t ⟧ (ignore dρ′) ⊞₍ τ ₎ ⟦ t ⟧Δ dρ′ ≡⟨ correctness {τ} t dρ′ ⟩ ⟦ t ⟧ (update dρ′) ≡⟨ cong (λ hole → ⟦ t ⟧ (hole • update dρ)) (v+[u-v]=u {σ}) ⟩ ⟦ t ⟧ (v • update dρ) ∎ ) where open ≡-Reasoning -- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv corollary : ∀ {σ τ Γ} (s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) {dρ : ΔEnv Γ} → (⟦ s ⟧ (ignore dρ) ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ dρ) (⟦ t ⟧ (ignore dρ) ⊞₍ σ ₎ ⟦ t ⟧Δ dρ) ≡ (⟦ s ⟧ (ignore dρ)) (⟦ t ⟧ (ignore dρ)) ⊞₍ τ ₎ (⟦ s ⟧Δ dρ) (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ)) corollary {σ} {τ} s t {dρ} = proj₂ (validity {σ ⇒ τ} s dρ (cons (⟦ t ⟧ (ignore dρ)) (⟦ t ⟧Δ dρ) (validity {σ} t dρ))) corollary-closed : ∀ {σ τ} {t : Term ∅ (σ ⇒ τ)} (v : ValidChange σ) → ⟦ t ⟧ ∅ (after {σ} v) ≡ ⟦ t ⟧ ∅ (before {σ} v) ⊞₍ τ ₎ ⟦ t ⟧Δ ∅ v corollary-closed {σ} {τ} {t = t} v = let f = ⟦ t ⟧ ∅ Δf = ⟦ t ⟧Δ ∅ in begin f (after {σ} v) ≡⟨ cong (λ hole → hole (after {σ} v)) (sym (correctness {σ ⇒ τ} t ∅)) ⟩ (f ⊞₍ σ ⇒ τ ₎ Δf) (after {σ} v) ≡⟨ proj₂ (validity {σ ⇒ τ} t ∅ v) ⟩ f (before {σ} v) ⊞₍ τ ₎ Δf v ∎ where open ≡-Reasoning
Make some arguments of correctness explicit.
Make some arguments of correctness explicit. Old-commit-hash: b8f4ff3d6b2f0ea72c79a94c10ae3ec1b545c2ca
Agda
mit
inc-lc/ilc-agda
80463c85413df224feab7c464101dbfd5ff7ec77
Syntax/Language/Atlas.agda
Syntax/Language/Atlas.agda
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- The binary operator such that -- union t t ≡ t -- To implement union, we need for each non-map base-type -- an operator such that `op v v = v` on all values `v`. -- for Booleans, conjunction is good enough. -- -- TODO (later): support conjunction, probably by Boolean -- elimination form if-then-else postulate and! : ∀ {Γ} → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = and! s t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
module Syntax.Language.Atlas where -- Base types of the calculus Atlas -- to be used with Plotkin-style language description -- -- Atlas supports maps with neutral elements. The change type to -- `Map κ ι` is `Map κ Δι`, where Δι is the change type of the -- ground type ι. Such a change to maps can support insertions -- and deletions as well: Inserting `k -> v` means mapping `k` to -- the change from the neutral element to `v`, and deleting -- `k -> v` means mapping `k` to the change from `v` to the -- neutral element. open import Syntax.Language.Calculus data Atlas-type : Set where Bool : Atlas-type Map : (κ : Atlas-type) (ι : Atlas-type) → Atlas-type data Atlas-const : Set where true : Atlas-const false : Atlas-const xor : Atlas-const empty : ∀ {κ ι : Atlas-type} → Atlas-const update : ∀ {κ ι : Atlas-type} → Atlas-const zip : ∀ {κ a b c : Atlas-type} → Atlas-const Atlas-lookup : Atlas-const → Type Atlas-type Atlas-lookup true = base Bool Atlas-lookup false = base Bool Atlas-lookup xor = base Bool ⇒ base Bool ⇒ base Bool Atlas-lookup (empty {κ} {ι}) = base (Map κ ι) -- `update key val my-map` would -- - insert if `key` is not present in `my-map` -- - delete if `val` is the neutral element -- - make an update otherwise Atlas-lookup (update {κ} {ι}) = base κ ⇒ base ι ⇒ base (Map κ ι) ⇒ base (Map κ ι) -- Model of zip = Haskell Data.List.zipWith -- zipWith :: (a → b → c) → [a] → [b] → [c] Atlas-lookup (zip {κ} {a} {b} {c}) = (base κ ⇒ base a ⇒ base b ⇒ base c) ⇒ base (Map κ a) ⇒ base (Map κ b) ⇒ base (Map κ c) Atlas-Δbase : Atlas-type → Atlas-type -- change to a boolean is a xor-rand Atlas-Δbase Bool = Bool -- change to a map is change to its values Atlas-Δbase (Map key val) = (Map key (Atlas-Δbase val)) Atlas-Δtype : Type Atlas-type → Type Atlas-type Atlas-Δtype = lift-Δtype₀ Atlas-Δbase Atlas-context : Set Atlas-context = Context {Type Atlas-type} Atlas-term : Atlas-context → Type Atlas-type → Set Atlas-term = Term {Atlas-type} {Atlas-const} {Atlas-lookup} -- Every base type has a known nil-change. -- The nil-change of ι is also the neutral element of Map κ Δι. neutral : ∀ {ι : Atlas-type} → Atlas-const neutral {Bool} = false neutral {Map κ ι} = empty {κ} {ι} neutral-term : ∀ {ι Γ} → Atlas-term Γ (base ι) neutral-term {Bool} = const (neutral {Bool}) neutral-term {Map κ ι} = const (neutral {Map κ ι}) nil-const : ∀ {ι : Atlas-type} → Atlas-const nil-const {ι} = neutral {Atlas-Δbase ι} nil-term : ∀ {ι Γ} → Atlas-term Γ (base (Atlas-Δbase ι)) nil-term {Bool} = const (nil-const {Bool}) nil-term {Map κ ι} = const (nil-const {Map κ ι}) -- Shorthands of constants -- -- There's probably a uniform way to lift constants -- into term constructors. -- -- TODO: write this and call it Syntax.Term.Plotkin.lift-term zip! : ∀ {κ a b c Γ} → Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c) → Atlas-term Γ (base (Map κ a)) → Atlas-term Γ (base (Map κ b)) → Atlas-term Γ (base (Map κ c)) zip! f m₁ m₂ = app (app (app (const zip) f) m₁) m₂ lookup! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base ι) lookup! = {!!} -- TODO: add constant `lookup` -- diff-term and apply-term -- b₀ ⊝ b₁ = b₀ xor b₁ -- m₀ ⊝ m₁ = zip _⊝_ m₀ m₁ Atlas-diff : ∀ {ι Γ} → Atlas-term Γ (base ι ⇒ base ι ⇒ Atlas-Δtype (base ι)) Atlas-diff {Bool} = const xor Atlas-diff {Map κ ι} = app (const zip) (abs Atlas-diff) -- b ⊕ Δb = b xor Δb -- m ⊕ Δm = zip _⊕_ m Δm Atlas-apply : ∀ {ι Γ} → Atlas-term Γ (Atlas-Δtype (base ι) ⇒ base ι ⇒ base ι) Atlas-apply {Bool} = const xor Atlas-apply {Map κ ι} = app (const zip) (abs Atlas-apply) -- Shorthands for working with diff-term and apply-term diff : ∀ {τ Γ} → Atlas-term Γ τ → Atlas-term Γ τ → Atlas-term Γ (Atlas-Δtype τ) diff s t = app (app (lift-diff Atlas-diff Atlas-apply) s) t apply : ∀ {τ Γ} → Atlas-term Γ (Atlas-Δtype τ) → Atlas-term Γ τ → Atlas-term Γ τ apply s t = app (app (lift-apply Atlas-diff Atlas-apply) s) t -- Shorthands for creating changes corresponding to -- insertion/deletion. update! : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (base (Map κ ι)) → Atlas-term Γ (base (Map κ ι)) update! k v m = app (app (app (const update) k) v) m insert : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → -- last argument is the change accumulator Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) delete : ∀ {κ ι Γ} → Atlas-term Γ (base κ) → Atlas-term Γ (base ι) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) → Atlas-term Γ (Atlas-Δtype (base (Map κ ι))) insert k v acc = update! k (diff v neutral-term) acc delete k v acc = update! k (diff neutral-term v) acc -- union s t should be: -- 1. equal to t if s is neutral -- 2. equal to s if t is neutral -- 3. equal to s if s == t -- 4. whatever it wants to be otherwise -- -- On Booleans, only conjunction can be union. -- -- TODO (later): support conjunction, probably by Boolean -- elimination form if-then-else postulate and! : ∀ {Γ} → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) → Atlas-term Γ (base Bool) union : ∀ {ι Γ} → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) → Atlas-term Γ (base ι) union {Bool} s t = and! s t union {Map κ ι} s t = let union-term = abs (abs (union (var (that this)) (var this))) in zip! (abs union-term) s t -- Shorthand for 4-way zip zip4! : ∀ {κ a b c d e Γ} → let t:_ = λ ι → Atlas-term Γ (base ι) in Atlas-term Γ (base κ ⇒ base a ⇒ base b ⇒ base c ⇒ base d ⇒ base e) → t: Map κ a → t: Map κ b → t: Map κ c → t: Map κ d → t: Map κ e zip4! f m₁ m₂ m₃ m₄ = let v₁ = var (that this) v₂ = var this v₃ = var (that this) v₄ = var this k₁₂ = var (that (that this)) k₃₄ = var (that (that this)) f₁₂ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₁₂) v₁) v₂) (lookup! k₁₂ (weaken₃ m₃))) (lookup! k₁₂ (weaken₃ m₄))))) f₃₄ = abs (abs (abs (app (app (app (app (app (weaken₃ f) k₃₄) (lookup! k₃₄ (weaken₃ m₁))) (lookup! k₃₄ (weaken₃ m₂))) v₃) v₄))) in -- A correct but inefficient implementation. -- May want to speed it up after constants are finalized. union (zip! f₁₂ m₁ m₂) (zip! f₃₄ m₃ m₄) -- Type signature of Atlas-Δconst is boilerplate. Atlas-Δconst : ∀ {Γ} → (c : Atlas-const) → Atlas-term Γ (Atlas-Δtype (Atlas-lookup c)) Atlas-Δconst true = const false Atlas-Δconst false = const false -- Δxor = λ x Δx y Δy → Δx xor Δy Atlas-Δconst xor = let Δx = var (that (that this)) Δy = var this in abs (abs (abs (abs (app (app (const xor) Δx) Δy)))) Atlas-Δconst empty = const empty -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = let k = var (that (that (that (that (that this))))) Δk = var (that (that (that (that this)))) v = var (that (that (that this))) Δv = var (that (that this)) -- m = var (that this) -- unused parameter Δm = var this in abs (abs (abs (abs (abs (abs (insert (apply Δk k) (apply Δv v) (delete k v Δm))))))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = let Δf = var (that (that (that (that this)))) m₁ = var (that (that (that this))) Δm₁ = var (that (that this)) m₂ = var (that this) Δm₂ = var this g = abs (app (app (weaken₁ Δf) (var this)) nil-term) in abs (abs (abs (abs (abs (abs (zip4! g m₁ Δm₁ m₂ Δm₂)))))) Atlas = calculus-with Atlas-type Atlas-const Atlas-lookup Atlas-Δtype Atlas-Δconst
improve specification of union
Atlas: improve specification of union Old-commit-hash: cda40f70859c26a48a9077ad39b93d3b9a0af045
Agda
mit
inc-lc/ilc-agda
2c54443576bbae481639179d8b3bc48566274aad
Syntax/FreeVars/Popl14.agda
Syntax/FreeVars/Popl14.agda
module Syntax.FreeVars.Popl14 where -- Free variables of Calculus Popl14 -- -- Contents -- FV: get the free variables of a term -- closed?: test if a term is closed, producing a witness if yes. open import Popl14.Syntax.Type open import Popl14.Change.Term open import Base.Syntax.Vars Type public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Sum FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV {Γ = Γ} (intlit n) = none FV (add s t) = FV s ∪ FV t FV (minus t) = FV t FV {Γ = Γ} empty = none FV (insert s t) = FV s ∪ FV t FV (union s t) = FV s ∪ FV t FV (negate t) = FV t FV (flatmap s t) = FV s ∪ FV t FV (sum t) = FV t FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t)
module Syntax.FreeVars.Popl14 where -- Free variables of Calculus Popl14 -- -- Contents -- FV: get the free variables of a term -- closed?: test if a term is closed, producing a witness if yes. open import Popl14.Syntax.Type open import Popl14.Change.Term open import Base.Syntax.Vars Type public open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Sum FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV-terms : ∀ {Σ Γ} → Terms Γ Σ → Vars Γ FV (const ι ts) = FV-terms ts FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t FV-terms ∅ = none FV-terms (t • ts) = FV t ∪ FV-terms ts closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t)
Implement FV more parametrically.
Implement FV more parametrically. Old-commit-hash: 470f2fd7a3e73bb1ac01fce483f8aa80e4ec51e3
Agda
mit
inc-lc/ilc-agda
e71e428c1e63d766e7896b94aa406645ef65a52e
ModalLogic.agda
ModalLogic.agda
module ModalLogic where -- Implement Frank Pfenning's lambda calculus based on modal logic S4, as -- described in "A Modal Analysis of Staged Computation". open import Denotational.Notation data BaseType : Set where Base : BaseType Next : BaseType → BaseType data Type : Set where base : BaseType → Type _⇒_ : Type → Type → Type □_ : Type → Type -- Reuse contexts, variables and weakening from Tillmann's library. open import Syntactic.Contexts Type -- No semantics for these types. data Term : Context → Context → Type → Set where abs : ∀ {τ₁ τ₂ Γ Δ} → (t : Term (τ₁ • Γ) Δ τ₂) → Term Γ Δ (τ₁ ⇒ τ₂) app : ∀ {τ₁ τ₂ Γ Δ} → (t₁ : Term Γ Δ (τ₁ ⇒ τ₂)) (t₂ : Term Γ Δ τ₁) → Term Γ Δ τ₂ ovar : ∀ {Γ Δ τ} → (x : Var Γ τ) → Term Γ Δ τ mvar : ∀ {Γ Δ τ} → (u : Var Δ τ) → Term Γ Δ τ -- Note the builtin weakening box : ∀ {Γ Δ τ} → Term ∅ Δ τ → Term Γ Δ (□ τ) let-box_in-_ : ∀ {τ₁ τ₂ Γ Δ} → (e₁ : Term Γ Δ (□ τ₁)) → (e₂ : Term Γ (τ₁ • Δ) τ₂) → Term Γ Δ τ₂ -- Lemma 1 includes weakening. -- Most of the proof can be generated by C-c C-a, but syntax errors must then be fixed. weaken : ∀ {Γ₁ Γ₂ Δ₁ Δ₂ τ} → (Γ′ : Γ₁ ≼ Γ₂) → (Δ′ : Δ₁ ≼ Δ₂) → Term Γ₁ Δ₁ τ → Term Γ₂ Δ₂ τ weaken Γ′ Δ′ (abs {τ₁} t) = abs (weaken (keep τ₁ • Γ′) Δ′ t) weaken Γ′ Δ′ (app t t₁) = app (weaken Γ′ Δ′ t) (weaken Γ′ Δ′ t₁) weaken Γ′ Δ′ (ovar x) = ovar (lift Γ′ x) weaken Γ′ Δ′ (mvar u) = mvar (lift Δ′ u) weaken Γ′ Δ′ (box t) = box (weaken ∅ Δ′ t) weaken Γ′ Δ′ (let-box_in-_ {τ₁} t t₁) = let-box weaken Γ′ Δ′ t in- weaken Γ′ (keep τ₁ • Δ′) t₁
module ModalLogic where -- Implement Frank Pfenning's lambda calculus based on modal logic S4, as -- described in "A Modal Analysis of Staged Computation". open import Denotational.Notation data BaseType : Set where Base : BaseType Next : BaseType → BaseType data Type : Set where base : BaseType → Type _⇒_ : Type → Type → Type □_ : Type → Type -- Reuse contexts, variables and weakening from Tillmann's library. open import Syntactic.Contexts Type -- No semantics for these types. data Term : Context → Context → Type → Set where abs : ∀ {τ₁ τ₂ Γ Δ} → (t : Term (τ₁ • Γ) Δ τ₂) → Term Γ Δ (τ₁ ⇒ τ₂) app : ∀ {τ₁ τ₂ Γ Δ} → (t₁ : Term Γ Δ (τ₁ ⇒ τ₂)) (t₂ : Term Γ Δ τ₁) → Term Γ Δ τ₂ ovar : ∀ {Γ Δ τ} → (x : Var Γ τ) → Term Γ Δ τ mvar : ∀ {Γ Δ τ} → (u : Var Δ τ) → Term Γ Δ τ -- Note the builtin weakening box : ∀ {Γ Δ τ} → Term ∅ Δ τ → Term Γ Δ (□ τ) let-box_in-_ : ∀ {τ₁ τ₂ Γ Δ} → (e₁ : Term Γ Δ (□ τ₁)) → (e₂ : Term Γ (τ₁ • Δ) τ₂) → Term Γ Δ τ₂ -- Lemma 1 includes weakening. -- Attempt 1 at weakening, subcontext-based. This works, but it is not what we need later. -- -- Most of the proof can be generated by C-c C-a, but syntax errors must then be -- fixed and lift introduced by hand. weaken : ∀ {Γ₁ Γ₂ Δ₁ Δ₂ τ} → (Γ′ : Γ₁ ≼ Γ₂) → (Δ′ : Δ₁ ≼ Δ₂) → Term Γ₁ Δ₁ τ → Term Γ₂ Δ₂ τ weaken Γ′ Δ′ (abs {τ₁} t) = abs (weaken (keep τ₁ • Γ′) Δ′ t) weaken Γ′ Δ′ (app t t₁) = app (weaken Γ′ Δ′ t) (weaken Γ′ Δ′ t₁) weaken Γ′ Δ′ (ovar x) = ovar (lift Γ′ x) weaken Γ′ Δ′ (mvar u) = mvar (lift Δ′ u) weaken Γ′ Δ′ (box t) = box (weaken ∅ Δ′ t) weaken Γ′ Δ′ (let-box_in-_ {τ₁} t t₁) = let-box weaken Γ′ Δ′ t in- weaken Γ′ (keep τ₁ • Δ′) t₁ open import Relation.Binary.PropositionalEquality weaken-≼ : ∀ {Γ₁ Γ₂ Γ₃ Δ τ} → Term (Γ₁ ⋎ Γ₃) Δ τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) Δ τ weaken-≼ {Γ₁} {Γ₂} {Γ₃} (abs {τ₁} t) = abs (weaken-≼ {τ₁ • Γ₁} {Γ₂} t) weaken-≼ {Γ₁} {Γ₂} (app t t₁) = app (weaken-≼ {Γ₁} {Γ₂} t) (weaken-≼ {Γ₁} {Γ₂} t₁) weaken-≼ {Γ₁} {Γ₂} (ovar x) = ovar (Prefixes.lift {Γ₁} {Γ₂} x) weaken-≼ (mvar u) = mvar u weaken-≼ (box t) = box t weaken-≼ {Γ₁} {Γ₂} (let-box t in- t₁) = let-box weaken-≼ {Γ₁} {Γ₂} t in- weaken-≼ {Γ₁} {Γ₂} t₁ substVar : ∀ {Γ Γ′ Δ τ₁ τ₂} → (t : Term Γ′ Δ τ₁) → (v : Var (Γ ⋎ (τ₁ • Γ′)) τ₂) → Term (Γ ⋎ Γ′) Δ τ₂ substVar {∅} t this = t substVar {∅} t (that v) = ovar v substVar {τ • Γ} t this = ovar this substVar {τ • Γ} t (that v) = weaken-≼ {∅} {τ • ∅} (substVar {Γ} t v) substTerm : ∀ {Γ Γ′ Δ τ₁ τ₂} → (t₁ : Term Γ′ Δ τ₁) → (t₂ : Term (Γ ⋎ (τ₁ • Γ′)) Δ τ₂) → Term (Γ ⋎ Γ′) Δ τ₂ substTerm {Γ} {Γ′} t₁ (abs {τ₂} t₂) = abs ( substTerm {τ₂ • Γ} {Γ′} t₁ t₂ ) substTerm {Γ} {Γ′} t₁ (app t₂ t₃) = app (substTerm {Γ} {Γ′} t₁ t₂) (substTerm {Γ} {Γ′} t₁ t₃) substTerm {Γ} {Γ′} t₁ (ovar v) = substVar {Γ} {Γ′} t₁ v substTerm t₁ (mvar u) = mvar u substTerm t₁ (box t₂) = box t₂ substTerm {Γ} {Γ′} t₁ (let-box_in-_ {τ₃} t₂ t₃) = let-box substTerm {Γ} {Γ′} t₁ t₂ in- substTerm {Γ} {Γ′} (weaken ≼-refl (drop τ₃ • ≼-refl) t₁) t₃
implement substitution for modal logic
Agda: implement substitution for modal logic Old-commit-hash: e8580d4ac39e998fdf42c16064112cd2c0326763
Agda
mit
inc-lc/ilc-agda
d02c0c3ef60a8f1e0b8ace3fdea7c8bb38c61281
Syntax/Context.agda
Syntax/Context.agda
module Syntax.Context {Type : Set} where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
module Syntax.Context {Type : Set} where -- CONTEXTS -- -- This module defines the syntax of contexts, prefixes of -- contexts and variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. open import Relation.Binary open import Relation.Binary.PropositionalEquality -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Specialized congruence rules ⟨∅⟩ : ∅ ≡ ∅ ⟨∅⟩ = refl _⟨•⟩_ : ∀ {τ₁ τ₂ Γ₁ Γ₂} → τ₁ ≡ τ₂ → Γ₁ ≡ Γ₂ → τ₁ • Γ₁ ≡ τ₂ • Γ₂ _⟨•⟩_ = cong₂ _•_ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- WEAKENING -- CONTEXT PREFIXES -- -- Useful for making lemmas strong enough to prove by induction. -- -- Consider using the Subcontexts module instead. module Prefixes where -- Prefix of a context data Prefix : Context → Set where ∅ : ∀ {Γ} → Prefix Γ _•_ : ∀ {Γ} → (τ : Type) → Prefix Γ → Prefix (τ • Γ) -- take only the prefix of a context take : (Γ : Context) → Prefix Γ → Context take Γ ∅ = ∅ take (τ • Γ) (.τ • Γ′) = τ • take Γ Γ′ -- drop the prefix of a context drop : (Γ : Context) → Prefix Γ → Context drop Γ ∅ = Γ drop (τ • Γ) (.τ • Γ′) = drop Γ Γ′ -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₂ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • (Γ₁ ⋎ Γ₂) take-drop : ∀ Γ Γ′ → take Γ Γ′ ⋎ drop Γ Γ′ ≡ Γ take-drop ∅ ∅ = refl take-drop (τ • Γ) ∅ = refl take-drop (τ • Γ) (.τ • Γ′) rewrite take-drop Γ Γ′ = refl or-unit : ∀ Γ → Γ ⋎ ∅ ≡ Γ or-unit ∅ = refl or-unit (τ • Γ) rewrite or-unit Γ = refl move-prefix : ∀ Γ τ Γ′ → Γ ⋎ (τ • Γ′) ≡ (Γ ⋎ (τ • ∅)) ⋎ Γ′ move-prefix ∅ τ Γ′ = refl move-prefix (τ • Γ) τ₁ ∅ = sym (or-unit (τ • Γ ⋎ (τ₁ • ∅))) move-prefix (τ • Γ) τ₁ (τ₂ • Γ′) rewrite move-prefix Γ τ₁ (τ₂ • Γ′) = refl -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- SUBCONTEXTS -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. module Subcontexts where infix 8 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ lift (keep τ • ≼₁) this = this lift (keep τ • ≼₁) (that x) = that (lift ≼₁ x) lift (drop τ • ≼₁) x = that (lift ≼₁ x) -- Currently, we export the subcontext relation as well as the -- definition of _⋎_. open Subcontexts public open Prefixes public using (_⋎_)
rename type parameter of `that`
Agda: rename type parameter of `that` Old-commit-hash: 0b30e5858214cb3ecab7a1661b7a2a79ac6bc871
Agda
mit
inc-lc/ilc-agda
cd132a2ada356a76c361341940070bcfccc2c571
lib/Explore/Zero.agda
lib/Explore/Zero.agda
open import Type open import Type.Identities open import Level.NP open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Data.Zero open import Function.NP open import Function.Extensionality open import Data.Product open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; _∙_; !_) open import HoTT open Equivalences import Explore.Monad module Explore.Zero where module _ {ℓ} where 𝟘ᵉ : Explore ℓ 𝟘 𝟘ᵉ = empty-explore {- or 𝟘ᵉ ε _ _ = ε -} 𝟘ⁱ : ∀ {p} → ExploreInd p 𝟘ᵉ 𝟘ⁱ = empty-explore-ind {- or 𝟘ⁱ _ Pε _ _ = Pε -} module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟘 → 𝟘 → ★₀} where ⟦𝟘ᵉ⟧ : ⟦Explore⟧ᵤ ℓ₁ ℓ₂ ℓᵣ R 𝟘ᵉ 𝟘ᵉ ⟦𝟘ᵉ⟧ _ εᵣ _ _ = εᵣ open Explorable₀ 𝟘ⁱ public using () renaming (sum to 𝟘ˢ; product to 𝟘ᵖ) module _ {ℓ} where open Explorableₛ {ℓ} 𝟘ⁱ public using () renaming (reify to 𝟘ʳ) open Explorableₛₛ {ℓ} 𝟘ⁱ public using () renaming (unfocus to 𝟘ᵘ) 𝟘ˡ : Lookup {ℓ} 𝟘ᵉ 𝟘ˡ _ () 𝟘ᶠ : Focus {ℓ} 𝟘ᵉ 𝟘ᶠ ((), _) module _ {{_ : UA}} where Σᵉ𝟘-ok : Adequate-Σᵉ {ℓ} 𝟘ᵉ Σᵉ𝟘-ok _ = ! Σ𝟘-lift∘fst module _ {{_ : UA}}{{_ : FunExt}} where Πᵉ𝟘-ok : Adequate-Πᵉ {ℓ} 𝟘ᵉ Πᵉ𝟘-ok _ = ! Π𝟘-uniq _ module _ {{_ : UA}} where 𝟘ˢ-ok : Adequate-sum 𝟘ˢ 𝟘ˢ-ok _ = Fin0≡𝟘 ∙ ! Σ𝟘-fst module _ {{_ : UA}}{{_ : FunExt}} where 𝟘ᵖ-ok : Adequate-product 𝟘ᵖ 𝟘ᵖ-ok _ = Fin1≡𝟙 ∙ ! (Π𝟘-uniq₀ _) explore𝟘 = 𝟘ᵉ explore𝟘-ind = 𝟘ⁱ lookup𝟘 = 𝟘ˡ reify𝟘 = 𝟘ʳ focus𝟘 = 𝟘ᶠ unfocus𝟘 = 𝟘ᵘ sum𝟘 = 𝟘ˢ adequate-sum𝟘 = 𝟘ˢ-ok product𝟘 = 𝟘ᵖ adequate-product𝟘 = 𝟘ᵖ-ok -- DEPRECATED module _ {{_ : UA}} where open ExplorableRecord μ𝟘 : Explorable 𝟘 μ𝟘 = mk _ 𝟘ⁱ 𝟘ˢ-ok -- -}
open import Type open import Type.Identities open import Level.NP open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Data.Zero open import Function.NP open import Function.Extensionality open import Data.Product open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; _∙_; !_) open import HoTT open Equivalences import Explore.Monad open import Explore.Isomorphism module Explore.Zero where module _ {ℓ} where 𝟘ᵉ : Explore ℓ 𝟘 𝟘ᵉ = empty-explore {- or 𝟘ᵉ ε _ _ = ε -} 𝟘ⁱ : ∀ {p} → ExploreInd p 𝟘ᵉ 𝟘ⁱ = empty-explore-ind {- or 𝟘ⁱ _ Pε _ _ = Pε -} module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟘 → 𝟘 → ★₀} where ⟦𝟘ᵉ⟧ : ⟦Explore⟧ᵤ ℓ₁ ℓ₂ ℓᵣ R 𝟘ᵉ 𝟘ᵉ ⟦𝟘ᵉ⟧ _ εᵣ _ _ = εᵣ open Explorable₀ 𝟘ⁱ public using () renaming (sum to 𝟘ˢ; product to 𝟘ᵖ) module _ {ℓ} where open Explorableₛ {ℓ} 𝟘ⁱ public using () renaming (reify to 𝟘ʳ) open Explorableₛₛ {ℓ} 𝟘ⁱ public using () renaming (unfocus to 𝟘ᵘ) 𝟘ˡ : Lookup {ℓ} 𝟘ᵉ 𝟘ˡ _ () 𝟘ᶠ : Focus {ℓ} 𝟘ᵉ 𝟘ᶠ ((), _) module _ {{_ : UA}} where Σᵉ𝟘-ok : Adequate-Σᵉ {ℓ} 𝟘ᵉ Σᵉ𝟘-ok _ = ! Σ𝟘-lift∘fst module _ {{_ : UA}}{{_ : FunExt}} where Πᵉ𝟘-ok : Adequate-Πᵉ {ℓ} 𝟘ᵉ Πᵉ𝟘-ok _ = ! Π𝟘-uniq _ module _ {{_ : UA}} where 𝟘ˢ-ok : Adequate-sum 𝟘ˢ 𝟘ˢ-ok _ = Fin0≡𝟘 ∙ ! Σ𝟘-fst module _ {{_ : UA}}{{_ : FunExt}} where 𝟘ᵖ-ok : Adequate-product 𝟘ᵖ 𝟘ᵖ-ok _ = Fin1≡𝟙 ∙ ! (Π𝟘-uniq₀ _) explore𝟘 = 𝟘ᵉ explore𝟘-ind = 𝟘ⁱ lookup𝟘 = 𝟘ˡ reify𝟘 = 𝟘ʳ focus𝟘 = 𝟘ᶠ unfocus𝟘 = 𝟘ᵘ sum𝟘 = 𝟘ˢ adequate-sum𝟘 = 𝟘ˢ-ok product𝟘 = 𝟘ᵖ adequate-product𝟘 = 𝟘ᵖ-ok Lift𝟘ᵉ : ∀ {m} → Explore m (Lift 𝟘) Lift𝟘ᵉ = explore-iso (≃-sym Lift≃id) 𝟘ᵉ ΣᵉLift𝟘-ok : ∀ {{_ : UA}}{{_ : FunExt}}{m} → Adequate-Σᵉ {m} Lift𝟘ᵉ ΣᵉLift𝟘-ok = Σ-iso-ok (≃-sym Lift≃id) {Aᵉ = 𝟘ᵉ} Σᵉ𝟘-ok -- DEPRECATED module _ {{_ : UA}} where open ExplorableRecord μ𝟘 : Explorable 𝟘 μ𝟘 = mk _ 𝟘ⁱ 𝟘ˢ-ok -- -}
add explore function for Lift 𝟘
add explore function for Lift 𝟘
Agda
bsd-3-clause
crypto-agda/explore
8aefca99408c27e4a214ce4b0721a4e4794eeb87
Atlas/Change/Derivation.agda
Atlas/Change/Derivation.agda
module Atlas.Change.Derivation where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type open import Atlas.Change.Term open import Base.Syntax.Context Type open import Base.Change.Context ΔType Atlas-Δconst : ∀ {Γ Σ τ} → (c : Const Σ τ) → Term Γ (internalizeContext (ΔContext′ Σ) (ΔType τ)) Atlas-Δconst true = false! Atlas-Δconst false = false! Atlas-Δconst xor = abs₄ (λ x Δx y Δy → xor! Δx Δy) Atlas-Δconst empty = empty! -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. Atlas-Δconst update = abs₆ (λ k Δk v Δv m Δm → insert (apply Δk k) (apply Δv v) (delete k v Δm)) -- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k) -- ... | true = lookup k Δm -- ... | false = -- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm) -- ⊝ lookup k m -- -- Only the false-branch is implemented. Atlas-Δconst lookup = abs₄ (λ k Δk m Δm → let k′ = apply Δk k in (diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m)) (lookup! k m))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. Atlas-Δconst zip = abs₆ (λ f Δf m₁ Δm₁ m₂ Δm₂ → let g = abs (app₂ (weaken₁ Δf) (var this) nil-term) in zip4! g m₁ Δm₁ m₂ Δm₂) -- Δfold f Δf z Δz m Δm = proj₂ -- (fold (λ k [a,Δa] [b,Δb] → -- uncurry (λ a Δa → uncurry (λ b Δb → -- pair (f k a b) (Δf k nil a Δa b Δb)) -- [b,Δb]) [a,Δa]) -- (pair z Δz) -- (zip-pair m Δm)) -- -- Δfold is efficient only if evaluation is lazy and Δf is -- self-maintainable: it doesn't look at the argument -- (b = fold f k a b₀) at all. Atlas-Δconst (fold {κ} {α} {β}) = let -- TODO (tedius): write weaken₇ f = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that (that this)))))))) Δf = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that this))))))) z = var (that (that (that this))) Δz = var (that (that this)) m = var (that this) Δm = var this k = weaken₃ (weaken₁ (var (that (that this)))) [a,Δa] = var (that this) [b,Δb] = var this a = var (that (that (that this))) Δa = var (that (that this)) b = var (that this) Δb = var this g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs (pair (app₃ f k a b) (app₆ Δf k nil-term a Δa b Δb)))) (weaken₂ [b,Δb])))) [a,Δa]))) proj₂ = uncurry (abs (abs (var this))) in abs (abs (abs (abs (abs (abs (proj₂ (fold! g (pair z Δz) (zip-pair m Δm))))))))
module Atlas.Change.Derivation where open import Atlas.Syntax.Type open import Atlas.Syntax.Term open import Atlas.Change.Type open import Atlas.Change.Term open import Base.Syntax.Context Type open import Base.Change.Context ΔType ΔConst : ∀ {Γ Σ τ} → (c : Const Σ τ) → Term Γ (internalizeContext (ΔContext′ Σ) (ΔType τ)) ΔConst true = false! ΔConst false = false! ΔConst xor = abs₄ (λ x Δx y Δy → xor! Δx Δy) ΔConst empty = empty! -- If k ⊕ Δk ≡ k, then -- Δupdate k Δk v Δv m Δm = update k Δv Δm -- else it is a deletion followed by insertion: -- Δupdate k Δk v Δv m Δm = -- insert (k ⊕ Δk) (v ⊕ Δv) (delete k v Δm) -- -- We implement the else-branch only for the moment. ΔConst update = abs₆ (λ k Δk v Δv m Δm → insert (apply Δk k) (apply Δv v) (delete k v Δm)) -- Δlookup k Δk m Δm | true? (k ⊕ Δk ≡ k) -- ... | true = lookup k Δm -- ... | false = -- (lookup (k ⊕ Δk) m ⊕ lookup (k ⊕ Δk) Δm) -- ⊝ lookup k m -- -- Only the false-branch is implemented. ΔConst lookup = abs₄ (λ k Δk m Δm → let k′ = apply Δk k in (diff (apply {base _} (lookup! k′ Δm) (lookup! k′ m)) (lookup! k m))) -- Δzip f Δf m₁ Δm₁ m₂ Δm₂ | true? (f ⊕ Δf ≡ f) -- -- ... | true = -- zip (λ k Δv₁ Δv₂ → Δf (lookup k m₁) Δv₁ (lookup k m₂) Δv₂) -- Δm₁ Δm₂ -- -- ... | false = zip₄ Δf m₁ Δm₁ m₂ Δm₂ -- -- we implement the false-branch for the moment. ΔConst zip = abs₆ (λ f Δf m₁ Δm₁ m₂ Δm₂ → let g = abs (app₂ (weaken₁ Δf) (var this) nil-term) in zip4! g m₁ Δm₁ m₂ Δm₂) -- Δfold f Δf z Δz m Δm = proj₂ -- (fold (λ k [a,Δa] [b,Δb] → -- uncurry (λ a Δa → uncurry (λ b Δb → -- pair (f k a b) (Δf k nil a Δa b Δb)) -- [b,Δb]) [a,Δa]) -- (pair z Δz) -- (zip-pair m Δm)) -- -- Δfold is efficient only if evaluation is lazy and Δf is -- self-maintainable: it doesn't look at the argument -- (b = fold f k a b₀) at all. ΔConst (fold {κ} {α} {β}) = let -- TODO (tedius): write weaken₇ f = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that (that this)))))))) Δf = weaken₃ (weaken₃ (weaken₁ (var (that (that (that (that this))))))) z = var (that (that (that this))) Δz = var (that (that this)) m = var (that this) Δm = var this k = weaken₃ (weaken₁ (var (that (that this)))) [a,Δa] = var (that this) [b,Δb] = var this a = var (that (that (that this))) Δa = var (that (that this)) b = var (that this) Δb = var this g = abs (abs (abs (uncurry (abs (abs (uncurry (abs (abs (pair (app₃ f k a b) (app₆ Δf k nil-term a Δa b Δb)))) (weaken₂ [b,Δb])))) [a,Δa]))) proj₂ = uncurry (abs (abs (var this))) in abs (abs (abs (abs (abs (abs (proj₂ (fold! g (pair z Δz) (zip-pair m Δm))))))))
Rename Atlas-Δconst to ΔConst.
Rename Atlas-Δconst to ΔConst. Old-commit-hash: e7ed19ec0ca363e486fe72ac858facfcd192e057
Agda
mit
inc-lc/ilc-agda
af1d5371ab683fac0cfee48a20cabc40e4da7d41
program-distance.agda
program-distance.agda
module program-distance where open import flipbased-implem open import Data.Bits open import Data.Bool open import Data.Vec.NP using (Vec; count; countᶠ) open import Data.Nat.NP open import Data.Nat.Properties open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP import Data.Fin as Fin record PrgDist : Set₁ where constructor mk field _]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set ]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h ]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf)) ]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' ]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf = ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'} ((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g')) breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b -- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁ _⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set ⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁ extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c} → ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁ extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b) module HomImplem k where -- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ] -- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ] -- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ] -- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ] _]-[_ : ∀ {n} (f g : ⅁ n) → Set _]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k) ]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g ]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h -- dist #g #h ≥ 2^(n ∸ k) -- dist #f #h ≥ 2^(n ∸ k) module Implem k where _]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set _]-[_ {m} {n} f g = dist (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) ≥ 2^((m + n) ∸ k) ]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) | ℕ°.+-comm m n = f]-[g postulate helper : ∀ x y z t → x + ((y + z) ∸ t) ≡ y + ((x + z) ∸ t) ]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h with 2^*-mono m g]-[h ... | q rewrite sym (dist-2^* m (⟨2^ o ⟩* (count↺ g)) (⟨2^ n ⟩* (count↺ h))) | 2^-comm m o (count↺ g) | sym f≈g | 2^-comm o n (count↺ f) | 2^-comm m n (count↺ h) | dist-2^* n (⟨2^ o ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ h)) | 2^-+ m (n + o ∸ k) 1 | helper m n o k | sym (2^-+ n (m + o ∸ k) 1) = 2^*-mono′ n q prgDist : PrgDist prgDist = mk _]-[_ (λ {m n f g} x → ]-[-sym {m} {n} {f} {g} x) (λ {m n o f g h} x y → ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} x y)
module program-distance where open import flipbased-implem open import Data.Bits open import Data.Bool open import Data.Vec.NP using (Vec; count; countᶠ) open import Data.Nat.NP open import Data.Nat.Properties open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP import Data.Fin as Fin record PrgDist : Set₁ where constructor mk field _]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set ]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-right-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ]-[ g → g ≈⅁ h → f ]-[ h ]-[-cong-right-≈↺ pf pf' = ]-[-sym (]-[-cong-left-≈↺ (sym pf') (]-[-sym pf)) ]-[-cong-≗↺ : ∀ {c c'} {f g : ⅁ c} {f' g' : ⅁ c'} → f ≗↺ g → f' ≗↺ g' → f ]-[ f' → g ]-[ g' ]-[-cong-≗↺ {c} {c'} {f} {g} {f'} {g'} f≗g f'≗g' pf = ]-[-cong-left-≈↺ {f = g} {g = f} {h = g'} ((≗⇒≈⅁ (λ x → sym (f≗g x)))) (]-[-cong-right-≈↺ pf (≗⇒≈⅁ f'≗g')) breaks : ∀ {c} (EXP : Bit → ⅁ c) → Set breaks ⅁ = ⅁ 0b ]-[ ⅁ 1b -- An wining adversary for game ⅁₀ reduces to a wining adversary for game ⅁₁ _⇓_ : ∀ {c₀ c₁} (⅁₀ : Bit → ⅁ c₀) (⅁₁ : Bit → ⅁ c₁) → Set ⅁₀ ⇓ ⅁₁ = breaks ⅁₀ → breaks ⅁₁ extensional-reduction : ∀ {c} {⅁₀ ⅁₁ : Bit → ⅁ c} → ⅁₀ ≗⅁ ⅁₁ → ⅁₀ ⇓ ⅁₁ extensional-reduction same-games = ]-[-cong-≗↺ (same-games 0b) (same-games 1b) module HomImplem k where -- | Pr[ f ≡ 1 ] - Pr[ g ≡ 1 ] | ≥ ε [ on reals ] -- dist Pr[ f ≡ 1 ] Pr[ g ≡ 1 ] ≥ ε [ on reals ] -- dist (#1 f / 2^ c) (#1 g / 2^ c) ≥ ε [ on reals ] -- dist (#1 f) (#1 g) ≥ ε * 2^ c where ε = 2^ -k [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(-k) * 2^ c [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(c - k) [ on rationals ] -- dist (#1 f) (#1 g) ≥ 2^(c ∸ k) [ on natural ] _]-[_ : ∀ {n} (f g : ⅁ n) → Set _]-[_ {n} f g = dist (count↺ f) (count↺ g) ≥ 2^(n ∸ k) ]-[-sym : ∀ {n} {f g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-sym {n} {f} {g} f]-[g rewrite dist-sym (count↺ f) (count↺ g) = f]-[g ]-[-cong-left-≈↺ : ∀ {n} {f g h : ⅁ n} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-left-≈↺ {n} {f} {g} f≈g g]-[h rewrite ≈⅁⇒≈⅁′ {n} {f} {g} f≈g = g]-[h -- dist #g #h ≥ 2^(n ∸ k) -- dist #f #h ≥ 2^(n ∸ k) module Implem k where _]-[_ : ∀ {m n} → ⅁ m → ⅁ n → Set _]-[_ {m} {n} f g = dist (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) ≥ 2^((m + n) ∸ k) ]-[-sym : ∀ {m n} {f : ⅁ m} {g : ⅁ n} → f ]-[ g → g ]-[ f ]-[-sym {m} {n} {f} {g} f]-[g rewrite dist-sym (⟨2^ n ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ g)) | ℕ°.+-comm m n = f]-[g postulate helper : ∀ x y z t → x + ((y + z) ∸ t) ≡ y + ((x + z) ∸ t) ]-[-cong-left-≈↺ : ∀ {m n o} {f : ⅁ m} {g : ⅁ n} {h : ⅁ o} → f ≈⅁ g → g ]-[ h → f ]-[ h ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} f≈g g]-[h with 2^*-mono m g]-[h -- 2ᵐ(dist 2ᵒ#g 2ⁿ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ ... | q rewrite sym (dist-2^* m (⟨2^ o ⟩* (count↺ g)) (⟨2^ n ⟩* (count↺ h))) -- dist 2ᵐ2ᵒ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | 2^-comm m o (count↺ g) -- dist 2ᵒ2ᵐ#g 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | sym f≈g -- dist 2ᵒ2ⁿ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | 2^-comm o n (count↺ f) -- dist 2ⁿ2ᵒ#f 2ᵐ2ⁿ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | 2^-comm m n (count↺ h) -- dist 2ⁿ2ᵒ#f 2ⁿ2ᵐ#h ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | dist-2^* n (⟨2^ o ⟩* (count↺ f)) (⟨2^ m ⟩* (count↺ h)) -- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ2ⁿ⁺ᵒ⁻ᵏ | 2^-+ m (n + o ∸ k) 1 -- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ᵐ⁺ⁿ⁺ᵒ⁻ᵏ | helper m n o k -- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ⁺ᵐ⁺ᵒ⁻ᵏ | sym (2^-+ n (m + o ∸ k) 1) -- 2ⁿ(dist 2ᵒ#f 2ᵐ#h) ≤ 2ⁿ2ᵐ⁺ᵒ⁻ᵏ = 2^*-mono′ n q -- dist 2ᵒ#f 2ᵐ#h ≤ 2ᵐ⁺ᵒ⁻ᵏ prgDist : PrgDist prgDist = mk _]-[_ (λ {m n f g} x → ]-[-sym {m} {n} {f} {g} x) (λ {m n o f g h} x y → ]-[-cong-left-≈↺ {m} {n} {o} {f} {g} {h} x y)
document a broken (so far) proof
document a broken (so far) proof
Agda
bsd-3-clause
crypto-agda/crypto-agda
d0df7845258df353bcf850c309c4a494f9869248
Parametric/Denotation/CachingEvaluation.agda
Parametric/Denotation/CachingEvaluation.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality module Structure where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level -- Type semantics for this scenario. ⟦_⟧TypeHidCache : (τ : Type) → Set₁ ⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧ ⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ ) open import Parametric.Syntax.MType as MType open MType.Structure Base open import Parametric.Syntax.MTerm as MTerm open MTerm.Structure Const open import Function hiding (const) ⟦_⟧ValType : (τ : ValType) → Set ⟦_⟧CompType : (τ : CompType) → Set ⟦ U c ⟧ValType = ⟦ c ⟧CompType ⟦ B ι ⟧ValType = ⟦ base ι ⟧ ⟦ vUnit ⟧ValType = ⊤ ⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType ⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType ⟦ F τ ⟧CompType = ⟦ τ ⟧ValType ⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType -- XXX: below we need to override just a few cases. Inheritance would handle -- this precisely; without inheritance, we might want to use one of the -- standard encodings of related features (delegation?). ⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁ ⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁ -- This line is the only change, up to now, for the caching semantics starting from CBPV. ⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ ) -- Delegation upward. ⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType ⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType -- The above does not override what happens in recursive occurrences. {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- This line is the only change, up to now, for the caching semantics. -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧CtxHidCache : (Γ : Context) → Set₁ ⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -} -- It's questionable that this is not polymorphic enough. ⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache ⟦ this ⟧VarHidCache (v • ρ) = v ⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ -- Now, let us define a caching semantics for terms. -- This proves to be hard, because we need to insert and remove caches where -- we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- -- Inserting and removing caches -- -- -- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time. -- Indeed, both functions seem structurally recursive on τ. dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧ extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache dropCache {base ι} v = lower v dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x)))) extend {base ι} v = lift v extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt) -- OK, this version is syntax-directed, luckily enough, except on primitives -- (as expected). This reveals a bug of ours on higher-order primitives. -- -- Moreover, we can somewhat safely assume that each call to extend and to -- dropCache is bad: then we see that the handling of constants is bad. That's -- correct, because constants will not return intermediate results in this -- schema :-(. ⟦_⟧TermCache : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache ⟦_⟧TermCache (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ)) ⟦_⟧TermCache (var x) ρ = ⟦ x ⟧VarHidCache ρ -- It seems odd (a probable bug?) that the result of t needn't be stripped of -- its cache. ⟦_⟧TermCache (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache ρ) (⟦ t ⟧TermCache ρ))) -- Provide an empty cache! ⟦_⟧TermCache (abs t) ρ x = , (⟦ t ⟧TermCache (x • ρ) , tt) -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVar) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- The real deal, finally. open import UNDEFINED -- XXX constants are still a slight mess because I'm abusing CBPV... -- (Actually, I just forgot the difference, and believe I had too little clue -- when I wrote these constructors... but some of them did make sense). ⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- Here, in an actual implementation, we would return the actual cache with -- all variables. -- -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Caching evaluation ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation module Parametric.Denotation.CachingEvaluation {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality module Structure where {- -- Prototype here the type-correctness of a simple non-standard semantics. -- This describes a simplified version of the transformation by Liu and -- Tanenbaum, PEPM 1995 - but for now, instead of producing object language -- terms, we produce host language terms to take advantage of the richer type -- system of the host language (in particular, here we need the unit type, -- product types and *existentials*). -- -- As usual, we'll later switch to a real term transformation. -} open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level -- Type semantics for this scenario. ⟦_⟧TypeHidCache : (τ : Type) → Set₁ ⟦ base ι ⟧TypeHidCache = Lift ⟦ base ι ⟧ ⟦ σ ⇒ τ ⟧TypeHidCache = ⟦ σ ⟧TypeHidCache → (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧TypeHidCache × τ₁ ) -- Now, let us define a caching semantics for terms. -- This proves to be hard, because we need to insert and remove caches where -- we apply constants. -- Indeed, our plugin interface is not satisfactory for adding caching. CBPV can help us. -- -- Inserting and removing caches -- -- -- Implementation note: The mutual recursion looks like a fold on exponentials, where you need to define the function and the inverse at the same time. -- Indeed, both functions seem structurally recursive on τ. dropCache : ∀ {τ} → ⟦ τ ⟧TypeHidCache → ⟦ τ ⟧ extend : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧TypeHidCache dropCache {base ι} v = lower v dropCache {σ ⇒ τ} v x = dropCache (proj₁ (proj₂ (v (extend x)))) extend {base ι} v = lift v extend {σ ⇒ τ} v = λ x → , (extend (v (dropCache x)) , tt) ⟦_⟧CtxHidCache : (Γ : Context) → Set₁ ⟦_⟧CtxHidCache = DependentList ⟦_⟧TypeHidCache -- It's questionable that this is not polymorphic enough. ⟦_⟧VarHidCache : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache ⟦ this ⟧VarHidCache (v • ρ) = v ⟦ that x ⟧VarHidCache (v • ρ) = ⟦ x ⟧VarHidCache ρ -- OK, this version is syntax-directed, luckily enough, except on primitives -- (as expected). This reveals a bug of ours on higher-order primitives. -- -- Moreover, we can somewhat safely assume that each call to extend and to -- dropCache is bad: then we see that the handling of constants is bad. That's -- correct, because constants will not return intermediate results in this -- schema :-(. ⟦_⟧TermCache : ∀ {τ Γ} → Term Γ τ → ⟦ Γ ⟧CtxHidCache → ⟦ τ ⟧TypeHidCache ⟦_⟧TermCache (const c args) ρ = extend (⟦ const c args ⟧ (map dropCache ρ)) ⟦_⟧TermCache (var x) ρ = ⟦ x ⟧VarHidCache ρ -- It seems odd (a probable bug?) that the result of t needn't be stripped of -- its cache. ⟦_⟧TermCache (app s t) ρ = proj₁ (proj₂ ((⟦ s ⟧TermCache ρ) (⟦ t ⟧TermCache ρ))) -- Provide an empty cache! ⟦_⟧TermCache (abs t) ρ x = , (⟦ t ⟧TermCache (x • ρ) , tt) open import Parametric.Syntax.MType as MType open MType.Structure Base open import Parametric.Syntax.MTerm as MTerm open MTerm.Structure Const open import Function hiding (const) ⟦_⟧ValType : (τ : ValType) → Set ⟦_⟧CompType : (τ : CompType) → Set ⟦ U c ⟧ValType = ⟦ c ⟧CompType ⟦ B ι ⟧ValType = ⟦ base ι ⟧ ⟦ vUnit ⟧ValType = ⊤ ⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType ⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType ⟦ F τ ⟧CompType = ⟦ τ ⟧ValType ⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType -- XXX: below we need to override just a few cases. Inheritance would handle -- this precisely; without inheritance, we might want to use one of the -- standard encodings of related features (delegation?). ⟦_⟧ValTypeHidCacheWrong : (τ : ValType) → Set₁ ⟦_⟧CompTypeHidCacheWrong : (τ : CompType) → Set₁ -- This line is the only change, up to now, for the caching semantics starting from CBPV. ⟦ F τ ⟧CompTypeHidCacheWrong = (Σ[ τ₁ ∈ Set ] ⟦ τ ⟧ValTypeHidCacheWrong × τ₁ ) -- Delegation upward. ⟦ τ ⟧CompTypeHidCacheWrong = Lift ⟦ τ ⟧CompType ⟦_⟧ValTypeHidCacheWrong = Lift ∘ ⟦_⟧ValType -- The above does not override what happens in recursive occurrences. {-# NO_TERMINATION_CHECK #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- This line is the only change, up to now, for the caching semantics. -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {- ⟦_⟧CompCtxHidCache : (Γ : CompContext) → Set₁ ⟦_⟧CompCtxHidCache = DependentList ⟦_⟧CompTypeHidCache -} -- The solution is to distinguish among different kinds of constants. Some are -- value constructors (and thus do not return caches), while others are -- computation constructors (and thus should return caches). For products, I -- believe we will only use the products which are values, not computations -- (XXX check CBPV paper for the name). ⟦_⟧CompTermCache : ∀ {τ Γ} → Comp Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValTermCache : ∀ {τ Γ} → Val Γ τ → ⟦ Γ ⟧ValCtxHidCache → ⟦ τ ⟧ValTypeHidCache open import Base.Denotation.Environment ValType ⟦_⟧ValTypeHidCache public using () renaming (⟦_⟧Var to ⟦_⟧ValVar) -- This says that the environment does not contain caches... sounds wrong! -- Either we add extra variables for the caches, or we store computations in -- the environment (but that does not make sense), or we store caches in -- values, by acting not on F but on something else (U?). -- I suspect the plan was to use extra variables; that's annoying to model in -- Agda but easier in implementations. ⟦ vVar x ⟧ValTermCache ρ = ⟦ x ⟧ValVar ρ ⟦ vThunk x ⟧ValTermCache ρ = ⟦ x ⟧CompTermCache ρ -- The real deal, finally. open import UNDEFINED -- XXX constants are still a slight mess because I'm abusing CBPV... -- (Actually, I just forgot the difference, and believe I had too little clue -- when I wrote these constructors... but some of them did make sense). ⟦_⟧CompTermCache (cConst c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstV c args) ρ = reveal UNDEFINED ⟦_⟧CompTermCache (cConstV2 c args) ρ = reveal UNDEFINED -- Also, where are introduction forms for pairs and sums among values? With -- them, we should see that we can interpret them without adding a cache. -- Thunks keep seeming noops. ⟦_⟧CompTermCache (cForce x) ρ = ⟦ x ⟧ValTermCache ρ -- Here, in an actual implementation, we would return the actual cache with -- all variables. -- -- The effect of F is a writer monad of cached values, where the monoid is -- (isomorphic to) the free monoid over (∃ τ . τ), but we push the -- existentials up when pairing things! -- That's what we're interpreting computations in. XXX maybe consider using -- monads directly. But that doesn't deal with arity. ⟦_⟧CompTermCache (cReturn v) ρ = vUnit , (⟦ v ⟧ValTermCache ρ , tt) -- For this to be enough, a lambda needs to return a produce, not to forward -- the underlying one (unless there are no intermediate results). The correct -- requirements can maybe be enforced through a linear typing discipline. {- -- Here we'd have a problem with the original into from CBPV, because it does -- not require converting expressions to the "CBPV A-normal form". ⟦_⟧CompTermCache (v₁ into v₂) ρ = -- Sequence commands and combine their caches. {- let (_ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (_ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in , (r₂ , (c₁ ,′ c₂)) -} -- The code above does not work, because we only guarantee that v₂ is -- a computation, not that it's an F-computation - v₂ could also be function -- type or a computation product. -- We need a restricted CBPV, where these two possibilities are forbidden. If -- you want to save something between different lambdas, you need to add an F -- U to reflect that. (Double-check the papers which show how to encode arity -- using CBPV, it seems that they should find the same problem --- XXX they -- don't). -- Instead, just drop the first cache (XXX WRONG). ⟦ v₂ ⟧CompTermCache (proj₁ (proj₂ (⟦ v₁ ⟧CompTermCache ρ)) • ρ) -} -- But if we alter _into_ as described above, composing the caches works! -- However, we should not forget we also need to save the new intermediate -- result, that is the one produced by the first part of the let. ⟦_⟧CompTermCache (_into_ {σ} {τ} v₁ v₂) ρ = let (τ₁ , (r₁ , c₁)) = ⟦ v₁ ⟧CompTermCache ρ (τ₂ , (r₂ , c₂)) = ⟦ v₂ ⟧CompTermCache (r₁ • ρ) in (σ v× τ₁ v× τ₂) , (r₂ ,′ ( r₁ ,′ c₁ ,′ c₂)) -- Note the compositionality and luck: we don't need to do anything at the -- cReturn time, we just need the nested into to do their job, because as I -- said intermediate results are a writer monad. -- -- Q: But then, do we still need to do all the other stuff? IOW, do we still -- need to forbid (λ x . y <- f args; g args') and replace it with (λ x . y <- -- f args; z <- g args'; z)? -- -- A: One thing we still need is using the monadic version of into for the -- same reasons - which makes sense, since it has the type of monadic bind. -- -- Maybe not: if we use a monad, which respects left and right identity, the -- two above forms are equivalent. But what about associativity? We don't have -- associativity with nested tuples in the middle. That's why the monad uses -- lists! We can also use nested tuple, as long as in the into case we don't -- do (a, b) but append a b (ahem, where?), which decomposes the first list -- and prepends it to the second. To this end, we need to know the type of the -- first element, or to ensure it's always a pair. Maybe we just want to reuse -- an HList. -- In abstractions, we should start collecting all variables... -- Here, unlike in ⟦_⟧TermCache, we don't need to invent an empty cache, -- that's moved into the handling of cReturn. This makes *the* difference for -- nested lambdas, where we don't need to create caches multiple times! ⟦_⟧CompTermCache (cAbs v) ρ x = ⟦ v ⟧CompTermCache (x • ρ) -- Here we see that we are in a sort of A-normal form, because the argument is -- a value (not quite ANF though, since values can be thunks - that is, -- computations which haven't been run yet, I guess. Do we have an use for -- that? That allows passing lambdas as arguments directly - which is fine, -- because producing a closure indeed does not have intermediate results!). ⟦_⟧CompTermCache (cApp t v) ρ = ⟦ t ⟧CompTermCache ρ (⟦ v ⟧ValTermCache ρ)
Reorder code
Reorder code Separate non-CBPV and CBPV version of the code
Agda
mit
inc-lc/ilc-agda
9654b48257da5d67093ffa9653ed62f10df0bfa4
composition-sem-sec-reduction.agda
composition-sem-sec-reduction.agda
module otp-sem-sec where import Level as L open import Function open import Data.Nat.NP open import Data.Bits open import Data.Bool open import Data.Bool.Properties open import Data.Vec hiding (_>>=_) open import Data.Product.NP hiding (_⟦×⟧_) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import flipbased-implem open ≡-Reasoning open import Data.Unit using (⊤) open import composable open import vcomp open import forkable open import flat-funs open import program-distance open import one-time-semantic-security import bit-guessing-game module BitsExtra where splitAt′ : ∀ k {n} → Bits (k + n) → Bits k × Bits n splitAt′ k xs = case splitAt k xs of λ { (ys , zs , _) → (ys , zs) } vnot∘vnot : ∀ {n} → vnot {n} ∘ vnot ≗ id vnot∘vnot [] = refl vnot∘vnot (x ∷ xs) rewrite not-involutive x = cong (_∷_ x) (vnot∘vnot xs) open BitsExtra module CompRed {t} {T : Set t} {♭Funs : FlatFuns T} (♭ops : FlatFunsOps ♭Funs) (ep ep' : EncParams) where open FlatFunsOps ♭ops open AbsSemSec ♭Funs open EncParams ep using (|M|; |C|) open EncParams ep' using () renaming (|M| to |M|'; |C| to |C|') M = `Bits |M| C = `Bits |C| M' = `Bits |M|' C' = `Bits |C|' comp-red : (pre-E : M' `→ M) (post-E : C `→ C') → SemSecReduction ep' ep _ comp-red pre-E post-E (mk A₀ A₁) = mk (A₀ >>> (pre-E *** pre-E) *** idO) (post-E *** idO >>> A₁) module Comp (ep : EncParams) (|M|' |C|' : ℕ) where open EncParams ep ep' : EncParams ep' = EncParams.mk |M|' |C|' |R|e open EncParams ep' using () renaming (Enc to Enc'; M to M'; C to C') Tr = Enc → Enc' open FlatFunsOps fun♭Ops comp : (pre-E : M' → M) (post-E : C → C') → Tr comp pre-E post-E E = pre-E >>> E >>> {-weaken≤ |R|e≤|R|e' ∘-} map↺ post-E module CompSec (prgDist : PrgDist) (ep : EncParams) (|M|' |C|' : ℕ) where open PrgDist prgDist open FlatFunsOps fun♭Ops open FunSemSec prgDist open AbsSemSec fun♭Funs open EncParams ep ep' : EncParams ep' = EncParams.mk |M|' |C|' |R|e open EncParams ep' using () renaming (Enc to Enc'; M to M'; C to C') module CompSec' (pre-E : M' → M) (post-E : C → C') where open SemSecReductions ep ep' open CompRed fun♭Ops ep ep' hiding (M; C) open Comp ep |M|' |C|' comp-pres-sem-sec : SemSecTr id (comp pre-E post-E) comp-pres-sem-sec = comp-red pre-E post-E , λ E A → id open SemSecReductions ep ep' open CompRed fun♭Ops ep ep' hiding (M; C) open CompSec' public module Comp' {x y z} = Comp x y z open Comp' hiding (Tr) comp-pres-sem-sec⁻¹ : ∀ pre-E pre-E⁻¹ (pre-E-right-inv : pre-E ∘ pre-E⁻¹ ≗ id) post-E post-E⁻¹ (post-E-left-inv : post-E⁻¹ ∘ post-E ≗ id) → SemSecTr⁻¹ id (comp pre-E post-E) comp-pres-sem-sec⁻¹ pre-E pre-E⁻¹ pre-E-inv post-E post-E⁻¹ post-E-inv = SemSecTr→SemSecTr⁻¹ (comp pre-E⁻¹ post-E⁻¹) (comp pre-E post-E) (λ E m R → trans (post-E-inv _) (cong (λ x → run↺ (E x) R) (pre-E-inv _))) (comp-pres-sem-sec pre-E⁻¹ post-E⁻¹) module PostNegSec (prgDist : PrgDist) ep where open EncParams ep open Comp ep |M| |C| hiding (Tr) open CompSec prgDist ep |M| |C| open FunSemSec prgDist open SemSecReductions ep ep post-neg : Tr post-neg = comp id vnot post-neg-pres-sem-sec : SemSecTr id post-neg post-neg-pres-sem-sec = comp-pres-sem-sec id vnot post-neg-pres-sem-sec⁻¹ : SemSecTr⁻¹ id post-neg post-neg-pres-sem-sec⁻¹ = comp-pres-sem-sec⁻¹ id id (λ _ → refl) vnot vnot vnot∘vnot module Concrete k where open program-distance.Implem k module Guess' = bit-guessing-game prgDist module FunSemSec' = FunSemSec prgDist module CompSec' = CompSec prgDist
module composition-sem-sec-reduction where import Level as L open import Function open import Data.Nat.NP open import Data.Bits open import Data.Bool open import Data.Vec hiding (_>>=_) open import Data.Product.NP using (_,_) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP open import flipbased-implem open ≡-Reasoning open import Data.Unit using (⊤) open import composable open import vcomp open import forkable open import flat-funs open import program-distance open import one-time-semantic-security import bit-guessing-game -- One focuses on a particular kind of transformation -- over a cipher, namely pre and post composing functions -- to a given cipher E. -- This transformation can change the size of input/output -- of the given cipher. module Comp (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where open EncParams²-same-|R|ᵉ ep₀ |M|₁ |C|₁ open FlatFunsOps fun♭Ops comp : (pre-E : M₁ → M₀) (post-E : C₀ → C₁) → Tr comp pre-E post-E E = pre-E >>> E >>> map↺ post-E -- This module shows how to adapt an adversary that is supposed to break -- one time semantic security of some cipher E enhanced by pre and post -- composition to an adversary breaking one time semantic security of the -- original cipher E. -- -- The adversary transformation works for any notion of function space -- (FlatFuns) and the corresponding operations (FlatFunsOps). -- Because of this abstraction the following construction can be safely -- instantiated for at least three uses: -- * When provided with a concrete notion of function like circuits -- or at least functions over bit-vectors, one get a concrete circuit -- transformation process. -- * When provided with a high-level function space with real products -- then proving properties about the code is made easy. -- * When provided with a notion of cost such as time or space then -- one get a the cost of the resulting adversary given the cost of -- the inputs (adversary...). module CompRed {t} {T : Set t} {♭Funs : FlatFuns T} (♭ops : FlatFunsOps ♭Funs) (ep₀ ep₁ : EncParams) where open FlatFuns ♭Funs open FlatFunsOps ♭ops open AbsSemSec ♭Funs open ♭EncParams² ♭Funs ep₀ ep₁ using (`M₀; `C₀; `M₁; `C₁) comp-red : (pre-E : `M₁ `→ `M₀) (post-E : `C₀ `→ `C₁) → SemSecReduction ep₁ ep₀ _ comp-red pre-E post-E (mk A₀ A₁) = mk (A₀ >>> (pre-E *** pre-E) *** idO) (post-E *** idO >>> A₁) module CompSec (prgDist : PrgDist) (ep₀ : EncParams) (|M|₁ |C|₁ : ℕ) where open PrgDist prgDist open FlatFunsOps fun♭Ops open FunSemSec prgDist open AbsSemSec fun♭Funs open EncParams²-same-|R|ᵉ ep₀ |M|₁ |C|₁ open SemSecReductions ep₀ ep₁ id open CompRed fun♭Ops ep₀ ep₁ private module Comp-implicit {x y z} = Comp x y z open Comp-implicit public comp-pres-sem-sec : ∀ pre-E post-E → SemSecTr (comp pre-E post-E) comp-pres-sem-sec pre-E post-E = comp-red pre-E post-E , λ E A → id comp-pres-sem-sec⁻¹ : ∀ pre-E pre-E⁻¹ (pre-E-right-inv : pre-E ∘ pre-E⁻¹ ≗ id) post-E post-E⁻¹ (post-E-left-inv : post-E⁻¹ ∘ post-E ≗ id) → SemSecTr⁻¹ (comp pre-E post-E) comp-pres-sem-sec⁻¹ pre-E pre-E⁻¹ pre-E-inv post-E post-E⁻¹ post-E-inv = SemSecTr→SemSecTr⁻¹ (comp pre-E⁻¹ post-E⁻¹) (comp pre-E post-E) (λ E m R → trans (post-E-inv _) (cong (λ x → run↺ (E x) R) (pre-E-inv _))) (comp-pres-sem-sec pre-E⁻¹ post-E⁻¹) module PostNegSec (prgDist : PrgDist) ep where open EncParams ep open EncParams² ep ep using (Tr) open CompSec prgDist ep |M| |C| open FunSemSec prgDist open SemSecReductions ep ep id post-neg : Tr post-neg = comp id vnot post-neg-pres-sem-sec : SemSecTr post-neg post-neg-pres-sem-sec = comp-pres-sem-sec id vnot post-neg-pres-sem-sec⁻¹ : SemSecTr⁻¹ post-neg post-neg-pres-sem-sec⁻¹ = comp-pres-sem-sec⁻¹ id id (λ _ → refl) vnot vnot vnot∘vnot≗id module Concrete k where open program-distance.Implem k module Guess-prgDist = bit-guessing-game prgDist module FunSemSec-prgDist = FunSemSec prgDist module CompSec-prgDist = CompSec prgDist
Rework composition-sem-sec-reduction.agda
Rework composition-sem-sec-reduction.agda
Agda
bsd-3-clause
crypto-agda/crypto-agda
be0274dd27e35d690791eb80a7b4b66635414047
Thesis/ANormalDTerm.agda
Thesis/ANormalDTerm.agda
module Thesis.ANormalDTerm where open import Thesis.ANormal {- Try defining an alternative syntax for differential terms. We'll need this for cache terms. Maybe? Options: 1. use standard untyped lambda calculus as a target language. This requires much more weakening in the syntax, which is a nuisance in proofs. Maybe use de Bruijn levels instead? 2. use a specialized syntax as a target language. 3. use separate namespaces, environments, and so on? Also, caching uses quite a bit of sugar on top of lambda calculus, with pairs and what not. -} {- -- To define an alternative syntax for the derivation output, let's remember that: derive (var x) = dvar dx derive (let y = f x in t) = let y = f x ; dy = df x dx in derive t -} -- Attempt 1 leads to function calls in datatype indexes. That's very very bad! module Try1 where -- data DTerm : (Γ : Context) (τ : Type) → Set where -- dvar : ∀ {Γ τ} (x : Var Γ τ) → -- DTerm (ΔΓ Γ) (Δt τ) -- dlett : ∀ {Γ σ τ₁ τ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → DTerm (Δt τ₁ • τ₁ • ΔΓ Γ) (Δt τ) → DTerm (ΔΓ Γ) (Δt τ) -- derive-dterm : ∀ {Γ τ} → Term Γ τ → DTerm (ΔΓ Γ) (Δt τ) -- derive-dterm (var x) = dvar x -- derive-dterm (lett f x t) = dlett f x (derive-dterm t) -- Case split on dt FAILS! -- ⟦_⟧DTerm : ∀ {Γ τ} → DTerm (ΔΓ Γ) (Δt τ) → ⟦ ΔΓ Γ ⟧Context → ⟦ Δt τ ⟧Type -- ⟦ dt ⟧DTerm ρ = {!dt!} ΔΔ : Context → Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = Δt τ • ΔΔ Γ Δτ = Δt ChΔ : ∀ (Δ : Context) → Set ChΔ Δ = ⟦ ΔΔ Δ ⟧Context -- changeStructureΔ : ∀ Δ → ChangeStructure ⟦ Δ ⟧Context -- changeStructureΔ = {!!} -- ch_from_to_ {{changeStructureΔ Δ}} -- [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set -- [ ∅ ]Δ ∅ from ∅ to ∅ = ⊤ -- [ τ • Δ ]Δ dv • dρ from v1 • ρ1 to (v2 • ρ2) = [ τ ]τ dv from v1 to v2 × [ Δ ]Δ dρ from ρ1 to ρ2 -- Δ is bound to the change type! Not good! data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where v∅ : [ ∅ ]Δ ∅ from ∅ to ∅ _v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} → (dvv : [ τ ]τ dv from v1 to v2) → (dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) → [ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2) module Try3 where derive-dvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔ Δ) (Δτ σ) derive-dvar this = this derive-dvar (that x) = that (derive-dvar x) fromtoDeriveDVar : ∀ {Δ τ} → (x : Var Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dvar x ⟧Var dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2) fromtoDeriveDVar this (dvv v• dρρ) = dvv fromtoDeriveDVar (that x) (dvv v• dρρ) = fromtoDeriveDVar x dρρ -- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces -- a result of type (Δt τ). data DTerm : (Δ : Context) (τ : Type) → Set where dvar : ∀ {Δ τ} (x : Var (ΔΔ Δ) (Δt τ)) → DTerm Δ τ dlett : ∀ {Δ τ σ τ₁} → (f : Var Δ (σ ⇒ τ₁)) → (x : Var Δ σ) → (t : Term (τ₁ • Δ) τ) → (df : Var (ΔΔ Δ) (Δτ (σ ⇒ τ₁))) → (dx : Var (ΔΔ Δ) (Δτ σ)) → (dt : DTerm (τ₁ • Δ) τ) → DTerm Δ τ data DFun (Δ : Context) : (τ : Type) → Set where dterm : ∀ {τ} → DTerm Δ τ → DFun Δ τ dabs : ∀ {σ τ} → DFun (σ • Δ) τ → DFun Δ (σ ⇒ τ) derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ derive-dterm (var x) = dvar (derive-dvar x) derive-dterm (lett f x t) = dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t) ⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type ⟦ dvar x ⟧DTerm ρ dρ = ⟦ x ⟧Var dρ ⟦ dlett f x t df dx dt ⟧DTerm ρ dρ = let v = (⟦ x ⟧Var ρ) in ⟦ dt ⟧DTerm (⟦ f ⟧Var ρ v • ρ) (⟦ df ⟧Var dρ v (⟦ dx ⟧Var dρ) • dρ) fromtoDeriveDTerm : ∀ {Δ τ} → (t : Term Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dterm t ⟧DTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2) fromtoDeriveDTerm (var x) dρρ = fromtoDeriveDVar x dρρ fromtoDeriveDTerm (lett f x t) dρρ = let fromToF = fromtoDeriveDVar f dρρ fromToX = fromtoDeriveDVar x dρρ fromToFX = fromToF _ _ _ fromToX in fromtoDeriveDTerm t (fromToFX v• dρρ) derive-dfun : ∀ {Δ σ} → (t : Fun Δ σ) → DFun Δ σ derive-dfun (term t) = dterm (derive-dterm t) derive-dfun (abs f) = dabs (derive-dfun f) ⟦_⟧DFun : ∀ {Δ τ} → DFun Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type ⟦ dterm t ⟧DFun = ⟦ t ⟧DTerm ⟦ dabs df ⟧DFun ρ dρ = λ v dv → ⟦ df ⟧DFun (v • ρ) (dv • dρ) fromtoDeriveDFun : ∀ {Δ τ} → (f : Fun Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dfun f ⟧DFun ρ1 dρ) from (⟦ f ⟧Fun ρ1) to (⟦ f ⟧Fun ρ2) fromtoDeriveDFun (term t) = fromtoDeriveDTerm t fromtoDeriveDFun (abs f) dρρ = λ dv v1 v2 dvv → fromtoDeriveDFun f (dvv v• dρρ) module Try2 where -- This is literally isomorphic to the source type :-| derivation is part of erasure... data DTerm : (Γ : Context) (τ : Type) → Set where dvar : ∀ {Γ τ} (x : Var Γ τ) → DTerm Γ τ -- dlett : ∀ {Γ σ τ₁ τ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → DTerm (Δt τ₁ • τ₁ • ΔΓ Γ) (Δt τ) → DTerm (ΔΓ Γ) (Δt τ) dlett : ∀ {Γ τ σ τ₁} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → DTerm (τ₁ • Γ) τ → DTerm Γ τ derive-dterm : ∀ {Γ τ} → Term Γ τ → DTerm Γ τ derive-dterm (var x) = dvar x derive-dterm (lett f x t) = dlett f x (derive-dterm t) -- Incremental semantics over terms. Same results as base semantics over change -- terms. But less weakening. ⟦_⟧DTerm : ∀ {Γ τ} → DTerm Γ τ → ⟦ ΔΓ Γ ⟧Context → ⟦ Δt τ ⟧Type ⟦ dvar x ⟧DTerm dρ = ⟦ derive-var x ⟧Var dρ ⟦ dlett f x dt ⟧DTerm dρ = let ρ = ⟦ Γ≼ΔΓ ⟧≼ dρ in ⟦ dt ⟧DTerm ( ⟦ derive-var f ⟧Var dρ (⟦ x ⟧Var ρ) (⟦ derive-var x ⟧Var dρ) • ⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • dρ)
module Thesis.ANormalDTerm where open import Thesis.ANormal ΔΔ : Context → Context ΔΔ ∅ = ∅ ΔΔ (τ • Γ) = Δt τ • ΔΔ Γ Δτ = Δt ChΔ : ∀ (Δ : Context) → Set ChΔ Δ = ⟦ ΔΔ Δ ⟧Context -- [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set -- [ ∅ ]Δ ∅ from ∅ to ∅ = ⊤ -- [ τ • Δ ]Δ dv • dρ from v1 • ρ1 to (v2 • ρ2) = [ τ ]τ dv from v1 to v2 × [ Δ ]Δ dρ from ρ1 to ρ2 data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where v∅ : [ ∅ ]Δ ∅ from ∅ to ∅ _v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} → (dvv : [ τ ]τ dv from v1 to v2) → (dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) → [ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2) derive-dvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔ Δ) (Δτ σ) derive-dvar this = this derive-dvar (that x) = that (derive-dvar x) fromtoDeriveDVar : ∀ {Δ τ} → (x : Var Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dvar x ⟧Var dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2) fromtoDeriveDVar this (dvv v• dρρ) = dvv fromtoDeriveDVar (that x) (dvv v• dρρ) = fromtoDeriveDVar x dρρ -- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces -- a result of type (Δt τ). data DTerm : (Δ : Context) (τ : Type) → Set where dvar : ∀ {Δ τ} (x : Var (ΔΔ Δ) (Δt τ)) → DTerm Δ τ dlett : ∀ {Δ τ σ τ₁} → (f : Var Δ (σ ⇒ τ₁)) → (x : Var Δ σ) → (t : Term (τ₁ • Δ) τ) → (df : Var (ΔΔ Δ) (Δτ (σ ⇒ τ₁))) → (dx : Var (ΔΔ Δ) (Δτ σ)) → (dt : DTerm (τ₁ • Δ) τ) → DTerm Δ τ data DFun (Δ : Context) : (τ : Type) → Set where dterm : ∀ {τ} → DTerm Δ τ → DFun Δ τ dabs : ∀ {σ τ} → DFun (σ • Δ) τ → DFun Δ (σ ⇒ τ) derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ derive-dterm (var x) = dvar (derive-dvar x) derive-dterm (lett f x t) = dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t) ⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type ⟦ dvar x ⟧DTerm ρ dρ = ⟦ x ⟧Var dρ ⟦ dlett f x t df dx dt ⟧DTerm ρ dρ = let v = (⟦ x ⟧Var ρ) in ⟦ dt ⟧DTerm (⟦ f ⟧Var ρ v • ρ) (⟦ df ⟧Var dρ v (⟦ dx ⟧Var dρ) • dρ) fromtoDeriveDTerm : ∀ {Δ τ} → (t : Term Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dterm t ⟧DTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2) fromtoDeriveDTerm (var x) dρρ = fromtoDeriveDVar x dρρ fromtoDeriveDTerm (lett f x t) dρρ = let fromToF = fromtoDeriveDVar f dρρ fromToX = fromtoDeriveDVar x dρρ fromToFX = fromToF _ _ _ fromToX in fromtoDeriveDTerm t (fromToFX v• dρρ) derive-dfun : ∀ {Δ σ} → (t : Fun Δ σ) → DFun Δ σ derive-dfun (term t) = dterm (derive-dterm t) derive-dfun (abs f) = dabs (derive-dfun f) ⟦_⟧DFun : ∀ {Δ τ} → DFun Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type ⟦ dterm t ⟧DFun = ⟦ t ⟧DTerm ⟦ dabs df ⟧DFun ρ dρ = λ v dv → ⟦ df ⟧DFun (v • ρ) (dv • dρ) fromtoDeriveDFun : ∀ {Δ τ} → (f : Fun Δ τ) → ∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 → [ τ ]τ (⟦ derive-dfun f ⟧DFun ρ1 dρ) from (⟦ f ⟧Fun ρ1) to (⟦ f ⟧Fun ρ2) fromtoDeriveDFun (term t) = fromtoDeriveDTerm t fromtoDeriveDFun (abs f) dρρ = λ dv v1 v2 dvv → fromtoDeriveDFun f (dvv v• dρρ)
remove bad experiments
ANormalDTerm: remove bad experiments
Agda
mit
inc-lc/ilc-agda
3ef9b9505385dfad155ad9a494a161385271f576
ZK/GroupHom/ElGamal.agda
ZK/GroupHom/ElGamal.agda
{-# OPTIONS --without-K #-} open import Type using (Type) open import Function using (flip; _∘_) open import Data.Product renaming (proj₁ to fst; proj₂ to snd) open import Data.Two open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP using (_≡_; ap; ap₂; !_; _∙_; module ≡-Reasoning) open import Algebra.Group open import Algebra.Group.Constructions open import Algebra.Group.Homomorphism import ZK.SigmaProtocol.KnownStatement import ZK.GroupHom open import ZK.GroupHom.Types module ZK.GroupHom.ElGamal (G+ G* : Type) (𝔾+ : Group G+) (𝔾* : Group G*) (_==_ : G* → G* → 𝟚) (✓-== : ∀ {x y} → x ≡ y → ✓ (x == y)) (==-✓ : ∀ {x y} → ✓ (x == y) → x ≡ y) (_^_ : G* → G+ → G*) (^-hom : ∀ b → GroupHomomorphism 𝔾+ 𝔾* (_^_ b)) (g : G*) where open Additive-Group 𝔾+ open Multiplicative-Group 𝔾* hiding (_^_) -- TODO: Re-use another module module ElGamal-encryption where record CipherText : Type where constructor _,_ field α β : G* PubKey = G* PrivKey = G+ EncRnd = G+ {- randomness used for encryption of ct -} Message = G* {- plain text message -} enc : PubKey → EncRnd → Message → CipherText enc y r M = α , β where α = g ^ r β = (y ^ r) * M dec : PrivKey → CipherText → Message dec x ct = (α ^ x)⁻¹ * β where open CipherText ct open ElGamal-encryption -- CP : (g₀ g₁ u₀ u₁ : G) (w : ℤq) → Type -- CP g₀ g₁ u₀ u₁ w = (g₀ ^ w ≡ u₀) × (g₁ ^ w ≡ u₁) -- CP : (g₀ g₁ u₀ u₁ : G*) (w : G+) → Type -- CP g₀ g₁ u₀ u₁ w = ✓ (((g₀ ^ w) == u₀) ∧ ((g₁ ^ w) == u₁)) module _ (y : PubKey) (M : Message) (ct : CipherText) where module CT = CipherText ct KnownEncRnd : EncRnd → Type KnownEncRnd r = enc y r M ≡ ct known-enc-rnd : GrpHom _ _ KnownEncRnd known-enc-rnd = record { 𝔾+ = 𝔾+ ; 𝔾* = Product.×-grp 𝔾* 𝔾* ; _==_ = λ x y → fst x == fst y ∧ snd x == snd y ; ✓-== = λ e → ✓∧ (✓-== (ap fst e)) (✓-== (ap snd e)) ; ==-✓ = λ e → let p = ✓∧× e in ap₂ _,_ (==-✓ (fst p)) (==-✓ (snd p)) ; φ = _ ; φ-hom = Pair.pair-hom _ _ _ (_^_ g) (^-hom g) (_^_ y) (^-hom y) ; y = CT.α , CT.β / M ; φ⇒P = λ _ e → ap₂ (λ p q → fst p , q) e (ap (flip _*_ M ∘ snd) e ∙ ! /-*) ; P⇒φ = λ _ e → ap₂ _,_ (ap CipherText.α e) (*-/ ∙ ap (flip _/_ M) (ap CipherText.β e)) } KnownDec : PrivKey → Type KnownDec x = (g ^ x ≡ y) × (dec x ct ≡ M) open ≡-Reasoning /⁻¹-* : ∀ {x y} → (x / y)⁻¹ * x ≡ y /⁻¹-* {x} {y} = (x / y)⁻¹ * x ≡⟨ ap (λ z → z * x) ⁻¹-hom′ ⟩ y ⁻¹ ⁻¹ * x ⁻¹ * x ≡⟨ *-assoc ⟩ y ⁻¹ ⁻¹ * (x ⁻¹ * x) ≡⟨ ap₂ _*_ ⁻¹-involutive (fst ⁻¹-inverse) ⟩ y * 1# ≡⟨ *1-identity ⟩ y ∎ /-⁻¹* : ∀ {x y} → x / (y ⁻¹ * x) ≡ y /-⁻¹* {x} {y} = x * (y ⁻¹ * x) ⁻¹ ≡⟨ ap (_*_ x) ⁻¹-hom′ ⟩ x * (x ⁻¹ * y ⁻¹ ⁻¹) ≡⟨ ! *-assoc ⟩ (x * x ⁻¹) * y ⁻¹ ⁻¹ ≡⟨ *= (snd ⁻¹-inverse) ⁻¹-involutive ⟩ 1# * y ≡⟨ 1*-identity ⟩ y ∎ known-dec : GrpHom _ _ KnownDec known-dec = record { 𝔾+ = 𝔾+ ; 𝔾* = Product.×-grp 𝔾* 𝔾* ; _==_ = λ x y → fst x == fst y ∧ snd x == snd y ; ✓-== = λ e → ✓∧ (✓-== (ap fst e)) (✓-== (ap snd e)) ; ==-✓ = λ e → let p = ✓∧× e in ap₂ _,_ (==-✓ (fst p)) (==-✓ (snd p)) ; φ = _ ; φ-hom = Pair.pair-hom _ _ _ (_^_ g) (^-hom g) (_^_ CT.α) (^-hom CT.α) ; y = y , CT.β / M ; φ⇒P = λ x e → ap fst e , ap (λ z → z ⁻¹ * CT.β) (ap snd e) ∙ /⁻¹-* ; P⇒φ = λ x e → ap₂ _,_ (fst e) (! /-⁻¹* ∙ ap (_/_ CT.β) (snd e)) } -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type using (Type) open import Type.Eq open import Function.NP using (flip; _∘_; it) open import Data.Product.NP open import Data.Two hiding (_²) open import Relation.Binary open import Relation.Binary.PropositionalEquality.NP using (idp; _≡_; ap; ap₂; !_; _∙_; module ≡-Reasoning) open import Algebra.Group open import Algebra.Group.Constructions open import Algebra.Group.Homomorphism import ZK.GroupHom open import ZK.GroupHom.Types module ZK.GroupHom.ElGamal (G+ G* : Type) (𝔾+ : Group G+) (𝔾* : Group G*) (G*-eq? : Eq? G*) (_^_ : G* → G+ → G*) (^-hom : ∀ b → GroupHomomorphism 𝔾+ 𝔾* (_^_ b)) (g : G*) where module 𝔾* = Group 𝔾* open Additive-Group 𝔾+ open module MG = Multiplicative-Group 𝔾* hiding (_^_; _²) module ^ b = GroupHomomorphism (^-hom b) _² : Type → Type A ² = A × A -- TODO: Re-use another module module ElGamal-encryption where PubKey = G* PrivKey = G+ EncRnd = G+ {- randomness used for encryption of ct -} Message = G* {- plain text message -} CipherText = G* × G* module CipherText (ct : CipherText) where α β : G* α = fst ct β = snd ct pub-of : PrivKey → PubKey pub-of sk = g ^ sk enc : PubKey → Message → EncRnd → CipherText enc y M r = α , β module enc where α = g ^ r β = (y ^ r) * M dec : PrivKey → CipherText → Message dec sk (α , β) = (α ^ sk)⁻¹ * β open ElGamal-encryption open Product _²-grp : {A : Type} → Group A → Group (A ²) 𝔸 ²-grp = ×-grp 𝔸 𝔸 𝕄 : Group Message 𝕄 = 𝔾* ℂ𝕋 : Group CipherText ℂ𝕋 = ×-grp 𝔾* 𝔾* -- CP : (g₀ g₁ u₀ u₁ : G) (w : ℤq) → Type -- CP g₀ g₁ u₀ u₁ w = (g₀ ^ w ≡ u₀) × (g₁ ^ w ≡ u₁) -- CP : (g₀ g₁ u₀ u₁ : G*) (w : G+) → Type -- CP g₀ g₁ u₀ u₁ w = ✓ (((g₀ ^ w) == u₀) ∧ ((g₁ ^ w) == u₁)) module Known-enc-rnd (y : PubKey) (M : Message) (ct : CipherText) where module ct = CipherText ct Valid-witness : EncRnd → Type Valid-witness r = enc y M r ≡ ct zk-hom : ZK-hom _ _ Valid-witness zk-hom = record { φ-hom = < ^-hom g , ^-hom y >-hom ; y = ct.α , ct.β / M ; φ⇒P = λ _ e → ap₂ (λ p q → fst p , q) e (ap (flip _*_ M ∘ snd) e ∙ ! /-*) ; P⇒φ = λ _ e → ap₂ _,_ (ap fst e) (*-/ ∙ ap (flip _/_ M) (ap snd e)) } open ≡-Reasoning /⁻¹-* : ∀ {x y} → (x / y)⁻¹ * x ≡ y /⁻¹-* {x} {y} = (x / y)⁻¹ * x ≡⟨ ap (λ z → z * x) ⁻¹-hom′ ⟩ y ⁻¹ ⁻¹ * x ⁻¹ * x ≡⟨ *-assoc ⟩ y ⁻¹ ⁻¹ * (x ⁻¹ * x) ≡⟨ ap₂ _*_ ⁻¹-involutive (fst ⁻¹-inverse) ⟩ y * 1# ≡⟨ *1-identity ⟩ y ∎ /-⁻¹* : ∀ {x y} → x / (y ⁻¹ * x) ≡ y /-⁻¹* {x} {y} = x * (y ⁻¹ * x) ⁻¹ ≡⟨ ap (_*_ x) ⁻¹-hom′ ⟩ x * (x ⁻¹ * y ⁻¹ ⁻¹) ≡⟨ ! *-assoc ⟩ (x * x ⁻¹) * y ⁻¹ ⁻¹ ≡⟨ *= (snd ⁻¹-inverse) ⁻¹-involutive ⟩ 1# * y ≡⟨ 1*-identity ⟩ y ∎ x⁻¹y≡1→x≡y : ∀ {x y} → x ⁻¹ * y ≡ 1# → x ≡ y x⁻¹y≡1→x≡y e = cancels-*-left (fst ⁻¹-inverse ∙ ! e) module Known-dec (y : PubKey) (M : Message) (ct : CipherText) where module ct = CipherText ct Valid-witness : PrivKey → Type Valid-witness sk = (g ^ sk ≡ y) × (dec sk ct ≡ M) zk-hom : ZK-hom _ _ Valid-witness zk-hom = record { φ-hom = < ^-hom g , ^-hom ct.α >-hom ; y = y , ct.β / M ; φ⇒P = λ x e → ap fst e , ap (λ z → z ⁻¹ * ct.β) (ap snd e) ∙ /⁻¹-* ; P⇒φ = λ x e → ap₂ _,_ (fst e) (! /-⁻¹* ∙ ap (_/_ ct.β) (snd e)) } -- Inverse of ciphertexts _⁻¹CT : CipherText → CipherText (α , β)⁻¹CT = α ⁻¹ , β ⁻¹ -- Division of ciphertexts _/CT_ : CipherText → CipherText → CipherText (α₀ , β₀) /CT (α₁ , β₁) = (α₀ / α₁) , (β₀ / β₁) -- TODO: Move this elsewhere (Cipher.ElGamal.Homomorphic) import Algebra.FunctionProperties.Eq as FP open FP.Implicits open import Algebra.Group.Abelian module From-*-comm (*-comm : Commutative _*_) where private module 𝔾*-comm = Abelian-Group-Struct (𝔾*.grp-struct , *-comm) hom-enc : (y : PubKey) → GroupHomomorphism (×-grp 𝕄 𝔾+) ℂ𝕋 (uncurry (enc y)) hom-enc y = mk λ { {M₀ , r₀} {M₁ , r₁} → ap₂ _,_ (^.hom _) (enc.β y (M₀ * M₁) (r₀ + r₁) ≡⟨by-definition⟩ y ^ (r₀ + r₁) * (M₀ * M₁) ≡⟨ *= (^.hom y) idp ⟩ (y ^ r₀ * y ^ r₁) * (M₀ * M₁) ≡⟨ 𝔾*-comm.interchange ⟩ enc.β y M₀ r₀ * enc.β y M₁ r₁ ∎) } module hom-enc y = GroupHomomorphism (hom-enc y) -- The encryption of the inverse is the inverse of the encryption -- (notice that the randomnesses seems to be negated only because we give an additive notation to our G+ group) enc-⁻¹ : ∀ {y M r} → enc y (M ⁻¹) (0− r) ≡ enc y M r ⁻¹CT enc-⁻¹ = hom-enc.pres-inv _ -- The encryption of the division is the division of the encryptions -- (notice that the randomnesses seems to be subtracted only because we give an additive notation to our G+ group) enc-/ : ∀ {y M₀ r₀ M₁ r₁} → enc y (M₀ / M₁) (r₀ − r₁) ≡ enc y M₀ r₀ /CT enc y M₁ r₁ enc-/ = hom-enc.−-/ _ -- Alice wants to prove to the public that she encrypted the -- same message for two (potentially different) recepients -- without revealing the content of the message or the randomness -- used for the encryptions. module Message-equality-enc (y₀ y₁ : PubKey) (ct₀ ct₁ : CipherText) where module ct₀ = CipherText ct₀ module ct₁ = CipherText ct₁ Witness = Message × EncRnd ² Statement = CipherText ² Valid-witness : Witness → Type Valid-witness (M , r₀ , r₁) = enc y₀ M r₀ ≡ ct₀ × enc y₁ M r₁ ≡ ct₁ private θ : Message × EncRnd ² → (Message × EncRnd)² θ (M , r₀ , r₁) = ((M , r₀) , (M , r₁)) θ-hom : GroupHomomorphism (×-grp 𝕄 (𝔾+ ²-grp)) ((×-grp 𝕄 𝔾+)²-grp) θ θ-hom = mk idp φ-hom : GroupHomomorphism _ _ _ φ-hom = < hom-enc y₀ × hom-enc y₁ >-hom ∘-hom θ-hom zk-hom : ZK-hom _ _ Valid-witness zk-hom = record { φ-hom = φ-hom ; y = ct₀ , ct₁ ; φ⇒P = λ _ e → ap fst e , ap snd e ; P⇒φ = λ x e → ap₂ _,_ (fst e) (snd e) } module From-flip-^-hom (flip-^-hom : ∀ x → GroupHomomorphism 𝔾* 𝔾* (flip _^_ x)) where module flip-^ x = GroupHomomorphism (flip-^-hom x) hom-dec : (x : PrivKey) → GroupHomomorphism ℂ𝕋 𝕄 (dec x) hom-dec x = mk λ { {α₀ , β₀} {α₁ , β₁} → dec x (α₀ * α₁ , β₀ * β₁) ≡⟨by-definition⟩ ((α₀ * α₁) ^ x)⁻¹ * (β₀ * β₁) ≡⟨ ap (λ z → _*_ (_⁻¹ z) (_*_ β₀ β₁)) (flip-^.hom x) ⟩ (α₀ ^ x * α₁ ^ x)⁻¹ * (β₀ * β₁) ≡⟨ *= 𝔾*-comm.⁻¹-hom idp ⟩ (α₀ ^ x)⁻¹ * (α₁ ^ x)⁻¹ * (β₀ * β₁) ≡⟨ 𝔾*-comm.interchange ⟩ dec x (α₀ , β₀) * dec x (α₁ , β₁) ∎ } module hom-dec x = GroupHomomorphism (hom-dec x) -- Bob wants to prove to the public that he decrypted two -- ciphertexts which decrypt to the same message, -- without revealing the content of the message or his -- secret key. -- The two ciphertexts are encrypted using the same public key. module Message-equality-dec (y : PubKey) (ct₀ ct₁ : CipherText) where private module ct₀ = CipherText ct₀ module ct₁ = CipherText ct₁ α/ = ct₀.α / ct₁.α β/ = ct₀.β / ct₁.β Valid-witness : PrivKey → Type Valid-witness sk = pub-of sk ≡ y × dec sk ct₀ ≡ dec sk ct₁ zk-hom : ZK-hom _ _ Valid-witness zk-hom = record { φ-hom = < ^-hom g , ^-hom (ct₀.α / ct₁.α) >-hom ; y = y , ct₀.β / ct₁.β ; φ⇒P = λ x e → ap fst e , x/y≡1→x≡y (dec x ct₀ / dec x ct₁ ≡⟨ ! hom-dec.−-/ x ⟩ dec x (ct₀ /CT ct₁) ≡⟨by-definition⟩ dec x (α/ , β/) ≡⟨ ! ap (λ z → dec x (α/ , snd z)) e ⟩ dec x (α/ , (α/)^ x) ≡⟨ fst ⁻¹-inverse ⟩ 1# ∎) ; P⇒φ = λ x e → ap₂ _,_ (fst e) (x⁻¹y≡1→x≡y (dec x (α/ , β/) ≡⟨ hom-dec.−-/ x ⟩ dec x ct₀ / dec x ct₁ ≡⟨ /= (snd e) idp ⟩ dec x ct₁ / dec x ct₁ ≡⟨ snd ⁻¹-inverse ⟩ 1# ∎)) } -- -} -- -} -- -}
add proofs of equality of message (two styles)
ZK.GroupHom.ElGamal: add proofs of equality of message (two styles)
Agda
bsd-3-clause
crypto-agda/crypto-agda
ccb724c55f5701acf132f0a3045f0a1c2d116f96
Denotational/ValidChanges.agda
Denotational/ValidChanges.agda
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data ValidΔ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds (valid : ValidΔ s ds) → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Valid-Δ {bool} v dv = ⊤ Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} → Valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db
module Denotational.ValidChanges where open import Data.Product open import Data.Unit open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Denotational.Notation open import Denotational.Values open import Denotational.Equivalence open import Changes -- DEFINITION of valid changes via a logical relation {- What I wanted to write: data Valid-Δ : {T : Type} → (v : ⟦ T ⟧) → (dv : ⟦ Δ-Type T ⟧) → Set where base : (v : ⟦ bool ⟧) → (dv : ⟦ Δ-Type bool ⟧) → ValidΔ v dv fun : ∀ {S T} → (f : ⟦ S ⇒ T ⟧) → (df : ⟦ Δ-Type (S ⇒ T) ⟧) → (∀ (s : ⟦ S ⟧) ds → (ValidΔ (f s) (df s ds)) × ((apply df f) (apply ds s) ≡ apply (df s ds) (f s))) → ValidΔ f df -} -- What I had to write: -- Note: now I could go back to using a datatype, since the datatype is now strictly positive. Valid-Δ : {τ : Type} → ⟦ τ ⟧ → ⟦ Δ-Type τ ⟧ → Set Valid-Δ {bool} v dv = ⊤ Valid-Δ {S ⇒ T} f df = ∀ (s : ⟦ S ⟧) ds {- (valid-w : Valid-Δ s ds) -} → Valid-Δ (f s) (df s ds) × (apply df f) (apply ds s) ≡ apply (df s ds) (f s) diff-is-valid : ∀ {τ} (v′ v : ⟦ τ ⟧) → Valid-Δ {τ} v (diff v′ v) diff-is-valid {bool} v′ v = tt diff-is-valid {τ ⇒ τ₁} v′ v = λ s ds → diff-is-valid (v′ (apply ds s)) (v s) , ( begin apply (diff v′ v) v (apply ds s) ≡⟨ refl ⟩ apply (diff (v′ (apply (derive (apply ds s)) (apply ds s))) (v (apply ds s))) (v (apply ds s)) ≡⟨ ≡-cong (λ x → apply (diff (v′ x) (v (apply ds s))) (v (apply ds s))) (apply-derive (apply ds s)) ⟩ apply (diff (v′ (apply ds s)) (v (apply ds s))) (v (apply ds s)) ≡⟨ apply-diff (v (apply ds s)) (v′ (apply ds s)) ⟩ v′ (apply ds s) ≡⟨ sym (apply-diff (v s) (v′ (apply ds s))) ⟩ apply ((diff v′ v) s ds) (v s) ∎) where open ≡-Reasoning derive-is-valid : ∀ {τ} (v : ⟦ τ ⟧) → Valid-Δ {τ} v (derive v) derive-is-valid v rewrite sym (diff-derive v) = diff-is-valid v v -- This is a postulate elsewhere, but here I provide a proper proof. diff-apply-proof : ∀ {τ} (dv : ⟦ Δ-Type τ ⟧) (v : ⟦ τ ⟧) → (Valid-Δ v dv) → diff (apply dv v) v ≡ dv diff-apply-proof {τ₁ ⇒ τ₂} df f df-valid = ext (λ v → ext (λ dv → begin diff (apply (df (apply dv v) (derive (apply dv v))) (f (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (sym (proj₂ (df-valid (apply dv v) (derive (apply dv v))))) ⟩ diff ((apply df f) (apply (derive (apply dv v)) (apply dv v))) (f v) ≡⟨ ≡-cong (λ x → diff (apply df f x) (f v)) (apply-derive (apply dv v)) ⟩ diff ((apply df f) (apply dv v)) (f v) ≡⟨ ≡-cong (λ x → diff x (f v)) (proj₂ (df-valid v dv)) ⟩ diff (apply (df v dv) (f v)) (f v) ≡⟨ diff-apply-proof {τ₂} (df v dv) (f v) (proj₁ (df-valid v dv)) ⟩ df v dv ∎)) where open ≡-Reasoning diff-apply-proof {bool} db b _ = xor-cancellative b db
Update alternative definition of Valid-Δ
agda: Update alternative definition of Valid-Δ Rationale for maintaining this alternative definition: If all proofs go through with the current definition of Valid-Δ, which can be expressed as a datatype, we'll switch to defining it with a datatype. Old-commit-hash: a21df87af1c12f4d94d3710d37e6e4eedfcc83b0
Agda
mit
inc-lc/ilc-agda
884a5f0cedea9599476b8420c36f53c0676e8551
arrow.agda
arrow.agda
data Bool : Set where true : Bool false : Bool -------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false -------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys -------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow modusponens : ℕ → Arrow → Arrow modusponens n (⇒ q) = (⇒ q) modusponens n (p ⇒ q) with (n ≡ p) ... | true = modusponens n q ... | false = p ⇒ (modusponens n q) reduce : ℕ → List Arrow → List Arrow reduce n ∘ = ∘ reduce n (arr ∷ rst) = (modusponens n arr) ∷ (reduce n rst) search : List Arrow → List ℕ search ∘ = ∘ search ((⇒ n) ∷ rst) = n ∷ (search (reduce n rst)) search ((n ⇒ q) ∷ rst) with (n ∈ (search rst)) ... | true = search (q ∷ rst) ... | false = search rst
data Bool : Set where true : Bool false : Bool -------------------- data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _≡_ : ℕ → ℕ → Bool zero ≡ zero = true suc n ≡ suc m = n ≡ m _ ≡ _ = false -------------------- data List (A : Set) : Set where ∘ : List A _∷_ : A → List A → List A _∈_ : ℕ → List ℕ → Bool x ∈ ∘ = false x ∈ (y ∷ ys) with x ≡ y ... | true = true ... | false = x ∈ ys -------------------- data Arrow : Set where ⇒_ : ℕ → Arrow _⇒_ : ℕ → Arrow → Arrow modusponens : ℕ → Arrow → Arrow modusponens n (⇒ q) = (⇒ q) modusponens n (p ⇒ q) with (n ≡ p) ... | true = modusponens n q ... | false = p ⇒ (modusponens n q) reduce : ℕ → List Arrow → List Arrow reduce n ∘ = ∘ reduce n (arr ∷ rst) = (modusponens n arr) ∷ (reduce n rst) search : List Arrow → List ℕ search ∘ = ∘ search ((⇒ n) ∷ rst) = n ∷ (search (reduce n rst)) search ((n ⇒ q) ∷ rst) with (n ∈ (search rst)) ... | true = search (q ∷ rst) ... | false = search rst _⊢_ : List Arrow → Arrow → Bool cs ⊢ (⇒ q) = q ∈ (search cs) cs ⊢ (p ⇒ q) = ((⇒ p) ∷ cs) ⊢ q
Add turnstile
Add turnstile
Agda
mit
louisswarren/hieretikz
b5aa26aa273178564c9e3df4846793f1e96e2e81
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily ⟦_⟧Base module Structure {{change-algebra-base : Structure}} where -- change algebras open CA public renaming -- Constructors for All′ ( [] to ∅ ; _∷_ to _•_ ) -- We provide: change algebra for every type instance change-algebra : ∀ τ → ChangeAlgebra ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = changeAlgebraFun {{change-algebra τ₁}} {{change-algebra τ₂}} change-algebra-family : ChangeAlgebraFamily ⟦_⟧Type change-algebra-family = family change-algebra -- function changes module _ {τ₁ τ₂ : Type} where open FunctionChange {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebraListChanges to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍_₎ Γ
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value open import Base.Change.Algebra as CA using (ChangeAlgebraFamily) module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Level -- Extension Point: Change algebras for base types Structure : Set₁ Structure = ChangeAlgebraFamily ⟦_⟧Base module Structure {{change-algebra-base : Structure}} where -- change algebras open CA public renaming -- Constructors for All′ ( [] to ∅ ; _∷_ to _•_ ) change-algebra : ∀ τ → ChangeAlgebra ⟦ τ ⟧Type change-algebra (base ι) = change-algebra₍ ι ₎ change-algebra (τ₁ ⇒ τ₂) = changeAlgebraFun {{change-algebra τ₁}} {{change-algebra τ₂}} -- We provide: change algebra for every type instance change-algebra-family : ChangeAlgebraFamily ⟦_⟧Type change-algebra-family = family change-algebra -- function changes module _ {τ₁ τ₂ : Type} where open FunctionChange {{change-algebra τ₁}} {{change-algebra τ₂}} public renaming ( correct to is-valid ; apply to call-change ) -- We also provide: change environments (aka. environment changes). open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming ( changeAlgebraListChanges to environment-changes ) after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧ after-env {Γ} = after₍_₎ Γ
Disable unused instance
Disable unused instance Agda will not infer explicit arguments of instance arguments. On the other hand, trying to make this into a proper instance (with an implicit argument) makes typechecking too much slower or not terminating (more precisely, on some modules typechecking took longer than I wanted to wait and I didn't investigate further).
Agda
mit
inc-lc/ilc-agda
e41ee7bc6a42348d7050206b8746f460ef632c69
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set Change (base ι) = Change-base ι Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore-valid-change : ValidChange ⊆ ⟦_⟧ ignore-valid-change (cons v _ _) = v update-valid-change : ValidChange ⊆ ⟦_⟧ update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-valid-change {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-valid-change {τ})
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : Base → Set valid-base : ∀ {ι} → ⟦ ι ⟧Base → Change-base ι → Set apply-change-base : ∀ ι → ⟦ ι ⟧Base → Change-base ι → ⟦ ι ⟧Base diff-change-base : ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → Change-base ι R[v,u-v]-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → valid-base {ι} v (diff-change-base ι u v) v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : Type → Set valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set apply-change : ∀ τ → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ diff-change : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma diff-is-valid R[v,u-v] : ∀ {τ : Type} {u v : ⟦ τ ⟧} → valid {τ} v (u ⊟₍ τ ₎ v) -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set ValidChange : Type → Set ValidChange τ = Triple ⟦ τ ⟧ (λ _ → Change τ) (λ v dv → valid {τ} v dv) Change (base ι) = Change-base ι Change (σ ⇒ τ) = (v : ⟦ σ ⟧) → (dv : Change σ) → valid v dv → Change τ -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ n ⊞₍ base ι ₎ Δn = apply-change-base ι n Δn f ⊞₍ σ ⇒ τ ₎ Δf = λ v → f v ⊞₍ τ ₎ Δf v (v ⊟₍ σ ₎ v) (R[v,u-v] {σ}) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ m ⊟₍ base ι ₎ n = diff-change-base ι m n g ⊟₍ σ ⇒ τ ₎ f = λ v Δv R[v,Δv] → g (v ⊞₍ σ ₎ Δv) ⊟₍ τ ₎ f v -- valid : ∀ {τ} → ⟦ τ ⟧ → Change τ → Set valid {base ι} n Δn = valid-base {ι} n Δn valid {σ ⇒ τ} f Δf = ∀ (v : ⟦ σ ⟧) (Δv : Change σ) (R[v,Δv] : valid v Δv) → valid {τ} (f v) (Δf v Δv R[v,Δv]) -- × (f ⊞ Δf) (v ⊞ Δv) ≡ f v ⊞ Δf v Δv R[v,Δv] × (f ⊞₍ σ ⇒ τ ₎ Δf) (v ⊞₍ σ ₎ Δv) ≡ f v ⊞₍ τ ₎ Δf v Δv R[v,Δv] -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning R[v,u-v] {base ι} {u} {v} = R[v,u-v]-base {ι} {u} {v} R[v,u-v] {σ ⇒ τ} {u} {v} = λ w Δw R[w,Δw] → let w′ = w ⊞₍ σ ₎ Δw in R[v,u-v] {τ} , (begin (v ⊞₍ σ ⇒ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v)) w′ ≡⟨ cong (λ hole → hole w′) (v+[u-v]=u {σ ⇒ τ} {u} {v}) ⟩ u w′ ≡⟨ sym (v+[u-v]=u {τ} {u w′} {v w}) ⟩ v w ⊞₍ τ ₎ (u ⊟₍ σ ⇒ τ ₎ v) w Δw R[w,Δw] ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) ΔEnv : Context → Set ΔEnv = DependentList ValidChange ignore-valid-change : ValidChange ⊆ ⟦_⟧ ignore-valid-change (cons v _ _) = v update-valid-change : ValidChange ⊆ ⟦_⟧ update-valid-change {τ} (cons v dv R[v,dv]) = v ⊞₍ τ ₎ dv ignore : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ ignore = map (λ {τ} → ignore-valid-change {τ}) update : ∀ {Γ : Context} → (ρ : ΔEnv Γ) → ⟦ Γ ⟧ update = map (λ {τ} → update-valid-change {τ})
Move ValidChange next to Change.
Move ValidChange next to Change. This commit prepares for using ValidChange in the definition of Change. Old-commit-hash: a90d85385de56e35cc3aba5821ddc4a2d3448247
Agda
mit
inc-lc/ilc-agda
6156984d33b98f39610ee7244b167632999b9b41
Parametric/Change/Correctness.agda
Parametric/Change/Correctness.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) derive-correct-closed : ∀ {τ} (t : Term ∅ τ) → ⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅ derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅ main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} → {dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} → ⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} = let g = ⟦ f ⟧ ∅ Δg = ⟦ f ⟧Δ ∅ ∅ Δg′ = ⟦ derive f ⟧ ∅ v = ⟦ s ⟧ ∅ dv′ = ⟦ ds ⟧ ∅ u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅ -- Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin g u ≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩ g (v ⟦⊕₍ σ ₎⟧ dv′) ≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ corollary-closed {σ} {τ} f v dv ⟩ g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv ≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv) (derive-correct f ∅ ∅ ∅ ∅ v dv dv′ erasure) ⟩ g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′ ≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅ ∎}) where open ≡-Reasoning
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Denotation.Value as Value import Parametric.Denotation.Evaluation as Evaluation import Parametric.Change.Validity as Validity import Parametric.Change.Specification as Specification import Parametric.Change.Type as ChangeType import Parametric.Change.Term as ChangeTerm import Parametric.Change.Value as ChangeValue import Parametric.Change.Evaluation as ChangeEvaluation import Parametric.Change.Derive as Derive import Parametric.Change.Implementation as Implementation module Parametric.Change.Correctness {Base : Type.Structure} (Const : Term.Structure Base) (⟦_⟧Base : Value.Structure Base) (⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base) (ΔBase : ChangeType.Structure Base) (diff-base : ChangeTerm.DiffStructure Const ΔBase) (apply-base : ChangeTerm.ApplyStructure Const ΔBase) (⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase) (⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase) (meaning-⊕-base : ChangeEvaluation.ApplyStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (meaning-⊝-base : ChangeEvaluation.DiffStructure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧) (validity-structure : Validity.Structure ⟦_⟧Base) (specification-structure : Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure) (derive-const : Derive.Structure Const ΔBase) (implementation-structure : Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const) where open Type.Structure Base open Term.Structure Base Const open Value.Structure Base ⟦_⟧Base open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const open Validity.Structure ⟦_⟧Base validity-structure open Specification.Structure Const ⟦_⟧Base ⟦_⟧Const validity-structure specification-structure open ChangeType.Structure Base ΔBase open ChangeTerm.Structure Const ΔBase diff-base apply-base open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ open ChangeEvaluation.Structure ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base ⟦apply-base⟧ ⟦diff-base⟧ meaning-⊕-base meaning-⊝-base open Derive.Structure Const ΔBase derive-const open Implementation.Structure Const ⟦_⟧Base ⟦_⟧Const ΔBase validity-structure specification-structure ⟦apply-base⟧ ⟦diff-base⟧ derive-const implementation-structure -- The denotational properties of the `derive` transformation. -- In particular, the main theorem about it producing the correct -- incremental behavior. open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality Structure : Set Structure = ∀ {Σ Γ τ} (c : Const Σ τ) (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → (ts-correct : implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′))) → ⟦ c ⟧ΔConst (⟦ ts ⟧Terms ρ) (⟦ ts ⟧ΔTerms ρ dρ) ≈₍ τ ₎ ⟦ derive-const c (fit-terms ts) (derive-terms ts) ⟧ (alternate ρ ρ′) module Structure (derive-const-correct : Structure) where deriveVar-correct : ∀ {τ Γ} (x : Var Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ x ⟧ΔVar ρ dρ ≈₍ τ ₎ ⟦ deriveVar x ⟧ (alternate ρ ρ′) deriveVar-correct this (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = dv≈dv′ deriveVar-correct (that x) (v • ρ) (dv • dρ) (dv′ • dρ′) (dv≈dv′ • dρ≈dρ′) = deriveVar-correct x ρ dρ dρ′ dρ≈dρ′ -- That `derive t` implements ⟦ t ⟧Δ derive-correct : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → ⟦ t ⟧Δ ρ dρ ≈₍ τ ₎ ⟦ derive t ⟧ (alternate ρ ρ′) derive-terms-correct : ∀ {Σ Γ} (ts : Terms Γ Σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) (ρ′ : ⟦ mapContext ΔType Γ ⟧) (dρ≈ρ′ : implements-env Γ dρ ρ′) → implements-env Σ (⟦ ts ⟧ΔTerms ρ dρ) (⟦ derive-terms ts ⟧Terms (alternate ρ ρ′)) derive-terms-correct ∅ ρ dρ ρ′ dρ≈ρ′ = ∅ derive-terms-correct (t • ts) ρ dρ ρ′ dρ≈ρ′ = derive-correct t ρ dρ ρ′ dρ≈ρ′ • derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′ derive-correct (const c ts) ρ dρ ρ′ dρ≈ρ′ = derive-const-correct c ts ρ dρ ρ′ dρ≈ρ′ (derive-terms-correct ts ρ dρ ρ′ dρ≈ρ′) derive-correct (var x) ρ dρ ρ′ dρ≈ρ′ = deriveVar-correct x ρ dρ ρ′ dρ≈ρ′ derive-correct (app {σ} {τ} s t) ρ dρ ρ′ dρ≈ρ′ = subst (λ ⟦t⟧ → ⟦ app s t ⟧Δ ρ dρ ≈₍ τ ₎ (⟦ derive s ⟧Term (alternate ρ ρ′)) ⟦t⟧ (⟦ derive t ⟧Term (alternate ρ ρ′))) (⟦fit⟧ t ρ ρ′) (derive-correct {σ ⇒ τ} s ρ dρ ρ′ dρ≈ρ′ (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ) (⟦ derive t ⟧ (alternate ρ ρ′)) (derive-correct {σ} t ρ dρ ρ′ dρ≈ρ′)) derive-correct (abs {σ} {τ} t) ρ dρ ρ′ dρ≈ρ′ = λ w dw w′ dw≈w′ → derive-correct t (w • ρ) (dw • dρ) (w′ • ρ′) (dw≈w′ • dρ≈ρ′) derive-correct-closed : ∀ {τ} (t : Term ∅ τ) → ⟦ t ⟧Δ ∅ ∅ ≈₍ τ ₎ ⟦ derive t ⟧ ∅ derive-correct-closed t = derive-correct t ∅ ∅ ∅ ∅ main-theorem : ∀ {σ τ} {f : Term ∅ (σ ⇒ τ)} {s : Term ∅ σ} {ds : Term ∅ (ΔType σ)} → {dv : Δ₍ σ ₎ (⟦ s ⟧ ∅)} {erasure : dv ≈₍ σ ₎ (⟦ ds ⟧ ∅)} → ⟦ app f (s ⊕₍ σ ₎ ds) ⟧ ≡ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ main-theorem {σ} {τ} {f} {s} {ds} {dv} {erasure} = let g = ⟦ f ⟧ ∅ Δg = ⟦ f ⟧Δ ∅ ∅ Δg′ = ⟦ derive f ⟧ ∅ v = ⟦ s ⟧ ∅ dv′ = ⟦ ds ⟧ ∅ u = ⟦ s ⊕₍ σ ₎ ds ⟧ ∅ -- Δoutput-term = app (app (derive f) x) (y ⊝ x) in ext {A = ⟦ ∅ ⟧Context} (λ { ∅ → begin g u ≡⟨ cong g (sym (meaning-⊕ {t = s} {Δt = ds})) ⟩ g (v ⟦⊕₍ σ ₎⟧ dv′) ≡⟨ cong g (sym (carry-over {σ} dv erasure)) ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ corollary-closed {σ} {τ} f v dv ⟩ g v ⊞₍ τ ₎ call-change {σ} {τ} Δg v dv ≡⟨ carry-over {τ} (call-change {σ} {τ} Δg v dv) (derive-correct-closed f v dv dv′ erasure) ⟩ g v ⟦⊕₍ τ ₎⟧ Δg′ v dv′ ≡⟨ meaning-⊕ {t = app f s} {Δt = app (app (derive f) s) ds} ⟩ ⟦ app f s ⊕₍ τ ₎ app (app (derive f) s) ds ⟧ ∅ ∎}) where open ≡-Reasoning
call derive-correct-closed instead of derive-correct in thm:main
call derive-correct-closed instead of derive-correct in thm:main Old-commit-hash: 9fa1103b0ac110498ae8ab0d0c0f3320ff4b264f
Agda
mit
inc-lc/ilc-agda
88a46de4b9496c0c6c4f861d964d90e3ae3cfd27
Syntax/Derive/Plotkin.agda
Syntax/Derive/Plotkin.agda
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context import Syntax.Term.Plotkin as Term import Syntax.DeltaContext as DeltaContext import Parametric.Change.Type as DeltaType module Syntax.Derive.Plotkin {Base : Set {- of base types -}} {Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}} (ΔBase : Base → Base) (deriveConst : ∀ {Γ Σ τ} → Constant Σ τ → Term.Terms Constant (DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Γ) (DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Σ) → Term.Term Constant (DeltaContext.ΔContext (DeltaType.ΔType ΔBase) Γ) (DeltaType.ΔType ΔBase τ)) where -- Terms of languages described in Plotkin style open Type Base open Context Type open import Syntax.Context.Plotkin Base open Term Constant open DeltaType ΔBase open DeltaContext ΔType fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ) derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ) derive-terms {∅} ∅ = ∅ derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) derive (const c ts) = deriveConst c (derive-terms ts)
import Parametric.Syntax.Type as Type import Base.Syntax.Context as Context import Syntax.Term.Plotkin as Term import Syntax.DeltaContext as DeltaContext import Parametric.Change.Type as ChangeType module Syntax.Derive.Plotkin {Base : Set {- of base types -}} {Constant : Context.Context (Type.Type Base) → Type.Type Base → Set {- of constants -}} (ΔBase : Base → Base) (deriveConst : ∀ {Γ Σ τ} → Constant Σ τ → Term.Terms Constant (DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ) (DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Σ) → Term.Term Constant (DeltaContext.ΔContext (ChangeType.ΔType ΔBase) Γ) (ChangeType.ΔType ΔBase τ)) where -- Terms of languages described in Plotkin style open Type Base open Context Type open import Syntax.Context.Plotkin Base open Term Constant open ChangeType ΔBase open DeltaContext ΔType fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) derive-terms : ∀ {Σ Γ} → Terms Γ Σ → Terms (ΔContext Γ) (ΔContext Σ) derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ) derive-terms {∅} ∅ = ∅ derive-terms {τ • Σ} (t • ts) = derive t • fit t • derive-terms ts derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) derive (const c ts) = deriveConst c (derive-terms ts)
Update qualified import for new module name.
Update qualified import for new module name. Old-commit-hash: 2cb47a8d412768ed582e8af1a042b51c3ca781be
Agda
mit
inc-lc/ilc-agda
92f785054b5dd55703ecbd7d5aec15af5e0d04d2
README.agda
README.agda
module README where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- * Δ e describes how e changes when its free variables or its arguments change -- * denotational semantics including semantics of changes -- -- Note that Δ is *not* the same as the ∂ operator in -- definition/intro.tex. See discussion at: -- -- https://github.com/ps-mr/ilc/pull/34#discussion_r4290325 -- -- Work in Progress: -- * lemmas about behavior of changes -- * lemmas about behavior of Δ -- * correctness proof for symbolic derivation -- The formalization is split across the following files. -- TODO: document them more. -- Note that we postulate function extensionality (in -- `Denotational.ExtensionalityPostulate`), known to be consistent -- with intensional type theory. open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.ChangeTypes.ChangesAreDerivatives open import Syntactic.ChangeContexts open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.ExtensionalityPostulate open import Denotational.EqualityLemmas open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Changes open import Denotational.Equivalence open import Denotational.ValidChanges open import Denotational.WeakValidChanges open import ChangeContexts open import ChangeContextLifting open import PropsDelta open import SymbolicDerivation -- This finishes the correctness proof of the above work. open import total -- EXAMPLES open import Examples.Examples1 -- NATURAL semantics open import Syntactic.Closures open import Denotational.Closures open import Natural.Lookup open import Natural.Evaluation open import Natural.Soundness -- Other calculi open import partial open import lambda
module README where -- INCREMENTAL λ-CALCULUS -- with total derivatives -- -- Features: -- * changes and derivatives are unified (following Cai) -- -- XXX: fill in again other details. -- 41e0f95d7fda7244a258b67f8a4255e4128a42c3 declares that the main theorems are -- in these files: open import Denotation.Derive.Canon-Popl14 open import Denotation.Derive.Optimized-Popl14 -- TODO: this file is intended to load all maintained Agda code; otherwise, a -- better solution to issue #41 should be found. -- -- Moreover, arguably it would be good if this file would list all relevant -- imports, to highlight the structure of the development, as it did previously. -- But I'm not sure what's the best structure.
Update a bit README.agda (#41)
Update a bit README.agda (#41) README.agda was not up-to-date. Remaining issues are described inline. Old-commit-hash: 93469332bbc849a2a13486a1bfae7d21dc9eb399
Agda
mit
inc-lc/ilc-agda
9cdc324caee9ca0888f5f85d83d0727e04d6e654
incremental.agda
incremental.agda
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGING TERMS WHEN THE ENVIRONMENT CHANGES Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = {!!}
module incremental where -- SIMPLE TYPES -- Syntax data Type : Set where _⇒_ : (τ₁ τ₂ : Type) → Type infixr 5 _⇒_ -- Semantics Dom⟦_⟧ : Type -> Set Dom⟦ τ₁ ⇒ τ₂ ⟧ = Dom⟦ τ₁ ⟧ → Dom⟦ τ₂ ⟧ -- TYPING CONTEXTS -- Syntax data Context : Set where ∅ : Context _•_ : (τ : Type) (Γ : Context) → Context infixr 9 _•_ -- Semantics data Empty : Set where ∅ : Empty data Bind A B : Set where _•_ : (v : A) (ρ : B) → Bind A B Env⟦_⟧ : Context → Set Env⟦ ∅ ⟧ = Empty Env⟦ τ • Γ ⟧ = Bind Dom⟦ τ ⟧ Env⟦ Γ ⟧ -- VARIABLES -- Syntax data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ -- Semantics lookup⟦_⟧ : ∀ {Γ τ} → Var Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ lookup⟦ this ⟧ (v • ρ) = v lookup⟦ that x ⟧ (v • ρ) = lookup⟦ x ⟧ ρ -- TERMS -- Syntax data Term : Context → Type → Set where abs : ∀ {Γ τ₁ τ₂} → (t : Term (τ₁ • Γ) τ₂) → Term Γ (τ₁ ⇒ τ₂) app : ∀ {Γ τ₁ τ₂} → (t₁ : Term Γ (τ₁ ⇒ τ₂)) (t₂ : Term Γ τ₁) → Term Γ τ₂ var : ∀ {Γ τ} → (x : Var Γ τ) → Term Γ τ -- Semantics eval⟦_⟧ : ∀ {Γ τ} → Term Γ τ → Env⟦ Γ ⟧ → Dom⟦ τ ⟧ eval⟦ abs t ⟧ ρ = λ v → eval⟦ t ⟧ (v • ρ) eval⟦ app t₁ t₂ ⟧ ρ = (eval⟦ t₁ ⟧ ρ) (eval⟦ t₂ ⟧ ρ) eval⟦ var x ⟧ ρ = lookup⟦ x ⟧ ρ -- WEAKENING -- Extend a context to a super context infixr 10 _⋎_ _⋎_ : (Γ₁ Γ₁ : Context) → Context ∅ ⋎ Γ₂ = Γ₂ (τ • Γ₁) ⋎ Γ₂ = τ • Γ₁ ⋎ Γ₂ -- Lift a variable to a super context lift : ∀ {Γ₁ Γ₂ Γ₃ τ} → Var (Γ₁ ⋎ Γ₃) τ → Var (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ lift {∅} {∅} x = x lift {∅} {τ • Γ₂} x = that (lift {∅} {Γ₂} x) lift {τ • Γ₁} {Γ₂} this = this lift {τ • Γ₁} {Γ₂} (that x) = that (lift {Γ₁} {Γ₂} x) -- Weaken a term to a super context weaken : ∀ {Γ₁ Γ₂ Γ₃ τ} → Term (Γ₁ ⋎ Γ₃) τ → Term (Γ₁ ⋎ Γ₂ ⋎ Γ₃) τ weaken {Γ₁} {Γ₂} (abs {τ₁ = τ} t) = abs (weaken {τ • Γ₁} {Γ₂} t) weaken {Γ₁} {Γ₂} (app t₁ t₂) = app (weaken {Γ₁} {Γ₂} t₁) (weaken {Γ₁} {Γ₂} t₂) weaken {Γ₁} {Γ₂} (var x) = var (lift {Γ₁} {Γ₂} x) -- CHANGE TYPES Δ-Type : Type → Type Δ-Type (τ₁ ⇒ τ₂) = τ₁ ⇒ Δ-Type τ₂ apply : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ τ ⇒ τ) apply {τ₁ ⇒ τ₂} = abs (abs (abs (app (app apply (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λf. λx. apply ( df x ) ( f x ) compose : ∀ {τ Γ} → Term Γ (Δ-Type τ ⇒ Δ-Type τ ⇒ Δ-Type τ) compose {τ₁ ⇒ τ₂} = abs (abs (abs (app (app compose (app (var (that (that this))) (var this))) (app (var (that this)) (var this))))) -- λdf. λdg. λx. compose ( df x ) ( dg x ) nil : ∀ {τ Γ} → Term Γ (Δ-Type τ) nil {τ₁ ⇒ τ₂} = abs nil -- λx. nil -- Hey, apply is α-equivalent to compose, what's going on? -- Oh, and `Δ-Type` is the identity function? -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = τ • Δ-Type τ • Δ-Context Γ -- CHANGE VARIABLES -- changes 'x' to 'dx' rename : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) rename this = that this rename (that x) = that (that (rename x)) -- changes 'x' to 'nil' (if internally bound) or 'dx' (if externally bound) Δ-var : ∀ {Γ₁ Γ₂ τ} → Var (Γ₁ ⋎ Γ₂) τ → Term (Δ-Context Γ₂) (Δ-Type τ) Δ-var {∅} x = var (rename x) Δ-var {τ • Γ} this = nil Δ-var {τ • Γ} (that x) = Δ-var {Γ} x -- CHANGE TERMS Δ-term : ∀ {Γ₁ Γ₂ τ} → Term (Γ₁ ⋎ Γ₂) τ → Term (Γ₁ ⋎ Δ-Context Γ₂) (Δ-Type τ) Δ-term {Γ} (abs {τ₁ = τ} t) = abs (Δ-term {τ • Γ} t) Δ-term {Γ} (app t₁ t₂) = {!!} Δ-term {Γ} (var x) = weaken {∅} {Γ} (Δ-var {Γ} x)
Implement 'Δ-term' for variables.
Implement 'Δ-term' for variables. Old-commit-hash: dd0c2916cc4b7472353b0073fa6538f60e7325f5
Agda
mit
inc-lc/ilc-agda
f9aeb58a90443e04e8fd3afd4951c3d768d88d29
Syntax/Context/Plotkin.agda
Syntax/Context/Plotkin.agda
module Syntax.Context.Plotkin where -- Context for Plotkin-stype language descriptions -- -- Duplicates Syntax.Context to a large extent. -- Consider having Syntax.Context import this module. infixr 9 _•_ data Context {Type : Set} : Set where ∅ : Context {Type} _•_ : (τ : Type) (Γ : Context {Type}) → Context {Type} data Var {Type : Set} : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
module Syntax.Context.Plotkin where -- Context for Plotkin-stype language descriptions -- -- This module will tend to duplicate Syntax.Context to a large -- extent. Consider having Syntax.Context specialize future -- content of this module to maintain its interface. infixr 9 _•_ data Context {Type : Set} : Set where ∅ : Context {Type} _•_ : (τ : Type) (Γ : Context {Type}) → Context {Type} data Var {Type : Set} : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ τ τ′} → (x : Var Γ τ) → Var (τ′ • Γ) τ
update description of Plotkin's context
Agda: update description of Plotkin's context Reason: the previous description contains a modularization task that is already partially carried out. Reference: https://github.com/ps-mr/ilc/commit/249e99d807e2382a37fb35aee78c235b98e427aa#commitcomment-3659727 Old-commit-hash: 3c52ba4a07600646db8de764b1460fa6b69c3014
Agda
mit
inc-lc/ilc-agda
63b0b983e562c4195da605874a1e5b1e379fa13c
UNDEFINED.agda
UNDEFINED.agda
-- Allow holes in modules to import, by introducing a single general postulate. module UNDEFINED where open import Data.Unit.NonEta using (Hidden) open import Data.Unit.NonEta public using (reveal) postulate -- If this postulate would produce a T, it could be used as instance argument, triggering many ambiguities. -- This postulate is named in capitals because it introduces an inconsistency. -- Hence, this must be used through `reveal UNDEFINED`. UNDEFINED : ∀ {ℓ} → {T : Set ℓ} → Hidden T
-- Allow holes in modules to import, by introducing a single general postulate. module UNDEFINED where postulate UNDEFINED : ∀ {ℓ} → {T : Set ℓ} → T
Refactor UNDEFINED to simplify it (XXX untested)
Refactor UNDEFINED to simplify it (XXX untested) Instance arguments changed behavior, so not every definition is available anymore. Hence we can avoid the wrapping. It typechecks, but not really tested on clients.
Agda
mit
inc-lc/ilc-agda
9c628f8fc4514a3379c8bb109b925c9a196d5571
Parametric/Syntax/MTerm.agda
Parametric/Syntax/MTerm.agda
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType module Parametric.Syntax.MTerm {Base : Type.Structure} (Const : Term.Structure Base) where open Type.Structure Base open MType.Structure Base open Term.Structure Base Const -- Our extension points are sets of primitives, indexed by the -- types of their arguments and their return type. -- We want different types of constants; some produce values, some produce -- computations. In all cases, arguments are assumed to be values (though -- individual primitives might require thunks). ValConstStructure : Set₁ ValConstStructure = ValContext → ValType → Set CompConstStructure : Set₁ CompConstStructure = ValContext → CompType → Set module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where mutual -- Analogues of Terms Vals : ValContext → ValContext → Set Vals Γ = DependentList (Val Γ) Comps : ValContext → List CompType → Set Comps Γ = DependentList (Comp Γ) data Val Γ : (τ : ValType) → Set where vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ -- XXX Do we need thunks? The draft in the paper doesn't have them. -- However, they will start being useful if we deal with CBN source -- languages. vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ) vConst : ∀ {Σ τ} → (c : ValConst Σ τ) → (args : Vals Γ Σ) → Val Γ τ data Comp Γ : (τ : CompType) → Set where cConst : ∀ {Σ τ} → (c : CompConst Σ τ) → (args : Vals Γ Σ) → Comp Γ τ cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ) {- -- Originally, M to x in N. But here we have no names! _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) τ) → Comp Γ τ -} -- The following constructor is the main difference between CBPV and this -- monadic calculus. This is better for the caching transformation. _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) (F τ)) → Comp Γ (F τ) cAbs : ∀ {σ τ} → (t : Comp (σ •• Γ) τ) → Comp Γ (σ ⇛ τ) cApp : ∀ {σ τ} → (s : Comp Γ (σ ⇛ τ)) → (t : Val Γ σ) → Comp Γ τ weaken-val : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Val Γ₁ τ → Val Γ₂ τ weaken-comp : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Comp Γ₁ τ → Comp Γ₂ τ weaken-vals : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Vals Γ₁ Σ → Vals Γ₂ Σ weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x) weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v) weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁) weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c) weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t) weaken-vals Γ₁≼Γ₂ ∅ = ∅ weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts) fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ) fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ) fromCBNTerms ∅ = ∅ fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts open import UNDEFINED -- This is really supposed to be part of the plugin interface. cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ) cbnToCompConst = reveal UNDEFINED fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args) fromCBN (var x) = cForce (vVar (fromVar cbnToValType x)) fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t)) fromCBN (abs t) = cAbs (fromCBN t) -- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context. -- But let's ignore that. {-# NO_TERMINATION_CHECK #-} fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- This is really supposed to be part of the plugin interface. cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ) cbvToCompConst = reveal UNDEFINED cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ) cbvTermsToComps ∅ = ∅ cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts module _ where dequeValContexts : ValContext → ValContext → ValContext dequeValContexts ∅ Γ = Γ dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ) dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ dequeValContexts≼≼ ∅ Γ = ≼≼-refl dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) -- dequeContexts : Context → Context → ValContext dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ) fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ) fromCBVArg t k = (fromCBV t) into k (vVar vThis) fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ) fromCBVArgs ∅ k = k ∅ fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs))) -- Transform a constant application into -- -- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))). fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- pass that as a closure to compose with (_•_ x) for each new variable. fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) -- fromCBVConstCPSDo ts {!cConst (cbvToCompConst c)!} -- In the beginning, we should get a function that expects a whole set of -- arguments (Vals Γ Σ) for c, in the initial context Γ. -- Later, each call should match: -- - Σ = τΣ • Σ′, then we recurse with Γ′ = τΣ • Γ and Σ′. Terms ought to be -- weakened. The result of f (or the arguments) also ought to be weakened! So f should weaken -- all arguments. -- - Σ = ∅. fromCBV (const c args) = fromCBVConstCPSRoot c args fromCBV (app s t) = (fromCBV s) into ((fromCBV (weaken (drop _ • ≼-refl) t)) into cApp (cForce (vVar (vThat vThis))) (vVar vThis)) -- Values fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x)) fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t))) -- This reflects the CBV conversion of values in TLCA '99, but we can't write -- this because it's partial on the Term type. Instead, we duplicate thunking -- at the call site. {- fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ) fromCBVToVal (var x) = vVar (fromVar cbvToValType x) fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t)) fromCBVToVal (const c args) = {!!} fromCBVToVal (app t t₁) = {!!} -- Not a value -}
import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Syntax.MType as MType module Parametric.Syntax.MTerm {Base : Type.Structure} (Const : Term.Structure Base) where open Type.Structure Base open MType.Structure Base open Term.Structure Base Const -- Our extension points are sets of primitives, indexed by the -- types of their arguments and their return type. -- We want different types of constants; some produce values, some produce -- computations. In all cases, arguments are assumed to be values (though -- individual primitives might require thunks). ValConstStructure : Set₁ ValConstStructure = ValContext → ValType → Set CompConstStructure : Set₁ CompConstStructure = ValContext → CompType → Set module Structure (ValConst : ValConstStructure) (CompConst : CompConstStructure) where mutual -- Analogues of Terms Vals : ValContext → ValContext → Set Vals Γ = DependentList (Val Γ) Comps : ValContext → List CompType → Set Comps Γ = DependentList (Comp Γ) data Val Γ : (τ : ValType) → Set where vVar : ∀ {τ} (x : ValVar Γ τ) → Val Γ τ -- XXX Do we need thunks? The draft in the paper doesn't have them. -- However, they will start being useful if we deal with CBN source -- languages. vThunk : ∀ {τ} → Comp Γ τ → Val Γ (U τ) vConst : ∀ {Σ τ} → (c : ValConst Σ τ) → (args : Vals Γ Σ) → Val Γ τ data Comp Γ : (τ : CompType) → Set where cConst : ∀ {Σ τ} → (c : CompConst Σ τ) → (args : Vals Γ Σ) → Comp Γ τ cForce : ∀ {τ} → Val Γ (U τ) → Comp Γ τ cReturn : ∀ {τ} (v : Val Γ τ) → Comp Γ (F τ) {- -- Originally, M to x in N. But here we have no names! _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) τ) → Comp Γ τ -} -- The following constructor is the main difference between CBPV and this -- monadic calculus. This is better for the caching transformation. _into_ : ∀ {σ τ} → (e₁ : Comp Γ (F σ)) → (e₂ : Comp (σ •• Γ) (F τ)) → Comp Γ (F τ) cAbs : ∀ {σ τ} → (t : Comp (σ •• Γ) τ) → Comp Γ (σ ⇛ τ) cApp : ∀ {σ τ} → (s : Comp Γ (σ ⇛ τ)) → (t : Val Γ σ) → Comp Γ τ weaken-val : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Val Γ₁ τ → Val Γ₂ τ weaken-comp : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Comp Γ₁ τ → Comp Γ₂ τ weaken-vals : ∀ {Γ₁ Γ₂ Σ} → (Γ₁≼Γ₂ : Γ₁ ≼≼ Γ₂) → Vals Γ₁ Σ → Vals Γ₂ Σ weaken-val Γ₁≼Γ₂ (vVar x) = vVar (weaken-val-var Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vThunk x) = vThunk (weaken-comp Γ₁≼Γ₂ x) weaken-val Γ₁≼Γ₂ (vConst c args) = vConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cConst c args) = cConst c (weaken-vals Γ₁≼Γ₂ args) weaken-comp Γ₁≼Γ₂ (cForce x) = cForce (weaken-val Γ₁≼Γ₂ x) weaken-comp Γ₁≼Γ₂ (cReturn v) = cReturn (weaken-val Γ₁≼Γ₂ v) weaken-comp Γ₁≼Γ₂ (_into_ {σ} c c₁) = (weaken-comp Γ₁≼Γ₂ c) into (weaken-comp (keep σ •• Γ₁≼Γ₂) c₁) weaken-comp Γ₁≼Γ₂ (cAbs {σ} c) = cAbs (weaken-comp (keep σ •• Γ₁≼Γ₂) c) weaken-comp Γ₁≼Γ₂ (cApp s t) = cApp (weaken-comp Γ₁≼Γ₂ s) (weaken-val Γ₁≼Γ₂ t) weaken-vals Γ₁≼Γ₂ ∅ = ∅ weaken-vals Γ₁≼Γ₂ (px • ts) = (weaken-val Γ₁≼Γ₂ px) • (weaken-vals Γ₁≼Γ₂ ts) fromCBN : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBNCtx Γ) (cbnToCompType τ) fromCBNTerms : ∀ {Γ Σ} → Terms Γ Σ → Vals (fromCBNCtx Γ) (fromCBNCtx Σ) fromCBNTerms ∅ = ∅ fromCBNTerms (px • ts) = vThunk (fromCBN px) • fromCBNTerms ts open import UNDEFINED -- This is really supposed to be part of the plugin interface. cbnToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBNCtx Σ) (cbnToCompType τ) cbnToCompConst = reveal UNDEFINED fromCBN (const c args) = cConst (cbnToCompConst c) (fromCBNTerms args) fromCBN (var x) = cForce (vVar (fromVar cbnToValType x)) fromCBN (app s t) = cApp (fromCBN s) (vThunk (fromCBN t)) fromCBN (abs t) = cAbs (fromCBN t) -- To satisfy termination checking, we'd need to inline fromCBV and weaken: fromCBV needs to produce a term in a bigger context. -- But let's ignore that. {-# NO_TERMINATION_CHECK #-} fromCBV : ∀ {Γ τ} (t : Term Γ τ) → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- This is really supposed to be part of the plugin interface. cbvToCompConst : ∀ {Σ τ} → Const Σ τ → CompConst (fromCBVCtx Σ) (cbvToCompType τ) cbvToCompConst = reveal UNDEFINED cbvTermsToComps : ∀ {Γ Σ} → Terms Γ Σ → Comps (fromCBVCtx Γ) (fromCBVToCompList Σ) cbvTermsToComps ∅ = ∅ cbvTermsToComps (px • ts) = fromCBV px • cbvTermsToComps ts module _ where dequeValContexts : ValContext → ValContext → ValContext dequeValContexts ∅ Γ = Γ dequeValContexts (x • Σ) Γ = dequeValContexts Σ (x • Γ) dequeValContexts≼≼ : ∀ Σ Γ → Γ ≼≼ dequeValContexts Σ Γ dequeValContexts≼≼ ∅ Γ = ≼≼-refl dequeValContexts≼≼ (x • Σ) Γ = ≼≼-trans (drop_••_ x ≼≼-refl) (dequeValContexts≼≼ Σ (x • Γ)) -- dequeContexts : Context → Context → ValContext dequeContexts Σ Γ = dequeValContexts (fromCBVCtx Σ) (fromCBVCtx Γ) fromCBVArg : ∀ {σ Γ τ} → Term Γ τ → (Val (cbvToValType τ • fromCBVCtx Γ) (cbvToValType τ) → Comp (cbvToValType τ • fromCBVCtx Γ) (cbvToCompType σ)) → Comp (fromCBVCtx Γ) (cbvToCompType σ) fromCBVArg t k = (fromCBV t) into k (vVar vThis) fromCBVArgs : ∀ {Σ Γ τ} → Terms Γ Σ → (Vals (dequeContexts Σ Γ) (fromCBVCtx Σ) → Comp (dequeContexts Σ Γ) (cbvToCompType τ)) → Comp (fromCBVCtx Γ) (cbvToCompType τ) fromCBVArgs ∅ k = k ∅ fromCBVArgs {σ • Σ} {Γ} (t • ts) k = fromCBVArg t (λ v → fromCBVArgs (weaken-terms (drop_•_ _ ≼-refl) ts) (λ vs → k (weaken-val (dequeValContexts≼≼ (fromCBVCtx Σ) _) v • vs))) -- Transform a constant application into -- -- arg1 to x1 in (arg2 to x2 in ... (argn to xn in (cConst (cbvToCompConst c) (x1 :: x2 :: ... xn)))). fromCBVConstCPSRoot : ∀ {Σ Γ τ} → Const Σ τ → Terms Γ Σ → Comp (fromCBVCtx Γ) (cbvToCompType τ) -- pass that as a closure to compose with (_•_ x) for each new variable. fromCBVConstCPSRoot c ts = fromCBVArgs ts (λ vs → cConst (cbvToCompConst c) vs) -- fromCBVConstCPSDo ts {!cConst (cbvToCompConst c)!} -- In the beginning, we should get a function that expects a whole set of -- arguments (Vals Γ Σ) for c, in the initial context Γ. -- Later, each call should match: -- - Σ = τΣ • Σ′, then we recurse with Γ′ = τΣ • Γ and Σ′. Terms ought to be -- weakened. The result of f (or the arguments) also ought to be weakened! So f should weaken -- all arguments. -- - Σ = ∅. fromCBV (const c args) = fromCBVConstCPSRoot c args fromCBV (app s t) = (fromCBV s) into (fromCBV (weaken (drop _ • ≼-refl) t) into cApp (cForce (vVar (vThat vThis))) (vVar vThis)) -- Values fromCBV (var x) = cReturn (vVar (fromVar cbvToValType x)) fromCBV (abs t) = cReturn (vThunk (cAbs (fromCBV t))) -- This reflects the CBV conversion of values in TLCA '99, but we can't write -- this because it's partial on the Term type. Instead, we duplicate thunking -- at the call site. {- fromCBVToVal : ∀ {Γ τ} (t : Term Γ τ) → Val (fromCBVCtx Γ) (cbvToValType τ) fromCBVToVal (var x) = vVar (fromVar cbvToValType x) fromCBVToVal (abs t) = vThunk (cAbs (fromCBV t)) fromCBVToVal (const c args) = {!!} fromCBVToVal (app t t₁) = {!!} -- Not a value -}
Drop extra parens
Drop extra parens
Agda
mit
inc-lc/ilc-agda
bf4c2374eee5aebf6d658c3c557a4233b3ba3172
flipbased.agda
flipbased.agda
module flipbased where open import Algebra import Level as L open L using () renaming (_⊔_ to _L⊔_) open import Function hiding (_⟨_⟩_) open import Data.Nat.NP open import Data.Nat.Properties open import Data.Product using (proj₁; proj₂; _,_; swap; _×_) open import Data.Bits hiding (replicateM) open import Data.Bool open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail) open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) record M {a} n (A : Set a) : Set a where constructor mk field run : Bits n → A toss′ : M 1 Bit toss′ = mk head return′ : ∀ {a} {A : Set a} → A → M 0 A return′ = mk ∘ const pure′ : ∀ {a} {A : Set a} → A → M 0 A pure′ = return′ comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A comap f (mk g) = mk (g ∘ f) weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A weaken {m} = comap (drop m) weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A weaken′ = comap (take _) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A weaken≤ p = comap (take≤ p) coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A coerce ≡.refl = id toss : ∀ {n} → M (1 + n) Bit toss = weaken′ toss′ return : ∀ {n a} {A : Set a} → A → M n A return = weaken′ ∘ return′ pure : ∀ {n a} {A : Set a} → A → M n A pure = return _>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B _>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs)) _>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B _>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_ _>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → M n₂ B → M (n₁ + n₂) B _>>_ {n₁} x y = x >>= const y map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B map f x = mk (f ∘ M.run x) -- map f x ≗ x >>=′ (return {0} ∘ f) join : ∀ {n₁ n₂ a} {A : Set a} → M n₁ (M n₂ A) → M (n₁ + n₂) A join x = x >>= id infixl 4 _⊛_ _⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B _⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → M m A → (A → B → C) → M n B → M (m + n) C x ⟨ f ⟩ y = map f x ⊛ y ⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A ⟪_⟫ = pure ⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A ⟪_⟫′ = pure′ ⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B ⟪ f · x ⟫ = map f x ⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → (A → B → C) → M m A → M n B → M (m + n) C ⟪ f · x · y ⟫ = map f x ⊛ y ⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} → (A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D ⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z _⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B) x ⟨,⟩ y = ⟪ _,_ · x · y ⟫ _⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫ _⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m) x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫ replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n) replicateM {zero} _ = ⟪ [] ⟫ replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫ random : ∀ {n} → M n (Bits n) -- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce random {zero} = ⟪ [] ⟫ random {suc _} = ⟪ _∷_ · toss′ · random ⟫ randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m)) randomTbl m n = replicateM random randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n) randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫ randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A) randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs) 2*_ : ℕ → ℕ 2* x = x + x 2^_ : ℕ → ℕ 2^ 0 = 1 2^ (suc n) = 2* (2^ n) costRndFun : ℕ → ℕ → ℕ costRndFun zero n = n costRndFun (suc m) n = 2* (costRndFun m n) lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n) randomFun′ {zero} = ⟪ const · random ⟫ randomFun′ {suc m} = randomFunExt (randomFun′ {m}) record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where infix 2 _≈_ _≋_ field _≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ refl : ∀ {n A} → Reflexive {A = M n A} _≈_ sym : ∀ {n A} → Symmetric {A = M n A} _≈_ -- not strictly transitive reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A} reflexive ≡.refl = refl _≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂) where m≤n⊔m : ∀ m n → m ≤ n ⊔ m m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n -- Another name for _≋_ _looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _looks_ = _≋_ module WithEquiv (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set SecPRG prg = this looks random where this = ⟪ prg · random ⟫ record PRG k n : Set where constructor _,_ field prg : Bits k → Bits n sec : SecPRG prg OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in this looks random record PRF k m n : Set where constructor _,_ field prf : Bits k → Bits m → Bits n sec : OneTimeSecPRF prf OTP : ∀ {n} → Bits n → Bits n → Bits n OTP key msg = key ⊕ msg init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A init f = ⟪ f · random ⟫ module Examples (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq open WithEquiv progEq left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g) assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g)) ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫ ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′ ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key) ex₅ = ∀ {k n} → PRG k n → PRF k n n
module flipbased where open import Algebra import Level as L open L using () renaming (_⊔_ to _L⊔_) open import Function hiding (_⟨_⟩_) open import Data.Nat.NP open import Data.Bool open import Data.Nat.Properties open import Data.Product using (proj₁; proj₂; _,_; swap; _×_) open import Data.Bits hiding (replicateM) open import Data.Bool open import Data.Vec using (Vec; []; _∷_; take; drop; head; tail) open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_) record M {a} n (A : Set a) : Set a where constructor mk field run : Bits n → A toss′ : M 1 Bit toss′ = mk head return′ : ∀ {a} {A : Set a} → A → M 0 A return′ = mk ∘ const pure′ : ∀ {a} {A : Set a} → A → M 0 A pure′ = return′ comap : ∀ {m n a} {A : Set a} → (Bits n → Bits m) → M m A → M n A comap f (mk g) = mk (g ∘ f) weaken : ∀ {m n a} {A : Set a} → M n A → M (m + n) A weaken {m} = comap (drop m) weaken′ : ∀ {m n a} {A : Set a} → M n A → M (n + m) A weaken′ = comap (take _) private take≤ : ∀ {a} {A : Set a} {m n} → n ≤ m → Vec A m → Vec A n take≤ z≤n _ = [] take≤ (s≤s p) (x ∷ xs) = x ∷ take≤ p xs weaken≤ : ∀ {m n a} {A : Set a} → m ≤ n → M m A → M n A weaken≤ p = comap (take≤ p) coerce : ∀ {m n a} {A : Set a} → m ≡ n → M m A → M n A coerce ≡.refl = id toss : ∀ {n} → M (1 + n) Bit toss = weaken′ toss′ return : ∀ {n a} {A : Set a} → A → M n A return = weaken′ ∘ return′ pure : ∀ {n a} {A : Set a} → A → M n A pure = return _>>=_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₁ + n₂) B _>>=_ {n₁} x f = mk (λ bs → M.run (f (M.run x (take _ bs))) (drop n₁ bs)) _>>=′_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → (A → M n₂ B) → M (n₂ + n₁) B _>>=′_ {n₁} {n₂} rewrite ℕ°.+-comm n₂ n₁ = _>>=_ _>>_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ A → M n₂ B → M (n₁ + n₂) B _>>_ {n₁} x y = x >>= const y map : ∀ {n a b} {A : Set a} {B : Set b} → (A → B) → M n A → M n B map f x = mk (f ∘ M.run x) -- map f x ≗ x >>=′ (return {0} ∘ f) join : ∀ {n₁ n₂ a} {A : Set a} → M n₁ (M n₂ A) → M (n₁ + n₂) A join x = x >>= id infixl 4 _⊛_ _⊛_ : ∀ {n₁ n₂ a b} {A : Set a} {B : Set b} → M n₁ (A → B) → M n₂ A → M (n₁ + n₂) B _⊛_ {n₁} mf mx = mf >>= λ f → map (_$_ f) mx _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → M m A → (A → B → C) → M n B → M (m + n) C x ⟨ f ⟩ y = map f x ⊛ y ⟪_⟫ : ∀ {n} {a} {A : Set a} → A → M n A ⟪_⟫ = pure ⟪_⟫′ : ∀ {a} {A : Set a} → A → M 0 A ⟪_⟫′ = pure′ ⟪_·_⟫ : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → M n A → M n B ⟪ f · x ⟫ = map f x ⟪_·_·_⟫ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {m n} → (A → B → C) → M m A → M n B → M (m + n) C ⟪ f · x · y ⟫ = map f x ⊛ y ⟪_·_·_·_⟫ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {m n o} → (A → B → C → D) → M m A → M n B → M o C → M (m + n + o) D ⟪ f · x · y · z ⟫ = map f x ⊛ y ⊛ z choose : ∀ {n a} {A : Set a} → M n A → M n A → M (suc n) A choose x y = ⟪ if_then_else_ · toss · x · y ⟫ _⟨,⟩_ : ∀ {a b} {A : Set a} {B : Set b} {m n} → M m A → M n B → M (m + n) (A × B) x ⟨,⟩ y = ⟪ _,_ · x · y ⟫ _⟨xor⟩_ : ∀ {n₁ n₂} → M n₁ Bit → M n₂ Bit → M (n₁ + n₂) Bit x ⟨xor⟩ y = ⟪ _xor_ · x · y ⟫ _⟨⊕⟩_ : ∀ {n₁ n₂ m} → M n₁ (Bits m) → M n₂ (Bits m) → M (n₁ + n₂) (Bits m) x ⟨⊕⟩ y = ⟪ _⊕_ · x · y ⟫ replicateM : ∀ {n m} {a} {A : Set a} → M m A → M (n * m) (Vec A n) replicateM {zero} _ = ⟪ [] ⟫ replicateM {suc _} x = ⟪ _∷_ · x · replicateM x ⟫ random : ∀ {n} → M n (Bits n) -- random = coerce ? (replicateM toss) -- specialized version for now to avoid coerce random {zero} = ⟪ [] ⟫ random {suc _} = ⟪ _∷_ · toss′ · random ⟫ randomTbl : ∀ m n → M (2 ^ m * n) (Vec (Bits n) (2 ^ m)) randomTbl m n = replicateM random randomFun : ∀ m n → M (2 ^ m * n) (Bits m → Bits n) randomFun m n = ⟪ funFromTbl · randomTbl m n ⟫ randomFunExt : ∀ {n k a} {A : Set a} → M k (Bits n → A) → M (k + k) (Bits (suc n) → A) randomFunExt f = ⟪ comb · f · f ⟫ where comb = λ g₁ g₂ xs → (if head xs then g₁ else g₂) (tail xs) 2*_ : ℕ → ℕ 2* x = x + x 2^_ : ℕ → ℕ 2^ 0 = 1 2^ (suc n) = 2* (2^ n) costRndFun : ℕ → ℕ → ℕ costRndFun zero n = n costRndFun (suc m) n = 2* (costRndFun m n) lem : ∀ m n → costRndFun m n ≡ 2 ^ m * n lem zero n rewrite ℕ°.+-comm n 0 = ≡.refl lem (suc m) n rewrite lem m n | ℕ°.*-assoc 2 (2 ^ m) n | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl randomFun′ : ∀ {m n} → M (costRndFun m n) (Bits m → Bits n) randomFun′ {zero} = ⟪ const · random ⟫ randomFun′ {suc m} = randomFunExt (randomFun′ {m}) record ProgEquiv a ℓ : Set (L.suc ℓ L⊔ L.suc a) where infix 2 _≈_ _≋_ field _≈_ : ∀ {n} {A : Set a} → Rel (M n A) ℓ refl : ∀ {n A} → Reflexive {A = M n A} _≈_ sym : ∀ {n A} → Symmetric {A = M n A} _≈_ -- not strictly transitive reflexive : ∀ {n A} → _≡_ ⇒ _≈_ {n} {A} reflexive ≡.refl = refl _≋_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _≋_ {n₁} {n₂} p₁ p₂ = _≈_ {n = n₁ ⊔ n₂} (weaken≤ (m≤m⊔n _ _) p₁) (weaken≤ (m≤n⊔m _ n₁) p₂) where m≤n⊔m : ∀ m n → m ≤ n ⊔ m m≤n⊔m m n rewrite ⊔°.+-comm n m = m≤m⊔n m n -- Another name for _≋_ _looks_ : ∀ {n₁ n₂} {A : Set a} → M n₁ A → M n₂ A → Set ℓ _looks_ = _≋_ module WithEquiv (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq SecPRG : ∀ {k n} (prg : (key : Bits k) → Bits n) → Set SecPRG prg = this looks random where this = ⟪ prg · random ⟫ record PRG k n : Set where constructor _,_ field prg : Bits k → Bits n sec : SecPRG prg OneTimeSecPRF : ∀ {k m n} (prf : (key : Bits k) (msg : Bits m) → Bits n) → Set OneTimeSecPRF prf = ∀ {xs} → let this = ⟪ prf · random · ⟪ xs ⟫′ ⟫ in this looks random record PRF k m n : Set where constructor _,_ field prf : Bits k → Bits m → Bits n sec : OneTimeSecPRF prf OTP : ∀ {n} → Bits n → Bits n → Bits n OTP key msg = key ⊕ msg init : ∀ {k a} {A : Set a} → (Bits k → A) → M k A init f = ⟪ f · random ⟫ module Examples (progEq : ProgEquiv L.zero L.zero) where open ProgEquiv progEq open WithEquiv progEq left-unit-law = ∀ {A B : Set} {n} {x : A} {f : A → M n B} → return′ x >>= f ≈ f x right-unit-law = ∀ {A : Set} {n} {x : M n A} → x >>=′ return′ ≈ x assoc-law = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≋ x >>= (λ x → f x >>= g) assoc-law′ = ∀ {A B C : Set} {n₁ n₂ n₃} {x : M n₁ A} {f : A → M n₂ B} {g : B → M n₃ C} → (x >>= f) >>= g ≈ coerce (≡.sym (ℕ°.+-assoc n₁ n₂ n₃)) (x >>= (λ x → f x >>= g)) ex₁ = ∀ {x} → toss′ ⟨xor⟩ ⟪ x ⟫′ ≈ ⟪ x ⟫ ex₂ = p ≈ map swap p where p = toss′ ⟨,⟩ toss′ ex₃ = ∀ {n} → OneTimeSecPRF {n} OTP ex₄ = ∀ {k n} (prg : PRG k n) → OneTimeSecPRF (λ key xs → xs ⊕ PRG.prg prg key) ex₅ = ∀ {k n} → PRG k n → PRF k n n
add choose
flipbased: add choose
Agda
bsd-3-clause
crypto-agda/crypto-agda
b2e5536ab47da9ade851c78e2d0e284fdaed9d6e
SymbolicDerivation.agda
SymbolicDerivation.agda
module SymbolicDerivation where open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Natural.Evaluation open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
module SymbolicDerivation where open import Relation.Binary.PropositionalEquality open import Syntactic.Types open import Syntactic.Contexts Type open import Syntactic.Terms.Total open import Syntactic.Changes open import Denotational.Notation open import Denotational.Values open import Denotational.Environments Type ⟦_⟧Type open import Denotational.Evaluation.Total open import Denotational.Equivalence open import Denotational.ValidChanges open import Natural.Evaluation open import Changes open import ChangeContexts open import ChangeContextLifting open import PropsDelta -- SYMBOLIC DERIVATION derive-var : ∀ {Γ τ} → Var Γ τ → Var (Δ-Context Γ) (Δ-Type τ) derive-var {τ • Γ} this = this derive-var {τ • Γ} (that x) = that (that (derive-var x)) derive-term : ∀ {Γ₁ Γ₂ τ} → {{Γ′ : Δ-Context Γ₁ ≼ Γ₂}} → Term Γ₁ τ → Term Γ₂ (Δ-Type τ) derive-term {Γ₁} {{Γ′}} (abs {τ} t) = abs (abs (derive-term {τ • Γ₁} {{Γ″}} t)) where Γ″ = keep Δ-Type τ • keep τ • Γ′ derive-term {{Γ′}} (app t₁ t₂) = app (app (derive-term {{Γ′}} t₁) (lift-term {{Γ′}} t₂)) (derive-term {{Γ′}} t₂) derive-term {{Γ′}} (var x) = var (lift Γ′ (derive-var x)) derive-term {{Γ′}} true = false derive-term {{Γ′}} false = false derive-term {{Γ′}} (if c t e) = if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} c)) (diff-term (apply-term (derive-term {{Γ′}} e) (lift-term {{Γ′}} e)) (lift-term {{Γ′}} t)) (if ((derive-term {{Γ′}} c) and (lift-term {{Γ′}} (! c))) (diff-term (apply-term (derive-term {{Γ′}} t) (lift-term {{Γ′}} t)) (lift-term {{Γ′}} e)) (if (lift-term {{Γ′}} c) (derive-term {{Γ′}} t) (derive-term {{Γ′}} e))) derive-term {{Γ′}} (Δ {{Γ″}} t) = Δ {{Γ′}} (derive-term {{Γ″}} t)
Break some lines.
Break some lines. Old-commit-hash: f541af3f72f8831d3daba892d4230bda0bdb2cdf
Agda
mit
inc-lc/ilc-agda
789ee03b932a743e1b7f9832f09bd7efc37f4fa8
Popl14/Denotation/Value.agda
Popl14/Denotation/Value.agda
module Popl14.Denotation.Value where open import Popl14.Syntax.Type public open import Popl14.Change.Type public open import Base.Denotation.Notation public open import Structure.Bag.Popl14 open import Data.Integer -- Values of Calculus Popl14 -- -- Contents -- - Domains associated with types -- - `diff` and `apply` in semantic domains ⟦_⟧Type : Type -> Set ⟦ int ⟧Type = ℤ ⟦ bag ⟧Type = Bag ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type
module Popl14.Denotation.Value where open import Popl14.Syntax.Type public open import Popl14.Change.Type public open import Base.Denotation.Notation public open import Structure.Bag.Popl14 open import Data.Integer -- Values of Calculus Popl14 -- -- Contents -- - Domains associated with types -- - `diff` and `apply` in semantic domains ⟦_⟧Base : Base → Set ⟦ base-int ⟧Base = ℤ ⟦ base-bag ⟧Base = Bag ⟦_⟧Type : Type -> Set ⟦ base ι ⟧Type = ⟦ ι ⟧Base ⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type meaningOfType : Meaning Type meaningOfType = meaning ⟦_⟧Type
Split ⟦_⟧Base from ⟦_⟧Type (WIP).
Split ⟦_⟧Base from ⟦_⟧Type (WIP). Needs fixes to type inference failures! Old-commit-hash: 4f7d5e46e2d2a202dc2c672a08ae4deeebe589c2
Agda
mit
inc-lc/ilc-agda
3ef3b1f40e4b0b9e7308a67388ab552654f5feeb
lib/Data/Bits.agda
lib/Data/Bits.agda
{-# OPTIONS --without-K #-} module Data.Bits where open import Algebra open import Level.NP open import Type hiding (★) open import Data.Nat.NP hiding (_==_) renaming (_<=_ to _ℕ<=_) open import Data.Bit using (Bit) open import Data.Two renaming (_==_ to _==ᵇ_) open import Data.Fin.NP using (Fin; zero; suc; inject₁; inject+; raise; Fin▹ℕ) open import Data.Vec.NP open import Function.NP import Data.List.NP as L -- Re-export some vector functions, maybe they should be given -- less generic types. open Data.Vec.NP public using ([]; _∷_; _++_; head; tail; map; replicate; RewireTbl; rewire; rewireTbl; onᵢ) Bits : ℕ → ★₀ Bits = Vec Bit _→ᵇ_ : ℕ → ℕ → ★₀ i →ᵇ o = Bits i → Bits o 0ⁿ : ∀ {n} → Bits n 0ⁿ = replicate 0₂ -- Notice that all empty vectors are the same, hence 0ⁿ {0} ≡ 1ⁿ {0} 1ⁿ : ∀ {n} → Bits n 1ⁿ = replicate 1₂ 0∷_ : ∀ {n} → Bits n → Bits (suc n) 0∷ xs = 0₂ ∷ xs -- can't we make these pattern aliases? 1∷_ : ∀ {n} → Bits n → Bits (suc n) 1∷ xs = 1₂ ∷ xs _!_ : ∀ {a n} {A : ★ a} → Vec A n → Fin n → A _!_ = flip lookup -- see Data.Bits.Properties _==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bit [] == [] = 1₂ (b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁ _<=_ : ∀ {n} (xs ys : Bits n) → Bit [] <= [] = 1₂ (1₂ ∷ xs) <= (0₂ ∷ ys) = 0₂ (0₂ ∷ xs) <= (1₂ ∷ ys) = 1₂ (_ ∷ xs) <= (_ ∷ ys) = xs <= ys infixr 5 _⊕_ _⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n _⊕_ = zipWith _xor_ ⊕-group : ℕ → Group ₀ ₀ ⊕-group = LiftGroup.group Xor°.+-group module ⊕-Group (n : ℕ) = Group (⊕-group n) module ⊕-Monoid (n : ℕ) = Monoid (⊕-Group.monoid n) -- Negate all bits, i.e. "xor"ing them by one. vnot : ∀ {n} → Endo (Bits n) vnot = _⊕_ 1ⁿ -- Negate the i-th bit. notᵢ : ∀ {n} (i : Fin n) → Bits n → Bits n notᵢ = onᵢ not msb : ∀ k {n} → Bits (k + n) → Bits k msb = take lsb : ∀ k {n} → Bits (n + k) → Bits k lsb _ {n} = drop n msb₂ : ∀ {n} → Bits (2 + n) → Bits 2 msb₂ = msb 2 lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2 lsb₂ = reverse ∘ msb 2 ∘ reverse #1 : ∀ {n} → Bits n → Fin (suc n) #1 [] = zero #1 (0₂ ∷ bs) = inject₁ (#1 bs) #1 (1₂ ∷ bs) = suc (#1 bs) #0 : ∀ {n} → Bits n → Fin (suc n) #0 = #1 ∘ map not allBitsL : ∀ n → L.List (Bits n) allBitsL _ = replicateM (toList (0₂ ∷ 1₂ ∷ [])) where open L.Monad allBits : ∀ n → Vec (Bits n) (2^ n) allBits zero = [] ∷ [] allBits (suc n) = map 0∷_ bs ++ map 1∷_ bs where bs = allBits n always : ∀ n → Bits n → Bit always _ _ = 1₂ never : ∀ n → Bits n → Bit never _ _ = 0₂ _∨°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit _∨°_ f g x = f x ∨ g x _∧°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit _∧°_ f g x = f x ∧ g x not° : ∀ {n} (f : Bits n → Bit) → Bits n → Bit not° f = not ∘ f view∷ : ∀ {n a b} {A : ★ a} {B : ★ b} → (A → Vec A n → B) → Vec A (suc n) → B view∷ f (x ∷ xs) = f x xs sucBCarry : ∀ {n} → Bits n → Bits (1 + n) sucBCarry [] = 0₂ ∷ [] sucBCarry (0₂ ∷ xs) = 0₂ ∷ sucBCarry xs sucBCarry (1₂ ∷ xs) = view∷ (λ x xs → x ∷ not x ∷ xs) (sucBCarry xs) sucB : ∀ {n} → Bits n → Bits n sucB = tail ∘ sucBCarry --_[mod_] : ℕ → ℕ → ★₀ --a [mod b ] = DivMod' a b module ReversedBits where sucRB : ∀ {n} → Bits n → Bits n sucRB [] = [] sucRB (0₂ ∷ xs) = 1₂ ∷ xs sucRB (1₂ ∷ xs) = 0₂ ∷ sucRB xs toFin : ∀ {n} → Bits n → Fin (2^ n) toFin [] = zero toFin (0₂ ∷ xs) = inject+ _ (toFin xs) toFin {suc n} (1₂ ∷ xs) = raise (2^ n) (toFin xs) Bits▹ℕ : ∀ {n} → Bits n → ℕ Bits▹ℕ [] = zero Bits▹ℕ (0₂ ∷ xs) = Bits▹ℕ xs Bits▹ℕ {suc n} (1₂ ∷ xs) = 2^ n + Bits▹ℕ xs ℕ▹Bits : ∀ {n} → ℕ → Bits n ℕ▹Bits {zero} _ = [] ℕ▹Bits {suc n} x = [0: 0∷ ℕ▹Bits x 1: 1∷ ℕ▹Bits (x ∸ 2^ n) ]′ (2^ n ℕ<= x) ℕ▹Bits′ : ∀ {n} → ℕ → Bits n ℕ▹Bits′ = fold 0ⁿ sucB fromFin : ∀ {n} → Fin (2^ n) → Bits n fromFin = ℕ▹Bits ∘ Fin▹ℕ lookupTbl : ∀ {n a} {A : ★ a} → Bits n → Vec A (2^ n) → A lookupTbl [] (x ∷ []) = x lookupTbl (0₂ ∷ key) tbl = lookupTbl key (take _ tbl) lookupTbl {suc n} (1₂ ∷ key) tbl = lookupTbl key (drop (2^ n) tbl) funFromTbl : ∀ {n a} {A : ★ a} → Vec A (2^ n) → (Bits n → A) funFromTbl = flip lookupTbl tblFromFun : ∀ {n a} {A : ★ a} → (Bits n → A) → Vec A (2^ n) -- tblFromFun f = tabulate (f ∘ fromFin) tblFromFun {zero} f = f [] ∷ [] tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_)
{-# OPTIONS --without-K #-} module Data.Bits where open import Algebra open import Level.NP open import Type hiding (★) open import Data.Nat.NP hiding (_==_) renaming (_<=_ to _ℕ<=_) open import Data.Bit using (Bit) open import Data.Two renaming (_==_ to _==ᵇ_) open import Data.Fin.NP using (Fin; zero; suc; inject₁; inject+; raise; Fin▹ℕ) open import Data.Vec.NP open import Function.NP import Data.List.NP as L -- Re-export some vector functions, maybe they should be given -- less generic types. open Data.Vec.NP public using ([]; _∷_; _++_; head; tail; map; replicate; RewireTbl; rewire; rewireTbl; onᵢ) Bits : ℕ → ★₀ Bits = Vec Bit _→ᵇ_ : ℕ → ℕ → ★₀ i →ᵇ o = Bits i → Bits o 0ⁿ : ∀ {n} → Bits n 0ⁿ = replicate 0₂ -- Notice that all empty vectors are the same, hence 0ⁿ {0} ≡ 1ⁿ {0} 1ⁿ : ∀ {n} → Bits n 1ⁿ = replicate 1₂ pattern 0∷_ xs = 0₂ ∷ xs pattern 1∷_ xs = 1₂ ∷ xs {- 0∷_ : ∀ {n} → Bits n → Bits (suc n) 0∷ xs = 0₂ ∷ xs -- can't we make these pattern aliases? 1∷_ : ∀ {n} → Bits n → Bits (suc n) 1∷ xs = 1₂ ∷ xs -} _!_ : ∀ {a n} {A : ★ a} → Vec A n → Fin n → A _!_ = flip lookup -- see Data.Bits.Properties _==_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bit [] == [] = 1₂ (b₀ ∷ bs₀) == (b₁ ∷ bs₁) = (b₀ ==ᵇ b₁) ∧ bs₀ == bs₁ _<=_ : ∀ {n} (xs ys : Bits n) → Bit [] <= [] = 1₂ (1₂ ∷ xs) <= (0₂ ∷ ys) = 0₂ (0₂ ∷ xs) <= (1₂ ∷ ys) = 1₂ (_ ∷ xs) <= (_ ∷ ys) = xs <= ys infixr 5 _⊕_ _⊕_ : ∀ {n} (bs₀ bs₁ : Bits n) → Bits n _⊕_ = zipWith _xor_ ⊕-group : ℕ → Group ₀ ₀ ⊕-group = LiftGroup.group Xor°.+-group module ⊕-Group (n : ℕ) = Group (⊕-group n) module ⊕-Monoid (n : ℕ) = Monoid (⊕-Group.monoid n) -- Negate all bits, i.e. "xor"ing them by one. vnot : ∀ {n} → Endo (Bits n) vnot = _⊕_ 1ⁿ -- Negate the i-th bit. notᵢ : ∀ {n} (i : Fin n) → Bits n → Bits n notᵢ = onᵢ not msb : ∀ k {n} → Bits (k + n) → Bits k msb = take lsb : ∀ k {n} → Bits (n + k) → Bits k lsb _ {n} = drop n msb₂ : ∀ {n} → Bits (2 + n) → Bits 2 msb₂ = msb 2 lsb₂ : ∀ {n} → Bits (2 + n) → Bits 2 lsb₂ = reverse ∘ msb 2 ∘ reverse #1 : ∀ {n} → Bits n → Fin (suc n) #1 [] = zero #1 (0∷ bs) = inject₁ (#1 bs) #1 (1∷ bs) = suc (#1 bs) #0 : ∀ {n} → Bits n → Fin (suc n) #0 = #1 ∘ map not allBitsL : ∀ n → L.List (Bits n) allBitsL _ = replicateM (toList (0∷ 1∷ [])) where open L.Monad allBits : ∀ n → Vec (Bits n) (2^ n) allBits zero = [] ∷ [] allBits (suc n) = map 0∷_ bs ++ map 1∷_ bs where bs = allBits n always : ∀ n → Bits n → Bit always _ _ = 1₂ never : ∀ n → Bits n → Bit never _ _ = 0₂ _∨°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit _∨°_ f g x = f x ∨ g x _∧°_ : ∀ {n} → (f g : Bits n → Bit) → Bits n → Bit _∧°_ f g x = f x ∧ g x not° : ∀ {n} (f : Bits n → Bit) → Bits n → Bit not° f = not ∘ f view∷ : ∀ {n a b} {A : ★ a} {B : ★ b} → (A → Vec A n → B) → Vec A (suc n) → B view∷ f (x ∷ xs) = f x xs sucBCarry : ∀ {n} → Bits n → Bits (1 + n) sucBCarry [] = 0∷ [] sucBCarry (0∷ xs) = 0∷ sucBCarry xs sucBCarry (1∷ xs) = view∷ (λ x xs → x ∷ not x ∷ xs) (sucBCarry xs) sucB : ∀ {n} → Bits n → Bits n sucB = tail ∘ sucBCarry --_[mod_] : ℕ → ℕ → ★₀ --a [mod b ] = DivMod' a b module ReversedBits where sucRB : ∀ {n} → Bits n → Bits n sucRB [] = [] sucRB (0∷ xs) = 1∷ xs sucRB (1∷ xs) = 0∷ sucRB xs toFin : ∀ {n} → Bits n → Fin (2^ n) toFin [] = zero toFin (0∷ xs) = inject+ _ (toFin xs) toFin {suc n} (1∷ xs) = raise (2^ n) (toFin xs) Bits▹ℕ : ∀ {n} → Bits n → ℕ Bits▹ℕ [] = zero Bits▹ℕ (0∷ xs) = Bits▹ℕ xs Bits▹ℕ {suc n} (1∷ xs) = 2^ n + Bits▹ℕ xs ℕ▹Bits : ∀ {n} → ℕ → Bits n ℕ▹Bits {zero} _ = [] ℕ▹Bits {suc n} x = [0: 0∷ ℕ▹Bits x 1: 1∷ ℕ▹Bits (x ∸ 2^ n) ]′ (2^ n ℕ<= x) ℕ▹Bits′ : ∀ {n} → ℕ → Bits n ℕ▹Bits′ = fold 0ⁿ sucB fromFin : ∀ {n} → Fin (2^ n) → Bits n fromFin = ℕ▹Bits ∘ Fin▹ℕ lookupTbl : ∀ {n a} {A : ★ a} → Bits n → Vec A (2^ n) → A lookupTbl [] = head lookupTbl (0∷ key) = lookupTbl key ∘ take _ lookupTbl {suc n} (1∷ key) = lookupTbl key ∘ drop (2^ n) funFromTbl : ∀ {n a} {A : ★ a} → Vec A (2^ n) → (Bits n → A) funFromTbl = flip lookupTbl tblFromFun : ∀ {n a} {A : ★ a} → (Bits n → A) → Vec A (2^ n) -- tblFromFun f = tabulate (f ∘ fromFin) tblFromFun {zero} f = f [] ∷ [] tblFromFun {suc n} f = tblFromFun {n} (f ∘ 0∷_) ++ tblFromFun {n} (f ∘ 1∷_)
use patterns 0∷ and 1∷
Bits: use patterns 0∷ and 1∷
Agda
bsd-3-clause
crypto-agda/agda-nplib
4cbed45974f3385d5c182dddefd1bb738b95c793
ChangeContexts.agda
ChangeContexts.agda
module ChangeContexts where open import IlcModel open import Changes open import meaning -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ update : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧ update {∅} ∅ = ∅ update {τ • Γ} (dv • v • ρ) = apply dv v • update ρ ignore : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧ ignore {∅} ∅ = ∅ ignore {τ • Γ} (dv • v • ρ) = v • ignore ρ Δ-Context′ : (Γ : Context) → Prefix Γ → Context Δ-Context′ Γ ∅ = Δ-Context Γ Δ-Context′ (.τ • Γ) (τ • Γ′) = τ • Δ-Context′ Γ Γ′ update′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧ update′ ∅ ρ = update ρ update′ (τ • Γ′) (v • ρ) = v • update′ Γ′ ρ ignore′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧ ignore′ ∅ ρ = ignore ρ ignore′ (τ • Γ′) (v • ρ) = v • ignore′ Γ′ ρ
module ChangeContexts where open import IlcModel open import Changes open import meaning -- TYPING CONTEXTS, VARIABLES and WEAKENING open import binding Type ⟦_⟧Type -- CHANGE CONTEXTS Δ-Context : Context → Context Δ-Context ∅ = ∅ Δ-Context (τ • Γ) = Δ-Type τ • τ • Δ-Context Γ update : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧ update {∅} ∅ = ∅ update {τ • Γ} (dv • v • ρ) = apply dv v • update ρ ignore : ∀ {Γ} → ⟦ Δ-Context Γ ⟧ → ⟦ Γ ⟧ ignore {∅} ∅ = ∅ ignore {τ • Γ} (dv • v • ρ) = v • ignore ρ -- Δ-Context′: behaves like Δ-Context, but has an extra argument Γ′, a -- prefix of its first argument which should not be touched. Δ-Context′ : (Γ : Context) → Prefix Γ → Context Δ-Context′ Γ ∅ = Δ-Context Γ Δ-Context′ (.τ • Γ) (τ • Γ′) = τ • Δ-Context′ Γ Γ′ update′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧ update′ ∅ ρ = update ρ update′ (τ • Γ′) (v • ρ) = v • update′ Γ′ ρ ignore′ : ∀ {Γ} → (Γ′ : Prefix Γ) → ⟦ Δ-Context′ Γ Γ′ ⟧ → ⟦ Γ ⟧ ignore′ ∅ ρ = ignore ρ ignore′ (τ • Γ′) (v • ρ) = v • ignore′ Γ′ ρ
document a function
agda: document a function Old-commit-hash: c0550a6f2e84b20bc63a5c0f91a168988125b117
Agda
mit
inc-lc/ilc-agda
70907b2ea28e2d6559f103705f74a8fefbca6f63
Parametric/Change/Validity.agda
Parametric/Change/Validity.agda
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : (ι : Base) → ⟦ ι ⟧Base → Set apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : (τ : Type) → ⟦ τ ⟧ → Set nil-change : ∀ τ v → Change τ v apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧ diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set Change (base ι) v = Change-base ι v Change (σ ⇒ τ) f = Pair (∀ v → Change σ v → Change τ (f v)) (λ Δf → ∀ v dv → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv) before : ∀ {τ v} → Change τ v → ⟦ τ ⟧ before {τ} {v} _ = v after : ∀ {τ v} → Change τ v → ⟦ τ ⟧ after {τ} {v} dv = v ⊞₍ τ ₎ dv open Pair public using () renaming ( cdr to is-valid ; car to call-change ) nil-change τ v = diff-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ apply-change (base ι) n Δn = apply-change-base ι n Δn apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ diff-change (base ι) m n = diff-change-base ι m n diff-change (σ ⇒ τ) g f = cons (λ v dv → g (after {σ} dv) ⊟₍ τ ₎ f v) (λ v dv → begin f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv)))) (v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩ f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩ f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) ∎) where open ≡-Reasoning -- call this lemma "replace"? -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v _⊟_ {τ} u v = u ⊟₍ τ ₎ v ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where ∅ : ΔEnv ∅ ∅ _•_ : ∀ {τ Γ v ρ} → (dv : Change τ v) → (dρ : ΔEnv Γ ρ) → ΔEnv (τ • Γ) (v • ρ) ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ ignore {Γ} {ρ} _ = ρ update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ update ∅ = ∅ update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ
import Parametric.Syntax.Type as Type import Parametric.Denotation.Value as Value module Parametric.Change.Validity {Base : Type.Structure} (⟦_⟧Base : Value.Structure Base) where open Type.Structure Base open Value.Structure Base ⟦_⟧Base -- Changes for Calculus Popl14 -- -- Contents -- - Mutually recursive concepts: ΔVal, validity. -- Under module Syntax, the corresponding concepts of -- ΔType and ΔContext reside in separate files. -- Now they have to be together due to mutual recursiveness. -- - `diff` and `apply` on semantic values of changes: -- they have to be here as well because they are mutually -- recursive with validity. -- - The lemma diff-is-valid: it has to be here because it is -- mutually recursive with `apply` -- - The lemma apply-diff: it is mutually recursive with `apply` -- and `diff` open import Base.Denotation.Notation public open import Relation.Binary.PropositionalEquality open import Postulate.Extensionality open import Data.Product hiding (map) import Structure.Tuples as Tuples open Tuples import Base.Data.DependentList as DependentList open DependentList open import Relation.Unary using (_⊆_) record Structure : Set₁ where ---------------- -- Parameters -- ---------------- field Change-base : (ι : Base) → ⟦ ι ⟧Base → Set apply-change-base : ∀ ι → (v : ⟦ ι ⟧Base) → Change-base ι v → ⟦ ι ⟧Base diff-change-base : ∀ ι → (u v : ⟦ ι ⟧Base) → Change-base ι v v+[u-v]=u-base : ∀ {ι} {u v : ⟦ ι ⟧Base} → apply-change-base ι v (diff-change-base ι u v) ≡ u --------------- -- Interface -- --------------- Change : (τ : Type) → ⟦ τ ⟧ → Set nil-change : ∀ τ v → Change τ v apply-change : ∀ τ → (v : ⟦ τ ⟧) (dv : Change τ v) → ⟦ τ ⟧ diff-change : ∀ τ → (u v : ⟦ τ ⟧) → Change τ v infixl 6 apply-change diff-change -- as with + - in GHC.Num syntax apply-change τ v dv = v ⊞₍ τ ₎ dv syntax diff-change τ u v = u ⊟₍ τ ₎ v -- Lemma apply-diff v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞₍ τ ₎ (u ⊟₍ τ ₎ v) ≡ u -------------------- -- Implementation -- -------------------- -- (Change τ) is the set of changes of type τ. This set is -- strictly smaller than ⟦ ΔType τ⟧ if τ is a function type. In -- particular, (Change (σ ⇒ τ)) is a function that accepts only -- valid changes, while ⟦ ΔType (σ ⇒ τ) ⟧ accepts also invalid -- changes. -- -- Change τ is the target of the denotational specification ⟦_⟧Δ. -- Detailed motivation: -- -- https://github.com/ps-mr/ilc/blob/184a6291ac6eef80871c32d2483e3e62578baf06/POPL14/paper/sec-formal.tex -- Change : Type → Set Change (base ι) v = Change-base ι v Change (σ ⇒ τ) f = Pair (∀ v → Change σ v → Change τ (f v)) (λ Δf → ∀ v dv → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ Δf (v ⊞₍ σ ₎ dv) (nil-change σ (v ⊞₍ σ ₎ dv)) ≡ f v ⊞₍ τ ₎ Δf v dv) open Pair public using () renaming ( cdr to is-valid ; car to call-change ) nil-change τ v = diff-change τ v v -- _⊞_ : ∀ {τ} → ⟦ τ ⟧ → Change τ → ⟦ τ ⟧ apply-change (base ι) n Δn = apply-change-base ι n Δn apply-change (σ ⇒ τ) f Δf = λ v → f v ⊞₍ τ ₎ call-change Δf v (nil-change σ v) -- _⊟_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → Change τ diff-change (base ι) m n = diff-change-base ι m n diff-change (σ ⇒ τ) g f = cons (λ v dv → g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) (λ v dv → begin f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g ((v ⊞₍ σ ₎ dv) ⊞₍ σ ₎ ((v ⊞₍ σ ₎ dv) ⊟₍ σ ₎ (v ⊞₍ σ ₎ dv))) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ cong (λ □ → f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g □ ⊟₍ τ ₎ (f (v ⊞₍ σ ₎ dv)))) (v+[u-v]=u {σ} {v ⊞₍ σ ₎ dv} {v ⊞₍ σ ₎ dv}) ⟩ f (v ⊞₍ σ ₎ dv) ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f (v ⊞₍ σ ₎ dv)) ≡⟨ v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f (v ⊞₍ σ ₎ dv)} ⟩ g (v ⊞₍ σ ₎ dv) ≡⟨ sym (v+[u-v]=u {τ} {g (v ⊞₍ σ ₎ dv)} {f v} ) ⟩ f v ⊞₍ τ ₎ (g (v ⊞₍ σ ₎ dv) ⊟₍ τ ₎ f v) ∎) where open ≡-Reasoning -- call this lemma "replace"? -- v+[u-v]=u : ∀ {τ : Type} {u v : ⟦ τ ⟧} → v ⊞ (u ⊟ v) ≡ u v+[u-v]=u {base ι} {u} {v} = v+[u-v]=u-base {ι} {u} {v} v+[u-v]=u {σ ⇒ τ} {u} {v} = ext {-⟦ σ ⟧} {λ _ → ⟦ τ ⟧-} (λ w → begin (apply-change (σ ⇒ τ) v (diff-change (σ ⇒ τ) u v)) w ≡⟨ refl ⟩ v w ⊞₍ τ ₎ (u (w ⊞₍ σ ₎ (w ⊟₍ σ ₎ w)) ⊟₍ τ ₎ v w) ≡⟨ cong (λ hole → v w ⊞₍ τ ₎ (u hole ⊟₍ τ ₎ v w)) (v+[u-v]=u {σ}) ⟩ v w ⊞₍ τ ₎ (u w ⊟₍ τ ₎ v w) ≡⟨ v+[u-v]=u {τ} ⟩ u w ∎) where open ≡-Reasoning -- syntactic sugar for implicit indices infixl 6 _⊞_ _⊟_ -- as with + - in GHC.Num _⊞_ : ∀ {τ} → (v : ⟦ τ ⟧) → Change τ v → ⟦ τ ⟧ _⊞_ {τ} v dv = v ⊞₍ τ ₎ dv _⊟_ : ∀ {τ} → (u v : ⟦ τ ⟧) → Change τ v _⊟_ {τ} u v = u ⊟₍ τ ₎ v -- abbrevitations before : ∀ {τ v} → Change τ v → ⟦ τ ⟧ before {τ} {v} _ = v after : ∀ {τ v} → Change τ v → ⟦ τ ⟧ after {τ} {v} dv = v ⊞₍ τ ₎ dv ------------------ -- Environments -- ------------------ open DependentList public using (∅; _•_) open Tuples public using (cons) data ΔEnv : ∀ (Γ : Context) → ⟦ Γ ⟧ → Set where ∅ : ΔEnv ∅ ∅ _•_ : ∀ {τ Γ v ρ} → (dv : Change τ v) → (dρ : ΔEnv Γ ρ) → ΔEnv (τ • Γ) (v • ρ) ignore : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ ignore {Γ} {ρ} _ = ρ update : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : ΔEnv Γ ρ) → ⟦ Γ ⟧ update ∅ = ∅ update {τ • Γ} (dv • dρ) = after {τ} dv • update dρ
Move before and after out of the mutually dependent block.
Move before and after out of the mutually dependent block. Old-commit-hash: 1d7a74aa7d62457de4936eae9faaeb605d739bf3
Agda
mit
inc-lc/ilc-agda
6f7fde98554f01770bfdbd43711ab8e45eab8b9b
Control/Protocol.agda
Control/Protocol.agda
{-# OPTIONS --without-K #-} open import Function.NP open import Type open import Level.NP open import Data.Product.NP using (Σ; _×_; _,_) renaming (proj₁ to fst) open import Data.One using (𝟙) open import Relation.Binary.PropositionalEquality.NP using (_≡_; !_; _∙_; refl; ap; coe; coe!) open import Function.Extensionality open import HoTT open import Data.ShapePolymorphism open Equivalences module Control.Protocol where data InOut : ★ where In Out : InOut dualᴵᴼ : InOut → InOut dualᴵᴼ In = Out dualᴵᴼ Out = In dualᴵᴼ-involutive : ∀ io → dualᴵᴼ (dualᴵᴼ io) ≡ io dualᴵᴼ-involutive In = refl dualᴵᴼ-involutive Out = refl dualᴵᴼ-equiv : Is-equiv dualᴵᴼ dualᴵᴼ-equiv = self-inv-is-equiv dualᴵᴼ-involutive dualᴵᴼ-inj : ∀ {x y} → dualᴵᴼ x ≡ dualᴵᴼ y → x ≡ y dualᴵᴼ-inj = Is-equiv.injective dualᴵᴼ-equiv {- module UniversalProtocols ℓ {U : ★_(ₛ ℓ)}(U⟦_⟧ : U → ★_ ℓ) where -} module _ ℓ where U = ★_ ℓ U⟦_⟧ = id data Proto_ : ★_(ₛ ℓ) where end : Proto_ com : (io : InOut){M : U}(P : U⟦ M ⟧ → Proto_) → Proto_ {- module U★ ℓ = UniversalProtocols ℓ {★_ ℓ} id open U★ -} Proto : ★₁ Proto = Proto_ ₀ Proto₀ = Proto Proto₁ = Proto_ ₁ pattern recv P = com In P pattern send P = com Out P module _ {{_ : FunExt}} where com= : ∀ {io₀ io₁}(io= : io₀ ≡ io₁) {M₀ M₁}(M= : M₀ ≡ M₁) {P₀ : M₀ → Proto}{P₁ : M₁ → Proto}(P= : ∀ m₀ → P₀ m₀ ≡ P₁ (coe M= m₀)) → com io₀ P₀ ≡ com io₁ P₁ com= refl refl P= = ap (com _) (λ= P=) module _ {io₀ io₁}(io= : io₀ ≡ io₁) {M₀ M₁}(M≃ : M₀ ≃ M₁) {P₀ : M₀ → Proto}{P₁ : M₁ → Proto} (P= : ∀ m₀ → P₀ m₀ ≡ P₁ (–> M≃ m₀)) {{_ : UA}} where com≃ : com io₀ P₀ ≡ com io₁ P₁ com≃ = com= io= (ua M≃) λ m → P= m ∙ ap P₁ (! coe-β M≃ m) module _ io {M N}(P : M × N → Proto) where com₂ : Proto com₂ = com io λ m → com io λ n → P (m , n) {- Proving this would be awesome... module _ io {M₀ M₁ N₀ N₁ : ★} (M×N≃ : (M₀ × N₀) ≃ (M₁ × N₁)) {P₀ : M₀ × N₀ → Proto}{P₁ : M₁ × N₁ → Proto} (P= : ∀ m,n₀ → P₀ m,n₀ ≡ P₁ (–> M×N≃ m,n₀)) {{_ : UA}} where com₂≃ : com₂ io P₀ ≡ com₂ io P₁ com₂≃ = {!com=!} -} send= = com= {Out} refl send≃ = com≃ {Out} refl recv= = com= {In} refl recv≃ = com≃ {In} refl com=′ : ∀ io {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → com io P₀ ≡ com io P₁ com=′ io = com= refl refl send=′ : ∀ {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → send P₀ ≡ send P₁ send=′ = send= refl recv=′ : ∀ {M}{P₀ P₁ : M → Proto}(P= : ∀ m → P₀ m ≡ P₁ m) → recv P₀ ≡ recv P₁ recv=′ = recv= refl pattern recvE M P = com In {M} P pattern sendE M P = com Out {M} P recv☐ : {M : ★}(P : ..(_ : M) → Proto) → Proto recv☐ P = recv (λ { [ m ] → P m }) send☐ : {M : ★}(P : ..(_ : M) → Proto) → Proto send☐ P = send (λ { [ m ] → P m }) {- dual : Proto → Proto dual end = end dual (send P) = recv λ m → dual (P m) dual (recv P) = send λ m → dual (P m) -} dual : Proto → Proto dual end = end dual (com io P) = com (dualᴵᴼ io) λ m → dual (P m) source-of : Proto → Proto source-of end = end source-of (com _ P) = send λ m → source-of (P m) sink-of : Proto → Proto sink-of = dual ∘ source-of data IsSource : Proto → ★₁ where end : IsSource end send' : ∀ {M P} (PT : (m : M) → IsSource (P m)) → IsSource (send P) data IsSink : Proto → ★₁ where end : IsSink end recv' : ∀ {M P} (PT : (m : M) → IsSink (P m)) → IsSink (recv P) data Proto☐ : Proto → ★₁ where end : Proto☐ end com : ∀ io {M P} (P☐ : ∀ (m : ☐ M) → Proto☐ (P m)) → Proto☐ (com io P) record End_ ℓ : ★_ ℓ where constructor end End : ∀ {ℓ} → ★_ ℓ End = End_ _ End-equiv : End ≃ 𝟙 End-equiv = equiv {₀} _ _ (λ _ → refl) (λ _ → refl) End-uniq : {{_ : UA}} → End ≡ 𝟙 End-uniq = ua End-equiv ⟦_⟧ᴵᴼ : InOut → ∀{ℓ}(M : ★_ ℓ)(P : M → ★_ ℓ) → ★_ ℓ ⟦_⟧ᴵᴼ In = Π ⟦_⟧ᴵᴼ Out = Σ ⟦_⟧ : ∀ {ℓ} → Proto_ ℓ → ★_ ℓ ⟦ end ⟧ = End ⟦ com io P ⟧ = ⟦ io ⟧ᴵᴼ _ λ m → ⟦ P m ⟧ ⟦_⊥⟧ : Proto → ★ ⟦ P ⊥⟧ = ⟦ dual P ⟧ Log : Proto → ★ Log P = ⟦ source-of P ⟧ Sink : Proto → ★ Sink P = ⟦ sink-of P ⟧ sink : ∀ P → Sink P sink end = _ sink (com _ P) x = sink (P x) telecom : ∀ P → ⟦ P ⟧ → ⟦ P ⊥⟧ → Log P telecom end _ _ = _ telecom (recv P) p (m , q) = m , telecom (P m) (p m) q telecom (send P) (m , p) q = m , telecom (P m) p (q m) send′ : ★ → Proto → Proto send′ M P = send λ (_ : M) → P recv′ : ★ → Proto → Proto recv′ M P = recv λ (_ : M) → P module _ {{_ : FunExt}} where dual-involutive : ∀ P → dual (dual P) ≡ P dual-involutive end = refl dual-involutive (com io P) = com= (dualᴵᴼ-involutive io) refl λ m → dual-involutive (P m) dual-equiv : Is-equiv dual dual-equiv = self-inv-is-equiv dual-involutive dual-inj : ∀ {P Q} → dual P ≡ dual Q → P ≡ Q dual-inj = Is-equiv.injective dual-equiv source-of-idempotent : ∀ P → source-of (source-of P) ≡ source-of P source-of-idempotent end = refl source-of-idempotent (com _ P) = com= refl refl λ m → source-of-idempotent (P m) source-of-dual-oblivious : ∀ P → source-of (dual P) ≡ source-of P source-of-dual-oblivious end = refl source-of-dual-oblivious (com _ P) = com= refl refl λ m → source-of-dual-oblivious (P m) module _ {{_ : FunExt}} where sink-contr : ∀ P s → sink P ≡ s sink-contr end s = refl sink-contr (com _ P) s = λ= λ m → sink-contr (P m) (s m) Sink-is-contr : ∀ P → Is-contr (Sink P) Sink-is-contr P = sink P , sink-contr P 𝟙≃Sink : ∀ P → 𝟙 ≃ Sink P 𝟙≃Sink P = Is-contr-to-Is-equiv.𝟙≃ (Sink-is-contr P) dual-Log : ∀ P → Log (dual P) ≡ Log P dual-Log = ap ⟦_⟧ ∘ source-of-dual-oblivious
module Control.Protocol where open import Control.Protocol.InOut public open import Control.Protocol.End public open import Control.Protocol.Core public
Split Control.Protocol
Split Control.Protocol
Agda
bsd-3-clause
crypto-agda/protocols
81eecc922c3dc4fc227770d378988bd4c8881616
ZK/GroupHom.agda
ZK/GroupHom.agda
{-# OPTIONS --without-K #-} open import Type using (Type) open import Type.Eq using (Eq?; _==_; ≡⇒==; ==⇒≡) open import Function using (case_of_) open import Data.Sum renaming (inj₁ to inl; inj₂ to inr) open import Data.Product renaming (proj₁ to fst; proj₂ to snd) open import Relation.Binary.PropositionalEquality.Base using (_≡_; _≢_; idp; ap; ap₂; !_; _∙_; module ≡-Reasoning) open import Algebra.Group open import Algebra.Group.Homomorphism import ZK.SigmaProtocol.KnownStatement module ZK.GroupHom {G+ G* : Type} (grp-G+ : Group G+) (grp-G* : Group G*) {{eq?-G* : Eq? G*}} (open Additive-Group grp-G+ hiding (_⊗_)) (open Multiplicative-Group grp-G* hiding (_^_)) {C : Type} -- e.g. C ⊆ ℕ (_>_ : C → C → Type) (swap? : {c₀ c₁ : C} → c₀ ≢ c₁ → (c₀ > c₁) ⊎ (c₁ > c₀)) (_⊗_ : G+ → C → G+) (_^_ : G* → C → G*) (_−ᶜ_ : C → C → C) (1/ : C → C) (φ : G+ → G*) -- For instance φ(x) = g^x (φ-hom : GroupHomomorphism grp-G+ grp-G* φ) (φ-hom-iterated : ∀ {x c} → φ (x ⊗ c) ≡ φ x ^ c) (Y : G*) (^-−ᶜ : ∀ {c₀ c₁}(c> : c₀ > c₁) → Y ^(c₀ −ᶜ c₁) ≡ (Y ^ c₀) / (Y ^ c₁)) (^-^-1/ : ∀ {c₀ c₁}(c> : c₀ > c₁) → (Y ^(c₀ −ᶜ c₁))^(1/(c₀ −ᶜ c₁)) ≡ Y) where Commitment = G* Challenge = C Response = G+ Witness = G+ Randomness = G+ _∈y : Witness → Type x ∈y = φ x ≡ Y open ZK.SigmaProtocol.KnownStatement Commitment Challenge Response Randomness Witness _∈y public prover : Prover prover a x = φ a , response where response : Challenge → Response response c = (x ⊗ c) + a verifier : Verifier verifier (mk A c s) = φ s == ((Y ^ c) * A) -- We still call it Schnorr since essentially not much changed. -- The scheme abstracts away g^ as an homomorphism called φ -- and one get to distinguish between the types C vs G+ and -- their operations _⊗_ vs _*_. Schnorr : Σ-Protocol Schnorr = (prover , verifier) -- The simulator shows why it is so important for the -- challenge to be picked once the commitment is known. -- To fake a transcript, the challenge and response can -- be arbitrarily chosen. However to be indistinguishable -- from a valid proof they need to be picked at random. simulator : Simulator simulator c s = A where -- Compute A, such that the verifier accepts! A = (Y ^ c)⁻¹ * φ s swap-t²? : Transcript²[ _≢_ ] verifier → Transcript²[ _>_ ] verifier swap-t²? t² = t²' module Swap? where open Transcript² t² public using (verify₀; verify₁; c₀≢c₁) renaming ( get-A to A ; get-f₀ to r₀; get-f₁ to r₁ ; get-c₀ to c₀; get-c₁ to c₁ ) t²' = case swap? c₀≢c₁ of λ { (inl c₀>c₁) → mk A c₀ c₁ c₀>c₁ r₀ r₁ verify₀ verify₁ ; (inr c₀<c₁) → mk A c₁ c₀ c₀<c₁ r₁ r₀ verify₁ verify₀ } -- The extractor shows the importance of never reusing a -- commitment. If the prover answers to two different challenges -- comming from the same commitment then the knowledge of the -- prover (the witness) can be extracted. extractor : Extractor verifier extractor t² = x' module Witness-extractor where open Transcript² (swap-t²? t²) public using (verify₀; verify₁) renaming ( get-A to A ; get-f₀ to r₀; get-f₁ to r₁ ; get-c₀ to c₀; get-c₁ to c₁ ; c₀≢c₁ to c₀>c₁ ) rd = r₀ − r₁ cd = c₀ −ᶜ c₁ 1/cd = 1/ cd x' = rd ⊗ 1/cd open ≡-Reasoning open GroupHomomorphism φ-hom correct : Correct Schnorr correct x a c w = ≡⇒== (φ((x ⊗ c) + a) ≡⟨ hom ⟩ φ(x ⊗ c) * A ≡⟨ *= φ-hom-iterated idp ⟩ (φ x ^ c) * A ≡⟨ ap (λ z → (z ^ c) * A) w ⟩ (Y ^ c) * A ∎) where A = φ a shvzk : Special-Honest-Verifier-Zero-Knowledge Schnorr shvzk = record { simulator = simulator ; correct-simulator = λ _ _ → ≡⇒== (! elim-*-!assoc= (snd ⁻¹-inverse)) } module _ (t² : Transcript² verifier) where open Witness-extractor t² φrd≡ycd : _ φrd≡ycd = φ rd ≡⟨by-definition⟩ φ (r₀ − r₁) ≡⟨ −-/ ⟩ φ r₀ / φ r₁ ≡⟨ /= (==⇒≡ verify₀) (==⇒≡ verify₁) ⟩ (Y ^ c₀ * A) / (Y ^ c₁ * A) ≡⟨ elim-*-right-/ ⟩ Y ^ c₀ / Y ^ c₁ ≡⟨ ! ^-−ᶜ c₀>c₁ ⟩ Y ^(c₀ −ᶜ c₁) ≡⟨by-definition⟩ Y ^ cd ∎ -- The extracted x is correct extractor-ok : φ x' ≡ Y extractor-ok = φ(rd ⊗ 1/cd) ≡⟨ φ-hom-iterated ⟩ φ rd ^ 1/cd ≡⟨ ap₂ _^_ φrd≡ycd idp ⟩ (Y ^ cd)^ 1/cd ≡⟨ ^-^-1/ c₀>c₁ ⟩ Y ∎ special-soundness : Special-Soundness Schnorr special-soundness = record { extractor = extractor ; extract-valid-witness = extractor-ok } special-Σ-protocol : Special-Σ-Protocol special-Σ-protocol = record { Σ-protocol = Schnorr ; correct = correct ; shvzk = shvzk ; ssound = special-soundness } -- -} -- -} -- -} -- -}
{-# OPTIONS --without-K #-} open import Type using (Type) open import Type.Eq using (Eq?; _==_; ≡⇒==; ==⇒≡) open import Function using (case_of_) open import Data.Sum renaming (inj₁ to inl; inj₂ to inr) open import Data.Product renaming (proj₁ to fst; proj₂ to snd) open import Relation.Binary.PropositionalEquality.Base using (_≡_; _≢_; idp; ap; ap₂; !_; _∙_; module ≡-Reasoning) open import Algebra.Group open import Algebra.Group.Homomorphism import ZK.SigmaProtocol.KnownStatement module ZK.GroupHom {G+ G* : Type} (grp-G+ : Group G+) (grp-G* : Group G*) {{eq?-G* : Eq? G*}} (open Additive-Group grp-G+ hiding (_⊗_)) (open Multiplicative-Group grp-G* hiding (_^_)) {C : Type} -- e.g. C ⊆ ℕ (_>_ : C → C → Type) (swap? : {c₀ c₁ : C} → c₀ ≢ c₁ → (c₀ > c₁) ⊎ (c₁ > c₀)) (_⊗_ : G+ → C → G+) (_^_ : G* → C → G*) (_−ᶜ_ : C → C → C) (1/ : C → C) (φ : G+ → G*) -- For instance φ(x) = g^x (φ-hom : GroupHomomorphism grp-G+ grp-G* φ) (φ-hom-iterated : ∀ {x c} → φ (x ⊗ c) ≡ φ x ^ c) (Y : G*) (^-−ᶜ : ∀ {c₀ c₁}(c> : c₀ > c₁) → Y ^(c₀ −ᶜ c₁) ≡ (Y ^ c₀) / (Y ^ c₁)) (^-^-1/ : ∀ {c₀ c₁}(c> : c₀ > c₁) → (Y ^(c₀ −ᶜ c₁))^(1/(c₀ −ᶜ c₁)) ≡ Y) where Commitment = G* Challenge = C Response = G+ Witness = G+ Randomness = G+ _∈y : Witness → Type x ∈y = φ x ≡ Y open ZK.SigmaProtocol.KnownStatement Commitment Challenge Response Randomness Witness _∈y public prover : Prover prover a x = φ a , response where response : Challenge → Response response c = (x ⊗ c) + a verifier' : (A : Commitment)(c : Challenge)(s : Response) → _ verifier' A c s = φ s == ((Y ^ c) * A) verifier : Verifier verifier (mk A c s) = verifier' A c s -- We still call it Schnorr since essentially not much changed. -- The scheme abstracts away g^ as an homomorphism called φ -- and one get to distinguish between the types C vs G+ and -- their operations _⊗_ vs _*_. Schnorr : Σ-Protocol Schnorr = (prover , verifier) -- The simulator shows why it is so important for the -- challenge to be picked once the commitment is known. -- To fake a transcript, the challenge and response can -- be arbitrarily chosen. However to be indistinguishable -- from a valid proof they need to be picked at random. simulator : Simulator simulator c s = A where -- Compute A, such that the verifier accepts! A = (Y ^ c)⁻¹ * φ s swap-t²? : Transcript²[ _≢_ ] verifier → Transcript²[ _>_ ] verifier swap-t²? t² = t²' module Swap? where open Transcript² t² public using (verify₀; verify₁; c₀≢c₁) renaming ( get-A to A ; get-f₀ to r₀; get-f₁ to r₁ ; get-c₀ to c₀; get-c₁ to c₁ ) t²' = case swap? c₀≢c₁ of λ { (inl c₀>c₁) → mk A c₀ c₁ c₀>c₁ r₀ r₁ verify₀ verify₁ ; (inr c₀<c₁) → mk A c₁ c₀ c₀<c₁ r₁ r₀ verify₁ verify₀ } -- The extractor shows the importance of never reusing a -- commitment. If the prover answers to two different challenges -- comming from the same commitment then the knowledge of the -- prover (the witness) can be extracted. extractor : Extractor verifier extractor t² = x' module Witness-extractor where open Transcript² (swap-t²? t²) public using (verify₀; verify₁) renaming ( get-A to A ; get-f₀ to r₀; get-f₁ to r₁ ; get-c₀ to c₀; get-c₁ to c₁ ; c₀≢c₁ to c₀>c₁ ) rd = r₀ − r₁ cd = c₀ −ᶜ c₁ 1/cd = 1/ cd x' = rd ⊗ 1/cd open ≡-Reasoning open GroupHomomorphism φ-hom correct : Correct Schnorr correct x a c w = ≡⇒== (φ((x ⊗ c) + a) ≡⟨ hom ⟩ φ(x ⊗ c) * A ≡⟨ *= φ-hom-iterated idp ⟩ (φ x ^ c) * A ≡⟨ ap (λ z → (z ^ c) * A) w ⟩ (Y ^ c) * A ∎) where A = φ a shvzk : Special-Honest-Verifier-Zero-Knowledge Schnorr shvzk = record { simulator = simulator ; correct-simulator = λ _ _ → ≡⇒== (! elim-*-!assoc= (snd ⁻¹-inverse)) } module _ (t² : Transcript² verifier) where open Witness-extractor t² φrd≡ycd : _ φrd≡ycd = φ rd ≡⟨by-definition⟩ φ (r₀ − r₁) ≡⟨ −-/ ⟩ φ r₀ / φ r₁ ≡⟨ /= (==⇒≡ verify₀) (==⇒≡ verify₁) ⟩ (Y ^ c₀ * A) / (Y ^ c₁ * A) ≡⟨ elim-*-right-/ ⟩ Y ^ c₀ / Y ^ c₁ ≡⟨ ! ^-−ᶜ c₀>c₁ ⟩ Y ^(c₀ −ᶜ c₁) ≡⟨by-definition⟩ Y ^ cd ∎ -- The extracted x is correct extractor-ok : φ x' ≡ Y extractor-ok = φ(rd ⊗ 1/cd) ≡⟨ φ-hom-iterated ⟩ φ rd ^ 1/cd ≡⟨ ap₂ _^_ φrd≡ycd idp ⟩ (Y ^ cd)^ 1/cd ≡⟨ ^-^-1/ c₀>c₁ ⟩ Y ∎ special-soundness : Special-Soundness Schnorr special-soundness = record { extractor = extractor ; extract-valid-witness = extractor-ok } special-Σ-protocol : Special-Σ-Protocol special-Σ-protocol = record { Σ-protocol = Schnorr ; correct = correct ; shvzk = shvzk ; ssound = special-soundness } -- -} -- -} -- -} -- -}
split the verifier function
GroupHom: split the verifier function
Agda
bsd-3-clause
crypto-agda/crypto-agda