markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Train cdcgan model
%%bash gsutil -m rm -rf ${OUTPUT_DIR} export PYTHONPATH=$PYTHONPATH:$PWD/cdcgan_module python3 -m trainer.task \ --train_file_pattern=${TRAIN_FILE_PATTERN} \ --eval_file_pattern=${EVAL_FILE_PATTERN} \ --output_dir=${OUTPUT_DIR} \ --job-dir=./tmp \ \ --train_batch_size=${TRAIN_BATCH_SIZE} \ --train_steps=${TRAIN_STEPS} \ --save_summary_steps=${SAVE_SUMMARY_STEPS} \ --save_checkpoints_steps=${SAVE_CHECKPOINTS_STEPS} \ --keep_checkpoint_max=${KEEP_CHECKPOINT_MAX} \ --input_fn_autotune=${INPUT_FN_AUTOTUNE} \ \ --eval_batch_size=${EVAL_BATCH_SIZE} \ --eval_steps=${EVAL_STEPS} \ --start_delay_secs=${START_DELAY_SECS} \ --throttle_secs=${THROTTLE_SECS} \ \ --height=${HEIGHT} \ --width=${WIDTH} \ --depth=${DEPTH} \ \ --num_classes=${NUM_CLASSES} \ --label_embedding_dimension=${LABEL_EMBEDDING_DIMENSION} \ \ --latent_size=${LATENT_SIZE} \ --generator_projection_dims=${GENERATOR_PROJECTION_DIMS} \ --generator_use_labels=${GENERATOR_USE_LABELS} \ --generator_embed_labels=${GENERATOR_EMBED_LABELS} \ --generator_concatenate_labels=${GENERATOR_CONCATENATE_LABELS} \ --generator_num_filters=${GENERATOR_NUM_FILTERS} \ --generator_kernel_sizes=${GENERATOR_KERNEL_SIZES} \ --generator_strides=${GENERATOR_STRIDES} \ --generator_final_num_filters=${GENERATOR_FINAL_NUM_FILTERS} \ --generator_final_kernel_size=${GENERATOR_FINAL_KERNEL_SIZE} \ --generator_final_stride=${GENERATOR_FINAL_STRIDE} \ --generator_leaky_relu_alpha=${GENERATOR_LEAKY_RELU_ALPHA} \ --generator_final_activation=${GENERATOR_FINAL_ACTIVATION} \ --generator_l1_regularization_scale=${GENERATOR_L1_REGULARIZATION_SCALE} \ --generator_l2_regularization_scale=${GENERATOR_L2_REGULARIZATION_SCALE} \ --generator_optimizer=${GENERATOR_OPTIMIZER} \ --generator_learning_rate=${GENERATOR_LEARNING_RATE} \ --generator_adam_beta1=${GENERATOR_ADAM_BETA1} \ --generator_adam_beta2=${GENERATOR_ADAM_BETA2} \ --generator_adam_epsilon=${GENERATOR_ADAM_EPSILON} \ --generator_clip_gradients=${GENERATOR_CLIP_GRADIENTS} \ --generator_train_steps=${GENERATOR_TRAIN_STEPS} \ \ --discriminator_use_labels=${DISCRIMINATOR_USE_LABELS} \ --discriminator_embed_labels=${DISCRIMINATOR_EMBED_LABELS} \ --discriminator_concatenate_labels=${DISCRIMINATOR_CONCATENATE_LABELS} \ --discriminator_num_filters=${DISCRIMINATOR_NUM_FILTERS} \ --discriminator_kernel_sizes=${DISCRIMINATOR_KERNEL_SIZES} \ --discriminator_strides=${DISCRIMINATOR_STRIDES} \ --discriminator_dropout_rates=${DISCRIMINATOR_DROPOUT_RATES} \ --discriminator_leaky_relu_alpha=${DISCRIMINATOR_LEAKY_RELU_ALPHA} \ --discriminator_l1_regularization_scale=${DISCRIMINATOR_L1_REGULARIZATION_SCALE} \ --discriminator_l2_regularization_scale=${DISCRIMINATOR_L2_REGULARIZATION_SCALE} \ --discriminator_optimizer=${DISCRIMINATOR_OPTIMIZER} \ --discriminator_learning_rate=${DISCRIMINATOR_LEARNING_RATE} \ --discriminator_adam_beta1=${DISCRIMINATOR_ADAM_BETA1} \ --discriminator_adam_beta2=${DISCRIMINATOR_ADAM_BETA2} \ --discriminator_adam_epsilon=${DISCRIMINATOR_ADAM_EPSILON} \ --discriminator_clip_gradients=${DISCRIMINATOR_CLIP_GRADIENTS} \ --discriminator_train_steps=${DISCRIMINATOR_TRAIN_STEPS} \ --label_smoothing=${LABEL_SMOOTHING}
_____no_output_____
Apache-2.0
machine_learning/gan/cdcgan/tf_cdcgan/tf_cdcgan_run_module_local.ipynb
ryangillard/artificial_intelligence
Prediction
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf !gsutil ls gs://machine-learning-1234-bucket/gan/cdcgan/trained_model2/export/exporter predict_fn = tf.contrib.predictor.from_saved_model( "gs://machine-learning-1234-bucket/gan/cdcgan/trained_model2/export/exporter/1592859903" ) predictions = predict_fn( { "Z": np.random.normal(size=(num_classes, 512)), "label": np.arange(num_classes) } ) print(list(predictions.keys()))
['generated_images']
Apache-2.0
machine_learning/gan/cdcgan/tf_cdcgan/tf_cdcgan_run_module_local.ipynb
ryangillard/artificial_intelligence
Convert image back to the original scale.
generated_images = np.clip( a=((predictions["generated_images"] + 1.0) * (255. / 2)).astype(np.int32), a_min=0, a_max=255 ) print(generated_images.shape) def plot_images(images): """Plots images. Args: images: np.array, array of images of [num_images, height, width, depth]. """ num_images = len(images) plt.figure(figsize=(20, 20)) for i in range(num_images): image = images[i] plt.subplot(1, num_images, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow( image, cmap=plt.cm.binary ) plt.show() plot_images(generated_images)
_____no_output_____
Apache-2.0
machine_learning/gan/cdcgan/tf_cdcgan/tf_cdcgan_run_module_local.ipynb
ryangillard/artificial_intelligence
Check surface fluxes of CO$_2$
# check the data folder to swith to another mixing conditions #ds = xr.open_dataset('data/results_so4_adv/5_po75-25_di10e-9/water.nc') ds = xr.open_dataset('data/results_so4_adv/9_po75-25_di30e-9/water.nc') #ds = xr.open_dataset('data/no_denitrification/water.nc') dicflux_df = ds['B_C_DIC _flux'].to_dataframe() oxyflux_df = ds['B_BIO_O2 _flux'].to_dataframe() dicflux_surface = dicflux_df.groupby('z_faces').get_group(0) oxyflux_surface = oxyflux_df.groupby('z_faces').get_group(0) dicflux_surface_year = dicflux_surface.loc['2011-01-01':'2011-12-31'] oxyflux_surface_year = oxyflux_surface.loc['2011-01-01':'2011-12-31'] ox = np.arange(1,366,1) plt.plot(ox, dicflux_surface_year); plt.gcf().set_size_inches(10, 2); plt.title('Air-sea CO$_2$ flux, positive means upwards'); plt.xlabel('Day'); plt.ylabel('Flux, mmol m$^{-2}$ d$^{-1}$');
_____no_output_____
CC-BY-3.0
s_6_air-sea_and_advective_fluxes_WS.ipynb
limash/ws_notebook
Advective TA exchange These are data on how alkalinity in the Wadden Sea changes due to mixing with the North Sea. Positive means alkalinity comes from the North Sea, negative - goes to the North Sea.
nh4ta_df = ds['TA_due_to_NH4'].to_dataframe() no3ta_df = ds['TA_due_to_NO3'].to_dataframe() po4ta_df = ds['TA_due_to_PO4'].to_dataframe() so4ta_df = ds['TA_due_to_SO4'].to_dataframe() nh4ta_year = nh4ta_df.loc['2011-01-01':'2011-12-31'] no3ta_year = no3ta_df.loc['2011-01-01':'2011-12-31'] po4ta_year = po4ta_df.loc['2011-01-01':'2011-12-31'] so4ta_year = so4ta_df.loc['2011-01-01':'2011-12-31'] nh4ta = np.array(nh4ta_year.TA_due_to_NH4.values) no3ta = np.array(no3ta_year.TA_due_to_NO3.values) po4ta = np.array(po4ta_year.TA_due_to_PO4.values) so4ta = np.array(so4ta_year.TA_due_to_SO4.values) total = nh4ta+no3ta+po4ta+so4ta plt.plot(ox, total); plt.gcf().set_size_inches(10, 2); plt.title('WS - NS alkalinity flux, positive means to the WS'); plt.xlabel('Day'); plt.ylabel('Flux, mmol m$^{-2}$ d$^{-1}$'); year = (('2011-01-01','2011-01-31'), ('2011-02-01','2011-02-28'), ('2011-03-01','2011-03-31'), ('2011-04-01','2011-04-30'), ('2011-05-01','2011-05-31'), ('2011-06-01','2011-06-30'), ('2011-07-01','2011-07-31'), ('2011-08-01','2011-08-31'), ('2011-09-01','2011-09-30'), ('2011-10-01','2011-10-31'), ('2011-11-01','2011-11-30'), ('2011-12-01','2011-12-31')) nh4ta_year = [] no3ta_year = [] po4ta_year = [] so4ta_year = [] for month in year: nh4ta_month = nh4ta_df.loc[month[0]:month[1]] no3ta_month = no3ta_df.loc[month[0]:month[1]] po4ta_month = po4ta_df.loc[month[0]:month[1]] so4ta_month = so4ta_df.loc[month[0]:month[1]] nh4ta_year.append(nh4ta_month['TA_due_to_NH4'].sum()) no3ta_year.append(no3ta_month['TA_due_to_NO3'].sum()) po4ta_year.append(po4ta_month['TA_due_to_PO4'].sum()) so4ta_year.append(so4ta_month['TA_due_to_SO4'].sum()) nh4ta = np.array(nh4ta_year) no3ta = np.array(no3ta_year) po4ta = np.array(po4ta_year) so4ta = np.array(so4ta_year) total = nh4ta+no3ta+po4ta+so4ta
_____no_output_____
CC-BY-3.0
s_6_air-sea_and_advective_fluxes_WS.ipynb
limash/ws_notebook
here and further, units: mmol m$^{-2}$
nh4ta sum(nh4ta) no3ta sum(no3ta) po4ta sum(po4ta) so4ta sum(so4ta) total sum(total)
_____no_output_____
CC-BY-3.0
s_6_air-sea_and_advective_fluxes_WS.ipynb
limash/ws_notebook
Scatter Plot with MinimapThis example shows how to create a miniature version of a plot such that creating a selection in the miniature version adjusts the axis limits in another, more detailed view.
import altair as alt from vega_datasets import data source = data.seattle_weather() zoom = alt.selection_interval(encodings=["x", "y"]) minimap = ( alt.Chart(source) .mark_point() .add_selection(zoom) .encode( x="date:T", y="temp_max:Q", color=alt.condition(zoom, "weather", alt.value("lightgray")), ) .properties( width=200, height=200, title="Minimap -- click and drag to zoom in the detail view", ) ) detail = ( alt.Chart(source) .mark_point() .encode( x=alt.X( "date:T", scale=alt.Scale(domain={"selection": zoom.name, "encoding": "x"}) ), y=alt.Y( "temp_max:Q", scale=alt.Scale(domain={"selection": zoom.name, "encoding": "y"}), ), color="weather", ) .properties(width=600, height=400, title="Seattle weather -- detail view") ) detail | minimap
_____no_output_____
MIT
doc/gallery/scatter_with_minimap.ipynb
mattijn/altdoc
Using Ray for Highly Parallelizable TasksWhile Ray can be used for very complex parallelization tasks,often we just want to do something simple in parallel.For example, we may have 100,000 time series to process with exactly the same algorithm,and each one takes a minute of processing.Clearly running it on a single processor is prohibitive: this would take 70 days.Even if we managed to use 8 processors on a single machine,that would bring it down to 9 days. But if we can use 8 machines, each with 16 cores,it can be done in about 12 hours.How can we use Ray for these types of task? We take the simple example of computing the digits of pi.The algorithm is simple: generate random x and y, and if ``x^2 + y^2 < 1``, it'sinside the circle, we count as in. This actually turns out to be pi/4(remembering your high school math).The following code (and this notebook) assumes you have already set up your Ray cluster and that you are running on the head node. For more details on how to set up a Ray cluster please see the [Ray Cluster Quickstart Guide](https://docs.ray.io/en/master/cluster/quickstart.html).
import ray import random import time import math from fractions import Fraction # Let's start Ray ray.init(address='auto')
INFO:anyscale.snapshot_util:Synced git objects for /home/ray/workspace-project-waleed_test1 to /efs/workspaces/shared_objects in 0.07651424407958984s. INFO:anyscale.snapshot_util:Created snapshot for /home/ray/workspace-project-waleed_test1 at /tmp/snapshot_2022-05-16T16:38:57.388956_otbjcv41.zip of size 1667695 in 0.014925718307495117s. INFO:anyscale.snapshot_util:Content hashes b'f4fcea43e90a69d561bf323a07691536' vs b'f4fcea43e90a69d561bf323a07691536' INFO:anyscale.snapshot_util:Content hash unchanged, not saving new snapshot. INFO:ray.worker:Connecting to existing Ray cluster at address: 172.31.78.11:9031 2022-05-16 16:38:57,451 INFO packaging.py:269 -- Pushing file package 'gcs://_ray_pkg_bf4a08129b7b19b96a1701be1151f9a8.zip' (1.59MiB) to Ray cluster... 2022-05-16 16:38:57,470 INFO packaging.py:278 -- Successfully pushed file package 'gcs://_ray_pkg_bf4a08129b7b19b96a1701be1151f9a8.zip'.
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
We use the ``@ray.remote`` decorator to create a Ray task.A task is like a function, except the result is returned asynchronously.It also may not run on the local machine, it may run elsewhere in the cluster.This way you can run multiple tasks in parallel,beyond the limit of the number of processors you can have in a single machine.
@ray.remote def pi4_sample(sample_count): """pi4_sample runs sample_count experiments, and returns the fraction of time it was inside the circle. """ in_count = 0 for i in range(sample_count): x = random.random() y = random.random() if x*x + y*y <= 1: in_count += 1 return Fraction(in_count, sample_count)
_____no_output_____
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
To get the result of a future, we use ray.get() which blocks until the result is complete.
SAMPLE_COUNT = 1000 * 1000 start = time.time() future = pi4_sample.remote(sample_count = SAMPLE_COUNT) pi4 = ray.get(future) end = time.time() dur = end - start print(f'Running {SAMPLE_COUNT} tests took {dur} seconds')
Running 1000000 tests took 1.4935967922210693 seconds
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
Now let's see how good our approximation is.
pi = pi4 * 4 float(pi) abs(pi-math.pi)/pi
_____no_output_____
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
Meh. A little off -- that's barely 4 decimal places.Why don't we do it a 100,000 times as much? Let's do 100 billion!
FULL_SAMPLE_COUNT = 100 * 1000 * 1000 * 1000 # 100 billion samples! BATCHES = int(FULL_SAMPLE_COUNT / SAMPLE_COUNT) print(f'Doing {BATCHES} batches') results = [] for _ in range(BATCHES): results.append(pi4_sample.remote()) output = ray.get(results)
Doing 100000 batches
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
Notice that in the above, we generated a list with 100,000 futures.Now all we do is have to do is wait for the result.Depending on your ray cluster's size, this might take a few minutes.But to give you some idea, if we were to do it on a single machine,when I ran this it took 0.4 seconds.On a single core, that means we're looking at 0.4 * 100000 = about 11 hours. Here's what the Dashboard looks like: ![View of the dashboard](../images/dashboard.png)So now, rather than just a single core working on this,I have 168 working on the task together. And its ~80% efficient.
pi = sum(output)*4/len(output) float(pi) abs(pi-math.pi)/pi
_____no_output_____
Apache-2.0
doc/source/ray-core/examples/highly_parallel.ipynb
minds-ai/ray
Lambda School Data Science*Unit 2, Sprint 1, Module 3*--- Ridge Regression AssignmentWe're going back to our other **New York City** real estate dataset. Instead of predicting apartment rents, you'll predict property sales prices.But not just for condos in Tribeca...- [ ] Use a subset of the data where `BUILDING_CLASS_CATEGORY` == `'01 ONE FAMILY DWELLINGS'` and the sale price was more than 100 thousand and less than 2 million.- [ ] Do train/test split. Use data from January β€”Β March 2019 to train. Use data from April 2019 to test.- [ ] Do one-hot encoding of categorical features.- [ ] Do feature selection with `SelectKBest`.- [ ] Fit a ridge regression model with multiple features. Use the `normalize=True` parameter (or do [feature scaling](https://scikit-learn.org/stable/modules/preprocessing.html) beforehand β€”Β use the scaler's `fit_transform` method with the train set, and the scaler's `transform` method with the test set)- [ ] Get mean absolute error for the test set.- [ ] As always, commit your notebook to your fork of the GitHub repo.The [NYC Department of Finance](https://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page) has a glossary of property sales terms and NYC Building Class Code Descriptions. The data comes from the [NYC OpenData](https://data.cityofnewyork.us/browse?q=NYC%20calendar%20sales) portal. Stretch GoalsDon't worry, you aren't expected to do all these stretch goals! These are just ideas to consider and choose from.- [ ] Add your own stretch goal(s) !- [ ] Instead of `Ridge`, try `LinearRegression`. Depending on how many features you select, your errors will probably blow up! πŸ’₯- [ ] Instead of `Ridge`, try [`RidgeCV`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html).- [ ] Learn more about feature selection: - ["Permutation importance"](https://www.kaggle.com/dansbecker/permutation-importance) - [scikit-learn's User Guide for Feature Selection](https://scikit-learn.org/stable/modules/feature_selection.html) - [mlxtend](http://rasbt.github.io/mlxtend/) library - scikit-learn-contrib libraries: [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) & [stability-selection](https://github.com/scikit-learn-contrib/stability-selection) - [_Feature Engineering and Selection_](http://www.feat.engineering/) by Kuhn & Johnson.- [ ] Try [statsmodels](https://www.statsmodels.org/stable/index.html) if you’re interested in more inferential statistical approach to linear regression and feature selection, looking at p values and 95% confidence intervals for the coefficients.- [ ] Read [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf), Chapters 1-3, for more math & theory, but in an accessible, readable way.- [ ] Try [scikit-learn pipelines](https://scikit-learn.org/stable/modules/compose.html).
import numpy as np %%capture import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' !pip install category_encoders==2.* # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') import pandas as pd import pandas_profiling # Read New York City property sales data df = pd.read_csv(DATA_PATH+'condos/NYC_Citywide_Rolling_Calendar_Sales.csv', parse_dates=['SALE DATE'], index_col=('SALE DATE')) # Changing space to underscore in index name df.index.name = 'SALE_DATE' # Change column names: replace spaces with underscores df.columns = [col.replace(' ', '_') for col in df] # SALE_PRICE was read as strings. # Remove symbols, convert to integer df['SALE_PRICE'] = ( df['SALE_PRICE'] .str.replace('$','') .str.replace('-','') .str.replace(',','') .astype(int) ) # BOROUGH is a numeric column, but arguably should be a categorical feature, # so convert it from a number to a string df['BOROUGH'] = df['BOROUGH'].astype(str) # Reduce cardinality for NEIGHBORHOOD feature # Get a list of the top 10 neighborhoods top10 = df['NEIGHBORHOOD'].value_counts()[:10].index # At locations where the neighborhood is NOT in the top 10, # replace the neighborhood with 'OTHER' df.loc[~df['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER' print(df.shape) df.head() # Getting rid of commas from land square ft and converting all values to floats df['LAND_SQUARE_FEET'] = df['LAND_SQUARE_FEET'].str.replace(',','') df['LAND_SQUARE_FEET'] = df['LAND_SQUARE_FEET'].replace({'': np.NaN, '########': np.NaN}) df['LAND_SQUARE_FEET'] = df['LAND_SQUARE_FEET'].astype(float) df['LAND_SQUARE_FEET'].value_counts() df.info() def wrangle(df): # Making a copy of the dataset df = df.copy() # Making a subset of the data where BUILDING_CLASS_CATEGORY == '01 ONE FAMILY # DWELLINGS' and the sale price was more than 100 thousand and less than 2 million df = df[(df['BUILDING_CLASS_CATEGORY'] == '01 ONE FAMILY DWELLINGS') & (df['SALE_PRICE'] > 100000) & (df['SALE_PRICE'] < 2000000)] # Dropping high-cardinality categorical columns hc_cols = [col for col in df.select_dtypes('object').columns if df[col].nunique() > 11] df.drop(columns=hc_cols, inplace=True) return df df = wrangle(df) df['TAX_CLASS_AT_TIME_OF_SALE'].value_counts() df.info() # Dropping NaN columns, building class column since now they are all the same, # and tax class at time of sale column since they are also all identical df = df.drop(['BUILDING_CLASS_CATEGORY', 'EASE-MENT', 'APARTMENT_NUMBER', 'TAX_CLASS_AT_TIME_OF_SALE'], axis=1) print(df.shape) df.head() df.info() # Splitting Data # splitting into target and feature matrix target = 'SALE_PRICE' y = df[target] X = df.drop(columns=target) # splitting into training and test sets: # Using data from January β€” March 2019 to train. Using data from April 2019 to test cutoff = '2019-04-01' mask = X.index < cutoff X_train, y_train = X.loc[mask], y.loc[mask] X_test, y_test = X.loc[~mask], y.loc[~mask] # Establishing Baseline y_pred = [y_train.mean()] * len(y_train) from sklearn.metrics import mean_absolute_error print('Baseline MAE:', mean_absolute_error(y_train, y_pred)) # Applying transformer: OneHotEncoder # Step 1: Importing the transformer class from category_encoders import OneHotEncoder, OrdinalEncoder # Step 2: Instantiating the transformer ohe = OneHotEncoder(use_cat_names=True) # Step 3: Fitting my TRAINING data to the transfomer ohe.fit(X_train) # Step 4: Transforming XT_train = ohe.transform(X_train) print(len(XT_train.columns)) XT_train.columns print(XT_train.shape) XT_train.head() # Performing feature selection with SelectKBest # Importing the feature selector utility: from sklearn.feature_selection import SelectKBest, f_regression # Creating the selector object with the best k=1 features: selector = SelectKBest(score_func=f_regression, k=1) # Running the selector on the training data: XT_train_selected = selector.fit_transform(XT_train, y_train) # Finding the features that were selected: selected_mask = selector.get_support() all_features = XT_train.columns selected_feature = all_features[selected_mask] print('The selected feature: ', selected_feature[0]) # Scaling the ohe data with StandardScaler: from sklearn.preprocessing import StandardScaler ss = StandardScaler() ss.fit(XT_train) XTT_train = ss.transform(XT_train) # Building Ridge Regression Model: from sklearn.linear_model import Ridge model = Ridge(alpha=150) model.fit(XTT_train, y_train) # Checking metrics: XT_test = ohe.transform(X_test) XTT_test = ss.transform(XT_test) print('RIDGE train MAE', mean_absolute_error(y_train, model.predict(XTT_train))) print('RIDGE test MAE', mean_absolute_error(y_test, model.predict(XTT_test)))
RIDGE train MAE 151103.0875222934 RIDGE test MAE 155194.34287168915
MIT
module3-ridge-regression/LS_DS_213_assignment.ipynb
Collin-Campbell/DS-Unit-2-Linear-Models
Zircon model training notebook; (extensively) modified from Detectron2 training tutorialThis Colab Notebook will allow users to train new models to detect and segment detrital zircon from RL images using Detectron2 and the training dataset provided in the colab_zirc_dims repo. It is set up to train a Mask RCNN model (ResNet depth=101), but could be modified for other instance segmentation models provided that they are supported by Detectron2.The training dataset should be uploaded to the user's Google Drive before running this notebook. Install detectron2
!pip install pyyaml==5.1 import torch TORCH_VERSION = ".".join(torch.__version__.split(".")[:2]) CUDA_VERSION = torch.__version__.split("+")[-1] print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION) # Install detectron2 that matches the above pytorch version # See https://detectron2.readthedocs.io/tutorials/install.html for instructions !pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/$CUDA_VERSION/torch$TORCH_VERSION/index.html exit(0) # Automatically restarts runtime after installation # Some basic setup: # Setup detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # import some common libraries import numpy as np import os, json, cv2, random from google.colab.patches import cv2_imshow import copy import time import datetime import logging import random import shutil import torch # import some common detectron2 utilities from detectron2.engine.hooks import HookBase from detectron2 import model_zoo from detectron2.evaluation import inference_context, COCOEvaluator from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.utils.logger import log_every_n_seconds from detectron2.data import MetadataCatalog, DatasetCatalog, build_detection_train_loader, DatasetMapper, build_detection_test_loader import detectron2.utils.comm as comm from detectron2.data import detection_utils as utils from detectron2.config import LazyConfig import detectron2.data.transforms as T
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Define Augmentations The cell below defines augmentations used while training to ensure that models never see the same exact image twice during training. This mitigates overfitting and allows models to achieve substantially higher accuracy in their segmentations/measurements.
custom_transform_list = [T.ResizeShortestEdge([800,800]), #resize shortest edge of image to 800 pixels T.RandomCrop('relative', (0.95, 0.95)), #randomly crop an area (95% size of original) from image T.RandomLighting(100), #minor lighting randomization T.RandomContrast(.85, 1.15), #minor contrast randomization T.RandomFlip(prob=.5, horizontal=False, vertical=True), #random vertical flipping T.RandomFlip(prob=.5, horizontal=True, vertical=False), #and horizontal flipping T.RandomApply(T.RandomRotation([-30, 30], False), prob=.8), #random (80% probability) rotation up to 30 degrees; \ # more rotation does not seem to improve results T.ResizeShortestEdge([800,800])] # resize img again for uniformity
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Mount Google Drive, set paths to dataset, model saving directories
from google.colab import drive drive.mount('/content/drive') #@markdown ### Add path to training dataset directory dataset_dir = '/content/drive/MyDrive/training_dataset' #@param {type:"string"} #@markdown ### Add path to model saving directory (automatically created if it does not yet exist) model_save_dir = '/content/drive/MyDrive/NAME FOR MODEL SAVING FOLDER HERE' #@param {type:"string"} os.makedirs(model_save_dir, exist_ok=True)
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Define dataset mapper, training, loss eval functions
from detectron2.engine import DefaultTrainer from detectron2.data import DatasetMapper from detectron2.structures import BoxMode # a function to convert Via image annotation .json dict format to Detectron2 \ # training input dict format def get_zircon_dicts(img_dir): json_file = os.path.join(img_dir, "via_region_data.json") with open(json_file) as f: imgs_anns = json.load(f)['_via_img_metadata'] dataset_dicts = [] for idx, v in enumerate(imgs_anns.values()): record = {} filename = os.path.join(img_dir, v["filename"]) height, width = cv2.imread(filename).shape[:2] record["file_name"] = filename record["image_id"] = idx record["height"] = height record["width"] = width #annos = v["regions"] annos = {} for n, eachitem in enumerate(v['regions']): annos[str(n)] = eachitem objs = [] for _, anno in annos.items(): #assert not anno["region_attributes"] anno = anno["shape_attributes"] px = anno["all_points_x"] py = anno["all_points_y"] poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)] poly = [p for x in poly for p in x] obj = { "bbox": [np.min(px), np.min(py), np.max(px), np.max(py)], "bbox_mode": BoxMode.XYXY_ABS, "segmentation": [poly], "category_id": 0, } objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts # loss eval hook for getting vaidation loss, copying to metrics.json; \ # from https://gist.github.com/ortegatron/c0dad15e49c2b74de8bb09a5615d9f6b class LossEvalHook(HookBase): def __init__(self, eval_period, model, data_loader): self._model = model self._period = eval_period self._data_loader = data_loader def _do_loss_eval(self): # Copying inference_on_dataset from evaluator.py total = len(self._data_loader) num_warmup = min(5, total - 1) start_time = time.perf_counter() total_compute_time = 0 losses = [] for idx, inputs in enumerate(self._data_loader): if idx == num_warmup: start_time = time.perf_counter() total_compute_time = 0 start_compute_time = time.perf_counter() if torch.cuda.is_available(): torch.cuda.synchronize() total_compute_time += time.perf_counter() - start_compute_time iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup) seconds_per_img = total_compute_time / iters_after_start if idx >= num_warmup * 2 or seconds_per_img > 5: total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1))) log_every_n_seconds( logging.INFO, "Loss on Validation done {}/{}. {:.4f} s / img. ETA={}".format( idx + 1, total, seconds_per_img, str(eta) ), n=5, ) loss_batch = self._get_loss(inputs) losses.append(loss_batch) mean_loss = np.mean(losses) self.trainer.storage.put_scalar('validation_loss', mean_loss) comm.synchronize() return losses def _get_loss(self, data): # How loss is calculated on train_loop metrics_dict = self._model(data) metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } total_losses_reduced = sum(loss for loss in metrics_dict.values()) return total_losses_reduced def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self._do_loss_eval() #trainer for zircons which incorporates augmentation, hooks for eval class ZirconTrainer(DefaultTrainer): @classmethod def build_train_loader(cls, cfg): #return a custom train loader with augmentations; recompute_boxes \ # is important given cropping, rotation augs return build_detection_train_loader(cfg, mapper= DatasetMapper(cfg, is_train=True, recompute_boxes = True, augmentations = custom_transform_list ), ) @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return COCOEvaluator(dataset_name, cfg, True, output_folder) #set up validation loss eval hook def build_hooks(self): hooks = super().build_hooks() hooks.insert(-1,LossEvalHook( cfg.TEST.EVAL_PERIOD, self.model, build_detection_test_loader( self.cfg, self.cfg.DATASETS.TEST[0], DatasetMapper(self.cfg,True) ) )) return hooks
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Import train, val catalogs
#registers training, val datasets (converts annotations using get_zircon_dicts) for d in ["train", "val"]: DatasetCatalog.register("zircon_" + d, lambda d=d: get_zircon_dicts(dataset_dir + "/" + d)) MetadataCatalog.get("zircon_" + d).set(thing_classes=["zircon"]) zircon_metadata = MetadataCatalog.get("zircon_train") train_cat = DatasetCatalog.get("zircon_train")
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Visualize train dataset
# visualize random sample from training dataset dataset_dicts = get_zircon_dicts(os.path.join(dataset_dir, 'train')) for d in random.sample(dataset_dicts, 4): #change int here to change sample size img = cv2.imread(d["file_name"]) visualizer = Visualizer(img[:, :, ::-1], metadata=zircon_metadata, scale=0.5) out = visualizer.draw_dataset_dict(d) cv2_imshow(out.get_image()[:, :, ::-1])
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Define save to Drive function
# a function to save models (with iteration number in name), metrics to drive; \ # important in case training crashes or is left unattended and disconnects. \ def save_outputs_to_drive(model_name, iters): root_output_dir = os.path.join(model_save_dir, model_name) #output_dir = save dir from user input #creates individual model output directory if it does not already exist os.makedirs(root_output_dir, exist_ok=True) #creates a name for this version of model; include iteration number curr_iters_str = str(round(iters/1000, 1)) + 'k' curr_model_name = model_name + '_' + curr_iters_str + '.pth' model_save_pth = os.path.join(root_output_dir, curr_model_name) #get most recent model, current metrics, copy to drive model_path = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") metrics_path = os.path.join(cfg.OUTPUT_DIR, 'metrics.json') shutil.copy(model_path, model_save_pth) shutil.copy(metrics_path, root_output_dir)
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Build, train model Set some parameters for training
#@markdown ### Add a base name for the model model_save_name = 'your model name here' #@param {type:"string"} #@markdown ### Final iteration before training stops final_iteration = 8000 #@param {type:"slider", min:3000, max:15000, step:1000}
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Actually build and train model
#train from a pre-trained Mask RCNN model cfg = get_cfg() # train from base model: Default Mask RCNN cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml")) # Load starting weights (COCO trained) from Detectron2 model zoo. cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl" cfg.DATASETS.TRAIN = ("zircon_train",) #load training dataset cfg.DATASETS.TEST = ("zircon_val",) # load validation dataset cfg.DATALOADER.NUM_WORKERS = 2 cfg.SOLVER.IMS_PER_BATCH = 2 #2 ims per batch seems to be good for model generalization cfg.SOLVER.BASE_LR = 0.00025 # low but reasonable learning rate given pre-training; \ # by default initializes with a 1000 iteration warmup cfg.SOLVER.MAX_ITER = 2000 #train for 2000 iterations before 1st save cfg.SOLVER.GAMMA = 0.5 #decay learning rate by factor of GAMMA every 1000 iterations after 2000 iterations \ # and until 10000 iterations This works well for current version of training \ # dataset but should be modified (probably a longer interval) if dataset is ever\ # extended. cfg.SOLVER.STEPS = (1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999) cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # use default ROI heads batch size cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only class here is zircon cfg.MODEL.RPN.NMS_THRESH = 0.1 #sets NMS threshold lower than default; should(?) eliminate overlapping regions cfg.TEST.EVAL_PERIOD = 200 # validation eval every 200 iterations os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) trainer = ZirconTrainer(cfg) #our zircon trainer, w/ built-in augs and val loss eval trainer.resume_or_load(resume=False) trainer.train() #start training # stop training and save for the 1st time after 2000 iterations save_outputs_to_drive(model_save_name, 2000) # Saves, cold restarts training from saved model weights every 1000 iterations \ # until final iteration. This should probably be done via hooks without stopping \ # training but *seems* to produce faster decrease in validation loss. for each_iters in [iter*1000 for iter in list(range(3, int(final_iteration/1000) + 1, 1))]: #reload model with last iteration model weights resume_model_path = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") cfg.MODEL.WEIGHTS = resume_model_path cfg.SOLVER.MAX_ITER = each_iters #increase max iterations trainer = ZirconTrainer(cfg) trainer.resume_or_load(resume=True) trainer.train() #restart training #save again save_outputs_to_drive(model_save_name, each_iters) # open tensorboard training metrics curves (metrics.json): %load_ext tensorboard %tensorboard --logdir output
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Inference & evaluation with final trained model Initialize model from saved weights:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # final model; modify path to other non-final model to view their segmentations cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set a custom testing threshold cfg.MODEL.RPN.NMS_THRESH = 0.1 predictor = DefaultPredictor(cfg)
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
View model segmentations for random sample of images from zircon validation dataset:
from detectron2.utils.visualizer import ColorMode dataset_dicts = get_zircon_dicts(os.path.join(dataset_dir, 'val')) for d in random.sample(dataset_dicts, 5): im = cv2.imread(d["file_name"]) outputs = predictor(im) # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format v = Visualizer(im[:, :, ::-1], metadata=zircon_metadata, scale=1.5, instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels. This option is only available for segmentation models ) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) cv2_imshow(out.get_image()[:, :, ::-1])
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Validation eval with COCO API metric:
from detectron2.evaluation import COCOEvaluator, inference_on_dataset from detectron2.data import build_detection_test_loader evaluator = COCOEvaluator("zircon_val", ("bbox", "segm"), False, output_dir="./output/") val_loader = build_detection_test_loader(cfg, "zircon_val") print(inference_on_dataset(trainer.model, val_loader, evaluator))
_____no_output_____
Apache-2.0
training dataset/ResNet_colab_zirc_dims_train_model.ipynb
MCSitar/colab-zirc-dims
Analysis
# Prepare data demographic = pd.read_csv('../data/processed/demographic.csv') severity = pd.read_csv('../data/processed/severity.csv', index_col=0) features = demographic.columns X = demographic.astype(np.float64) y = (severity >= 4).sum(axis=1) needs_to_label = {0:'no needs', 1:'low_needs', 2:'moderate needs', 3:'high needs', 4:'very high needs'} labels = ["no needs", "low needs", "moderate needs", "high needs", "very high needs"] severity_to_needs = {0:0, 1:1, 2:1, 3:2, 4:2, 5:3, 6:3, 7:4, 8:4} y = np.array([severity_to_needs[i] for i in y]) # Color vector, for illustration purposes colors = {0:'b', 1:'r', 2:'g', 3:'c', 4:'y'} y_c = np.array([colors[i] for i in y])
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Understanding the features
from yellowbrick.features import Rank2D from yellowbrick.features.manifold import Manifold from yellowbrick.features.pca import PCADecomposition from yellowbrick.style import set_palette set_palette('flatui')
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Feature covariance plot
visualizer = Rank2D(algorithm='covariance') visualizer.fit(X, y) visualizer.transform(X) visualizer.poof()
/home/muhadriy/.conda/envs/ml/lib/python3.6/site-packages/yellowbrick/features/rankd.py:262: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead. X = X.as_matrix()
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Principal Component Projection
visualizer = PCADecomposition(scale=True, color = y_c, proj_dim=3) visualizer.fit_transform(X, y) visualizer.poof()
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Manifold projections
visualizer = Manifold(manifold='tsne', target='discrete') visualizer.fit_transform(X, y) visualizer.poof() visualizer = Manifold(manifold='modified', target='discrete') visualizer.fit_transform(X, y) visualizer.poof()
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
No apparent structure from the PCA and Manifold projections. Class Balance
categories, counts = np.unique(y, return_counts=True) fig, ax = plt.subplots(figsize=(9, 7)) sb.set(style="whitegrid") sb.barplot(labels, counts, ax=ax, tick_label=labels) ax.set(xlabel='Need Categories', ylabel='Number of HHs');
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Heavy class imbalances. Use appropriate scoring metrics/measures. Learning and Validation
from sklearn.model_selection import StratifiedKFold from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import RidgeClassifier from yellowbrick.model_selection import LearningCurve cv = StratifiedKFold(10) sizes = np.linspace(0.1, 1., 20) visualizer = LearningCurve(RidgeClassifier(), cv=cv, train_sizes=sizes, scoring='balanced_accuracy', n_jobs=-1) visualizer.fit(X,y) visualizer.poof() visualizer = LearningCurve(GaussianNB(), cv=cv, train_sizes=sizes, scoring='balanced_accuracy', n_jobs=-1) visualizer.fit(X,y) visualizer.poof()
_____no_output_____
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Classification
from sklearn.linear_model import RidgeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.utils.class_weight import compute_class_weight from imblearn.metrics import classification_report_imbalanced from sklearn.metrics import balanced_accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y) cv_ = StratifiedKFold(5) class_weights = compute_class_weight(class_weight='balanced', classes= np.unique(y), y=y) clf = RidgeClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True) clf = KNeighborsClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True) clf = GaussianNB() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True) clf = ExtraTreesClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True) clf = GradientBoostingClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True)
Balanced accuracy: 0.25 Classification report: pre rec spe f1 geo iba sup no needs 0.20 0.02 1.00 0.03 0.13 0.01 63 low needs 0.52 0.18 0.95 0.27 0.42 0.16 594 moderate needs 0.51 0.84 0.24 0.64 0.45 0.21 1258 high needs 0.47 0.22 0.92 0.30 0.45 0.19 655 very high needs 0.00 0.00 1.00 0.00 0.00 0.00 25 avg / total 0.49 0.51 0.60 0.45 0.43 0.19 2595 Normalized confusion matrix
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Voting Classifier Hard Voting
clf1 = KNeighborsClassifier(weights='distance') clf2 = GaussianNB() clf3 = ExtraTreesClassifier(class_weight='balanced_subsample') clf4 = GradientBoostingClassifier() vote = VotingClassifier(estimators=[('knn', clf1), ('gnb', clf2), ('ext', clf3), ('gb', clf4)], voting='hard') params = {'knn__n_neighbors': [2,3,4], 'gb__n_estimators':[50,100,200], 'gb__max_depth':[3,5,7], 'ext__n_estimators': [50,100,200]} scoring_fns = ['f1_weighted', 'balanced_accuracy'] grid = GridSearchCV(estimator=vote, param_grid=params, cv=cv_, verbose=2, n_jobs=-1, scoring=scoring_fns, refit='balanced_accuracy') grid.fit(X_train, y_train) y_pred = grid.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True) clf1 = KNeighborsClassifier(weights='distance') clf2 = GaussianNB() clf3 = ExtraTreesClassifier(class_weight='balanced_subsample') clf4 = GradientBoostingClassifier() vote = VotingClassifier(estimators=[('knn', clf1), ('gnb', clf2), ('ext', clf3), ('gb', clf4)], voting='soft') params = {'knn__n_neighbors': [2,3,4], 'gb__n_estimators':[50,100,200], 'gb__max_depth':[3,5,7], 'ext__n_estimators': [50,100,200]} scoring_fns = ['f1_weighted', 'balanced_accuracy'] grid_soft = GridSearchCV(estimator=vote, param_grid=params, cv=cv_, verbose=2, n_jobs=-1, scoring=scoring_fns, refit='balanced_accuracy') grid_soft.fit(X_train, y_train) y_pred = grid_soft.predict(X_test) print('Balanced accuracy: {:.2f}'.format(balanced_accuracy_score(y_test,y_pred))) print('Classification report: ') print(classification_report_imbalanced(y_test, y_pred, target_names=labels)) plot_confusion_matrix(y_test, y_pred, classes=np.unique(y), normalize=True)
Fitting 5 folds for each of 81 candidates, totalling 405 fits
RSA-MD
notebooks/.ipynb_checkpoints/Analysis-checkpoint.ipynb
mmData/Hack4Good
Import packages
import warnings warnings.filterwarnings("ignore") import pandas as pd # general packages import numpy as np import matplotlib.pyplot as plt import os import seaborn as sns # sklearn models from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression # mne import mne import pickle from mne.datasets import sample from mne.decoding import (SlidingEstimator, GeneralizingEstimator, cross_val_multiscore, LinearModel, get_coef)
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
sklearn models
from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn.metrics import confusion_matrix from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Load preprocessed data
with open(os.path.join('data','Xdict.pickle'),'rb') as handle1: Xdict = pickle.load(handle1) with open(os.path.join('data','ydict.pickle'),'rb') as handle2: ydict = pickle.load(handle2) subjects = list(set(Xdict.keys()))
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
FEATURE ENGINEERING Need to first make a master dataframe for the 5,6 numbers with corresponding result for all subjects compiled
s01 = ydict[1] df1 = pd.DataFrame(s01, columns=['Result']) df1['Subject'] = 1 df1['Time Series'] = [series[:-52] for series in Xdict[1].tolist()] df1['Psd'] = [series[950:] for series in Xdict[1].tolist()] df1 s02 = ydict[2] df2 = pd.DataFrame(s02, columns=['Result']) df2['Subject'] = 2 df2['Time Series'] = [series[:-52] for series in Xdict[2].tolist()] df2['Psd'] = [series[950:] for series in Xdict[2].tolist()] df2 s03 = ydict[3] df3 = pd.DataFrame(s03, columns=['Result']) df3['Subject'] = 3 df3['Time Series'] = [series[:-52] for series in Xdict[3].tolist()] df3['Psd'] = [series[950:] for series in Xdict[3].tolist()] df3 s04 = ydict[4] df4 = pd.DataFrame(s04, columns=['Result']) df4['Subject'] = 4 df4['Time Series'] = [series[:-52] for series in Xdict[4].tolist()] df4['Psd'] = [series[950:] for series in Xdict[4].tolist()] df4 s05 = ydict[5] df5 = pd.DataFrame(s05, columns=['Result']) df5['Subject'] = 5 df5['Time Series'] = [series[:-52] for series in Xdict[5].tolist()] df5['Psd'] = [series[950:] for series in Xdict[5].tolist()] df5 s06 = ydict[6] df6 = pd.DataFrame(s06, columns=['Result']) df6['Subject'] = 6 df6['Time Series'] = [series[:-52] for series in Xdict[6].tolist()] df6['Psd'] = [series[950:] for series in Xdict[6].tolist()] df6 s07 = ydict[7] df7 = pd.DataFrame(s07, columns=['Result']) df7['Subject'] = 7 df7['Time Series'] = [series[:-52] for series in Xdict[7].tolist()] df7['Psd'] = [series[950:] for series in Xdict[7].tolist()] df7 s08 = ydict[8] df8 = pd.DataFrame(s08, columns=['Result']) df8['Subject'] = 8 df8['Time Series'] = [series[:-52] for series in Xdict[8].tolist()] df8['Psd'] = [series[950:] for series in Xdict[8].tolist()] df8 s09 = ydict[9] df9 = pd.DataFrame(s09, columns=['Result']) df9['Subject'] = 9 df9['Time Series'] = [series[:-52] for series in Xdict[9].tolist()] df9['Psd'] = [series[950:] for series in Xdict[9].tolist()] df9 s10 = ydict[10] df10 = pd.DataFrame(s10, columns=['Result']) df10['Subject'] = 10 df10['Time Series'] = [series[:-52] for series in Xdict[10].tolist()] df10['Psd'] = [series[950:] for series in Xdict[10].tolist()] frames = [df1, df2, df3, df4, df5, df6, df7, df8, df9, df10] resultframe = pd.concat(frames) resultframe = resultframe.reset_index().drop('index', axis=1) resultframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Splitting the psd into 52 different columns so each value can be used as a feature:
resultframe[['psd'+str(i) for i in range(1,53)]] = pd.DataFrame(resultframe.Psd.values.tolist(), index= resultframe.index) resultframe = resultframe.drop('Psd', axis=1) resultframe.head()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Assuming the merged table is formed correctly, we now have our outcomes ('Results') and their corresponding first 950 time points series data, and subject information. We no longer have information regarding which electrode collected the data (irrelevant since no biological correspondence), however, if needed, we can still filter by subject as we retain that data. NOTE: This table is only for the 5,6 first number trials as it is in that scenario the patient has the ability to "Gamble". NOTE: One of the disadvantages of compiling all patient data and not separating by subject is that we are ignoring behavioral characteristics (risk aversion and risk loving) and rather finding common trends in the time series data regardless of personal characteristics. NEED TO CHECK: Are all electrode data included for each patient? Is the corresponding Result matched with respective time series? Currently, I will proceed relying on the dictionary Kata made and will assume the order and correspondence is proper. Dataset Characteristics/Confirming master dataframe created above:
countframe = resultframe.groupby("Subject").count().drop('Time Series', axis=1).drop(['psd'+str(i) for i in range(1,53)], axis=1) countframe plt.bar(countframe.index, countframe['Result']) plt.xlabel('Subject') plt.ylabel('Count') plt.title('Number of Entries per subject') plt.show();
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Note: Number of Entries = Number of trials with first number as 5,6 * Number of electrodes for the subjectIn preprocessing notebook, we determined the number of electrodes per subject to be as followed:
subject = [1,2,3,4,5,6,7,8,9,10] electrodes = [5,6,59,5,61,7,11,10,19,16] elecframe = pd.DataFrame(data={'Subject': subject, 'Num Electrode' : electrodes}) elecframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
In preprocessing notebook, we also determined the number of trials with 5 and 6 (in cleaned table, excluding all types of bad trials):
subject = [1,2,3,4,5,6,7,8,9,10] num5 = [23, 24, 24, 12, 21, 22, 21, 24, 24, 16] num6 = [20, 23, 24, 18, 21, 24, 22, 24, 24, 18] trialframe = pd.DataFrame(data={'Subject': subject, 'Num 5': num5, 'Num 6': num6}) trialframe['Num Total Trials'] = trialframe['Num 5'] + trialframe['Num 6'] trialframe = trialframe.drop(['Num 5', 'Num 6'], axis=1) trialframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Merging the two tables together:
confframe = pd.concat([elecframe, trialframe.drop('Subject', axis=1)], axis=1) confframe['Expected Entries'] = confframe['Num Electrode'] * confframe['Num Total Trials'] confframe checkframe = pd.merge(confframe, countframe, how='inner', left_on='Subject', right_index=True) checkframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
We now confirmed that our expected number of entries per subject matches the actual number of entries we obtained in the master dataframe created above. This indicates that the table above is likely created properly and it is safe to use it for further analysis.Next, we need to understand the characteristics of our dataset, mainly to understand the probability of obtaining a correct prediction due to chance.
outframe = resultframe.groupby('Result').count().drop('Time Series', axis=1).drop(['psd'+str(i) for i in range(1,53)], axis=1).rename(index=str, columns={'Subject':'Count'}) outframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
We can observe that the distribution is not even between the two possible outcomes so we need to be careful when assessing the performance of our model. We will next calculate the prediction power of chance:
total = sum(outframe['Count']) outframe['Probability'] = outframe['Count']/total outframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
We can observe that the probability of getting a correct prediction due to purely chance is 56.988% (~57%) so we need to design a prediction model that performs better than this. We will now move on to feature engineering to create new features. Making new features: We currently have 52 power spectral density (psd) features obtained from preprocessed file. Need to create new features from our time series data
resultframe.head() resultframe['Max'] = [max(i) for i in resultframe['Time Series']] resultframe['Min'] = [min(i) for i in resultframe['Time Series']] resultframe['Std'] = [np.std(i) for i in resultframe['Time Series']] resultframe['Mean'] = [np.mean(i) for i in resultframe['Time Series']] resultframe['p2.5'] = [np.percentile(i, 2.5) for i in resultframe['Time Series']] resultframe['p97.5'] = [np.percentile(i, 97.5) for i in resultframe['Time Series']] resultframe.head()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Changing entries of "Result"Safebet = 0, Gamble = 1:
resultframe['Result'] = resultframe['Result'].map({'Safebet': 0, 'Gamble': 1}) resultframe.head()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
We should center all our data to 0.0 since we care about relative wave form and not baseline amplitude. The difference in baseline amplitude can be ascribed to hardware differences (electrode readings) and should not be considered in our predictive model. Thus, we need to adapt our features above by centering the values around 0.0. Hence, mean is dropped as a feature and a new feature "Interval" which is max-min is introduced.Interval = Max - MinPercentile 2.5 and Percentile 97.5 values were determined as features above. Now, a new feature is going to be introduced "Percentile Interval" which is the difference between the two values. Percentile Interval = p97.5 - p2.5
resultframe['Max'] = resultframe['Max'] - resultframe['Mean'] resultframe['Min'] = resultframe['Min'] - resultframe['Mean'] resultframe['p2.5'] = resultframe['p2.5'] - resultframe['Mean'] resultframe['p97.5'] = resultframe['p97.5'] - resultframe['Mean'] resultframe['Mean'] = resultframe['Mean'] - resultframe['Mean'] resultframe['Interval'] = resultframe['Max'] - resultframe['Min'] resultframe['Percentile Interval'] = resultframe['p97.5'] - resultframe['p2.5'] #resultframe = resultframe[['Subject', 'Time Series', 'Max', 'Min', 'Std', 'Interval', 'p2.5', 'p97.5', 'Percentile Interval', 'Result']] resultframe
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Since all the features currently in place are statistics that do not respect the temporal nature of our data (time-series data), we need to introduce features that also respect the morphology of the waves in the data. An example feature is number of peaks.Number of peaks = number of data points i where i > i-1 and i > i+1 and will not include the i=0 and i=949 entries
peaks = [] for series in resultframe['Time Series']: no_peaks = 0 indices = range(2,949) for index in indices: if series[index] > series[index-1] and series[index] > series[index+1]: no_peaks += 1 peaks.append(no_peaks) len(peaks) resultframe['Num Peaks'] = peaks resultframe.head() #resultframe = resultframe[['Subject', 'Time Series', 'Max', 'Min', 'Interval', 'Std', 'p2.5', 'p97.5', 'Percentile Interval', 'Num Peaks', 'Result']] #resultframe.head()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Categorizing all our data
resultframe['Num Peaks Cat'] = pd.cut(resultframe['Num Peaks'], 4,labels=[1,2,3,4]) #resultframe = resultframe[['Subject', 'Time Series', 'Max', 'Min', 'Interval', 'Std', 'p2.5', 'p97.5', 'Percentile Interval', 'Num Peaks', 'Num Peaks Cat', 'Result']] resultframe.head() resultframe['p2.5 Cat'] = pd.qcut(resultframe['p2.5'], 3,labels=[1,2,3]) resultframe['p97.5 Cat'] = pd.qcut(resultframe['p97.5'], 3,labels=[1,2,3]) resultframe['Std Cat'] = pd.qcut(resultframe['Std'], 3,labels=[1,2,3]) resultframe['Percentile Interval Cat'] = pd.qcut(resultframe['Percentile Interval'], 3,labels=[1,2,3]) #resultframe = resultframe[['Subject', 'Time Series', 'Max', 'Min', 'Interval', 'Std', 'p2.5', 'p97.5', 'Percentile Interval', 'Num Peaks', 'Num Peaks Cat', 'p2.5 Cat', 'p97.5 Cat', 'Std Cat', 'Percentile Interval Cat', 'Result']] resultframe resultframe['Num Peaks Cat'] = resultframe['Num Peaks Cat'].astype(int) resultframe['p2.5 Cat'] = resultframe['p2.5 Cat'].astype(int) resultframe['p97.5 Cat'] = resultframe['p97.5 Cat'].astype(int) resultframe['Std Cat'] = resultframe['Std Cat'].astype(int) resultframe['Percentile Interval Cat'] = resultframe['Percentile Interval Cat'].astype(int) resultframe.head()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Checking our X and y matrices (selecting only features we want to pass into the model)
resultframe.loc[:,["Subject", "Result"]][resultframe['Subject']==1].drop('Subject', axis=1).head() #resultframe.iloc[:,[1,3]][resultframe['Subject']==1].drop("Subject", axis=1).head() resultframe.drop(["Subject", "Time Series", "Result"], axis=1)
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Modeling Logistic Regression Initialize dataframe to track model performance per subject
performance_logistic = pd.DataFrame(index = Xdict.keys(), # subject columns=['naive_train_accuracy', 'naive_test_accuracy', 'model_train_accuracy', 'model_test_accuracy']) performance_logistic
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Train model
coefficients = dict() # initialize dataframes to log predicted choice and true choice for each trial predictions_logistic_train_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) LogisticRegressionModel = linear_model.LogisticRegression() # two subclasses to start for subject in subjects: print(subject) #X = resultframe.iloc[:,[0,5,8,10,11,12]][resultframe['Subject']==subject].drop("Subject", axis=1) #y = resultframe.iloc[:,[0,-1]][resultframe['Subject']==subject].drop('Subject', axis=1) X = resultframe.drop(["Time Series", "Result"], axis=1)[resultframe['Subject']==subject].drop("Subject", axis=1) y = resultframe.loc[:,["Subject", "Result"]][resultframe['Subject']==subject].drop('Subject', axis=1) # train-test split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100) # get naive performance (guessing most frequent category, the max of guessing one vs the other) performance_logistic.loc[subject,'naive_train_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) performance_logistic.loc[subject, 'naive_test_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) # make df to track predicted vs real choice for each subject predictions_logistic_train = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_train['true_choice'] = ytrain['Result'] predictions_logistic_test['true_choice'] = ytest['Result'] # logistic regression LogisticRegressionModel.fit(Xtrain, ytrain) # store coefficients coefficients[subject] = LogisticRegressionModel.coef_[0] performance_logistic.loc[subject,'model_train_accuracy'] = LogisticRegressionModel.score(Xtrain,ytrain) performance_logistic.loc[subject,'model_test_accuracy'] = LogisticRegressionModel.score(Xtest,ytest) # complete the guesses for each person predictions_logistic_train['predicted_choice'] = LogisticRegressionModel.predict(Xtrain) predictions_logistic_test['predicted_choice'] = LogisticRegressionModel.predict(Xtest) # concatenate dfs predictions_logistic_train_master = pd.concat([predictions_logistic_train_master, predictions_logistic_train]) predictions_logistic_test_master = pd.concat([predictions_logistic_test_master, predictions_logistic_test]) %matplotlib inline performance_logistic train_accuracy_total = np.mean(predictions_logistic_train_master['true_choice'] == predictions_logistic_train_master['predicted_choice']) test_accuracy_total = np.mean(predictions_logistic_test_master['true_choice'] == predictions_logistic_test_master['predicted_choice']) train_accuracy_total, test_accuracy_total
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
FEATURE SELECTIONsince not much improvement has been seen in iter5, I will attempt to selectivly include features from our current feature set that demonstrates strong predictive powers. I will first see any collinear features
train, test = train_test_split(resultframe, test_size=0.2, random_state=100) train_df = train.iloc[:, 2:] train_df.head() train_df.corr() colormap = plt.cm.viridis plt.figure(figsize=(12,12)) plt.title('Pearson Correlation of Features', y=1.05, size=15) sns.heatmap(train_df.corr().round(2)\ ,linewidths=0.1,vmax=1.0, square=True, cmap=colormap, \ linecolor='white', annot=True);
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
As seen in the chart above, the correlation between different features is generally pretty high. Thus, we need to be more selective in choosing features for this model as uncorrelated features are generally more powerful predictorsWill try these features: num peaks cat, percentile interval, std, p97.5 cat, p2.5 cat Random Forest Initialize dataframe to track model performance per subject
performance_forest = pd.DataFrame(index = Xdict.keys(), # subject columns=['naive_train_accuracy', 'naive_test_accuracy', 'model_train_accuracy', 'model_test_accuracy'])
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Initialize dataframes to log predicted choice and true choice for each trial
feature_importances = dict() predictions_forest_train_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_test_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) random_forest = RandomForestClassifier() # two subclasses to start for subject in subjects: print(subject) X = resultframe.iloc[:,[0,4,6,7,8]][resultframe['Subject']==subject].drop("Subject", axis=1) y = resultframe.iloc[:,[0,-1]][resultframe['Subject']==subject].drop('Subject', axis=1) # train-test split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100) # get naive performance (guessing most frequent category, the max of guessing one vs the other) performance_forest.loc[subject,'naive_train_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) performance_forest.loc[subject,'naive_test_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) # make df to track predicted vs real choice for each subject predictions_forest_train = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_test = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_train['true_choice'] = ytrain['Result'] predictions_forest_test['true_choice'] = ytest['Result'] # model random_forest.fit(Xtrain, ytrain) performance_forest.loc[subject,'model_train_accuracy'] = random_forest.score(Xtrain,ytrain) performance_forest.loc[subject,'model_test_accuracy'] = random_forest.score(Xtest,ytest) # store feature importances feature_importances[subject] = random_forest.feature_importances_ # complete the guesses for each person predictions_forest_train['predicted_choice'] = random_forest.predict(Xtrain) predictions_forest_test['predicted_choice'] = random_forest.predict(Xtest) # concatenate dfs predictions_forest_train_master = pd.concat([predictions_forest_train_master, predictions_forest_train]) predictions_forest_test_master = pd.concat([predictions_forest_test_master, predictions_forest_test]) performance_forest train_accuracy_total = np.mean(predictions_forest_train_master['true_choice'] == predictions_forest_train_master['predicted_choice']) test_accuracy_total = np.mean(predictions_forest_test_master['true_choice'] == predictions_forest_test_master['predicted_choice']) train_accuracy_total, test_accuracy_total
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Overfits a lot logistic regression modified with StandardScaler(), i.e., z-scoring the data before fitting model initialize dataframe to track model performance per subject
performance_logistic = pd.DataFrame(index = Xdict.keys(), # subject columns=['naive_train_accuracy', 'naive_test_accuracy', 'model_train_accuracy', 'model_test_accuracy'])
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
initialize dataframes to log predicted choice and true choice for each trial
predictions_logistic_train_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) LogisticRegressionModel = linear_model.LogisticRegression() from sklearn.feature_selection import SelectKBest, f_classif # use f_regression for afresh feature selection from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline # pipe = make_pipeline(SelectKBest(k=50), StandardScaler(), linear_model.LogisticRegressionCV()) pipe = make_pipeline(StandardScaler(), linear_model.LogisticRegressionCV()) LogisticRegressionModel = pipe # two subclasses to start for subject in subjects: print(subject) X = resultframe.iloc[:,[0,4,6,7,8]][resultframe['Subject']==subject].drop("Subject", axis=1) y = resultframe.iloc[:,[0,-1]][resultframe['Subject']==subject].drop('Subject', axis=1) # train-test split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100) # get naive performance (guessing most frequent category, the max of guessing one vs the other) performance_logistic.loc[subject,'naive_train_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) performance_logistic.loc[subject,'naive_test_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) # make df to track predicted vs real choice for each subject predictions_logistic_train = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_train['true_choice'] = ytrain['Result'] predictions_logistic_test['true_choice'] = ytest['Result'] # logistic regression LogisticRegressionModel.fit(Xtrain, ytrain) performance_logistic.loc[subject,'model_train_accuracy'] = LogisticRegressionModel.score(Xtrain,ytrain) performance_logistic.loc[subject,'model_test_accuracy'] = LogisticRegressionModel.score(Xtest,ytest) # complete the guesses for each person predictions_logistic_train['predicted_choice'] = LogisticRegressionModel.predict(Xtrain) predictions_logistic_test['predicted_choice'] = LogisticRegressionModel.predict(Xtest) # concatenate dfs predictions_logistic_train_master = pd.concat([predictions_logistic_train_master, predictions_logistic_train]) predictions_logistic_test_master = pd.concat([predictions_logistic_test_master, predictions_logistic_test]) performance_logistic train_accuracy_total = np.mean(predictions_logistic_train_master['true_choice'] == predictions_logistic_train_master['predicted_choice']) test_accuracy_total = np.mean(predictions_logistic_test_master['true_choice'] == predictions_logistic_test_master['predicted_choice']) train_accuracy_total, test_accuracy_total
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
random forest with StandardScaler() initialize dataframe to track model performance per subject
performance_forest = pd.DataFrame(index = Xdict.keys(), # subject columns=['naive_train_accuracy', 'naive_test_accuracy', 'model_train_accuracy', 'model_test_accuracy']) from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
initialize dataframes to log predicted choice and true choice for each trial
feature_importances = dict() predictions_forest_train_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_test_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) random_forest = RandomForestClassifier() # two subclasses to start for subject in subjects: print(subject) X = resultframe.iloc[:,[0,4,6,7,8]][resultframe['Subject']==subject].drop("Subject", axis=1) y = resultframe.iloc[:,[0,-1]][resultframe['Subject']==subject].drop('Subject', axis=1) # standardize data here scaler.fit(X) X = scaler.transform(X) # train-test split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100) # get naive performance (guessing most frequent category, the max of guessing one vs the other) performance_forest.loc[subject,'naive_train_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) performance_forest.loc[subject,'naive_test_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) # make df to track predicted vs real choice for each subject predictions_forest_train = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_test = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_forest_train['true_choice'] = ytrain['Result'] predictions_forest_test['true_choice'] = ytest['Result'] # model random_forest.fit(Xtrain, ytrain) performance_forest.loc[subject,'model_train_accuracy'] = random_forest.score(Xtrain,ytrain) performance_forest.loc[subject,'model_test_accuracy'] = random_forest.score(Xtest,ytest) # store feature importances feature_importances[subject] = random_forest.feature_importances_ # complete the guesses for each person predictions_forest_train['predicted_choice'] = random_forest.predict(Xtrain) predictions_forest_test['predicted_choice'] = random_forest.predict(Xtest) # concatenate dfs predictions_forest_train_master = pd.concat([predictions_forest_train_master, predictions_forest_train]) predictions_forest_test_master = pd.concat([predictions_forest_test_master, predictions_forest_test]) performance_forest train_accuracy_total = np.mean(predictions_forest_train_master['true_choice'] == predictions_forest_train_master['predicted_choice']) test_accuracy_total = np.mean(predictions_forest_test_master['true_choice'] == predictions_forest_test_master['predicted_choice']) train_accuracy_total, test_accuracy_total
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
logistic regression with StandardScaler() *and* selecting K best features (reducing the number of features, should reduce overfitting) initialize dataframe to track model performance per subject
performance_logistic = pd.DataFrame(index = Xdict.keys(), # subject columns=['naive_train_accuracy', 'naive_test_accuracy', 'model_train_accuracy', 'model_test_accuracy'])
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
initialize dataframes to log predicted choice and true choice for each trial
predictions_logistic_train_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test_master = pd.DataFrame(columns=['predicted_choice', 'true_choice']) LogisticRegressionModel = linear_model.LogisticRegression() from sklearn.feature_selection import SelectKBest, f_classif # use f_regression for afresh feature selection from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline
_____no_output_____
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
try different numbers of num_k
num_k = [1,2,3,4] # max number of features is 4 for k in num_k: pipe = make_pipeline(SelectKBest(k=k), StandardScaler(), linear_model.LogisticRegressionCV()) LogisticRegressionModel = pipe # two subclasses to start for subject in subjects: print(subject) X = resultframe.iloc[:,[0,4,6,7,8]][resultframe['Subject']==subject].drop("Subject", axis=1) y = resultframe.iloc[:,[0,-1]][resultframe['Subject']==subject].drop('Subject', axis=1) # train-test split Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100) # get naive performance (guessing most frequent category, the max of guessing one vs the other) performance_logistic.loc[subject,'naive_train_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) performance_logistic.loc[subject,'naive_test_accuracy'] = max(float(np.mean(ytrain=='Gamble')),float(np.mean(ytrain=='Safebet'))) # make df to track predicted vs real choice for each subject predictions_logistic_train = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_test = pd.DataFrame(columns=['predicted_choice', 'true_choice']) predictions_logistic_train['true_choice'] = ytrain['Result'] predictions_logistic_test['true_choice'] = ytest['Result'] # logistic regression LogisticRegressionModel.fit(Xtrain, ytrain) performance_logistic.loc[subject,'model_train_accuracy'] = LogisticRegressionModel.score(Xtrain,ytrain) performance_logistic.loc[subject,'model_test_accuracy'] = LogisticRegressionModel.score(Xtest,ytest) # complete the guesses for each person predictions_logistic_train['predicted_choice'] = LogisticRegressionModel.predict(Xtrain) predictions_logistic_test['predicted_choice'] = LogisticRegressionModel.predict(Xtest) # concatenate dfs predictions_logistic_train_master = pd.concat([predictions_logistic_train_master, predictions_logistic_train]) predictions_logistic_test_master = pd.concat([predictions_logistic_test_master, predictions_logistic_test]) train_accuracy_total = np.mean(predictions_logistic_train_master['true_choice'] == predictions_logistic_train_master['predicted_choice']) test_accuracy_total = np.mean(predictions_logistic_test_master['true_choice'] == predictions_logistic_test_master['predicted_choice']) print(k, train_accuracy_total, test_accuracy_total)
1 2 3
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
Trying other models
X = resultframe.iloc[:,[4,6,7,8]] y = resultframe.iloc[:,-1] x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100) print ('Number of samples in training data:',len(x_train)) print ('Number of samples in test data:',len(x_test)) perceptron = Perceptron(max_iter=100) perceptron.fit(x_train, y_train) perceptron_train_acc = perceptron.score(x_train, y_train) perceptron_test_acc = perceptron.score(x_test, y_test) print ('perceptron training acuracy= ',perceptron_train_acc) print('perceptron test accuracy= ',perceptron_test_acc) adaboost = AdaBoostClassifier() adaboost.fit(x_train, y_train) adaboost_train_acc = adaboost.score(x_train, y_train) adaboost_test_acc = adaboost.score(x_test, y_test) print ('adaboost training acuracy= ',adaboost_train_acc) print('adaboost test accuracy= ',adaboost_test_acc) random_forest = RandomForestClassifier() random_forest.fit(x_train, y_train) random_forest_train_acc = random_forest.score(x_train, y_train) random_forest_test_acc = random_forest.score(x_test, y_test) print('random_forest training acuracy= ',random_forest_train_acc) print('random_forest test accuracy= ',random_forest_test_acc)
random_forest training acuracy= 0.7377796779250392 random_forest test accuracy= 0.5162393162393163
MIT
Model History/Adi_iter6/Adi Iter 6.ipynb
dattasiddhartha/DataX-NeuralDecisionMaking
> ------ Gaussian boson sampling tutorial To get a feel for how Strawberry Fields works, let's try coding a quantum program, Gaussian boson sampling. Background information: Gaussian states---A Gaussian state is one that can be described by a [Gaussian function](https://en.wikipedia.org/wiki/Gaussian_function) in the phase space. For example, for a single mode Gaussian state, squeezed in the $x$ quadrature by squeezing operator $S(r)$, could be described by the following [Wigner quasiprobability distribution](Wigner quasiprobability distribution):$$W(x,p) = \frac{2}{\pi}e^{-2\sigma^2(x-\bar{x})^2 - 2(p-\bar{p})^2/\sigma^2}$$where $\sigma$ represents the **squeezing**, and $\bar{x}$ and $\bar{p}$ are the mean **displacement**, respectively. For multimode states containing $N$ modes, this can be generalised; Gaussian states are uniquely defined by a [multivariate Gaussian function](https://en.wikipedia.org/wiki/Multivariate_normal_distribution), defined in terms of the **vector of means** ${\mu}$ and a **covariance matrix** $\sigma$. The position and momentum basisFor example, consider a single mode in the position and momentum quadrature basis (the default for Strawberry Fields). Assuming a Gaussian state with displacement $\alpha = \bar{x}+i\bar{p}$ and squeezing $\xi = r e^{i\phi}$ in the phase space, it has a vector of means and a covariance matrix given by:$$ \mu = (\bar{x},\bar{p}),~~~~~~\sigma = SS\dagger=R(\phi/2)\begin{bmatrix}e^{-2r} & 0 \\0 & e^{2r} \\\end{bmatrix}R(\phi/2)^T$$where $S$ is the squeezing operator, and $R(\phi)$ is the standard two-dimensional rotation matrix. For multiple modes, in Strawberry Fields we use the convention $$ \mu = (\bar{x}_1,\bar{x}_2,\dots,\bar{x}_N,\bar{p}_1,\bar{p}_2,\dots,\bar{p}_N)$$and therefore, considering $\phi=0$ for convenience, the multimode covariance matrix is simply$$\sigma = \text{diag}(e^{-2r_1},\dots,e^{-2r_N},e^{2r_1},\dots,e^{2r_N})\in\mathbb{C}^{2N\times 2N}$$If a continuous-variable state *cannot* be represented in the above form (for example, a single photon Fock state or a cat state), then it is non-Gaussian. The annihilation and creation operator basisIf we are instead working in the creation and annihilation operator basis, we can use the transformation of the single mode squeezing operator$$ S(\xi) \left[\begin{matrix}\hat{a}\\\hat{a}^\dagger\end{matrix}\right] = \left[\begin{matrix}\cosh(r)&-e^{i\phi}\sinh(r)\\-e^{-i\phi}\sinh(r)&\cosh(r)\end{matrix}\right] \left[\begin{matrix}\hat{a}\\\hat{a}^\dagger\end{matrix}\right]$$resulting in$$\sigma = SS^\dagger = \left[\begin{matrix}\cosh(2r)&-e^{i\phi}\sinh(2r)\\-e^{-i\phi}\sinh(2r)&\cosh(2r)\end{matrix}\right]$$For multiple Gaussian states with non-zero squeezing, the covariance matrix in this basis simply generalises to$$\sigma = \text{diag}(S_1S_1^\dagger,\dots,S_NS_N^\dagger)\in\mathbb{C}^{2N\times 2N}$$ Introduction to Gaussian boson sampling---β€œIf you need to wait exponential time for \[your single photon sources to emit simultaneously\], then there would seem to be no advantage over classical computation. This is the reason why so far, boson sampling has only been demonstrated with 3-4 photons. When faced with these problems, until recently, all we could do was shrug our shoulders.” - [Scott Aaronson](https://www.scottaaronson.com/blog/?p=1579)While [boson sampling](https://en.wikipedia.org/wiki/Boson_sampling) allows the experimental implementation of a quantum sampling problem that it countably hard classically, one of the main issues it has in experimental setups is one of **scalability**, due to its dependence on an array of simultaneously emitting single photon sources.Currently, most physical implementations of boson sampling make use of a process known as [Spontaneous Parametric Down-Conversion](http://en.wikipedia.org/wiki/Spontaneous_parametric_down-conversion) to generate the single photon source inputs. Unfortunately, this method is non-deterministic - as the number of modes in the apparatus increases, the average time required until every photon source emits a simultaneous photon increases *exponentially*.In order to simulate a *deterministic* single photon source array, several variations on boson sampling have been proposed; the most well known being scattershot boson sampling ([Lund, 2014](https://link.aps.org/doi/10.1103/PhysRevLett.113.100502)). However, a recent boson sampling variation by [Hamilton et al.](https://link.aps.org/doi/10.1103/PhysRevLett.119.170501) negates the need for single photon Fock states altogether, by showing that **incident Gaussian states** - in this case, single mode squeezed states - can produce problems in the same computational complexity class as boson sampling. Even more significantly, this negates the scalability problem with single photon sources, as single mode squeezed states can be easily simultaneously generated experimentally.Aside from changing the input states from single photon Fock states to Gaussian states, the Gaussian boson sampling scheme appears quite similar to that of boson sampling:1. $N$ single mode squeezed states $\left|{\xi_i}\right\rangle$, with squeezing parameters $\xi_i=r_ie^{i\phi_i}$, enter an $N$ mode linear interferometer with unitary $U$. 2. The output of the interferometer is denoted $\left|{\psi'}\right\rangle$. Each output mode is then measured in the Fock basis, $\bigotimes_i n_i\left|{n_i}\middle\rangle\middle\langle{n_i}\right|$.Without loss of generality, we can absorb the squeezing parameter $\phi$ into the interferometer, and set $\phi=0$ for convenience. The covariance matrix **in the creation and annihilation operator basis** at the output of the interferometer is then given by:$$\sigma_{out} = \frac{1}{2} \left[ \begin{matrix}U&0\\0&U^*\end{matrix} \right]\sigma_{in} \left[ \begin{matrix}U^\dagger&0\\0&U^T\end{matrix} \right]$$Using phase space methods, [Hamilton et al.](https://link.aps.org/doi/10.1103/PhysRevLett.119.170501) showed that the probability of measuring a Fock state is given by$$\left|\left\langle{n_1,n_2,\dots,n_N}\middle|{\psi'}\right\rangle\right|^2 = \frac{\left|\text{Haf}[(U\bigoplus_i\tanh(r_i)U^T)]_{st}\right|^2}{n_1!n_2!\cdots n_N!\sqrt{|\sigma_{out}+I/2|}},$$i.e. the sampled single photon probability distribution is proportional to the **Hafnian** of a submatrix of $U\bigoplus_i\tanh(r_i)U^T$, dependent upon the output covariance matrix.**The Hafnian**The Hafnian of a matrix is defined by$$\text{Haf}(A) = \frac{1}{n!2^n}\sum_{\sigma=S_{2N}}\prod_{i=1}^N A_{\sigma(2i-1)\sigma(2i)}$$$S_{2N}$ is the set of all permutations of $2N$ elements. In graph theory, the Hafnian calculates the number of perfect matchings in an **arbitrary graph** with adjacency matrix $A$.Compare this to the permanent, which calculates the number of perfect matchings on a *bipartite* graph - the Hafnian turns out to be a generalisation of the permanent, with the relationship$$\begin{align}\text{Per(A)} = \text{Haf}\left(\left[\begin{matrix}0&A\\A^T&0\end{matrix}\right]\right)\end{align}$$As any algorithm that could calculate (or even approximate) the Hafnian could also calculate the permanent - a P problem - it follows that calculating or approximating the Hafnian must also be a classically hard problem. Equally squeezed input statesIn the case where all the input states are squeezed equally with squeezing factor $\xi=r$ (i.e. so $\phi=0$), we can simplify the denominator into a much nicer form. It can be easily seen that, due to the unitarity of $U$,$$\left[ \begin{matrix}U&0\\0&U^*\end{matrix} \right] \left[ \begin{matrix}U^\dagger&0\\0&U^T\end{matrix} \right] = \left[ \begin{matrix}UU^\dagger&0\\0&U^*U^T\end{matrix} \right] =I$$Thus, we have $$\begin{align}\sigma_{out} +\frac{1}{2}I &= \sigma_{out} + \frac{1}{2} \left[ \begin{matrix}U&0\\0&U^*\end{matrix} \right] \left[ \begin{matrix}U^\dagger&0\\0&U^T\end{matrix} \right] = \left[ \begin{matrix}U&0\\0&U^*\end{matrix} \right] \frac{1}{2} \left(\sigma_{in}+I\right) \left[ \begin{matrix}U^\dagger&0\\0&U^T\end{matrix} \right]\end{align}$$where we have subtituted in the expression for $\sigma_{out}$. Taking the determinants of both sides, the two block diagonal matrices containing $U$ are unitary, and thus have determinant 1, resulting in$$\left|\sigma_{out} +\frac{1}{2}I\right| =\left|\frac{1}{2}\left(\sigma_{in}+I\right)\right|=\left|\frac{1}{2}\left(SS^\dagger+I\right)\right| $$By expanding out the right hand side, and using various trig identities, it is easy to see that this simply reduces to $\cosh^{2N}(r)$ where $N$ is the number of modes; thus the Gaussian boson sampling problem in the case of equally squeezed input modes reduces to$$\left|\left\langle{n_1,n_2,\dots,n_N}\middle|{\psi'}\right\rangle\right|^2 = \frac{\left|\text{Haf}[(UU^T\tanh(r))]_{st}\right|^2}{n_1!n_2!\cdots n_N!\cosh^N(r)},$$ The Gaussian boson sampling circuit---The multimode linear interferometer can be decomposed into two-mode beamsplitters (`BSgate`) and single-mode phase shifters (`Rgate`) (Reck, 1994), allowing for an almost trivial translation into a continuous-variable quantum circuit.For example, in the case of a 4 mode interferometer, with arbitrary $4\times 4$ unitary $U$, the continuous-variable quantum circuit for Gaussian boson sampling is given byIn the above,* the single mode squeeze states all apply identical squeezing $\xi=r$,* the detectors perform Fock state measurements (i.e. measuring the photon number of each mode),* the parameters of the beamsplitters and the rotation gates determines the unitary $U$.For $N$ input modes, we must have a minimum of $N$ columns in the beamsplitter array ([Clements, 2016](https://arxiv.org/abs/1603.08788)). Simulating boson sampling in Strawberry Fields---
import strawberryfields as sf from strawberryfields.ops import * from strawberryfields.utils import random_interferometer
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
Strawberry Fields makes this easy; there is an `Interferometer` quantum operation, and a utility function that allows us to generate the matrix representing a random interferometer.
U = random_interferometer(4)
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
The lack of Fock states and non-linear operations means we can use the Gaussian backend to simulate Gaussian boson sampling. In this example program, we are using input states with squeezing parameter $\xi=1$, and the randomly chosen interferometer generated above.
eng, q = sf.Engine(4) with eng: # prepare the input squeezed states S = Sgate(1) All(S) | q # interferometer Interferometer(U) | q state = eng.run('gaussian')
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
We can see the decomposed beamsplitters and rotation gates, by calling `eng.print_applied()`:
eng.print_applied()
Run 0: Sgate(1, 0) | (q[0]) Sgate(1, 0) | (q[1]) Sgate(1, 0) | (q[2]) Sgate(1, 0) | (q[3]) Rgate(-1.77) | (q[0]) BSgate(0.3621, 0) | (q[0], q[1]) Rgate(0.4065) | (q[2]) BSgate(0.7524, 0) | (q[2], q[3]) Rgate(-0.5894) | (q[1]) BSgate(0.9441, 0) | (q[1], q[2]) Rgate(0.2868) | (q[0]) BSgate(0.8913, 0) | (q[0], q[1]) Rgate(-1.631) | (q[0]) Rgate(-1.74) | (q[1]) Rgate(3.074) | (q[2]) Rgate(-0.9618) | (q[3]) BSgate(-1.482, 0) | (q[2], q[3]) Rgate(2.383) | (q[2]) BSgate(-0.9124, 0) | (q[1], q[2]) Rgate(2.188) | (q[1])
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
**Available decompositions**Check out our documentation to see the available CV decompositions available in Strawberry Fields. Analysis---Let's now verify the Gaussian boson sampling result, by comparing the output Fock state probabilities to the Hafnian, using the relationship$$\left|\left\langle{n_1,n_2,\dots,n_N}\middle|{\psi'}\right\rangle\right|^2 = \frac{\left|\text{Haf}[(UU^T\tanh(r))]_{st}\right|^2}{n_1!n_2!\cdots n_N!\cosh^N(r)}$$ Calculating the HafnianFor the right hand side numerator, we first calculate the submatrix $[(UU^T\tanh(r))]_{st}$:
B = (np.dot(U, U.T) * np.tanh(1))
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
In Gaussian boson sampling, we determine the submatrix by taking the rows and columns corresponding to the measured Fock state. For example, to calculate the submatrix in the case of the output measurement $\left|{1,1,0,0}\right\rangle$,
B[:,[0,1]][[0,1]]
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
To calculate the Hafnian in Python, we can use the direct definition$$\text{Haf}(A) = \frac{1}{n!2^n} \sum_{\sigma \in S_{2n}} \prod_{j=1}^n A_{\sigma(2j - 1), \sigma(2j)}$$Notice that this function counts each term in the definition multiple times, and renormalizes to remove the multiple counts by dividing by a factor $\frac{1}{n!2^n}$. **This function is extremely slow!**
from itertools import permutations from scipy.special import factorial def Haf(M): n=len(M) m=int(n/2) haf=0.0 for i in permutations(range(n)): prod=1.0 for j in range(m): prod*=M[i[2*j],i[2*j+1]] haf+=prod return haf/(factorial(m)*(2**m))
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
Comparing to the SF result In Strawberry Fields, both Fock and Gaussian states have the method `fock_prob()`, which returns the probability of measuring that particular Fock state. Let's compare the case of measuring at the output state $\left|0,1,0,1\right\rangle$:
B = (np.dot(U,U.T) * np.tanh(1))[:, [1,3]][[1,3]] np.abs(Haf(B))**2 / np.cosh(1)**4 state.fock_prob([0,1,0,1])
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
For the measurement result $\left|2,0,0,0\right\rangle$:
B = (np.dot(U,U.T) * np.tanh(1))[:, [0,0]][[0,0]] np.abs(Haf(B))**2 / (2*np.cosh(1)**4) state.fock_prob([2,0,0,0])
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
For the measurement result $\left|1,1,0,0\right\rangle$:
B = (np.dot(U,U.T) * np.tanh(1))[:, [0,1]][[0,1]] np.abs(Haf(B))**2 / np.cosh(1)**4 state.fock_prob([1,1,0,0])
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
For the measurement result $\left|1,1,1,1\right\rangle$, this corresponds to the full matrix $B$:
B = (np.dot(U,U.T) * np.tanh(1)) np.abs(Haf(B))**2 / np.cosh(1)**4 state.fock_prob([1,1,1,1])
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
For the measurement result $\left|0,0,0,0\right\rangle$, this corresponds to a **null** submatrix, which has a Hafnian of 1:
1/np.cosh(1)**4 state.fock_prob([0,0,0,0])
_____no_output_____
Apache-2.0
examples/GaussianBosonSampling.ipynb
cclauss/strawberryfields
Pytorch: An automatic differentiation tool`Pytorch`λ₯Ό ν™œμš©ν•˜λ©΄ λ³΅μž‘ν•œ ν•¨μˆ˜μ˜ 미뢄을 μ†μ‰½κ²Œ + 효율적으둜 계산할 수 μžˆμŠ΅λ‹ˆλ‹€!`Pytorch`λ₯Ό ν™œμš©ν•΄μ„œ λ³΅μž‘ν•œ 심측 신경망을 ν›ˆλ ¨ν•  λ•Œ, μ˜€μ°¨ν•¨μˆ˜μ— λŒ€ν•œ νŒŒλΌλ―Έν„°μ˜ νŽΈλ―ΈλΆ„μΉ˜λ₯Ό 계산을 μ†μ‰½κ²Œ μˆ˜ν–‰ν• μˆ˜ μžˆμŠ΅λ‹ˆλ‹€! Pytorch μ²«λ§Œλ‚¨μš°λ¦¬μ—κ²Œ μ•„λž˜μ™€ 같은 κ°„λ‹¨ν•œ μ„ ν˜•μ‹μ΄ μ£Όμ–΄μ Έμžˆλ‹€κ³  μƒκ°ν•΄λ³ΌκΉŒμš”?$$ y = wx $$ 그러면 $\frac{\partial y}{\partial w}$ 을 μ–΄λ–»κ²Œ 계산 ν•  수 μžˆμ„κΉŒμš”?일단 직접 미뢄을 해보면$\frac{\partial y}{\partial w} = x$ 이 λ˜λ‹ˆ, κ°„λ‹¨ν•œμ˜ˆμ œμ—μ„œ `pytorch`둜 ν•΄λ‹Ή 값을 κ³„μ‚°ν•˜λŠ” 방법을 μ•Œμ•„λ³΄λ„λ‘ ν•©μ‹œλ‹€!
# 랭크1 / μ‚¬μ΄μ¦ˆ1 이며 값은 1*2 인 pytorch tensorλ₯Ό ν•˜λ‚˜ λ§Œλ“­λ‹ˆλ‹€. x = torch.ones(1) * 2 # 랭크1 / μ‚¬μ΄μ¦ˆ1 이며 값은 1 인 pytorch tensorλ₯Ό ν•˜λ‚˜ λ§Œλ“­λ‹ˆλ‹€. w = torch.ones(1, requires_grad=True) y = w * x y
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
νŽΈλ―ΈλΆ„ κ³„μ‚°ν•˜κΈ°!pytorchμ—μ„œλŠ” 미뢄값을 κ³„μ‚°ν•˜κ³  싢은 ν…μ„œμ— `.backward()` λ₯Ό λΆ™μ—¬μ£ΌλŠ” κ²ƒμœΌλ‘œ, ν•΄λ‹Ή ν…μ„œ 계산에 μ—°κ²° λ˜μ–΄μžˆλŠ” ν…μ„œ 쀑 `gradient`λ₯Ό κ³„μ‚°ν•΄μ•Όν•˜λŠ” ν…μ„œ(λ“€)에 λŒ€ν•œ νŽΈλ―ΈλΆ„μΉ˜λ“€μ„ κ³„μ‚°ν• μˆ˜ μžˆμŠ΅λ‹ˆλ‹€. `requires_grad=True`λ₯Ό ν†΅ν•΄μ„œ μ–΄λ–€ ν…μ„œμ— 미뢄값을 계산할지 할당해쀄 수 μžˆμŠ΅λ‹ˆλ‹€.
y.backward()
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
νŽΈλ―ΈλΆ„κ°’ ν™•μΈν•˜κΈ°!`ν…μ„œ.grad` λ₯Ό ν™œμš©ν•΄μ„œ νŠΉμ • ν…μ„œμ˜ gradient 값을 확인해볼 수 μžˆμŠ΅λ‹ˆλ‹€. ν•œλ²ˆ `w.grad`λ₯Ό ν™œμš©ν•΄μ„œ `y` 에 λŒ€ν•œ `w`의 νŽΈλ―ΈλΆ„κ°’μ„ ν™•μΈν•΄λ³ΌκΉŒμš”?
w.grad
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
그러면 requires_grad = False 인 κ²½μš°λŠ”?
x.grad
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
`torch.nn`, Neural Network νŒ¨ν‚€μ§€`pytorch`μ—λŠ” 이미 λ‹€μ–‘ν•œ neural networkλ“€μ˜ λͺ¨λ“ˆλ“€μ„ κ΅¬ν˜„ν•΄ λ†“μ•˜μŠ΅λ‹ˆλ‹€. κ·Έ 쀑에 κ°€μž₯ κ°„λ‹¨ν•˜μ§€λ§Œ 정말 자주 μ“°μ΄λŠ” `nn.Linear` 에 λŒ€ν•΄ μ•Œμ•„λ³΄λ©΄μ„œ `pytorch`의 `nn.Module`에 λŒ€ν•΄μ„œ μ•Œμ•„λ³΄λ„λ‘ ν•©μ‹œλ‹€. `nn.Linear` λŒμ•„λ³΄κΈ°`nn.Linear` 은 μ•žμ„œ 배운 μ„ ν˜•νšŒκ·€ 및 λ‹€μΈ΅ νΌμ…‰νŠΈλ‘  λͺ¨λΈμ˜ ν•œ 측에 ν•΄λ‹Ήν•˜λŠ” νŒŒλΌλ―Έν„° $w$, $b$ λ₯Ό κ°€μ§€κ³  μžˆμŠ΅λ‹ˆλ‹€. μ˜ˆμ‹œλ‘œ μž…λ ₯의 dimension 이 10이고 좜λ ₯의 dimension 이 1인 `nn.Linear` λͺ¨λ“ˆμ„ λ§Œλ“€μ–΄ λ΄…μ‹œλ‹€!
lin = nn.Linear(in_features=10, out_features=1) for p in lin.parameters(): print(p) print(p.shape) print('\n')
Parameter containing: tensor([[ 0.0561, 0.1509, 0.0586, -0.0598, -0.1934, 0.2985, -0.0112, 0.0390, 0.2597, -0.1488]], requires_grad=True) torch.Size([1, 10]) Parameter containing: tensor([-0.2357], requires_grad=True) torch.Size([1])
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
`Linear` λͺ¨λ“ˆλ‘œ $y = Wx+b$ κ³„μ‚°ν•˜κΈ°μ„ ν˜•νšŒκ·€μ‹λ„ κ·Έλž¬μ§€λ§Œ, λ‹€μΈ΅ νΌμ…‰νŠΈλ‘  λͺ¨λΈλ„ ν•˜λ‚˜μ˜ λ ˆμ΄μ–΄λŠ” μ•„λž˜μ˜ μˆ˜μ‹μ„ κ³„μ‚°ν–ˆλ˜ 것을 κΈ°μ–΅ν•˜μ‹œμ£ ?$$y = Wx+b$$`nn.Linear`λ₯Ό ν™œμš©ν•΄μ„œ μ € μˆ˜μ‹μ„ κ³„μ‚°ν•΄λ³ΌκΉŒμš”?검산을 μ‰½κ²Œ ν•˜κΈ° μœ„ν•΄μ„œ W의 값은 λͺ¨λ‘ 1.0 으둜 b λŠ” 5.0 으둜 λ§Œλ“€μ–΄λ‘κ² μŠ΅λ‹ˆλ‹€.
lin.weight.data = torch.ones_like(lin.weight.data) lin.bias.data = torch.ones_like(lin.bias.data) * 5.0 for p in lin.parameters(): print(p) print(p.shape) print('\n') x = torch.ones(3, 10) # rank2 tensorλ₯Ό λ§Œλ“­λ‹ˆλ‹€. : mini batch size = 3 y_hat = lin(x) print(y_hat.shape) print(y_hat)
torch.Size([3, 1]) tensor([[15.], [15.], [15.]], grad_fn=<AddmmBackward>)
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
μ§€κΈˆ 무슨일이 μΌμ–΄λ‚œκ±°μ£ ?>Q1. μ™œ Rank 2 tensor λ₯Ό μž…λ ₯으둜 μ‚¬μš©ν•˜λ‚˜μš”? >A1. νŒŒμ΄ν† μΉ˜μ˜ `nn` 에 μ •μ˜λ˜μ–΄μžˆλŠ” ν΄λž˜μŠ€λ“€μ€ μž…λ ₯의 κ°€μž₯ 첫번째 λ””λ©˜μ Όμ„ `배치 μ‚¬μ΄μ¦ˆ`둜 ν•΄μ„ν•©λ‹ˆλ‹€. >Q2. lin(x) λŠ” λ„λŒ€μ²΄ λ¬΄μ—‡μΈκ°€μš”? >A2. νŒŒμ΄μ¬μ— μ΅μˆ™ν•˜μ‹  뢄듀은 `object()` λŠ” `object.__call__()`에 μ •μ˜λ˜μ–΄μžˆλŠ” ν•¨μˆ˜λ₯Ό μ‹€ν–‰μ‹œν‚€μ‹ λ‹€λŠ” 것을 μ•„μ‹€ν…λ°μš”. νŒŒμ΄ν† μΉ˜μ˜ `nn.Module`은 `__call__()`을 μ˜€λ²„λΌμ΄λ“œν•˜λŠ” ν•¨μˆ˜μΈ `forward()`λ₯Ό κ΅¬ν˜„ν•˜λŠ” 것을 __ꢌμž₯__ ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. 일반적으둜, `forward()`μ•ˆμ—μ„œ μ‹€μ œλ‘œ νŒŒλΌλ―Έν„°μ™€ 인풋을 κ°€μ§€κ³  νŠΉμ • λ ˆμ΄μ–΄μ˜ μ—°μ‚°κ³Ό 정을 κ΅¬ν˜„ν•˜κ²Œ λ©λ‹ˆλ‹€.μ—¬λŸ¬κ°€μ§€ μ΄μœ κ°€ μžˆκ² μ§€λ§Œ, νŒŒμ΄ν† μΉ˜κ°€ λ‚΄λΆ€μ μœΌλ‘œ foward() 의 μ‹€ν–‰μ˜ μ „/ν›„λ‘œ μ‚¬μš©μž μΉœν™”μ μΈ ν™˜κ²½μ„ μ œκ³΅ν•˜κΈ°μœ„ν•΄μ„œ 좔가적인 μž‘μ—…λ“€μ„ ν•΄μ€λ‹ˆλ‹€. 이 뢀뢄은 λ‹€μŒ μ‹€μŠ΅μ—μ„œ λ‹€μΈ΅ νΌμ…‰νŠΈλ‘  λͺ¨λΈμ„ λ§Œλ“€λ©΄μ„œ 쑰금 더 μžμ„Ένžˆ μ„€λͺ…ν•΄λ³Όκ²Œμš”! Pytorch 둜 κ°„λ‹¨νžˆ! μ„ ν˜•νšŒκ·€ κ΅¬ν˜„ν•˜κΈ°μ €λ²ˆ μ‹€μŠ΅μ—μ„œ numpy 둜 κ΅¬ν˜„ν–ˆλ˜ Linear regression λͺ¨λΈμ„ λ‹€μ‹œ ν•œλ²ˆ νŒŒμ΄ν† μΉ˜λ‘œ κ΅¬ν˜„ν•΄λ³ΌκΉŒμš”? λͺ‡ 쀄이면 끝날 μ •λ„λ‘œ κ°„λ‹¨ν•©λ‹ˆλ‹€ :)
def generate_samples(n_samples: int, w: float = 1.0, b: float = 0.5, x_range=[-1.0,1.0]): xs = np.random.uniform(low=x_range[0], high=x_range[1], size=n_samples) ys = w * xs + b xs = torch.tensor(xs).view(-1,1).float() # νŒŒμ΄ν† μΉ˜ nn.Module 은 λ°°μΉ˜κ°€ 첫 λ””λ©˜μ Ό! ys = torch.tensor(ys).view(-1,1).float() return xs, ys w = 1.0 b = 0.5 xs, ys = generate_samples(30, w=w, b=b) lin_model = nn.Linear(in_features=1, out_features=1) # lim_model 생성 for p in lin_model.parameters(): print(p) print(p.grad) ys_hat = lin_model(xs) # lin_model 둜 μ˜ˆμΈ‘ν•˜κΈ°
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
Loss ν•¨μˆ˜λŠ”? MSE!`pytorch`μ—μ„œλŠ” 자주 μ“°μ΄λŠ” loss ν•¨μˆ˜λ“€μ— λŒ€ν•΄μ„œλ„ 미리 κ΅¬ν˜„μ„ ν•΄λ‘μ—ˆμŠ΅λ‹ˆλ‹€.이번 μ‹€μŠ΅μ—μ„œλŠ” __numpy둜 μ„ ν˜•νšŒκ·€ λͺ¨λΈ λ§Œλ“€κΈ°__ μ—μ„œ μ‚¬μš©λλ˜ MSE λ₯Ό μ˜€μ°¨ν•¨μˆ˜λ‘œ μ‚¬μš©ν•΄λ³ΌκΉŒμš”?
criteria = nn.MSELoss() loss = criteria(ys_hat, ys)
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
κ²½μ‚¬ν•˜κ°•λ²•μ„ ν™œμš©ν•΄μ„œ νŒŒλΌλ―Έν„° μ—…λ°μ΄νŠΈν•˜κΈ°!`pytorch`λŠ” μ—¬λŸ¬λΆ„λ“€μ„ μœ„ν•΄μ„œ λ‹€μ–‘ν•œ optimizer듀을 κ΅¬ν˜„ν•΄ λ‘μ—ˆμŠ΅λ‹ˆλ‹€. 일단은 κ°€μž₯ κ°„λ‹¨ν•œ stochastic gradient descent (SGD)λ₯Ό ν™œμš©ν•΄ λ³ΌκΉŒμš”? optimizer에 λ”°λΌμ„œ λ‹€μ–‘ν•œ μΈμžλ“€μ„ ν™œμš©ν•˜μ§€λ§Œ 기본적으둜 `params` 와 `lr`을 μ§€μ •ν•΄μ£Όλ©΄ λ‚˜λ¨Έμ§€λŠ” optimizer λ§ˆλ‹€ μž˜λ˜λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ§„ μΈμžλ“€λ‘œ optimizer을 μ†μ‰½κ²Œ μƒμ„±ν• μˆ˜ μžˆμŠ΅λ‹ˆλ‹€.
opt = torch.optim.SGD(params=lin_model.parameters(), lr=0.01)
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
μžŠμ§€λ§ˆμ„Έμš”! opt.zero_grad()`pytorch`둜 νŽΈλ―ΈλΆ„μ„ κ³„μ‚°ν•˜κΈ°μ „μ—, κΌ­ `opt.zero_grad()` ν•¨μˆ˜λ₯Ό μ΄μš©ν•΄μ„œ νŽΈλ―ΈλΆ„ 계산이 ν•„μš”ν•œ ν…μ„œλ“€μ˜ νŽΈλ―ΈλΆ„κ°’μ„ μ΄ˆκΈ°ν™” ν•΄μ£ΌλŠ” 것을 ꢌμž₯λ“œλ¦½λ‹ˆλ‹€.
opt.zero_grad() for p in lin_model.parameters(): print(p) print(p.grad) loss.backward() opt.step() for p in lin_model.parameters(): print(p) print(p.grad)
Parameter containing: tensor([[-0.5666]], requires_grad=True) tensor([[-1.1548]]) Parameter containing: tensor([0.6042], requires_grad=True) tensor([-0.1280])
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
κ²½μ‚¬ν•˜κ°•λ²•μ„ ν™œμš©ν•΄μ„œ 졜적 νŒŒλΌλ―Έν„°λ₯Ό μ°Ύμ•„λ΄…μ‹œλ‹€!
def run_sgd(n_steps: int = 1000, report_every: int = 100, verbose=True): lin_model = nn.Linear(in_features=1, out_features=1) opt = torch.optim.SGD(params=lin_model.parameters(), lr=0.01) sgd_losses = [] for i in range(n_steps): ys_hat = lin_model(xs) loss = criteria(ys_hat, ys) opt.zero_grad() loss.backward() opt.step() if i % report_every == 0: if verbose: print('\n') print("{}th update: {}".format(i,loss)) for p in lin_model.parameters(): print(p) sgd_losses.append(loss.log10().detach().numpy()) return sgd_losses _ = run_sgd()
0th update: 0.8393566012382507 Parameter containing: tensor([[0.1211]], requires_grad=True) Parameter containing: tensor([-0.1363], requires_grad=True) 100th update: 0.060856711119413376 Parameter containing: tensor([[0.6145]], requires_grad=True) Parameter containing: tensor([0.4634], requires_grad=True) 200th update: 0.012306183576583862 Parameter containing: tensor([[0.8169]], requires_grad=True) Parameter containing: tensor([0.5173], requires_grad=True) 300th update: 0.002916797064244747 Parameter containing: tensor([[0.9110]], requires_grad=True) Parameter containing: tensor([0.5130], requires_grad=True) 400th update: 0.0006996632437221706 Parameter containing: tensor([[0.9565]], requires_grad=True) Parameter containing: tensor([0.5069], requires_grad=True) 500th update: 0.00016797447460703552 Parameter containing: tensor([[0.9787]], requires_grad=True) Parameter containing: tensor([0.5035], requires_grad=True) 600th update: 4.032816650578752e-05 Parameter containing: tensor([[0.9896]], requires_grad=True) Parameter containing: tensor([0.5017], requires_grad=True) 700th update: 9.681772098701913e-06 Parameter containing: tensor([[0.9949]], requires_grad=True) Parameter containing: tensor([0.5008], requires_grad=True) 800th update: 2.3242985207616584e-06 Parameter containing: tensor([[0.9975]], requires_grad=True) Parameter containing: tensor([0.5004], requires_grad=True) 900th update: 5.579695425694808e-07 Parameter containing: tensor([[0.9988]], requires_grad=True) Parameter containing: tensor([0.5002], requires_grad=True)
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
λ‹€λ₯Έ Optimizer도 μ‚¬μš©ν•΄λ³ΌκΉŒμš”?μˆ˜μ—…μ‹œκ°„μ— λ°°μ› λ˜ Adam 으둜 μ΅œμ ν™”λ₯Ό ν•˜λ©΄ μ–΄λ–€κ²°κ³Όκ°€ λ‚˜μ˜¬κΉŒμš”?
def run_adam(n_steps: int = 1000, report_every: int = 100, verbose=True): lin_model = nn.Linear(in_features=1, out_features=1) opt = torch.optim.Adam(params=lin_model.parameters(), lr=0.01) adam_losses = [] for i in range(n_steps): ys_hat = lin_model(xs) loss = criteria(ys_hat, ys) opt.zero_grad() loss.backward() opt.step() if i % report_every == 0: if verbose: print('\n') print("{}th update: {}".format(i,loss)) for p in lin_model.parameters(): print(p) adam_losses.append(loss.log10().detach().numpy()) return adam_losses _ = run_adam()
0th update: 1.2440284490585327 Parameter containing: tensor([[0.4118]], requires_grad=True) Parameter containing: tensor([-0.4825], requires_grad=True) 100th update: 0.05024972930550575 Parameter containing: tensor([[1.0383]], requires_grad=True) Parameter containing: tensor([0.2774], requires_grad=True) 200th update: 0.0004788984660990536 Parameter containing: tensor([[1.0159]], requires_grad=True) Parameter containing: tensor([0.4793], requires_grad=True) 300th update: 4.6914931317587616e-07 Parameter containing: tensor([[1.0005]], requires_grad=True) Parameter containing: tensor([0.4994], requires_grad=True) 400th update: 3.263671667988466e-12 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True) 500th update: 4.133082697160666e-14 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True) 600th update: 4.133082697160666e-14 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True) 700th update: 4.133082697160666e-14 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True) 800th update: 4.133082697160666e-14 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True) 900th update: 4.133082697160666e-14 Parameter containing: tensor([[1.0000]], requires_grad=True) Parameter containing: tensor([0.5000], requires_grad=True)
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
μ’€ 더 μƒμ„Έν•˜κ²Œ λΉ„κ΅ν•΄λ³ΌκΉŒμš”?`pytorch`μ—μ„œ `nn.Linear`λ₯Ό λΉ„λ‘―ν•œ λ§Žμ€ λͺ¨λ“ˆλ“€μ€ νŠΉλ³„ν•œ κ²½μš°κ°€ μ•„λ‹Œμ΄μƒ,λͺ¨λ“ˆλ‚΄μ— νŒŒλΌλ―Έν„°κ°€ μž„μ˜μ˜ κ°’μœΌλ‘œ __잘!__ μ΄ˆκΈ°ν™” λ©λ‹ˆλ‹€. > "잘!" 에 λŒ€ν•΄μ„œλŠ” μˆ˜μ—…μ—μ„œ 닀루지 μ•Šμ•˜μ§€λ§Œ, ν™•μ‹€νžˆ ν˜„λŒ€ λ”₯λŸ¬λ‹μ΄ 잘 μž‘λ™ν•˜κ²Œ ν•˜λŠ” μ€‘μš”ν•œ μš”μ†Œμ€‘μ— ν•˜λ‚˜μž…λ‹ˆλ‹€. Parameter initialization 이라고 λΆ€λ₯΄λŠ” 기법듀이며, λŒ€λΆ€λΆ„μ˜ `pytorch` λͺ¨λ“ˆλ“€μ€ 각각의 λͺ¨λ“ˆμ— λ”°λΌμ„œ 일반적으둜 잘 μž‘λ™ν•˜λŠ”κ²ƒμœΌλ‘œ μ•Œλ €μ ΈμžˆλŠ” λ°©μ‹μœΌλ‘œ νŒŒλΌλ―Έν„°λ“€μ΄ μ΄ˆκΈ°ν™” 되게 μ½”λ”©λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€.κ·Έλž˜μ„œ λ§€ 번 λͺ¨λ“ˆμ„ μƒμ„±ν• λ•Œλ§ˆλ‹€ νŒŒλΌλ―Έν„°μ˜ μ΄ˆκΈ°κ°’μ΄ λ‹¬λΌμ§€κ²Œ λ©λ‹ˆλ‹€. μ΄λ²ˆμ—λŠ” 쑰금 κ³΅μ •ν•œ 비ꡐλ₯Ό μœ„ν•΄μ„œ μœ„μ—μ„œ ν–ˆλ˜ μ‹€ν—˜μ„ μ—¬λŸ¬λ²ˆ λ°˜λ³΅ν•΄μ„œ ν‰κ· μ μœΌλ‘œλ„ Adam이 쒋은지 ν™•μΈν•΄λ³ΌκΉŒμš”?
sgd_losses = [run_sgd(verbose=False) for _ in range(50)] sgd_losses = np.stack(sgd_losses) sgd_loss_mean = np.mean(sgd_losses, axis=0) sgd_loss_std = np.std(sgd_losses, axis=-0) adam_losses = [run_adam(verbose=False) for _ in range(50)] adam_losses = np.stack(adam_losses) adam_loss_mean = np.mean(adam_losses, axis=0) adam_loss_std = np.std(adam_losses, axis=-0) fig, ax = plt.subplots(1,1, figsize=(10,5)) ax.grid() ax.fill_between(x=range(sgd_loss_mean.shape[0]), y1=sgd_loss_mean + sgd_loss_std, y2=sgd_loss_mean - sgd_loss_std, alpha=0.3) ax.plot(sgd_loss_mean, label='SGD') ax.fill_between(x=range(adam_loss_mean.shape[0]), y1=adam_loss_mean + adam_loss_std, y2=adam_loss_mean - adam_loss_std, alpha=0.3) ax.plot(adam_loss_mean, label='Adam') ax.legend()
_____no_output_____
MIT
[Preliminary] 00 Linear regression with pytorch.ipynb
Junyoungpark/2021-lg-AI-camp
Analyzing IMDB Data in Keras
# Imports import numpy as np import keras from keras.datasets import imdb from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.preprocessing.text import Tokenizer import matplotlib.pyplot as plt %matplotlib inline np.random.seed(42)
Using TensorFlow backend.
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
1. Loading the dataThis dataset comes preloaded with Keras, so one simple command will get us training and testing data. There is a parameter for how many words we want to look at. We've set it at 1000, but feel free to experiment.
# Loading the data (it's preloaded in Keras) (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=1000) print(x_train.shape) print(x_test.shape)
(25000,) (25000,)
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
2. Examining the dataNotice that the data has been already pre-processed, where all the words have numbers, and the reviews come in as a vector with the words that the review contains. For example, if the word 'the' is the first one in our dictionary, and a review contains the word 'the', then there is a 1 in the corresponding vector.The output comes as a vector of 1's and 0's, where 1 is a positive sentiment for the review, and 0 is negative.
print(x_train[0]) print(y_train[0])
[1, 11, 2, 11, 4, 2, 745, 2, 299, 2, 590, 2, 2, 37, 47, 27, 2, 2, 2, 19, 6, 2, 15, 2, 2, 17, 2, 723, 2, 2, 757, 46, 4, 232, 2, 39, 107, 2, 11, 4, 2, 198, 24, 4, 2, 133, 4, 107, 7, 98, 413, 2, 2, 11, 35, 781, 8, 169, 4, 2, 5, 259, 334, 2, 8, 4, 2, 10, 10, 17, 16, 2, 46, 34, 101, 612, 7, 84, 18, 49, 282, 167, 2, 2, 122, 24, 2, 8, 177, 4, 392, 531, 19, 259, 15, 934, 40, 507, 39, 2, 260, 77, 8, 162, 2, 121, 4, 65, 304, 273, 13, 70, 2, 2, 8, 15, 745, 2, 5, 27, 322, 2, 2, 2, 70, 30, 2, 88, 17, 6, 2, 2, 29, 100, 30, 2, 50, 21, 18, 148, 15, 26, 2, 12, 152, 157, 10, 10, 21, 19, 2, 46, 50, 5, 4, 2, 112, 828, 6, 2, 4, 162, 2, 2, 517, 6, 2, 7, 4, 2, 2, 4, 351, 232, 385, 125, 6, 2, 39, 2, 5, 29, 69, 2, 2, 6, 162, 2, 2, 232, 256, 34, 718, 2, 2, 8, 6, 226, 762, 7, 2, 2, 5, 517, 2, 6, 2, 7, 4, 351, 232, 37, 9, 2, 8, 123, 2, 2, 2, 188, 2, 857, 11, 4, 86, 22, 121, 29, 2, 2, 10, 10, 2, 61, 514, 11, 14, 22, 9, 2, 2, 14, 575, 208, 159, 2, 16, 2, 5, 187, 15, 58, 29, 93, 6, 2, 7, 395, 62, 30, 2, 493, 37, 26, 66, 2, 29, 299, 4, 172, 243, 7, 217, 11, 4, 2, 2, 22, 4, 2, 2, 13, 70, 243, 7, 2, 19, 2, 11, 15, 236, 2, 136, 121, 29, 5, 2, 26, 112, 2, 180, 34, 2, 2, 5, 320, 4, 162, 2, 568, 319, 4, 2, 2, 2, 269, 8, 401, 56, 19, 2, 16, 142, 334, 88, 146, 243, 7, 11, 2, 2, 150, 11, 4, 2, 2, 10, 10, 2, 828, 4, 206, 170, 33, 6, 52, 2, 225, 55, 117, 180, 58, 11, 14, 22, 48, 50, 16, 101, 329, 12, 62, 30, 35, 2, 2, 22, 2, 11, 4, 2, 2, 35, 735, 18, 118, 204, 881, 15, 291, 10, 10, 2, 82, 93, 52, 361, 7, 4, 162, 2, 2, 5, 4, 785, 2, 49, 7, 4, 172, 2, 7, 665, 26, 303, 343, 11, 23, 4, 2, 11, 192, 2, 11, 4, 2, 9, 44, 84, 24, 2, 54, 36, 66, 144, 11, 68, 205, 118, 602, 55, 729, 174, 8, 23, 4, 2, 10, 10, 2, 11, 4, 2, 127, 316, 2, 37, 16, 2, 19, 12, 150, 138, 426, 2, 2, 79, 49, 542, 162, 2, 2, 84, 11, 4, 392, 555] 1
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
3. One-hot encoding the outputHere, we'll turn the input vectors into (0,1)-vectors. For example, if the pre-processed vector contains the number 14, then in the processed vector, the 14th entry will be 1.
# One-hot encoding the output into vector mode, each of length 1000 tokenizer = Tokenizer(num_words=1000) x_train = tokenizer.sequences_to_matrix(x_train, mode='binary') x_test = tokenizer.sequences_to_matrix(x_test, mode='binary') print(x_train[0]) print(x_train.shape) x_train[1]
(25000, 1000)
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
And we'll also one-hot encode the output.
# One-hot encoding the output num_classes = 2 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) print(y_train.shape) print(y_test.shape)
(25000, 2) (25000, 2)
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
4. Building the model architectureBuild a model here using sequential. Feel free to experiment with different layers and sizes! Also, experiment adding dropout to reduce overfitting.
# TODO: Build the model architecture model = Sequential() model.add(Dense(128, input_dim = x_train.shape[1])) model.add(Activation('relu')) model.add(Dense(2)) model.add(Activation('softmax')) # TODO: Compile the model using a loss function and an optimizer. model.compile(loss = 'categorical_crossentropy', optimizer = 'Adam', metrics = ['accuracy'])
_____no_output_____
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
5. Training the modelRun the model here. Experiment with different batch_size, and number of epochs!
# TODO: Run the model. Feel free to experiment with different batch sizes and number of epochs. model.fit(x_train, y_train, 10000 , verbose = 0)
_____no_output_____
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
6. Evaluating the modelThis will give you the accuracy of the model, as evaluated on the testing set. Can you get something over 85%?
score = model.evaluate(x_test, y_test, verbose=0) print("Accuracy: ", score[1])
Accuracy: 0.85832
MIT
4. Deep Learning/IMDB_In_Keras.ipynb
Arwa-Ibrahim/ML_Nano_Projects
Graded AssessmentIn this assessment you will write a full end-to-end training process using gluon and MXNet. We will train the LeNet-5 classifier network on the MNIST dataset. The network will be defined for you but you have to fill in code to prepare the dataset, train the network, and evaluate it's performance on a held out dataset.
#Check CUDA version !nvcc --version #Install appropriate MXNet version ''' For eg if CUDA version is 10.0 choose mxnet cu100mkl where cu adds CUDA GPU support and mkl adds Intel CPU Math Kernel Library support ''' !pip install mxnet-cu101mkl gluoncv from pathlib import Path from mxnet import gluon, metric, autograd, init, nd import os import mxnet as mx #I downloaded the files from Coursera and hosted on my gdrive: from google.colab import drive drive.mount('/content/drive') # M5_DATA = Path(os.getenv('DATA_DIR', '../../data'), 'module_5') M5_DATA = Path('/content/drive/My Drive/CourseraWork/MXNetAWS/data/module_5') M5_IMAGES = Path(M5_DATA, 'images')
_____no_output_____
MIT
Module_5_LeNet_on_MNIST (1).ipynb
vigneshb-it19/AWS-Computer-Vision-GluonCV
--- Question 1 Prepare and the data and construct the dataloader* First, get the MNIST dataset from `gluon.data.vision.datasets`. Use* Don't forget the ToTensor and normalize Transformations. Use `0.13` and `0.31` as the mean and standard deviation respectively* Construct the dataloader with the batch size provide. Ensure that the train_dataloader is shuffled.**CAUTION!**: Although the notebook interface has internet connectivity, the **autograders are not permitted to access the internet**. We have already downloaded the correct models and data for you to use so you don't need access to the internet. Set the `root` parameter to `M5_IMAGES` when using a preset dataset. Usually, in the real world, you have internet access, so setting the `root` parameter isn't required (and it's set to `~/.mxnet` by default).
import os from pathlib import Path from mxnet.gluon.data.vision import transforms import numpy as np def get_mnist_data(batch=128): """ Should construct a dataloader with the MNIST Dataset with the necessary transforms applied. :param batch: batch size for the DataLoader. :type batch: int :return: a tuple of the training and validation DataLoaders :rtype: (gluon.data.DataLoader, gluon.data.DataLoader) """ def transformer(data, label): data = data.flatten().expand_dims(0).astype(np.float32)/255 data = data-0.13/0.31 label = label.astype(np.float32) return data, label train_dataset = gluon.data.vision.datasets.MNIST(root=M5_IMAGES, train=True, transform=transformer) validation_dataset = gluon.data.vision.datasets.MNIST(root=M5_IMAGES, train=False, transform=transformer) train_dataloader = gluon.data.DataLoader(train_dataset, batch_size=batch, last_batch='keep',shuffle=True) validation_dataloader = gluon.data.DataLoader(validation_dataset, batch_size=batch, last_batch='keep') return train_dataloader, validation_dataloader t, v = get_mnist_data() assert isinstance(t, gluon.data.DataLoader) assert isinstance(v, gluon.data.DataLoader) d, l = next(iter(t)) assert d.shape == (128, 1, 28, 28) #check Channel First and Batch Size assert l.shape == (128,) assert nd.max(d).asscalar() <= 2.9 # check for normalization assert nd.min(d).asscalar() >= -0.5 # check for normalization
_____no_output_____
MIT
Module_5_LeNet_on_MNIST (1).ipynb
vigneshb-it19/AWS-Computer-Vision-GluonCV