markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
--- Question 2 Write the training loop* Create the loss function. This should be a loss function suitable for multi-class classification.* Create the metric accumulator. This should the compute and store the accuracy of the model during training* Create the trainer with the `adam` optimizer and learning rate of `0.002`* Write the training loop
|
def train(network, training_dataloader, batch_size, epochs):
"""
Should take an initialized network and train that network using data from the data loader.
:param network: initialized gluon network to be trained
:type network: gluon.Block
:param training_dataloader: the training DataLoader provides batches for data for every iteration
:type training_dataloader: gluon.data.DataLoader
:param batch_size: batch size for the DataLoader.
:type batch_size: int
:param epochs: number of epochs to train the DataLoader
:type epochs: int
:return: tuple of trained network and the final training accuracy
:rtype: (gluon.Block, float)
"""
trainer = gluon.Trainer(network.collect_params(), 'adam',
{'learning_rate': 0.002})
metric = mx.metric.Accuracy()
for epoch in range(epochs):
train_loss =0.
for data,label in training_dataloader:
# print (data.shape)
# print (label.shape)
with autograd.record():
output = network(data)
loss=mx.ndarray.softmax_cross_entropy(output,label)
loss.backward()
trainer.step(batch_size)
train_loss += loss.mean().asscalar()
metric.update(label, output)
print (epoch , metric.get()[1])
training_accuracy = metric.get()[1]
return network, training_accuracy
|
_____no_output_____
|
MIT
|
Module_5_LeNet_on_MNIST (1).ipynb
|
vigneshb-it19/AWS-Computer-Vision-GluonCV
|
Let's define and initialize a network to test the train function.
|
net = gluon.nn.Sequential()
net.add(gluon.nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
gluon.nn.MaxPool2D(pool_size=2, strides=2),
gluon.nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
gluon.nn.MaxPool2D(pool_size=2, strides=2),
gluon.nn.Flatten(),
gluon.nn.Dense(120, activation="relu"),
gluon.nn.Dense(84, activation="relu"),
gluon.nn.Dense(10))
net.initialize(init=init.Xavier())
n, ta = train(net, t, 128, 5)
assert ta >= .95
d, l = next(iter(v))
p = (n(d).argmax(axis=1))
assert (p.asnumpy() == l.asnumpy()).sum()/128.0 > .95
|
0 0.93415
1 0.9572583333333333
2 0.9668111111111111
3 0.972375
4 0.97606
|
MIT
|
Module_5_LeNet_on_MNIST (1).ipynb
|
vigneshb-it19/AWS-Computer-Vision-GluonCV
|
--- Question 3 Write the validation loop* Create the metric accumulator. This should the compute and store the accuracy of the model on the validation set* Write the validation loop
|
def validate(network, validation_dataloader):
"""
Should compute the accuracy of the network on the validation set.
:param network: initialized gluon network to be trained
:type network: gluon.Block
:param validation_dataloader: the training DataLoader provides batches for data for every iteration
:type validation_dataloader: gluon.data.DataLoader
:return: validation accuracy
:rtype: float
"""
val_acc = mx.metric.Accuracy()
for data,label in validation_dataloader:
output = network(data)
val_acc.update(label,output)
print (val_acc.get()[1])
return val_acc.get()[1]
assert validate(n, v) > .95
|
_____no_output_____
|
MIT
|
Module_5_LeNet_on_MNIST (1).ipynb
|
vigneshb-it19/AWS-Computer-Vision-GluonCV
|
Callbacks and Multiple inputs
|
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale
from keras.optimizers import SGD
from keras.layers import Dense, Input, concatenate, BatchNormalization
from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint
from keras.models import Model
import keras.backend as K
df = pd.read_csv("../data/titanic-train.csv")
Y = df['Survived']
df.info()
df.head()
num_features = df[['Age', 'Fare', 'SibSp', 'Parch']].fillna(0)
num_features.head()
cat_features = pd.get_dummies(df[['Pclass', 'Sex', 'Embarked']].astype('str'))
cat_features.head()
X1 = scale(num_features.values)
X2 = cat_features.values
K.clear_session()
# Numerical features branch
inputs1 = Input(shape = (X1.shape[1],))
b1 = BatchNormalization()(inputs1)
b1 = Dense(3, kernel_initializer='normal', activation = 'tanh')(b1)
b1 = BatchNormalization()(b1)
# Categorical features branch
inputs2 = Input(shape = (X2.shape[1],))
b2 = Dense(8, kernel_initializer='normal', activation = 'relu')(inputs2)
b2 = BatchNormalization()(b2)
b2 = Dense(4, kernel_initializer='normal', activation = 'relu')(b2)
b2 = BatchNormalization()(b2)
b2 = Dense(2, kernel_initializer='normal', activation = 'relu')(b2)
b2 = BatchNormalization()(b2)
merged = concatenate([b1, b2])
preds = Dense(1, activation = 'sigmoid')(merged)
# final model
model = Model([inputs1, inputs2], preds)
model.compile(loss = 'binary_crossentropy',
optimizer = 'rmsprop',
metrics = ['accuracy'])
model.summary()
outpath='/tmp/tensorflow_logs/titanic/'
early_stopper = EarlyStopping(monitor='val_acc', patience=10)
tensorboard = TensorBoard(outpath+'tensorboard/', histogram_freq=1)
checkpointer = ModelCheckpoint(outpath+'weights_epoch_{epoch:02d}_val_acc_{val_acc:.2f}.hdf5',
monitor='val_acc')
# You may have to run this a couple of times if stuck on local minimum
np.random.seed(2017)
h = model.fit([X1, X2],
Y.values,
batch_size = 32,
epochs = 40,
verbose = 1,
validation_split=0.2,
callbacks=[early_stopper,
tensorboard,
checkpointer])
import os
sorted(os.listdir(outpath))
|
_____no_output_____
|
MIT
|
solutions_do_not_open/Lab_05_DL Callbacks and Multiple Inputs_solution.ipynb
|
Dataweekends/global_AI_conference_Jan_2018
|
HypothesisI believe that random forest will have a better score since the data frame has a lot of catergorical data and a lot of columns in general.
|
# Train the Logistic Regression model on the unscaled data and print the model score
classifier = LogisticRegression()
classifier.fit(X_dummies_train, y_label_1)
print(f"Training Data Score: {classifier.score(X_dummies_train, y_label_1)}")
print(f"Testing Data Score: {classifier.score(X_dummies_test, y_label_2)}")
# Train a Random Forest Classifier model and print the model score
clf = RandomForestClassifier(random_state=1, n_estimators=500).fit(X_dummies_train, y_label_1)
print(f'Training Score: {clf.score(X_dummies_train, y_label_1)}')
print(f'Testing Score: {clf.score(X_dummies_test, y_label_2)}')
|
Training Score: 1.0
Testing Score: 0.646958740961293
|
MIT
|
Credit Risk Evaluator.ipynb
|
J-Schea29/Supervised-Machine-Learning-Challenge
|
Hypothesis 2I think that by scaling my scores are going to get better and that the testing and training will be less spread out.
|
# Scale the data
scaler = StandardScaler().fit(X_dummies_train)
X_train_scaled = scaler.transform(X_dummies_train)
X_test_scaled = scaler.transform(X_dummies_test)
X_test_scaled
# Train the Logistic Regression model on the scaled data and print the model score
classifier = LogisticRegression()
classifier.fit(X_train_scaled, y_label_1)
print(f"Training Data Score: {classifier.score(X_train_scaled, y_label_1)}")
print(f"Testing Data Score: {classifier.score(X_test_scaled, y_label_2)}")
# Train a Random Forest Classifier model on the scaled data and print the model score
clf = RandomForestClassifier(random_state=1, n_estimators=500).fit(X_train_scaled, y_label_1)
print(f'Training Score: {clf.score(X_train_scaled, y_label_1)}')
print(f'Testing Score: {clf.score(X_test_scaled, y_label_2)}')
|
Training Score: 1.0
Testing Score: 0.6480221182475542
|
MIT
|
Credit Risk Evaluator.ipynb
|
J-Schea29/Supervised-Machine-Learning-Challenge
|
IntroHere's a simple example where we produce a set of plots, called a tear sheet, for a single stock. Imports and Settings
|
# silence warnings
import warnings
warnings.filterwarnings('ignore')
import yfinance as yf
import pyfolio as pf
%matplotlib inline
|
_____no_output_____
|
Apache-2.0
|
pyfolio/examples/single_stock_example.ipynb
|
MBounouar/pyfolio-reloaded
|
Download daily stock prices using yfinance Pyfolio expects tz-aware input set to UTC timezone. You may have to import `yfinance` first by running:```bashpip install yfinance```
|
fb = yf.Ticker('FB')
history = fb.history('max')
history.index = history.index.tz_localize('utc')
history.info()
returns = history.Close.pct_change()
|
_____no_output_____
|
Apache-2.0
|
pyfolio/examples/single_stock_example.ipynb
|
MBounouar/pyfolio-reloaded
|
Create returns tear sheetThis will show charts and analysis about returns of the single stock.
|
pf.create_returns_tear_sheet(returns, live_start_date='2020-1-1')
|
_____no_output_____
|
Apache-2.0
|
pyfolio/examples/single_stock_example.ipynb
|
MBounouar/pyfolio-reloaded
|
Import Data
|
import numpy as np
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
# load data
import os
from google.colab import drive
drive.mount('/content/drive')
filedir = './drive/My Drive/Final/CNN_data'
with open(filedir + '/' + 'feature_extracted', 'rb') as f:
X = np.load(f)
with open(filedir + '/' + 'Y', 'rb') as f:
Y = np.load(f).astype(np.int32)
# import MFCC data
with open('./drive/My Drive/Final/mfcc_data/X', 'rb') as f:
X_mfcc = np.load(f)
with open('./drive/My Drive/Final/mfcc_data/Y', 'rb') as f:
Y_mfcc = np.load(f)
print('X_shape: {}\nY_shape: {}'.format(X_mfcc.shape, Y_mfcc.shape))
import warnings
warnings.filterwarnings("ignore")
'''
X_new = np.zeros([300,0])
for i in range(X.shape[1]):
col = X[:,i,None]
if((np.abs(col) > 1e-6).any()):
X_new = np.hstack([X_new, col])
else:
print('Yes')
print('X.shape: {}\nX_new.shape: {}\nY.shape: {}'.format(X.shape, X_new.shape, Y.shape))
print(X_new.shape)
print(np.max(X_new, axis=1) != np.max(X, axis=1))
print(np.min(X_new, axis=1))
'''
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
CLF1 Ridge Classifier
|
'''
from sklearn.linear_model import RidgeClassifier
parameters = {'alpha':[1]}
rc = RidgeClassifier(alpha = 1)
clf = GridSearchCV(rc, parameters, cv=3)
clf.fit(X[:30], Y[:30])
clf.best_estimator_.fit(X[:30], Y[:30]).score(X, Y)
clf.best_index_
'''
from sklearn.linear_model import RidgeClassifier
def clf_RidgeClassifier(training_set, training_lable, testing_set, testing_lable):
parameters = {'alpha':[10, 1, 1e-1, 1e-2, 1e-3]}
rc = RidgeClassifier(alpha = 1)
clf = GridSearchCV(rc, parameters, cv=3, return_train_score=True, iid=False)
clf.fit(training_set, training_lable)
results = clf.cv_results_
opt_index = clf.best_index_
training_score = results['mean_train_score'][opt_index]
validation_score = results['mean_test_score'][opt_index]
testing_score = clf.best_estimator_.fit(training_set, training_lable).score(testing_set, testing_lable)
return [training_score, validation_score, testing_score], clf.best_params_
clf_RidgeClassifier(X[:240], Y[:240], X[240:], Y[240:])
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
CLF2 SVM
|
from sklearn.svm import SVC
def clf_SVM(X_train, Y_train, X_test, Y_test):
parameters = {'C':[10, 1, 1e-1, 1e-2, 1e-3]}
svc = SVC(kernel='linear')
clf = GridSearchCV(svc, parameters, cv=3, return_train_score=True, iid=False)
clf.fit(X_train, Y_train)
results = clf.cv_results_
opt_index = clf.best_index_
training_score = results['mean_train_score'][opt_index]
validation_score = results['mean_test_score'][opt_index]
testing_score = clf.best_estimator_.fit(X_train, Y_train).score(X_test, Y_test)
return [training_score, validation_score, testing_score], clf.best_params_
clf_SVM(X[:240], Y[:240], X[240:], Y[240:])
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
CLF3 LDA
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
def clf_lda(Xtrain, Ytrain, Xtest, Ytest):
"""
Input: training data, labels, testing data, labels
Output: training set mean prediciton accuracy, validation accuracy = None, testing set mean prediction accuracy
Note: LDA has no hyperparameters to tune because a model is solved in closed form
therefore there is no need for model selection via grid search cross validation
therefore there is no validation accuracy
"""
clf = LinearDiscriminantAnalysis()
clf.fit(Xtrain, Ytrain)
train_acc = clf.score(Xtrain,Ytrain)
val_acc = None
test_acc = clf.score(Xtest,Ytest)
return [train_acc,val_acc,test_acc], None
clf_lda(X[:240],Y[:240],X[240:],Y[240:])
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
CLF4 KNN
|
from sklearn.neighbors import KNeighborsClassifier
def clf_KNN(X_train, Y_train, X_test, Y_test):
parameters = {'n_neighbors':[1,5,20]}
knn = KNeighborsClassifier(algorithm='auto', weights='uniform')
clf = GridSearchCV(knn, parameters, cv=3, return_train_score=True, iid=False)
clf.fit(X_train, Y_train)
results = clf.cv_results_
opt_index = clf.best_index_
training_score = results['mean_train_score'][opt_index]
validation_score = results['mean_test_score'][opt_index]
testing_score = clf.best_estimator_.fit(X_train, Y_train).score(X_test, Y_test)
return [training_score, validation_score, testing_score], clf.best_params_
clf_KNN(X[:240], Y[:240], X[240:], Y[240:])
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
CLF5 Decision Tree
|
from sklearn.tree import DecisionTreeClassifier
def clf_DecisionTree(X_train, Y_train, X_test, Y_test):
parameters = {'max_depth':[5,10,15,20,25], 'criterion':['entropy', 'gini']}
dtc = DecisionTreeClassifier()
clf = GridSearchCV(dtc, parameters, cv=3, return_train_score=True, iid=False)
clf.fit(X_train, Y_train)
results = clf.cv_results_
opt_index = clf.best_index_
training_score = results['mean_train_score'][opt_index]
validation_score = results['mean_test_score'][opt_index]
testing_score = clf.best_estimator_.fit(X_train, Y_train).score(X_test, Y_test)
return [training_score, validation_score, testing_score], clf.best_params_
clf_DecisionTree(X[:240], Y[:240], X[240:], Y[240:])
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
Testing On Data
|
clf_list = [clf_RidgeClassifier, clf_SVM, clf_lda, clf_KNN, clf_DecisionTree]
def test_trial(X_shuffled, Y_shuffled):
global clf_list
error = np.zeros((3,5,3)) # partition(3) * clf(5) * error(3)
# (8/2,5/5,2/8) * (clf_list) * (trn,val,tst)
opt_param = np.empty((3,5), dtype=dict) # partition(3) * clf(5)
sample_size = len(X_shuffled)
# 80/20 split
train_size = int(sample_size * 0.8)
X_train = X_shuffled[:train_size]
Y_train = Y_shuffled[:train_size]
X_test = X_shuffled[train_size:]
Y_test = Y_shuffled[train_size:]
for i in range(len(clf_list)):
clffn = clf_list[i]
error[0,i,:], opt_param[0,i] = clffn(X_train, Y_train, X_test, Y_test)
# 50/50 split
train_size = int(sample_size * 0.5)
X_train = X_shuffled[:train_size]
Y_train = Y_shuffled[:train_size]
X_test = X_shuffled[train_size:]
Y_test = Y_shuffled[train_size:]
for i in range(len(clf_list)):
clffn = clf_list[i]
error[1,i,:], opt_param[1,i] = clffn(X_train, Y_train, X_test, Y_test)
# 80/20 split
train_size = int(sample_size * 0.2)
X_train = X_shuffled[:train_size]
Y_train = Y_shuffled[:train_size]
X_test = X_shuffled[train_size:]
Y_test = Y_shuffled[train_size:]
for i in range(len(clf_list)):
clffn = clf_list[i]
error[2,i,:], opt_param[2,i] = clffn(X_train, Y_train, X_test, Y_test)
# return error array
return error, opt_param
from sklearn.utils import shuffle
def test_data(X, Y):
error = np.zeros((3,3,5,3)) # trial(3) * error_from_test_trial(3*5*3)
opt_param = np.empty((3,3,5), dtype=dict) # trial(3) * opt_param_from_test_trial(3*5)
# trial 1
X_shuffled, Y_shuffled = shuffle(X, Y)
error[0], opt_param[0] = test_trial(X_shuffled, Y_shuffled)
# trial 2
X_shuffled, Y_shuffled = shuffle(X_shuffled, Y_shuffled)
error[1], opt_param[1] = test_trial(X_shuffled, Y_shuffled)
# trial 3
X_shuffled, Y_shuffled = shuffle(X_shuffled, Y_shuffled)
error[2], opt_param[2] = test_trial(X_shuffled, Y_shuffled)
return error, opt_param
# test on CNN-extracted features
acc_CNN, opt_param_CNN = test_data(X, Y)
np.mean(acc_CNN[:,:,:,:], axis=0)
acc_clf, opt_param = test_data(X_mfcc, Y_mfcc)
avg_cnn_acc = np.mean(acc_CNN, axis=0)
avg_clf_acc = np.mean(acc_clf, axis=0)
print('cnn: {}'.format(avg_cnn_acc))
print('clf: {}'.format(avg_clf_acc))
# partition_accuracy plot
from matplotlib import rcParams
rcParams['figure.figsize'] = (8,8)
colors = ['cyan', 'green', 'red', 'orange','black']
clf = ['RidgeRegression', 'SVM', 'LDA', 'KNN', 'DecisionTree']
for clfid in range(5):
plt.plot(avg_cnn_acc[:,clfid,-1], color=colors[clfid], linestyle='solid', label='CNN '+clf[clfid])
plt.plot(avg_clf_acc[:,clfid,-1], color=colors[clfid], linestyle='dashed', label='MFCC '+clf[clfid])
plt.legend(loc='lower left')
plt.xticks((0,1,2),['80/20', '50/50', '20/80'])
plt.xlabel('partition (train/test)')
plt.ylabel('average test accuracy')
plt.savefig('./drive/My Drive/Final/graphs/partition_accuracy.png', bbox='tight')
# SVM hyperparameter error plot
parameters = {'C':[10, 1, 1e-1, 1e-2, 1e-3]}
svc = SVC(kernel='linear')
clf = GridSearchCV(svc, parameters, cv=3, return_train_score=True, iid=False)
clf.fit(X[:240], Y[:240])
results = clf.cv_results_
opt_index = clf.best_index_
training_score = results['mean_train_score']
validation_score = results['mean_test_score']
param_x = results['param_C'].data.astype(np.float32)
plt.plot(param_x, training_score, 'r-', label='training')
plt.plot(param_x, validation_score, 'b-', label='validation')
plt.legend(loc='lower left')
plt.xticks([0,2.5,5,7.5,10], ['10','1','1e-1','1e-2','1e-3'])
plt.xlabel('param_C')
plt.ylabel('accuracy')
#plt.show()
plt.savefig('./drive/My Drive/Final/graphs/SVM_hyperparameter_accuracy.png')
# avg cross-partition accuracy
cnn_cp_acc = np.mean(avg_cnn_acc[:,:,-1], axis=0)
clf_cp_acc = np.mean(avg_clf_acc[:,:,-1], axis=0)
print('cnn_cp_acc: {}'.format(cnn_cp_acc))
print('clf_cp_acc: {}'.format(clf_cp_acc))
avg_totalcp_acc = (cnn_cp_acc + clf_cp_acc) / 2
print(avg_totalcp_acc)
(avg_cnn_acc + avg_clf_acc)/2
opt_param
opt_param_CNN
max_ind_cnn = np.argpartition(np.sum(X, axis=0), -2)[-2:]
std_ind_cnn = np.argpartition(np.std(X, axis=0), -2)[-2:]
max_ind_clf = np.argpartition(np.sum(X_mfcc, axis=0), -2)[-2:]
std_ind_clf = np.argpartition(np.std(X_mfcc, axis=0), -2)[-2:]
max_cnn = X[:,max_ind_cnn]
std_cnn = X[:,std_ind_cnn]
max_clf = X_mfcc[:,max_ind_clf]
std_clf = X_mfcc[:,std_ind_clf]
def plot_features(X, Y):
return X[Y==0,:], X[Y==1,:]
# 2 max features from cnn plotted
plt.clf()
feature0, feature1 = plot_features(max_cnn, Y)
plt.plot(feature0[:,0], feature0[:,1],'ro', label='digit 0')
plt.plot(feature1[:,0], feature1[:,1],'go', label='digit 1')
plt.legend(loc='lower right')
plt.show()
#plt.savefig('./drive/My Drive/Final/graphs/2_max_sum_cnn_features.png')
# 2 var features from cnn plotted
feature0, feature1 = plot_features(std_cnn, Y)
plt.plot(feature0[:,0], feature0[:,1],'ro', label='digit 0')
plt.plot(feature1[:,0], feature1[:,1],'go', label='digit 1')
plt.legend(loc='lower right')
#plt.show()
plt.savefig('./drive/My Drive/Final/graphs/2_max_var_cnn_features.png')
# 2 max features from mfcc plotted
feature0, feature1 = plot_features(max_clf, Y)
plt.plot(feature0[:,0], feature0[:,1],'ro', label='digit 0')
plt.plot(feature1[:,0], feature1[:,1],'go', label='digit 1')
plt.legend(loc='lower right')
#plt.show()
plt.savefig('./drive/My Drive/Final/graphs/2_max_sum_mfcc_features.png')
# 2 var features from mfcc plotted
feature0, feature1 = plot_features(std_clf, Y)
plt.plot(feature0[:,0], feature0[:,1],'ro', label='digit 0')
plt.plot(feature1[:,0], feature1[:,1],'go', label='digit 1')
plt.legend(loc='lower right')
#plt.show()
plt.savefig('./drive/My Drive/Final/graphs/2_max_var_mfcc_features.png')
|
_____no_output_____
|
MIT
|
cnn_classifier.ipynb
|
Poxls88/triggerword
|
View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving).
|
# Installs geemap package
import subprocess
try:
import geemap
except ImportError:
print('geemap package not installed. Installing ...')
subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap'])
# Checks whether this notebook is running on Google Colab
try:
import google.colab
import geemap.eefolium as emap
except:
import geemap as emap
# Authenticates and initializes Earth Engine
import ee
try:
ee.Initialize()
except Exception as e:
ee.Authenticate()
ee.Initialize()
|
_____no_output_____
|
MIT
|
Image/extract_value_to_points.ipynb
|
YuePanEdward/earthengine-py-notebooks
|
Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function.
|
Map = emap.Map(center=[40,-100], zoom=4)
Map.add_basemap('ROADMAP') # Add Google Map
Map
|
_____no_output_____
|
MIT
|
Image/extract_value_to_points.ipynb
|
YuePanEdward/earthengine-py-notebooks
|
Add Earth Engine Python script
|
# Add Earth Engine dataset
# Input imagery is a cloud-free Landsat 8 composite.
l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1')
image = ee.Algorithms.Landsat.simpleComposite(**{
'collection': l8.filterDate('2018-01-01', '2018-12-31'),
'asFloat': True
})
# Use these bands for prediction.
bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 'B11']
# Load training points. The numeric property 'class' stores known labels.
points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels')
# This property of the table stores the land cover labels.
label = 'landcover'
# Overlay the points on the imagery to get training.
training = image.select(bands).sampleRegions(**{
'collection': points,
'properties': [label],
'scale': 30
})
# Define visualization parameters in an object literal.
vizParams = {'bands': ['B5', 'B4', 'B3'],
'min': 0, 'max': 1, 'gamma': 1.3}
Map.centerObject(points, 10)
Map.addLayer(image, vizParams, 'Image')
Map.addLayer(points, {'color': "yellow"}, 'Training points')
first = training.first()
print(first.getInfo())
|
_____no_output_____
|
MIT
|
Image/extract_value_to_points.ipynb
|
YuePanEdward/earthengine-py-notebooks
|
Display Earth Engine data layers
|
Map.addLayerControl() # This line is not needed for ipyleaflet-based Map.
Map
|
_____no_output_____
|
MIT
|
Image/extract_value_to_points.ipynb
|
YuePanEdward/earthengine-py-notebooks
|
FmriprepToday, many excellent general-purpose, open-source neuroimaging software packages exist: [SPM](https://www.fil.ion.ucl.ac.uk/spm/) (Matlab-based), [FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), [AFNI](https://afni.nimh.nih.gov/), and [Freesurfer](https://surfer.nmr.mgh.harvard.edu/) (with a shell interface). We argue that there is not one single package that is always the best choice for every step in your preprocessing pipeline. Fortunately, people from the [Poldrack lab](https://poldracklab.stanford.edu/) created [fmriprep](https://fmriprep.readthedocs.io/en/stable/), a software package that offers a preprocessing pipeline which "glues together" functionality from different neuroimaging software packages (such as Freesurfer and FSL), such that each step in the pipeline is executed by the software package that (arguably) does it best.We have been using *Fmriprep* for preprocessing of our own data and we strongly recommend it. It is relatively simple to use, requires minimal user intervention, and creates extensive visual reports for users to do visual quality control (to check whether each step in the pipeline worked as expected). The *only* requirement to use Fmriprep is that your data is formatted as specified in the Brain Imaging Data Structure (BIDS). The BIDS-format[BIDS](https://bids.neuroimaging.io/) is a specification on how to format, name, and organize your MRI dataset. It specifies the file format of MRI files (i.e., compressed Nifti: `.nii.gz` files), lays out rules for how you should name your files (i.e., with "key-value" pairs, such as: `sub-01_ses-1_task-1back_run-1_bold.nii.gz`), and outlines the file/folder structure of your dataset (where each subject has its own directory with separate subdirectories for different MRI modalities, including fieldmaps, functional, diffusion, and anatomical MRI). Additionally, it specifies a way to include "metadata" about the (MRI) files in your dataset with [JSON](https://en.wikipedia.org/wiki/JSON) files: plain-text files with key-value pairs (in the form "parameter: value"). Given that your dataset is BIDS-formatted and contains the necessary metadata, you can use `fmriprep` on your dataset. (You can use the awesome [bids-validator](https://bids-standard.github.io/bids-validator/) to see whether your dataset is completely valid according to BIDS.)There are different tools to convert your "raw" scanner data (e.g., in DICOM or PAR/REC format) to BIDS, including [heudiconv](https://heudiconv.readthedocs.io/en/latest/), [bidscoin](https://github.com/Donders-Institute/bidscoin), and [bidsify](https://github.com/NILAB-UvA/bidsify) (created by Lukas). We'll skip over this step and assume that you'll be able to convert your data to BIDS. Installing FmriprepNow, having your data in BIDS is an important step in getting started with Fmriprep. The next step is installing the package. Technically, Fmriprep is a Python package, so it can be installed as such (using `pip install fmriprep`), but we do not recommend this "bare metal" installation, because it depends on a host of neuroimaging software packages (including FSL, Freesurfer, AFNI, and ANTs). So if you'd want to directly install Fmriprep, you'd need to install those extra neuroimaging software packages as well (which is not worth your time, trust us).Fortunately, Fmriprep also offers a "Docker container" in which Fmriprep and all the associated dependencies are already installed. [Docker](https://www.docker.com/) is software that allows you to create "containers", which are like lightweight "virtual machines" ([VM](https://en.wikipedia.org/wiki/Virtual_machine)) that are like a separate (Linux-based) operating system with a specific software configuration. You can download the Fmriprep-specific docker "image", which is like a "recipe", build the Fmriprep-specific "container" according to this "recipe" on your computer, and finally use this container to run Fmriprep on your computer as if all dependencies were actually installed on your computer! Docker is available on Linux, Mac, and Windows. To install Docker, google something like "install docker for {Windows,Mac,Linux}" to find a google walkthrough.Note that you need administrator ("root") privilege on your computer (which is likely the case for your own computer, but not on shared analysis servers) to run Docker. If you don't have root access on your computer/server, ask you administrator/sysadmin to install [singularity](https://fmriprep.readthedocs.io/en/stable/installation.htmlsingularity-container), which allows you to convert Docker images to Singularity images, which you can run without administrator privileges.Assuming you have installed Docker, you can run the "containerized" Fmriprep from your command line directly, which involves a fairly long and complicated command (i.e., `docker run -it --rm -v bids_dir /data ... etc`), or using the `fmriprep-docker` Python package. This `fmriprep-docker` package is just a simple wrapper around the appropriate Docker command to run the complicated "containerized" Fmriprep command. We strongly recommend this method.To install `fmriprep-docker`, you can use `pip` (from your command line):```pip install fmriprep-docker```Now, you should have access to the `fmriprep-docker` command on your command line and you're ready to start preprocessing your dataset. For more detailed information about installing Fmriprep, check out their [website](https://fmriprep.readthedocs.io/en/stable/installation.html). Running FmriprepAssuming you have Docker and `fmriprep-docker` installed, you're ready to run Fmriprep. The basic format of the `fmriprep-docker` command is as follows:```fmriprep-docker ```This means that `fmriprep-docker` has two mandatory positional arguments: the first one being your BIDS-folder (i.e., the path to your folder with BIDS-formattefd data), and the second one being the output-folder (i.e., where you want Fmriprep to output the preprocessed data). We recommend setting your output-folder to a subfolder of your BIDS-folder named "derivatives": `/derivatives`.Then, you can add a bunch of extra "flags" (parameters) to the command to specify the preprocessing pipeline as you like it. We highlight a couple of important ones here, but for the full list of parameters, check out the [Fmriprep](https://fmriprep.readthedocs.io/en/stable/usage.html) website. FreesurferWhen running Fmriprep from Docker, you don't need to have Freesurfer installed, but you *do* need a Freesurfer license. You can download this here: https://surfer.nmr.mgh.harvard.edu/fswiki/License. Then, you need to supply the `--fs-license-file ` parameter to your `fmriprep-docker` command:```fmriprep-docker --fs-license-file /home/lukas/license.txt``` Configuring what is preprocessedIf you just run Fmriprep with the mandatory BIDS-folder and output-folder arguments, it will preprocess everything it finds in the BIDS-folder. Sometimes, however, you may just want to run one (or several) specific participants, or one (or more) specific tasks (e.g., only the MRI files associated with the localizer runs, but not the working memory runs). You can do this by adding the `--participant` and `--task` flags to the command:```fmriprep-docker --participant sub-01 --task localizer```You can also specify some things to be ignored during preprocessing using the `--ignore` parameters (like `fieldmaps`):```fmriprep-docker --ignore fieldmaps``` Handling performanceIt's very easy to parallelize the preprocessing pipeline by setting the `--nthreads` and `--omp-nthreads` parameters, which refer to the number of threads that should be used to run Fmriprep on. Note that laptops usually have 4 threads available (but analysis servers usually have more!). You can also specify the maximum of RAM that Fmriprep is allowed to use by the `--mem_mb` parameters. So, if you for example want to run Fmriprep with 3 threads and a maximum of 3GB of RAM, you can run:```fmriprep-docker --nthreads 3 --omp-nthreads 3 --mem_mb 3000```In our experience, however, specifying the `--mem_mb` parameter is rarely necessary if you don't parallelize too much. Output spacesSpecifying your "output spaces" (with the `--output-spaces` flag) tells Fmriprep to what "space(s)" you want your preprocessed data registered to. For example, you can specify `T1w` to have your functional data registered to the participant's T1 scan. You can, instead or in addition to, also specify some standard template, like the MNI template (`MNI152NLin2009cAsym` or `MNI152NLin6Asym`). You can even specify surface templates if you want (like `fsaverage`), which will sample your volumetric functional data onto the surface (as computed by freesurfer). In addition to the specific output space(s), you can add a resolution "modifier" to the parameter to specify in what spatial resolution you want your resampled data to be. Without any resolution modifier, the native resolution of your functional files (e.g., $3\times3\times3$ mm.) will be kept intact. But if you want to upsample your resampled files to 2mm, you can add `YourTemplate:2mm`. For example, if you want to use the FSL-style MNI template (`MNI152NLin6Asym`) resampled at 2 mm, you'd use:```fmriprep-docker --output-spaces MNI152NLin6Asym:2mm```You can of course specify multiple output-spaces:```fmriprep-docker --output-spaces MNI152NLin6Asym:2mm T1w fsaverage``` Other parametersThere are many options that you can set when running Fmriprep. Check out the [Fmriprep website](https://fmriprep.readthedocs.io/) (under "Usage") for a list of all options! Issues, errors, and troubleshootingWhile Fmriprep often works out-of-the-box (assuming your data are properly BIDS-formatted), it may happen that it crashes or otherwise gives unexpected results. A great place to start looking for help is [neurostars.org](https://neurostars.org). This website is dedicated to helping neuroscientists with neuroimaging/neuroscience-related questions. Make sure to check whether your question has been asked here already and, if not, pose it here!If you encounter Fmriprep-specific bugs, you can also submit and issue at the [Github repository](https://github.com/poldracklab/fmriprep) of Fmriprep. Fmriprep output/reportsAfter Fmriprep has run, it outputs, for each participants separately, a directory with results (i.e., preprocessed files) and an HTML-file with a summary and figures of the different steps in the preprocessing pipeline.We ran Fmriprep on a single run/task (`flocBLOCKED`) from a single subject (`sub-03`) some data with the following command:```fmriprep-docker /home/lsnoek1/ni-edu/bids /home/lsnoek1/ni-edu/bids/derivatives --participant-label sub-03 --output-spaces T1w MNI152NLin2009cAsym```We've copied the Fmriprep output for this subject (`sub-03`) in the `fmriprep` subdirectory of the `week_4` directory. Let's check its contents:
|
import os
print(os.listdir('bids/derivatives/fmriprep'))
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
As said, Fmriprep outputs a directory with results (`sub-03`) and an associated HTML-file with a summary of the (intermediate and final) results. Let's check the directory with results first:
|
from pprint import pprint # pprint stands for "pretty print",
sub_path = os.path.join('bids/derivatives/fmriprep', 'sub-03')
pprint(sorted(os.listdir(sub_path)))
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
The `figures` directory contains several figures with the result of different preprocessing stages (like functional → high-res anatomical registration), but these figures are also included in the HTML-file, so we'll leave that for now. The other two directories, `anat` and `func`, contain the preprocessed anatomical and functional files, respectively. Let's inspect the `anat` directory:
|
anat_path = os.path.join(sub_path, 'anat')
pprint(os.listdir(anat_path))
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
Here, we see a couple of different files. There are both (preprocessed) nifti images (`*.nii.gz`) and associated meta-data (plain-text files in JSON format: `*.json`).Importantly, the nifti outputs are in two different spaces: one set of files are in the original "T1 space", so without any resampling to another space (these files have the same resolution and orientation as the original T1 anatomical scan). For example, the `sub_03_desc-preproc_T1w.nii.gz` scan is the preprocessed (i.e., bias-corrected) T1 scan. In addition, most files are also available in `MNI152NLin2009cAsym` space, a standard template. For example, the `sub-03_space-MNI152NLin2009cAsym_desc-preproc_T1w.nii.gz` is the same file as `sub_03_desc-preproc_T1w.nii.gz`, but resampled to the `MNI152NLin2009cAsym` template. In addition, there are subject-specific brain parcellations (the `*aparcaseg_dseg.nii.gz `and `*aseg_dseg.nii.gz` files), files with registration parameters (`*from- ... -to ...` files), probabilistic tissue segmentation files (`*label-{CSF,GM,WM}_probseg.nii.gz`) files, and brain masks (to outline what is brain and not skull/dura/etc; `*brain_mask.nii.gz`).Again, on the [Fmriprep website](https://fmriprep.readthedocs.io/), you can find more information about the specific outputs.Now, let's check out the `func` directory:
|
func_path = os.path.join(sub_path, 'func')
pprint(os.listdir(func_path))
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
Again, like the files in the `anat` folder, the functional outputs are available in two spaces: `T1w` and `MNI152NLin2009cAsym`. In terms of actual images, there are preprocessed BOLD files (ending in `preproc_bold.nii.gz`), the functional volume used for "functional → anatomical" registration (ending in `boldref.nii.gz`), brain parcellations in functional space (ending in `dseg.nii.gz`), and brain masks (ending in `brain_mask.nii.gz`). In addition, there are files with "confounds" (ending in `confounds_regressors.tsv`) which contain variables that you might want to include as nuisance regressors in your first-level analysis. These confound files are speadsheet-like files (like `csv` files, but instead of being comma-delimited, they are tab-delimited) and can be easily loaded in Python using the [pandas](https://pandas.pydata.org/) package:
|
import pandas as pd
conf_path = os.path.join(func_path, 'sub-03_task-flocBLOCKED_desc-confounds_regressors.tsv')
conf = pd.read_csv(conf_path, sep='\t')
conf.head()
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
Confound files from Fmriprep contain a large set of confounds, ranging from motion parameters (`rot_x`, `rot_y`, `rot_z`, `trans_x`, `trans_y`, and `trans_z`) and their derivatives (`*derivative1`) and squares (`*_power2`) to the average signal from the brain's white matter and cerebrospinal fluid (CSF), which should contain sources of noise such as respiratory, cardiac, or motion related signals (but not signal from neural sources, which should be largely constrained to gray matter). For a full list and explanation of Fmriprep's estimated confounds, check their website. Also, check [this thread](https://neurostars.org/t/confounds-from-fmriprep-which-one-would-you-use-for-glm/326) on Neurostars for a discussion on which confounds to include in your analyses. In addition to the actual preprocessed outputs, Fmriprep also provides you with a nice (visual) summary of the different (major) preprocessing steps in an HTML-file, which you'd normally open in any standard browser to view. Here. we load this file for our example participants (`sub-03`) inside the notebook below. Scroll through it to see which preprocessing steps are highlighted. Note that the images from the HTML-file are not properly rendered in Jupyter notebooks, but you can right-click the image links (e.g., `sub-03/figures/sub-03_dseg.svg`) and click "Open link in new tab" to view the image.
|
from IPython.display import IFrame
IFrame(src='./bids/derivatives/fmriprep/sub-03.html', width=700, height=600)
|
_____no_output_____
|
MIT
|
NI-edu/fMRI-introduction/week_4/fmriprep.ipynb
|
lukassnoek/NI-edu
|
Desafio 1 do [Paulo Silveira](https://twitter.com/paulo_caelum) Encontrar quantos filmes não possuem avaliações e quais são esses filmes
|
count_rating_by_movieId = movies_rating.pivot_table(index=['movieId'], aggfunc='size').rename('votes')
count_rating_by_movieId
movies_with_votes = movies.join(count_rating_by_movieId, on="movieId")
movies_with_votes[movies_with_votes['votes'].isnull()]
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 2 do [Guilherme Silveira](https://twitter.com/guilhermecaelum) Alterar o nome da coluna nota do dataframe filmes_com_media para nota_média após o join.
|
rating = movies_rating.groupby("movieId")['rating'].mean()
rating
filmes_com_media = movies.join(rating, on="movieId").rename(columns={'rating': 'nota_média'})
filmes_com_media
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 3 do [Guilherme Silveira](https://twitter.com/guilhermecaelum) Adicionar ao filmes_com_media o total de votos de cada filme
|
movies_with_rating_and_votes = filmes_com_media.join(count_rating_by_movieId, on="movieId")
movies_with_rating_and_votes
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 4 do [Thiago Gonçalves](https://twitter.com/tgcsantos) Arredondar as médias (coluna de nota média) para duas casas decimais.
|
movies_with_rating_and_votes = movies_with_rating_and_votes.round({'nota_média':2})
movies_with_rating_and_votes
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 5 do [Allan Spadini](https://twitter.com/allanspadini) Descobrir os generos dos filmes (quais são eles, únicos). (esse aqui o bicho pega)
|
genres_split = movies.genres.str.split("|")
genres_split
genres = pd.DataFrame({'genre':np.concatenate(genres_split.values)})
list_genres = genres.groupby('genre').size().reset_index(name='count')
list_genres['genre']
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 6 da [Thais André](https://twitter.com/thais_tandre) Contar o número de aparições de cada genero.
|
list_genres
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Desafio 7 do [Guilherme Silveira](https://twitter.com/guilhermecaelum) Plotar o gráfico de aparições de cada genero. Pode ser um gráfico de tipo igual a barra.
|
list_genres[['genre', 'count']].sort_values(by=['genre'], ascending=True).plot(x='genre', kind='barh', title="Generos")
|
_____no_output_____
|
MIT
|
desafios_aula01.ipynb
|
justapixel/QuarentenaDados
|
Write a program to remove characters from a string starting from zero up to n and return a new string.__Example:__remove_char("Untitled", 4) so output must be tled. Here we need to remove first four characters from a string
|
def remove_char(a, b):
# Write your code here
print("started")
a="Untitled"
b=4
remove_char(a,b)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Write a program to find how many times substring appears in the given string.__Example:__"You can use Markdown to format documentation you add to Markdown cells" sub_string: MarkdownIn the above the substring Markdown is appeared two times.So the count is two
|
def sub_string(m_string,s_string):
# Write your code here
print("started")
m_string="You can use Markdown to format documentation you add to Markdown cells"
s_string="Markdown"
sub_string(m_string,s_string)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Write a program to check if the given number is a palindrome number.__Exapmle:__A palindrome number is a number that is same after reverse. For example 242, is the palindrome number
|
def palindrom_check(a):
# Write your code here
print("started")
palindrom_check(242)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Write a program to Extract Unique values from dictionary values__Example:__test= {"gfg': [5, 6, 7, 8], 'is': [10, 11, 7, 5], 'best' : [6, 12, 10, 8], 'for': [1, 2, 5]}out_put: [1, 2, 5, 6, 7, 8, 10, 11, 12]
|
def extract_unique(a):
# Write your code here
print("started")
test= {'gfg': [5, 6, 7, 8], 'is': [10, 11, 7, 5], 'best' : [6, 12, 10, 8], 'for': [1, 2, 5]}
extract_unique(test)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Write a program to find the dictionary with maximum count of pairs__Example:__Input: test_list = [{"gfg": 2, "best":4}, {"gfg": 2, "is" : 3, "best": 4, "CS":9}, {"gfg":2}] Output: 4
|
def max_count(a):
# Write your code here
print("started")
test_list = [{"gfg": 2, "best":4}, {"gfg": 2, "is" : 3, "best": 4, "CS":9}, {"gfg":2}]
max_count(test_list)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Access the value of key 'history' from the below dict
|
def key_access(a):
# Write your code here
print("started")
sampleDict = {
"class":{
"student":{
"name": "Mike",
"marks" : {
"physics":70,
"history":80
}
}
}
}
key_access(sampleDict)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Print the value of key hair Print the third element of the key interested in
|
def third_ele(a):
# Write your code here
print("started")
info={
"personal data":{
"name":"Lauren",
"age":20,
"major":"Information Science",
"physical_features":{
"color":{
"eye":"blue",
"hair":"brown"
},
"height":"5'8"
}
},
"other":{
"favorite_colors":[
"purple",
"green",
"blue"
],
"interested_in":[
"social media",
"intellectual property",
"copyright",
"music",
"books"
]
}
}
third_ele(info)
import pandas as pd
import numpy as np
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(exam_data , index=labels)
df
|
_____no_output_____
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Print the Unique values from attempts column
|
def un_values(df):
# Write your code here
print("started")
un_values(df)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Print the top five rows from the data frame
|
def top_five(df):
# Write your code here
print("started")
top_five(df)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Print the max and min values of the coulmn attempts
|
def min_max(df):
# Write your code here
print("started")
min_max(df)
|
started
|
MIT
|
test.ipynb
|
sharaththota/Test
|
Import data
|
df = pd.read_hdf('data/car.h5')
df.shape
df.columns
|
_____no_output_____
|
MIT
|
matrix_two/day3.ipynb
|
kmwolowiec/data_workshop
|
Dummy Model
|
df.select_dtypes(np.number).columns
X = df['car_id']
y = df['price_value']
model = DummyRegressor()
model.fit(X, y)
y_pred = model.predict(X)
mae(y, y_pred)
[x for x in df.columns if 'price' in x]
df['price_currency'].value_counts()
df = df[ df.price_currency == 'PLN']
df.shape
|
_____no_output_____
|
MIT
|
matrix_two/day3.ipynb
|
kmwolowiec/data_workshop
|
Features
|
df.sample(5)
suffix_cat = '__cat'
for feat in df.columns:
if isinstance(df[feat][0], list):continue
factorized_values = df[feat].factorize()[0]
if suffix_cat in feat:
df[feat] = factorized_values
else:
df[feat+suffix_cat] = factorized_values
cat_feats = [x for x in df.columns if suffix_cat in x]
cat_feats = [x for x in cat_feats if 'price' not in x]
cat_feats
len(cat_feats)
X = df[cat_feats].values
y = df['price_value'].values
model = DecisionTreeRegressor(max_depth=5)
scores = cross_val_score(model, X, y, cv=3, scoring='neg_mean_absolute_error')
np.mean(scores)
m = DecisionTreeRegressor(max_depth=5)
m.fit(X, y)
imp = PermutationImportance(m, random_state=0).fit(X, y)
eli5.show_weights(imp, feature_names=cat_feats)
df[['param_napęd', 'price_value']].groupby('param_napęd').agg(['mean', 'median', 'std', 'count'])
df['param_rok-produkcji'] = df['param_rok-produkcji'].astype(float)
fig = plt.figure(constrained_layout=True, figsize=(16,8))
gs = GridSpec(2, 4, figure=fig)
ax1 = fig.add_subplot(gs[0, :2])
ax2 = fig.add_subplot(gs[0, 2])
ax3 = fig.add_subplot(gs[0, 3])
ax4 = fig.add_subplot(gs[1, :])
sns.boxplot(data=df, x='param_napęd', y='price_value', ax=ax1)
sns.boxplot(data=df, x='param_faktura-vat__cat', y='price_value', ax=ax2)
sns.boxplot(data=df, x='param_stan', y='price_value', ax=ax3)
sns.scatterplot(x="param_rok-produkcji", y="price_value", data=df, alpha=0.1, linewidth=0, ax=ax4);
!git push origin master
|
Counting objects: 1
Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 25% (1/4)
Compressing objects: 50% (2/4)
Compressing objects: 75% (3/4)
Compressing objects: 100% (4/4)
Compressing objects: 100% (4/4), done.
Writing objects: 25% (1/4)
Writing objects: 50% (2/4)
Writing objects: 75% (3/4)
Writing objects: 100% (4/4)
Writing objects: 100% (4/4), 76.21 KiB | 5.86 MiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.[K
remote: This repository moved. Please use the new location:[K
remote: https://github.com/kmwolowiec/data_workshop.git[K
To https://github.com/ThePearsSon/data_workshop.git
874fb89..1c4aeef master -> master
|
MIT
|
matrix_two/day3.ipynb
|
kmwolowiec/data_workshop
|
Pattern Mining Library
|
source("https://raw.githubusercontent.com/eogasawara/mylibrary/master/myPreprocessing.R")
loadlibrary("arules")
loadlibrary("arulesViz")
loadlibrary("arulesSequences")
data(AdultUCI)
dim(AdultUCI)
head(AdultUCI)
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Removing attributes
|
AdultUCI$fnlwgt <- NULL
AdultUCI$"education-num" <- NULL
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Conceptual Hierarchy and Binning
|
AdultUCI$age <- ordered(cut(AdultUCI$age, c(15,25,45,65,100)),
labels = c("Young", "Middle-aged", "Senior", "Old"))
AdultUCI$"hours-per-week" <- ordered(cut(AdultUCI$"hours-per-week",
c(0,25,40,60,168)),
labels = c("Part-time", "Full-time", "Over-time", "Workaholic"))
AdultUCI$"capital-gain" <- ordered(cut(AdultUCI$"capital-gain",
c(-Inf,0,median(AdultUCI$"capital-gain"[AdultUCI$"capital-gain">0]),
Inf)), labels = c("None", "Low", "High"))
AdultUCI$"capital-loss" <- ordered(cut(AdultUCI$"capital-loss",
c(-Inf,0, median(AdultUCI$"capital-loss"[AdultUCI$"capital-loss">0]),
Inf)), labels = c("None", "Low", "High"))
head(AdultUCI)
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Convert to transactions
|
AdultTrans <- as(AdultUCI, "transactions")
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
A Priori
|
rules <- apriori(AdultTrans, parameter=list(supp = 0.5, conf = 0.9, minlen=2, maxlen= 10, target = "rules"),
appearance=list(rhs = c("capital-gain=None"), default="lhs"), control=NULL)
inspect(rules)
rules_a <- as(rules, "data.frame")
head(rules_a)
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Analysis of Rules
|
imrules <- interestMeasure(rules, transactions = AdultTrans)
head(imrules)
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Removing redundant rules
|
nrules <- rules[!is.redundant(rules)]
arules::inspect(nrules)
|
lhs rhs support confidence
[1] {hours-per-week=Full-time} => {capital-gain=None} 0.5435895 0.9290688
[2] {sex=Male} => {capital-gain=None} 0.6050735 0.9051455
[3] {workclass=Private} => {capital-gain=None} 0.6413742 0.9239073
[4] {race=White} => {capital-gain=None} 0.7817862 0.9143240
[5] {native-country=United-States} => {capital-gain=None} 0.8219565 0.9159062
[6] {capital-loss=None} => {capital-gain=None} 0.8706646 0.9133376
coverage lift count
[1] 0.5850907 1.0127342 26550
[2] 0.6684820 0.9866565 29553
[3] 0.6941976 1.0071078 31326
[4] 0.8550428 0.9966616 38184
[5] 0.8974243 0.9983862 40146
[6] 0.9532779 0.9955863 42525
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Showing the transactions that support the rulesIn this example, we can see the transactions (trans) that support rules 1.
|
st <- supportingTransactions(nrules[1], AdultTrans)
trans <- unique(st@data@i)
length(trans)
print(c(length(trans)/length(AdultTrans), nrules[1]@quality$support))
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Now we can see the transactions (trans) that support rules 1 and 2. As can be observed, the support for both rules is not the sum of the support of each rule.
|
st <- supportingTransactions(nrules[1:2], AdultTrans)
trans <- unique(st@data@i)
length(trans)
print(c(length(trans)/length(AdultTrans), nrules[1:2]@quality$support))
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Rules visualization
|
options(repr.plot.width=7, repr.plot.height=4)
plot(rules)
options(repr.plot.width=7, repr.plot.height=4)
plot(rules, method="paracoord", control=list(reorder=TRUE))
|
_____no_output_____
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Sequence Mining
|
x <- read_baskets(con = system.file("misc", "zaki.txt", package = "arulesSequences"), info = c("sequenceID","eventID","SIZE"))
as(x, "data.frame")
s1 <- cspade(x, parameter = list(support = 0.4), control = list(verbose = TRUE))
as(s1, "data.frame")
|
parameter specification:
support : 0.4
maxsize : 10
maxlen : 10
algorithmic control:
bfstype : FALSE
verbose : TRUE
summary : FALSE
tidLists : FALSE
preprocessing ... 1 partition(s), 0 MB [0.046s]
mining transactions ... 0 MB [0.032s]
reading sequences ... [0.027s]
total elapsed time: 0.105s
|
MIT
|
todo/Pattern.ipynb
|
lucasgiutavares/mylibrary
|
Load data
|
df = pd.DataFrame({
'x': [4.5, 4.9, 5.0, 4.8, 5.8, 5.6, 5.7, 5.8],
'y': [35, 38, 45, 49, 59, 65, 73, 82],
'z': [0, 0, 0, 0, 1, 1, 1, 1]
})
df
plt.scatter(df['x'], df['y'], c=df['z'])
|
_____no_output_____
|
MIT
|
docs/!ml/notebooks/Perceptron.ipynb
|
a-mt/dev-roadmap
|
Train model
|
def fit(X, y, max_epochs=500):
"""
X : numpy 2D array. Each row corresponds to one training example.
y : numpy 1D array. Label (0 or 1) of each example.
"""
n = X.shape[1]
# Initialize weights
weights = np.zeros((n, ))
bias = 0.0
for _ in range(max_epochs):
errors = 0
# Loop through the examples
for i, xi in enumerate(X):
predict_y = 1 if xi.dot(weights) + bias >= 0 else 0
error = y[i] - predict_y
# Update weights
if error != 0:
weights += error * xi
bias += error
errors += 1
# We converged
if errors == 0:
break
return (weights, bias)
X = df.drop('z', axis=1).values
y = df['z'].values
weights, bias = fit(X, y)
weights, bias
|
_____no_output_____
|
MIT
|
docs/!ml/notebooks/Perceptron.ipynb
|
a-mt/dev-roadmap
|
Plot predictions
|
def plot_decision_boundary():
# Draw points
plt.scatter(X[:,0], X[:,1], c=y)
a = -weights[0]/weights[1]
b = -bias/weights[1]
# Draw hyperplane with margin
_X = np.arange(X[:,0].min(), X[:,0].max()+1, .1)
_Y = _X * a + b
plt.plot(_X, _Y)
plot_decision_boundary()
def plot_contour():
# Draw points
plt.scatter(X[:,0], X[:,1], c=y)
x_min, x_max = plt.gca().get_xlim()
y_min, y_max = plt.gca().get_ylim()
# Draw contour
xx, yy = np.meshgrid(np.arange(x_min, x_max+.1, .1),
np.arange(y_min, y_max+.1, .1))
_X = np.c_[xx.ravel(), yy.ravel()]
Z = np.sign(_X.dot(weights) + bias) \
.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Pastel1, alpha=0.3)
plot_contour()
|
_____no_output_____
|
MIT
|
docs/!ml/notebooks/Perceptron.ipynb
|
a-mt/dev-roadmap
|
Compare with logistic regression
|
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(C=1e20, solver='liblinear', random_state=0)
model.fit(X, y)
weights = model.coef_[0]
bias = model.intercept_[0]
plot_decision_boundary()
|
_____no_output_____
|
MIT
|
docs/!ml/notebooks/Perceptron.ipynb
|
a-mt/dev-roadmap
|
Compare with SVM
|
from sklearn import svm
model = svm.SVC(kernel='linear', C=1.0)
model.fit(X, y)
weights = model.coef_[0]
bias = model.intercept_[0]
plot_decision_boundary()
|
_____no_output_____
|
MIT
|
docs/!ml/notebooks/Perceptron.ipynb
|
a-mt/dev-roadmap
|
Gradient Boosting
|
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
cancer.data, cancer.target, random_state=0)
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)
print("accuracy on training set: %f" % gbrt.score(X_train, y_train))
print("accuracy on test set: %f" % gbrt.score(X_test, y_test))
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)
print("accuracy on training set: %f" % gbrt.score(X_train, y_train))
print("accuracy on test set: %f" % gbrt.score(X_test, y_test))
gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gbrt.fit(X_train, y_train)
print("accuracy on training set: %f" % gbrt.score(X_train, y_train))
print("accuracy on test set: %f" % gbrt.score(X_test, y_test))
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)
plt.barh(range(cancer.data.shape[1]), gbrt.feature_importances_)
plt.yticks(range(cancer.data.shape[1]), cancer.feature_names);
ax = plt.gca()
ax.set_position([0.4, .2, .9, .9])
from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
print("accuracy on training set: %f" % xgb.score(X_train, y_train))
print("accuracy on test set: %f" % xgb.score(X_test, y_test))
from xgboost import XGBClassifier
xgb = XGBClassifier(n_estimators=1000)
xgb.fit(X_train, y_train)
print("accuracy on training set: %f" % xgb.score(X_train, y_train))
print("accuracy on test set: %f" % xgb.score(X_test, y_test))
|
_____no_output_____
|
MIT
|
notebooks/extra - Gradient Boosting.ipynb
|
lampsonnguyen/ml-training-advance
|
import numpy as np
import matplotlib.pyplot as plt
|
_____no_output_____
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
|
Introduction to vectors Plot vector that has notation (2,4,4). Another vector has notation (1,2,3). Find the direction cosines of each vector, the angles of each vector to the three axes, and the angle between the two vectors!
|
from mpl_toolkits.mplot3d import axes3d
X = np.array((0, 0))
Y= np.array((0, 0))
Z = np.array((0, 0))
U = np.array((2, 1))
V = np.array((4, 2))
W = np.array((4, 3))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver(X, Y, Z, U, V, W)
ax.set_xlim([-4, 4])
ax.set_ylim([-4, 4])
ax.set_zlim([-4, 4])
# vector A and B
A_mag = np.sqrt(((U[0] - X[0])**2) + ((V[0] - Y[0])**2) + ((W[0] - Z[0])**2))
print('Magnitude of vector A:', A_mag, 'units')
B_mag = np.sqrt(((U[1] - X[1])**2) + ((V[1] - Y[1])**2) + ((W[1] - Z[1])**2))
print('Magnitude of vector B:', B_mag, 'units')
# direction cosines
l_A = (U[0] - X[0]) / A_mag
m_A = (V[0] - Y[0]) / A_mag
n_A = (W[0] - Z[0]) / A_mag
print('Direction cosine to x axis (cos alpha):', l_A, "to y axis (cos beta):", m_A, "to z axis (cos gamma):", n_A)
print('Pythagorean Sum of direction cosines of vector A:', l_A**2 + m_A**2 + n_A**2, "and must be equals to 1")
l_B = (U[1] - X[1]) / B_mag
m_B = (V[1] - Y[1]) / B_mag
n_B = (W[1] - Z[1]) / B_mag
print('Direction cosine to x axis (cos alpha):', l_B, "to y axis (cos beta):", m_B, "to z axis (cos gamma):", n_B)
print('Pythagorean Sum of direction cosines of vector B:', l_B**2 + m_B**2 + n_B**2, "and must be equals to 1")
# angles
alpha_A = np.rad2deg(np.arccos(l_A))
beta_A = np.rad2deg(np.arccos(m_A))
gamma_A = np.rad2deg(np.arccos(n_A))
print('Angle to x axis (alpha):', alpha_A, "to y axis (beta):", beta_A, "to z axis (gamma):", gamma_A)
alpha_B = np.rad2deg(np.arccos(l_B))
beta_B= np.rad2deg(np.arccos(m_B))
gamma_B = np.rad2deg(np.arccos(n_B))
print('Angle to x axis (alpha):', alpha_B, "to y axis (beta):", beta_B, "to z axis (gamma):", gamma_B)
# angle between two vectors
cosine_angle = (l_A * l_B) + (m_A * m_B) + (n_A * n_B)
angle = np.rad2deg(np.arccos(cosine_angle))
print('Angle between vector A and B:', angle, 'degrees')
|
Angle between vector A and B: 11.490459903731518 degrees
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
Exercise 10-3. Effective, Normal, and Shear Stress on a Plane Consider a plane that makes an angle 60 degrees with $\sigma_1$ and 60 degrees with $\sigma_3$. The principal stresses are: -600, -400, -200 MPa. Calculate:* Total effective stress* Normal stress* Shear stress
|
# principle stresses
sigma_1 = -600; sigma_2 = -400; sigma_3 = -200
# calculate the angle of plane to second principal stress sigma 2
# using pythagorean
alpha = 60; gamma = 60
l = np.cos(np.deg2rad(alpha))
n = np.cos(np.deg2rad(gamma))
m = np.sqrt(1 - l**2 - n**2)
beta = np.rad2deg(np.arccos(m))
print("The second principal stress sigma 2 makes angle:", beta, "degrees to the plane")
# effective stress
sigma_eff = np.sqrt(((sigma_1**2) * (l**2)) + ((sigma_2**2) * (m**2)) + ((sigma_3**2) * (n**2)))
print("The effective stress is:", -sigma_eff, "MPa (minus because it's compressive)")
# normal stress
sigma_normal = (sigma_1 * (l**2)) + (sigma_2 * (m**2)) + (sigma_3 * (n**2))
print("The normal stress is:", sigma_normal, "MPa")
# shear stress
sigma_shear = np.sqrt((sigma_eff**2) - (sigma_normal**2))
print("The shear stress is:", sigma_shear, "MPa")
|
The second principal stress sigma 2 makes angle: 45.000000000000014 degrees to the plane
The effective stress is: -424.26406871192853 MPa (minus because it's compressive)
The normal stress is: -400.0 MPa
The shear stress is: 141.4213562373095 MPa
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
Stress Tensor Components
|
stress_tensor = [[sigma_xx, sigma_xy, sigma_xz],
[sigma_yx, sigma_yy, sigma_yz],
[sigma_zx, sigma_zy, sigma_zz]]
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# point of cube
points = np.array([[-5, -5, -5],
[5, -5, -5 ],
[5, 5, -5],
[-5, 5, -5],
[-5, -5, 5],
[5, -5, 5 ],
[5, 5, 5],
[-5, 5, 5]])
# vector
a = np.array((0, 0))
b= np.array((0, 0))
c = np.array((0, 0))
u = np.array((0, -4))
v = np.array((5, 0))
w = np.array((0, -4))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver(a, b, c, u, v, w, color='black')
ax.set_xlim([-5, 5])
ax.set_ylim([-5, 5])
ax.set_zlim([-5, 5])
r = [-5,5]
X, Y = np.meshgrid(r, r)
one = np.array([5, 5, 5, 5])
one = one.reshape(2, 2)
ax.plot_wireframe(X,Y,one, alpha=0.5)
ax.plot_wireframe(X,Y,-one, alpha=0.5)
ax.plot_wireframe(X,-one,Y, alpha=0.5)
ax.plot_wireframe(X,one,Y, alpha=0.5)
ax.plot_wireframe(one,X,Y, alpha=0.5)
ax.plot_wireframe(-one,X,Y, alpha=0.5)
ax.scatter3D(points[:, 0], points[:, 1], points[:, 2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
np.ones(4)
|
_____no_output_____
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
Exercise 10-7 Total Stress, Deviatoric Stress, Effective Stress, Cauchy Summation$$\sigma_{ij}=\tau_{ij}+P_{ij}$$$$P_{ij}=P \cdot \delta_{ij}$$Pressure is: $P=|\sigma_{mean}|=|\frac{\sigma_{xx}+\sigma_{yy}+\sigma_{zz}}{3}|$Knorecker Delta is: $\delta_{ij}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$Pressure tensor is: $P_{ij}=P \cdot \delta_{ij}$So, overall the total stress is: $\sigma_{ij}=\begin{bmatrix} P+\tau_{xx} & \tau_{xy} & \tau_{zx} \\ \tau_{yx} & P+\tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & P+\tau_{zz} \end{bmatrix}$Cauchy summation to calculate the components of effective stress$$\sigma_{eff}=\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{bmatrix}=\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \cdot \begin{bmatrix} l \\ m \\ n \end{bmatrix}$$ **Known**: direction cosines of plane ABC, total stress tensor.**Task**:* Determine the deviatoric stress tensor* Calculate the components of effective stress on plane ABC (use Cauchy's summation)* Calculate total effective stress, total normal stress, total shear stress
|
# known
l, m, n = 0.7, 0.5, 0.5 # direction cosines
alpha, beta, gamma = 45, 60, 60 # angles
stress_ij = np.array([[-40, -40, -35],
[-40, 45, -50],
[-35, -50, -20]]) # total stress tensor
# calculate pressure
P = np.abs(np.mean(np.array([(stress_ij[0][0]), (stress_ij[1][1]), (stress_ij[2][2])])))
print("Pressure:", P, "MPa")
# pressure TENSOR
kronecker = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
P_ij = P * kronecker
print('Pressure tensor:')
print(P_ij)
# deviatoric stress TENSOR
tau_ij = stress_ij - P_ij
print('Deviatoric stress tensor:')
print(tau_ij)
# direction cosines VECTOR
lmn = np.array([[l],
[m],
[n]])
# effective stress VECTOR
stress_eff = np.dot(stress_ij, lmn)
stress_eff_1 = stress_eff[0][0]
stress_eff_2 = stress_eff[1][0]
stress_eff_3 = stress_eff[2][0]
print('Effective stress vector:')
print(stress_eff)
print('X component of effective stress:', stress_eff_1, 'MPa')
print('Y component of effective stress:', stress_eff_2, 'MPa')
print('Z component of effective stress:', stress_eff_3, 'MPa')
# total / magnitude of effective stress, is SCALAR
sigma_eff = np.sqrt((stress_eff_1**2) + (stress_eff_2**2) + (stress_eff_3**2))
print("The total effective stress is:", -sigma_eff, "MPa")
# principal stresses
sigma_1 = stress_eff_1 / l
sigma_2 = stress_eff_2 / m
sigma_3 = stress_eff_3 / n
print('X component of principal stress:', sigma_1, 'MPa')
print('Y component of principal stress:', sigma_2, 'MPa')
print('Z component of principal stress:', sigma_3, 'MPa')
# total normal stress
sigma_normal = (sigma_1 * (l**2)) + (sigma_2 * (m**2)) + (sigma_3 * (n**2))
print("The normal stress is:", sigma_normal, "MPa")
print("Because normal stress", sigma_normal, "MPa nearly equals to sigma 1", sigma_1, "MPa, the plane is nearly normal to sigma 1")
# total shear stress
sigma_shear = np.sqrt((sigma_eff**2) - (sigma_normal**2))
print("The shear stress is:", sigma_shear, "MPa")
|
The total effective stress is: -93.59887819840577 MPa
X component of principal stress: -93.57142857142858 MPa
Y component of principal stress: -61.0 MPa
Z component of principal stress: -119.0 MPa
The normal stress is: -90.85 MPa
Because normal stress -90.85 MPa nearly equals to sigma 1 -93.57142857142858 MPa, the plane is nearly normal to sigma 1
The shear stress is: 22.517271149053567 MPa
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
Exercise 10-8 Transforming Stress Tensor (Containing all the 9 tensors of shear and normal) to Principal Stress Tensor using Cubic Equation
|
sigma_ij = np.array([[0, 0, 100],
[0, 0, 0],
[-100, 0, 0]]) # stress tensor
# cubic equation
coeff3 = 1
coeff2 = -((sigma_ij[0][0] + sigma_ij[1][1] + sigma_ij[2][2]))
coeff1 = (sigma_ij[0][0] * sigma_ij[1][1]) + (sigma_ij[1][1] * sigma_ij[2][2]) + (sigma_ij[2][2] * sigma_ij[0][0]) - ((sigma_ij[0][1])**2) - ((sigma_ij[1][2])**2) - ((sigma_ij[2][0])**2)
coeff0 = -((sigma_ij[0][0] * sigma_ij[1][1] * sigma_ij[2][2]) + (2 * sigma_ij[0][1] * sigma_ij[1][2] * sigma_ij[2][0]) - (sigma_ij[0][0] * (sigma_ij[1][2])**2) - (sigma_ij[1][1] * (sigma_ij[2][0])**2) - (sigma_ij[2][2]* (sigma_ij[0][1])**2))
roots = np.roots([coeff3, coeff2, coeff1, coeff0])
sigma = np.sort(roots)
sigma_1 = sigma[2]
sigma_2 = sigma[1]
sigma_3 = sigma[0]
sigma_principal = np.array([[sigma_1, 0, 0],
[0, sigma_2, 0],
[0, 0, sigma_3]])
print("The principal stresses are, sigma 1:", sigma_1, "MPa, sigma 2:", sigma_2, "MPa, and sigma 3:", sigma_3, "MPa")
print("Principal stress tensor:")
print(sigma_principal)
denominator_l = (sigma_ij[0][0] * sigma_ij[2][2]) - (sigma_ij[1][1] * sigma_1) - (sigma_ij[2][2] * sigma_1) + (sigma_1)**2 - (sigma_ij[1][2])**2
denominator_m = (sigma_2 * sigma_ij[0][1]) + (sigma_ij[2][0] * sigma_ij[1][2]) - (sigma_ij[0][1] * sigma_ij[2][2])
denominator_n = (sigma_3 * sigma_ij[2][0]) + (sigma_ij[0][1] * sigma_ij[1][2]) - (sigma_ij[2][0] * sigma_ij[1][1])
denominator_l, denominator_m, denominator_n
|
_____no_output_____
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
***
|
from mpl_toolkits.mplot3d import axes3d
X = np.array((0))
Y= np.array((0))
U = np.array((0))
V = np.array((4))
fig, ax = plt.subplots()
q = ax.quiver(X, Y, U, V,units='xy' ,scale=1)
plt.grid()
ax.set_aspect('equal')
plt.xlim(-5,5)
plt.ylim(-5,5)
from mpl_toolkits.mplot3d import axes3d
X = np.array((0))
Y= np.array((0))
Z = np.array((0))
U = np.array((1))
V = np.array((1))
W = np.array((1))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver(X, Y, Z, U, V, W)
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_zlim([-1, 1])
from mpl_toolkits.mplot3d import axes3d
vx_mag = v_mag * l
vy_mag = v_mag * m
vz_mag = v_mag * n
x = 0; y = 0; z = 0
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.quiver(x, y, z, vx_mag, vy_mag, vz_mag)
ax.set_xlim(0, 10); ax.set_ylim(0, 10); ax.set_zlim(0, 5)
|
_____no_output_____
|
MIT
|
delft course dr weijermars/stress_tensor.ipynb
|
rksin8/reservoir-geomechanics
|
AutoGluon Tabular with SageMaker[AutoGluon](https://github.com/awslabs/autogluon) automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.This notebook shows how to use AutoGluon-Tabular with Amazon SageMaker by creating custom containers. PrerequisitesIf using a SageMaker hosted notebook, select kernel `conda_mxnet_p36`.
|
# Make sure docker compose is set up properly for local mode
!./setup.sh
# Imports
import os
import boto3
import sagemaker
from time import sleep
from collections import Counter
import numpy as np
import pandas as pd
from sagemaker import get_execution_role, local, Model, utils, fw_utils, s3
from sagemaker.estimator import Estimator
from sagemaker.predictor import RealTimePredictor, csv_serializer, StringDeserializer
from sklearn.metrics import accuracy_score, classification_report
from IPython.core.display import display, HTML
from IPython.core.interactiveshell import InteractiveShell
# Print settings
InteractiveShell.ast_node_interactivity = "all"
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 10)
# Account/s3 setup
session = sagemaker.Session()
local_session = local.LocalSession()
bucket = session.default_bucket()
prefix = 'sagemaker/autogluon-tabular'
region = session.boto_region_name
role = get_execution_role()
client = session.boto_session.client(
"sts", region_name=region, endpoint_url=utils.sts_regional_endpoint(region)
)
account = client.get_caller_identity()['Account']
ecr_uri_prefix = utils.get_ecr_image_uri_prefix(account, region)
registry_id = fw_utils._registry_id(region, 'mxnet', 'py3', account, '1.6.0')
registry_uri = utils.get_ecr_image_uri_prefix(registry_id, region)
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Build docker images First, build autogluon package to copy into docker image.
|
if not os.path.exists('package'):
!pip install PrettyTable -t package
!pip install --upgrade boto3 -t package
!pip install bokeh -t package
!pip install --upgrade matplotlib -t package
!pip install autogluon -t package
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Now build the training/inference image and push to ECR
|
training_algorithm_name = 'autogluon-sagemaker-training'
inference_algorithm_name = 'autogluon-sagemaker-inference'
!./container-training/build_push_training.sh {account} {region} {training_algorithm_name} {ecr_uri_prefix} {registry_id} {registry_uri}
!./container-inference/build_push_inference.sh {account} {region} {inference_algorithm_name} {ecr_uri_prefix} {registry_id} {registry_uri}
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Get the data In this example we'll use the direct-marketing dataset to build a binary classification model that predicts whether customers will accept or decline a marketing offer. First we'll download the data and split it into train and test sets. AutoGluon does not require a separate validation set (it uses bagged k-fold cross-validation).
|
# Download and unzip the data
!aws s3 cp --region {region} s3://sagemaker-sample-data-{region}/autopilot/direct_marketing/bank-additional.zip .
!unzip -qq -o bank-additional.zip
!rm bank-additional.zip
local_data_path = './bank-additional/bank-additional-full.csv'
data = pd.read_csv(local_data_path)
# Split train/test data
train = data.sample(frac=0.7, random_state=42)
test = data.drop(train.index)
# Split test X/y
label = 'y'
y_test = test[label]
X_test = test.drop(columns=[label])
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Check the data
|
train.head(3)
train.shape
test.head(3)
test.shape
X_test.head(3)
X_test.shape
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Upload the data to s3
|
train_file = 'train.csv'
train.to_csv(train_file,index=False)
train_s3_path = session.upload_data(train_file, key_prefix='{}/data'.format(prefix))
test_file = 'test.csv'
test.to_csv(test_file,index=False)
test_s3_path = session.upload_data(test_file, key_prefix='{}/data'.format(prefix))
X_test_file = 'X_test.csv'
X_test.to_csv(X_test_file,index=False)
X_test_s3_path = session.upload_data(X_test_file, key_prefix='{}/data'.format(prefix))
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Hyperparameter SelectionThe minimum required settings for training is just a target label, `fit_args['label']`.Additional optional hyperparameters can be passed to the `autogluon.task.TabularPrediction.fit` function via `fit_args`.Below shows a more in depth example of AutoGluon-Tabular hyperparameters from the example [Predicting Columns in a Table - In Depth](https://autogluon.mxnet.io/tutorials/tabular_prediction/tabular-indepth.htmlmodel-ensembling-with-stacking-bagging). Please see [fit parameters](https://autogluon.mxnet.io/api/autogluon.task.html?highlight=eval_metricautogluon.task.TabularPrediction.fit) for further information. Note that in order for hyperparameter ranges to work in SageMaker, values passed to the `fit_args['hyperparameters']` must be represented as strings.```pythonnn_options = { 'num_epochs': "10", 'learning_rate': "ag.space.Real(1e-4, 1e-2, default=5e-4, log=True)", 'activation': "ag.space.Categorical('relu', 'softrelu', 'tanh')", 'layers': "ag.space.Categorical([100],[1000],[200,100],[300,200,100])", 'dropout_prob': "ag.space.Real(0.0, 0.5, default=0.1)"}gbm_options = { 'num_boost_round': "100", 'num_leaves': "ag.space.Int(lower=26, upper=66, default=36)"}model_hps = {'NN': nn_options, 'GBM': gbm_options} fit_args = { 'label': 'y', 'presets': ['best_quality', 'optimize_for_deployment'], 'time_limits': 60*10, 'hyperparameters': model_hps, 'hyperparameter_tune': True, 'search_strategy': 'skopt'}hyperparameters = { 'fit_args': fit_args, 'feature_importance': True}```**Note:** Your hyperparameter choices may affect the size of the model package, which could result in additional time taken to upload your model and complete training. Including `'optimize_for_deployment'` in the list of `fit_args['presets']` is recommended to greatly reduce upload times.
|
# Define required label and optional additional parameters
fit_args = {
'label': 'y',
# Adding 'best_quality' to presets list will result in better performance (but longer runtime)
'presets': ['optimize_for_deployment'],
}
# Pass fit_args to SageMaker estimator hyperparameters
hyperparameters = {
'fit_args': fit_args,
'feature_importance': True
}
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
TrainFor local training set `train_instance_type` to `local` . For non-local training the recommended instance type is `ml.m5.2xlarge`. **Note:** Depending on how many underlying models are trained, `train_volume_size` may need to be increased so that they all fit on disk.
|
%%time
instance_type = 'ml.m5.2xlarge'
#instance_type = 'local'
ecr_image = f'{ecr_uri_prefix}/{training_algorithm_name}:latest'
estimator = Estimator(image_name=ecr_image,
role=role,
train_instance_count=1,
train_instance_type=instance_type,
hyperparameters=hyperparameters,
train_volume_size=100)
# Set inputs. Test data is optional, but requires a label column.
inputs = {'training': train_s3_path, 'testing': test_s3_path}
estimator.fit(inputs)
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Create Model
|
# Create predictor object
class AutoGluonTabularPredictor(RealTimePredictor):
def __init__(self, *args, **kwargs):
super().__init__(*args, content_type='text/csv',
serializer=csv_serializer,
deserializer=StringDeserializer(), **kwargs)
ecr_image = f'{ecr_uri_prefix}/{inference_algorithm_name}:latest'
if instance_type == 'local':
model = estimator.create_model(image=ecr_image, role=role)
else:
model_uri = os.path.join(estimator.output_path, estimator._current_job_name, "output", "model.tar.gz")
model = Model(model_uri, ecr_image, role=role, sagemaker_session=session, predictor_cls=AutoGluonTabularPredictor)
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Batch Transform For local mode, either `s3:////output/` or `file:///` can be used as outputs.By including the label column in the test data, you can also evaluate prediction performance (In this case, passing `test_s3_path` instead of `X_test_s3_path`).
|
output_path = f's3://{bucket}/{prefix}/output/'
# output_path = f'file://{os.getcwd()}'
transformer = model.transformer(instance_count=1,
instance_type=instance_type,
strategy='MultiRecord',
max_payload=6,
max_concurrent_transforms=1,
output_path=output_path)
transformer.transform(test_s3_path, content_type='text/csv', split_type='Line')
transformer.wait()
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Endpoint Deploy remote or local endpoint
|
instance_type = 'ml.m5.2xlarge'
#instance_type = 'local'
predictor = model.deploy(initial_instance_count=1,
instance_type=instance_type)
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Attach to endpoint (or reattach if kernel was restarted)
|
# Select standard or local session based on instance_type
if instance_type == 'local':
sess = local_session
else:
sess = session
# Attach to endpoint
predictor = AutoGluonTabularPredictor(predictor.endpoint, sagemaker_session=sess)
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Predict on unlabeled test data
|
results = predictor.predict(X_test.to_csv(index=False)).splitlines()
# Check output
print(Counter(results))
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Predict on data that includes label column Prediction performance metrics will be printed to endpoint logs.
|
results = predictor.predict(test.to_csv(index=False)).splitlines()
# Check output
print(Counter(results))
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Check that classification performance metrics match evaluation printed to endpoint logs as expected
|
y_results = np.array(results)
print("accuracy: {}".format(accuracy_score(y_true=y_test, y_pred=y_results)))
print(classification_report(y_true=y_test, y_pred=y_results, digits=6))
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Clean up endpoint
|
predictor.delete_endpoint()
|
_____no_output_____
|
Apache-2.0
|
advanced_functionality/autogluon-tabular/AutoGluon_Tabular_SageMaker.ipynb
|
phiamazon/amazon-sagemaker-examples
|
Berdasarkan isu [73](https://github.com/taruma/hidrokit/issues/73): **request: mengolah berkas dari data bmkg**Deskripsi:- mengolah berkas excel yang diperoleh dari data online bmkg untuk siap dipakai- memeriksa kondisi dataFungsi yang diharapkan:__Umum / General__- Memeriksa apakah data lengkap atau tidak? Jika tidak, data apa dan pada tanggal berapa?- Memeriksa apakah data tidak ada data / tidak ada pengukuran (9999) atau data tidak diukur (8888)? Jika ada, data apa dan pada tanggal berapa?- Menampilkan "potongan" baris yang tidak memiliki data / tidak melakukan pengukuran? DATASET
|
# AKSES GOOGLE DRIVE
from google.colab import drive
drive.mount('/content/gdrive')
# DRIVE PATH
DRIVE_DROP_PATH = '/content/gdrive/My Drive/Colab Notebooks/_dropbox'
DRIVE_DATASET_PATH = '/content/gdrive/My Drive/Colab Notebooks/_dataset/uma_pamarayan'
DATASET_PATH = DRIVE_DATASET_PATH + '/klimatologi_geofisika_tangerang_1998_2009.xlsx'
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
FUNGSI
|
import pandas as pd
import numpy as np
from operator import itemgetter
from itertools import groupby
def _read_bmkg(io):
return pd.read_excel(
io, skiprows=8, skipfooter=16, header=0, index_col=0, parse_dates=True,
date_parser=lambda x: pd.to_datetime(x, format='%d-%m-%Y')
)
def _have_nan(dataset):
if dataset.isna().any().any():
return True
else:
return False
def _get_index1D(array1D_bool):
return np.argwhere(array1D_bool).reshape(-1,)
def _get_nan(dataset):
nan = {}
for col in dataset.columns:
nan[col] = _get_index1D(dataset[col].isna().values).tolist()
return nan
def _get_missing(dataset):
missing = {}
for col in dataset.columns:
masking = (dataset[col] == 8888) | (dataset[col] == 9999)
missing[col] = _get_index1D(masking.values)
return missing
def _check_nan(dataset):
if _have_nan(dataset):
return _get_nan(dataset)
else:
return None
def _get_nan_columns(dataset):
return dataset.columns[dataset.isna().any()].tolist()
def _group_as_list(array):
# based on https://stackoverflow.com/a/15276206
group_list = []
for _, g in groupby(enumerate(array), lambda x: x[0]-x[1]):
single_list = sorted(list(map(itemgetter(1), g)))
group_list.append(single_list)
return group_list
def _group_as_index(
group_list, index=None, date_format='%Y%m%d',
format_date = '{}-{}'
):
group_index = []
date_index = isinstance(index, pd.DatetimeIndex)
for item in group_list:
if len(item) == 1:
if date_index:
group_index.append(index[item[0]].strftime(date_format))
else:
group_index.append(index[item[0]])
else:
if date_index:
group_index.append(
format_date.format(
index[item[0]].strftime(date_format),
index[item[-1]].strftime(date_format)
)
)
else:
group_index.append(
format_date.format(
index[item[0]], index[item[-1]]
)
)
return group_index
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
PENGGUNAAN Fungsi `_read_bmkg`Tujuan: Impor berkas excel bmkg ke dataframe
|
dataset = _read_bmkg(DATASET_PATH)
dataset.head()
dataset.tail()
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_have_nan()`Tujuan: Memeriksa apakah di dalam tabel memiliki nilai yang hilang (np.nan)
|
_have_nan(dataset)
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_get_index1D()`Tujuan: Memperoleh index data yang hilang untuk setiap array
|
_get_index1D(dataset['RH_avg'].isna().values)
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_get_nan()`Tujuan: Memperoleh index data yang hilang untuk setiap kolom dalam bentuk `dictionary`
|
_get_nan(dataset).keys()
print(_get_nan(dataset)['RH_avg'])
|
[852, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1220, 1221, 1222, 1223, 1224, 1628, 1629, 1697, 2657]
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_get_nan_columns()`Tujuan: Memperoleh nama kolom yang memiliki nilai yang hilang `NaN`.
|
_get_nan_columns(dataset)
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_check_nan()`Tujuan: Gabungan dari `_have_nan()` dan `_get_nan()`. Memeriksa apakah dataset memiliki `NaN`, jika iya, memberikan nilai hasil `_get_nan()`, jika tidak memberikan nilai `None`.
|
_check_nan(dataset).items()
# Jika tidak memiliki nilai nan
print(_check_nan(dataset.drop(_get_nan_columns(dataset), axis=1)))
|
None
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_group_as_list()`Tujuan: Mengelompokkan kelompok array yang bersifat kontinu (nilainya berurutan) dalam masing-masing list.Referensi: https://stackoverflow.com/a/15276206 (dimodifikasi untuk Python 3.x dan kemudahan membaca)
|
missing_dict = _get_nan(dataset)
missing_RH_avg = missing_dict['RH_avg']
print(missing_RH_avg)
print(_group_as_list(missing_RH_avg))
|
[[852], [1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067], [1220, 1221, 1222, 1223, 1224], [1628, 1629], [1697], [2657]]
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_group_as_index()`Tujuan: Mengubah hasil pengelompokkan menjadi jenis index dataset (dalam kasus ini dalam bentuk tanggal dibandingkan dalam bentuk angka-index dataset).
|
_group_as_index(_group_as_list(missing_RH_avg), index=dataset.index, date_format='%d %b %Y')
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Fungsi `_get_missing()`Tujuan: Memperoleh index yang memiliki nilai tidak terukur (bernilai `8888` atau `9999`) untuk setiap kolomnya
|
_get_missing(dataset)
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Penerapan Menampilkan index yang bermasalahTujuan: Setelah memperoleh index dari hasil `_get_missing()` atau `_get_nan()`, bisa menampilkan potongan index tersebut dalam dataframe.
|
dataset.iloc[_get_missing(dataset)['RR']]
_group_as_list(_get_missing(dataset)['RR'])
_group_as_index(_, index=dataset.index, date_format='%d %b %Y', format_date='{} sampai {}')
|
_____no_output_____
|
MIT
|
hidrokit/contrib_taruma/ipynb/taruma_hk73_bmkg.ipynb
|
hidrokit/manual
|
Homework - Random Walks (18 pts) Continuous random walk in three dimensionsWrite a program simulating a three-dimensional random walk in a continuous space. Let 1000 independent particles all start at random positions within a cube with corners at (0,0,0) and (1,1,1). At each time step each particle will move in a random direction by a random amount between -1 and 1 along each axis (x, y, z). 1. (3 pts) Create data structure(s) to store your simulated particle positions for each of 2000 time steps and initialize them with the particles starting positions.
|
import numpy as np
numTimeSteps = 2000
numParticles = 1000
positions = np.zeros( (numParticles, 3, numTimeSteps) )
# initialize starting positions on first time step
positions[:,:,0] = np.random.random( (numParticles, 3) )
|
_____no_output_____
|
Unlicense
|
homework/key-random_walks.ipynb
|
nishadalal120/NEU-365P-385L-Spring-2021
|
2. (3 pts) Write code to run your simulation for 2000 time steps.
|
for t in range(numTimeSteps-1):
# 2 * [0 to 1] - 1 --> [-1 to 1]
jumpsForAllParticles = 2 * np.random.random((numParticles, 3)) - 1
positions[:,:,t+1] = positions[:,:,t] + jumpsForAllParticles
# just for fun, here's another way to run the simulation above without a loop
jumpsForAllParticlesAndAllTimeSteps = 2 * np.random.random((numParticles, 3, numTimeSteps-1)) - 1
positions[:,:,1:] = positions[:,:,0].reshape(numParticles, 3, 1) + np.cumsum(jumpsForAllParticlesAndAllTimeSteps, axis=2)
|
_____no_output_____
|
Unlicense
|
homework/key-random_walks.ipynb
|
nishadalal120/NEU-365P-385L-Spring-2021
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.