content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import ast def is_name_in_ptree(name, ptree): """ Return True if an ast.Name node with the given name as its id appears anywhere in the ptree, False otherwise """ if not ptree: return False for node in ast.walk(ptree): if isinstance(node, ast.Name) and (node.id == name): return True return False
c2d6d0001c3baf14c110ff351c8a1c5e97b256d8
690,251
def update_letter_view(puzzle: str, view: str, position: int, guess: str) -> str: """Return the updated view based on whether the guess matches position in puzzle >>> update_letter_view('apple', 'a^^le', 2, 'p') p >>> update_letter_view('banana', 'ba^a^a', 0, 'b') b >>> update_letter_view('bitter', '^itter', 0, 'c') ^ """ if guess == puzzle[position]: return puzzle[position] return view[position]
b7c534acdbc57c04e1f7ee6a83fc94ff2734948a
698,438
def remove_unnecessary(string): """Removes unnecessary symbols from a string and returns the string.""" string = string.replace('@?', '') string = string.replace('?@', '') return string
56965ef4b60d302e659bafd4874b8c72790c5ec3
59,827
import json def load_json(filename): """ json loader to load Nematus vocabularies Note that we use unicode representations (not str) :param filename: :return: """ with open(filename, mode='rb') as f: return json.load(f)
6df9c234c37a7ed01cf00d24ed49578bc447e38e
599,445
def _compute_error(node, x, y=None): """Error between target and prediction.""" prediction = node.state() error = prediction - y return error, x.T
2d675073cf994864f8557fd3e401c1e543755e9c
163,307
from typing import Callable from typing import Any from typing import Iterable from typing import Tuple from typing import List def group_by_pred( pred: Callable[[Any], bool], iterable: Iterable[Any] ) -> Tuple[List[Any], List[Any]]: """Splits items in a sequence into two lists, one containing items matching the predicate, and another containing those that do not.""" is_true = [] # type: List[Any] is_false = [] # type: List[Any] for item in iterable: if pred(item): is_true.append(item) else: is_false.append(item) return is_true, is_false
07af56c4e40bbef2055b2675353be14e04f991aa
289,629
def new_line(string: str): """ Append a new line at the end of the string Args: string: String to make a new line on Returns: Same string with a new line character """ return string + "\n"
f4deeaa94a6980f95a3020fa54570fbe1f0a6e9e
701,112
import typing import yaml def get_targets(filename: str) -> typing.List[str]: """Load the configuration file. The configuration file is expected to be a YAML file listing the target urls as a list. For more information, refer to the README.md or the example configuration. """ with open(filename) as config: targets = yaml.safe_load(config) return targets
66cc4be3d17040562e321bf5e3fb7e564aa77335
420,156
from typing import Tuple import math def euler_to_quaternion(roll: float = 0, pitch: float = 0, yaw: float = 0) -> Tuple[float, float, float, float]: """ Convert Euler to Quaternion Args: roll (float): roll angle in radian (x-axis) pitch (float): pitch angle in radian (y-axis) yaw (float): yaw angle in radian (z-axis) Returns: Tuple[float, float, float, float]: x, y, z, w """ # Abbreviations for the various angular functions cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) # Quaternion w = cr * cp * cy + sr * sp * sy x = sr * cp * cy - cr * sp * sy y = cr * sp * cy + sr * cp * sy z = cr * cp * sy - sr * sp * cy return x, y, z, w
e8346172f07510c377e14827842eb18f1631402e
707,128
def get_network(network_arg, task_idx): """ Get network file from list of arguments. Parameters ---------- network_arg: list of space-separated network filenames as parsed by argparse (--networks) task_idx: int index of the task/network Returns ------ Path to the network for task task_idx. """ if (task_idx == 0 or len(network_arg) == 1): return network_arg[0] else: return network_arg[task_idx]
eac76c0c70e5dec1dccf8e3c3adea8a199997c10
113,661
def single_line(value): """Returns the given string joined to a single line and trimmed.""" return " ".join(filter(None, map(str.strip, value.splitlines())))
2f51425a02f64d9b64be74ad8b78ecaba8d6b300
206,907
from typing import List from typing import Set def _extract_target_labels(targets_in_order: List[dict], target_name: str) -> Set[str]: """Collect a set of all the board names from the inherits field in each target in the hierarchy. Args: targets_in_order: list of targets in order of inheritance, starting with the target up to its highest ancestor target_name: the name of the target to find the labels for Returns: A set of names of boards that make up the inheritance tree for the target """ labels = {target_name} for target in targets_in_order: for parent in target.get("inherits", []): labels.add(parent) return labels
f47dcd90427efd70b0ac965ea017852db68381e4
674,322
import hashlib def convert_to_SHA256(x): """Convert a given string to SHA256-encoded string. :param x: arbitrary string. :type x: str :return: SHA256 encoded string :rtype: str """ result = hashlib.sha256(x.encode()) result = result.hexdigest() return result
b199155459a7d36b9614678190d72aff167da13c
272,896
def get_index_groups(time_list): """Get index groups corresponding to the different time interval tvals. An index group is a pair consisting of a time interval time value and a list of indices corresponding to that time value. A dictionary will map the time interval tvals to their corresponding index lists. Inputs: time_list -- list of triples (tval, time_interval_time_val, ind) Returns: dictionary mapping time_interval_time_val to its index list """ index_groups = {} for (tval, time_interval_time_val, ind) in time_list: if time_interval_time_val in index_groups: index_groups[time_interval_time_val].append(ind) else: index_groups[time_interval_time_val] = [ind] return index_groups
bc38858d28e25b45ed4ee6753a88638a847a810b
248,345
def latex_float(f, precision=0.2, delimiter=r'\times'): """ Convert a float value into a pretty printable latex format makes 1.3123e-11 transformed into $1.31 x 10 ^ {-11}$ Parameters ---------- f: float value to convert precision: float, optional (default: 0.2) the precision will be used as the formatting: {precision}g default=0.2g delimiter: str, optional (default=r'\times') delimiter between the value and the exponent part """ float_str = ("{0:" + str(precision) + "g}").format(f) if "e" in float_str: base, exponent = float_str.split("e") return (r"{0}" + delimiter + "10^{{{1}}}").format(base, int(exponent)) else: return float_str
b3d31afcfbf8a564d85f5f5b099b0d63bc8d89f8
77,753
def celsius_to_fahrenheit(temp): """ Convert degrees Celsius to degrees Fahrenheit :param float temp: The temperature in Celsius :return: The temperature in Fahrenheit :rtype: float """ return (temp * 1.8) + 32.0
ebb420e14c0b01b8ed91cd603b2e3bf34388f917
563,487
def FormatResources(resources): """Formats a list of resources for printing. Args: resources: a list of resources, given as (type, name) tuples. """ return '\n'.join(['%-12s %s' % (t, n) for t, n in sorted(resources)])
f88604a186115a7333de02d6c0ad31315ea22f12
486,397
def binary_search(input_array, value): """ Algorithm: Here is how it could be done: 1. Get middle index of array with range (0...array-size) 2. Compare value of mid-element at that index with given value 2.1 If (value == mid-element) then return the middle index [DONE] 2.2 Else If (value < mid-element) then repeat step 1 with range (0...mid-element-index) 2.3 Else If (value > mid-element) then repeat step 2 with range (mid-element-index + 1, size) 3. Since iteration completed without finding the elements, return -1""" """ Step 1""" start = 0 end = len(input_array) """ Step 2""" while end > start: mid_index = (start + end) / 2 mid_value = input_array[mid_index] if value == mid_value: return mid_index elif value < mid_value: end = mid_index else: start = mid_index + 1 """ Step 3""" return -1
6723316e9460efb5ce41ad8e94152deb13af0d94
192,086
def format_iter(body: list) -> str: """ Formats an iterable into a multi-line bulleted string of its values. """ return "\n".join(sorted([f" - {getattr(v, 'value', v)}" for v in body]))
0f55b06276c45ef652e89df3dfd24d1fe9a4e844
11,724
def classify_list_f(a_list, *filters): """Classfy a list like object. Multiple filters in one loop. - collection: list like object - filters: the filter functions to return True/False Return multiple filter results. Example: data = [1, 2, 3] m1 = lambda x: x > 1 m2 = lambda x: x > 2 classify(data, m1, m2) -> [2, 3], [3] """ results = tuple([] for i in range(len(filters))) for item in a_list: for filter_func, result in zip(filters, results): if filter_func(item): result.append(item) return results
4bafa7a6b714387cfa2a6c896eece909e4171cdf
288,981
def _convert_from_F(temp: float) -> float: """ Convert F temp to C param temp: temp in F to convert return: float """ return round((temp - 32) * 5/9, 1)
0bff2139405161193b6212ab46ddf34d8ef984f2
255,295
def detector_substr(detector): """ change detector string to match file format (e.g., "SCA01" -> "SCA_1") """ return f"{detector[:3]}_{str(int((detector[3:])))}"
878a75146b5bf03d020acfa2b6363c166a3b0e4d
93,165
def get_neighbours_from_grid(row, column, grid): """Get from the grid neighbours of square on given row and column.""" coordinates = [] if row > 0: coordinates.append(('up', row - 1, column)) if row + 1 < len(grid): coordinates.append(('down', row + 1, column)) if column > 0: coordinates.append(('left', row, column - 1)) if column + 1 < len(grid): coordinates.append(('right', row, column + 1)) return [ (neighbour, grid[square_row][square_col]) for neighbour, square_row, square_col in coordinates ]
b6df05d66d26af30de9f0ac7c2544bd8f5e9643f
365,638
from typing import Dict from typing import Any async def provider() -> Dict[str, Any]: """Define a basic example data provider function.""" return { "title": "Example", "link": "https://example.com", "description": "An example rsserpent plugin.", "items": [{"title": "Example Title", "description": "Example Description"}], }
e952f40d360bf31e4a8710c3b5d531c1467ef660
422,373
def get_sequence_name(image_file): """Returns a sequence name like '20180227_185324'.""" return image_file.split('/')[-3]
8456faf80320f2f4fe85413c537edf79ec6d5afa
357,289
from bs4 import BeautifulSoup import re def get_links(html_page, base_url): """gets all links from html Parameters ------ html_page (str): document html base_url (str): the original URL supplied Returns ------ list: list of all the links in the html document these could be files or sub-directories """ # "lxml" supposed to be faster than "html.parser soup = BeautifulSoup(html_page, "html.parser") regex = ".|(/$)" links = [f"{link.get('href')}" for link in soup.findAll('a', attrs={'href': re.compile(regex)})] return links
f2e97ce2934e994787f3ef79d43558f3380c6722
665,409
import errno def is_eintr(exc): """Returns True if an exception is an EINTR, False otherwise.""" if hasattr(exc, 'errno'): return exc.errno == errno.EINTR elif getattr(exc, 'args', None) and hasattr(exc, 'message'): return exc.args[0] == errno.EINTR return False
b6a7c280f87757492f3a4c1ee166577691ef8622
123,313
import collections def build_dicts(reviewText): """ Build dictionaries mapping words to unique integer values. """ counts = collections.Counter(reviewText).most_common() dictionary = {} for word, _ in counts: dictionary[word] = len(dictionary) return dictionary
5a20752a044d63f1be433494c4c2ca83953bbe67
119,082
def simplify_person_name( name ): """ Simpify a name to a last name only. Titles such as Ph. D. will be removed first. Arguments: name -- The name to shorten """ if name is not None: new_name = name.replace("Ph.D.", "").replace("Ph. D.", "").replace("M.A.", "").replace("LL.D.", "").replace("A.M.", "").replace("Esq.", "").replace(",", "").strip() return new_name.split(" ")[-1] else: return name
c8e26c84f4c8e2ef0107ed14a13980259b1b306b
208,868
import re import json def get_interfaces_counters(module): """ @summary: Parse output of "show interfaces counters" command and convert it to the dictionary. @param module: The AnsibleModule object @return: Return dictionary of parsed counters """ cli_cmd = "portstat -j" rc, stdout, stderr = module.run_command(cli_cmd) if rc != 0: module.fail_json(msg="Failed to run {}, rc={}, stdout={}, stderr={}".format(cli_cmd, rc, stdout, stderr)) match = re.search("Last cached time was.*\n", stdout) if match: stdout = re.sub("Last cached time was.*\n", "", stdout) try: return json.loads(stdout) except Exception as e: module.fail_json(msg="Failed to parse output of '{}', err={}".format(cli_cmd, str(e)))
5f68b977c2a934a84e37d059349f60261e151055
443,116
def wow_gen(length: int): """Generates a wow at a given length""" if (length <= 1984 and length >= 0): wow_thing = "***__~~w" for _ in range(length): wow_thing += "o" wow_thing += "w~~__***" return wow_thing elif (length >= -1984 and length < 0): new_length = -length wow_thing = "***__~~ʍ" for _ in range(new_length): wow_thing += "o" wow_thing += "ʍ~~__***" return wow_thing else: return "Sorry bud, but your wow is too much for me to handle.\n" \ "Here's a doge for now: https://upload.wikimedia.org/wikipedia/en/5/5f/Original_Doge_meme.jpg **_: (_**"
8057befdc1f5513340e659c3bcd92bd86c13875f
525,529
from typing import Any import gc def _object_for_id(id_: int) -> Any: """ Return an object, given its id. """ # Do a complete garbage collect, to avoid false positives in case the # object was still in use recently. In the context of AppSingleLaunch, # this would happen if an app was closed, then launched again immediately. gc.collect() for obj in gc.get_objects(): if id(obj) == id_: return obj return None
6a334eb9dd7cffbc95fd4671fe9883bd4238d064
143,003
def get_file_name(conanfile, find_module_mode=False): """Get the name of the file for the find_package(XXX)""" # This is used by the CMakeToolchain to adjust the XXX_DIR variables and the CMakeDeps. Both # to know the file name that will have the XXX-config.cmake files. if find_module_mode: ret = conanfile.cpp_info.get_property("cmake_module_file_name") if ret: return ret ret = conanfile.cpp_info.get_property("cmake_file_name") return ret or conanfile.ref.name
db8afd149df6efd8dc01c120ab85d77ca229d3e8
480,555
def default_inverse_transform_targets(current_state, delta): """ This is the default inverse transform targets function used, which reverses the preprocessing of the targets of the dynamics function to obtain the real current_state not the relative one, The default one is (current_state = target + current_state). Parameters --------- current_state: tf.float32 The current_state has a shape of (Batch X dim_S) delta: tf.float32 The delta has a shape of (Batch X dim_S) which is equivilant to the target of the network. """ return delta + current_state
9d7031dded17a69e195017384b5bdc71751aeb27
475,991
def confirmable_div(confirm_field_id: str | None, prefix: str = 'form-group-') -> str: """Return an opening div tag linking this error div to a confirm field. See `confirmable-error.ts`. """ attrs = ['', 'data-role="confirmable-error"', f'data-confirmed-by-checkbox-id="{confirm_field_id}"'] \ if confirm_field_id else [] return f"<div{' '.join(attrs)}>"
f6c773bb04bed63d387c61616ff437be727244f9
503,233
def fixup_setup(setup): """Fill in any missing pieces from setup.""" if not hasattr(setup, 'PY_NAME'): setup.PY_NAME = setup.NAME if not hasattr(setup, 'PY_SRC'): setup.PY_SRC = '%s.py' % setup.PY_NAME if not hasattr(setup, 'DEB_NAME'): setup.DEB_NAME = setup.NAME if not hasattr(setup, 'AUTHOR_NAME'): setup.AUTHOR_NAME = setup.SETUP['author'] if not hasattr(setup, 'GOOGLE_CODE_EMAIL'): setup.GOOGLE_CODE_EMAIL = setup.SETUP['author_email'] return setup
de49f99d09f6c683392ea2f006970bfe48ad01da
234,364
import string import torch def translate(sentence, inp_word2id, trg_word2id, trg_id2word, encoder, decoder, trg_max_len, device='cpu'): """ Generate translation for input sentence. Inputs: - sentence: a sentence in string format - inp_word2id: word2id from input training set - trg_word2id: word2id from target training set - trg_id2word: id2word from target training set - encoder, decoder: Encoder, Decoder models - trg_max_len: max length for target sentence - device: 'cpu' or 'cuda' Return a sentence """ exclude = list(string.punctuation) + list(string.digits) sentence = '<START> ' + ''.join([char for char in sentence if char not in exclude]).strip().lower() + ' <END>' sen_matrix = [inp_word2id[s] for s in sentence.split()] sen_tensor = torch.Tensor(sen_matrix).to(device=device, dtype=torch.long).unsqueeze(0) encoder.eval() decoder.eval() with torch.no_grad(): enc_out, enc_hidden = encoder(sen_tensor) dec_hidden = enc_hidden dec_input = torch.Tensor([trg_word2id['<START>']]).to(device='cuda', dtype=torch.long) output_list = [] for t in range(1, trg_max_len): out, dec_hidden = decoder(dec_input, dec_hidden, enc_out) dec_input = torch.max(out, dim=-1)[1].squeeze(1) next_id = dec_input.squeeze().clone().cpu().numpy() next_word = trg_id2word[next_id] if next_word == '<END>': break output_list.append(next_word) return ' '.join(output_list)
7c66d1ce73600443da2326c1c61b337cb6388d32
511,872
def make_valid_mapping(package_leaflets): """ Make sure to have valid mappings from NER (input) to section_content (output) In case either input or output - None or empty, make sure the corresponding pair is None :param package_leaflets: list, collection of package leaflets :return: package_leaflets with valid mappings """ for leaflet in package_leaflets: current_leaflet_sections = [leaflet.section1, leaflet.section2, leaflet.section3, leaflet.section4, leaflet.section5, leaflet.section6] for section_index, current_section in enumerate(current_leaflet_sections): # if section_content is None, make sure entity_recognition is None too (can not map NER --> None) if current_section.section_content is None: current_section.entity_recognition = None continue # if entity_recognition is None, make sure section_content is None too (can not map from None --> text) if current_section.entity_recognition is None: current_section.section_content = None continue # set empty section_content to None, make sure entity_recognition is None too (can not map NER --> None) if len(current_section.section_content) == 0: current_section.section_content = None current_section.entity_recognition = None continue # set empty NER outputs to None, make sure section_content is None too (can not map from None --> text) if len(current_section.entity_recognition) == 0: current_section.entity_recognition = None current_section.section_content = None continue return package_leaflets
fee328e4d207cf0a4510f190ac47b9f7fa6736b0
425,946
def nextIter(it, default=None): """ Returns the next element of the iterator, returning the default value if it's empty, rather than throwing an error. """ try: return next(iter(it)) except StopIteration: return default
f7be7cf6fdf6cd77459453858f20121207220ec9
534,219
def plurality(l): """ Take the most common label from all labels with the same rev_id. """ s = l.groupby(l.index).apply(lambda x:x.value_counts().index[0]) s.name = 'y' return s
4e363648e79b5e9049aca2de56fd343c1efe1b93
8,513
def unique_append(old_list, new_list): """ Add items from new_list to end of old_list if those items are not already in old list -- returned list will have unique entries. Preserve order (which is why we can't do this quicker with dicts). """ combined = old_list for item in new_list: if item not in combined: combined.append(item) return combined
96ecc3350300ef0b6ed3ff54b370fbc9189ec96f
532,965
def fuel_burn_by_ll_rule(mod, prj, tmp, s): """ If no fuel_burn_by_ll_rule is specified in an operational type module, the default fuel burn needs to be greater than or equal to 0. """ return 0
7e5e2861b7d5114060b66a6c988896e476063da2
478,799
def get_packagetype(name: str) -> str: """Get package type out of a filename""" if name.endswith(".tar.gz"): return "sdist" elif name.endswith(".egg"): return "bdist_egg" elif name.endswith(".whl"): return "bdist_wheel" else: return ""
34ad89c3c118ee7da1a07396da0dd39a63ea7a8b
385,152
def binary_search(arr, val): """Takes in a sorted list and a value. Preforms the Binary Search algorythem to see if the value is in the lsit.""" # Set the values to the end of the list left,right = 0,len(arr) while not right <= left: mid = (right + left) // 2 if val > arr[mid]: left = mid+1 elif val < arr[mid]: right = mid else: return mid return -1
49e25dd5ba4e9e92d6b1225141efa74f48ee19b1
95,118
def percent_diff(value1: float, value2: float, frac: bool = False) -> float: """ Return the percentage difference between two values. The denominator is the average of value1 and value2. value1: float, first value value2: float, second value frac: bool, Default is False. Set to True returns a fraction instead of percentages. This is useful for performing calculations on spreadsheets. return: float, absolute value of the difference in percentages Usage ----- >>> percent_diff(5, 7) 33.33333333333333 >>> percent_diff(5, 7, frac=True) 0.3333333333333333 """ assert value1 >= 0 and value2 >= 0, 'Values must not be negative' perdiff = abs(value1 - value2)/((value1 + value2)/2.0) if frac is False: perdiff *= 100 return perdiff
cffe298fb4218adc60bf75ff659090c41ae86922
37,999
def getdifflist(inputlist): """returns a list of length-1 relative to the input list list values are the differential of the inputlist [n+1]-[n]""" difflist=[inputlist[i+1]-inputlist[i] for i in range(len(inputlist)-1)] return difflist
145f11f1f6af87a222f91a2b2cd2ee4c6a039df7
604,190
def _modname_to_cliname(parser_mod_name): """Return module's cli name (underscores converted to dashes)""" return parser_mod_name.replace('_', '-')
a8dea162a38744c4eeb13f68acdf88a03338c3ef
384,162
def calc4travel(fuelprice: float, averagecons: float, km: float) -> float: """ Função para calcular o valor gasto em combustivel para uma viagem de X Km (ida e volta). fuelprice: representa o preço do combustivel; averagecons: consumo médio do veiculo; km: distância em km. Retorna o valor em reais da quantia aproximada que será gasta em combustivel. """ return (km/averagecons*fuelprice)*2
c1a7f0e7c6d669463ec40e290a7bc60036df9fbf
488,672
import yaml def safe_dump(data, stream=None, **kwds): """ Serialize a Python object into a YAML stream. If stream is None, return the produced string instead. """ return yaml.safe_dump(data, stream, **kwds)
02e8cba070e19842fc669d20a83837b9c5ff19b6
255,519
import math def get_3rd_side(a, b): """ Returns hypotenuse of a right-angled triangle, given its other sides """ # return np.sqrt(np.sum(np.square(mags))) return math.sqrt(a**2 + b**2)
5f5f6606e3a18f567bef157b43fe54771ffe90f4
206,719
def calc_3d_bbox(xs, ys, zs): """Calculates 3D bounding box of the given set of 3D points. :param xs: 1D ndarray with x-coordinates of 3D points. :param ys: 1D ndarray with y-coordinates of 3D points. :param zs: 1D ndarray with z-coordinates of 3D points. :return: 3D bounding box (x, y, z, w, h, d), where (x, y, z) is the top-left corner and (w, h, d) is width, height and depth of the bounding box. """ bb_min = [xs.min(), ys.min(), zs.min()] bb_max = [xs.max(), ys.max(), zs.max()] # NOTE: this need to +1, do not use this !!!!!!!!!!!!!!! return [ bb_min[0], bb_min[1], bb_min[2], bb_max[0] - bb_min[0], bb_max[1] - bb_min[1], bb_max[2] - bb_min[2], ]
5e4f2c6197addae67816844f6764b16c031d3d29
625,506
def filter_deleted_items(items, flag): """Filter deleted items :param items: target :param flag: deleted flag name, always True means deleted :return: list does not contain deleted items """ # just return if parameter is not a list if not isinstance(items, list): return items result = filter(lambda x: not x[flag], items) return [x for x in result]
0f494d3515f7bd78661b3e5bed00055eeea6f7d3
662,339
def snake_to_camel_case(value): """ Converts a string from snake_case to camelCase """ words = value.strip("_").split("_") return words[0].lower() + "".join([word.capitalize() for word in words[1:]])
b78419dbdbe0cd88f6dd79e9174f4a26ae9640b5
607,712
def get_all_ann_index(self): """ Retrieves all annotation ids """ return list(self.ann_infos.keys())
4375c9dbc14bf50575c8a5e42ce0ae8749820dfb
706,589
def get_clean_fips(fips): """ Given a FIPS code, ensure it is returned as a properly formatted FIPS code of length 5 Example: get_clean_fips(123) = "00123" get_clean_fips("0002") = "00002" get_clean_fips("00001") = "00001 :param fips: The FIPS code to clean :return: The 5-digit FIPS code as a string """ as_string = str(fips) size = len(as_string) fips_length = 5 difference = fips_length - size if difference > 0: as_string = "0" * difference + as_string return as_string
e41c846a7db4f34329e8d2d6a9f960f4b3da99a5
408,341
import math def deg2rad(deg): """ Convert unit from deg to rad. """ return deg * math.pi / 180.0
3b0b206519f8725a81e5f97b236eb04b9caa94c8
402,897
def calculate_progress(total_count, count, start_progress = 0.0): """Calculates the progress in a way that is guaranteed to be safe from divizion by zero exceptions or any other exceptions. If there is any problem with the calculation or incoming arguments, this function will return 0.0""" default = 0.0 progress = float(start_progress) if not (0.0 <= progress <= 1.0): return default if not (0 <= count <= total_count): return default try: progress += float(count) / float(total_count) except: pass assert type(progress) == float if not (0.0 <= progress <= 1.0): return default return progress
9219e7b6657fbc405c478ae3294dd422f5b7d618
145,419
def _popanykey(dct, *keys, strict=False): """ Returns the first of the listed keys to be found in the dict :param dct: a dict :param keys: :param strict: [False] if True, raise KeyError if we get to the end of the list and nothing was found :return: """ for key in keys: if key.lower() in dct: return dct.pop(key.lower()) if strict: raise KeyError(keys) return None
dc895b8a2f7b4c42b8f46557a48a0f1fb048eb96
492,293
def remove_xml(rid): """ Removes the .xml from a resource or spec id. """ if '.xml' in rid[-4:]: return rid[:-4] else: return rid
e57c7ccfdfb130092ef0f2fd8412d4771fd716aa
47,855
def intseq(words, w2i, unk='.unk'): """ Convert a word sequence to an integer sequence based on the given codebook. :param words: :param w2i: :param unk: :return: """ res = [None] * len(words) for j, word in enumerate(words): if word in w2i: res[j] = w2i[word] else: res[j] = w2i[unk] return res
9716cbc3fad228802ba954e50df4d2f109eff3e6
87,079
def feature_normalization(X): """ Mean/standard deviation normalization. :param np.ndarray X: Feature matrix to be normalized. :return: np.ndarray of normalized feature matrix, np.ndarray of means and np.ndarray of standard deviation. """ mu = X.mean(axis=0) sigma = X.std(axis=0, ddof=1) return (X - mu) / sigma, mu, sigma
b9d8b45db8c05e7dd55e3b6339543401219262ce
493,445
def parse_job_line(line): """ >>> parse_job_line("* * * *,myquery,mycredentials\\n") ('* * * *', 'myquery', 'mycredentials', 'collect.py') >>> parse_job_line("* * * *,myquery,mycredentials,scripts/foo.py\\n") ('* * * *', 'myquery', 'mycredentials', 'scripts/foo.py') """ parts = line.strip().split(',') if len(parts) == 3: parts.append('collect.py') return tuple(parts)
8a83a3a5721e9e9b15cae7cd438bf505e776b38f
125,629
def hamming_distance(str1, str2): """calculate the hamming distance of two strings.""" # ensure length of str1 >= str2 if len(str2) > len(str1): str1, str2 = str2, str1 # distance is difference in length + differing chars distance = len(str1) - len(str2) for index, value in enumerate(str2): if value != str1[index]: distance += 1 return distance
6ac874c65fec012c74866bb10713195586c90294
535,228
def hist_range(array, bins): """ Compute the histogram range of the values in the array.* Parameters ---------- array: array the input data. bins: int the number of histogram bins. Returns ------- range: 2-uplet the histogram range. """ s = 0.5 * (array.max() - array.min()) / float(bins - 1) return (array.min() - s, array.max() + s)
937df240f2e2c91aa8eb4f4fe6d5075a30f0ff76
87,904
import yaml def trun_from_file(fpath): """Returns trun from the given fpath""" with open(fpath, 'r') as yml_file: return yaml.safe_load(yml_file)
4cc2ea61f61607edd79f25c93e01f55fc7b5dbbd
435,604
def count_distinct_occurence(calls, texts): """Return the count of distinct occurence of number Args: calls: list of calls texts: list of texts Returns: number of distinct number """ number_set = set() for record in calls+texts: number_set.add(record[0]) number_set.add(record[1]) return len(number_set)
4acf40c50bbd32b23735aaad2c581559829bb664
21,923
def extract_ingredient_counts(ingredients_dict, ingredient_labels): """ Extract ingredient counts from dict for plotting in chart. :param ingredients_dict: dict mapping ingredient names to counts :param ingredient_labels: list of strings containing ingredient names :return: list of counts of ingredients """ return [ingredients_dict[ingredient] for ingredient in ingredient_labels]
852b299d31e8896ec047db9bbf296cdbc7a0a2b0
574,037
from typing import Optional def filter_106_sum_lines(obj: dict) -> Optional[bool]: """Filter our unneeded lines in Form 106Sum :param obj: Pdf line :return: Whether to keep filtered lines """ if obj["width"] < 20: return False if obj["top"] < 60: return False if obj["x0"] < 360: return False return True
fc63f005bcdc8d057fdec74dca4b572767296be8
196,222
def readDictionary(input): """ Read file to a dictionary data structure: Input file is a lexicon consisting lines of the word and the most frequent associated tag """ dictionary = {} lines = open(input, "r").readlines() for line in lines: wordtag = line.strip().split() dictionary[wordtag[0]] = wordtag[1] return dictionary
543261fe7cbff53b4dc3082d56687aa3d2cef336
627,535
def http_ok_status() -> dict: """ Return an HTTP 200 ok status """ return {"statusCode":200, "body":""}
e88f3f4f2c7a4ac900d52f58f5601d3782ff4867
580,552
def _dash_escape(args): """Escape all elements of 'args' that need escaping. 'args' may be any sequence and is not modified by this function. Return a new list where every element that needs escaping has been escaped. An element needs escaping when it starts with two ASCII hyphens ('--'). Escaping consists in prepending an element composed of two ASCII hyphens, i.e., the string '--'. """ res = [] for arg in args: if arg.startswith("--"): res.extend(("--", arg)) else: res.append(arg) return res
94f1f19cf02c3b640480052f1f586d24dee135ec
347,996
import sympy def field_linear(theta): """Jones vector for linear polarized light at angle theta from horizontal plane.""" return sympy.Matrix([sympy.cos(theta), sympy.sin(theta)])
4ae21f61e0263f5e51ef6a390004bcdf4b9d763d
590,084
import logging def get_logger(name): """ Create new logger with the given name :param name: Name of the logger :return: Logger """ logger = logging.getLogger(name) return logger
80a7e545be7badd71277d38dbb202e70643f6ecb
629,815
def function() -> str: """Return a value.""" return "value"
00e8446e17cd3b2fa436a429780a500abdfe1286
504,049
def is_trunk(output, port): """ Returns True port is trunk, False otherwise :param output: String - Output of 'show int trunk' :param port: String - The port e.g. Gi0/1 :return: Bool """ for lines in output.strip().splitlines(): if port in lines: return True return False
dd687f7a2c6536b634baa9594f0e9835176a8716
463,093
def str_to_pair_of_lists(_str1, _str2, _sep=','): """ Attempts to convert 2 strings containing tokens separated by some _sep to a pair of lists, e.g. "a1,a2,a3", "b1,b2,b3" -> [['a1','a2','a3'],['b1','b2','b3']] :param _str1: input string #1 :param _str2: input string #2 :param _sep: token separator in the strings :returns: list of pairs of the corresponding tokens """ if((_str1 is None) or (_str2 is None) or (_str1 == '') or (_str2 == '')): return None lstTok1 = _str1.split(_sep) lstTok2 = _str2.split(_sep) return [lstTok1, lstTok2]
704d322ca9ab55fcb67683402c057a39d9386dd2
500,063
import re def clen(string): """Return the length of a string, excluding ansi color sequences.""" return len(re.sub(r'\033[^m]*m', '', string))
042873da51a583cfa30fda0b999e7a2cba0d5ada
450,571
def hex_8bit(value): """Converts 8bit value into bytearray. args: 8bit value returns: bytearray of size 1 """ if value > 0xff or value < 0: raise Exception('Sar file 8bit value %s out of range' % value) return value.to_bytes(1, 'little')
597ecb6c9a499c7a5959f1f8ddd7300b78b06e9a
694,649
def clamp(value: float, lower: float, upper: float) -> float: """ Basic clamp function: if below the floor, return floor; if above the ceiling, return ceiling; else return unchanged. :param value: float input :param lower: float floor :param upper: float ceiling :return: float within range [lower-upper] """ return lower if value < lower else upper if value > upper else value
e9dbe198776dafe743bbea4d4959e6e857112509
198,447
async def leave_comment(gh, issue_comment_url: str, message: str, token: str): """ Leave comment in issue or pull request :param gh: object with actions :param issue_comment_url: api string :param message: comment :param token: GitHub token :return: response """ data = {'body': message} return await gh.post( f'{issue_comment_url}', data=data, oauth_token=token )
cdcddeaef04cf3667cc861d44bd69180a8e49b34
628,004
def fatorial(num, show=False): """ -> Função para calcular fatorial. -> Paramêtros: * num: Número a ser calculado o fatorial. * show: True para mostrar calculo, False para mostrar apenas resultado. * return: Resultado da somatória. """ soma = 1 for cont in range (num, 0, -1): if show: print(cont, end='') if cont > 1: print(' x ', end='') else : print(' = ', end='') soma *= cont return soma
e6f50f63af36e79ed952010c917090cd4cbc930b
151,212
def module_tracker(fwd_hook_func): """ Wrapper for tracking the layers throughout the forward pass. Arguments --------- fwd_hook_func : function Forward hook function to be wrapped. Returns ------- function : Wrapped hook function """ def hook_wrapper(layer, *args): return fwd_hook_func(layer, *args) return hook_wrapper
d0835227ba1f7dde27bcc0d0af22bef8d50b90c6
380,123
def last_consecutives(vals, step=1): """ Find the last consecutive group of numbers :param vals: Array, store numbers :param step: Step size for consecutive numberes, default 1 :return: The last group of consecutive numbers of the input vals """ group = [] expected = None for val in reversed(vals): if (val == expected) or (expected is None): group.append(val) else: break expected = val - step return group
7e12990eb8ee1f44fd81d2dd66c24bf952316053
520,789
import hashlib def get_md5(path): """ Utility function for generating the md5sum of a file :param path: Path to file """ md5 = hashlib.md5() block_size = 8192 with open(path, 'rb') as f: for chunk in iter(lambda: f.read(block_size), b''): md5.update(chunk) return int(md5.hexdigest(), 16)
6ac19b40154d5a2acfd6ff251a2d63cbc5908e96
421,588
def _massage_groups_out(appstruct): """Opposite of '_massage_groups_in': remove 'groups:' prefix and split 'groups' into 'roles' and 'groups'. """ d = appstruct groups = [ g.split("group:")[1] for g in d.get("groups", "") if g and g.startswith("group:") ] roles = [r for r in d.get("groups", "") if r and r.startswith("role:")] d["groups"] = groups d["roles"] = roles return d
a447e50c551e16319c53101d646d93d8868cd3f0
444,332
def scale_bounding_boxes(bounding_boxes, orig_width, new_width): """ Scale a list of bounding boxes to reflect a change in image size. Args: bounding_boxes: List of lists of [x1, y1, x2, y2], where (x1, y1) is the upper left corner of the box, x2 is the width of the box, and y2 is the height of the box. orig_width: Width of the images to which bounding_boxes apply new_width: Width of the target images to which the bounding boxes should be translated Returns: A new list of bounding boxes with the appropriate scaling factor applied. """ scale_factor = new_width / orig_width ret = [] # Use a for loop because OpenCV doesn't play well with generators for bbox in bounding_boxes: new_bbox = [] for elem in bbox: new_elem = round(float(elem) * scale_factor) new_bbox.append(new_elem) ret.append(new_bbox) return ret
f670e9d37853075f169e933ff5128edbd300aa9f
67,649
def get_collection_sizes(net, bus_size=1.0, ext_grid_size=1.0, trafo_size=1.0, load_size=1.0, sgen_size=1.0, switch_size=2.0, switch_distance=1.0): """ Calculates the size for most collection types according to the distance between min and max geocoord so that the collections fit the plot nicely # Comment: This is implemented because if you would choose a fixed values # (e.g. bus_size = 0.2), the size # could be to small for large networks and vice versa INPUT net - pp net bus_size (float) ext_grid_size (float) trafo_size (float) load_size (float) sgen_size (float) switch_size (float) switch_distance (float) Returns sizes (dict) - containing all scaled sizes in a dict """ mean_distance_between_buses = sum((net['bus_geodata'].max() - net[ 'bus_geodata'].min()).dropna() / 200) sizes = { "bus": bus_size * mean_distance_between_buses, "ext_grid": ext_grid_size * mean_distance_between_buses * 1.5, "switch": switch_size * mean_distance_between_buses * 1, "switch_distance": switch_distance * mean_distance_between_buses * 2, "load": load_size * mean_distance_between_buses, "sgen": sgen_size * mean_distance_between_buses, "trafo": trafo_size * mean_distance_between_buses } return sizes
c032eeb22e4aed9acb2c519b2b0bcb548bba576f
502,461
def merge_dicts(dict_a, dict_b): """Performs a recursive merge of two dicts dict_a and dict_b, wheras dict_b always overwrites the values of dict_a :param dict_a: the first dictionary. This is the weak dictionary which will always be overwritten by dict_b (dict_a therefore is a default dictionary type :param dict_b: the second dictionary. This is the strong dictionary which will always overwrite vales of dict_a :return: """ merge_result = dict_a.copy() for key in dict_b: if key in dict_a and isinstance(dict_a[key], dict) and isinstance(dict_b[key], dict): merge_result[key] = merge_dicts(dict_a[key], dict_b[key]) else: merge_result[key] = dict_b[key] return merge_result
32e2823a7491f916fcdab8a28b94d5027c1f0306
656,141
def getLaggedReturns_fromReturns(x, lag): """ Get lagged log returns for an x pandas Serie. Parameters ---------- x : pd.Series Data serie lag : int Number of periods to be lagged """ weekly_price = x.rolling(lag).sum() weekly_returns = weekly_price.diff(lag) return weekly_returns
12e2f8ba1cdf7316d8003dc030c7f181e2c7b17c
489,925
def load(filename): """Load the labels and scores for Hits at K evaluation. Loads labels and model predictions from files of the format: Query \t Example \t Label \t Score :param filename: Filename to load. :return: list_of_list_of_labels, list_of_list_of_scores """ result_labels = [] result_scores = [] current_block_name = "" current_block_scores = [] current_block_labels = [] with open(filename,'r') as fin: for line in fin: splt = line.strip().split("\t") block_name = splt[0] block_example = splt[1] example_label = int(splt[2]) example_score = float(splt[3]) if block_name != current_block_name and current_block_name != "": result_labels.append(current_block_labels) result_scores.append(current_block_scores) current_block_labels = [] current_block_scores = [] current_block_labels.append(example_label) current_block_scores.append(example_score) current_block_name = block_name result_labels.append(current_block_labels) result_scores.append(current_block_scores) return result_labels,result_scores
273a4addc8b943469b22f7495291fee179e67e62
693,722
def suffix(d: int) -> str: """Convert an input date integer to a string with a suffix. Example: >>> suffix(10) 'th' >>> suffix(2) 'nd' >>> suffix(23) 'rd' >>> suffix(4) 'th' """ return "th" if 11 <= d <= 13 else {1: "st", 2: "nd", 3: "rd"}.get(d % 10, "th")
96c41def9519d08e37a72a0fb7bbc39ae309cbbb
332,656
def areaCuadrado(lado): """Esta función sirve para calcular el área de un cuadrado del lado especificado como parámetro.""" return "El área del cuadrado de lado {} es: ".format(lado) + str(lado*lado)
827bfaac1644f8d56e64d207fbf5da896884c2be
472,933
def isascii(s): """Returns True if str s is entirely ASCII characters. (Compare to Python 3.7 `str.isascii()`.) """ try: s.encode("ascii") except UnicodeEncodeError: return False return True
ab0969a89ebdf23b8c6ec2d34ecd3f67b616b30a
73,812
def get_recommendations(mid, conn): """ Grab recommendations for a single mid. Returns multiple recommendation types as a dictionary. Example Return -------------- { 'l2r': [mid1, mid2, mid3], 'wrmf': [mid5, mid6, mid7 } """ c = conn.cursor() sql = """ SELECT type, recommended FROM recommendations WHERE mid = '{}' """.format(mid) c.execute(sql) results = c.fetchall() if results: out = [] for r in results: out.append((r[0], [str(x) for x in r[1].split(',')])) out = dict(out) else: out = None return out
5794810f907eae4cc778b15611efa19e49f1b05d
184,157
from bs4 import BeautifulSoup def get_tag_by_field(text_or_soup, tag_name, field, expr): """Returns HTML tag in text if expr is in its field. If not found, returns None. """ if isinstance(text_or_soup, BeautifulSoup): soup = text_or_soup else: soup = BeautifulSoup(text_or_soup) for tag in soup.find_all(tag_name): if expr in tag.get(field, ''): return tag return None
4d792c5da4bf4621142c5efa04a4e437a7d70619
94,586
def oracle_id(account_id): """ Compute the oracle id of a oracle registration :parm account_id: the account registering the oracle """ return f"ok_{account_id[3:]}"
6589b0cde6ab7bfc25b40e9e78e08d6c324a781b
140,980
def deserialize_utf8(value, partition_key): """A deserializer accepting bytes arguments and returning utf-8 strings Can be used as `pykafka.simpleconsumer.SimpleConsumer(deserializer=deserialize_utf8)`, or similarly in other consumer classes """ # allow UnicodeError to be raised here if the decoding fails if value is not None: value = value.decode('utf-8') if partition_key is not None: partition_key = partition_key.decode('utf-8') return value, partition_key
21cc61d6048b5f7d9333ceadb86d03666719f05f
25,860
def ReserveHospRsrvEnd(t): """Hospitalization reserve: End of period""" return 0
adc01e22aee1bc14a114fb37f27b40abd73810d7
64,145
def add_load_data_args(parser): """Adds common data loader arguments to arg parser""" platforms = ['telegram', 'whatsapp', 'messenger', 'hangouts'] parser.add_argument('-p', '--platforms', default=platforms, choices=platforms, nargs='+', help='Use data only from certain platforms') parser.add_argument('--filter-conversation', dest='filter_conversation', nargs='+', default=[], help='Limit by conversations with this person/group') parser.add_argument('--filter-sender', dest='filter_sender', nargs='+', default=[], help='Limit by messages by this sender') parser.add_argument('--remove-conversation', dest='remove_conversation', nargs='+', default=[], help='Remove messages by these senders/groups') parser.add_argument('--remove-sender', dest='remove_sender', nargs='+', default=[], help='Remove all messages by this sender') parser.add_argument('--outgoing-only', dest='outgoing_only', action='store_true', help='Limit by outgoing messages') parser.add_argument('--incoming-only', dest='incoming_only', action='store_true', help='Limit by incoming messages') parser.add_argument('--lang', nargs='+', default=[], help='Limit by detected languages') parser.add_argument('--contains-keyword', dest='contains_keyword', nargs='+', default=[], help='Limit by messages which contain certain keywords (multiple keywords are used with OR logic)') return parser
5a1bc118a06199222a9940f095fa0471b7f20c33
541,607
def str_to_color(s): """Convert hex string to color value.""" if len(s) == 3: s = ''.join(c + c for c in s) values = bytes.fromhex(s) # Scale from [0-255] to [0-1] return [c / 255.0 for c in values]
cedcad67ee8de5d5470bb60ae106eb52b459c7ff
223,212