content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import torch def btranspose(tensor: torch.Tensor) -> torch.Tensor: """Batch-wise transpose. Assumes that tensor has dimension of 3: [batch, features, samples]""" if tensor.dim() != 3: raise ValueError("The given shape is not supported.") return torch.transpose(tensor, 1, 2)
4b238672a2cfca33abb86116949acd6d392434f0
38,266
def _comp_brat_ann(ann_a, ann_b): """Compare brat annotation records by their border indices. :param ann_a: annotation A :param ann_b: annotation B :return: 1 a < b; 0 a == b; -1 a > b :rtype: int """ hash_a = (ann_a.get_left_border(), ann_a.get_right_border()) hash_b = (ann_b.get_left_border(), ann_b.get_right_border()) if hash_a < hash_b: return 1 elif hash_a == hash_b: return 0 else: return -1
a2a13cb1d0292e85d26befb538ad63b7c4643953
565,874
def _set_visible_scopes_for_type_definition(type_definition, visible_scopes): """Sets current_scope and visible_scopes for the given type_definition.""" return { "current_scope": type_definition.name.canonical_name, # In order to ensure that the iteration through scopes in # _find_target_of_reference will go from innermost to outermost, it is # important that the current scope (type_definition.name.canonical_name) # precedes the previous visible_scopes here. "visible_scopes": (type_definition.name.canonical_name,) + visible_scopes, }
23a0ee76a5e2f09c185599942a132f19ef29b570
216,869
def insert_query(connection, query): """ Inserts a query into the corresponding database table :param connection: database connection :param query: user query :return: last row of the table """ cursor = connection.cursor() sql = ("INSERT INTO Query(Topic, StartDate, EndDate, MinLikes, MinRetweets)\n" "VALUES(?, ?, ?, ?, ?);") values = query cursor.execute(sql, values) return cursor.lastrowid
cb12f9ee8cca167222ba0bed5492a69f96816777
165,189
async def consume_aiter(iterable): """consume an async iterable to a list""" result = [] async for item in iterable: result.append(item) return result
897c8e9380f9c631f2dd8721884ec1ccbe462d48
12,769
def gettext_noop(value): """Mark a string for translation without translating it. Returns value. """ return value
ea738b7b93b31015ab9c2d02d569b90053fba59d
212,995
import logging from typing import Any def _value(record: logging.LogRecord, field_name_or_value: Any) -> Any: """ Retrieve value from record if possible. Otherwise use value. :param record: The record to extract a field named as in field_name_or_value. :param field_name_or_value: The field name to extract from record or the default value to use if not present. """ try: return getattr(record, field_name_or_value) except AttributeError: return field_name_or_value
994c306ad15e972817128f70ac61c8de7071e719
672,404
def solve(captcha): """Solve captcha. :input: captcha string :return: sum of all paired digits that match >>> solve('1212') 6 >>> solve('1221') 0 >>> solve('123425') 4 >>> solve('123123') 12 >>> solve('12131415') 4 """ a = len(captcha) // 2 return sum(int(x) for x, y in zip(captcha, captcha[a:] + captcha[:a]) if x == y)
edd3b556db7bb22ea9180c93bb4e5043ce884283
628,596
def gpsDecimalToDMS(decimal, loc): """Returns a GPS coordinate in DMS format. Keyword arguments: decimal -- a real number containing the lat or lon loc -- an array of strings representing lat or lon -- must be one of ["S", "N"] or ["W", "E"] """ if decimal < 0: latlonRef = loc[0] elif decimal > 0: latlonRef = loc[1] else: latlonRef = "" abs_value = abs(decimal) deg = int(abs_value) t = (abs_value-deg)*60 min = int(t) sec = round((t - min) * 60, 6) return (deg, min, sec, latlonRef)
9c5efcb38ee7c52cec5683e531a3e27721906985
394,560
def merge(basepath, relpath, has_authority): """Merge two URI path components into a single path component. Follows rules specified in Section 5.2.3 of RFC 3986. The algorithm in the RFC treats the empty basepath edge case differently for URIs with and without an authority section, which is why the third argument is necessary. """ if has_authority and basepath == '': return '/' + relpath slash = basepath.rfind('/') return basepath[:slash+1] + relpath
70b10eaff290f95cff5719ae272df3ff3cc605a9
535,432
def get_default_arg_name(pos: int) -> str: """ Generate the default name for argument. """ return f"arg{pos}"
8a5f3347fe768a8385fd70c206ef183e7d6312d1
409,089
import torch def mask_out(tensor, start_ind, end_ind, value, dim=1): """ Set the elements before start_ind and after end_ind (both inclusive) to the value. """ if dim != 1: raise NotImplementedError batch_size, time = list(tensor.shape)[:2] # (oleg) This creates the indices every time, but doesn't seem to affect the speed a lot. inds = torch.arange(time, device=tensor.device, dtype=start_ind.dtype).expand(batch_size, -1) mask = (inds >= end_ind[:, None]) | (inds <= start_ind[:, None]) tensor[mask] = value return tensor, mask
1326220320679c32d728ce727d174e00065eaa0a
45,467
from typing import Dict import torch def get_emb_matrix(vocab: Dict, emb_path: str) -> torch.Tensor: """Takes a embedding file and convert them into embedding matrix using the vocab dictionary. Eg. if the word 'the' is mapped to id 5 in the vocab, then the 5th row of the embedding matrix will represent the embedding vector of the word 'the'. Args: vocab (Dict): mapping of words to id used by tokenizer emb_path (str): path of embedding file Returns: torch.Tensor: torch tensor of embedding matrix """ with open(emb_path, "r") as emb_file: file_lines = emb_file.readlines() emb_dict = {} first_line = file_lines[0].rstrip().split() if len(first_line) != 2: raise ValueError( "The first line in W2V embeddings must be the pair (vocab_size, emb_dim)" ) emb_dim = int(first_line[1]) emb_vocab_size = int(first_line[0]) for line in file_lines[1:]: tokens = line.rstrip().split() word = tokens[0] vector = [float(token) for token in tokens[1:]] if len(vector) != emb_dim: raise ValueError("The number of dimensions does not match the header info") emb_dict[word] = vector if emb_vocab_size != len(emb_dict.keys()): raise ValueError("Vocab size does not match the header info") vocab_len = len(vocab.keys()) emb_matrix = torch.zeros((vocab_len, emb_dim)) for word, index in vocab.items(): if word in emb_dict.keys(): emb_matrix[index] = torch.Tensor(emb_dict[word]) return emb_matrix
01ec0b37b9567eb6435ff240b08d30a02f6f2e70
295,205
from typing import List from typing import OrderedDict import itertools import math def distributedConnectionMap(names: List[str]) -> OrderedDict: """ Create a map where every node is connected every other node. Assume each key in the returned dictionary to be connected to each item in its value(list). :param names: a list of node names :return: a dictionary of name -> list(name). """ names.sort() combos = list(itertools.combinations(names, 2)) maxPer = math.ceil(len(list(combos)) / len(names)) # maxconns = math.ceil(len(names) / 2) connmap = OrderedDict((n, []) for n in names) for a, b in combos: if len(connmap[a]) < maxPer: connmap[a].append(b) else: connmap[b].append(a) return connmap
511fbcf4fc48c675923d00fb87ed185080e20278
283,946
def switch_month(month: str): """ Translates an english month to a french one. For example: 'Jan' becomes '(01)Janvier'. month : the month that will be translated """ return { "Jan": "(01)Janvier", "Feb": "(02)Fevrier", "Mar": "(03)Mars", "Apr": "(04)Avril", "May": "(05)Mai", "Jun": "(06)Juin", "Jul": "(07)Juillet", "Aug": "(08)Aout", "Sep": "(09)Septembre", "Oct": "(10)Octobre", "Nov": "(11)Novembre", "Dec": "(12)Decembre", }[month]
2a292c64333d9455ca6ce5b7f41b9e83eee2cb82
674,133
def isdigit(str: str) -> bool: """ Same as `str.isdigit()` except it supports negative numbers (x < 0) """ return str.isdigit() or (str.startswith('-') and str[1:].isdigit())
c723a20e72e3b4c498cfe1fba7956bfc687e4932
353,556
def parse_url(url): """ Parse a 'swift://CONTAINER/OBJECT' style URL :param url: :return: dictionary with "container" and "obj" keys """ url = url.replace("swift://", "") if url.find("/") == -1: raise ValueError("Swift url must be 'swift://container/object'") pieces = url.split("/") containername = pieces[0] objname = "/".join(pieces[1:]) return { "container": containername, "obj": objname, }
90f8cc6d26cbaf2f277c806c4f1beb4cb0e3cbef
218,576
from typing import Optional import random def random_subset(a, *, prob=0.5, min_size: Optional[int] = None, max_size: Optional[int] = None): """Choose a random subset of a. Args: a: the input sequence prob: Probability to pick an element (when called without size constraints). min_size: Minimal size of the result. max_size: Maximal size of the result. Returns: A random subset of a """ def subset(a, prob): res = [] remaining = [] for el in a: if random.random() < prob: res.append(el) else: remaining.append(el) return res if min_size is None: min_size = 0 if max_size is None: max_size = len(a) min_size = max(min_size, 0) max_size = min(max_size, len(a)) if min_size > max_size: raise ValueError(f'Invalid size range for random_subset: [{min_size}, {max_size}]') tmp = random.sample(a, max_size) return tmp[:min_size] + subset(tmp[min_size:], prob)
23a019e1a797b90252ec7fc034b6be7196a245a9
219,997
def _process_dbn(process_tuple): """ Extract the best path through the state space in an observation sequence. This proxy function is necessary to process different sequences in parallel using the multiprocessing module. Parameters ---------- process_tuple : tuple Tuple with (HMM, observations). Returns ------- path : numpy array Best path through the state space. log_prob : float Log probability of the path. """ # pylint: disable=no-name-in-module return process_tuple[0].viterbi(process_tuple[1])
94627952cebd420c9870c90b06b8ea322819432c
569,476
def configuration_(env): """ Connectx configuration. """ return env.configuration
59bc68d54fb09dea6d4545444b7f489b732c8534
436,761
def doc_returns(f): """ Decorator that adds the "Returns" section at the end of the docstrings of the decorated function. Parameters ---------- f : function function to decorate. Returns ------- function returns the same function with the docstring modified. """ description = f.__doc__ item_fmt = "{} : {}\n {}".format outputs = [ ("mol_objects", "list", "Embedded molecules."), ("name_returns", "list", "Names for the embedded molecules"), ( "coord_maps", "list", "Mappings to the Idx of the atoms afected by the embedding", ), ("alg_maps", "list", "Mappings to the Idx of the core to do alignments"), ("mol_templates", "list", "List of template molecules used"), ] outs_txt = "\n".join([item_fmt(*items) for items in outputs]) f.__doc__ = f"{description}\nReturns\n-------\n{outs_txt}\n" return f
2bb935429cfb5180cfa94caa4b4eacf3b93d2e2d
434,172
def UpdateBoardConfigs(board_configs, boards, *args, **kwargs): """Update "board_configs" for selected boards. Args: board_configs: Dict in CreateBoardConfigs format to filter from. boards: Iterable of boards to update in the dict. args: List of templates to apply. kwargs: Individual keys to update. Returns: Copy of board_configs dict with boards boards update with templates and values applied. """ result = board_configs.copy() for b in boards: result[b] = result[b].derive(*args, **kwargs) return result
ff8f673a15e6e0f9652477c2c24e4d9fe5b21b9d
226,935
def _wls_linearfit_predict(x, w, wx, wy, wxx, wxy, select): """ Predict a point according to a weighted least squares linear fit of the data This function is a helper function for :py:func:`quality`. It is not supposed to be called directly. Parameters ---------- x : float The position for which to predict the function value w : ndarray The pre-calculated weights :math:`w_l` wx : ndarray The pre-calculated weighted `x` data :math:`w_l x_l` wy : ndarray The pre-calculated weighted `y` data :math:`w_l y_l` wxx : ndarray The pre-calculated weighted :math:`x^2` data :math:`w_l x_l^2` wxy : ndarray The pre-calculated weighted `x y` data :math:`w_l x_l y_l` select : indexing array To select the subset from the `w`, `wx`, `wy`, `wxx`, `wxy` data Returns ------- float, float The estimated value of the master curve for the selected subset and the squared standard error """ # linear fit k = w[select].sum() kx = wx[select].sum() ky = wy[select].sum() kxx = wxx[select].sum() kxy = wxy[select].sum() delta = k * kxx - kx ** 2 m = 1. / delta * (k * kxy - kx * ky) b = 1. / delta * (kxx * ky - kx * kxy) b_var = kxx / delta m_var = k / delta bm_covar = - kx / delta # estimation y = b + m * x dy2 = b_var + 2 * bm_covar * x + m_var * x**2 return y, dy2
9f89bbb2757a70740bfd60711576d754c5026285
518,955
def strip(text): """strip str without Exception""" try: return text.strip() except AttributeError: return text
eeadc7ad19f33f107edd129727cf6487be850ea7
528,386
def side_of_line(l, p): """Returns on which side of line `l` point `p` lies. Line `l` must be a tuple of two tuples, which are the start and end point of the line. Point `p` is a single tuple. Returned value is negative, 0, or positive when the point is right, collinear, or left from the line, respectively. If the line is horizontal, then the returned value is positive. Source: http://stackoverflow.com/a/3461533/466781 """ a,b = l return ((b[0] - a[0]) * (p[1] - a[1]) - (b[1] - a[1]) * (p[0] - a[0]))
c3cdf2bcf5f4bb083b884e69e8209375831b4f6e
572,339
def message(file_checker, which=0): """Return a string of the message lines associated with the message of a file checker.""" assert(len(file_checker.messages) > which) return "\n".join(file_checker.messages[which].message)
8575f96d756e19b2a4cceb205d28e59cf0ac0d34
583,543
def api_package(pytester): """Create package with structure api \ mobile.py web.py mobile.py and web.py has similar content except entrypoint path """ # Re-use our infrastructure layer pytester.copy_example('tests/conftest.py') # Create api/web.py and api/mobile.py files with same methods entrypoint_tpl = """ from fastapi import Body from typing import List import fastapi_jsonrpc as jsonrpc api_v1 = jsonrpc.Entrypoint( '{ep_path}', ) @api_v1.method() def probe( data: List[str] = Body(..., example=['111', '222']), amount: int = Body(..., gt=5, example=10), ) -> List[int]: return [1, 2, 3] """ api_dir = pytester.mkpydir('api') mobile_py = api_dir.joinpath('mobile.py') mobile_py.write_text( entrypoint_tpl.format(ep_path='/api/v1/mobile/jsonrpc'), ) web_py = api_dir.joinpath('web.py') web_py.write_text( entrypoint_tpl.format(ep_path='/api/v1/web/jsonrpc'), ) return api_dir
72fed02f8f3cd7071efc7d68c157334062da15ee
185,328
def Prandtl(**kwargs): """ Calculates Prandtl number based upon either of two input variable sets. First method: Pr(C_p = specific heat capacity, mu = dynamic viscosity, k = thermal conductivity) Second method: Pr(nu = kinematic viscosity, alpha = thermal diffusivity) """ if ('C_p' in kwargs) and ('k' in kwargs) and ('mu' in kwargs): prandtl_number = (kwargs['C_p'] * kwargs['mu']) / kwargs['k'] elif ('nu' in kwargs) and ('alpha' in kwargs): prandtl_number = kwargs['nu'] / kwargs['alpha'] else: raise KeyError('Incorrect variable assignment') return prandtl_number
a5326aaa6590dd18b37cce738c68a80c657ffe9f
442,158
def _get_comm_key_send_recv(my_rank, my_gpu_idx, peer_rank, peer_gpu_idx): """Return a key given source and destination ranks for p2p tasks. The p2p key is in the following form: [min_rank]_[gpu_index]:[max_rank]_[gpu_index]. Args: my_rank (int): the rank of the source process. my_gpu_idx (int): the source gpu index on the process. peer_rank (int): the rank of the destination process. peer_gpu_idx (int): the destination gpu index on the process. Returns: comm_key (str): a string key to query the communication cache. """ if my_rank < peer_rank: lower_key = str(my_rank) + "_" + str(my_gpu_idx) higher_key = str(peer_rank) + "_" + str(peer_gpu_idx) elif my_rank > peer_rank: lower_key = str(peer_rank) + "_" + str(peer_gpu_idx) higher_key = str(my_rank) + "_" + str(my_gpu_idx) else: raise RuntimeError( "Send and recv happens on the same process. alpa.collective " "does not support this case as of now. Alternatively, consider " "doing GPU to GPU memcpy?") comm_key = lower_key + ":" + higher_key return comm_key
607110079c2aa92ccb3a156d6fe723f01c524f6d
188,516
def combine_token_label_pairs(pairs): """Combines a list of [(token, label), (token, label)] to give (token,label,label). """ return pairs[0][0:] + tuple(pair[1] for pair in pairs[1:])
f2420d96ea9bc06fbcc8f593913d20ef72ef7f12
252,949
import logging def num_beats(data): """ Counts number of heart beats found :param data: list of indices where heart-beat events were detected :return: Number of heart beats """ logging.info("Counting Number of Beats...\n") return len(data)
d93e8374e0419e15f526c8ed2ab27915441a76d2
268,749
def from_binary(bin_data: str, delimiter: str = " ") -> bytes: """Converts binary string into bytes object""" if delimiter == "": data = [bin_data[i:i+8] for i in range(0, len(bin_data), 8)] else: data = bin_data.split(delimiter) data = [int(byte, 2) for byte in data] return bytes(data)
f16706da2d5b9ae5984a35a13ebd02ae94581153
3,567
from typing import Optional from typing import Dict from typing import Any def update_draft( access_key: str, url: str, owner: str, dataset: str, *, draft_number: int, state: Optional[str] = None, title: Optional[str] = None, description: Optional[str] = None, ) -> Dict[str, Any]: """Execute the OpenAPI `PATCH /v2/datasets/{owner}/{dataset}/drafts/{draft_number}`. Arguments: access_key: User's access key. url: The URL of the graviti website. owner: The owner of the dataset. dataset: Name of the dataset, unique for a user. draft_number: The updated draft number. state: The updated draft state which could be "CLOSED" or None. Where None means no change in state. title: The draft title. description: The draft description. Returns: The response of OpenAPI. Examples: Update the title or description of the draft: >>> update_draft( ... "ACCESSKEY-********", ... "https://api.graviti.com", ... "MNIST", ... draft_number=2, ... title="draft-3" ... ) { "number": 2, "title": "draft-3", "description": "", "branch": "main", "state": "OPEN", "parent_commit_id": "85c57a7f03804ccc906632248dc8c359", "creator": "graviti-example", "created_at": "2021-03-03T18:58:10Z", "updated_at": "2021-03-04T18:58:10Z" } Close the draft: >>> update_draft( ... "ACCESSKEY-********", ... "https://api.graviti.com", ... "MNIST", ... draft_number=2, ... state="CLOSED" ... ) { "number": 2, "title": "draft-3", "description": "", "branch": "main", "state": "CLOSED", "parent_commit_id": "85c57a7f03804ccc906632248dc8c359", "creator": "graviti-example", "created_at": "2021-03-03T18:58:10Z", "updated_at": "2021-03-05T18:58:10Z" } """ url = f"{url}/v2/datasets/{owner}/{dataset}/drafts/{draft_number}" patch_data: Dict[str, Any] = {"draft_number": draft_number} if state: patch_data["state"] = state if title is not None: patch_data["title"] = title if description is not None: patch_data["description"] = description return open_api_do( # type: ignore[no-any-return] "PATCH", access_key, url, json=patch_data ).json()
57566bdf3d953ec52134dcb177b49ed62e955f8b
609,044
def _cpp_field_name(name): """Returns the C++ name for the given field name.""" if name.startswith("$"): dollar_field_names = { "$size_in_bits": "IntrinsicSizeInBits", "$size_in_bytes": "IntrinsicSizeInBytes", "$max_size_in_bits": "MaxSizeInBits", "$min_size_in_bits": "MinSizeInBits", "$max_size_in_bytes": "MaxSizeInBytes", "$min_size_in_bytes": "MinSizeInBytes", } return dollar_field_names[name] else: return name
accbdfeb2447564607437a58c68137a8716b07c8
504,376
def collapse_lists(list1,list2,compf,pathf): """Function to collapse two lists into a single list based on comparison and path functions. :param list1: First list :param list2: Second list :param compf: Comparator function to compare values returned by path function. :param pathf: Function that takes a list of elements and returns a value of the same type. :returns: A list with length = len(list2) .. note:: * Both lists must have values of the same type 'T' * Comparison function should take a list of values of type 'T' and return a value of type 'T'. * Path function should take a list of values of type 'T' and return a value of type 'T'. * The function calculates path totals based on paths from list1 to list2. * The difference between lengths of list1 and list2 should be 1 For example: To calculate maximum sum of path values - path function => sum, comparison function => max:: >>> list1 = [12,37,53,46] >>> list2 = [23,34,47] >>> compf = max >>> pathf = sum >>> collapse_lists(list1,list2,compf,pathf) >>> [60, 87, 100] """ result = [] len1 = len(list1) len2 = len(list2) if (abs(len1-len2) != 1): pass elif(list1 == []): result = list(list2) elif(list2 == []): result = list(list1) else: small2large = True if(len1 > len2): small2large = False for j in range(len2): if(small2large): if(j == 0): val = pathf([list2[j],list1[0]]) elif(j == len2-1): val = pathf([list2[j],list1[len1-1]]) else: pv1 = pathf([list2[j],list1[j-1]]) pv2 = pathf([list2[j],list1[j]]) val = compf([pv1, pv2]) result.append(val) else: pv1 = pathf([list2[j],list1[j+1]]) pv2 = pathf([list2[j],list1[j]]) val = compf([pv1, pv2]) result.append(val) return result
ce9db32b8807909d7a59b24940a025a1ebf26b01
526,829
import math def get_num_jobs(total_events, batch_size): """ Get the number of jobs to use for MC simulation :param total_events: total number of events to generate :param batch_size: number of events to generate per job :return: number of jobs to use """ num_jobs = int(math.ceil(total_events / float(batch_size))) return num_jobs
ead6f86f017896f6b81e549d1e84ce3870ca6431
129,987
def parse_bool(b): """Parsers string boolean into boolean.""" if not b: return False if b.lower() in ('false', 'off', 'no', '0'): return False return True
10b78f7f4afcc658c526e1626456375eb9ccc3c2
216,773
def typeset_latex_math(variable) -> str: """ Returns `variable` as a string with LaTeX math typesetting. Args: variable: The python variable to be saved. Returns: str: String accoring to LaTeX typesetting. """ has_unit = hasattr(variable, 'u') if has_unit: if str(variable.u) == 'dimensionless': suffix = None else: suffix = r'\,' + '{:Lx}'.format(variable.u) value = variable.magnitude else: suffix = None value = variable has_error = hasattr(value, 'std_dev') if has_error: payload = '{:L}'.format(value) else: payload = str(value) if suffix is not None: if has_error: payload = '({}){}'.format(payload, suffix) else: payload += suffix return payload
c7638ba3818c44f3f1d25d85ee19f2153e361c57
115,042
def get_panel_groups_at_depth(group, depth=0): """Return a list of the panel groups at a certain depth below the node group""" assert depth >= 0 if depth == 0: return [group] else: assert group.is_group() return [ p for gp in group.children() for p in get_panel_groups_at_depth(gp, depth - 1) ]
1bbd8b94f39d738587262995953c4d7cd5f34dbe
676,314
import torch def has_tensor(obj) -> bool: """ Given a possibly complex data structure, check if it has any torch.Tensors in it. """ if isinstance(obj, torch.Tensor): return True elif isinstance(obj, dict): return any(has_tensor(value) for value in obj.values()) elif isinstance(obj, (list, tuple)): return any(has_tensor(item) for item in obj) else: return False
ed70ce8443625ab66d7b36b3aa57c799855b7fc5
641,640
import torch def loc2bbox(bbox_a, loc): """ compute bounding boxes from offsets and scales Args: bbox_a: (R, 4) contains (x1, y1, x2, y2) loc: (R, 4) contains (tx, ty, tw, th) Returns: (R, 4) """ assert bbox_a.size(1) == loc.size(1) == 4 and bbox_a.size(0) == loc.size(0) w_a = bbox_a[:, 2] - bbox_a[:, 0] h_a = bbox_a[:, 3] - bbox_a[:, 1] ctr_x_a = bbox_a[:, 0] + 0.5 * w_a ctr_y_a = bbox_a[:, 1] + 0.5 * h_a w = w_a * torch.exp(loc[:, 2]) h = h_a * torch.exp(loc[:, 3]) ctr_x = w_a * loc[:, 0] + ctr_x_a ctr_y = h_a * loc[:, 1] + ctr_y_a bbox = torch.zeros_like(bbox_a) bbox[:, 0] = ctr_x - 0.5 * w bbox[:, 1] = ctr_y - 0.5 * h bbox[:, 2] = ctr_x + 0.5 * w bbox[:, 3] = ctr_y + 0.5 * h return bbox
9577f8f8358fbef37aeee26ce9a6236da6527927
169,086
import re def github_qualify_references(log, repo_userorg, repo_name): """ Replace "unqualified" GitHub references with "fully qualified" one GitHub automatically links issues and pull requests if they have a specific format. Links can be qualified with the user/org name and the repository name, or unqualified, if they only contain the issue or pull request number. This function converts all unqualified references to qualified ones. See https://help.github.com/en/articles/autolinked-references-and-urls#issues-and-pull-requests for a documentation of all supported formats. """ r = re.compile(r"(^|[^\w])(?:#|[gG][hH]-)(\d+)\b") repl_str = r'\1%s/%s#\2' % (repo_userorg, repo_name) return [r.sub(repl_str, l) for l in log]
b6b8421ace259c19f0adeba61e1dc3c686a5cb23
593,850
def convert_character_dict_to_str(character_dict: dict) -> str: """ Given a character dict return it as a string that is comparable to how the set of characters are encoded in a character string. """ return ( str(character_dict["Teams"]) .replace("{", "") .replace("}", "") .replace("'", "") .replace(",", ";") )
c046e0e10d251d850982165666fbba224a16e95c
230,897
def lrstrip(line: str) -> str: """ Do lstrip and rstrip on a string """ return line.lstrip().rstrip()
c32b24384d324a6243509c6b4a472bebbc4d5052
167,894
from typing import Optional from typing import Tuple import re def _parse_addr(addr: str, allow_wildcard: bool = False) -> Optional[Tuple[str, str]]: """Safely parse an email, returning first component and domain.""" m = re.match( ( r'([a-zA-Z0-9\-_\+\.]+)' + ('?' if allow_wildcard else '') + r'@([a-zA-Z0-9\-_\+\.]+)$' ), addr, ) if not m: return None name, domain = m.group(1), m.group(2) if '.' in domain: return name, domain return None
ab62e2a99b9ad460163f08997e5c9bd9d6096bac
668,704
def bar(a, /, b, *, c=1): """Calculate c * (a ** b), with c defaulting to one. `a` is positional-only, `b` is general, `c` is keyword-only. """ return c * (a ** b)
38cd34323eb73b55aae1900753432a06c24bc459
331,567
def combine_cols(cols): """Combine column names into one list of names. Args: cols (list{str | list{str}}): A list of names of columns or list of column names. Return: list{str}: Combined names of columns. """ combined_cols = [] for col in cols: if isinstance(col, str): combined_cols.append(col) else: combined_cols += col return combined_cols
3280f6dd317be8ddb60498c386fdf6a7ae5cdedf
562,762
import decimal def get_decimal_quantum(precision): """Return minimal quantum of a number, as defined by precision.""" assert isinstance(precision, (int, decimal.Decimal)) return decimal.Decimal(10) ** (-precision)
551f3171f4c878ce63b1ef673627b6057ffc1e27
142,470
def remaining_evals(cur_step, epoch, train_steps_per_epoch, evals_per_epoch): """Helper function to calculate remaining evaluations for a trainer. Args: cur_step: current step of the supervised trainer epoch: current epoch of the RL trainer train_steps_per_epoch: supervised trainer steps per RL epoch evals_per_epoch: supervised trainer evals per RL epoch Returns: number of remaining evals to do this epoch Raises: ValueError if the provided numbers indicate a step mismatch """ if epoch < 1: raise ValueError('Epoch must be at least 1, got %d' % epoch) prev_steps = (epoch - 1) * train_steps_per_epoch done_steps_this_epoch = cur_step - prev_steps if done_steps_this_epoch < 0: raise ValueError('Current step (%d) < previously done steps (%d).' % (cur_step, prev_steps)) train_steps_per_eval = train_steps_per_epoch // evals_per_epoch if done_steps_this_epoch % train_steps_per_eval != 0: raise ValueError('Done steps (%d) must divide train steps per eval (%d).' % (done_steps_this_epoch, train_steps_per_eval)) return evals_per_epoch - (done_steps_this_epoch // train_steps_per_eval)
b897af4f78e9a6946326f28392834d2d9e085471
671,900
import math def torad(deg): """ convert degrees to radians """ return math.pi/180.0*deg
655fdb5377f93eae1ecc8736f341b3683d41493a
89,030
def get_trial_params(trial_id, experiment): """Get params from trial_id in given experiment""" best_trial = experiment.get_trial(uid=trial_id) if not best_trial: return {} return best_trial.params
33a96478299ce67e4a09f1df861efcbfc37efd67
475,624
def get_center_of_geometry(atoms): """ Computes center of geometry. Args: atoms (ase.Atoms): atoms object of molecule Returns: center of geometry """ return atoms.arrays["positions"].mean(0)
a464887cd0753bd02601f08042c537d8cbf317dd
381,703
def lagrange_four_point(x, y0, y1, y2, y3): """The third order polynomial p(x) with p(-1)=y0, p(0)=y1, p(1)=y2, p(2)=y3.""" a2 = 3 * (y0 + y2 - y1 - y1) a3 = 3 * (y1 - y2) + y3 - y0 a1 = -a3 + 3 * (y2 - y0) return y1 + x * (a1 + x * (a2 + x * a3)) * 0.166666666666666666666666
b60da1f8567c5b9babbc9e158b1444e30424bb1f
701,581
def lifetime_init(rule='1/e'): """Initialize a lifetime object. Parameters ---------- rule : str {'1/e', 'trapz', 'simpson'}, optional Name of the method to integrate the correlation curve. \n '1/e' uses the 1/e rule and assumes an exponential decay. It linearly interpolates the time when the correlation goes below the value 1/e. When all values are > 1/e it returns the max lead time. When all values are < 1/e it returns the min lead time.\n 'trapz' uses the trapezoidal rule for integration.\n 'simpson' uses the Simpson's rule for integration. Returns ------- out : dict The lifetime object. """ list_rules = ['trapz', 'simpson', '1/e'] if rule not in list_rules: raise ValueError("Unknown rule %s for integration.\n" % rule + "The available methods are: " + str(list_rules)) lifetime = {} lifetime["lifetime_sum"] = 0.0 lifetime["n"] = 0.0 lifetime["rule"] = rule return lifetime
246bf31672fcd98a7ccd272ec7967c8a5e51817b
643,897
def make_layout(rows, columns): """Create a layout of rooms represented by a set of coordinates.""" locations = set() for y in range(rows): for x in range(columns): locations.add((x, y)) return locations
ac70739f019c187d4431fb5e1860f3a7eed23939
353,797
def get_essential( m ): """ Get the "essential" leds, along with the associated tri. Format: 'ess[led] = tri' An essential LED is an LED that lights a triangle surface, where that LED is the only LED to light that triangle surface. i.e. without that LED, the given triangle will never be lit. """ ess = {} for k in m: if len(m[k]) == 1: led = m[k][0] ess[led] = k #ess[led] = tri return ess
3cc4570724aa98e6a7d1b2b73cbc45abb53304fd
116,572
def intersects(box_a, box_b, grace, dynamic_grace): """ Checks whether two rectangles intersect or inside in other. Args: box_a <tuple> : First rectangle (x, y, w, h) box_b <tuple> : Second rectangle (x, y, w, h) grace <list> : Relaxation for intersecting rectangles, [x_grace, y_grace] dynamic_grace <boolean> : Set True if using relaxation based on rectangle's height otherwise False Returns: <Boolean> : True if rectangles intersect or inside in other considering grace values otherwise False """ ax1, ay1, aw, ah = box_a ax2, ay2 = ax1+aw-1, ay1+ah-1 bx1, by1, bw, bh = box_b bx2, by2 = bx1+bw-1, by1+bh-1 x_grace = y_grace = 0 if dynamic_grace: x_grace = float(grace[0] * (ah+bh)/2) # min(ah, bh) # note: here height is used instead of width y_grace = float(grace[1] * min(ah, bh)) x_grace = round(x_grace) y_grace = round(y_grace) if ax1-bx2 > x_grace or bx1-ax2 > x_grace or ay1-by2 > y_grace or by1-ay2 > y_grace: return False else: return True
2e047459ca8b3d5cc596e53890bdf14e81e262bb
307,006
def get_children(node): """ Return the children of the node. The children are all the elements of the except the first :param node: The node :type node: list :return: The children of the node :rtype: list """ # Take a slice of the list except the head return node[1:]
d53edbf5f54c9a1e25ec85d412203b31a10ca621
291,546
def batch(lst, n=5): """Yield successive n-sized chunks from list lst adapted from https://stackoverflow.com/questions/312443/how-do-you-split-a-list-into-evenly-sized-chunks Input lst: list n: selected batch size Return List: Nested list that contains batches of len(lst)/n lists """ batched_list = [] for i in range(0, len(lst), n): batched_list.append(lst[i:i + n]) return batched_list
691ad93cefc4761507113fecb22520f79688d8b9
305,726
import importlib def find_class_using_name(module, class_name): """ module: example `deepcage.models` class_name: example `shapes` """ # the file "module/class_name.py" # will be imported. class_filename = "." + class_name.lower() modellib = importlib.import_module(class_filename, module) # In the file, the class called ClassName() will # be instantiated. It is case-insensitive. matched_class = None target_class_name = class_name.replace('_', '') for name, found_class in modellib.__dict__.items(): if name.lower() == target_class_name.lower(): matched_class = found_class if matched_class is None: raise ImportError("In %s.py, there should be a class with a name that matches %s in lowercase." % (class_filename, target_class_name)) return matched_class
c0affeae822578c1006bfcd2a48e31cebed9c2d2
242,358
def _obj2dict(obj): """ Convert plain object to dictionary (for json dump) """ d = {} for attr in dir(obj): if not attr.startswith('__'): d[attr] = getattr(obj, attr) return d
6eff6f7fa301d100b43601f2675272da5f0f267a
379,858
import re def sanitize_filename(filename: str) -> str: """ Ensure valid filenames. Given a filename, remove all characters that are potentially hazardous in a filename. The only chars allowed are - Word characters ([a-zA-Z0-9_]) - Dashes - Periods - Spaces - Parenthesis Parameters ---------- filename : str The filename to clean. Returns ------- str The cleaned up filename. Examples -------- >>> sanitize_filename('python is fun 🐍.py') 'python is fun _.py' """ return re.sub(r'[^\w\-_. ()]', '_', filename)
2ac35868be52f5757655ad8311a2e1f00b7c3f36
234,727
def get_text_between_substrings(input_str, left_sub, right_sub): """Returns the text located between two given substrings. Args: input_str: String. The text will be extracted from it left_sub: String. The substring on the left of the text right_sub: String. The substring on the right of the text Returns: String: the text between the substrings (or '' if not found) """ res = "" if left_sub in input_str and right_sub in input_str: if input_str.find(left_sub) < input_str.find(right_sub): right_part = input_str.split(left_sub)[1] res = right_part.split(right_sub)[0].strip() return res
c5e10abc6767eac28f72ab8cb49b6349cfd0b4c7
550,831
def raw(text): """ Just return the message in the same state that it was submitted. """ return text
f231d5211582c665a1f591a830c4ef98432bb364
523,658
import torch def make_valid_from_train(dataset, cut=0.9): """ Split training data to get validation set :param dataset: Training dataset :param cut: Percentage of dataset to be kept for training purpose """ tr_ds, val_ds = [], [] for task_ds in dataset: x_t, y_t = task_ds # shuffle before splitting perm = torch.randperm(len(x_t)) x_t, y_t = x_t[perm], y_t[perm] split = int(len(x_t) * cut) x_tr, y_tr = x_t[:split], y_t[:split] x_val, y_val = x_t[split:], y_t[split:] tr_ds += [(x_tr, y_tr)] val_ds += [(x_val, y_val)] return tr_ds, val_ds
3f6fa8fe97af132e9dd575df9416145874717f4a
668,211
def stream_word_matches_symbol(stream, word_number, *, symbol): """ Returns an nMigen conditional that evaluates true if the given word of a stream matches the given symbol. """ return ( stream.valid & (stream.data.word_select(word_number, 8) == symbol.value) & (stream.ctrl[word_number] == symbol.ctrl) )
b73473810710ee3e0fcc6738d0fcff88d8b06133
325,171
import socket def get_addr_info(addr): """Use getaddrinfo to lookup all addresses for each address. Returns a list of tuples or an empty list: [(family, address)] """ results = set() try: tmp = socket.getaddrinfo(addr, 'www') except socket.gaierror: return [] for el in tmp: results.add((el[0], el[4][0])) return results
9d8e1ca9070bf4f036f83e038e28d3c12e2fa6fc
156,667
def str_to_int_v2(s: str) -> int: """Convert the given string into it's integer form. Args: s: The string whose integer form to be gotten. Returns: The integer form of the given string. """ res = 0 initial_point = 0 if s[0] is not '-' else 1 for i in range(initial_point, len(s)): cur_digit = ord(s[i]) - ord('0') res = res * 10 + cur_digit return (res if not initial_point else -res)
3c2ad54bb05b9e631299bcf68c52595a645f221c
524,263
def is_closed(instance, *args, **kwargs): """ Helper function to test if some instance is closed (to be used with ``raise_if`` decorator) :param instance: some instance with ``is_closed`` property accessible :returns: value of ``instance.is_closed`` or False """ return getattr(instance, 'is_closed', False)
307178eacc07a39743243fd693af414b40619c74
641,590
def _is_fft_sgn_negative(sicd, dimension): """ Check if the sicd structure has negative fft sign along the given dimension. Parameters ---------- sicd : SICDType dimension : int Returns ------- bool """ if dimension == 0: if sicd.Grid is None or sicd.Grid.Row is None or sicd.Grid.Row.Sgn is None: return True return sicd.Grid.Row.Sgn == -1 else: if sicd.Grid is None or sicd.Grid.Col is None or sicd.Grid.Col.Sgn is None: return True return sicd.Grid.Col.Sgn == -1
4414836fc6b9d6ab355c3b478776b6802d8e6154
413,798
def findall_text(node, path): """Find all n.text elements from a path. """ return [n.text for n in node.findall(path)]
2a40b2442e50e58a64320539153e27acfde15a8f
49,533
import yaml def load_yaml(filename): """ Load a generic YAML file """ with open(filename) as f: data = yaml.load(f, Loader=yaml.SafeLoader) return data
75279c4e993f8e7c20de2c5c2171393feba2ca34
402,055
def num_physical_imei_shards(conn): """ Helper function to return the number of physical shards for IMEI-shared partitions. Arguments: conn: dirbs db connection object Returns: number of physical imei shard in the schema """ with conn.cursor() as cursor: cursor.execute('SELECT phys_shards FROM schema_metadata') return cursor.fetchone()[0]
ef31d9bff061c006c636840c387b29ed81d96fea
89,323
def getSortOnName(prefix=None): """convert the table prefix to the 'sort on' name used in forms""" # useful for code that wants to get the sort on values themselves sort_on_name = 'sort_on' if prefix is not None: if not prefix.endswith('.'): prefix += '.' sort_on_name = prefix + sort_on_name return sort_on_name
e8a68d283cb189abab2784a1cc198255133e4c1d
97,496
def from_key_to_line_number(key): """ Takes a key and returns the line number in it :param key: The key to parse :return: line number """ n = key.split(".", 2)[1] # Sometimes line number contains a redundant "l" at the end ("Q005624.1l" for example), so we ignore it. if n[-1] == "l": n = n[:-1] if not n.isdigit(): return -1 line_number = int(n) return line_number
a9876d9779284e1c7882cd3ac669da294e835919
90,293
from typing import Iterable from functools import reduce import operator def prod(iterable: Iterable) -> float: """Returns the product of the elements of an iterable.""" return reduce(operator.mul, iterable, 1)
5bb7d725003a3b696d3aef45377e6d682a4be022
660,647
def trunc(s, n): """ Truncate a string to N characters, appending '...' if truncated. trunc('1234567890', 10) -> '1234567890' trunc('12345678901', 10) -> '1234567890...' """ if not s: return s return s[:n] + "..." if len(s) > n else s
fab4565ce4973e8374e842c7d3a469b34b698f33
445,815
from typing import List from typing import Any def _get_avg(values: List[Any]): """Get average value of a list. Args: values: A list of values. Returns: The average value in the list. """ return sum(values) / len(values)
6f22e60ecf6af15d5e0b885925b913673b33ee1d
576,606
def _seconds_to_hours(time): """Convert time: seconds to hours""" return time / 3600.0
d6abd9144882587833601e64d5c2226446f1bbdc
705,526
def get_unit_concept_ids(df, measurement_concept_id=None): """ Retrieve a unique set of unit concept ids for a given df :param df: dataframe :param measurement_concept_id: an option measurement_concept_id :return: a unique set of unit_concept_ids """ unit_concept_ids = [] if measurement_concept_id is None: unit_concept_ids = df['unit_concept_id'].unique() else: unit_concept_ids = df.loc[df['measurement_concept_id'] == measurement_concept_id, 'unit_concept_id'].unique() return unit_concept_ids
c9827ba15b6491544887bbd3c7c04a3493f644c6
322,127
def adjustrow(row): """ Convert a grid row to a list-table row. :param row: a row of grid table text :type row: str :return: a row of list-table text :rtype: str """ if row.startswith('+') is True: return('\n') row = row.split('|') new_row = [] for entry in row: new_row.append(entry) try: new_row.pop(new_row.index('')) except: pass convert = [] convert.append(' * - ' + new_row[0].strip()) for entry in new_row[1:]: convert.append(('\n - ' + entry.strip()).rstrip()) result = ''.join(convert) return(result)
c27685fa5498d2943dc07be6f9cafaf83eac0056
448,678
def unflatten_dict(flat_dict): """Convert a flattened dict to a nested dict. Inverse of flatten_config. Args: flat_dict: A dictionary to unflatten. Returns: A dictionary with all keys containing `.` split into nested dicts. {'a.b.c': 1} --> {'a': {'b': {'c': 1}}} """ result = {} for key, val in flat_dict.iteritems(): parts = key.split('.') cur = result for part in parts[:-1]: if part not in cur: cur[part] = {} cur = cur[part] cur[parts[-1]] = val return result
de01c934239eb29f33fe6ad8846cd828cabea61d
64,192
def cov_parse_rms_unit_of_weight(line: str) -> float: """ Læs 'RMS unit of weight' fra COV-fil. Værdien find filens linje 7, der ser ud i stil med: 'RMS OF UNIT WEIGHT: 0.0010 # OBS: 328817 # UNKNOWNS: 5424' """ return float(line[21:27])
ff339cba1ac2ea01802300ba2699ce9d994c92be
125,315
def accuracy_score(truth, pred): """ Returns accuracy score for input truth and predictions. """ # Ensure that the number of predictions matches number of outcomes if len(truth) == len(pred): # Calculate and return the accuracy as a percent return "Predictions have an accuracy of {:.2f}%.".format((truth == pred).mean()*100) else: return "Number of predictions does not match number of outcomes!"
5dabafdf88bee663afecbd9170e390055122322d
203,570
def snake_to_text(x: str) -> str: """Convert snake case to regular text, with each word capitalized.""" return " ".join([w.capitalize() for w in x.split("_")])
2aa2d3af53c0ffac43971d51e174c24f0566a6a4
566,880
def _connector_classes_str_to_dict(classes_conf_str): """ Input: 'foo:bar, baz' Result: {'foo': 'bar', 'baz': 'baz'} """ if len(classes_conf_str) == 0: return {} classes_conf_dict = {} for cc in classes_conf_str.split(','): cc_t = cc.strip().split(':') if len(cc_t) == 1: classes_conf_dict[cc_t[0]] = cc_t[0] else: classes_conf_dict[cc_t[0]] = cc_t[1] return classes_conf_dict
8a73c01b2ea74a463f6a8128466f5ea740a1b9c7
199,553
import mimetypes def check_gzip_path(file_path): """Check if we have a gzipped file path""" _, ftype = mimetypes.guess_type(file_path) return ftype == 'gzip'
70da135199f87f0c318a2ff9ca610f60f081a860
431,858
def compute_target(difficulty_target_bits): """ Calculate a target hash given a difficulty. """ return 2 ** (256 - difficulty_target_bits)
65f4a5c9e01acf5f829edc949154171b6de96c19
26,796
def to_bytes(maybe_bytestring): """ Encode string to bytes. Convenience function to do a simple encode('utf-8') if the input is not already bytes. Returns the data unmodified if the input is bytes. """ if isinstance(maybe_bytestring, bytes): return maybe_bytestring else: return maybe_bytestring.encode('utf-8')
8cb0db75d17c59a69dbc789534246f68f6dcdfe7
314,848
def get_all_descendants(root, children_map): """ Returns all descendants in the tree of a given root node, recursively visiting them based on the map from parents to children. """ return {root}.union( *[get_all_descendants(child, children_map) for child in children_map.get(root, [])] )
8a6485c25f05a572e97ec88b35223c0171a90128
673,415
def covariance(x, mean_x, y, mean_y): """ This function calculates the co-variance of x and y Args: x (np array): array mean_x (float): mean of x array y (np array): array mean_y (float): mean of y array Returns: float: co-variance """ covar = 0.0 for i in range(x.shape[1]): covar += (x[0][i]-mean_x) * (y[0][i]-mean_y) return covar
50037ef544e19cc9fa64dd922174e3b48312a4ca
436,393
def stringify_tokens(tokens): """ Given a list or set of tokens, return them as a single string """ return ''.join(tokens)
357a8e3c99d87bbb31b60dd4c973de33f800e7ef
416,224
from typing import List def remove_duplicates(tag_list: List[dict]) -> List[dict]: """Remove duoplicate elements from `tag_list`""" no_duplicates = [] for i in tag_list: if i not in no_duplicates: no_duplicates.append(i) return no_duplicates
9ed038daa66f703858207637a0a29a0bbb1f5ba2
485,618
import torch def mape(target, predictions:list, total = True): """ Calculate root mean absolute error (mean absolute percentage error in %) Parameters ---------- target : torch.Tensor true values of the target variable predictions : list - predictions[0] = predicted expected values of the target variable (torch.Tensor) total : bool, default = True Used in other loss functions to specify whether to return overall loss or loss over the horizon. This function only supports the former. Returns ------- torch.Tensor A scalar with the mean absolute percentage error in % (lower the better) Raises ------ NotImplementedError When 'total' is set to False, as MAPE does not support loss over the horizon """ if not total: raise NotImplementedError("MAPE does not support loss over the horizon") return torch.mean(torch.abs((target - predictions[0]) / target)) * 100
79428dd9e8dc1edea65f6be44ab08d56af10366b
368,393
import math def calculate_probability(x, mean, stdev): """ Calculates the probability that a given tier is a word or phone Parameters ---------- x : float duration of the object in question mean : float mean duration of that type of object stdev : float standard deviation from mean """ exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2)))) return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
ad229914f73adb5c8af1661c0cf0a71451404792
306,658
def _get_column_index(i, inputs): """ Taken from https://github.com/onnx/sklearn-onnx/blob/9939c089a467676f4ffe9f3cb91098c4841f89d8/skl2onnx/common/utils.py#L50. Returns a tuples (variable index, column index in that variable). The function has two different behaviours, one when *i* (column index) is an integer, another one when *i* is a string (column name). If *i* is a string, the function looks for input name with this name and returns (index, 0). If *i* is an integer, let's assume first we have two inputs *I0 = FloatTensorType([None, 2])* and *I1 = FloatTensorType([None, 3])*, in this case, here are the results: :: get_column_index(0, inputs) -> (0, 0) get_column_index(1, inputs) -> (0, 1) get_column_index(2, inputs) -> (1, 0) get_column_index(3, inputs) -> (1, 1) get_column_index(4, inputs) -> (1, 2) """ if isinstance(i, int): if i == 0: # Useful shortcut, skips the case when end is None # (unknown dimension) return 0, 0 vi = 0 return (vi, i) else: raise RuntimeError("Hummingbird currently support only int columns, {} is not supported.".format(i))
9a46a6314777ef1538a7056f998110d615abcd8c
586,279
def invertDictMapping(d): """ Invert mapping of dictionary (i.e. map values to list of keys) """ inv_map = {} for k, v in d.iteritems(): inv_map[v] = inv_map.get(v, []) inv_map[v].append(k) return inv_map
1fb43ece9a3e45724ba46a8d55469b95848f426b
195,302
def spaces(text): """Returns whitespace equal to the length of the given text. This is useful for making things line up. """ return ' ' * len(text)
ba9ecdcaab19884521fbd297d7afc500e667a277
112,280
def dict_key_checker(current_dict, current_key): """ Function to check if a dictionary contains a key. Parameters: current_dict (dict): The dictionary. current_key (str): They key. Returns: True if the dictionary contains the key. False otherwise. """ if current_key in current_dict.keys(): return True else: return False
029e9a8640326e0001b9aac85f4a261de25ea96b
374,810
def char_tokenizer(string): """ Splits a string into individual character symbols. Args: string (string): The string to be split into characters. Returns: list: The characters of the string. """ return list(string)
2694f670bf862321e42768d63970f04b76782f07
72,580