content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def get_client_referred(row): """ Applied to a dataframe Returns whether a client was referred to HL """ client_referral_origin = row['How Was Client Referred to HL?'] referral = [ 'Referred by non-clinical staff (medical asst., registration, legal services, etc)', 'Referred by friend/relative', 'Referred by health care provider (MD, RN, Social Work)', ] not_referral = [ 'No referral, advocate outreach brought client to HL', 'No referral today, returning client', 'Unknown', 'No referral, marketing materials/signage brought client to HL', 'Negative screen', ] if client_referral_origin in referral: return 1 else: return 0
8332901a91391eb073593577bbb11d6044097ae3
381,052
from functools import reduce def min_from_iterable(iterable): """ Return the min in the iterable >>> min_from_iterable([1, -2, 35, 11, 28]) -2 """ return reduce(min, iterable)
ac7aaa4c521a3f326029d604736efc4de46cb2da
566,737
def CrlfReplacer(line, file_path, line_number): """Replaces CRLF with LF.""" if '\r\n' in line: print('Replacing CRLF with LF in %s:%s' % (file_path, line_number)) return line.replace('\r\n', '\n')
c2b82fecaf662a2d0ad2ec30c33c464e8fe5b7c8
538,452
def _commonHits(trk1, trk2): """Returns the number of common hits in trk1 and trk2. Matching is done via the hit type and index, so effectively the matching is done by clusters. Invalid hits are ignored. """ hits1 = set() for hit in trk1.hits(): if not hit.isValidHit(): continue hits1.add( (type(hit), hit.index()) ) ncommon = 0 for hit in trk2.hits(): if not hit.isValidHit(): continue if (type(hit), hit.index()) in hits1: ncommon += 1 return ncommon
ede7ad9f9bdca3ca95464abcf3513cbe89a43665
198,018
def find_key(dic, val): """Return the keys of dictionary dic with the value val.""" return [k for k, v in dic.iteritems() if v == val]
158060d8be64d8f547bc5c3762452861a5ba0bec
649,902
def dmp_zero(u): """ Return a multivariate zero. Examples ======== >>> from sympy.polys.densebasic import dmp_zero >>> dmp_zero(4) [[[[[]]]]] """ r = [] for i in range(u): r = [r] return r
adf836cc5f59da00702c218c0018b17f9c478e86
434,946
def is_valid_transaction_hash(tx_hash): """Determines if the provided string is a valid Stellar transaction hash. :param str tx_hash: transaction hash to check :return: True if this is a correct transaction hash :rtype: boolean """ if len(tx_hash) != 64: return False try: int(tx_hash, 16) return True except: return False
8a9f6e2e09cc758b61a50ff27a0030fe98db6853
389,910
from typing import Tuple def _split_sampling_rate_byte_11_2(sampling_rate_byte: int) -> Tuple[int, int]: """Separate sampling rate into its own byte.""" return sampling_rate_byte & 0x0F, sampling_rate_byte & 0xF0
126e64fe194802661e012c4d01f06a654ff96d0f
109,879
def listupper(t): """ Capitalizes all strings in nested lists. """ if isinstance(t, list): return [listupper(s) for s in t] elif isinstance(t, str): return t.upper() else: return t
4fb773d819671e7989a2c976da7be928f9d2e703
401,945
def _timex_pairs(timexes): """Return a list of timex pairs where the first element occurs before the second element on the input list.""" pairs = [] for i in range(len(timexes)): for j in range(len(timexes)): if i < j: pairs.append([timexes[i], timexes[j]]) return pairs
f0d232e138da377b1e07d866e0472752911b99f5
591,578
def is_merged(cell): """Whether the cell is merged.""" return True if type(cell).__name__ == 'MergedCell' else False
0f980b13ec0ae69da905a01a87cc9a709ae50396
209,264
def _get_should_cache_fn(conf, group): """Build a function that returns a config group's caching status. For any given object that has caching capabilities, a boolean config option for that object's group should exist and default to ``True``. This function will use that value to tell the caching decorator if caching for that object is enabled. To properly use this with the decorator, pass this function the configuration group and assign the result to a variable. Pass the new variable to the caching decorator as the named argument ``should_cache_fn``. :param conf: config object, must have had :func:`configure` called on it. :type conf: oslo_config.cfg.ConfigOpts :param group: name of the configuration group to examine :type group: string :returns: function reference """ def should_cache(value): if not conf.cache.enabled: return False conf_group = getattr(conf, group) return getattr(conf_group, 'caching', True) return should_cache
7a11124c640bfb3ced28e2d9395593b70dc85a0a
1,128
def fry(word): """Drop the `g` from `-ing` words, change `you` to `y'all`""" if word.lower() == 'you': return word[0] + "'all" if word.endswith('ing'): if any(map(lambda c: c.lower() in 'aeiouy', word[:-3])): return word[:-1] + "'" else: return word return word
8aafe9e9c94b76fc55d93e9069732dbce5fcdb8e
172,604
def get_dynamic_shape(min_shape, max_shape): """ Determine which dimension should be set to -1 according to min/max shape """ assert len(min_shape) == len(max_shape) dynamic_shape = [] for min_inp, max_inp in zip(min_shape, max_shape): # If one dimension is same between min_shape and max_shape # we consider it as a static dimension. Or it is treated as # dynamic dimension which will be set to -1 dyn = [i if i == j else -1 for i, j in zip(min_inp, max_inp)] dynamic_shape.append(dyn) return dynamic_shape
0dcfe958e94c5a570d07f1141bdf9e340964cc80
201,472
def count_diff(str1, str2): """ Counting the number of different chars between two string. Assuming len(str1) == len(str2) """ count = 0 for i in range(len(str1)): if str1[i] != str2[i]: count += 1 return count
de9411ff2c233d30972cb92598d4d317614438c7
575,416
import torch def load_ckp(model, optimizer, lr_scheduler, path): """load training checkpoint""" checkpoint = torch.load(path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict']) epoch = checkpoint['epoch'] train_loss = checkpoint['train_loss'] val_loss = checkpoint['val_loss'] cider = checkpoint['cider'] return epoch, model, optimizer, lr_scheduler, train_loss, val_loss, cider
f758d3fb2ad6d7a4c0263a3958c50d9339b009b0
376,786
def get_single_band(fnames,band_numbers,band_num): """ Function to return the file path for a single band, given a band number and list of input file paths. Parameters ---------- fnames : LIST List of band file locations, as generated by get_filenames(). band_numbers : LIST List of loaded band numbers. band_num : INT Numerical value corresponding to a Landsat-8 band. Returns ------- STRING Returns a string containing the corresponding file path to the input band_num value. """ i = band_numbers.index(str(band_num)) return fnames[i]
12f51ae740fe50a0deb0ceb959329a6e98e49ff8
620,707
def axial_to_oddq(axial_coordinates): """ convert axial coordinates to column row coordinates """ cube_z = axial_coordinates[0] + axial_coordinates[1] col = axial_coordinates[0] row = int(cube_z + (axial_coordinates[0] - (axial_coordinates[0] & 1)) / 2) return [col, row]
e4fd6a3a73f3c7fba4de30d4da8d2c40027f7632
358,047
def cell_edge(subidx, subncol, cellsize): """Returns True if highres cell <subidx> is on edge of lowres cell""" ri = (subidx // subncol) % cellsize ci = (subidx % subncol) % cellsize return ri == 0 or ci == 0 or ri + 1 == cellsize or ci + 1 == cellsize
5e9e0b912d163686b4fa845535157e41ec01d027
177,240
import re def match_mm3_improper(mm3_label): """Matches MM3* label for improper torsions.""" return re.match('[\sa-z]5', mm3_label)
f1cf55d00858a8a805247e1d72b6a35a7e9da613
130,545
def format_orbital_configuration(orbital_configuration: list) -> str: """Prettily format an orbital configuration. :param orbital_configuration: the list of the number of s, p, d and f orbitals. :return: a nice string representation. """ orbital_names = ['s', 'p', 'd', 'f'] orbital_configuration_string = '' for orbital, name in zip(orbital_configuration, orbital_names): if orbital > 0: orbital_configuration_string += f'{name}{orbital}' return orbital_configuration_string
b7aed38ae25db8b44d76cbbc6942b92b2a3d26b7
549,531
from typing import Any def verbatim(text: Any) -> str: """ Returns the main string argument as-is. It produces a TypeError if input text is not a string. """ if not isinstance(text, str): raise TypeError("argument to verbatim must be string") return text
0f735833f1514f0f5bd45efc07af783ffc72cbd3
37,210
def lagrange(x_values, y_values, nth_term): """ If a polynomial has degree k, then it can be uniquely identified if it's values are known in k+1 distinct points :param x_values: X values of the polynomial :param y_values: Y values of the polynomial :param nth_term: nth_term of the polynomial :return: evaluates and returns the nth_term of the polynomial in O(k^2), given at least k+1 unique values were provided """ if len(x_values) != len(y_values): raise ValueError('The X and Y values should be of the same length') res = 0 for i in range(len(x_values)): x, y = 1, 1 for j in range(len(x_values)): if i != j: x *= (nth_term - x_values[j]) y *= (x_values[i] - x_values[j]) res += (x * y_values[i] // y) return res
b7f2b44eaa70dee7984ac4ad73ccfb4316cf93ed
57,619
def set_image_paras(no_data, min_size, min_depth, interval, resolution): """Sets the input image parameters for level-set method. Args: no_data (float): The no_data value of the input DEM. min_size (int): The minimum nuber of pixels to be considered as a depressioin. min_depth (float): The minimum depth to be considered as a depression. interval (float): The slicing interval. resolution (float): The spatial resolution of the DEM. Returns: dict: A dictionary containing image parameters. """ image_paras = {} image_paras["no_data"] = no_data image_paras["min_size"] = min_size image_paras["min_depth"] = min_depth image_paras["interval"] = interval image_paras["resolution"] = resolution return image_paras
0387e31e47cee78f2439de4fca6b1555e1e25c56
171,905
def split_layout_args(kwargs, skip=()): """ Split a dictionary of arguments into arguments that should be applied to layout from arguments that should be passed forward. Args: kwargs (mapping): A mapping of names to values skip (sequence): A optional set of arguments that should not be assigned to layout arguments. Returns: A tuple of (layout_args, non_layout_args) dictionaries. """ layout_args = {'center'} layout_args.difference_update(skip) in_args = {k: v for k, v in kwargs.items() if k in layout_args} out_args = {k: v for k, v in kwargs.items() if k not in layout_args} return in_args, out_args
41a64a37db620c9efd16b3342d1efc972ee04f43
294,502
def unit_interval(x, xmin, xmax, scale_factor=1.): """ Rescale tensor values to lie on the unit interval. If values go beyond the stated xmin/xmax, they are rescaled in the same way, but will be outside the unit interval. Parameters ---------- x : Tensor Input tensor, of any shape. xmin, xmax : float Minimum and maximum values, which will be rescaled to the boundaries of the unit interval: [xmin, xmax] -> [0, 1]. scale_factor : float, optional Scale the unit interval by some arbitrary factor, so that the output tensor values lie in the interval [0, scale_factor]. Returns ------- y : Tensor Rescaled version of x. """ return scale_factor * (x - xmin) / (xmax - xmin)
4083e1904eefeec606e8a22e53485f7007257e71
37,489
def neg_btn(value): """Return the current value multiplied by -1.""" if value.count(" "): val_list = value.split() num1 = val_list[0] math_symbol = val_list[1] num2 = float(val_list[2]) * -1 num2 = str(num2) return f"{num1} {math_symbol} {num2}" elif float(value) != 0: return float(value) * -1 else: return 0
9732a671f6249e40950c8ba998a5efc6e52c88e7
330,515
def badge(text='', level='default'): """ *Generate a badge - TBS style* **Key Arguments:** - ``text`` -- the text content - ``level`` -- the level colour of the badge [ "default" | "success" | "warning" | "important" | "info" | "inverse" ] **Return:** - ``badge`` -- the badge """ if level == 'default': level = '' else: level = 'badge-%(level)s' % locals() badge = """ <span class="badge %(level)s" id=" "> %(text)s </span>""" % locals() return badge
c0b80d36c9e0d9c9c5f33f6f100780b612f2232b
298,288
def mean_total_reward(rollouts): """ Get the mean of the total rewards. """ return sum([r.total_reward for r in rollouts]) / len(rollouts)
58752e1369d089eebff6ae504621e477986cdbcb
66,784
def flat_result_2_row(predictions): """ flat the mitosis prediction result into rows Args: predictions: a tuple of (slide_id, ROI, mitosis_num, mitosis_location_scores), where mitosis_location_scores is a list of tuples (r, c, score) Return: a list of tuples(slide_id, ROI, mitosis_num, r, c, score) """ assert predictions is not None result = [] slide_id, ROI, mitosis_num, mitosis_location_scores = predictions for r, c, score in mitosis_location_scores: result.append((slide_id, ROI, mitosis_num, r, c, score)) return result
f8bed3158f2db6d998f32de2bfdb25fd241f8ad7
285,293
def order_salaries(df): """Turn salary range into ordered variable.""" df = df.copy() cats = ['< 10k', '10k to 20k', '20k to 30k', '30k to 40k', '40k to 50k', '50k to 60k', '60k to 70k', '70k to 80k', '> 80k'] df['salary_range'] = (df.salary_range.cat .set_categories(cats, ordered=True)) return df
36e0f39ed3ff7aa67e433e55952de268f686955f
572,151
def get_isbn(raw): """ Extract ISBN(s). @param raw: json object of a Libris edition @type raw: dictionary """ identified_by = raw["mainEntity"].get("identifiedBy") if identified_by: isbns = [x for x in identified_by if x["@type"].lower() == "isbn"] return [x["value"] for x in isbns][0] return None
55f4f0ea6d8b1b70544dc5b74f703646427f1f81
683,144
def create_option(name, ty, docstring, default_factory=lambda: None): """Creates a type-checked property. Args: name: The name to use. ty: The type to use. The type of the property will be validated when it is set. docstring: The docstring to use. default_factory: A callable that takes no arguments and returns a default value to use if not set. Returns: A type-checked property. """ def get_fn(option): # pylint: disable=protected-access if name not in option._options: option._options[name] = default_factory() return option._options.get(name) def set_fn(option, value): if not isinstance(value, ty): raise TypeError("Property \"%s\" must be of type %s, got: %r (type: %r)" % (name, ty, value, type(value))) option._options[name] = value # pylint: disable=protected-access return property(get_fn, set_fn, None, docstring)
abf646c7b8ddbd71bf7761c8f94989bcbc9f107b
65,317
from typing import Union from typing import Dict def _get_if(interfaces, index) -> Union[Dict, None]: """ Get interface configuration based on interface index :param index: :return: """ for interface in interfaces: if int(interface['ifindex']) == index: return interface return None
25104482fe9884a1d48f8ba7b0e913a4cc81b0a4
396,944
def isNewPhase(ds1, ds2): """ Check if two dynamicsState have the same contacts :param ds1: :param ds2: :return: True if they have the same contacts, False otherwise """ assert ds1.effNum() == ds2.effNum(), "The two dynamic states do not comes from the same model." for i in range(ds1.effNum()): if ds1.effActivation(i) != ds2.effActivation(i): return True return False
b6bf21106024991256a3a53b887bf73f83e7c037
39,264
def normalize_space(string): """Normalize all whitespace in string so that only a single space between words is ever used, and that the string neither starts with nor ends with whitespace. >>> normalize_space(" This is a long \\n string\\n") == 'This is a long string' True """ return ' '.join(string.replace("\xa0", " ").split())
54823031616267fdc0d9f7afdadf0af5a5b22a7c
142,395
import torch def alpha_sigma_to_log_snr(alpha, sigma): """Returns a log snr, given the scaling factors for the clean image and for the noise.""" return torch.log(alpha**2 / sigma**2)
834a1b269fb9d7aa6180d53dff41402d5c0a13c9
164,150
def get_weight_param(hparams, param_name, default_value=1.0): """Returns params dict for a parameter value based on what is set in hparams. Args: hparams: configDict. param_name: str; Name of the weight parameter. default_value: float; Value used if not set. """ default_params = { 'initial_value': hparams.get(param_name, default_value), 'mode': 'constant' } params = hparams.get(param_name + '_params', default_params) return params
e41fd5e9c78f8a20f07b8b8ecbdbd1d6ba6a84d5
451,993
def docker_compose_file(mock_dir): """ Path to docker-compose configuration files used for testing - fixture defined in pytest-docker """ fpath = mock_dir / 'docker-compose.yml' assert fpath.exists() return str(fpath)
e32eb5ede50b47c562d48dee5dfb6958f2a49817
591,830
def is_variant(call): """Check if a variant position qualifies as a variant""" if call == 1 or call == 3: return True else: return False
b09bda05a58aec66a8be56896c6a7e1da70642ee
620,925
def check_validity(passport): """Check if a passport is valid.""" return len(passport) == 8 or len(passport) == 7 and "cid" not in passport
2bee1afea0f77e5c7bc5f8f576991432f479bab2
514,919
from typing import Union from datetime import datetime def epoch_to_datetime(epoch: Union[int, float, str]) -> datetime: """Converts an epoch timestamp to a datetime object. Args: epoch - (int) Epoch time. Returns: datetime - Datetime equivalent of the epoch provided. """ return datetime.fromtimestamp(float(epoch)/1000)
bcfc1968b705fc88d8e01a6ba626a27943a7f926
599,475
def check_unique_list(input): """ Given a list, check if it is equal to a sorted list containing 1-9 Return True if the given list is unique, False otherwise """ # convert list string into list of int and sort it int_list = list(map(int, input)) int_list.sort() return int_list == [1, 2, 3, 4, 5, 6, 7, 8, 9]
0448d3c054063076b4bcd3eb37def9cc5e1edfed
62,735
def _sh_cmd(system, *args): """ Helper function to build a local shell command """ if len(args) == 0: return None return args
232653f8f1170fb5715860206678e560a40000e3
657,196
def rewrite_arcs (label_map, nfa): """Rewrite the label arcs in a NFA according to the input remapping.""" states = [[(label_map[label], tostate) for (label, tostate) in arcs] for arcs in nfa[2]] return (nfa[0], nfa[1], states, nfa[3], nfa[4])
2bd9911a5c65ce7711848746614a3a6ceb37f8d2
13,141
def get_values_from_line(line): """Get values of an observation as a list from string, splitted by semicolons. Note 1: Ignore ';' inside \"...\". E.g. consider \"xxx;yyy\" as one value. Note 2: Null string '' for NA values. """ raw_list = line.strip().split(';') i = 0 values = [] while i < len(raw_list): if raw_list[i] == "" or raw_list[i][0] != '\"': values.append(raw_list[i]) i = i + 1 else: if raw_list[i][-1] == '\"': values.append(raw_list[i][1:-1]) i = i + 1 else: j = i + 1 entry = raw_list[i][1:] while j < len(raw_list) and raw_list[j][-1] != '\"': entry = entry + raw_list[j] j = j + 1 if j == len(raw_list): i = j else: entry = entry + raw_list[j][:-1] values.append(entry) i = j + 1 return values
585c6c9484f6ad145f7265613dc189351cc2d556
698,551
def compute_result(droprate_dict,multiplier_dict,TPCut): """This is very straightforward so not much is needed to explain here. 1) Decide is the TP cut is required during calculation 2) Determine the value per raw material in each salvage item given item droprate and item value 3) Determine the sum of the salvage item 4) Return a dictionary of the raw material values in the salvage item and the value of the salvage item """ salvageValue_dct = {} sum_val = 0 if TPCut == True: TPValue = 0.85 else: TPValue = 1 for key in droprate_dict: salvageValue_dct[key] = round(TPValue*droprate_dict[key]*multiplier_dict[key],4) sum_val = sum_val + salvageValue_dct[key] return salvageValue_dct,sum_val
0dc8d12f424ac4a4c2fee2fea06b0589f587492d
213,820
def __parse_version_from_service_name(service_name): """ Parse the actual service name and version from a service name in the "services" list of a scenario. Scenario services may include their specific version. If no version is specified, 'latest' is the default. :param service_name: The name of the service :return: The service name, The service version """ if ':' in service_name: return service_name.split(':') return service_name, 'latest'
7fc634b7159e7141e99cbec090275388f00e27c5
650,120
def partitionByFunc(origseq, partfunc): """Partitions a sequence into a number of sequences, based on the `partfunc`. Returns ``(allseqs, indices)``, where: - `allseqs` is a dictionary of output sequences, based on output values of `partfunc(el)`. - `indices` is a dictionary of ``(outval, i) -> orig_i``, which allows mapping results back. So if your `partfunc` returns 'foo' and 'bar', `allseqs` will have ``{'foo': [...], 'bar': [...]}``. You access `indices` using ``(partout, seq_i)``, where `partout` is 'foo' or 'bar' in this case, and `seq_i` is the index number from the ``allseqs[partout]`` sequence. This function is very useful for categorizing a list's entries based on some function. If your function was binary, you would normally do it using 2 list comprehensions:: a = [el for el in seq if partfunc(el)] b = [el for el in seq if not partfunc(el)] But that quickly gets inefficient and bloated if you have more complicated partition functions, which is where this function becomes useful. """ allseqs = {} indices = {} for i, el in enumerate(origseq): partout = partfunc(el) seq = allseqs.setdefault(partout, []) indices[(partout, len(seq))] = i seq.append(el) return allseqs, indices
3c0c8777c4c953a688c54b57e0f0143c6bff5336
205,230
def get_steps_to_exit(data, strange=False): """ Determine the number of steps to exit the 'maze' Starting at the first element, move the number of steps based on the value of the current element, and either bump it by one, or if 'strange' is True and the value is over three, decrease it by one. If the new position is outside the current list of elements, we can exit Returns the number of steps it takes to exit """ jumps = 0 idx = 0 while 0 <= idx < len(data): new_idx = idx + data[idx] if strange and data[idx] >= 3: data[idx] -= 1 else: data[idx] += 1 jumps += 1 idx = new_idx return jumps
a1ba7c9374cbba9d6a0a8ad091a7fbfcbe71744a
58,559
def check_asymm_device(p): """ Check if device is asymmetric (one Al strip) or symmetric (two Al strips). Returns ------- p.asymmetric : Boolean Is used later in naming files and plot titles, and initiates saving the size p.Nxasymmetric of the SC strip and middle retion altogether to the Simplenamespace object p containing the parameters of the system. """ if len(p.right) == 0: p.asymmetric = True # to be used when printing last blocks of the Hamiltonian p.Nxasymmetric = len(p.left) + len(p.middle) else: p.asymmetric = False return p.asymmetric
506c7a3509b5bafb92f1159208d11bd7da514434
207,316
def get_data_shape(data, strict_no_data_load=False): """ Helper function used to determine the shape of the given array. In order to determine the shape of nested tuples, lists, and sets, this function recursively inspects elements along the dimensions, assuming that the data has a regular, rectangular shape. In the case of out-of-core iterators, this means that the first item along each dimension would potentially be loaded into memory. Set strict_no_data_load=True to enforce that this does not happen, at the cost that we may not be able to determine the shape of the array. :param data: Array for which we should determine the shape. :type data: List, numpy.ndarray, DataChunkIterator, any object that support __len__ or .shape. :param strict_no_data_load: If True and data is an out-of-core iterator, None may be returned. If False (default), the first element of data may be loaded into memory. :return: Tuple of ints indicating the size of known dimensions. Dimensions for which the size is unknown will be set to None. """ def __get_shape_helper(local_data): shape = list() if hasattr(local_data, '__len__'): shape.append(len(local_data)) if len(local_data): el = next(iter(local_data)) if not isinstance(el, (str, bytes)): shape.extend(__get_shape_helper(el)) return tuple(shape) # NOTE: data.maxshape will fail on empty h5py.Dataset without shape or maxshape. this will be fixed in h5py 3.0 if hasattr(data, 'maxshape'): return data.maxshape if hasattr(data, 'shape'): return data.shape if isinstance(data, dict): return None if hasattr(data, '__len__') and not isinstance(data, (str, bytes)): if not strict_no_data_load or isinstance(data, (list, tuple, set)): return __get_shape_helper(data) return None
2f1f37703ebe8783a9badcfa57a946d90c82962b
549,832
import json def decode_extra_parameters(metadata): """Returns a dictionary parsed from the json string stored in extra_parameters Parameters ---------- metadata A SolarForecastArbiter.datamodel class with an extra_parameters attribute Returns ------- dict The extra parameters as a python dictionary Raises ------ ValueError If parameters cannot be decoded or are None. Or if missing the required keys: network, network_api_id, network_api_abbreviation and observation_interval_length. """ try: params = json.loads(metadata.extra_parameters) except (json.decoder.JSONDecodeError, TypeError): raise ValueError(f'Could not read extra parameters of {metadata.name}') required_keys = ['network', 'network_api_id', 'network_api_abbreviation', 'observation_interval_length'] if not all([key in params for key in required_keys]): raise ValueError(f'{metadata.name} is missing required extra ' 'parameters.') return params
d86603fe86ed5944d22c616200ca77af24e54b1f
576,977
def getArgumentValue(args, key): """Returns the value for the argument 'key' in the list of Moses arguments 'args'. """ split = args.split() for i in range(0, len(split)): if i > 0 and key == split[i-1].strip(): return split[i].strip() return None
de0cc29a9a058cbf363f640aaafde4a0936bf263
179,272
def i_to_n(i, n): """ Translate index i, ranging from 0 to n-1 into a number from -(n-1)/2 through (n-1)/2 This is necessary to translate from an index to a physical Fourier mode number. """ cutoff = (n-1)/2 return i-cutoff
a6db34613794a5a6cc30210e735a014f0e6bd6eb
273,168
def _entity_string_for_errors(entity): """Derive a string describing `entity` for use in error messages.""" try: character = entity.character return 'a Sprite or Drape handling character {}'.format(repr(character)) except AttributeError: return 'the Backdrop'
dbad020eda009aff0d7d7dc2bf2204f486292454
560,985
def get_free(page): """Get the taxon description.""" tag = page.select_one('#tr-carregaTaxonGrupoDescricaoLivre') tag = tag.get_text() return ' '.join(tag.split())
0d9d4f93a28e53b70e8d1d8464592c8801f80aa4
140,844
def format_subject(subject): # type: (str) -> str """ Escape CR and LF characters. """ return subject.replace('\n', '\\n').replace('\r', '\\r')
a68864de7b736719c0fcde1ade4253b2071e8a53
480,897
def _get_last_cell(nb): """ Get last cell, ignores cells with empty source (unless the notebook only has one cell and it's empty) """ # iterate in reverse order for idx in range(-1, -len(nb.cells) - 1, -1): cell = nb.cells[idx] # only return it if it has some code if cell['source'].strip(): return cell # otherwise return the first cell return nb.cells[0]
e99ab592a480c015f028e622dad587bd1bf5fdcb
672,609
def literal2char(literal): """Convert a string literal to the actual character.""" usv = literal.group(1) codepoint = int(usv, 16) char = chr(codepoint) return char
d6c11112b37d91ab94452669a493f1a3704b5684
292,687
import random def seed_story(text_dict): """Generate random seed for story.""" story_seed = random.choice(list(text_dict.keys())) return story_seed
0c0f41186f6eaab84a1d197e9335b4c28fd83785
2,444
import traceback def get_task_imports(ext): """Return a list of task modules provided by an extension.""" try: includes = ext.obj.task_imports() except Exception: traceback.print_exc() print('Problem instantiating plugin %s, skipping' % ext.name) includes = [] return includes
c925b331f41118712d458e3bd2d2fc6a5af15c61
197,589
def get_template(path): """ Gets the HTML template and replaces patterns in a "template-like" manner :param str path: Path to the initial HTML template/file :return: The updated HTML content as string :rtype: str """ with open(path, "r", encoding="utf-8") as f: f_content = f.read() # Getting the store list and placing it in the template for element, pattern in zip(["a", "b"], ["{{pattern1}}", "{{pattern2}}"]): f_content = f_content.replace(pattern, element) return f_content
c6bd9af2ce702f2ac9db0daac1a14983406d1dc1
103,832
import itertools def flatten(iterable): """Flatten the input iterable. >>> list(flatten([[0, 1], [2, 3]])) [0, 1, 2, 3] >>> list(flatten([[0, 1], [2, 3, 4, 5]])) [0, 1, 2, 3, 4, 5] """ return itertools.chain.from_iterable(iterable)
6860f65582952819ae56178cf97cd2eb2133bbf1
25,710
import logging def _write(filepath, content): """Writes out a file and returns True on success.""" logging.info('Writing in %s:\n%s', filepath, content) try: with open(filepath, mode='wb') as f: f.write(content) return True except IOError as e: logging.error('Failed to write %s: %s', filepath, e) return False
1784a3378bebdf1fbc0eaf9342c8c61ee659c8ad
513,755
def weight(alpha, beta, x): """The weight function of the jacobi polynomials for a given alpha, beta value.""" one_minus_x = 1 - x return (one_minus_x ** alpha) * (one_minus_x ** beta)
66d5395e1fc5639c2417519c22d4ab318e2dd3b8
582,944
def get_tip_cost(meal_cost: float, tip_percentage: int) -> float: """Calculate the tip cost from the meal cost and tip percentage.""" PERCENT = 100 return meal_cost * tip_percentage / PERCENT
cdaca6993169e4c156d038d2d5eb1520ce2e9b65
408,006
def TransposeTable(table): """Transpose a list of lists, using None to extend all input lists to the same length. For example: >>> TransposeTable( [ [11, 12, 13], [21, 22], [31, 32, 33, 34]]) [ [11, 21, 31], [12, 22, 32], [13, None, 33], [None, None, 34]] """ transposed = [] rows = len(table) cols = max(len(row) for row in table) for x in range(cols): transposed.append([]) for y in range(rows): if x < len(table[y]): transposed[x].append(table[y][x]) else: transposed[x].append(None) return transposed
d53dc20a9eff391560269e818e99d41f8dc2ce94
7,689
def numba_array2d_nnz(ary, width, height): """ Function will return the number of nonzero values of the full matrix. Inputs: ary : input matrix width : number of columns of the matrix height : number of rows of the matrix Outputs: nnz : number of nonzero values """ nnz = 0 for line in range(height): for col in range(width): if ary[line,col] != 0: nnz = nnz + 1 return nnz
ee7cd2ed1718ff144c3a1c03688f1fb732f9a42f
503,455
import operator def is_ordered(lst, key=None, strict=False): """True if input list is (strictly) ordered.""" if key is None: key = lambda item: item cmp = operator.lt if strict else operator.le return all(cmp(key(x0), key(x1)) for x0, x1 in zip(lst, lst[1:]))
6c7e405134149b248f0b0bd4970e4d49bdb036e4
129,843
def _strip_match(matchobj): """Strip whitespace from a RE-match-object Parameters ---------- matchobj : re.Match Match-object of regular-expression. Returns ------- str Stripped string """ return matchobj.group(0).strip()
77565857853069194696ab9e50f51d1f48090376
615,886
def is_c19_narrative (narratives): """ Check a dict of different-language text for the string "COVID-19" (case-insensitive) """ for lang, text in narratives.items(): if "COVID-19" in text.upper(): return True return False
db4dedcf0b41f6547c704b7bc6f478a3b6af7672
126,105
from typing import Iterable def is_iterable(var): """Test if a variable is an iterable. Parameters ---------- var : object The variable to be tested for iterably-ness Returns ------- is_iter : bool Returns ``True`` if ``var`` is an ``Iterable``, ``False`` otherwise """ return isinstance(var, Iterable)
97dc90ee078835bd8924c64a1197701d14217e0c
149,428
def read_log(fname): """Read a log file. Args: fname (str): Name of log file Returns: str. Command log """ log_file = open(fname, 'r') log = log_file.read() return log
aa3f2a34251a968b05b90cb7bb21cb4267dfb52a
608,985
def _startswithax(item): """ Helper function to filter tag lists for starting with xmlns:ax """ return item.startswith('xmlns:ax')
12be6223b8ea816f5fff8b4faa4c01dff5a7a1c0
538,333
def squeeze_axes(shape, axes, skip='XY'): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError("dimensions of axes and shape do not match") shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return tuple(shape), ''.join(axes)
ca359ee31ecf3000d9afc7afd1ebbf779ce528a3
673,124
def intersection(lst1, lst2): """ Intersection of two sets :param lst1: first input list :param lst2: second input list :return: intersection in list format """ return list(set(lst1) & set(lst2))
139b03c17754fa891b497209296406bcdff086e9
565,638
def is_randomized(key): """ Helper to determine if the key in the state_dict() is a set of parameters that is randomly initialized. Some weights are not randomly initalized and won't be afffected by seed, particularly layer norm weights and biases, and bias terms in general. """ # regexes for components that are not randomized print(key) if key.endswith("bias") or "ln" in key: return False else: return True
06b9fe782e4d0f22dac8d062f033d25932a288f6
150,980
def burn_area_ratio(p_c, a, n, rho_solid, c_star): """Get the burn area ratio, given chamber pressure and propellant properties. Reference: Equation 12-6 in Rocket Propulsion Elements, 8th edition. Arguments: p_c (scalar): Chamber pressure [units: pascal]. a (scalar): Propellant burn rate coefficient [units: meter second**-1 pascal**-n]. n (scalar): Propellant burn rate exponent [units: none]. rho_solid (scalar): Solid propellant density [units: kilogram meter**-3]. c_star (scalar): Propellant combustion characteristic velocity [units: meter second**-1]. Returns: scalar: Ratio of burning area to throat area, :math:`K = A_b/A_t` [units: dimensionless]. """ return p_c**(1 - n) / (rho_solid * a * c_star)
3dfc4bb8cd8cb94351ecb74066960d51854d2524
330,886
def left_clust(nd): """ Returns the id of the left cluster belonging to a node Args: nd (node): NOde from nodelist in scipy.cluster.hierarchy.to_tree Returns: id or '' if the node is just a datapoint and not a cluster """ try: return nd.get_left().get_id() except: return ''
23f4e6a244f79e43d758c014d2fcf913bda5e914
529,191
def yes_or_no(question): """Convert user input from yes/no variations to True/False""" while True: reply = input(question + " [y/N] ").lower().strip() if not reply or reply[0] == "n": return False if reply[0] == "y": return True
1143752127a4d40c507aa593d99c3c8346d5c789
352,074
def cov_files_by_platform(reads, assembly, platform): """ Return a list of coverage files for a given sequencing platform. """ accessions = [] if reads is not None: accessions += [accession for accession in reads if reads[accession]['platform'] == platform] return list(map(lambda sra: "%s.%s.bam.cov" % (assembly, sra), accessions))
ae2e5b71e03141e9fb38247a463380ceba80cf3d
660,275
def name_sources(meta, mode): """ From the meta data and the mode, create a filename fragment that names the sources used. """ land_source = '' ocean_source = '' if mode in ('land', 'mixed'): land_source = '.GHCN' if mode in ('ocean', 'mixed'): ocean_source = '.' + meta.ocean_source.upper() return ocean_source + land_source
eac20e44493af751e7fbc54f8a42275a9f601cc9
86,006
def calculate_normalized_ged(data): """ Calculating the normalized GED for a pair of graphs. :param data: Data table. :return norm_ged: Normalized GED score. """ norm_ged = data["ged"]/(0.5*(len(data["labels_1"])+len(data["labels_2"]))) return norm_ged
b599d7c5ba0c5b75759a304abcad6d18604b8027
569,820
def get_stats(data): """ Returns some statistics about the given data, i.e. the number of unique entities, relations and their sum. Args: data (list): List of relation triples as tuples. Returns: tuple: #entities, #relations, #entities + #relations. """ entities = set() relations = set() for triple in data: entities.add(triple[0]) entities.add(triple[2]) relations.add(triple[1]) return len(entities), len(relations), len(entities) + len(relations)
6496db5be15b330de84345d862a66a16c0ebc969
36,236
from typing import Any import inspect import warnings def _safe_getdoc(obj: Any) -> str: """Like `inspect.getdoc()`, but never raises. Always returns a stripped string.""" try: doc = inspect.getdoc(obj) or "" except Exception as e: warnings.warn( f"inspect.getdoc({obj!r}) raised an exception: {e}", RuntimeWarning, ) return "" else: return doc.strip()
41650701f70d5a5db63441b0db5e22dd0f860db9
466,755
import pickle import base64 def deserialise_pickle(args): """Deserialise *args* using base64 and pickle, returning the Python object. """ return pickle.loads(base64.b64decode(args))
6c40588081d47c054de9f6aa03cf992ab90a9a10
354,957
def splitRpmFilename(filename): """ Split an rpm filename into components: package name, version, release, epoch, architecture """ if filename[-4:] == '.rpm': filename = filename[:-4] idx = filename.rfind('.') arch = filename[idx+1:] filename = filename[:idx] idx = filename.rfind('-') rel = filename[idx+1:] filename = filename[:idx] idx = filename.rfind('-') ver = filename[idx+1:] filename = filename[:idx] idx = filename.find(':') if idx == -1: epoch = '' name = filename else: epoch = filename[:idx] name = filename[idx+1:] return name, ver, rel, epoch, arch
8bed2a53f8df4e7bbdc3f45bce9c165f1ee0284d
263,056
def max_index(alignment_matrix): """ Helper function that computes the index of the maximum in the alignment matrix. """ max_i = 0 max_j = 0 for idx_i in range(len(alignment_matrix)): for idx_j in range(len(alignment_matrix[0])): if alignment_matrix[idx_i][idx_j] > alignment_matrix[max_i][max_j]: max_i = idx_i max_j = idx_j return max_i, max_j
eae87a9a72ac36ae234b6781d30eb04f4d3f921e
168,243
def mean2(num_list): """ description -- computes the mean of a list. Parameters ---------- num_list: list A list of numbers whose mean is to be computed Returns ------- list_mean: float Mean of the list of numbers """ s = 0 for i in range(len(num_list)): s = s + num_list[i] list_mean = s/len(num_list) return list_mean
2722bc9411f5580fec186757803e884ebfccffe5
474,198
def comp_lengths_winding(self): """Compute the lengths of the Lamination's Winding. - Lwtot : total length of lamination winding incl. end-windings and radial ventilation ducts [m]. - Lwact : active length of lamination winding excl. end-windings and radial ventilation ducts [m]. - Lewt : total end-winding length [m]. - Lew : end-winding length on one side for a half-turn - Lwvent : length of lamination winding in the radial ventilation ducts [m] Parameters ---------- self: LamSlotWind a LamSlotWind object Returns ------- L_dict: dict Dictionnary of the length (Lwtot, Lwact, Lew, Lwvent) """ # length of the stack including ventilation ducts L1vd = self.comp_length() # end-winding length on one side for a half-turn Lew = self.winding.comp_length_endwinding() # total end-winding length Ntspc = self.winding.comp_Ntsp(self.slot.Zs) qb = self.comp_number_phase_eq() Lewt = qb * Ntspc * self.winding.Npcp * 4 * Lew # average length of a lamination winding half-turn (one "go" conductor # without "return" conductor) Lwht = L1vd + 2 * Lew # total length of lamination winding incl. end windings [m] Lwtot = qb * Ntspc * self.winding.Npcp * 2 * Lwht # Active length of lamination winding excl. end windings and radial # ventilation duct [m] Lwact = qb * Ntspc * self.winding.Npcp * 2 * self.L1 # length of lamination winding in the radial ventilation duct [m] if self.Nrvd is None or self.Wrvd is None: Lwvent = 0 else: Lwvent = qb * Ntspc * self.winding.Npcp * 2 * self.Nrvd * self.Wrvd return {"Lwtot": Lwtot, "Lwact": Lwact, "Lewt": Lewt, "Lwvent": Lwvent, "Lew": Lew}
d2a2c48f71a55fc48f497c2de3b83cc47ee94194
84,824
import random def gen_port(num=1): """ Generate a port number or a list """ ports_list = [random.randrange(10000, 60000) for x in range(num)] if num == 1: # s.bind((Network.get_ip(4), 0)) is enough return ports_list[0] else: return ports_list
aba2ad59d7d4154bbdb7c4379815fa723ac28052
608,630
import re def get_age_sex(participant, fields=["31", "21022"]) -> list: """Create a list of age and sex field names Parameters ---------- participant : UKB Spark df participant df fields : list, optional list of age and sex fields. Defaults are necessary for PHESANT, by default ["31", "21022"] Returns ------- list age sex fields """ age_sex = "|".join(fields) age_sex_fields = list( participant.find_fields(lambda f: bool(re.match(f"^p({age_sex})$", f.name))) ) return [f.name for f in age_sex_fields]
030a80cfc164ef0339a03e3577aadce49ccfd01e
427,498
def _handle_cropped(y_p): """ A straightforward helper that simply averages multiple crops if they are present. Parameters ---------- y_p: np.ndarray The predicted values with shape batch x targets (x <optional crops>) Returns ------- y_p_mean: np.ndarray If there is an additional crop dimensions, mean across this dimension """ if len(y_p.shape) == 2: return y_p elif len(y_p.shape) == 3: return y_p.mean(-1) else: raise ValueError("Predictions should be 1 or 2 dimensions in shape (excluding batches)")
08154669c6b3f284c2bdf1ffab654bb2f196b1df
234,884
def _get_like_function_shapes_chunks(a, chunks, shape): """ Helper function for finding shapes and chunks for *_like() array creation functions. """ if shape is None: shape = a.shape if chunks is None: chunks = a.chunks elif chunks is None: chunks = "auto" return shape, chunks
c56187a7fc92b1a69f75d7defe9a57bb6376515c
649,235
from datetime import datetime def __get_current_datetime() -> str: """Returns the current datetime in a format compatible with messaging. Returns: {str} -- The current datetime. """ return datetime.now().isoformat(timespec="seconds")
0b477898c23ea34cb5dedba13dd6a5d2a3bfa15e
547,768
import ipaddress def ip_subtract(ip, val): """Subtract an integer to an IP address. Args: ip (str): An IP address in string format that is able to be converted by `ipaddress` library. val (int): An integer of which the IP address should be subtracted by. Returns: str: IP address formatted string with the newly subtracted IP address. Example: >>> from netutils.ip import ip_subtract >>> ip_subtract("10.100.100.100", 200) '10.100.99.156' >>> """ return str(ipaddress.ip_address(ip) - val)
0372ba4f14f6a3722ea7843a8c36c5470890004d
645,439
def sort_toc(toc): """ Sort the Table of Contents elements. """ def normalize(element): """ Return a sorting order for a TOC element, primarily based on the index, and the type of content. """ # The general order of a regulation is: regulation text sections, # appendices, and then the interpretations. normalized = [] if element.get('is_section'): normalized.append(0) elif element.get('is_appendix'): normalized.append(1) elif element.get('is_supplement'): normalized.append(2) for part in element['index']: if part.isdigit(): normalized.append(int(part)) else: normalized.append(part) return normalized return sorted(toc, key=lambda el: tuple(normalize(el)))
8e9c4f6f922ac8a815898ef822f2b453ffa15fd6
193,192
def revert_step(time_step_duration, equations, distance, distance_old): """Revert the time step. """ time_step_duration = time_step_duration * 0.1 for eqn in equations: eqn.var[:] = eqn.var.old distance[:] = distance_old return time_step_duration
88fd2027d1bd3659af871b1db71f58ab68a4b8d6
146,439
import re def error_fullstop(value): """Checks whether there is a fullstop after a digit""" return bool(re.match(r'.*\d+\.', value))
4a67cc1a577c7206decd86e7a01fc48e6fbeb8ef
528,254