content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_orgname(recIDstr: str) -> str:
"""
Splits a faster header by \s and '_' to return orgname
"""
orgname = recIDstr.split()[0].split('_')[1]
return(orgname)
|
248e1318dbba50b62455098043fe6ec8e5db942c
| 88,750 |
import math
def nCr(n: int, r: int) -> float:
"""Computes nCr
Args:
n: Total number
r: Number to sample
Returns:
nCr
"""
if r > n or n < 0 or r < 0:
return 0
f = math.factorial
return f(n) // f(r) // f(n - r)
|
fcdaa2db1a71644faa881e18c080e655ecbfd5c2
| 63,357 |
def splitStringIntoChunks( string, length=25 ):
"""
Split string into chunks of defined size
"""
if len(string) <= length:
return [ string ]
else:
return [ string[ 0+i : length+i ] \
for i in range( 0, len( string ), length ) ]
|
ff91557d06927727868fd8b157272286b72f1d5f
| 667,615 |
def is_at_del(row):
"""Encodes if the indel is an deletion with 'A' or 'T'
Args:
row (pandas.Series): a Series with 'is_ins'(bool)
and 'indel_seq'(str) indexes
Returns:
is_at_del (bool): 1 for 'A' or 'T' deletion
0 otherwise
"""
if row["is_ins"] == 0 and row["indel_seq"] == "A":
is_at_del = 1
elif row["is_ins"] == 0 and row["indel_seq"] == "T":
is_at_del = 1
else:
is_at_del = 0
return is_at_del
|
f0d8ce798cc2c403a97494133399d5fdd3aa91f6
| 455,204 |
def row_decomposition(in_array, num_chunks, ghost_zone_size):
"""
Parameters:
-----------
in_array: np.ndarray
the input array. should have shape (bands, rows, columns)
num_chunks: int
the number of chunks to split the data into.
ghost_zone_size: int
in the case of focal map algebra computations, the ghost_zone_size
indicates the number of additional rows to append to each chunk to
ensure the focal operations are computed accurately (i.e. so that
each computation receives it's neighbors for accurate and complete
calculations). This should be in number of pixels.
NOTE: there is the potential of copying a large amount of redundant data
between data chunks if the num_chunks is not chosen carefully. It should
be chosen with the size of the input array in mind.
Returns:
---------
chunks: nested list
holds information about the bounds of the data chunks that will be processed
start_row_idx and end_row_idx are indices that indicate the topmost and bottommost
rows for processing features. These indices also take into account the buffer needed
for computing multiscale features
[[dataid, start_row_idx, end_row_idx], [dataid, start_row_idx, end_row_idx]]
"""
# 1. first get the number of rows in the interior (total rows - buffer pixels for multiscale computations)
# 2. ensure that the number of interior rows is divisible by the block size
# 3. if not
#
tot_rows = in_array.shape[1]
tot_cols = in_array.shape[2]
rows_in_interior = tot_rows - ghost_zone_size*2
chunk_size = rows_in_interior // num_chunks
remaining = rows_in_interior % num_chunks
start_idx = 0
end_idx = 0
chunk_id = 0
chunks = []
while end_idx < tot_rows:
end_idx = start_idx+chunk_size+(ghost_zone_size*2)
if remaining > 0:
end_idx += 1
remaining -= 1
#chunks.append([chunk_id,in_array[:,start_idx:end_idx,:]])
chunks.append([chunk_id, start_idx, end_idx]) # don't actually need the data, just the location for slices
chunk_id+=1
start_idx = (end_idx)-(ghost_zone_size*2)
return chunks
|
ada1d5db08b03172ac7429417d905f640572e678
| 230,979 |
def readByte (file):
""" Read a byte from file. """
return ord (file.read (1))
|
4e82d1b688d7742fd1dd1025cd7ac1ccb13bbca0
| 709,655 |
def find_parens(s):
"""Get indices of matching parantheses in a string."""
# Source: https://stackoverflow.com/questions/29991917/indices-of-matching-parentheses-in-python
toret = {}
pstack = []
for i, c in enumerate(s):
if c == '(':
pstack.append(i)
elif c == ')':
if len(pstack) == 0:
raise IndexError("No matching closing parens ')' at: " + str(i) + s)
toret[pstack.pop()] = i
if len(pstack) > 0:
raise IndexError("No matching opening parens '(' at: " + str(pstack.pop())+s)
return toret
|
d1634f72cad52da84e14acba057dd570e1917aee
| 375,951 |
def square_right(x: int) -> int:
"""Square x, correctly."""
return x**2
|
744633f64546e336bd21673c4a4dd9b15c94b029
| 366,492 |
def is_rule(line: str, starting_chr: str = '*', omit: str = 'NOTE') -> bool:
"""If the first character of the line is the selected character and the line doesn't contain the omitted text (case-sensitive)."""
return True if line.startswith(starting_chr) and line.find(omit) == -1 else False
|
7d3d1bffbfad1f103a7c130b65c18fd6a7a9d9b4
| 129,092 |
def clean_ingredients(dish_name, dish_ingredients):
"""
:param dish_name: str
:param dish_ingredients: list
:return: tuple of (dish_name, ingredient set)
This function should return a `tuple` with the name of the dish as the first item,
followed by the de-duped `set` of ingredients as the second item.
"""
ingredients = set(dish_ingredients)
return (dish_name, ingredients)
|
69e5872a1736575bbd7255af5d0901bd4f5bb8c2
| 466,311 |
def integerlog(n, b):
"""computes largest integer k>=0 such that b^k <= n"""
kmin, kmax = 0, 1
while b**kmax <= n:
kmax *= 2
while True:
kmid = (kmax + kmin) // 2
if b**kmid > n:
kmax = kmid
else:
kmin = kmid
if kmax - kmin <= 1:
break
return kmin
|
54359f2ca333c5d2736a065fc9ce36a7f005367a
| 414,325 |
import requests
import json
def get_jsonparsed_data(url):
"""
Receive the content of `url`, parse it as JSON and return the object.
Parameters
----------
url : str given by API-syntax
Returns
-------
dict or list of dicts
"""
r = requests.get(url)
if r.ok:
data = json.loads(r.text, encoding='utf-8')
return data
else:
print('Connection Failed')
|
115419086ed32d559457aef86aa0c62f32d74d62
| 603,744 |
def typematch(ty, impl):
"""
See whether type instance `ty` is a type for value instances of `impl`.
>>> @jit('Foo[a, b]')
... class Foo(object):
... pass
...
>>> typematch(Foo[int32, 2], Foo)
True
"""
return isinstance(ty, type(impl.type))
|
80f2db0d0fe214ef5949b725f481bf615061ed75
| 406,335 |
def validate_on_batch(
network,
loss_fn,
X,
y_target
):
"""Perform a forward pass on a batch of samples and compute
the loss and the metrics.
"""
# Do the forward pass to predict the primitive_parameters
y_hat = network(X)
loss = loss_fn(y_hat, y_target)
return (
loss.item(),
[x.data if hasattr(x, "data") else x for x in y_hat],
)
|
9502bd0f04bc4c8504442e6952f514dbe3044e1d
| 656,199 |
from typing import Dict
from typing import Any
def make_keydict(key_to_type: Dict[str, Any]) -> str:
"""
Returns the python code for declaring a dictionary that
changes the returned strings to their correct types
Parameters
----------
key_to_type: dict
keys are the field names in the returned structure, values
are the functions to call to cast to correct type
Returns
-------
keydict_declare: str
String to paste into stub function to create the desired dictionary
"""
accum = "{"
for key, val in key_to_type.items():
# no need to cast str to str
if val != "str":
accum += f"'{key}':{val},\n"
accum += "}"
return f"keydict : Dict[str,Any] = {accum}"
|
51f8f022f5208e88e884e2c0b7fbed9ccf436453
| 106,016 |
from typing import Any
def value_or_default(dictionary: dict, key: str, default: Any):
"""
Either returns the item of the "dictionary" corresponding to the given "key" or the given default value, if no
such key exists within the dict.
CHANGELOG
Added 14.07.2019
:param dictionary:
:param key:
:param default:
:return:
"""
if key in dictionary.keys():
return dictionary[key]
else:
return default
|
f3672b82587fbb571438809a1704efa2c991d9da
| 450,763 |
import math
def totalTreeStepsFinder(nt, sl):
"""totalTreeStepsFinder() takes a newickTree and a stepLength
and finds the total number of steps in the entire tree.
"""
numSteps = 0
if nt is None:
return int(numSteps)
numSteps = math.ceil(nt.distance / sl)
return int(numSteps + totalTreeStepsFinder(nt.right, sl) + totalTreeStepsFinder(nt.left, sl))
|
4e533bd1b260e0d90d6d0bf3b07404924e59620a
| 612,688 |
import requests
def offline_token_using_password(token_endpoint, client_id, username,
password):
"""Get offine token using password."""
response = requests.post(
token_endpoint,
data={
'grant_type': 'password',
'scope': ['offline_access', 'openid'],
'client_id': client_id,
'username': username,
'password': password,
})
return response.json()
|
db802596940a9d020bb13e93b0546ce9a48aea40
| 605,290 |
def trim_stopwords(words, stop_words_set):
"""
去除切词文本中的停用词
:param words:
:param stop_words_set:
:return:
"""
new_words = []
for w in words:
if w in stop_words_set:
continue
new_words.append(w)
return new_words
|
0625edaf014fe8105bad54ae040049ebe07ab8e5
| 272,139 |
def to_dict(response):
"""
Converts elasticsearch responses to dicts for serialization
"""
r = response.to_dict()
r['meta'] = response.meta.to_dict()
return r
|
2fc7561bfc78ac9e88310afe728678e1ef2fc1d8
| 433,541 |
import re
def is_switch_statement(line: str) -> bool:
"""Checks if the line is switch statement"""
pattern = r'\s*(switch)\s*(\S*):'
return True if re.fullmatch(pattern, line) else False
|
e3905b95aecc638f782d71f903d4fdb8c0a0812a
| 227,515 |
def is_blank(line):
"""
Returns true iff the line contains only whitespace.
"""
return line.strip() == ""
|
c67d51289d9e41fdcea75e78af80004902eeb245
| 56,905 |
def _get_headings(soup):
"""Get the href/id of all of the headings in the given html."""
headings = list()
headings.extend([link['href'] for link in soup.findAll('a', {'class': 'headerlink'})])
return headings
|
67187cb6ef4ad6e500b36d49ade0d41451ed1051
| 355,652 |
def tabulate_summary(certificates, kubeconfigs, etcd_certs, router_certs, registry_certs):
"""Calculate the summary text for when the module finishes
running. This includes counts of each classification and what have
you.
Params:
- `certificates` (list of dicts) - Processed `expire_check_result`
dicts with filled in `health` keys for system certificates.
- `kubeconfigs` - as above for kubeconfigs
- `etcd_certs` - as above for etcd certs
Return:
- `summary_results` (dict) - Counts of each cert type classification
and total items examined.
"""
items = certificates + kubeconfigs + etcd_certs + router_certs + registry_certs
summary_results = {
'system_certificates': len(certificates),
'kubeconfig_certificates': len(kubeconfigs),
'etcd_certificates': len(etcd_certs),
'router_certs': len(router_certs),
'registry_certs': len(registry_certs),
'total': len(items),
'ok': 0,
'warning': 0,
'expired': 0
}
summary_results['expired'] = len([c for c in items if c['health'] == 'expired'])
summary_results['warning'] = len([c for c in items if c['health'] == 'warning'])
summary_results['ok'] = len([c for c in items if c['health'] == 'ok'])
return summary_results
|
02e9311911e2b243e2a28cde1a42985368c4c79b
| 543,502 |
def _GetAliasForIdentifier(identifier, alias_map):
"""Returns the aliased_symbol name for an identifier.
Example usage:
>>> alias_map = {'MyClass': 'goog.foo.MyClass'}
>>> _GetAliasForIdentifier('MyClass.prototype.action', alias_map)
'goog.foo.MyClass.prototype.action'
>>> _GetAliasForIdentifier('MyClass.prototype.action', {})
None
Args:
identifier: The identifier.
alias_map: A dictionary mapping a symbol to an alias.
Returns:
The aliased symbol name or None if not found.
"""
ns = identifier.split('.', 1)[0]
aliased_symbol = alias_map.get(ns)
if aliased_symbol:
return aliased_symbol + identifier[len(ns):]
|
1685f422c3271037d4bd6d8e24ba64d5ec5510ac
| 157,555 |
import math
def euclidean_dist_2_pts(p1, p2):
"""
Return euclidean distance between 2 points
:param p1: tuple(X,Y) of the first point's coordinates
:param p2: tuple(X,Y) of the second point's coordinates
:return: distance in the same metrics as the points
"""
x1, y1 = p1
x2, y2 = p2
return math.sqrt((float(x1) - float(x2)) ** 2 + (float(y1) - float(y2)) ** 2)
|
d90e4d4cf672539ae7d614c5b32e26774060ed40
| 602,184 |
def identity(arg):
"""
This function simply returns its argument. It serves as a
replacement for ConfigParser.optionxform, which by default
changes arguments to lower case. The identity function is a
better choice than str() or unicode(), because it is
encoding-agnostic.
"""
return arg
|
a5a5adfbc87ec25619eb4540dda995e49a03ba7a
| 23,314 |
def from_url_to_filename(url):
"""convert web url to a filename
Args:
url (str): string representing the url
Returns:
str: filename parsed from url
"""
return url.split("://")[1].replace("/", "_").replace(".", "_")
|
ead403138fbef4b0ba4d2f4adb770e22dada9868
| 277,213 |
import random
def parallel_shuffle(mylists):
""" Shuffles parallel lists together
Args:
mylists (list of list of obj): The list of parallel lists to shuffle.
Note that the format is [l1, l2, ..., ln]
Returns:
list of list of obj: The list of shuffled parallel lists.
Notes:
Random should be seeded beforehand.
"""
num = len(mylists)
length = len(mylists[0])
length_array = list(range(length))
random.shuffle(length_array)
shuffled_lists = []
for i in range(num):
shuffled_lists.append([])
for order in length_array:
for i in range(num):
shuffled_lists[i].append(mylists[i][order])
return shuffled_lists
|
926e023f40e7dad59dc321524a03d0ce387e7e39
| 413,973 |
def ZwiftCatEmoji(zcat=None):
"""
Return str to emoji for backpedal server
:param zcat: str A+ A B C D E
:return: str zcat emoji for backpedal server
"""
if zcat == None:
return None
if zcat == 'A+':
return ':zcataplus:'
if zcat in ['A','B','C','D','E']:
return ':zcat' + zcat.lower() + ':'
|
bb50577e9f0d2f1a30c81e4ac6f980b865921749
| 412,417 |
from typing import List
def convert_records_to_dict(records: List[tuple]) -> dict:
"""Converts pyscopg2 records list to a dict."""
dict = {}
for record in records:
# Add record tuple data to dict.
dict[record[0]] = record[1]
return dict
|
523efb6c040779c3b885acdbf304177556e04c67
| 664,427 |
def num_digits(number):
"""
Returns number of digits in an integer.
:param number: Integer
:return: Number of digits
"""
return len(str(number))
|
c026468131e019f731012216e73b9c17f4d3bafd
| 69,469 |
import math
import colorsys
def step(r: int, g: int, b: int, repetitions=1) -> tuple:
"""
Helper function to generate step sorted color diagram.
Credits go to: https://www.alanzucconi.com/2015/09/30/colour-sorting/
"""
lum = math.sqrt( .241 * r + .691 * g + .068 * b ) # weighting by luminosity
h, s, v = colorsys.rgb_to_hsv(r,g,b)
h2 = int(h * repetitions)
v2 = int(v * repetitions)
if h2 % 2 == 1:
v2 = repetitions - v2
lum = repetitions - lum
return (h2, lum, v2)
|
5779be8f78918db042558de79ded89b9df4c70c3
| 433,326 |
import gzip
import io
def get_gzip_uncompressed_size(filepath):
"""Get uncompressed size of a .gz file
Parameters
----------
filepath: string
Path to input file
Returns
-------
filesize: int
Uncompressed file size
"""
with gzip.open(filepath, "rb") as file_obj:
return file_obj.seek(0, io.SEEK_END)
|
328846ef296ce72a353c24b241028bd80ad121d9
| 460,060 |
def calculate_accuracy(combined_decisions, Y_test_1):
"""calculates percentage accuracy of a combined decisions array
Args:
combined_decisions: predicted values for combined model
Y_test_1: True values
Returns:
percentage accuracy of predictions
"""
total_decisions = len(combined_decisions)
correct_decisions = 0
for index, decision in combined_decisions:
if decision == Y_test_1[index]:
correct_decisions +=1
return correct_decisions / total_decisions * 100
|
7494ef3bc017e628f9621f803c27bd2c77ccff2b
| 38,312 |
def schema_input_type(schema):
"""Input type from schema
:param schema:
:return: simple/list
"""
if isinstance(schema, list):
return 'list'
return 'simple'
|
cdcc9b724005083995f26a767d9b2ab95645ad79
| 14,602 |
import hashlib
def get_file_hash(file_path):
""" Get the file hash (SHA-1) """
chunk_size = 65536
hasher = hashlib.sha1()
with open(file_path, 'rb') as f:
buff = f.read(chunk_size)
while len(buff) > 0:
hasher.update(buff)
buff = f.read(chunk_size)
file_hash = hasher.hexdigest()
return file_hash
|
0bbed2a559108b457d280cc988a4975d06a5fd40
| 284,682 |
def lookup_dict_path(d, path, extra=list()):
"""Lookup value in dictionary based on path + extra.
For instance, [a,b,c] -> d[a][b][c]
"""
element = None
for component in path + extra:
d = d[component]
element = d
return element
|
84380773c9c4a446d22587d41113136588458160
| 76,579 |
import re
def separa_sentencas(texto: str) -> list:
"""
The function receives a text and returns a list of sentences
within the text.
"""
sentencas = re.split(r"[.!?]+", texto)
if sentencas[-1] == "":
del sentencas[-1]
return sentencas
|
555d4a986a654f3c9915fde05d70018ab692cefc
| 197,506 |
def track_processed(args):
"""
Track processed if there might be a delete timeout or interval specified
:param args:
:return:
"""
return args.delete or (args.interval and args.interval > 0)
|
9542f227316e96b22d9cb236ebb6196bd059618d
| 586,756 |
import re
def get_platform(source = '<PLT_1>'):
"""A function to extract the platform from a source string.
Args:
source (str, optional): source string that is usually contains the platform that is used to post the tweet. Defaults to '<PLT_1>'.
Returns:
str: the platform if found, otherwise the stamp PLT_1. This stamp is used for any further updates.
"""
platform = 'PLT_1'
try:
platform = re.sub('[<>]', '\t', source).split('\t')[2]
platform = platform.replace('Twitter for','').replace('Twitter','')
except:
platform = 'PLT_1'
return platform.strip()
|
c12c7fd02b53b24a70a6f5343f9bc031c5d0f513
| 43,510 |
def dot_product(a,b):
"""calculate dot product from two lists"""
# optimized for PyPy (much faster than enumerate/map)
s = 0
i = 0
for x in a:
s += x * b[i]
i += 1
return s
|
077a7e1fc97a344d68fd5509191c989e23f626b2
| 610,009 |
from typing import Iterable
from typing import Any
def list2str(the_list: Iterable[Any], sep: str = ',') -> str:
"""
Convert an iterable, such as a list, to a comma separated string.
:param the_list: The iterable to convert to a string.
:param sep: Separator to use for the string.
:return: Comma separated string
"""
return sep.join([str(x) for x in the_list])
|
166b55e407e16b41aeea648445eb6b2786cb45af
| 134,467 |
def contar_letras (cadena: str, letras: str):
"""Cuenta la cantidad de letras especificas en la cadena
Argumentos:
cadena (str) -- cadena sobre la que contar
letra (str) -- letra que quiero contar
"""
cuenta = 0
for caracter in cadena:
if caracter == letras:
cuenta += 1
return cuenta
|
dafbf667654f5662d8cdae1460b0fadd9f034c2b
| 304,513 |
def _escape_string(string):
"""
Escape Lucene escape characters in string
:param string: string to escape
:return: escaped string
"""
escape_chars = ['+', '-', '!', '(', ')', '{', '}', '[', ']', '^', '"', '~', '*', '?', ':', '&&', '||']
for char in escape_chars:
string = string.replace(char, '\\\\{}'.format(char))
return string
|
dd9b7aa0d5d40c72e2eddc93b33cf181a5e34e04
| 517,862 |
def make_round_pairs(sequence):
"""
Given a sequence [A, B, C] of size n, creates a new sequence
of the same size where each new item is the pair of the item
at a given position paired up with next item.
Additionally, last item is paired with the first one:
[(A, B), (B, C), (C, A)].
:param sequence: original sequence
:return: paired sequence
"""
length = len(sequence)
return [
(sequence[i], sequence[(i + 1) % length])
for i in range(length)
]
|
aebb4db852fea30de597170f5f23b013703a1a35
| 230,847 |
from typing import Optional
def strip_parent_path(path: str, parent_path: Optional[str]) -> str:
"""Remove a parent path from a path."""
stripped_path = path
if parent_path and path.startswith(parent_path):
stripped_path = path[len(parent_path):]
return stripped_path
|
45c2df8b847b1587d93d0dfbc7be27d8764ee5e6
| 243,208 |
def _af_commutes_with(a, b):
"""
Checks if the two permutations with array forms
given by ``a`` and ``b`` commute.
Examples
========
>>> from sympy.combinatorics.permutations import _af_commutes_with
>>> _af_commutes_with([1,2,0], [0,2,1])
False
See Also
========
Permutation, commutes_with
"""
return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
|
b42b7928df67c729fc669dd804d1e951c7c87c1a
| 580,877 |
from typing import Tuple
def particle_elastic_collision(
ux1: float,
uy1: float,
ux2: float,
uy2: float,
m1: float,
m2: float
) -> Tuple[float, float, float, float]:
"""2D elastic collision of two particles.
The model assumes the particles have zero radius. The larger
the particles are, the less accurate this model is.
Args:
ux1: x-velocity of particle 1
uy1: y-velocity of particle 1
ux2: x-velocity of particle 2
uy2: y-velocity of particle 2
m1: mass of particle 1
m2: mass of particle 2
Return:
resulting velocities (vx1, vy1, vx2, vy2)
"""
vx1 = (ux1 * (m1 - m2) / (m1 + m2)) + (ux2 * 2 * m2 / (m1 + m2))
vx2 = (ux1 * 2 * m1 / (m1 + m2)) + (ux2 * (m2 - m1) / (m1 + m2))
vy1 = (uy1 * (m1 - m2) / (m1 + m2)) + (uy2 * 2 * m2 / (m1 + m2))
vy2 = (uy1 * 2 * m1 / (m1 + m2)) + (uy2 * (m2 - m1) / (m1 + m2))
return (vx1, vy1, vx2, vy2)
|
05989a25854ff618640cfbf3ecdcbc8acdef6f2d
| 237,642 |
def arg_key_diff(s1, s2):
"""
Finds the difference between two sets of strings.
Args:
s1 (:obj:`set`): Set 1
s2 (:obj:`set`): Set 2
Returns:
:obj:`set`
"""
return s1 - s2
|
fb6664a1ad53812f2346fc8136cca726158775b4
| 343,137 |
def get_player_name(number, players, team, home_team):
"""
This function is used for the description field in the html. Given a last name and a number it return the player's
full name and id.
:param number: player's number
:param players: all players with info
:param team: team of player
:param home_team: home team
:return: dict with full and and id
"""
venue = "Home" if team == home_team else "Away"
# Get the info when we get the same number for that team
player = [{'name': name, 'id': players[venue][name]['id'], 'last_name': players[venue][name]['last_name']}
for name in players[venue].keys() if players[venue][name]['number'] == number]
# Control for when the name can't be found
if not player:
player = [{'name': None, 'id': None, 'last_name': None}]
return player[0]
|
e1c21a5138e68c3afde2dd7617bdd6ff13e0f927
| 360,675 |
def end_page(page_list):
"""
Last page/node in a list of page hits
:param page_list: list of page hits
:return: last page
"""
return page_list[-1]
|
8d774dd3ba66177d4f8720f3bef0d4cd1e396c84
| 560,719 |
import gzip
def fopen(p, flag="r"):
"""Opens as gzipped if appropriate, else as ascii."""
if p.endswith(".gz"):
if "w" in flag:
return gzip.open(p, "wb")
else:
return gzip.open(p, "rt")
else:
return open(p, flag)
|
dc9eaaf69e7ce8bc4d148b4e586ea6decbb75a38
| 619,065 |
def min_distance(queue, dist):
"""
Returns node with smallest distance in queue
"""
min_node = None
for node in queue:
if min_node is None:
min_node = node
elif dist[node] < dist[min_node]:
min_node = node
return min_node
|
cb486b26c5b6d0c5ad1e0b1fb1670b06739f5d09
| 465,705 |
def get_insert_rows_field_data(row_data):
"""
Generates the row wise query segments needed to insert rows into a table.
:param row_data: Ordered collection of row values
:return: Row insertion query segements like '('val1', 123, 'val2'), ('valA', 456, 'valB')'
"""
return ", ".join(
["(" + ", ".join(map(str, row)) + ")" for row in row_data]
)
|
09c6518dea3370b9628753b1ced6898f9c009cd2
| 334,320 |
import csv
def matrix(filename):
"""
:param filename: The csv file
:return: A matrix with csv contents
"""
file = open(filename)
reader = csv.reader(file)
csv_matrix = list(reader)
return csv_matrix
|
130ab51aa637fca7ba3cb84947fd573d53bf5ac5
| 523,421 |
def compute_nonzero_mean_intensity(image_data):
"""Compute the nonzero mean of a specific fov/chan pair
Args:
image_data (numpy.ndarray):
the image data for a specific fov/chan pair
Returns:
float:
The nonzero mean intensity of the fov/chan pair (`np.nan` if channel contains all 0s)
"""
# take just the non-zero pixels
image_data_nonzero = image_data[image_data != 0]
# take the mean of the non-zero pixels and assign to (fov, channel) in array
# unless there are no non-zero pixels, in which case default to 0
if len(image_data_nonzero) > 0:
nonzero_mean_intensity = image_data_nonzero.mean()
else:
nonzero_mean_intensity = 0
return nonzero_mean_intensity
|
fdc828e22413d1a226490521523017a9a7ecd689
| 221,493 |
import requests
def getLatLon(location):
"""
Uses the "Google-style geocoder" API at datasciencetoolkit.org to return the latitude and longitude for a location
"""
if not isinstance(location, str):
raise ValueError
url = 'http://www.datasciencetoolkit.org/maps/api/geocode/json?sensor=false&address='
response = requests.get(url+location)
location = response.json()['results'][0]['geometry']['location']
return (location['lat'], location['lng'])
|
ad07c6b3a5150d591b8c6a9f42b6c9852b21df21
| 369,024 |
def get_imindices_str(fovbounds):
"""
This returns a string representing the FOV indices
Args:
-----
fovbounds - list of [rowmin, rowmax, colmin, colmax]
Returns:
--------
string representation of indices
"""
return "_rowmin{}".format(fovbounds[0]) + \
"_rowmax{}".format(fovbounds[1]) + \
"_colmin{}".format(fovbounds[2]) + \
"_colmax{}".format(fovbounds[3])
|
0fa0e9bb38ff9ca9f24915a5a1bdfb9b4955c4d1
| 286,436 |
def split_df(df):
"""
This will split a VOiCES index dataframe by microphone and distractor type
Inputs:
df - A pandas dataframe representing the index file of the dataset,
with the default columns of VOiCES index files.
Outputs:
df_dict - A dictionary where keys are (mic,distractor type) and values
are dataframes corresponding to slices of df with that mic and
distractor value pair.
"""
distractor_values =df['distractor'].unique()
mic_values = df['mic'].unique()
df_dict = {}
for m_val in mic_values:
for dist_val in distractor_values:
sub_df = df[(df['mic']==m_val) & (df['distractor']==dist_val)]
df_dict[(m_val,dist_val)]=sub_df
return df_dict
|
289e28cda52e01933fb9228986dcff1e5a1590fd
| 98,307 |
def filter(arg_list, nsitemin, nsitemax):
"""Filters so nsites is within nsitemin and nsitemax.
Parameters:
arg_list (list): list of materials.
nsitesmin (int): min of nsites.
nsitemax (int): max of nsites.
Returns:
list: filtered list.
"""
respond_filter_list = []
for i,el in enumerate(arg_list):
nsites = el["nsites"]
if nsites > nsitemax or nsites < nsitemin:
pass
else:
respond_filter_list.append(el)
return respond_filter_list
|
733854c2c5eabc3ebe787d2d49f770a2c5a9380c
| 288,891 |
from typing import List
def sum_list(lst: List[int]) -> int:
"""Takes a list of numbers, and returns the sum of the numbers in that list.
Cannot use the built in function `sum`.
Args:
lst - a list of numbers
Returns:
the sum of the passed in list
"""
result = 0
slcounter = len(lst) - 1
while slcounter >= 0:
result = result + lst[slcounter]
slcounter = slcounter - 1
return result
|
aa52ffd7128bf8e7a145ddd87adfdc31c8caafe1
| 193,189 |
def chebyshev_distance(a, b):
"""
Calculate the Chebyshev distance of two vectors.
"""
distances = []
for x, y in zip(a, b):
distances.append(abs(x - y))
distance = max(distances)
return distance
|
aa6fccc804ccbeb312e0bb41693feb05787d84f4
| 22,081 |
import logging
def getlog(name : str):
"""Create logger object with predefined stream handler & formatting
Parameters
----------
name : str
module __name__
Returns
-------
logging.logger
Examples
--------
>>> from __init__ import getlog
>>> log = getlog(__name__)
"""
fmt_stream = logging.Formatter('%(levelname)-7s %(lineno)-4d %(name)-26s %(message)s')
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
sh.setFormatter(fmt_stream)
log = logging.getLogger(name)
log.setLevel(logging.INFO)
log.addHandler(sh)
return log
|
05e02488db030f2f60d106de8cd0e247072d435a
| 602,174 |
def get_spec_name(label):
"""Converts the label of bazel rule to the name of podspec."""
assert label.startswith("//absl/"), "{} doesn't start with //absl/".format(
label)
# e.g. //absl/apple/banana -> abseil/apple/banana
return "abseil/" + label[7:]
|
810ebe8231042ea631c0188f4681b55b27327714
| 305,396 |
def select_rows_where_list_equal(df, column, items):
"""Select rows in the dataframe whose column has a list of values.
Args:
df (pd.DataFrame): Dataframe.
column (str): Column name.
items (list): List of items.
Returns:
pd.DataFrame: Dataframe with selected rows.
Examples:
>>> df = pd.DataFrame({"letters":["a","b","c"], "numbers":[1,2,3]})
>>> select_rows_where_list_equal(df, "letters", ["a","b"])
letters numbers
0 a 1
1 b 2
"""
return df.loc[df[column].isin(items)]
|
b577056426ed4b07521dc2861512e03b79e755e5
| 275,395 |
def find_repeated(values):
"""Find repeated elements in the inputed list
Parameters
----------
values : list
List of elements to find duplicates in
Returns
-------
set
Repeated elements in ``values``
"""
seen, repeated = set(), set()
for value in values:
if value in seen:
repeated.add(value)
else:
seen.add(value)
return repeated
|
bf4c3168ff9823b71581984105d8807695349fd5
| 148,546 |
def _dummyJit(*args, **kwargs):
"""
Dummy version of jit decorator, does nothing
"""
if len(args) == 1 and callable(args[0]):
return args[0]
else:
def wrap(func):
return func
return wrap
|
665efd1e64f3c1c6a01e65e2f2371a4fb390a51a
| 250,649 |
def eth_rpc_host(request):
"""
RPC hostname or IP. defaults to `localhost`, but can be overridden with
`--rpc-host` cli flag
"""
return request.config.getoption('--rpc-host')
|
bc801aea7595420b727550a1335992819c72f1ea
| 439,365 |
def get_explict_dest(pdf, dest_list):
"""
Find explict destination page number and rectangle.
:param pdf: pdfplumber.pdf.PDF object
:param dest_list: A explict destination list, e.g. [page, /XYZ, left, top, zoom]
:return: A list of destination contains page number and rectangle coordinates
"""
dest_page_num = None
# find page number from page id
dest_page_id = dest_list[0].objid
for page in pdf.pages:
if dest_page_id == page.page_obj.pageid:
dest_page_num = page.page_number
# explict destination support a lot possibilities to describe like [page, /XYZ, left, top, zoom], or [page, /Fit]
# according to TABLE 8.2 Destination syntax of PDF Reference 1.7
if dest_list[1].name == 'XYZ':
dest_rect_x = dest_list[2]
dest_rect_y = dest_list[3]
else:
dest_rect_x = 0
dest_rect_y = dest_list[0].resolve()['MediaBox'][3] # page top
return [dest_page_num, dest_rect_x, dest_rect_y]
|
e6f2abebc2c036ad3f1b3f8a42259b3805b64f02
| 668,482 |
def sublist(l, batch_size):
"""
Helper function to divide list into sublists
"""
return [l[i:i+batch_size] for i in range(0,len(l), batch_size)]
|
c0f337821af7ad13d3421c55c775e40f6c07fe6e
| 355,444 |
def solution(A): # O(NlogN)
"""
Given a list of tuples, merge the tuples to show only the non-overlapping intervals.
>>> solution([(1, 3), (2, 6), (8, 10), (15, 18)])
[(1, 6), (8, 10), (15, 18)]
>>> solution([(1, 4), (4, 8), (2, 5), (14, 19)])
[(1, 8), (14, 19)]
"""
A.sort(key=lambda value: value[0]) # O(NlogN)
merged = [] # O(1)
target = () # O(1)
for i in A: # O(N)
if not target: # O(1)
target = i # O(1)
elif target[1] >= i[0]: # O(1)
target = (target[0], max(target[1], i[1])) # O(1)
else: # O(1)
merged.append(target) # O(1)
target = i # O(1)
if target: # O(1)
merged.append(target) # O(1)
return merged # O(1)
|
0d57898c5d9f50bfa120be1f550aefe5f67bae75
| 126,756 |
def get_unique(frame, column_name):
"""
Helper function to get unique count for column
"""
return frame[column_name].value_counts().compute()
|
5a32b53897658a6ba4b0aebabc1670c6460c16b8
| 669,174 |
def checkWinner(board, width, default_value=' '):
"""
Function to check winner of tic-tac-toe IF your board is a single array
that represents all the slots, i.e. [....]
We are NOT going to validate that this is a square, we are trusting
the user input. The only limitation is that the width * width == len(board)
- Checks all rows
- Checks all columns
- Checks forward diagonal
- Checks backwards diagonal
If there is a winner, returns the winning mark.
"""
winner = None
# Have to check rows and columns
for row in range(width):
# A place to collect rows and columns
curRow = []
curCol = []
# Formula is width*row + col -> row collection
# width*col + row -> column collection
for col in range(width):
curRow.append(board[(row * width) + col])
curCol.append(board[(col * width) + row])
# Set function returns a collection of unique items
# in an enumerable type (list in this case). If the count
# is 1 then we have a winner. Save the winners mark.
if len(set(curRow)) == 1 and curRow[0] != default_value:
winner = curRow[0]
if len(set(curCol)) == 1 and curCol[0] != default_value:
winner = curCol[0]
if winner:
break
# Now check the diagonals if a row/column didnt do it.
if not winner:
# Collections for forward/backward diagonal
forward = []
backward = []
# Collect them, formulas:
# Forward = row * width + row
# Backwards = (row * width) + (width - row - 1)
for row in range(width):
forward.append(board[row * width + row])
backward.append(board[(row * width) + (width - row - 1)])
# Again use set() to figure out if we have a winner.
if len(set(forward)) == 1 and forward[0] != default_value:
winner = forward[0]
if len(set(backward)) == 1 and backward[0] != default_value:
winner = backward[0]
# returns the winners mark, if this is empty no winner.
return winner
|
977e198e472ab03f32eda29752d341c746a4fbd4
| 503,827 |
import json
def load_json(path_model):
"""Loads json object to dict
Args:
path_model: (string) path of input
"""
with open(path_model) as f:
data = json.load(f)
return data
|
9dcab4abfd82c5e2a5fc362780d9be8cdcb513cb
| 74,244 |
def balanced_parts(L, N):
"""\
Find N numbers that sum up to L and are as close as possible to each other.
>>> balanced_parts(10, 3)
[4, 3, 3]
"""
if not (1 <= N <= L):
raise ValueError("number of partitions must be between 1 and %d" % L)
q, r = divmod(L, N)
return r * [q + 1] + (N - r) * [q]
|
a12c09fd3c07f809849b9e44070ff5aae5fc33d2
| 535,598 |
def main2(temp_df):
"""helper function that aggregates the input by count and sum for plot_main_4"""
transformed = temp_df # time(temp_df)
label = "loss"
# print(transformed.columns)
s = ["Second", label]
p_sum_agg = transformed.groupby(s)["total_pkts"].agg(["count", "sum"]).reset_index()
# print(p_sum_agg.columns)
b_agg = transformed.groupby(s)["total_bytes"].agg(["count", "sum"]).reset_index()
# p_agg = transformed.groupby(s)['total_pkts'].agg(['count', 'sum']).reset_index()
# print("all aggregations made")
return [p_sum_agg, b_agg]
|
225587eb0e9d91644c4ff363ea13ee103a7a7ccf
| 238,141 |
def complement(sequence):
"""Get complementary DNA sequence.
Args:
sequence (str): DNA sequence:
Returns:
str: Complementary sequence.
"""
complement_bases = {'A': 'T','T': 'A', 'C': 'G', 'G': 'C'}
return ''.join(complement_bases[base] for base in sequence.upper())
|
dc9c4fd6e8c140a9c41195055027bd8e55bb4223
| 342,569 |
import importlib
def get_driver(driver_class):
"""
Get Python class, implementing device driver, by its name.
:param str driver_class: path to a class, e.g. ``ducky.devices.rtc.RTC``.
:returns: driver class.
"""
driver = driver_class.split('.')
driver_module = importlib.import_module('.'.join(driver[0:-1]))
driver_class = getattr(driver_module, driver[-1])
return driver_class
|
470a6cd18aef0cc5034479782d3045f1d0142b15
| 129,130 |
def trapzint(f, a, b, n):
"""Estimates integral by the construction of n evenly spaced trapezoids on the interval [a, b]"""
h = (b-a) / float(n)
sum = 0
for i in range(n):
#h serves double duty as both the x-distance width and the x-distance increment
sum = sum + (1.0/2)*h*(f(a + h*i) + f(a + h*(i + 1)))
return sum
|
9d7c7e7572d92ca2d2e78b1f7280e0635ac26321
| 432,972 |
def build_texts_from_gems(keens):
"""
Collects available text from each gem inside each keen in a list and returns it
:param keens: dict of iid: keen_iid
:return: texts: dict of iid: list of strings with text collected from each gem.
"""
texts = {}
for keen in keens.values():
for gem in keen.gems:
sents = [gem.text, gem.link_title, gem.link_description]
sents = [s for s in sents if s] # filters empty sentences
if sents:
texts[gem.gem_id] = sents
return texts
|
b9b94f4a1035f03746bd3b18755c02b19a97b27b
| 694,759 |
def unique_node_name_from_input(node_name):
"""Replaces invalid characters in input names to get a unique node name."""
return node_name.replace(":", "__port__").replace("^", "__hat__")
|
2f6b18298ec44fcb899ba0ebdb02ed38c66a2300
| 258,186 |
import math
def degrees(rad_angle) :
"""Converts and angle in radians to degrees, mapped to the range [-180,180]"""
angle = rad_angle * 180 / math.pi
#Note this assume the radians angle is positive as that's what MMTK does
while angle > 180 :
angle = angle - 360
return angle
|
df366e3eef93f0f51feca48b83072bf8b13eba78
| 39,603 |
import time
def create_anonymous_node_name(node_name="node") -> str:
"""
Creates an anonoymous node name by adding a suffix created from
a monotonic timestamp, sans the decimal.
Returns:
:obj:`str`: the unique, anonymous node name
"""
return node_name + "_" + str(time.monotonic()).replace('.', '')
|
94459ac3c9c03318b5d9215bc82ce5855e653e85
| 146,411 |
def MATERIALS_PROPERTIES_0(ELEMENTS, MATERIALS, I_ELEMENT, AUX_1):
"""
This function creates a vector with the material information of the I_ELEMENT element TYPE_ELEMENT = 0 (Frame element).
Input:
ELEMENTS | Elements properties | Py Numpy array
| ID, Node 0 ... Node (N_NODES - 1), Material ID , |
| Geometry ID, Hinge ID node 1, Hinge ID node 2 |
MATERIALS | Materials properties | Py Numpy array
| ID, Young, Poisson, Density, Thermal coefficient |
I_ELEMENT | i element in looping | Integer
AUX_1 | ID material | Integer
Output:
MATERIAL_IELEMENT | Material I_ELEMENT properties | Py list[5]
| [0] - Young |
| [1] - Shear modulus |
| [2] - Poisson |
| [3] - Thermal coefficient |
| [4] - Density |
"""
MATERIAL_ID = int(ELEMENTS[I_ELEMENT, AUX_1])
E = MATERIALS[MATERIAL_ID, 0]
NU = MATERIALS[MATERIAL_ID, 1]
PHO = MATERIALS[MATERIAL_ID, 2]
ALPHA = MATERIALS[MATERIAL_ID, 3]
G = E / (2 * (1 + NU))
MATERIAL_IELEMENT = [E, G, NU, ALPHA, PHO]
return MATERIAL_IELEMENT
|
49715c783ad78f7fea53947fbc8a8a852c789582
| 334,427 |
import torch
def dist_tensor(p1, p2):
""" Return the euclidean distance between two points.
:param p1: First point.
:param p2: Second point.
:return: Euclidean distance.
"""
return torch.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
|
21e750f2c9ba39d202ce2fd602df992ab233ad79
| 180,266 |
def dfs_topological_sort(arr, n):
""" Topological sort with DFS. Return an empty list if
there is a cycle.
"""
graph = [[] for _ in range(n)]
for u, v in arr:
graph[u].append(v)
visited, stack = [0] * n, []
def dfs(u):
if visited[u] == -1:
return False
if visited[u] == 1:
return True
visited[u] = -1
for v in graph[u]:
if not dfs(v):
return -1
stack.append(u)
visited[u] = 1
return True
for u in range(n):
if not dfs(u):
return []
return stack[::-1]
|
8c917f372029a7a4e7f132a5141d05a69d8fb227
| 652,999 |
import random
import math
def rGeom(p):
"""Generate a geometrically distributed random number. p is the success
probability. The numbers are in the range {0, 1, 2,...}"""
# CDF = 1-(1-p)^(k+1) (CDF of geometric distribution)
# (1-p)^(k+1) = 1-CDF (... solve for k ...)
# k+1 = log(1-CDF)/log(1-p)
# k = (log(1-CDF)/log(1-p)) - 1
# insert a uniform random number in [0;1] for CDF to
# obtain geometrically distributed numbers
u = random.random()
if p == 1 : return 0
return math.ceil( (math.log(1-u,1-p))-1 )
|
7eb1d3bbac0c79e1341abb2fa9528ea8c6c88e84
| 32,755 |
import re
def GetTimeServers(File):
""" Extract the timeservers from ntp.conf
Args:
File - Module to access ntp config file
Returns:
ntp_servers - List of configured servers as indicated by ntp.conf
"""
ntp_conf = File("/etc/ntp.conf")
# Remove any configuration options that come after the server/pool name
all_ntp_servers = map(lambda x: re.sub(" .*", "", x),
re.findall("\n(?:server|pool)\s*(.*)",
ntp_conf.content_string))
# Filter fallback NTP server from configuration file.
user_ntp_servers = filter(lambda x: x != 'ntp.ubuntu.com', all_ntp_servers)
return user_ntp_servers
|
5bcc38c9b8e0f313185b5563024435ed810578ca
| 471,781 |
import six
def call_module(module, one_hots, row_lengths, signature):
"""Call a tf_hub.Module using the standard blundell signature.
This expects that `module` has a signature named `signature` which conforms to
('sequence',
'sequence_length') -> output
To use an existing SavedModel
file you may want to create a module_spec with
`tensorflow_hub.saved_model_module.create_module_spec_from_saved_model`.
Args:
module: a tf_hub.Module to call.
one_hots: a rank 3 tensor with one-hot encoded sequences of residues.
row_lengths: a rank 1 tensor with sequence lengths.
signature: the graph signature to validate and call.
Returns:
The output tensor of `module`.
"""
if signature not in module.get_signature_names():
raise ValueError('signature not in ' +
six.ensure_str(str(module.get_signature_names())) +
'. Was ' + six.ensure_str(signature) + '.')
inputs = module.get_input_info_dict(signature=signature)
expected_inputs = [
'sequence',
'sequence_length',
]
if set(inputs.keys()) != set(expected_inputs):
raise ValueError(
'The signature_def does not have the expected inputs. Please '
'reconfigure your saved model to only export signatures '
'with sequence and length inputs. (Inputs were %s, expected %s)' %
(str(inputs), str(expected_inputs)))
outputs = module.get_output_info_dict(signature=signature)
if len(outputs) > 1:
raise ValueError('The signature_def given has more than one output. Please '
'reconfigure your saved model to only export signatures '
'with one output. (Outputs were %s)' % str(outputs))
return list(
module({
'sequence': one_hots,
'sequence_length': row_lengths,
},
signature=signature,
as_dict=True).values())[0]
|
efd8a7b991c2f8c95abbed55566d882a4af750c2
| 589,442 |
import math
def distanceModulus(i, j, pos_X, pos_Y):
""" Measures the distance modulus between two particles i, j """
i = int(i)
j = int(j)
dist_X = pos_X[j] - pos_X[i]
dist_Y = pos_Y[j] - pos_Y[i]
dist = math.sqrt(dist_X**2 + dist_Y**2)
return dist
|
1a2c2bb3a5db0fd23d8aab044457269ad23b901d
| 184,424 |
import click
def confirm_destroy(name, abort=True):
"""Confirm the user wants to destroy the machine."""
return click.confirm('Are you sure you want to destroy the "{0}" machine?'.format(name), abort=abort)
|
0ebc13b023fd341e29df08a11d0872654d2b157c
| 162,060 |
def containsNonAlphaNum(word_list):
"""
Does list of words contain any special characters?
Parameters:
word_list: list of words
Returns:
bool: whether any word in the list contains a special
character
"""
chars = ["-", "_", "."]
allow_chars = set(chars)
for word in word_list:
for char in word:
if not(char.isalnum()) and char not in allow_chars:
return True
return False
|
7a87c706eaec5cd4ee10fa0ccc027a4850430eb3
| 27,230 |
import requests
def get_latest_message(group, token):
"""Gets the most recent message from a group. Token must be valid for the group."""
GROUP_URI = 'https://api.groupme.com/v3/groups/' + str(group)
r = requests.get(GROUP_URI + '/messages?token=' + token + '&limit=1')
return r.json()['response']['messages'][0]
|
47d0f374747917b4b81c812264d2b0139cb2ae90
| 228,192 |
def _get_headers_from_args(
method=None,
url=None,
body=None,
headers=None,
retries=None,
redirect=None,
assert_same_host=True,
timeout=None,
pool_timeout=None,
release_conn=None,
chunked=False,
body_pos=None,
**response_kw
):
"""
extract headers from arguments
"""
# pylint: disable=unused-argument
# not using '_' in arg names so unrolling will be smoother
return headers
|
ba1137130d0bf12007518462b2488772394c0ff9
| 180,400 |
def animals(chickens: int, cows: int, pigs: int) -> int:
"""Return the total number of legs on your farm."""
return sum([(chickens * 2), (cows * 4), (pigs * 4), ])
|
65046ff425e90b885571f46dabd3d2325713c93d
| 442,923 |
def getmatchingfiles(pattern1, pattern2, list):
"""
From a list of files get a new sorted list of files matching both patterns 1 and 2
:param pattern1:
:param pattern2:
:param list:
:return:
"""
return [file for file in sorted(list) if pattern1 in file and pattern2 in file]
|
7575bb9bb7c74b78f07da5739720ea99169230ba
| 449,578 |
def _group_by_size_histogram_data(dataframe, group_by_key):
"""Returns a histogram of the number of elements per group.
If you group by sequence_name, the dictionary you get returned is:
key: number of predictions a sequence has
value: number of sequences with `key` many predictions.
Args:
dataframe: pandas DataFrame that has column group_by_key.
group_by_key: string. The column to group dataframe by.
Returns:
dict from int to int.
"""
return dataframe.groupby(group_by_key).size().to_frame('size').groupby(
'size').size().to_dict()
|
8f0e101ffbbb9f8967e08517790ac68cbaedd040
| 601,021 |
def get_type(value):
"""
Return the name of the type for a value. This is used when displaying
values via HTML templates.
"""
return type(value).__name__
|
fe45050a229b536db2f5e9c42ae8605cef94cd93
| 540,716 |
def StringToInt(handle_automatic=False):
"""Create conversion function which converts from a string to an integer.
Args:
handle_automatic: Boolean indicating whether a value of "automatic" should
be converted to 0.
Returns:
A conversion function which converts a string to an integer.
"""
def Convert(value):
if value == 'automatic' and handle_automatic:
return 0
return int(value)
return Convert
|
ee76411efc4a1bd8b0eccc67cbb035a4b7778792
| 213,576 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.