content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def read_query(name: str):
""" Read in a query from a separate SQL file
Retrieves a query from a separate SQL file and stores it as a string for
later execution. Query files are stored in the utils/sql_queries directory
Args:
name: Name of the SQL file to retreive
Returns:
(str): String representation of the full SQL query.
"""
with open(f"src/phoebe_shelves_clt/sql_backend/sql_queries/{name}.sql") as f:
return(f.read())
|
5b1dc1f9d1aee856cd8b47651aeadf6cd9b5408d
| 79,962 |
import torch
def FalseTensor(*size, device='cuda:0'):
"""
Returns a Tensor of type torch.uint8 containing only False values
Parameters
----------
*size : int
the shape of the tensor
device : str
the device to store the tensor to
Returns
-------
Tensor
a uint8 precision tensor
"""
return torch.zeros(*size, dtype=torch.uint8, device=device)
|
40ea379020283e87edd74fd0a7821ea763838dc9
| 98,015 |
def quotewrap(item):
"""wrap item in double quotes and return it.
item is a stringlike object"""
return '"' + item + '"'
|
91acd54664b9408832b105a01b47165b53fdf4f5
| 59,900 |
def elide_list(line_list, max_num=10):
"""Takes a long list and limits it to a smaller number of elements,
replacing intervening elements with '...'. For example::
elide_list([1,2,3,4,5,6], 4)
gives::
[1, 2, 3, '...', 6]
"""
if len(line_list) > max_num:
return line_list[:max_num - 1] + ['...'] + line_list[-1:]
else:
return line_list
|
b40930de03d3463721e3c6a27d90cb7e0dc7f01f
| 138,046 |
def msize(m):
"""
Checks whether the matrix is square and returns its size.
Args:
m (numpy.ndarray): the matrix to measure;
Returns:
An integer with the size.
"""
s = m.shape[0]
if m.shape != (s, s):
raise ValueError("Do not recognize the shape (must be a square matrix): {}".format(m.shape))
return s
|
ecd67ade9f5ba1b0297252eb75235f5f9b900e95
| 559,001 |
def dec2bin(num, width=0):
"""
>>> dec2bin(0, 8)
'00000000'
>>> dec2bin(57, 8)
'00111001'
>>> dec2bin(3, 10)
'0000000011'
>>> dec2bin(-23, 8)
'11101001'
>>> dec2bin(23, 8)
'00010111'
>>> dec2bin(256)
'100000000'
"""
if num < 0:
if not width:
raise ValueError('Width must be specified for negative numbers')
num += 2 ** width
binary = ''
while num:
if num & 1:
binary += '1'
else:
binary += '0'
num >>= 1
if width:
no_zeros = width - len(binary)
if no_zeros < 0:
raise OverflowError('A binary of width %d cannot fit %d' %
(width, num))
binary += '0' * no_zeros
if not binary:
binary = '0'
return binary[::-1]
|
a63cfca8506d23ee69eeb112d489cf9af0542f79
| 61,928 |
import torch
def collate_train(batch):
"""
Collate function for preparing the training batch for DCL training.
:param batch: The list containing outputs of the __get_item__() function.
Length of the list is equal to the required batch size.
:return: The batch containing images and labels for DCL training
"""
imgs = [] # List to store the images
target = [] # List to store the targets
target_jigsaw = [] # List to store the jigsaw targets
patch_labels = [] # List to store the ground truth patch labels
# Iterate over each output of the __get_item__() function
for sample in batch:
imgs.append(sample[0]) # Append the original image
imgs.append(sample[1]) # Append the transformed image (after applying RCM)
# Append the same labels for original and RCM image for Cls. head
target.append(sample[2])
target.append(sample[2])
# Append the different labels for original and RCM image for Adv. head
target_jigsaw.append(sample[2])
target_jigsaw.append(sample[3])
# Append the ground truth patch labels
patch_labels.append(sample[4])
patch_labels.append(sample[5])
# Stack the images and return the required batch for training
return torch.stack(imgs, 0), target, target_jigsaw, patch_labels
|
18c897fe862a2b75c6aea8e2e239049a1c4929ac
| 433,812 |
def occurence_data(pat_df, column):
"""
Return value counts of given dataframe columns
:param pat_df: Dataframe
:param column: Column included in Dataframe
:return: Series of value occurences
"""
return pat_df[column].value_counts()
|
7bec7cec90c0f575aa5e2dfd4855106caf03a31a
| 90,794 |
def get_rec_names(study_folder):
"""
Get list of keys of recordings.
Read from the 'names.txt' file in study folder.
Parameters
----------
study_folder: str
The study folder.
Returns
----------
rec_names: list
LIst of names.
"""
with open(study_folder / 'names.txt', mode='r', encoding='utf8') as f:
rec_names = f.read()[:-1].split('\n')
return rec_names
|
ab9c7eddc0ce593ddcea129c2122e753a94432bf
| 648,436 |
import six
import operator
def inclusion_unlimited_args_kwargs(one, two='hi', *args, **kwargs):
"""Expected inclusion_unlimited_args_kwargs __doc__"""
# Sort the dictionary by key to guarantee the order for testing.
sorted_kwarg = sorted(six.iteritems(kwargs), key=operator.itemgetter(0))
return {"result": "inclusion_unlimited_args_kwargs - Expected result: %s / %s" % (
', '.join(six.text_type(arg) for arg in [one, two] + list(args)),
', '.join('%s=%s' % (k, v) for (k, v) in sorted_kwarg)
)}
|
58c903759bc10a3fb215cf5cdbeca9deef72c0d3
| 589,318 |
def md_entry_same(entry_name, s1, s2):
"""Returns (s1 and s2 have the same value for entry_name?, message)."""
s1_val = s1[entry_name]
s2_val = s2[entry_name]
return (s1_val == s2_val, "(" + entry_name + ") " + repr(s1_val) + ", " + repr(s2_val))
|
61d1cae8b70a810e9ff85e66a1667f6cb2431f49
| 321,873 |
def format_score(logpath, log, markup):
"""Turn a log file JSON into a pretty string."""
output = []
output.append('\nLog: ' + logpath)
if log['unrecognized']:
output.append('\nLog is unrecognized: {}'.format(log['unrecognized']))
else:
if log['flagged']:
output.append('\nLog is flagged: {}'.format(log['flagged']))
output.append('\nDisc name: {}'.format(log['name']))
output.append('\nScore: {}'.format(log['score']))
if log['deductions']:
output.append('\nDeductions:')
for deduction in log['deductions']:
output.append(' >> {}'.format(deduction[0]))
if markup:
output.append('\n\nStylized Log:\n\n{}'.format(log['contents']))
return '\n'.join(output)
|
c3ac492375b72d05481a3a2dc2986149f79b405e
| 664,860 |
def is_categorical(s, column=None):
"""Check if a pandas Series or a column in a DataFrame is categorical.
s (pandas.Series or pandas.DataFrame): Series to check or dataframe with
column to check.
column (str): Column name. If a column name is given it is assumed that
`s` is a `pandas.DataFrame`.
"""
if column is not None:
# s is not a Series, it is a DataFrame.
s = s[column]
return s.dtype.name == "category"
|
21eecc2b6760ffa88194b9cd59c6133ec9c1ba18
| 552,661 |
def create_datafile_url(base_url, identifier, is_filepid):
"""Creates URL of Datafile.
Example
- File ID: https://data.aussda.at/file.xhtml?persistentId=doi:10.11587/CCESLK/5RH5GK
Parameters
----------
base_url : str
Base URL of Dataverse instance
identifier : str
Identifier of the datafile. Can be datafile id or persistent
identifier of the datafile (e. g. doi).
is_filepid : bool
``True`` to use persistent identifier. ``False``, if not.
Returns
-------
str
URL of the datafile
"""
assert isinstance(base_url, str)
assert isinstance(identifier, str)
base_url = base_url.rstrip("/")
if is_filepid:
url = "{0}/file.xhtml?persistentId={1}".format(base_url, identifier)
else:
url = "{0}/file.xhtml?fileId={1}".format(base_url, identifier)
assert isinstance(url, str)
return url
|
d6deece390b3028f45b27a0f6aa1864688ed97fa
| 24,053 |
def project_grad(g):
"""Project gradient onto tangent space of simplex."""
return g - g.sum() / g.size
|
41a50bf9d9e8e0efbbe703758385b7da6e2a26ca
| 404,552 |
def IsGlobalTargetGrpcProxiesRef(target_grpc_proxy_ref):
"""Returns True if the target gRPC proxy reference is global."""
return target_grpc_proxy_ref.Collection() == 'compute.targetGrpcProxies'
|
20ea7d0baf818a2435506a7e0a23f7c1a0921f36
| 653,677 |
def interpretStatus(status, default_status="Idle"):
"""
Transform a integer globus status to
either Wait, Idle, Running, Held, Completed or Removed
"""
if status == 5:
return "Completed"
elif status == 9:
return "Removed"
elif status == 1:
return "Running"
elif status == 12:
return "Held"
elif status == 0:
return "Wait"
elif status == 17:
return "Idle"
else:
return default_status
|
578ace00f98da7f01f42a5ba03cd9a249e08f7ad
| 365,198 |
def conv_kwargs_helper(norm: bool, activation: bool):
"""
Helper to force disable normalization and activation in layers
which have those by default
Args:
norm: en-/disable normalization layer
activation: en-/disable activation layer
Returns:
dict: keyword arguments to pass to conv generator
"""
kwargs = {
"add_norm": norm,
"add_act": activation,
}
return kwargs
|
56c578511220a19a614255b83ff1c031814ed5ae
| 427,590 |
import math
def rmsd(V, W):
"""
Calculate Root-mean-square deviation from two sets of vectors V and W.
Parameters
----------
V : array
(N,D) matrix, where N is points and D is dimension.
W : array
(N,D) matrix, where N is points and D is dimension.
Returns
-------
rmsd : float
Root-mean-square deviation between the two vectors
"""
D = len(V[0])
N = len(V)
result = 0.0
for v, w in zip(V, W):
result += sum([(v[i] - w[i])**2.0 for i in range(D)])
return math.sqrt(result / N)
|
36712ed6666c45378ef6959ddcd300a907c121a1
| 364,746 |
def med_min_2darray(a):
"""Takes in a list of lists of integers and returns the minimum value."""
return min(min(inner) for inner in a)
|
c30a7588a11e2c23829fe73b6d84ffdaee8fb321
| 32,334 |
def _cast_to_int(num, param_name):
"""Casts integer-like objects to int.
Args:
num: the number to be casted.
param_name: the name of the parameter to be displayed in an error
message.
Returns:
num as an int.
Raises:
TypeError: if num is not integer-like.
"""
try:
# __index__() is the Pythonic way to convert integer-like objects (e.g.
# np.int64) to an int
return num.__index__()
except (TypeError, AttributeError):
raise TypeError('%s is not integer-like (found type: %s)'
%(param_name, type(num).__name__))
|
493c9010054c5ff0d80bd7f304de97d3b0e4776c
| 293,377 |
def prefix_by_topic(topic_str):
"""
Return a topic-based prefix to produce distinct output files.
`+` in the topic is replaced with `ALL`.
The last element, `#` is left out from the prefix.
See https://digitransit.fi/en/developers/apis/4-realtime-api/vehicle-positions/#the-topic
"""
els = topic_str.split('/')[1:]
els = [el for el in els[:-1] if el is not None]
els = [el.replace('+', 'ALL') for el in els]
return '_'.join(els)
|
fd1288e664a94277985672f6af38314a805de6be
| 506,089 |
def split_by_two_strings(line, str1, str2):
"""Split the input line into three parts separated by two given strings."""
# Start of second part in the input string.
i1 = line.index(str1) + len(str1)
# End of second part in the input string.
i2 = line.index(str2)
# Now we know where the second part can be found in input string. It is
# therefore easy to figure out where the first part and third part are.
return line[:i1], line[i1:i2], line[i2:]
|
4883075e61185b9bfc0490586cb08c66db603a7a
| 620,233 |
def get_variant_prices_from_lines(lines):
"""Get's price of each individual item within the lines."""
return [
line.variant.get_price()
for line in lines
for item in range(line.quantity)]
|
ec6414ec638da574d1665a93c33ccd1b68f58cf9
| 241,681 |
async def client_send(ctx, msg, embed=1):
"""Sends messages to Discord context. Easily makes messages 'embeded' if embed == 1"""
try:
msg = str(msg)
if embed == 1:
m = await ctx.send("```" + msg + "```")
else:
m = await ctx.send(msg)
return m
except:
return 1
|
6429401c692ff3e09fb8cb066706ef0168230c6f
| 550,968 |
from typing import List
def split_commits_data(
commits_data: str,
commits_sep: str = '\x1e',
) -> List[str]:
"""
Split data into individual commits using a separator.
:param commits_data: the full data to be split
:param commits_sep: the string which separates individual commits
:return: the list of data for each individual commit
"""
# Remove leading/trailing newlines
commits_data = commits_data.strip('\n')
# Split in individual commits and remove leading/trailing newlines
individual_commits = [
single_output.strip('\n') for single_output in commits_data.split(commits_sep)
]
# Filter out empty elements
individual_commits = list(filter(None, individual_commits))
return individual_commits
|
5b698df35b483628b1f6e5216ebf20174359b5fd
| 166,730 |
def create_prop_dictionary(properties_list):
"""
Creates a dictionary of all properties from the properties list
:param properties_list: list of property objects
:return: dictionary of property objects grouped by unique key (name, unit, condition name, condition unit, method and data type)
"""
prop_dict = {}
for prop in properties_list:
identifier = prop.name + '-'
if prop.units:
identifier += prop.units + '-'
else:
identifier += '' + '-'
if prop.conditions:
for cond in prop.conditions:
identifier += cond.name + '-'
if cond.units:
identifier += cond.units
else:
identifier += '' + '-'
if prop.methods:
for meth in prop.methods:
identifier += meth.name + '-'
if prop.data_type:
identifier += prop.data_type + '-'
if prop.scalars or prop.files:
try:
prop_dict[identifier].append(prop)
except KeyError:
prop_dict[identifier] = [prop]
return prop_dict
|
decc20437814386c3499c41c4d6358ea5ab088a7
| 439,438 |
def identity_transformation(data):
"""Default coder is no encoding/decoding"""
return data
|
effec06dcb5627f35224bebcd68e19ba249a8789
| 161,910 |
from functools import reduce
import operator
def _vector_add(*vecs):
"""For any number of length-n vectors, pairwise add the entries, e.g. for
x = (x_0, ..., x_{n-1}), y = (y_0, ..., y_{n-1}),
xy = (x_0+y_0, x_1+y_1, ..., x_{n-1}+y{n-1})."""
assert(len(set(map(len, vecs))) == 1)
return [reduce(operator.add, a, 0) for a in zip(*vecs)]
|
d5a8c9a6dc42c65e879b721e75c42abd17d97ef0
| 97,163 |
from typing import Tuple
def participant_names(redcap_record: dict) -> Tuple[str, ...]:
"""
Extracts a tuple of names for the participant from the given
*redcap_record*.
"""
if redcap_record['participant_first_name']:
return (redcap_record['participant_first_name'], redcap_record['participant_last_name'])
else:
return (redcap_record['part_name_sp'],)
|
d0cd8aa80f585b04828bf52ef1ff76ac5274fd3d
| 504,538 |
def get_accounts_aws(self, filter=""):
"""Retrieves AWS account information from Polaris
Args:
filter (str): Search string to filter results
Returns:
dict: Details of AWS accounts in Polaris
Raises:
RequestException: If the query to Polaris returned an error
"""
try:
query_name = "accounts_aws"
variables = {
"filter": filter
}
return self._query(query_name, variables)
except Exception:
raise
|
87ef43ccb7398afced32afb3aaa4a2e81c5d6f88
| 530,679 |
def arg_type_to_string(arg_type) -> str:
"""
Converts the argument type to a string
:param arg_type:
:return:
String representation of the argument type. Multiple return types are
turned into a comma delimited list of type names
"""
union_params = (
getattr(arg_type, '__union_params__', None) or
getattr(arg_type, '__args__', None)
)
if union_params and isinstance(union_params, (list, tuple)):
return ', '.join([arg_type_to_string(item) for item in union_params])
try:
return arg_type.__name__
except AttributeError:
return '{}'.format(arg_type)
|
b55506d9a0f9eec2468a05aa839dbd999ce9b42a
| 245,040 |
def combine_biases(*masks):
"""Combine attention biases.
Args:
*masks: set of attention bias arguments to combine, some can be None.
Returns:
Combined mask, reduced by summation, returns None if no masks given.
"""
masks = [m for m in masks if m is not None]
if not masks:
return None
assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (
f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}')
mask, *other_masks = masks
for other_mask in other_masks:
mask = mask + other_mask
return mask
|
994241493b94139f84ec2e944b5a66fbe0b2349b
| 262,664 |
from pathlib import Path
def find_source_dir_from_file(filepath: Path):
"""Find the source directory of the Sphinx project."""
conf_file = Path("conf.py")
source_dir = filepath.parent
root = Path("/")
while source_dir != root:
path = source_dir / conf_file
if path.exists():
return source_dir
source_dir = source_dir.parent
return None
|
a0f1e3e25c588b11379f5e1e0356efce43e070ac
| 243,786 |
import socket
def localhost_has_free_port(port: int) -> bool:
"""Checks if the port is free on localhost.
Args:
port (int): The port which will be checked.
Returns:
bool: True if port is free, else False.
"""
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
is_success = sock.connect_ex(("localhost", port))
return True if is_success else False
|
f64d1570756462bf9cec37d34b1d942d94a23e75
| 377,245 |
import torch
def generate_spatial_noise(size, device, *args, **kwargs):
""" Generates a noise tensor. Currently uses torch.randn. """
# noise = generate_noise([size[0], *size[2:]], *args, **kwargs)
# return noise.expand(size)
return torch.randn(size, device=device)
|
5c9116fdc132d59e4a0ccc6c5674042f70533efe
| 26,046 |
def get_first_child(node, type):
"""Return the first child of |node| that has type |type|."""
index = node.first_child_matching_class(type)
return node[index]
|
090711b92a3a62ad9ee3ed3d2910652c9849d87f
| 464,729 |
def add_normalized_column(df, column_name):
"""
Normalize a column and add it to the DataFrame.
Parameters
----------
df: DataFrame
Input DataFrame containing the column to normalize.
column_name: string
Name of the column to normalize.
Returns
-------
out: DataFrame
DataFrame with a normalized column having postfix "_norm".
"""
df[f"{column_name}_norm"] = (df[column_name] - df[column_name].min()) / (
df[column_name].max() - df[column_name].min()
)
return df
|
0f9d556d12912ee1c659d9ae497f8a6f9b193953
| 459,853 |
def make_reverse_dict(in_dict, warn=True):
""" Build a reverse dictionary from a cluster dictionary
Parameters
----------
in_dict : dict(int:[int,])
A dictionary of clusters. Each cluster is a source index and
the list of other source in the cluster.
Returns
-------
out_dict : dict(int:int)
A single valued dictionary pointing from source index to
cluster key for each source in a cluster. Note that the key
does not point to itself.
"""
out_dict = {}
for k, v in in_dict.items():
for vv in v:
if vv in out_dict:
if warn:
print("Dictionary collision %i" % vv)
out_dict[vv] = k
return out_dict
|
7126107779524026f3bf04ec37235413984ea583
| 680,941 |
def stations_highest_rel_level(stations, N):
"""For a list of MonitoringStaton objects (stations), returns a list of the N stations
at which the water level, relative to the typical range, is highest"""
#Filter list as to not include stations without relative water level
new_stations = list(filter(lambda station: station.relative_water_level() is not None, stations))
#Sorts stations in descending order of relative water level
new_stations.sort(key=lambda station: station.relative_water_level(), reverse = True)
#Return first N stations in lists (N stations with highest water level)
return new_stations[:N]
|
61b9a2282678e13cce238b665009368f4e13043b
| 85,945 |
def MeanAveragePrecision(predictions, retrieval_solution, max_predictions=100):
"""Computes mean average precision for retrieval prediction.
Args:
predictions: Dict mapping test image ID to a list of strings corresponding
to index image IDs.
retrieval_solution: Dict mapping test image ID to list of ground-truth image
IDs.
max_predictions: Maximum number of predictions per query to take into
account. For the Google Landmark Retrieval challenge, this should be set
to 100.
Returns:
mean_ap: Mean average precision score (float).
Raises:
ValueError: If a test image in `predictions` is not included in
`retrieval_solutions`.
"""
# Compute number of test images.
num_test_images = len(retrieval_solution.keys())
# Loop over predictions for each query and compute mAP.
mean_ap = 0.0
for key, prediction in predictions.items():
if key not in retrieval_solution:
raise ValueError('Test image %s is not part of retrieval_solution' % key)
# Loop over predicted images, keeping track of those which were already
# used (duplicates are skipped).
ap = 0.0
already_predicted = set()
num_expected_retrieved = min(len(retrieval_solution[key]), max_predictions)
num_correct = 0
for i in range(min(len(prediction), max_predictions)):
if prediction[i] not in already_predicted:
if prediction[i] in retrieval_solution[key]:
num_correct += 1
ap += num_correct / (i + 1)
already_predicted.add(prediction[i])
ap /= num_expected_retrieved
mean_ap += ap
mean_ap /= num_test_images
return mean_ap
|
089baa160e4c01032e759d6479eb48dd34032100
| 539,848 |
def safe_inserter(string, inserter):
"""Helper to insert a subject name into a string if %s is present
Parameters
----------
string : str
String to fill.
inserter : str
The string to put in ``string`` if ``'%s'`` is present.
Returns
-------
string : str
The modified string.
"""
if '%s' in string:
string = string % inserter
return string
|
91a86856061b8db8645d87d3313130ffe89a8a96
| 515,088 |
def undulating(number):
""" Returns True if number is undulating """
if number < 100:
return False
number = str(number)
for idx in range(len(number)-2):
if number[idx] != number[idx+2]:
return False
return True
|
e114bebb260c8c1f895fcd1f9fefb3e14b38f9c6
| 609,332 |
def parse_result_line(line):
"""Take a line consisting of a constituency name and vote count, party id
pairs all separated by commas and return the constituency name and a list of
results as a pair. The results list consists of vote-count party name pairs.
To handle constituencies whose names include a comma, the parse considers
count, party pairs *from the right* and stops when it reaches a vote count
which is not an integer.
"""
items = line.strip().split(',')
results = []
# If there is more to parse, there should be at least the constituency name,
# a vote count and a party id, i.e. more than two values
while len(items) > 2:
party_id = items.pop()
count_str = items.pop()
try:
count = int(count_str.strip())
except ValueError:
items.extend([count_str, party_id])
break
results.append((count, party_id.strip()))
# The remaining items are assumed to be to be the constituency name. Note we
# need to reverse the results in order to preserve the order we were given.
return ','.join(items), results[::-1]
|
8808f09fad8ba37896826e8ccf7ebe68bf9a516f
| 369,850 |
def is_ip_per_task(app):
"""
Return whether the application is using IP-per-task.
:param app: The application to check.
:return: True if using IP per task, False otherwise.
"""
return app.get('ipAddress') is not None
|
7de05a7db5eb886bea2687492585b554f898fc41
| 669,691 |
def column(results):
"""
Get a list of values from a single-column ResultProxy.
"""
return [x for x, in results]
|
352a604eb9bb863c8bf71c7c96df6c2cbcd226c8
| 53,677 |
def unflatten_dict(d, delimiter = "/"):
"""Creates a hierarchical dictionary by splitting the keys at delimiter."""
new_dict = {}
for path, v in d.items():
current_dict = new_dict
keys = path.split(delimiter)
for key in keys[:-1]:
if key not in current_dict:
current_dict[key] = {}
current_dict = current_dict[key]
current_dict[keys[-1]] = v
return new_dict
|
edede31b6fc22a82f70e085b7fcd3a8ace030212
| 464,327 |
def parse_subnets(subnets):
"""
Parse the Subnets dict, checking it is in correct format.
Raises errors if there is a format violation.
Arguments:
subnets : the subnets dict
Returns:
parsed_subnets : parsed Subnet dict
"""
if not isinstance(subnets, dict):
raise ValueError("Subnets must be dict with key-value pairs: {}"
.format("subnet_id : [subnet_id, ..., subnet_id]"))
if len(subnets) < 2:
raise ValueError("Not enough subnets specified, need at least two:",
"one for attacker and one for target")
parsed_subnets = {}
avail_subnets = set(subnets.keys())
for subnet_id, connected_list in subnets.items():
if not isinstance(connected_list, list) or len(connected_list) < 1:
raise ValueError("Subnet values must be list with at least one entry {} is invalid"
.format(connected_list))
if subnet_id in connected_list:
raise ValueError("Subnet connected list should not contain parent subnet: {}: {} invalid"
.format(subnet_id, connected_list))
for connected_id in connected_list:
if connected_id not in avail_subnets:
raise ValueError("Subnets can only be connected to subnets with specified in top",
"level subnet list: for subnet {} connected subnet {} invalid"
.format(subnet_id, connected_id))
if connected_list.count(connected_id) > 1:
raise ValueError("Connected subnet lists cannot have duplicates: {}: {} invalid"
.format(subnet_id, connected_list))
parsed_subnets[subnet_id] = connected_list
return parsed_subnets
|
72d56b25ce269977e2ddad6531eec8ca7e140e34
| 312,375 |
def _get_outside_corners(corners, board):
"""
Return the four corners of the board as a whole, as
(up_left, up_right, down_right, down_left).
"""
xdim = board.n_cols
ydim = board.n_rows
if corners.shape[1] * corners.shape[0] != xdim * ydim:
raise Exception(
"Invalid number of corners! %d corners. X: %d, Y: %d"
% (corners.shape[1] * corners.shape[0], xdim, ydim)
)
up_left = corners[0, 0]
up_right = corners[xdim - 1, 0]
down_right = corners[-1, 0]
down_left = corners[-xdim, 0]
return (up_left, up_right, down_right, down_left)
|
647a5f42192a312c7a661880d1d2750ebf70e154
| 651,335 |
import importlib
def import_object(obj):
"""Import an object from its qualified name."""
if isinstance(obj, str):
package, name = obj.rsplit('.', 1)
return getattr(importlib.import_module(package), name)
return obj
|
c0e4816c6db6bc2c826ba4d8498e7081daa9be48
| 555,416 |
import re
def snakeCasetoCamelCase(a_string):
"""assumes a_string is a string in snake_case
returns a new string, representing a_string in camelCase"""
pattern = "(\w)(_)(\w)"
new_string = re.sub(pattern, r"\1\3", a_string)
return new_string
|
4f8b588cdba4fbc73e997d14c7c0f70e7a2cee57
| 552,992 |
from re import findall
def to_integer(given_input: str):
"""
Finds the number in a given input(should be a string with numbers) using regular expression.
>>> to_integer('abc')
0
>>> to_integer('1')
1
>>> to_integer('abc123')
'123'
>>> to_integer('abc123abc')
'123'
>>> to_integer('abc123abc456')
'123,456'
Args:
given_input (str): any text with numbers in it
Returns:
Number: returns number in a comma separated form if found else returns 0
"""
if isinstance(given_input, str):
match = findall('\d+', given_input)
if match:
return ",".join(match)
return 0 # default value
return given_input
|
a65977833883962cf6327caf3873456b907a6133
| 376,034 |
def _validate_scp_time(the_sicd):
"""
Validate the SCPTime.
Parameters
----------
the_sicd : sarpy.io.complex.sicd_elements.SICD.SICDType
Returns
-------
bool
"""
if the_sicd.SCPCOA is None or the_sicd.SCPCOA.SCPTime is None or \
the_sicd.Grid is None or the_sicd.Grid.TimeCOAPoly is None:
return True
cond = True
val1 = the_sicd.SCPCOA.SCPTime
val2 = the_sicd.Grid.TimeCOAPoly[0, 0]
if abs(val1 - val2) > 1e-6:
the_sicd.log_validity_error(
'SCPTime populated as {},\n'
'and constant term of TimeCOAPoly populated as {}'.format(val1, val2))
cond = False
return cond
|
6d84c1e204e419042c346b668bd50a7bf3e83406
| 397,577 |
def directory_tree(tmp_path):
"""Create a test directory tree."""
# initialize
p = tmp_path / "directory_tree"
p.mkdir()
p.joinpath("file1").write_text("123")
p.joinpath("dir1").mkdir()
p.joinpath("dir1/file2").write_text("456")
p.joinpath("dir1/file3").write_text("789")
return p
|
371dc92f1708bf7de7bd66b19b7a1e1ac4a8e3ff
| 323,156 |
def intstrtuple(s):
"""Get (int, string) tuple from int:str strings."""
parts = [p.strip() for p in s.split(":", 1)]
if len(parts) == 2:
return int(parts[0]), parts[1]
else:
return None, parts[0]
|
eb105081762e5d48584d41c4ace5697fccb8c29e
| 602,715 |
def findSmallerInRight(string, start, end):
"""
Counts the number of caracters that are smaller than
string[start] and are at the right of it.
:param string: Input string.
:param start: Integer corresponding to the index of the starting character.
:param end: Integer corresponding to the index of the string.
:return: Integer corresponding to the number of chars, on the right, that are smaller.
"""
countRight = 0
i = start + 1
while i <= end:
if string[i] < string[start]:
countRight = countRight + 1
i = i + 1
return countRight
|
b9cc36373706a305565804831415efe6e0b0d424
| 116,281 |
def dict_is_song(info_dict):
"""Determine if a dictionary returned by youtube_dl is from a song (and not an album for example)."""
if "full album" in info_dict["title"].lower():
return False
if int(info_dict["duration"]) > 7200:
return False
return True
|
b4792a850be39d4e9dc48c57d28d8e4f50751a75
| 677,740 |
def get_n_last_observations_from_trajectories(trajectories, n, ascending=True):
"""
Get n extremity observations from trajectories
Parameters
----------
trajectories : dataframe
a dataframe with a trajectory_id column that identify trajectory observations. (column trajectory_id and jd have to be present)
n : integer
the number of extremity observations to return.
ascending : boolean
if set to True, return the most recent extremity observations, return the oldest ones otherwise, default to True.
Returns
-------
last_trajectories_observations : dataframe
the n last observations from the recorded trajectories
Examples
--------
>>> from pandera import Check, Column, DataFrameSchema
>>> test = pd.DataFrame({
... "candid" : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
... "jd" : [0.0, 1.0, 2, 3, 4, 5, 6, 7, 8, 9],
... "trajectory_id" : [1, 1, 1, 1, 2, 2, 3, 3, 3, 3]
... })
>>> df_schema = DataFrameSchema({
... "jd": Column(float),
... "trajectory_id": Column(int)
... })
>>> res = get_n_last_observations_from_trajectories(test, 1, False)
>>> res = df_schema.validate(res).reset_index(drop=True)
>>> df_expected = pd.DataFrame({
... "candid" : [6, 4, 0],
... "jd" : [6.0, 4.0, 0.0],
... "trajectory_id" : [3, 2, 1]
... })
>>> assert_frame_equal(res, df_expected)
>>> res = get_n_last_observations_from_trajectories(test, 1, True)
>>> res = df_schema.validate(res).reset_index(drop=True)
>>> df_expected = pd.DataFrame({
... "candid" : [3, 5, 9],
... "jd" : [3.0, 5.0, 9.0],
... "trajectory_id" : [1, 2, 3]
... })
>>> assert_frame_equal(res, df_expected)
>>> res = get_n_last_observations_from_trajectories(test, 2, True)
>>> res = df_schema.validate(res).reset_index(drop=True)
>>> df_expected = pd.DataFrame({
... "candid" : [2, 3, 4, 5, 8, 9],
... "jd" : [2.0, 3.0, 4.0, 5.0, 8.0, 9.0],
... "trajectory_id" : [1, 1, 2, 2, 3, 3]
... })
>>> assert_frame_equal(res, df_expected)
>>> res = get_n_last_observations_from_trajectories(test, 2, False)
>>> res = df_schema.validate(res).reset_index(drop=True)
>>> df_expected = pd.DataFrame({
... "candid" : [7, 6, 5, 4, 1, 0],
... "jd" : [7.0, 6.0, 5.0, 4.0, 1.0, 0.0],
... "trajectory_id" : [3, 3, 2, 2, 1, 1]
... })
>>> assert_frame_equal(res, df_expected)
"""
return (
trajectories.sort_values(["jd"], ascending=ascending)
.groupby(["trajectory_id"])
.tail(n)
.sort_values(["jd", "trajectory_id"], ascending=ascending)
)
|
5c01eefb4d2de6da74a8a7f7967a7ee56ea4a78d
| 129,654 |
def get_arg_to_class(class_names):
"""Constructs dictionary from argument to class names.
# Arguments
class_names: List of strings containing the class names.
# Returns
Dictionary mapping integer to class name.
"""
return dict(zip(list(range(len(class_names))), class_names))
|
ec992707772716b2707ecb881a700c5726293745
| 510,902 |
def has_encountered_output_source(context):
"""Return True if the current context has already encountered an @output_source directive."""
return 'output_source' in context
|
3b78bcb40e8e4aa6b9ea269b0031d03803cae3b9
| 192,455 |
def writeSeg(BCFILE, title, segID, planeNodeIDs):
"""write face segments to BC input file
Args:
BCFILE: file IO object
title (str): header comment line
segID (int): segment ID #
planeNodeIDs (int): 2D array
Returns:
segID (inc +1)
"""
BCFILE.write('*SET_SEGMENT_TITLE\n')
BCFILE.write('%s\n' % title)
BCFILE.write('%i\n' % segID)
for i in range(0, (len(planeNodeIDs) - 1)):
(a, b) = planeNodeIDs.shape
for j in range(0, (b - 1)):
BCFILE.write("%i,%i,%i,%i\n" % (planeNodeIDs[i, j],
planeNodeIDs[i + 1, j],
planeNodeIDs[i + 1, j + 1],
planeNodeIDs[i, j + 1]))
segID = segID + 1
return segID
|
a82848e3664229ca9d4bcaa78dc8036e731c96a0
| 83,634 |
from typing import List
def get_requires() -> List[str]:
""" Get Requires: Returns a list of required packages. """
return [
'Click',
'cupy',
'tqdm',
'appdirs'
]
|
2fa8988e4ce8d2d5fe6cad9d9a995dad899ebb8a
| 364,258 |
def github_repository_name(url):
"""
Get the repository name from a Github URL
"""
repo = url.rstrip("/")
if repo.endswith(".git"):
repo = repo[:-4]
_, name = repo.rsplit("/", 1)
return name
|
366185873f1a083af8b219359d1c3c30cad7d222
| 336,574 |
def github_paginate(session, url):
"""Combines return from GitHub pagination
:param session: requests client instance
:param url: start url to get the data from.
See https://developer.github.com/v3/#pagination
"""
result = []
while url:
r = session.get(url)
result.extend(r.json())
next_url = r.links.get('next')
if next_url:
url = next_url.get('url')
else:
url = None
return result
|
6c951f0dadc3d6b8c0bae7ada61bbd46e085d544
| 643,200 |
def chunk(arr:list, size:int=1) -> list:
"""
This function takes a list and divides it into sublists of size equal to size.
Args:
arr ( list ) : list to split
size ( int, optional ) : chunk size. Defaults to 1
Return:
list : A new list containing the chunks of the original
Examples:
>>> chunk([1, 2, 3, 4])
[[1], [2], [3], [4]]
>>> chunk([1, 2, 3, 4], 2)
[[1, 2], [3, 4]]
>>> chunk([1, 2, 3, 4, 5, 6], 3)
[[1, 2, 3], [4, 5, 6]]
"""
_arr = []
for i in range(0, len(arr), size):
_arr.append(arr[i : i + size])
return _arr
|
0aa82c11fdc63f7e31747c95e678fdcac4571547
| 686,877 |
def split_rows(array:list, l:int=9) -> list:
"""
Transforms a 1D list into a list of lists with every list holding l
elements. Error is raised if array has a length not divisible by l.
"""
if len(array) % l != 0:
raise ValueError("split_rows(): Rows in list have different lengths")
return [array[i:i+l] for i in range(0, len(array), l)]
|
3f9934f92f6891f95c868e207831634f62e2eaed
| 90,785 |
def fixture_other_case() -> str:
"""Return the case id that differs from base fixture"""
return "angrybird"
|
9c31d9b1a4f24d2859829be84cf8f4f526598dfb
| 197,614 |
import re
def prune_protected(mailboxes, ns):
""" Remove protected folders from a list of mailboxes
Exchange has several protected folders that are used for non-mail
purposes, but still appear in the list. Therefore, we want to exclude
these folders to prevent reading non-mail items.
Args:
[<str>]: list of mailboxes - Must not include surrounding quotes
<str>: namespace for the account
Returns:
[<str>]: list of mailboxes with protected folders removed
"""
protected = ['Calendar', 'Contacts', 'Tasks', 'Journal', 'Deleted Items']
flagged = []
for folder in protected:
pattern = "(?:{})?{}\\b".format(ns,folder)
for mailbox in mailboxes:
result = re.match(pattern, mailbox, flags=re.IGNORECASE)
if result:
flagged.append(mailbox)
return [mailbox for mailbox in mailboxes if mailbox not in flagged]
|
29a709683b40a89c4c1f422860166681dd1f2f7d
| 513,757 |
def remove_hetatm(filename_in, file_out, remove_all):
"""Remove HETATM and related lines.
If remove_all is False, remove only element X which happens in many PDB
entries but is not accepted by pointless, refmac, phaser, etc
"""
# we could instead zero occupancy of the atoms and replace X with Y
file_in = open(filename_in)
removed = set()
def is_removed(serial):
return serial and not serial.isspace() and int(serial) in removed
for line in file_in:
record = line[:6]
if record == 'HETATM':
if remove_all or line[76:78] == ' X':
atom_serial_num = int(line[6:11])
removed.add(atom_serial_num)
continue
elif record in ('HET ', 'HETNAM', 'HETSYN', 'FORMUL'):
continue
elif line.startswith('ANISOU'):
if is_removed(line[6:11]):
continue
elif line.startswith('CONECT'):
if any(is_removed(line[p:p+5]) for p in (6, 11, 16, 21, 26)):
continue
file_out.write(line)
return len(removed)
|
74278aa9c42334251924856350ce339b62366b44
| 479,141 |
def _urpc_test_func_2(buf):
"""!
@brief u-RPC variable length data test function.
@param buf A byte string buffer
@return The same byte string repeated three times
"""
return buf*3
|
f13f7dcf45eaa0706b69eb09c63d29ba2bbd3d60
| 1,596 |
import gzip
def read_consanguineous_samples(path, cutoff=0.05):
"""
Read inbreeding coefficients from a TSV file at the specified path.
Second column is sample id, 6th column is F coefficient. From PLINK:
FID, IID, O(HOM), E(HOM), N(NM), F
Additional columns may be present but will be ignored.
"""
consanguineous_samples = {}
myopen = gzip.open if path.endswith('.gz') else open
with myopen(path) as inf:
_ = inf.readline()
for line in inf:
cols = line.strip().split()
if float(cols[5]) > cutoff:
consanguineous_samples[cols[1]] = True
return consanguineous_samples
|
be3515e6704966ae927bfaff2594be9191063889
| 6,722 |
def is_reserved_name(name):
"""Tests if name is reserved
Names beginning with 'xml' are reserved for future standardization"""
if name:
return name[:3].lower() == 'xml'
else:
return False
|
29ca0ec73b18259126a61aaf335a7d0946b72eb6
| 696,787 |
def prompt(message, values=None):
"""Prompt a message and return the user input.
Set values to None for binary input ('y' or 'n'), to 0 for integer input, or to a list of possible inputs.
"""
if values is None:
message += ' (y/n)'
message += ' > '
while 1:
ans = input(message)
if values is None:
if ans.lower() == 'y':
return True
elif ans.lower() == 'n':
return False
elif values == 0:
try:
read = int(ans)
except:
continue
return read
elif ans in values:
return ans
|
4d6b87b84ed1dfd95722e0055a8df3b1b34f1e84
| 16,212 |
def parse_input(input_file):
"""
Processes the input with song titles.
See above format.
Returns a dict of mapping number -> [title1, title2, ...]
"""
tdb = {}
disc_no = -1
with open(input_file) as fin:
for line in fin:
line = line.strip()
if 'disc ' in line.lower() or 'disk ' in line.lower():
disc_no += 1
tdb[disc_no] = []
elif line != '':
tdb[disc_no].append(line)
return tdb
|
652334d928df97f1456cedcd6250444e60b8207a
| 543,389 |
def is_type(indexed_token, tag_type):
"""Tests if the given token was tagged with the given tag type."""
return indexed_token.has_key('tag') and (indexed_token['tag'] == tag_type)
|
48a23454459080d9677bfc5f78529407e54864bc
| 544,993 |
import re
def get_root_url(the_line):
"""
Get the root URL from the line
:param the_line: the line
:return: either the root URL or None
"""
ret = re.search('https://[^/]*/[^/]*/', the_line)
if ret:
return ret.group(0)
return None
|
a4a4a283664e8d80088c3ec5e349aae3d3f34dd5
| 607,668 |
import six
def _get_context(estimator=None):
"""Get context name for warning messages."""
if estimator is not None:
if isinstance(estimator, six.string_types):
estimator_name = estimator.lower()
else:
estimator_name = estimator.__class__.__name__.lower()
estimator_name = "[%s] " % estimator_name
else:
estimator_name = ""
return estimator_name
|
5212bad031a8f953b8f827b8b930da11e60e411c
| 506,430 |
def strictly_equal(obj1: object, obj2: object) -> bool:
"""Checks if the objects are equal and are of the same type."""
return obj1 == obj2 and type(obj1) is type(obj2)
|
00fcfa2ab3bbbfa40fa03731a553ae9f7224ea57
| 531,135 |
def exception_redirect(new_exception_class, old_exception_class=Exception, logger=None):
"""
Decorator to replace a given exception to another Exception class, with optional exception logging.
>>>
>>> class MyException(Exception):
... pass
>>>
>>> @exception_redirect(MyException)
... def test():
... raise Exception("test")
>>>
>>> test()
Traceback (most recent call last):
...
lump.decorators.MyException: test
"""
def _decorator(func):
def catch_and_redirect_exception(*args, **kwargs):
try:
return func(*args, **kwargs)
except old_exception_class as e:
if logger is not None:
logger.exception(e)
raise new_exception_class(e) from None
return catch_and_redirect_exception
return _decorator
|
bef002fc5cf15ebc1517fd1ea9ca78fb2b4be3eb
| 568,146 |
def yubikey_get_yubikey_id(yubikey_otp):
"""
Returns the yubikey id based
:param yubikey_otp: Yubikey OTP
:type yubikey_otp: str
:return: Yubikey ID
:rtype: str
"""
yubikey_otp = str(yubikey_otp).strip()
return yubikey_otp[:12]
|
32de713e8d4cf3b6a5ca908976b73f7f9eb69561
| 276,686 |
import torch
def load_weights_from_path(model, path):
"""load weights from file
Args:
model (Net): Model instance
path (str): Path to weights file
Returns:
Net: loaded model
"""
model.load_state_dict(torch.load(path))
return model
|
7d684d616bd90eea43e73362f31647692cbb0f8e
| 202,407 |
def directory_current_user(request):
""" Return the current user directory """
path = request.user.get_home_directory()
try:
if not request.fs.isdir(path):
path = '/'
except Exception:
pass
return path
|
c73d0d7a50cfb7f7b4942919e79fbf6c7878a269
| 395,468 |
def create_dict_playlists_playlistids(p_list, pid_list):
""" Create a dictionary of playlists and playlist ids """
playlists_and_playlist_ids = {}
for i in range(len(p_list)):
playlists_and_playlist_ids[p_list[i]] = pid_list[i]
return playlists_and_playlist_ids
|
173850ed85b3dc774ddea14674e22e701991c807
| 701,685 |
import typing
import types
def is_iterable(obj: typing.Any) -> bool:
"""
>>> is_iterable([])
True
>>> is_iterable(())
True
>>> is_iterable([x for x in range(10)])
True
>>> is_iterable((1, 2, 3))
True
>>> g = (x for x in range(10))
>>> is_iterable(g)
True
>>> is_iterable('abc')
False
>>> is_iterable(0)
False
>>> is_iterable({})
False
"""
return isinstance(obj, (list, tuple, types.GeneratorType)) or \
(not isinstance(obj, (int, str, dict)) and
bool(getattr(obj, 'next', False)))
|
fcd260fa3dace6d0de7dcbbd5ad5d9899ed6bb7c
| 489,820 |
def color565(red, green=0, blue=0):
"""
Convert red, green and blue values (0-255) into a 16-bit 565 encoding.
"""
try:
red, green, blue = red # see if the first var is a tuple/list
except TypeError:
pass
return (red & 0xf8) << 8 | (green & 0xfc) << 3 | blue >> 3
|
4c1f2c28313c35f839fa189b45fb15abfa715cd1
| 643,010 |
from typing import Mapping
def _flatten_dict(d, prefix=''):
"""
Convert a nested dict: {'a': {'b': 1}} -> {'a--b': 1}
"""
out = {}
for k, v in d.items():
if isinstance(v, Mapping):
out = {**out, **_flatten_dict(v, prefix=prefix + k + '--')}
else:
out[prefix + k] = v
return out
|
fb19771e7aad5b1df832ae95694b2182bcde2725
| 148,057 |
def mass(self):
"""get mass"""
return self._mass
|
522c1acb9c154f707ece2a75ad675c7e9b35a338
| 331,169 |
def x_forwarded_ip(request):
"""
Returns the IP Address contained in the 'HTTP_X_FORWARDED_FOR' header, if
present. Otherwise, `None`.
Should handle properly configured proxy servers.
"""
ip_address_list = request.META.get('HTTP_X_FORWARDED_FOR')
if ip_address_list:
ip_address_list = ip_address_list.split(',')
return ip_address_list[0]
|
3b346c3fe2404cf637cea66a12f89e41ad87aed6
| 146,110 |
def float2String(input, ndigits=0):
"""
Round and converts the input, if int/float or list of, to a string.
Parameters
----------
input: int/float or list of int/float
ndigits: int
number of decimals to round to
Returns
-------
output: string or list of strings
depending on the input
"""
output = input
if not isinstance(input, list):
output = [output]
output = [round(x, ndigits) for x in output]
output = list(map(int, output))
output = list(map(str, output))
if not isinstance(input, list):
output = output[0]
return output
|
3c2794e1d9b3b4809eb5878895cbc1b246120c94
| 526,323 |
def remove_forbidden_keys(data):
"""Remove forbidden keys from data
Args:
data (list): A list of dictionaries, one per transactions
Returns:
list: A list of dictionariess, one per transaction, with forbidden keys removed
"""
# There are different forbidden keys based on the report requested
forbidden_keys = ["customer id", "space/lpn"]
new_data = []
for row in data:
new_row = {k: v for k, v in row.items() if k.lower() not in forbidden_keys}
new_data.append(new_row)
return new_data
|
c0aea19a433e36ab97a827045d576311761a8506
| 220,358 |
def RestoreListType(response, key_triggers=()):
"""Step (recursively) through a response object and restore list types
that were overwritten by SOAPpy. Lists with only one element are converted by
SOAPpy into a dictionary. This handler function restores the proper type.
Args:
response: dict Response data object.
Returns:
dict Restored data object.
"""
if not key_triggers: return response
if isinstance(response, dict):
if not response.keys(): return response
dct = {}
for key in response.keys():
value = response.get(key)
if key in key_triggers and not isinstance(value, list):
value = [value]
data = RestoreListType(value, key_triggers)
dct[str(key)] = data
return dct
elif isinstance(response, list):
lst = []
for item in response:
lst.append(RestoreListType(item, key_triggers))
return lst
else:
return response
|
414c7eb4c88838ea6d21977b1f50e16e3db80a13
| 148,418 |
def get_asset_url(release, quiet=False):
"""
get the assets url from the release information
:return: the assets_url
"""
return release["assets_url"]
|
38815dce5158c4980e57a4cf7aa7a386e371e57f
| 632,206 |
def hour_of_day(datetime_col):
"""Returns the hour from a datetime column."""
return datetime_col.dt.hour
|
18b2f6e16ccbcb488f3863968466fda14f669d8b
| 706,249 |
def find_service_by_type(cluster, service_type):
"""
Finds and returns service of the given type
@type cluster: ApiCluster
@param cluster: The cluster whose services are checked
@type service_type: str
@param service_type: the service type to look for
@return ApiService or None if not found
"""
for service in cluster.get_all_services():
if service.type == service_type:
return service
return None
|
fd04adce95c71499e17a143d7c94c0cf1aa603c9
| 28,818 |
def largest_factor(n):
"""Return the largest factor of n*n-1 that is smaller than n.
>>> largest_factor(4) # n*n-1 is 15; factors are 1, 3, 5, 15
3
>>> largest_factor(9) # n*n-1 is 80; factors are 1, 2, 4, 5, 8, 10, ...
8
"""
factor = n - 1
while factor > 0:
if (n*n-1) % factor == 0:
return factor
factor -= 1
|
deaad22f8a5c11a696c8410b8d179b0dc38c8a93
| 636,311 |
def add_required_cargo_fields(toml_3p):
"""Add required fields for a Cargo.toml to be parsed by `cargo tree`."""
toml_3p["package"] = {
"name": "chromium",
"version": "1.0.0",
}
return toml_3p
|
1c8d061f8b53fe3cd82c5c2130e13aef07a92670
| 146,192 |
import math
def quat_to_euler(q):
"""returns yaw, pitch, roll
at singularities (north and south pole), assumes roll = 0
"""
# See http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
eps=1e-14
qw = q.w; qx = q.x; qy = q.z; qz = -q.y
pitch_y = 2*qx*qy + 2*qz*qw
if pitch_y > (1.0-eps): # north pole]
yaw = 2*math.atan2( qx, qw)
pitch = math.asin(1.0)
roll = 0.0
elif pitch_y < -(1.0-eps): # south pole
yaw = -2*math.atan2( qx, qw)
pitch = math.asin(-1.0)
roll = 0.0
else:
yaw = math.atan2(2*qy*qw-2*qx*qz , 1 - 2*qy**2 - 2*qz**2)
pitch = math.asin(pitch_y)
roll = math.atan2(2*qx*qw-2*qy*qz , 1 - 2*qx**2 - 2*qz**2)
return yaw, pitch, roll
|
94c1c36c20abeb0875f16ff83bc5aaa3dadd5ffd
| 159,596 |
def describe(df):
"""Shorthand for df.describe()
Args:
df (`pandas.DataFrame`): The dataframe to describe
Returns:
summary: Series/DataFrame of summary statistics
"""
return df.describe()
|
25a637bf7df4ca566ed871f91a3d8860e32eee62
| 411,069 |
def ternary_expr(printer, ast):
"""Prints a ternary expression."""
cond_str = printer.ast_to_string(ast["left"]) # printer.ast_to_string(ast["cond"])
then_expr_str = printer.ast_to_string(ast["middle"]) # printer.ast_to_string(ast["thenExpr"])
else_expr_str = printer.ast_to_string(ast["right"]) # printer.ast_to_string(ast["elseExpr"])
return f'{cond_str} ? {then_expr_str} : {else_expr_str}'
|
f88fc65b684bff7ad61e0bc64d17b65bbe7735e5
| 28,675 |
def _combine_paths(path):
"""
Turn path list into edge list.
:param path: List. A list of nodes representing a path.
:returns: List. A list of edge tuples.
"""
edges = []
for i, node in enumerate(path[1:]):
edges.append((path[i], node))
return edges
|
7dae202ad637a9360e5a929840989aab34366ece
| 268,619 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.