content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def mk_opt_args(keys, kwargs): """ Make optional kwargs valid and optimized for each backend. :param keys: optional argument names :param kwargs: keyword arguements to process >>> mk_opt_args(("aaa", ), dict(aaa=1, bbb=2)) {'aaa': 1} >>> mk_opt_args(("aaa", ), dict(bbb=2)) {} """ def filter_kwargs(kwargs): for k in keys: if k in kwargs: yield (k, kwargs[k]) return dict((k, v) for k, v in filter_kwargs(kwargs))
f926f87f9d166f63ba4907d1ceb4157fbbba45ad
165,839
def get_kpoints(content): """Read a list of kpoints and their weights from kgrid.x output file.""" lines = content.splitlines()[2:] kpoints = list() weights = list() for line in lines: k = [ float(ki) for ki in line.split()[:3] ] w = float(line.split()[-1]) kpoints.append(k) weights.append(w) return kpoints, weights
ca049c42808c39a0ef1d28ab39f6bb661e695c6a
564,155
def sift3_distance(s_1, s_2, max_offset=5): """Calculate string distance See http://siderite.blogspot.com/2007/04/super-fast-and-accurate-string-\ distance.html for background. This is a port of sift3Distance from mailcheck.js rather than the Python code from https://gist.github.com/fjorgemota/3067867 because the latter produces different results. :param s_1: first string :param s_2: second string :param max_offset: maximum offset, default: 5 :type s_1: str :type s_2: str :type max_offset: int :returns: string distance :rtype: int """ len_s_1 = len(s_1) len_s_2 = len(s_2) if len_s_1 == 0: if len_s_2 == 0: return 0 else: return len_s_2 if len_s_2 == 0: return len_s_1 c = 0 offset_1 = 0 offset_2 = 0 lcs = 0 while (c + offset_1 < len_s_1) and (c + offset_2 < len_s_2): if s_1[c + offset_1] == s_2[c + offset_2]: lcs += 1 else: offset_1 = 0 offset_2 = 0 for i in range(0, max_offset): if (c + i < len_s_1) and (s_1[c + i] == s_2[c]): offset_1 = i break if (c + i < len_s_2) and (s_1[c] == s_2[c + i]): offset_2 = i break c += 1 return (len_s_1 + len_s_2) / 2.0 - lcs
f85f983c6cbd9912a75cedf9f6a7555a5de13fc9
582,028
from typing import Iterable def bag_of_words_to_docs(text_docs_bow: Iterable[Iterable[str]]) -> Iterable[str]: """Converts list of documents in "bag of words" format. This converts back into form of document being stored in one string. Args: text_docs_bow: A list of lists of words from a document Returns: A generator expression for all of the processed documents """ return (" ".join(doc) for doc in text_docs_bow)
f728a46b26d97c8f49f88f3ec450e0732e649701
367,697
def is_indel(variant): """Checks if variant is an indel.""" if (len(variant.alleles[0]) != 1) or (len(variant.alleles[1])) != 1: return True
574732ee20c295712a356a48636f3db66c3b7331
254,886
def cell_value_converter(cell, *args, **kwds): """Returns the value of a given cell.""" return cell.value
aced8ca5644b74463eb9248da7c0f5bd47479857
179,712
def calc_sals_ratio_ts(sals_ts): """ This function calculates the ratio between the saliency values of consecutive fixations. Useful for calculating rho of the full model (see paper for details). :param sals_ts: list of lists of time serieses of saliency values :return: list of lists of arrays num_images x num_subjects x (T(image, subject) - 1) of ratios between the saliencies. """ sals_ratio_ts = [] for sal_ts in sals_ts: sals_ratio_ts.append([]) for subject_ts in sal_ts: sals_ratio_ts[-1].append(subject_ts[1:] / subject_ts[:-1]) return sals_ratio_ts
2e025d64d0508d13f680c27e8348876cbef2cc01
112,348
import requests import json def get_driving_distance(start_point, end_point): """Gets the driving distance (km) from the start point to the end point (input in [lat, long]).""" # call the OSMR API - needs [long, lat] r = requests.get( f"http://router.project-osrm.org/route/v1/car/{end_point[1]},{end_point[0]};{start_point[1]},{start_point[0]}?overview=false""") # then you load the response using the json libray # by default you get only one alternative so you access 0-th element of the `routes` routes = json.loads(r.content) route_1 = routes.get("routes")[0] driving_distance = route_1["distance"] / 1000 return driving_distance
49551b08a127e33c36117d847155f4c5144be01c
63,070
def edits1(word): """ Return all strings that are one edit away from the input word. """ alphabet = 'abcdefghijklmnopqrstuvwxyz' def splits(word): """ Return a list of all possible (first, rest) pairs that the input word is made of. """ return [(word[:i], word[i:]) for i in range(len(word)+1)] pairs = splits(word) deletes = [a+b[1:] for (a, b) in pairs if b] transposes = [a+b[1]+b[0]+b[2:] for (a, b) in pairs if len(b) > 1] replaces = [a+c+b[1:] for (a, b) in pairs for c in alphabet if b] inserts = [a+c+b for (a, b) in pairs for c in alphabet] return set(deletes + transposes + replaces + inserts)
f37960f233bf9c4e6a6ca1d6e217104e3b4ba481
649,786
def _is_chinese_char(char_code: int): """Checks whether char_code is the code of a Chinese character.""" # https://en.wikipedia.org/wiki/List_of_CJK_Unified_Ideographs,_part_1_of_4 if ( (char_code >= 0x4E00 and char_code <= 0x9FFF) # CJK Unified Ideographs or (char_code >= 0x3400 and char_code <= 0x4DBF) # CJK Unified Ideographs Extension A or (char_code >= 0x20000 and char_code <= 0x2A6DF) # CJK Unified Ideographs Extension B or (char_code >= 0x2A700 and char_code <= 0x2B73F) # CJK Unified Ideographs Extension C or (char_code >= 0x2B740 and char_code <= 0x2B81F) # CJK Unified Ideographs Extension D or (char_code >= 0x2B820 and char_code <= 0x2CEAF) # CJK Unified Ideographs Extension E or (char_code >= 0xF900 and char_code <= 0xFAFF) # CJK Compatibility Ideographs or (char_code >= 0x2F800 and char_code <= 0x2FA1F) # CJK Compatibility Ideographs Supplement ): return True return False
b36aff17e96fe900300635274d36c594f2f3e24b
119,824
def exp_max_s_option(max_exp_s): """ Returns an options dictionary that sets the maximum expiration seconds for a JWT. """ return { 'exp_max_s': max_exp_s, }
1c26da49f4cf249890441857b01ae1621d9b1cad
506,924
def reverse_taskname(name: str) -> str: """ Reverses components in the name of task. Reversed convention is used for filenames since it groups log/scratch files of related tasks together 0.somejob.somerun -> somerun.somejob.0 0.somejob -> somejob.0 somename -> somename Args: name: name of task """ components = name.split('.') assert len(components) <= 3 return '.'.join(components[::-1])
a49c97f3e694120b7aecba9ea325dbe78420150e
69,595
import struct def read_tfrecord(input): """ Read a binary TFRecord from the given input stream, and return the raw bytes. """ # Each TFRecord has the following format, we will only read the first 8 # bytes in order to fetch the `length`, and then assume the rest of the # record looks correct. # # ``` # uint64 length # uint32 masked_crc32_of_length # byte data[length] # uint32 masked_crc32_of_data # ``` # length_bytes = b'' while len(length_bytes) < 8: buf = input.read(8 - len(length_bytes)) if not buf: return None length_bytes += buf length = struct.unpack('<Q', length_bytes)[0] + 8 remaining = b'' while len(remaining) < length: remaining += input.read(length - len(remaining)) return length_bytes + remaining
a0567f95bbdecc11678c2add07be31afdfcac383
122,704
import re def force_clean_name(name): """Return a name free of SWAT text tags and leading/trailing whitespace.""" while True: match = re.search(r'(\[[\\/]?[cub]\]|\[c=[^\[\]]*?\])', name, flags=re.I) if not match: break name = name.replace(match.group(1), '') return name.strip()
35714933a9c5a1c0573234610d1b43b096323719
180,097
def iter_to_dict_frequency(iterable): """ creates a dictionary form a list and the values are the counts of each unique item """ dict_frequency = {} for item in iterable: dict_frequency.setdefault(item, 0) dict_frequency[item]+=1 return dict_frequency
266d6d1520151c1c2bda297578200021c28da70d
33,061
import torch def sgd_momentum_old(w, dw, config=None): """ Performs stochastic gradient descent with momentum. config format: - learning_rate: Scalar learning rate. - momentum: Scalar between 0 and 1 giving the momentum value. Setting momentum = 0 reduces to sgd. - velocity: A numpy array of the same shape as w and dw used to store a moving average of the gradients. """ if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', torch.zeros_like(w)) v = config['momentum'] * v + dw next_w = w - config['learning_rate'] * v config['velocity'] = v return next_w, config
e4aac5fc171f98f546317b1d2c4b8bdf0dd08e3e
599,240
from typing import Dict def filter_reuses(reuses_dict: Dict): """ Filter reuses and returns only those that contain some machine learning-y term in the description :param reuses_dict: :return: """ list_ml_terms = ["deep learning", "apprentissage automatique", "machine learning", "classification", "data science", "prédire"] ml_reuses = [] for reuse in reuses_dict["data"]: if not reuse["featured"]: # reuse not featured, continue continue reuse_ml_terms = [term in reuse["description"].lower() for term in list_ml_terms] if not any(reuse_ml_terms): # no ml terms, continue continue ml_reuses.append(reuse) return ml_reuses
0ceb4a3a31abbc8cd0c846d261e65a8efc4cda09
443,426
def set_invenio(ctx, production): """Add Invenio details: api urls, communities, to context object Parameters ---------- ctx: click context obj Api details production: bool If True using production api, if False using sandbox Returns ------- ctx: click context obj Api details with url and community added """ if production: base_url = 'https://oneclimate.dmponline.cloud.edu.au/api' else: base_url = 'https://test.dmponline.cloud.edu.au/api' ctx.obj['url'] = f'{base_url}/records' ctx.obj['deposit'] = f'{base_url}/records' ctx.obj['communities'] = f'{base_url}/communities' return ctx
f34d0c2806f9a8594d4cc07037daa6288686f786
33,538
def normalize(values, gammas): """Adjust a list of brightness values according to a list of gamma values. Given a list of light brightness values from 0.0 to 1.0, adjust the value according to the corresponding maximum brightness in the gamma list. For example:: >>> gammas = [0.3, 1.0] >>> values = [1.0, 1.0] >>> normalize(values, gammas) [0.3, 1.0] >>> values = [0.5, 0.5] >>> normalize(values, gammas) [0.15, 0.5] >>> values = [0.1, 0.0] >>> normalize(values, gammas) [0.03, 0.0] """ return [value * gamma for value, gamma in zip(values, gammas)]
9ba98b6dc6774c99a821141192a7af802441587e
302,799
def _el_orb(string): """Parse the element and orbital argument strings. The presence of an element without any orbitals means that we want to plot all of its orbitals. Args: string (str): The element and orbitals as a string, in the form ``"C.s.p,O"``. Returns: dict: The elements and orbitals as a :obj:`dict`. For example:: {'Bi': ['s', 'px', 'py', 'd']}. If an element symbol is included with an empty list, then all orbitals for that species are considered. """ el_orbs = {} for split in string.split(','): orbs = split.split('.') orbs = [orbs[0], 's', 'p', 'd', 'f'] if len(orbs) == 1 else orbs el_orbs[orbs.pop(0)] = orbs return el_orbs
654d085347913bca2fd2834816b988ea81ab7164
707,686
def dot(X, Y): """Dot product two vectors.""" return X[0]*Y[0] + X[1]*Y[1]
cf950b5dde688348e78b11b0b1229bc52b31b596
450,933
import uuid def is_valid_uuid(text): """Return truth if given string is valid uuid. Args: text: a uuid string Return: a uuid string in standard format (dash-separated, lowercase) when text is valid uuid or False. """ try: return str(uuid.UUID(text)) except ValueError: return False
d397ee9e2d877da0270f0eb166da00a347ff5c6b
132,304
def _CheckNoInterfacesInBase(input_api, output_api): """Checks to make sure no files in libbase.a have |@interface|.""" pattern = input_api.re.compile(r'@interface') files = [] for f in input_api.AffectedSourceFiles(input_api.FilterSourceFile): if (f.LocalPath().find('base/') != -1 and f.LocalPath().find('base/test/') == -1): contents = input_api.ReadFile(f) if pattern.search(contents): files.append(f) if len(files): return [ output_api.PresubmitError( 'Objective-C interfaces or categories are forbidden in libbase. ' + 'See http://groups.google.com/a/chromium.org/group/chromium-dev/' + 'browse_thread/thread/efb28c10435987fd', files) ] return []
12ea2309bdef26e6cb361b855ab1e97c0ac5c688
664,234
def format_exception(exception): """ Handle the all the HTTPExceptions to return a tuple with the following values: statusCode, status, and error_message Parameters ---------- exception : HTTPException The exception that catch the @app.errorhandler decorator Returns ------- formatted_exception : tuple (statusCode: int, status: str, error_message: str) """ # HTTPException Example: # 405 Method Not Allowed: The method is not allowed for the requested URL. # Create a list of strings from HTTPException splitted by : # ['405 Method Not Allowed', # 'The method is not allowed for the requested URL.'] exception_list = str(exception).split(': ') # Get the statusCode from the slice of the first item of the exception_list statusCode = int(exception_list[0][:3]) # Get the status from the slice of the first item of the exception_list status = exception_list[0][3:].strip() # Get the error_message from the second item of the exception_list error_message = exception_list[1] return statusCode, status, error_message
d6164623df4c9044977d8d481ce1a4e130cc5dc8
222,762
def timeseries_train_test_split(X, y, test_size): """ Perform train-test split with respect to time series structure """ # get the index after which test set starts test_index = int(len(X)*(1-test_size)) X_train = X.iloc[:test_index] y_train = y.iloc[:test_index] X_test = X.iloc[test_index:] y_test = y.iloc[test_index:] return X_train, X_test, y_train, y_test
f066cde3fc58de00b6d592d406b94e98beb0cbeb
666,063
def primitiveIsValue(interp, s_frame, w_recv): """ Tests if `w_recv` is a value. :param interp: The interpreter proxy. :param s_frame: The stack frame. :param w_recv: The receiver object. :returns: `w_true` if `w_recv` is a value. """ if w_recv.is_value(): return interp.space.w_true return interp.space.w_false
ccce7897afcb4ef9a8bab3a45f22608ecd345fec
439,804
def get_data_frequency(data, features): """ Returns number of rows in `data` where the rows have value specified by `features`. Counts all rows where for which the column values corresponds those given in `features`. Parameters ---------- data : numpy array N x D table of recorded occurrences features : dict of {int : int} Dictionary of (data_index : value) pairs Key is the feature index, and value is a truth value: 0 or 1. Returns ------- int in [0,N] Number of samples with corresponding feature values. """ return len([item for item in data if all(item[feature] == val for feature, val in features.items())])
e5d377f11ff4b49e167ba68c31008b29ee112d6a
495,417
def convert_to_regex(rules_dict: dict, rule_num: int, depth: int=0) -> str: """Convert rule to its regex equivalent and return it. Args: rules_dict: Dictionary of rule_num: rule. rule_num: Key for rules_dict corresponding to rule to be converted. depth: Number of recursive calls to the function. Defaults to 0 and used to set a limit on processing of loops. Returns: The regex string equivalent of the rule at key rule_num in rules_dict (to a capped depth). """ if depth > 15: return '' if rules_dict[rule_num] in ('a', 'b'): return rules_dict[rule_num] rules = [] for branches in rules_dict[rule_num].split('|'): branch_answer = '' for branch_num in branches.split(): branch_re = convert_to_regex(rules_dict, branch_num, depth + 1) branch_answer += branch_re rules.append(branch_answer) return '(' + '|'.join(rules) + ')'
13acce0b54a69b9c45c3c0ce35f9779bfe6934bc
475,046
import gzip import bz2 import lzma def fopen(filename, mode=None): """GZ/BZ2/XZ-aware file opening function.""" # NOTE: Mode is not used but kept for not breaking iterators. if filename.endswith('.gz'): return gzip.open(filename, 'rt') elif filename.endswith('.bz2'): return bz2.open(filename, 'rt') elif filename.endswith(('.xz', '.lzma')): return lzma.open(filename, 'rt') else: # Plain text return open(filename, 'r')
b384cae1b40b409b3d16b4431565d493da8d363f
681,506
def normalize_common_name(common_names): """ This will produce a set normalized common names (that is they will be lowercased). """ return {n.lower() for n in common_names if n}
9c6a7c37062655fe047e193e7feddf43161bc18b
321,707
from pathlib import Path def dir_path(path): """Wrapper around Path that ensures this directory is created.""" if not isinstance(path, Path): path = Path(path) path.mkdir(exist_ok=True, parents=True) return path
9227f9ac99d6c4278ea16c094c08205deeed7337
583,544
import pathlib def invalid_file(tmpdir, request): """Return a path to an invalid config file. Remove the file when a test is finished with it. """ data_dir = pathlib.Path(str(tmpdir)) invalid_file = data_dir.joinpath('invalid') with invalid_file.open('w') as f: f.write('this is invalid') def tearDown(): if invalid_file.exists(): invalid_file.unlink() request.addfinalizer(tearDown) return invalid_file
fe84f645a433dec37f2dd8a55f2927d7debef3e0
180,025
def desaturate(img): """Desaturate an RGB or BGR image Receive an RGB or BGR image as a 3D uint8 numpy array. Custom desaturate by keeping only the value of the darkest pixel in any of the channels. White background and black ink are therefore not affected but even very bright ink of commonly used colors (namely blue and red but also valid for green, cyan, magenta and even yellow) in the same image is desaturated to near black to facilitate thresholding. Return a single-channel image as a 2D uint8 numpy array. Note: Specifically for text detection against a white-balanced background this should be the preferred desaturating method followed by custom thresholding even (especially) if the intent is to use the thresholded result by OpenCV contour detection or similar algorithms. """ return img.min(axis=2)
cc21b1cc942e14bffcc05699c20a08e384dc6e3e
421,243
def unsetbit(x, nth_bit): """unset n-th bit (i.e. set to 0) in an integer or array of integers Args: x: integer or :class:`numpy.ndarray` of integers nth_bit: position of bit to be set (0, 1, 2, ..) Returns: integer or array of integers where n-th bit is unset while all other bits are kept as in input x Examples: >>> unsetbit(7, 2) 3 >>> unsetbit(8, 2) 8 """ if nth_bit < 0: raise ValueError('position of bit cannot be negative') mask = 1 << nth_bit return x & ~mask
48db00ca0d8e9f7e89df092a0d96c5b8cc79c00a
486,949
def write_meta(meta_data, data_set): """ Writes meta data into the data set. :param meta_data: Array N x 4, where N is the number of data elements. :param data_set: Dicom Data Set :return: Modified Data Set """ for elem in meta_data: data_set.add_new((hex(elem[0]), hex(elem[1])), elem[2], elem[3]) return data_set
83d9bac7e896a50e249425ddcf5f6c1acad68789
306,545
from typing import Iterable def closest_smaller(list_of_numbers: Iterable[int], number: int) -> int: """Returns the closest number that is smaller that the given number. Examples -------- >>> l = [1, 4, 9, 16, 25] >>> n = 19 >>> closest_smaller(l, n) 16 Parameters ---------- list_of_numbers: Iterable[int] The numbers to get the closest from number: int The number to get the closest of Returns ------- int The closest smaller number """ return min(list_of_numbers, key=lambda x: abs(x - number))
5255782d0a3bc5309436f7348b2a5d0e7ab91dce
223,811
def GuessTargetArch(bisect_bot): """Returns target architecture for the bisect job.""" if 'x64' in bisect_bot or 'win64' in bisect_bot: return 'x64' elif bisect_bot in ['android_nexus9_perf_bisect']: return 'arm64' else: return 'ia32'
9c40ce5e32f6b6faca6ef6c6fecb43a22fe7319c
347,931
def parseDependencyFile(path, targetSuffix): """Parse a .d file and return the list of dependencies. @param path: The path to the dependency file. @type path: string @param targetSuffix: Suffix used by targets. @type targetSuffix: string @return: A list of dependencies. @rtype: list of string """ dependencies = [] uniqueDeps = set() def addPath(path): if path and path not in uniqueDeps: uniqueDeps.add(path) path = path.replace('\\ ', ' ') # fix escaped spaces dependencies.append(path) f = open(path, 'rt') try: text = f.read() text = text.replace('\\\n', ' ') # join escaped lines text = text.replace('\n', ' ') # join other lines text = text.lstrip() # strip leading whitespace # Find the 'target:' rule i = text.find(targetSuffix + ':') if i != -1: text = text[i+len(targetSuffix)+1:] # strip target + ':' while True: text = text.lstrip() # strip leading whitespace i = text.find(' ') while i != -1 and text[i-1] == '\\': # Skip escaped spaces i = text.find(' ', i+1) if i == -1: addPath(text) break else: addPath(text[:i]) text = text[i:] finally: f.close() return dependencies
14b624c1870083e154d896d77ed41133a4e5ef36
57,757
def linear(xs, slope, y0): """A simple linear function, applied element-wise. Args: xs (np.ndarray or float): Input(s) to the function. slope (float): Slope of the line. y0 (float): y-intercept of the line. """ ys = slope * xs + y0 return ys
2a588addaa6e99f5c027e322e0c25b64739e11fc
537,187
import uuid def is_valid_uuid(uuid_to_test, version=None): """ Check if uuid_to_test is a valid UUID. :param uuid_to_test: str :param version: int {1, 2, 3, 4} or None :return: True if uuid_to_test is from a valid UUID """ try: if version: uuid_obj = uuid.UUID(uuid_to_test, version=version) else: uuid_obj = uuid.UUID(uuid_to_test) except (ValueError, AttributeError, TypeError): return False return uuid_obj.hex == uuid_to_test
6233c5b96d41e7002a27e0d8d181da44d34094c2
581,921
import uuid def case_key(case): """ Create a unique key for this case. """ if hasattr(case, 'key'): return case.key key = str(uuid.uuid1()) return key
6239d2bf196b421ec9ca19d3628a87a3632bbbcb
376,302
def _endpoints_by_hosts(endpoints): """Return a dict consisting of the host-endpoint pairs as key-values.""" rv = {} for ep in endpoints: host, _ = ep['hostport'].split(':') rv[host] = ep return rv
4a30f03bda29572e03ea3bef4c97ad86dd8d4886
524,521
def compute_perc_word_usage(word, tokenized_string): """ Given a tokenized string (list of tokens), return the fraction of use of a given word as fraction of all tokens. """ return tokenized_string.count(word) / len(tokenized_string)
289baa8bd6f598a86a53b67753d99d26f2b712f0
392,229
def is_base_complement(c1, c2): """Returns true if c1 is a watson-crick complement of c2 args: c1 -- char c2 -- char returns: bool -- True if is complement, false otherwise """ if c1 == "A": return c2 == "U" elif c1 == "U": return c2 == "G" or c2 == "A" elif c1 == "G": return c2 == "C" or c2 == "U" elif c1 == "C": return c2 == "G" return False
992a2b7f5aaf9761acc9f3f5763e62cdf9c115a0
483,973
def new_id_map(df, next_id): """ Creates a new id for each record in df, starting with next_id """ segids = df.index.tolist() id_map = {segid: n for (segid, n) in zip(segids, range(next_id, next_id+len(segids)))} return id_map, next_id+len(segids)
35a0ef56ae3b9beac7fda70495724badbecbe9a8
422,601
def _replace_null_column_names(column_list): """Replace null names in columns from file cleaning with an appropriately blank column name. Parameters ---------- column_list: list[dict] the list of columns from file cleaning. Returns -------- column_list: list[dict] """ new_cols = [] for i, col in enumerate(column_list): # Avoid mutating input arguments new_col = dict(col) if new_col.get('name') is None: new_col['name'] = 'column_{}'.format(i) new_cols.append(new_col) return new_cols
d3345c5b18ae22f774c7ed63c0c29c108d74d2ef
438,843
def convert_asterisk_to_none(state: str) -> str | None: """Convert HERE API representation of None.""" if state == "*": return None return state
6b2d63d7a2dcfbbb947b71e7e4d414a4a514c469
475,893
def serial_number_hash(data: str) -> str: """Hashes any string to 6 bytes serial number Example: 'PyHAP' -> '3331779EC7A8' Hash function is BLAKE2b with 6 bytes digest size """ h = blake2b(digest_size=6) # type: ignore h.update(data.encode()) return h.hexdigest().upper()
22b514486b7a79db9f0ce59654dc3853f05e3677
206,651
def add(*items): """Adds one or more vectors.""" if len(items) == 0: return 0 n = len(items[0]) for v in items: if n!=len(v): raise RuntimeError('Vector dimensions not equal') return [sum([v[i] for v in items]) for i in range(n)]
837321ac712cd5a7f3c52c96e0512d0153749001
68,144
import toml def check_fpm_toml(contents): """Checks contents of fpm.toml, returns cut-down version for json index""" p = toml.loads(contents) fpm_info = {} # Must be present, copied to json required_keys = ["name", "version", "license", "author", "maintainer", "copyright"] # Optionally present, copied to json optional_keys = ["description", "executable", "dependencies", "dev-dependencies"] # Optionally present, not copied to json other_keys = ["test", "library", "build", "extra"] # Check for required keys for key in required_keys: if key not in p: raise Exception(f"Missing required key '{key}' in fpm.toml.") for key in p.keys(): if key not in required_keys + optional_keys + other_keys: print(f" (!) Warning: unexpected key '{key}; in fpm.toml") # Copy keys to dict for json index for key in required_keys: fpm_info[key] = p[key] for key in optional_keys: if key in p: fpm_info[key] = p[key] else: fpm_info[key] = None return fpm_info
3a6cdb8bbfe8f490f0986fa923c8205fad7c3a8a
233,668
def get_matrix_or_template_parameters(cli_args): """ cifti_conn_matrix and cifti_conn_template both have the same required parameters, with only a few exceptions. This function returns a list of all parameters required by both scripts. :param cli_args: Full argparse namespace containing all CLI args, including all necessary parameters for cifti_conn_matrix and cifti_conn_template. :return: A list of all parameters required by matrix and template scripts. """ return([ cli_args.mre_dir, cli_args.wb_command, cli_args.series_file, cli_args.time_series, cli_args.motion, cli_args.fd, cli_args.tr, cli_args.minutes, cli_args.smoothing_kernel, cli_args.left, cli_args.right, cli_args.beta8, cli_args.remove_outliers, cli_args.mask, cli_args.make_conn_conc, cli_args.output, cli_args.dtseries ])
fbda701f988ebf490bfd33fa8d78d8bcc1dd109f
695,412
def calc_eccentricity(dist_list): """Calculate & return eccentricity from list of radii.""" apoapsis = max(dist_list) periapsis = min(dist_list) eccentricity = (apoapsis - periapsis) / (apoapsis + periapsis) return eccentricity
3f4558251ad114efea206464b1b9a93983303979
509,610
def how_many_can_list(num_market_listings: int, number_to_sell: int, num_in_inventory: int) -> int: """ How many items I can actually list on market to have number_to_sell on sale :param num_market_listings: Number of own listing on market. :param number_to_sell: Max number on sale :param num_in_inventory: Number in inventory :return: number that can be listed """ if number_to_sell > num_market_listings: toList = number_to_sell - num_market_listings return min(toList, num_in_inventory) elif number_to_sell == num_market_listings or number_to_sell < num_market_listings: return 0 return 0
29a9844448ebd68710920b83378025ad9ffd74a3
22,338
import re def AtConc_to_ZWeightPer(row): """Function to convert spent fuel inventory from nuclidewise atom concentration to elementwise weight percentage. The function expects a pandas row from the MVA dataset. 1, calculates the mass per cm3 for each isotope 2, changes the ZAID into elements and sums the mass of each element 3, returns the normalized mass (ie w%) for each element Parameters ---------- row : pandas dataframe Row in dataframe describing the fuel inventory Returns ------- masspervolume : dict Dictionary which stores the mass percentage for each element (which are the keys). """ #precondition row into dictionary inventory = row.to_dict() inventory.pop('Unnamed: 0') #note this is highly specific inventory.pop('BU') inventory.pop('CT') inventory.pop('IE') inventory.pop('fuelType') inventory.pop('TOT_SF') inventory.pop('TOT_GSRC') inventory.pop('TOT_A') inventory.pop('TOT_H') NA = 6.022140857E23 masspervolume = {} for iso in inventory: isoText = re.findall('\D+', iso) isoNum = re.findall('\d+', iso) Z=isoText[0] A=float(isoNum[0]) massconci = A*((inventory[iso]*1e24)/NA) #this gives the mass of that isotope in g/cm3 if Z in masspervolume: masspervolume[Z]=masspervolume[Z]+massconci else: masspervolume[Z]=massconci #getting weight% summass=sum(masspervolume.values()) for element in masspervolume: masspervolume[element]=masspervolume[element]/summass return masspervolume
49ed26f33d2f0c2a5e599143530cc082214e0b01
492,798
def get_first_duplicate_freq(changes: list): """Find the first duplicate frequency. Args: changes: frequency changes Returns: first duplicate frequency """ cur_freq = 0 visited_freqs = set() while True: for change in changes: if cur_freq in visited_freqs: return cur_freq visited_freqs.add(cur_freq) cur_freq += change
1111734849e383cad625744df0af3ade311e1b39
485,313
def arch_url(hostname, port, ext): """ Return the base url for a particular archiver service. Parameters ---------- {hostname} port : int port on host that has the ext directory ext : string directory that hosts the desired service """ return "http://" + hostname + ":" + str(port) + ext
2c4930527461ab6da9ea0e1b0f52a763e13a8bf9
402,729
def get_img_size(n_fids): """Get guide image readout size from ``n_fids``. This is the core definition for the default rule that OR's (with fids) get 6x6 and ER's (no fids) get 8x8. This might change in the future. Parameters ---------- n_fids : int Number of fids in the catalog Returns ------- int Guide star image readout size to be used in a catalog (6 or 8) """ return 6 if n_fids > 0 else 8
83c5cefc456b6807c6c90b5deafd44c2a5f07886
142,917
def pip_cn(p, poly): """2D point inclusion: returns True if point is inside polygon (uses crossing number algorithm). arguments: p (numpy array, tuple or list of at least 2 floats): xy point to test for inclusion in polygon poly (2D numpy array, tuple or list of tuples or lists of at least 2 floats): the xy points defining a polygon returns: boolean: True if point is within the polygon note: if the polygon is represented by a closed resqpy Polyline, pass Polyline.coordinates as poly """ # p should be a tuple-like object with first two elements x, y # poly should be a numpy array with first axis being the different vertices # and the second starting x, y crossings = 0 for edge in range(len(poly)): v1 = poly[edge - 1] v2 = poly[edge] if ((v1[0] > p[0] or v2[0] > p[0]) and ((v1[1] <= p[1] and v2[1] > p[1]) or (v1[1] > p[1] and v2[1] <= p[1]))): if v1[0] > p[0] and v2[0] > p[0]: crossings += 1 elif p[0] < v1[0] + (v2[0] - v1[0]) * (p[1] - v1[1]) / (v2[1] - v1[1]): crossings += 1 return bool(crossings & 1)
226c7f654e407c4148ec5eb99607a80119347f4e
483,104
from typing import List import torch def _flatten_zero_dim_tensor_optim_state( state_name: str, zero_dim_tensors: List[torch.Tensor], unflat_param_names: List[str], ) -> torch.Tensor: """ Flattens the zero-dimension tensor optimizer state given by the values ``zero_dim_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all tensors are the same and using that common value. NOTE: The requirement that the tensors are the same across all unflattened parameters comprising the flattened parameter is needed to maintain the invariant that FSDP performs the same computation as its non-sharded equivalent. This means that none of the unflattened parameters can be missing this state since imposing a value may differ from having no value. For example, for Adam's "step", no value means maximum bias correction, while having some positive value means less bias correction. Args: state_name (str): Optimizer state name. zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: torch.Tensor: A zero-dimensional tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_tensors = [t for t in zero_dim_tensors if t is not None] # Enforce that all have the same value and dtype values_set = set(t.item() if t is not None else None for t in zero_dim_tensors) dtypes = set(t.dtype if t is not None else None for t in zero_dim_tensors) if len(non_none_tensors) != len(zero_dim_tensors) or \ len(values_set) != 1 or len(dtypes) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {values_set} and dtypes {dtypes} for state " f"{state_name} and unflattened parameter names " f"{unflat_param_names}" ) value = next(iter(values_set)) dtype = next(iter(dtypes)) return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
6d7e4e6898d3e58b9120f3c0f0cb6fbe0525d1fe
330,688
def escape(literal): """ Escape the backtick in table/column name @param literal: name string to escape @type literal: string @return: escaped string @rtype : string """ return literal.replace('`', '``')
46adc116f533fa6ccfcfe12e86fe75f1f228cb22
133,834
def hauteur(arbre): """Fonction qui renvoie la hauteur d'un arbre binaire""" # si l'arbre est vide if arbre is None: return 0 hg = hauteur(arbre.get_ag()) hd = hauteur(arbre.get_ad()) return max(hg, hd) + 1
64561b3c708f9e3afa30a4b405b0ce2e2de5c346
306,185
def _get_sort_and_permutation(lst: list): """ Sorts a list, returned the sorted list along with a permutation-index list which can be used for cursored access to data which was indexed by the unsorted list. Nominally for chunking of CSR matrices into TileDB which needs sorted string dimension-values for efficient fragmentation. """ # Example input: x=['E','A','C','D','B'] # e.g. [('E', 0), ('A', 1), ('C', 2), ('D', 3), ('B', 4)] lst_and_indices = [(e, i) for i, e in enumerate(lst)] # e.g. [('A', 1), ('B', 4), ('C', 2), ('D', 3), ('E', 0)] lst_and_indices.sort(key=lambda pair: pair[0]) # e.g. ['A' 'B' 'C' 'D' 'E'] # and [1, 4, 2, 3, 0] lst_sorted = [e for e, i in lst_and_indices] permutation = [i for e, i in lst_and_indices] return (lst_sorted, permutation)
16f3097697517911cdbd78cd70bcf383e1be4eca
110,694
def get_time_signature_code(number: int) -> str: """Return a string for a time signature number.""" if number > 10: div, mod = divmod(number, 10) return chr(57472 + div) + chr(57472 + mod) return chr(57472 + number)
97e835f56a701f9250df9ab08a9859feb312d1a2
445,046
import re def _dos2unix(file_content: bytes) -> bytes: """ Replace occurrences of Windows line terminator CR/LF with only LF. :param file_content: the content of the file. :return: the same content but with the line terminator """ return re.sub(b"\r\n", b"\n", file_content, flags=re.M)
7d7190c357ba25c28cdc8dd0df245d81273dae5e
272,175
def open_input(input_path: str) -> list[str]: """Opens and sanitizes the `input.txt` file for the day reading in each line as an element of a list. - Remove any extra lines at the end of the input files (if present, due to auto-formatting) - Remove newline characters for individual element strings - Strip any whitespace """ with open(input_path, 'r') as f: lines = f.readlines() line_data = lines[:-1] if lines[-1] == '' else lines data = [line_item.replace('\n', '').strip() for line_item in line_data] return data
5b78f7d64d076bd1ed8b6ed1839aaaa45c48e001
628,547
def cyclic_linear_lr( iteration: int, num_iterations_cycle: int, initial_lr: float, final_lr: float, ) -> float: """ Linearly cycle learning rate Args: iteration: current iteration num_iterations_cycle: number of iterations per cycle initial_lr: learning rate to start cycle final_lr: learning rate to end cycle Returns: float: learning rate """ cycle_iteration = int(iteration) % num_iterations_cycle lr_multiplier = 1 - (cycle_iteration / float(num_iterations_cycle)) return initial_lr + (final_lr - initial_lr) * lr_multiplier
b55ef12d3050a20f0509ac54b914c0fabbb05e7d
188,586
import re def camel_case_to_lower(name): # type: (str) -> str """ Convert a string written in CamelCase to lower case, with underscores inserted before capitals. :param name: CamelCase string :return: camel_case string returned as lower case """ return re.sub("([^A-Z])([A-Z][A-Za-z]*)", r"\1_\2", name).lower()
ed260dd2f135a12f095c1bf3d38af392e4d3b2fd
396,908
def get_image_data(image): """ Return a mapping of Image-related data given an `image`. """ exclude = ["base_location", "extracted_to_location", "layers"] image_data = { key: value for key, value in image.to_dict().items() if key not in exclude } return image_data
684cd2a358599b161e2311f88c3e84c016ad2fef
21,558
def element_to_set_distance(v, s): """Returns shortest distance of some value to any element of a set.""" return min([abs(v-x) for x in s])
af77a125773312fd815cbad639b81601c427cf6b
37,338
def count_jailed(model): """Count number of jailed agents.""" count = 0 for agent in model.schedule.agents: if agent.breed == "citizen" and agent.jail_sentence: count += 1 return count
d6f7aca961917eebf40db11ab859511cf7c2606a
97,445
def time_of_flight(v0): """ Compute time in the air, given the initial vertical velocity v0. Assume negligible air resistance. """ g = 9.81 return 2*v0/g
9c37c3960767255f4e165b0f57527de461b73bed
467,039
def tree_map(f, tr) : """ apply f recursively to all the tree nodes """ return (f(tr[0]), tuple([tree_map(f, x) for x in tr[1]]))
ec8c12b09cb4fedf61085802cd4d8b659e5903c5
61,260
def is_cidr_notation(netmask) -> bool: """ This function will check if the netmask is in CIDR format. :param netmask: Can be a 255.255.255.255 or CIDR /24 format :return bool: True if mask is in CIDR format """ return "." not in str(netmask)
088ba56ec6bc52f4e14affafa79ea7e426ccc77e
475,747
def _select_shorter_captions(captions, top_n): """ :param captions: a list of lists of string, such as [['a','b'],['c','d','e']] :param top_n: an integer :return: a list with top_n shortest length of the lists of string, """ assert top_n <= 10 lengths = [[x, len(y)] for x, y in enumerate(captions)] # note: python3 works well, python2 unknown lengths.sort(key=lambda elem: elem[1]) hit_elem = lengths[:top_n] top_n_sentences = [captions[id_len[0]] for id_len in hit_elem] return top_n_sentences
3ef0e0dc37d4efb963eb04d23d2171af8664c0fc
524,253
def _get_upstream_source(runtime, image_meta): """ Analyzes an image metadata to find the upstream URL and branch associated with its content. :param runtime: The runtime object :param image_meta: The metadata to inspect :return: A tuple containing (url, branch) for the upstream source OR (None, None) if there is no upstream source. """ if "git" in image_meta.config.content.source: source_repo_url = image_meta.config.content.source.git.url source_repo_branch = image_meta.config.content.source.git.branch.target elif "alias" in image_meta.config.content.source: alias = image_meta.config.content.source.alias if alias not in runtime.group_config.sources: raise IOError(f'Unable to find source alias {alias} for {image_meta.distgit_key}') source_repo_url = runtime.group_config.sources[alias].url source_repo_branch = runtime.group_config.sources[alias].branch.target else: # No upstream source, no PR to open return None, None return source_repo_url, source_repo_branch
1398d8515c4d4eb95241fa179b285553063dcf3b
524,557
def calc_max_quant_value(bits): """Calculate the maximum symmetric quantized value according to number of bits""" return 2**(bits) - 1
0cd845c06aef8742cf62132b6569ed725fae4147
57,206
def soft_thresholding(v, threshold): """ soft thresholding function :param v: scalar :param threshold: positive scalar :return: st(v) """ if v >= threshold: return (v - threshold) elif v <= - threshold: return (v + threshold) else: return 0
64df33154368fd7701816231f88a8f92dfd201a4
480,853
import re def get_browser_repo_url_from_git_url(git_url): """ Converts a git https or ssh url to a corresponding browser url :param git_url: is the https or ssh git-clone format url :return: https browser-friendly url to the repo site """ git_url = re.sub(r"\.git$", "", git_url) if git_url.startswith("git@"): return re.sub(r"^git@([^:]+):(.*)$", r"https://\1/\2", git_url) elif git_url.startswith("https://"): return re.sub(r"^https://([^@]+@)?(.*)$", r"https://\2", git_url) return ""
12187906bb6acb7fef239f6a4bc52a955ce1fa41
143,303
import csv def get_size_metrics(report_file, reader=None): """Get the size metrics from file.""" metrics = {} with open(report_file, "r", newline="\n", encoding="utf-8") as csv_file: csv_reader = reader or csv.DictReader(csv_file, delimiter=",") for row in csv_reader: language_metric = { "files": row["files"], "blank": row["blank"], "comment": row["comment"], "code": row["code"], } metrics[row["language"]] = language_metric return metrics
65e31bee95d60da65c5091c16ef532dd76b72147
341,257
def memoize(fun): """Memoizes a function of one argument.""" the_dict = {} def wrapper_decorator(*args, **kwargs): assert len(args) == 1, "Only works with one argument" if args[0] not in the_dict: the_dict[args[0]] = fun(args[0]) return the_dict[args[0]] return wrapper_decorator
722d6ed6048ad7275f7debfb88cb44da7b978e67
611,170
def get_tuned_params_dict(model, tuned_params_keys): """Given a list of tuned parameter keys and the model, create a dictionary with the tuned parameters and its values associated with it. Used for printing out scores :param model: Model, such that we can extract the parameters from :param tuned_params_keys: Parameters that we tuned in RandomizedSearchCV :return: Dictionary with tuned parameters and its values """ values = [model.get_params()[x] for x in tuned_params_keys] return dict(zip(tuned_params_keys, values))
11993cd01106b654aaf30f56be1ee2269b97759e
531,516
def explode_hyperedge(hyperedge, hyperedge_id): """ Takes a hyperedge set, and generates all the dyadic connections for a similar regular edge. :param hyperedge: (list) List of participating terms. :param hyperedge_id: (int) Identifier for the hyperedge, used for postgres. :return: (list) List of connection tuples """ # We'll sort, so we have a clear idea of how many of the same edge we have, since it will always be # of the form (smaller_id, larger_id). hyperedge = sorted(hyperedge) edge_set = [] postgres_set = [] # essentially build connections to all "vertices after". This guarantees we don't do edges twice. for i, _ in enumerate(hyperedge): for j in range(i+1, len(hyperedge)): edge_set.append((hyperedge[i], hyperedge[j])) # postgres performs better with duplicate edges, so we manually correct this here postgres_set.append((hyperedge_id, hyperedge[i], hyperedge[j])) postgres_set.append((hyperedge_id, hyperedge[j], hyperedge[i])) return edge_set, postgres_set
f584c1d3b86582787651825f58211b0237949cf0
569,335
def add_dummy_data(bitmap, width, height): """ Adds dummy data to a bitmap to ensure the width is divisible by 4. This is required because the SSD1322 OLED driver maintains a single column address for four pixels. bitmap (list): A list of integers (pixel values) width (int): The width of the bitmap height (int): The height of the bitmap Returns (tuple): A tuple which contains modified image data. | |--> bitmap_data (tuple) | |--> bitmap pixel array (list) | |--> bitmap width (int) | \--> bitmap height (int) | \--> dummy_to_add (int): Columns of dummy data added """ output = [] bitmap_data = tuple() # Maximum dummy data should be 3 dummy_to_add = (4 - (width % 4)) % 4 new_width = width + dummy_to_add if dummy_to_add > 0: index = 0 for i in range(height): for j in range(new_width): # Add dummy data beyond original width if j > (width - 1): output.append(0) else: output.append(bitmap[index]) index += 1 bitmap_data = (output, new_width, height) else: bitmap_data = (bitmap, width, height) return (bitmap_data, dummy_to_add)
5739330189d504b69af6740a5d85692beb6dbe3a
491,668
def polygon_jaccard(final_polygons, train_polygons): """ Calcualte the jaccard index of two polygons, based on data type of shapely.geometry.MultiPolygon :param final_polygons: :param train_polygons: :return: """ return final_polygons.intersection(train_polygons).area /\ final_polygons.union(train_polygons).area
55a3a65c274dd203a2f021bd90b5520fbe82b596
463,057
def consecutive_seconds(rel_seconds, window_size_sec, stride_sec=1): """ Return a list of all the possible [window_start, window_end] pairs containing consecutive seconds of length window_size_sec inside. Args: rel_seconds: a list of qualified seconds window_size_sec: int stride_sec: int Returns: win_start_end: a list of all the possible [window_start, window_end] pairs. Test: >>> rel_seconds = [2,3,4,5,6,7,9,10,11,12,16,17,18]; window_size_sec = 3; stride_sec = 1 >>> print(consecutive_seconds(rel_seconds, window_size_sec)) >>> [[2, 4], [3, 5], [4, 6], [5, 7], [9, 11], [10, 12], [16, 18]] """ win_start_end = [] for i in range(0, len(rel_seconds) - window_size_sec + 1, stride_sec): if rel_seconds[i + window_size_sec - 1] - rel_seconds[i] == window_size_sec - 1: win_start_end.append([rel_seconds[i], rel_seconds[i + window_size_sec - 1]]) return win_start_end
e9c4d0fe5d8823530c372b35ef16b6a2e762e606
220,491
from functools import reduce def getAllTextWords(texts): """ Returns a set of all the words in the given texts """ return reduce(lambda x,y: x | set(y), texts.values(), set())
52e475b180031b0abf67bad3fe148b9509baaed1
34,375
def convert_to_demisto_severity(dg_severity: str) -> int: """ Convert dg_severity to demisto severity :param dg_severity: :return: int demisto severity """ severity_map = { 'Critical': 4, 'High': 3, 'Medium': 2, } return severity_map.get(dg_severity, 1)
fbaa86e2697d804a3547a58e4041e5b41c573a36
603,946
def v3_multimax(iterable): """Return a list of all maximum values. Bonus 1: make sure our function returned an empty list when given an empty iterable. """ max_item = None for item in iterable: if max_item is None or item > max_item: max_item = item return [ item for item in iterable if item == max_item ]
9ba3d17c510406ea85ab6f1d1806446165db0610
109,692
def mastinEVEM(HT, DRE = 2500): """Calculating erupted volume based on plume height. Inputs: Plume height (HT) in km DRE = dense-rock equivalent (kg/m^3) Outputs: Eruptive Volume (km^3 DRE) and Eruptive Mass (kg) No time component to this?? Equation from Mastin et al. 2009: H = 25.9 + 6.64log(V) --> log base 10""" p = (HT - 25.9)/6.64 EV = 10**p EM = EV * DRE * (1000**3) return EV, EM
a869927ef8ad6ad3540842c1990214add2adce0c
435,506
import math def _get_qv(snpcount, length): """ Get accuracy based on snps comparison to reference Args: snpcount: Number of snps length: Number of nucleotides in fasta reference Returns: quality_value: A Phred Quality Score """ if snpcount != 0: quality_value = round( -10 * math.log10(int(snpcount) / float(length)), 3) # if there are 0 snps, it means the query perfectly matches the reference else: quality_value = round(-10 * math.log10(1 / float(length)), 3) return quality_value
61fa6d19512527443c1347b600f78845b759e9f4
358,771
def query_prefix_transform(query_term): """str -> (str, bool) return (query-term, is-prefix) tuple """ is_prefix = query_term.endswith('*') query_term = query_term[:-1] if is_prefix else query_term return (query_term, is_prefix)
d33dd4222f53cba471be349b61e969838f6188d5
29,486
import asyncio async def readexactly_or_exc(reader, n, timeout = None): """ Helper function to read exactly N amount of data from the wire. :param reader: The reader object :type reader: asyncio.StreamReader :param n: The maximum amount of bytes to read. :type n: int :param timeout: Time in seconds to wait for the reader to return data :type timeout: int :return: bytearray """ temp = await asyncio.gather(*[asyncio.wait_for(reader.readexactly(n), timeout = timeout)], return_exceptions=True) if isinstance(temp[0], bytes): return temp[0] else: raise temp[0]
25cac7a98e9cf2aefcc33c43de599a342779e32c
400,676
def nested_getattr(baseobject, attribute): """ Returns the value of an attribute of an object that is nested several layers deep. Parameters ---------- baseobject : this seriously can be anything The top-level object attribute : string Any string of what you want. Returns ------- output : object No telling what type it is. It depends on what you ask for. Examples -------- >>> class Level_1: ... a = 1 >>> class Level_2: ... b = Level_1() >>> x = Level_2() >>> nested_getattr(x, 'b.a') 1 """ for attr in attribute.split("."): baseobject = getattr(baseobject, attr) return baseobject
33711d06982dc7de0d6ba3ef5581f1cd59ced8a3
481,473
def count_of(thing_list, thing_name, plural_name=None, colon=False): """Return a string representing a count of things, given in thing_list. Example: >>> count_of([1, 2, 3], 'number') '3 numbers' >>> count_of([1], 'number') '1 number' >>> count_of(['salmon', 'carp'], 'fish', 'fishies') '2 fishies' """ if plural_name is None: plural_name = thing_name + 's' format = '%d ' + (thing_name if len(thing_list) == 1 else plural_name) if colon: format += ':' return format % len(thing_list)
7d63bf3c324cd58e9e1812debce31043b1389f30
237,433
def _tester(func, *args): """ Tests function ``func`` on arguments and returns first positive. >>> _tester(lambda x: x%3 == 0, 1, 2, 3, 4, 5, 6) 3 >>> _tester(lambda x: x%3 == 0, 1, 2) None :param func: function(arg)->boolean :param args: other arguments :return: something or none """ for arg in args: if arg is not None and func(arg): return arg return None
035c8bf68b4ff7e4fbdb7ed1b2601f04110287d8
708,787
def mock_upsert_profile(mocker): """Mock of upsert_profile function""" return mocker.patch("channels.api.search_task_helpers.upsert_profile")
a5f93200e923f455409fc0e9e444ba4508c16c85
297,571
import struct import socket def inet_atoni(ip): """Like inet_aton() but returns an integer.""" return struct.unpack('>I', socket.inet_aton(ip))[0]
3bd18b7aecf9a5a45033c7873163ee1387cb8a13
704,692
import re def camel_case_to_pep_8(attribute_name: str) -> str: """ Converts a camel case name to PEP 8 standard Parameters ---------- attribute_name : str The camel case attribute name Returns ------- str The PEP 8 formatted attribute name """ matches = re.finditer( ".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", attribute_name ) return "_".join([m.group(0)[0].lower() + m.group(0)[1:] for m in matches])
e2ddb49b1f1f74cbf0cf99206281c93c1d38815e
468,723
def locMcmcName(xspecFile): """A function to find the name of the mcmc fits file you have defined in you XSPEC .xcm file, if it's there. Parameters ---------- xspecFile : str The XSPEC .xcm file that has the "writefits" command used in it. Returns ------- The mcmc fits path+file name from the .xcm file. Example ------- # to get mcmc fits path+file name from the .xcm file fitsFile = loc8fitsAndTxtName("apec1fit_fpm1_cstat.xcm") """ with open(xspecFile, "r") as lf: for line in lf.readlines(): if line.startswith("chain run"): # get the path and mcmc file name for the "chain run" line return line.split()[-1] return ""
07b65d3b292ff03484f43c44d8f84f644e0e04f1
274,245
import re def parse_component(comp): """Parse "10 ORE" -> (10, 'ORE').""" m = re.match(r'(\d+) ([A-Z]+)$', comp) assert m, comp amt, what = m.groups() return int(amt), what
df17c10c37ce0ed9e096d8954b1cef9b19730443
623,744