content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def MAX(src_column):
"""
Builtin maximum aggregator for groupby
Example: Get the maximum rating of each user.
>>> sf.groupby("user",
... {'rating_max':tc.aggregate.MAX('rating')})
"""
return ("__builtin__max__", [src_column])
|
59d030a07fafb6f254149d264b3a4feb9431ed28
| 634,434 |
def base_url(application_settings, base_path):
""" Returns the service URL."""
return 'http://localhost:%s%s' % (application_settings['APP_PORT'], base_path)
|
1976659865ed11ddadcb4b6bfad87e362550c926
| 182,932 |
def create_element(type, props=None, *children):
""" Convenience function to create a dictionary to represent
a virtual DOM node. Intended for use inside ``Widget._render_dom()``.
The content of the widget may be given as a series/list of child nodes
(virtual or real), and strings. Strings are converted to text nodes. To
insert raw HTML, use the ``innerHTML`` prop, but be careful not to
include user-defined text, as this may introduce openings for XSS attacks.
The returned dictionary has three fields: type, props, children.
"""
if len(children) == 0:
children = None # i.e. don't touch children
elif len(children) == 1 and isinstance(children[0], list):
children = children[0]
return dict(type=type,
props=props or {},
children=children,
)
|
4160c04e9c3031879fab3501914f75a61139f55e
| 119,407 |
from typing import Dict
from typing import Union
def od_parse(data: str) -> Dict[str, Union[str, list]]:
"""Parse od command output without argument, return a dict with the following keys: hex, ascii, list, text
Returns:
dict: with key hex, ascii, list, text
"""
text, asc_data, hex_data, list_data = "", "", "", []
for line in data.split("\n"):
for d in line.split(" ")[1:]:
h = hex(int(d, 8))[2:].zfill(4)
a, b = int(h[2:], 16), int(h[:2], 16)
text += chr(a) + chr(b)
hex_data += "0x%x 0x%x " % (a, b)
asc_data += "%s %s " % (a, b)
list_data += [a, b]
return {"hex": hex_data.strip(), "ascii": asc_data.strip(), "list": list_data, "text": text}
|
c9eb69a988063009971af373dd88da6101a0dfe8
| 646,050 |
def unix_to_windows_path(path_to_convert, drive_letter='C'):
"""
For a string representing a POSIX compatible path (usually
starting with either '~' or '/'), returns a string representing an
equivalent Windows compatible path together with a drive letter.
Parameters
----------
path_to_convert : string
A string representing a POSIX path
drive_letter : string (Default : 'C')
A single character string representing the desired drive letter
Returns
-------
string
A string representing a Windows compatible path.
"""
if path_to_convert.startswith('~'):
path_to_convert = path_to_convert[1:]
if path_to_convert.startswith('/'):
path_to_convert = path_to_convert[1:]
path_to_convert = '{}{}{}'.format(drive_letter,
':\\',
path_to_convert).replace('/', '\\')
return path_to_convert
|
d3c23e2c19be4b81be135ae84760430be852da41
| 2,603 |
def is_valid_structure(ext):
""" Checks if structure format is compatible with GROMACS """
formats = ['tpr', 'gro', 'g96', 'pdb', 'brk', 'ent']
return ext in formats
|
1b2af60c2f60df0eb5aa8a43fd8df5494d8b7830
| 563,474 |
def versions_match(versions):
"""Check if the versions are the same"""
base = None
for name in versions:
if base is None:
base = versions[name]
elif base != versions[name]:
return False
return True
|
6d02c9170302a18e14dfac393f1b573d491d3545
| 653,346 |
def split(iterable, function):
"""
Split an iterable into two lists according to test function
:param iterable iterable: iterable of values to be split
:param function function: decision function ``value => bool``
:returns: tuple(
list with values for which function is `True`,
list with values for which function is `False`,)
Example
_______
>>> split([1,2,3,4,5,6], lambda x: x<3)
([1, 2], [3, 4, 5, 6])
"""
match = []
unmatch = []
for value in iterable:
if function(value):
match.append(value)
else:
unmatch.append(value)
return match, unmatch
|
ede20fcc80bd126410a8417d1e91dee2e530c9af
| 41,121 |
def load_text(input_file):
"""Load text from a text file and return as a string."""
with open(input_file, "r") as file:
text = file.read()
return text
|
effaea8e8f19f15d59abadbe4a71b6a3d8828f90
| 336,998 |
def binary_string(number: int) -> str:
"""Number to binary string
:param number: some number (an integer) to turn into a binary string
:return: Some string which is the binary string
:rtype: str
.. doctest:: python
>>> binary_string(200)
'11001000'
>>> binary_string(10)
'1010'
"""
return bin(number)[2:]
|
aa22bcc4ddd5546805db333c9b0be2e7f0e1c703
| 681,850 |
def delete_max_length(data_in, data_out=None, max_length=20):
"""
Delete phrases with more than `max_length` characters.
"""
idx_to_remove = [count for count, sent in enumerate(data_in)
if len(sent) > max_length]
print(idx_to_remove)
for idx in reversed(idx_to_remove):
del data_in[idx]
if data_out is not None:
del data_out[idx]
if data_out is not None:
idx_to_remove = [count for count, sent in enumerate(data_out)
if len(sent) > max_length]
for idx in reversed(idx_to_remove):
del data_in[idx]
del data_out[idx]
return data_in, data_out
else:
return data_in
|
0af5e71f6815b5f5e0086c262433a24da9c59695
| 423,809 |
import re
def find_application_includes(path):
"""
Build a set that contains the vtk includes found in the file.
:param path: The path to the application file.
:return: The includes that were found.
"""
includes = set()
include_hdr1 = re.compile(r'((?:vtk|QVTK).*\.h)')
include_hdr2 = re.compile(r'(\w+QtQuick\.h)')
content = path.read_text()
incs = include_hdr1.findall(content)
includes.update(incs)
incs = include_hdr2.findall(content)
includes.update(incs)
return includes
|
96f5e4ae024d691ece9188e66c6b0d795150d513
| 236,158 |
def train_network(net, epochs, training_data, validation_data, batch_size, callbacks, verbose=1):
"""
train a network on data for a fixed number of epochs
parameters:
net: network to train
epochs: number of epochs
training_data: training data under the format of numpy arrays (inputs, labels)
validation_data: validation data under the format of numpy arrays (inputs, labels)
batch_size: size of batch for training
callbacks: callbacks wanted for the training
verbose: display of training (1:yes, 2: no)
"""
print('\nStart the training')
hist = net.fit(training_data[0], training_data[1], epochs=epochs,
batch_size=batch_size,
verbose=verbose,
shuffle=True,
validation_data=(validation_data[0], validation_data[1]),
validation_steps=int(len(validation_data[0])/batch_size),
callbacks=callbacks)
return hist
|
d89704adc14bf2b609fa7bdb2300d59c4b2b5b1f
| 648,267 |
def get_current_valid_edges(current_nodes, all_edges):
"""
Returns edges that are present in Cytoscape:
its source and target nodes are still present in the graph.
"""
valid_edges = []
node_ids = {n['data']['id'] for n in current_nodes}
for e in all_edges:
if e['data']['source'] in node_ids and e['data']['target'] in node_ids:
valid_edges.append(e)
return valid_edges
|
3f09ac58e7d7beb9bd68a99653bb8ccc6db1909a
| 297,969 |
import csv
def read_from_csv(fn):
"""Read in the CSV file and return a list of (email, password) tuples"""
users = []
csvfile = csv.reader(open(fn, "r"))
for row in csvfile:
if row[0] != "":
users.append(row)
return users
|
f495330ce4cc8d7d325ff7b16795faa0bafec063
| 88,481 |
def scurve(start,end,n,s):
"""Return an S-Curve with a constant velocity section from start to end with
n points. The start and end S-curves each have s points"""
ys,ye = start,end
s1 = [ (ye-ys)*(x*x-s*s)/(2*s*float(n-1))+ys for x in range(0,s) ]
cv = [ (ye-ys)*(x-s)/float(n-1)+ys for x in range(s,s+n) ]
s2 = [ (ye-ys)*((s+n)*(s+n)+(4*s+2*n)*(x-s-n)-x*x)/(2*s*float(n-1))+ye for x in range(s+n+1,s+n+s+1) ]
return s1+cv+s2
|
a16ba1143cdeff9a8392a2c993b88918dff82350
| 646,470 |
import yaml
def read_yaml(file_path):
"""
Reads YAML file and return a dictionary
"""
with open(file_path) as f:
return yaml.safe_load(f)
|
e3d29ad6bd2e233f058ba65521e36d9c0564e570
| 521,217 |
def extended_gcd(a, b):
"""
I don't claim any copyright on this. I copied it from the internet somewhere.
Extended Greatest Common Divisor Algorithm.
Returns:
gcd: The greatest common divisor of a and b.
s, t: Coefficients such that s*a + t*b = gcd
Reference:
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Pseudocode
"""
old_r, r = a, b
old_s, s = 1, 0
old_t, t = 0, 1
while r:
quotient, remainder = divmod(old_r, r)
old_r, r = r, remainder
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
return old_r, old_s, old_t
|
93222993bafb69fd96dbd3d963edcd0c243225b4
| 350,313 |
def ms_to_cs(ms):
"""Convert Millisecons to Centiseconds"""
return ms / 10
|
19114824f6495215c4caa77cd458118ca2b17594
| 389,876 |
import operator
def filter_by_count(df, col, method, value, norm=False):
"""Filter a dataframe to return a subset of rows determined by their
value_counts(). For example, we can return rows with users who appear
at least 5 times in the dataframe, or with users who appear less than 10
times, or who appear exactly once.
Parameters
-----------
col: str
Name of dataframe column to filter by.
method: str
Symbol specifying which operation to use for filtering.
One of ('=', '<', '>', '<=', '>=').
value: int, float
Numeric value that each row in `col` will be compared against.
norm: bool
If True, filtering will occur on normalized values (so the value should
be a float between 0 and 1).
Returns
--------
pd.DataFrame
Examples
---------
Return rows containing users who appear at least 5 times:
df.filter_by_count('user_id', '>=', 5)
Return rows containing users who appear only once:
df.filter_by_count('user_id', '=', 1)
Return rows containing users who make up less than 20% of rows:
df.filter_by_count('user_id', '<', .2, True)
"""
operation = {'=': operator.eq,
'>': operator.gt,
'<': operator.lt,
'>=': operator.ge,
'<=': operator.le
}
counts = df[col].value_counts(norm).loc[lambda x:
operation[method](x, value)]
return df[df[col].isin(counts.index)]
|
fd700dfe3daf641b72e4a29d40061f8d5e4e14f5
| 326,810 |
def reorder_minibatch(minibatch_data, minibatch_label):
"""
Helper method that sorts the minibatch data and labels so that the samples are
sorted in order from longest to shortest. This is makes it more efficient to
pad different-length samples, according to
https://stackoverflow.com/questions/51030782/why-do-we-pack-the-sequences-in-pytorch
(Taken from Dr. Laurent's batching example)
Returns a tuple of sorted lists: (data, labels)
"""
temp = sorted(zip(minibatch_data, minibatch_label),
key=lambda x: len(x[0]), reverse=True)
list1, list2 = map(list, zip(*temp))
return list1, list2
|
9993250026b5c3bf81c4b3bd91889548684201bc
| 488,758 |
def fmt_ms(ms):
"""Take a time in milliseconds and convert it to mm:ss.ms"""
time = int(ms)
minutes = int(time / (60 * 1000))
time -= minutes * (60 * 1000)
seconds = time / 1000
return str(minutes) + ':' + "{seconds:.3f}".format(seconds=seconds)
|
c9d256d7f6a59b25748016f024f2fdf44db7d687
| 377,975 |
import math
def evap_fract_time_fingas(heavy, c1, time, T, c2 = None):
"""
Return the evaporated fraction []
source : (Fingas, 2015)
Parameters
----------
heavy : True if the fuel need to follow a ln, else it will be a sqrt
C : fingas constant
time : Time from the spill [s]
T : Temperature [K]
c2 : second fingas constant, can be compute by defaut []
"""
if c1 is None:
raise Exception("The mix does not have Fingas constant c1 defined")
if(time < 60): #else it will cause trouble with the log
return 0
b = 0
T = T - 273.15
if heavy:
if c2 is None:
c2 = 0.045
#b = 15+273.15
return (c1 + c2 * (T - b)) * math.log(time/60) #temperature in [K], time in sec
else:
if c2 is None:
c2 = 0.01
#b = 15+273.15
return (c1 + c2 * (T - b)) * math.sqrt(time/60)
|
9241a61b15ad8df26be787b657ddad4c6de8e3a1
| 368,840 |
from pathlib import Path
import json
def load_dict(file_path: Path) -> dict:
"""Loads a json file into a dictionary."""
with file_path.open('r') as infile:
return json.load(infile)
|
c2f8c0806b327d947c982c2ad2facd7b7d9b0417
| 364,197 |
def guarded_unpack_sequence(it, spec, _getiter_):
"""Protect nested sequence unpacking.
Protect the unpacking of 'it' by wrapping it with '_getiter_'.
Furthermore for each child element, defined by spec,
guarded_unpack_sequence is called again.
Have a look at transformer.py 'gen_unpack_spec' for a more detailed
explanation.
"""
# Do the guarded unpacking of the sequence.
ret = list(_getiter_(it))
# If the sequence is shorter then expected the interpreter will raise
# 'ValueError: need more than X value to unpack' anyway
# => No childs are unpacked => nothing to protect.
if len(ret) < spec['min_len']:
return ret
# For all child elements do the guarded unpacking again.
for (idx, child_spec) in spec['childs']:
ret[idx] = guarded_unpack_sequence(ret[idx], child_spec, _getiter_)
return ret
|
8c16e404a238eea45d8286feaafa9f8e78aa1f01
| 490,238 |
def no_resize(packing, cell):
"""Don't do any resizing"""
return packing, cell
|
4d50c6c5219c37bd848905788060cb5c096041d8
| 128,775 |
import requests
def read_build_cause(job_url, build_id):
"""Read cause why the e2e job has been started."""
api_query = job_url + "/" + str(build_id) + "/api/json"
response = requests.get(api_query)
actions = response.json()["actions"]
cause = None
for action in actions:
if "_class" in action and action["_class"] == "hudson.model.CauseAction":
cause = action["causes"][0]
# None or real build cause
return cause
|
80c3aafc29ae9eed1a7e4165962c4a50281779dd
| 675,989 |
def _parse_package_name(name: str) -> str:
"""
Force lower case and replace underscore with dash to compare environment
packages (see https://www.python.org/dev/peps/pep-0426/#name)
Args:
name: Unformatted package name
Returns:
Formatted package name
"""
return name.lower().replace("_", "-")
|
0257cbae7d8c25b31d089c983a0185c67cff6e2d
| 678,053 |
import pickle
def load_pickle(file_pkl):
"""Receives a path of a pickle file and loads it.
:param file_pkl: str referencing a .pkl file
:returns: the object loaded"""
with open(file_pkl,'rb') as open_file:
object = pickle.load(open_file)
return object
|
16726cf976821e02c263ec6705203e127f34feb3
| 142,714 |
def nice_bytes(number, lang='', speech=True, binary=True, gnu=False):
"""
turns a number of bytes into a string using appropriate units
prefixes - https://en.wikipedia.org/wiki/Binary_prefix
spoken binary units - https://en.wikipedia.org/wiki/Kibibyte
implementation - http://stackoverflow.com/a/1094933/2444609
:param number: number of bytes (int)
:param lang: lang_code, ignored for now (str)
:param speech: spoken form (True) or short units (False)
:param binary: 1 kilobyte = 1024 bytes (True) or 1 kilobyte = 1000 bytes (False)
:param gnu: say only order of magnitude (bool) - 100 Kilo (True) or 100 Kilobytes (False)
:return: nice bytes (str)
"""
if speech and gnu:
default_units = ['Bytes', 'Kilo', 'Mega', 'Giga', 'Tera', 'Peta',
'Exa', 'Zetta', 'Yotta']
elif speech and binary:
default_units = ['Bytes', 'Kibibytes', 'Mebibytes', 'Gibibytes',
'Tebibytes', 'Pebibytes', 'Exbibytes', 'Zebibytes',
'Yobibytes']
elif speech:
default_units = ['Bytes', 'Kilobytes', 'Megabytes', 'Gigabytes',
'Terabytes', 'Petabytes', 'Exabytes', 'Zettabytes',
'Yottabytes']
elif gnu:
default_units = ['B', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']
elif binary:
default_units = ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB',
'YiB']
else:
default_units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB']
units = default_units
if binary:
n = 1024
else:
n = 1000
for unit in units[:-1]:
if abs(number) < n:
if number == 1 and speech and not gnu:
# strip final "s"
unit = unit[:-1]
return "%3.1f %s" % (number, unit)
number /= n
return "%.1f %s" % (number, units[-1])
|
89680dabf2e71c15769e2d1c33b54f6a10cdec67
| 586,462 |
import re
def smart_truncate1(text, max_length=100, suffix='...'):
"""Returns a string of at most `max_length` characters, cutting
only at word-boundaries. If the string was truncated, `suffix`
will be appended.
"""
if len(text) > max_length:
pattern = r'^(.{0,%d}\S)\s.*' % (max_length-len(suffix)-1)
return re.sub(pattern, r'\1' + suffix, text)
else:
return text
|
cf957435d6d7d168d819670fed0dcd52d7ff0f67
| 309,022 |
def train_val_test_split(time_series, train_start_timestamp, train_end_timestamp, val_end_timestamp):
"""
Splits a given time series in training data, validation data and test data.
Args:
time_series (pandas.core.series.Series): input time series.
train_start_timestamp (string): initial timestamp of training data
train_end_timestamp (string): final timestamp of training data
val_end_timestamp (string): final timestamp of validation data
Returns:
numpy.ndarray: training time series
numpy.ndarray: validation time series
numpy.ndarray: test time series
"""
train = time_series[train_start_timestamp:train_end_timestamp].values
val = time_series[train_end_timestamp:val_end_timestamp].values
test = time_series[val_end_timestamp:].values
return train, val, test
|
eeb18f27b4afda423125787af82d21d5a961d041
| 278,024 |
def grid_frames(params: dict):
"""
Generate frame parameters for individual grid data frames when performed in step mode.
:param params: run parameters
:return: list of dictionaries representing a frame each
"""
return (
{
'name': params['name'],
'uuid': params['uuid'],
'saved': False,
'first': i + 1,
'start': params['angle'],
'delta': params['delta'],
'exposure': params['exposure'],
'energy': params['energy'],
'distance': params['distance'],
'two_theta': params.get('two_theta', 0.0),
'attenuation': params.get('attenuation', 0.0),
'directory': params['directory'],
'p0': point,
}
for i, point in enumerate(params['grid'])
)
|
338bc0a6e4f0d34daa2ca725448c032f1ba99269
| 137,079 |
from typing import Any
from typing import Union
import re
def replace_variables(
input_string: str, interface: Any, key: Union[int, None] = None
) -> str:
"""
In a string, attempt to replace all the "$$X" variables with their
definitions from the interface. If not found in the interface, it skips the
variable, leaving it to the user to replace afterwards
Args:
input_string (str): String containing $$X variables
interface (Any): An interface
key (Union[int, None], optional): If the replacement string is a data
structure, use this key to index it. Defaults to None.
Returns:
str: Updated string
"""
regex_variable = re.compile(r"\$\$[^_|\W]+")
for variable in re.findall(regex_variable, input_string):
try:
new_variable = getattr(interface, variable[2:])
except AttributeError:
continue
else:
if isinstance(new_variable, (list, tuple)):
if key is None:
raise ValueError
new_variable = new_variable[key]
input_string = input_string.replace(variable, str(new_variable))
return input_string
|
6827b9907772fe81b026bd6009fcc4670787d656
| 431,211 |
def _BuildCustomMetricUtilizations(args, messages):
"""Builds custom metric utilization policy list from args.
Args:
args: command line arguments.
messages: module containing message classes.
Returns:
AutoscalingPolicyCustomMetricUtilization list.
"""
result = []
if args.custom_metric_utilization:
for custom_metric_utilization in args.custom_metric_utilization:
result.append(
messages.AutoscalingPolicyCustomMetricUtilization(
utilizationTarget=custom_metric_utilization[
'utilization-target'],
metric=custom_metric_utilization['metric'],
utilizationTargetType=(
messages
.AutoscalingPolicyCustomMetricUtilization
.UtilizationTargetTypeValueValuesEnum(
custom_metric_utilization['utilization-target-type'],
)
),
)
)
return result
|
74ba408772546b30a0b9fce1a681a9ef6ea295af
| 194,421 |
def gcd(number1: int, number2: int) -> int:
"""Counts a greatest common divisor of two numbers.
:param number1: a first number
:param number2: a second number
:return: greatest common divisor"""
number_pair = (min(abs(number1), abs(number2)), max(abs(number1), abs(number2)))
while number_pair[0] > 0:
number_pair = (number_pair[1] % number_pair[0], number_pair[0])
return number_pair[1]
|
9f22c315cc23e2bbf954f06d416a2c44f95ddbb7
| 705,416 |
def win_check(board, mark):
"""
function that takes in a board and checks to see if someone has won.
:param board: the board to check
:param mark: the last mark in placed in the board
:return: True if game is win or False otherwise
"""
return ((board[7] == mark and board[8] == mark and board[9] == mark) or
(board[4] == mark and board[5] == mark and board[6] == mark) or
(board[1] == mark and board[2] == mark and board[3] == mark) or
(board[7] == mark and board[4] == mark and board[1] == mark) or
(board[8] == mark and board[5] == mark and board[2] == mark) or
(board[9] == mark and board[6] == mark and board[3] == mark) or
(board[7] == mark and board[5] == mark and board[3] == mark) or
(board[9] == mark and board[5] == mark and board[1] == mark))
|
38cad514d38aa42fdb88ebe4cb174f2999a9ae9b
| 664,866 |
def normalize_timedelta(timedelta):
"""
Given a string like "1w" or "-5d", convert it to an integer in milliseconds.
Integers without a suffix are interpreted as seconds.
Note: not related to the datetime timedelta class.
"""
try:
return int(timedelta) * 1000
except ValueError as e:
t, suffix = timedelta[:-1], timedelta[-1:]
suffix_multipliers = {'s': 1000, 'm': 1000*60, 'h': 1000*60*60, 'd': 1000*60*60*24, 'w': 1000*60*60*24*7,
'M': 1000*60*60*24*30, 'y': 1000*60*60*24*365}
if suffix not in suffix_multipliers:
raise ValueError()
return int(t) * suffix_multipliers[suffix]
|
097d519e9b6a41b67d61c4b2af09be6e47fdb91f
| 487,524 |
def flatten(a):
"""recursively flatten n-nested array
example:
>>> flatten([[1,2],[3,4],[5,6,[7,8],]])
[1, 2, 3, 4, 5, 6, 7, 8]
"""
if isinstance(a, list):
b = list()
for a_ in a:
if isinstance(a_, list):
b.extend(flatten(a_))
else:
b.append(a_)
return(b)
else:
return(a)
|
d58e5f32446c1b750b4da676faff480461646e54
| 307,298 |
def chop_end_of_string(str_input, str_remove):
"""Function that strips the supplied str_remove from the end of the input
string
Parameters
----------
str_input: `str`
A string to be chopped
str_remove: `str`
The string to be removed from the end of the input
Returns
-------
str: `str`
A string that contains the new string
"""
if str_input.endswith(str_remove):
return str_input[:-len(str_remove)]
return str_input
|
792b95a6ae33faffdd4632f2785c3161ebea9bad
| 258,672 |
import random
def pick_pivot(l, r):
""" Picks a pivot element at random from the 25-75% input percentile.
Params:
l - left most index to pick as pivot
r - right most index to pick as pivot
Return:
int - a randon number in [l, r]
"""
return random.randint(l, r)
|
4638a4df1de7d317276ad64b129165d46141cee4
| 453,523 |
def throughput_history(summaries):
"""Calculates the change in completion for a list of summaries.
Args:
summaries (List[ProjectSummary]): List of project summaries to analyze
Returns:
List[int]: The change in number of items complete between each set of two summaries provided.
"""
history = []
for i in range(len(summaries)-1):
throughput = summaries[i+1].complete - summaries[i].complete
if throughput < 0:
throughput = 0
history.append(throughput)
return history
|
5d1b2d2b4d285d9002ca56586f32ce0916981e55
| 311,061 |
from typing import Dict
def get_headers(token: str) -> Dict[str, str]:
"""
Returns authorization header for the data registry with the provided token.
:param token: personal access token
:return: Authorization headers
"""
return {"Authorization": f"token {token}"} if token else {}
|
79b47ed3c81f2162ade773db9fc0d933d9f00942
| 150,900 |
def hook_TakeOver(state):
"""Implements `DeepState_TakeOver`, returning 1 to indicate that it was
hooked for symbolic execution."""
return 1
|
a9bc8000a9873f655cb361b0df4a67dffbb99742
| 160,465 |
def _theoretical_logit_grad(x):
"""Reference implementation for the gradient of the logit function."""
return 1 / (x * (1.0 - x))
|
6baf81891db30961b5e35d6f2e98a5397bca797f
| 294,479 |
def chrtonam(c):
"""Find unique elements in an iterable and in what order they appear.
Return a 3-tuple (uniqelements, eltoindex, map):
uniqelements -- elements in order of first appearance
eltoindex -- map from elements to their indices in uniqelements;
equivalent to dict((el, i) for (i, el) in uniqelements)
map -- indices of uniqelements in the order in which they appeared,
such that c[i] = uniqelements[map[i]]
"""
d = {}
nam = []
for tile in c:
d.setdefault(tile, len(d))
nam.append(d[tile])
chrdata = [None] * len(d)
for (tile, tn) in d.items():
chrdata[tn] = tile
return chrdata, d, nam
|
38d901196a81ebdf29441fc4bfde64a76929d4a3
| 488,055 |
def get_computers_with_policy_and_relay_list(api, configuration, api_version, api_exception, relay_list_id, policy_id):
""" Search for computers that are assigned to a specific policy and relay list.
:param api: The Deep Security API modules.
:param configuration: Configuration object to pass to the api client.
:param api_version: The version of the API to use.
:param api_exception: The Deep Security API exception module.
:param relay_list_id: The ID of the relay list.
:param policy_id: The ID of the policy.
:return: A Computers object that contains matching computers
"""
# Set search criteria for platform
policy_criteria = api.SearchCriteria()
policy_criteria.field_name = "policyID"
policy_criteria.numeric_test = "equal"
policy_criteria.numeric_value = policy_id
# Set search criteria for relay
relay_criteria = api.SearchCriteria()
relay_criteria.field_name = "relayListID"
relay_criteria.numeric_test = "equal"
relay_criteria.numeric_value = relay_list_id
# Create the search filter
search_filter = api.SearchFilter(None, [policy_criteria, relay_criteria])
# Include the minimum information in the returned Computer objects
expand = api.Expand(api.Expand.none)
# Perform the search
computers_api = api.ComputersApi(api.ApiClient(configuration))
return computers_api.search_computers(api_version, search_filter=search_filter, expand=expand.list(), overrides=False)
|
4fd4603cea8c1a2484daa582d74982ef756019f3
| 136,955 |
def is_unitless(ds, variable):
"""
Returns true if the variable is unitless
Note units of '1' are considered whole numbers or parts but still represent
physical units and not the absence of units.
:param netCDF4.Dataset ds: An open netCDF dataset
:param str variable: Name of the variable
"""
units = getattr(ds.variables[variable], "units", None)
return units is None or units == ""
|
8574327f657e67d2165f247a8892c38eab89784f
| 648,232 |
def encode(tokenizer, question, context):
"""encodes the question and context with a given tokenizer"""
encoded = tokenizer.encode_plus(question, context)
return encoded["input_ids"], encoded["attention_mask"]
|
b821896a42414d9df617fd9c8a2456d26f23e724
| 414,117 |
from typing import Iterable
def scheduler_story(keys: set, transition_log: Iterable) -> list:
"""Creates a story from the scheduler transition log given a set of keys
describing tasks or stimuli.
Parameters
----------
keys : set
A set of task `keys` or `stimulus_id`'s
log : iterable
The scheduler transition log
Returns
-------
story : list
"""
return [t for t in transition_log if t[0] in keys or keys.intersection(t[3])]
|
7b6a3bb377ff962acdd9bd47855a83e388fc56be
| 116,993 |
def splitstring(string, split_character=' ', part=None):
"""
Split a string based on a character and get the parts as a list
string:
The string to split
split_character:
The character to split for the string. The default is ' '.
part:
Get a specific part of the list. The default is None.
"""
if part is None:
return str(string).split(split_character)
return str(string).split(split_character)[part]
|
9bf12cbb989380ccab8a3dd88bf12490ad1bf0c3
| 297,260 |
def parse_data(data, objects_format, separator=" "):
"""
Takes a list of strings and a list of objects format and returns a list of objects formatted according to the objects format.
Example:
parse_data(['forward 10', 'left 90', 'right 90'], [{'key': 'command, 'format': str}, {'key': 'value', 'format': int}], " ") =>
[{'command': 'forward', 'value': 10}, {'command': 'left', 'value': 90}, {'command': 'right', 'value': 90}]
"""
result = []
for line in data:
line_result = {}
for i, value in enumerate(line.split(separator)):
line_result[objects_format[i]["key"]] = objects_format[i]["format"](value)
result.append(line_result)
return result
|
55702626a122957834566073f32ba2612bb4fbb5
| 537,334 |
from typing import Dict
from typing import Any
def _make_pod_envconfig(
config: Dict[str, Any], relation_state: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate pod environment configuration.
Args:
config (Dict[str, Any]): configuration information.
Returns:
Dict[str, Any]: pod environment configuration.
"""
return {
# General configuration
"ALLOW_ANONYMOUS_LOGIN": "yes",
"GIN_MODE": config["gin_mode"],
"NRF_HOST": relation_state["nrf_host"],
}
|
3f41f89f9bdf25ab6a75c5206943df5437092d1c
| 74,376 |
def ClusterKey(cluster, key_type):
"""Return a cluster-generated public encryption key if there is one.
Args:
cluster: Cluster to check for an encryption key.
key_type: Dataproc clusters publishes both RSA and ECIES public keys.
Returns:
The public key for the cluster if there is one, otherwise None
"""
master_instance_refs = cluster.config.masterConfig.instanceReferences
if not master_instance_refs:
return None
if key_type == 'ECIES':
return master_instance_refs[0].publicEciesKey
return master_instance_refs[0].publicKey
|
073ce9fb790b8fcdaabded2c8f9a4ec649f10850
| 643,752 |
def best_neighbor_match_check(k_neighbors_labels):
""" Returns the value with the most repetitions in `k_neighbors`. """
k_neighbors_labels.sort()
longest_repeats = current_repeats = 0
current_value = best_match_value = k_neighbors_labels[0]
for value in k_neighbors_labels:
if value == current_value:
current_repeats += 1
else:
current_repeats = 1
current_value = value
if longest_repeats < current_repeats:
longest_repeats = current_repeats
best_match_value = current_value
return best_match_value
|
d56ab1a5683768767da2bc00306e1aaa3665343a
| 441,227 |
def file_to_string(sql_path):
"""Converts a SQL file holding a SQL query to a string.
Args:
sql_path: String containing a file path
Returns:
String representation of a file's contents
"""
with open(sql_path, 'r') as sql_file:
return sql_file.read()
|
f63542f756ac85efdb1ec82ec9ed4f629e548fee
| 609,970 |
import torch
def compute_distances(x, n_particles, n_dimensions, remove_duplicates=True):
"""
Computes the all distances for a given particle configuration x.
Parameters
----------
x : torch.Tensor
Positions of n_particles in n_dimensions.
remove_duplicates : boolean
Flag indicating whether to remove duplicate distances
and distances be.
If False the all distance matrix is returned instead.
Returns
-------
distances : torch.Tensor
All-distances between particles in a configuration
Tensor of shape `[n_batch, n_particles * (n_particles - 1) // 2]` if remove_duplicates.
Otherwise `[n_batch, n_particles , n_particles]`
"""
x = x.reshape(-1, n_particles, n_dimensions)
distances = torch.cdist(x, x)
if remove_duplicates:
distances = distances[:, torch.triu(torch.ones((n_particles, n_particles)), diagonal=1) == 1]
distances = distances.reshape(-1, n_particles * (n_particles - 1) // 2)
return distances
|
e6d39e9855c57f5a926054df032cd70ba58d38e9
| 87,573 |
def combine(intervals):
"""combine overlapping and adjacent intervals.
>>> combine([(10,20), (30,40)])
[(10, 20), (30, 40)]
>>> combine([(10,20), (20,40)])
[(10, 40)]
>>> combine([(10,20), (15,40)])
[(10, 40)]
"""
if not intervals:
return []
new_intervals = []
intervals.sort()
first_from, last_to = intervals[0]
for this_from, this_to in intervals[1:]:
if this_from > last_to:
new_intervals.append((first_from, last_to))
first_from, last_to = this_from, this_to
continue
if last_to < this_to:
last_to = this_to
new_intervals.append((first_from, last_to))
return new_intervals
|
e30fc920ab5d1174551412603d2bb95a865438e0
| 466,301 |
import math
def _atand(v):
"""Return the arc tangent (measured in in degrees) of x."""
return math.degrees(math.atan(v))
|
c395efa781f3ea6aa0d6ab6926a09325cd7ea0ea
| 147,524 |
def get_key_padding_mask(padded_input, pad_idx):
"""Creates a binary mask to prevent attention to padded locations.
Arguements
----------
padded_input: int
Padded input.
pad_idx:
idx for padding element.
Example
-------
>>> a = torch.LongTensor([[1,1,0], [2,3,0], [4,5,0]])
>>> get_key_padding_mask(a, pad_idx=0)
tensor([[False, False, True],
[False, False, True],
[False, False, True]])
"""
if len(padded_input.shape) == 4:
bz, time, ch1, ch2 = padded_input.shape
padded_input = padded_input.reshape(bz, time, ch1 * ch2)
key_padded_mask = padded_input.eq(pad_idx).to(padded_input.device)
# if the input is more than 2d, mask the locations where they are silence
# across all channels
if len(padded_input.shape) > 2:
key_padded_mask = key_padded_mask.float().prod(dim=-1).bool()
return key_padded_mask.detach()
return key_padded_mask.detach()
|
234d5f947b7042c5edad68e9b8162e4bbf6963f3
| 20,113 |
def rank_features(explanation):
""" Given an explanation of type (name, value) provide the ranked list of feature names according to importance
Parameters
----------
explanation : list
Returns
----------
List contained ranked feature names
"""
ordered_tuples = sorted(explanation, key=lambda x : abs(x[1]), reverse=True)
results = [tup[0] if tup[1] != 0 else ("Nothing shown",0) for tup in ordered_tuples]
return results
|
f1d14296434f800fc03313cb447a44a2c11ea123
| 661,727 |
def interval_width(interval):
"""Returns half the width of an interval, given by a list"""
return (interval[1]-interval[0])/2+(interval[1]+interval[0])/2
|
77147c99368ef5591cd7a3dc97badde9a21d17e9
| 328,397 |
def uniqify(seq): # Dave Kirby
"""
Return only unique items in a sequence, preserving order
:param list seq: List of items to uniqify
:return list[object]: Original list with duplicates removed
"""
# Order preserving
seen = set()
return [x for x in seq if x not in seen and not seen.add(x)]
|
a1a15b06f2c632c9a95dca7b687177e264e5551e
| 102,491 |
from typing import Union
def _create_table_row(key: str, value: Union[str, int], highlight: bool = False) -> str:
"""
Create table row for stats panel
"""
template_stats_data = """
<tr style="border-bottom: 1px solid;">
<th style="text-align: left">{key}</th>
<td style="text-align: left">{value}</td>
</tr>
"""
template_stats_data_red = """
<tr style="color: #f00; border-bottom: 1px solid;">
<th style="text-align: left">{key}</th>
<td style="text-align: left">{value}</td>\
</tr>
"""
return (
template_stats_data_red.format(key=key, value=value)
if highlight
else template_stats_data.format(key=key, value=value)
)
|
362154b67151f9f6c1d996c1e9ee67cbcf8b7ea3
| 61,313 |
def dict_to_list(dictionary, order_list):
""" Create a list from dictionary, according to ordering in order_list """
#assert sorted(order_list) == sorted(dictionary.keys())
wc_list = []
for wc_name in order_list:
wc_list.append(dictionary[wc_name])
return wc_list
|
8d61f8fe2729ab6cfec0258771180d7106b372ac
| 232,041 |
import requests
def make_request(endpoint):
"""
Make a request to the given URL and return the response.
"""
return requests.get(
f"https://api.audioboom.com{endpoint}",
# The API needs version specifying
headers={'Accept': 'application/json; version=1'}
).json()["body"]
|
8811fcf685980e8bc043bd6cfeab9942942a39fa
| 424,941 |
from typing import List
def list_squares(n: int) -> List[int]:
"""Generates a list of squares of numbers from 0 to n using list comprehension.
doctests:
>>> list_squares(2)
[0, 1, 4]
>>> list_squares(5)
[0, 1, 4, 9, 16, 25]
"""
x = [i ** 2 for i in range(0, n + 1)]
return x
|
e88dc5807fb81a39d48f92bae5d8cb692769861c
| 114,480 |
def cell_trap_getter_generator(priv_attr):
""" Generates a getter function for the cell_trap property.
"""
def getter(self):
if getattr(self, priv_attr) is None:
data =\
(
self.gfpffc_bulb_1 - self.gfpffc_bulb_bg
)/self.gfpffc_bulb_bg
setattr(self, priv_attr, data)
return getattr(self, priv_attr)
return getter
|
15217adbd96ce44b361444867e5d9c6d202440f4
| 13,951 |
def set_difference(dependent,independent):
"""
This function compares two lists, and takes their set-theoretical
difference:
dependent - independent
arguments: dependent, independent
"""
return list(set(dependent)-set(independent))
|
bd7e85b53fda26378330f780e57b89c0d05d5d33
| 562,464 |
def new_value_part_2(seat: str, visible_count: int) -> str:
"""
Returns the next state for one seat.
"""
if seat == "L" and visible_count == 0:
return "#"
elif seat == "#" and 5 <= visible_count:
return "L"
else:
return seat
|
6b8dcaecfd5a62fbb8a5c9333dc8ec180cc814ca
| 654,295 |
def create_rg_azure(resourceGroup, tag, source):
"""Create Terraform Module for Azure Resource Group."""
tf_module_rg = {
"source": "%s/m-azure-rg" % source,
"resourceGroupName": resourceGroup['name'],
"resourceGroupRegion": resourceGroup['region'],
"tagEnvironment": tag
}
return tf_module_rg
|
bbde0748b54063a00004bb1590b22fb2b634b7eb
| 144,534 |
def lambda_handler(event, context):
"""
Expects input of the form:
[ [ Input, [ O1 ] ], ... [ Input, [On ] ] ]
Returns: [ O1, ... On ]
"""
return [ e[1][0] for e in event ]
|
c27ba001018491de387ecdb0b670bf01f8dfd47d
| 555,920 |
def create_tlink_attributes(reltype, id1, id2, link_id, origin):
"""Create a dictionary with tlink attibutes.
Arguments:
reltype - string
id1 - string
id2 - string
link_id - string of the form l\d+
origin - string
Returns a dictionary."""
# NOTE: this method should perhaps be moved elsewhere, possibly to
# a Tlink class
attrs = {}
if id1.startswith('e'):
attrs['eventInstanceID'] = id1
else:
attrs['timeID'] = id1
if id2.startswith('e'):
attrs['relatedToEventInstance'] = id2
else:
attrs['relatedToTime'] = id2
attrs['relType'] = reltype
attrs['lid'] = link_id
attrs['origin'] = origin
return attrs
|
032db530493ce3ace31782c1e8e9db9c045df681
| 163,636 |
def prettify_cve_announcement(cve_announcement, api_url):
"""Format a cve_announcement to be human friendly."""
return (
f"[{cve_announcement.cve_code}] {cve_announcement.content}\n"
f"Score: {cve_announcement.score}\n"
f"Exploit code maturity: {cve_announcement.exploit_code_maturity}\n"
f"Link: {api_url}/cve_announcements/{cve_announcement.cve_code}\n"
)
|
0a8d8890954703e4aaf47aecf7159b9ecdc38822
| 429,390 |
def _autoname_plots(plotlist, sequential=False):
"""
Automatically name any plots that were not given a name by the user.
"""
namelist = []
count = 0
for plot in plotlist:
if plot.get('type') == 'figure':
continue
name = plot.get('axes')
if name is None:
if sequential:
num = count
else:
num = 0
name = '_autoname_{:02d}'.format(num)
count += 1
plot['axes'] = name
namelist.append(name)
# Extract the unique names in order.
namelist = list(dict.fromkeys(namelist))
return namelist
|
d34f409e7a8e6bb6e931c2680dd68a785e4082b1
| 545,218 |
def maybe_add_slash(path):
"""Add a final trailing slash if it wasn't there already"""
with_trailing_slash = path if path.endswith('/') else path + '/'
return with_trailing_slash
|
117f670b47ad6e6d1df26c54d09ed0c771c2d273
| 582,437 |
def expected_error_node_kwargs(node_kwargs):
"""Return the expected error message depending on node_kwargs."""
if 's' in node_kwargs:
return "Please use 'node_size' and not 'node_kwargs'"
elif 'c' in node_kwargs:
return "Please use 'node_color' and not 'node_kwargs'"
|
b935445f34542a8257c76194fae55fa188a2e31c
| 489,283 |
def del_from_dict(dictionary, srcip, dstip):
"""Removes an entry from the given dictionary.
Assumed is that srcip and dstip exist in the dictionary.
:param dictionary: dictionary to remove an entry from
:type dictionary: dictionary
:param srcip: source ip
:type srcip: string
:param dstip: destination ip
:type dstip: string
:return: dictionary
"""
if len(dictionary[srcip]['targets']) <= 1:
del dictionary[srcip]
else:
del dictionary[srcip]['targets'][dstip]
return dictionary
|
2833371c38ff09cb4f9a7cc7e0af16b41973c3f6
| 275,205 |
def create_function_from_source(function_source, imports=None):
"""Return a function object from a function source
Parameters
----------
function_source : unicode string
unicode string defining a function
imports : list of strings
list of import statements in string form that allow the function
to be executed in an otherwise empty namespace
"""
ns = {}
import_keys = []
try:
if imports is not None:
for statement in imports:
exec(statement, ns)
import_keys = list(ns.keys())
exec(function_source, ns)
except Exception as e:
msg = "Error executing function\n{}\n".format(function_source)
msg += (
"Functions in connection strings have to be standalone. "
"They cannot be declared either interactively or inside "
"another function or inline in the connect string. Any "
"imports should be done inside the function."
)
raise RuntimeError(msg) from e
ns_funcs = list(set(ns) - set(import_keys + ["__builtins__"]))
assert len(ns_funcs) == 1, "Function or inputs are ill-defined"
func = ns[ns_funcs[0]]
return func
|
2fa6c5ed6778270a4a2b1c2e02c0203a3d463e10
| 637,299 |
def slice_z_center(mesh):
"""Slice mesh through center in z normal direction, move to z=0."""
slice_mesh = mesh.slice(normal='z')
slice_mesh.translate((0, 0, -slice_mesh.center[-1]), inplace=True)
return slice_mesh
|
3278fec43db960698866443bc10e79a260b5eeb2
| 299,652 |
import zlib
def decompress_data(data):
"""
Decompresses the data with zlib
:param data:
:return:
"""
return zlib.decompress(data)
|
6dd778eae0331291d979d82a8fe9aad17a92e48a
| 557,633 |
def isblankstr(line):
"""
check for blank string
:param line:
:return bool:
"""
return len(line.strip()) == 0
|
0719369d0d83ca0b36bc8969ccea541b122b9906
| 382,278 |
def iterable_response_to_dict(iterator):
""" Convert Globus paginated/iterable response object to a dict """
output_dict = {"DATA": []}
for item in iterator:
dat = item
try:
dat = item.data
except AttributeError:
pass
output_dict["DATA"].append(dat)
return output_dict
|
9764718a922a310b2892e1896657dd2af24e7a8f
| 47,912 |
def _check_size(node, size=0):
"""Recursive function, visits all nodes and counts number of elements. Return
the number of elements."""
if node is None:
return size
else:
size += 1
size = _check_size(node.left_node, size) # Go down the left tree
size = _check_size(node.right_node, size) # Go down the right tree
return size
|
d7693cc1caba672a1e6f7f5a527d731ce3dd9690
| 355,539 |
def GetUpdatesUrl(project_name, max_results=1000):
"""Construct the URL to the issues updates for the given project."""
return ('http://code.google.com/feeds/p/%s'
'/issueupdates/basic?max-results=%d' %
(project_name, max_results))
|
b0b369420391a8faf2cb99e0a2398475e9c022ed
| 497,673 |
from pathlib import Path
def _get_data_size_of_dir(path: Path) -> float:
"""Returns the data volume / size of a directory given at path.
Parameters
----------
path : Path
Path for which the size should be determined
Returns
-------
float
Value between 0 and the max size of your disk in mega bytes.
"""
return round(sum(f.stat().st_size for f in path.glob("**/*") if f.is_file()) / 1024**2, 4)
|
4e37752889f67837584b9b8859d131765238dc51
| 537,251 |
from typing import Type
from typing import Any
from typing import Set
def _get_all_subclasses(cls: Type[Any]) -> Set[Type[Any]]:
"""Returns a list of all classes that inherit directly or indirectly from the given class."""
subclasses = set()
def recurse(cl: Type[Any]) -> None:
for subclass in cl.__subclasses__():
subclasses.add(subclass)
recurse(subclass)
recurse(cls)
return subclasses
|
3ae35c1e5f967211ae2865b51c536d4e68a1a92b
| 443,880 |
def coco2pascal(box):
"""Convert bounding box coordinates from Coco format to Pascal VOC.
Go from [x, y, width, height] to [x1, y1, x2, y2].
"""
x, y, width, height = box
return [x, y, x + width, y + height]
|
484b6a51e68d98df6b13b487cb0d7989c81765e4
| 213,171 |
def merge(ll, rl):
"""Merge given two lists while sorting the items in them together
:param ll: List one (left list)
:param rl: List two (right list)
:returns: Sorted, merged list
"""
res = []
while len(ll) != 0 and len(rl) != 0:
if ll[0] < rl[0]:
res.append(ll.pop(0))
else:
res.append(rl.pop(0))
if ll:
res = res + ll
if rl:
res = res + rl
return res
|
0b88eea3733d0ac2739faff57b36faf6841d0446
| 663,103 |
def filtrar_cortas(texto, chars=0):
"""Filtra líneas en texto de longitud chars o inferior.
Parameters
----------
texto : str
Texto que se quiere filtrar.
chars : int
Mínimo número de caracteres en una línea de texto.
Returns
-------
str
Texto filtrado.
"""
filtrado = ""
for linea in texto.splitlines():
if len(linea) > chars:
filtrado += linea + "\n"
return filtrado
|
3a1568f94e31965f962a0a969271154555bf24ec
| 471,601 |
def get_numeric_columns(df):
"""
# Returns a list of numeric columns of the dataframe df
# Parameters:
# df (Pandas dataframe): The dataframe from which extract the columns
# Returns:
# A list of columns names (strings) corresponding to numeric columns
"""
numeric_columns = list(df._get_numeric_data().columns)
return numeric_columns
|
6ec1cb8d1a8dd9c4cb49f17257b137e9ec0d4210
| 654,222 |
def dotp(a, b):
"""Dot product of two equal-dimensioned vectors"""
return sum(aterm * bterm for aterm,bterm in zip(a, b))
|
502fba46bf2284a1b7d48572c38cef1d1a188c11
| 576,307 |
def line_plot(ax, x, ys, labels=None, styles=None, param_dict=None):
"""
A helper function to make a line graph
Parameters
----------
ax : Axes
The axes to draw to
x : array
The x data
ys : array
The y data
labels : list
The ys labels
param_dict : dict
Dictionary of kwargs to pass to ax.plot
Returns
-------
out : list
list of artists added
"""
for i, y in enumerate(ys):
if labels is not None:
if styles is not None:
ax.plot(x, y, label=labels[i], linestyle=styles[i])
else:
ax.plot(x, y, label=labels[i])
else:
ax.plot(x, y)
if param_dict is not None:
ax.set_xlabel(param_dict['xlabel']) # Add an x-label to the axes.
ax.set_ylabel(param_dict['ylabel']) # Add a y-label to the axes.
ax.set_title(param_dict['title']) # Add a title to the axes.
ax.legend() # Add a legend
return ax
|
837867df9029f9a1c78cf448079e19e3ba9a17b3
| 627,669 |
def reconstruction_loss(reconstruction, orig):
"""
Computes the reconstruction loss
:param reconstruction: batch x im_size
:param orig: batch x im_ht x im_wd
:return rloss: The reconstruction loss
"""
rloss = ((reconstruction - orig.view(orig.size(0),
orig.size(1), -1)) ** 2).mean(-1)
rloss = rloss.mean()
return rloss
|
24e25a08f35ff9724ace694f08d8c2f7ce597d01
| 309,124 |
def generate_uniform_prior(params, indent=4):
"""
Generates the JAGS prior declarations for a list of parameters. The
strings are generated using a specifiable number of indentation
whitespaces.
"""
prior_strings = []
for p in params:
prior_strings.append(
"{}{} ~ dunif(0, 1)".format("".join([" "] * indent), p))
return prior_strings
|
a1e3d670466643f7f18e25296d974218c874218e
| 159,498 |
def aggregate_values_from_key(host_state, key_name):
"""Returns a set of values based on a metadata key for a specific host."""
aggrlist = host_state.aggregates
aggregate_vals = set()
for aggr in aggrlist:
if key_name in aggr.metadata:
aggregate_vals.add(aggr.metadata[key_name])
return aggregate_vals
|
e720c5aec3af230edfd0f3180357be9c858f9ba9
| 500,513 |
def compute_frequencies(words):
"""
Args:
words: list of words (or n-grams), all are made of lowercase characters
Returns:
dictionary that maps string:int where each string
is a word (or n-gram) in words and the corresponding int
is the frequency of the word (or n-gram) in words
"""
Bdict = {} #Bdict is a dictionary that maps each string with its frequency
for i in words:
if i in Bdict.keys():
Bdict[i] += 1
else:
Bdict[i] = 1
return Bdict
|
47f6c1f717a080277ea13fd1255def1bb444b2ea
| 174,983 |
def is_int(s : str) -> bool:
"""
Check if string is an int.
"""
try:
float(s)
except Exception as e:
return False
return float(s).is_integer()
|
f83b1c7c683807397880f685cf6913d2270f5252
| 100,808 |
def url_from_id(id):
"""Returns URL of article with given ID"""
return "https://www.ncbi.nlm.nih.gov/pubmed/" + id
|
3dff22b1c8f20f3379de682af01d768ef75412ca
| 225,632 |
def get_environment(certificate):
"""Return environment associated with certificate. """
STAGING_ENV = "Fake LE Intermediate X1"
for component in certificate.get_issuer().get_components():
if component[0] == 'CN':
if component[1] == STAGING_ENV:
return 'staging'
else:
return 'production'
return None
|
e83379a87b30b15cbe58e6909850ad33a556b63a
| 396,102 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.