content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def input_valid_number(max: int) -> int: """ input a valid number from 1 through max anything else is rejected and asked for again """ while True: try: nbr = int(input(f"Enter the number of counted domains : (1-{max}): ")) except ValueError: print(f"Sorry, i need an integer between 1 and {max}") continue if nbr < 1: print("Sorry, your response must not less than 1.") continue if nbr > max: print(f"Sorry, your response must not be more than {max}") continue else: # valid number entered break return nbr
6a4846f2d93318577692eb861e3a568721c55102
235,606
def clean_ad_id(ad_id): """Clean the ad_id.""" if len(ad_id) > 5: ad_id = ad_id[6:] return int(ad_id)
fa503bf70cb8a7332941f617487bc20be737294e
275,493
def try_dict(value): """Try converting objects first to dict, then to str so we can easily compare them against JSON.""" try: return dict(value) except (ValueError, TypeError): return str(value)
9d36b9488e46b2b2bc30b8c007fa97f59315b930
378,443
from typing import List import re def parse_list(arg: str) -> List[str]: """ Parse script args containing a list of values. Splits tokens by any non-alphanumeric character. """ return re.split(r'\W+', arg)
da9bc5d3beec9f88c2fcbee59f35f6d3bfb548dc
338,902
def _input_mock(promp_message: str) -> str: """Allows 'input' to be mocked with nose test.""" # https://stackoverflow.com/questions/25878616/attributeerror-none-does-not-have-the-attribute-print return input(promp_message)
6ecffcf06984cb477c52edefec42416774ee248d
387,858
def is_cql(cql_collections): """ Checks whether any colelction resource supports feature filter :param collections: collection object :returns: boolean value """ for _, v in cql_collections.items(): if v: return True return False
01791854cf0fe7147b86f5d54ca1123712fa0b61
566,892
def deg_to_dms(deg): """Convert decimal degrees to (deg,arcmin,arcsec)""" d = int(deg) deg-=d m = int(deg*60.) s=deg-m//60 return d,m,s
c5db284ace27822d9090e5e4ecfd99e97f497198
86,987
import sqlite3 def create_sqlite_db_connection (filename): """ Create a connection to the specified SQLite database. """ print("Creating SQLite DB connection...") return sqlite3.connect(filename)
d4fa82594e777b9f4d330b95ce505da26816df6f
154,980
def transpose(arr): """Transpose array""" return arr.T
cbfe4e932a981ed370b2de73b0188d3da25ad9ec
389,047
def catch(func, *args, verbose=False): """Error handling for list comprehensions. In practice, it's recommended to use the higher-level robust_comp() function which uses catch() under the hood. Parameters ----------- func: function *args: any type Arguments to be passed to func. verbose: bool If True, print the error message should one occur. Returns -------- any type: If the function executes successfully, its output is returned. Otherwise, return None. Examples --------- [catch(lambda x: 1 / x, i) for i in range(3)] >>> [None, 1.0, 0.5] # Note that the filtering method shown below also removes zeros which is # okay in this case. list(filter(None, [catch(lambda x: 1 / x, i) for i in range(3)])) >>> [1.0, 0.5] """ try: return func(*args) except Exception as e: if verbose: print(e) return
5eeb3e66e4cab1131bfe87ec3b3beb9db592834b
266,175
import typing def extgcd(a: int, b: int) -> typing.Tuple[int, int, int]: """ Обобщённый алгоритм Евклида. Возвращает наибольший общий делитель и их коэффициенты Безу. Оба числа должны быть натуральными. Пример: egcd(12, 8) -> (4, 1, -1), при том 4 = 1 * 12 - 1 * 8 """ if a <= 0 or b <= 0: raise ValueError("Числа могут быть только натуральными") # if a < b: # a, b = b, a # Ломает алгоритм u1, u2, u3 = a, 1, 0 v1, v2, v3 = b, 0, 1 while v1: q = u1 // v1 t1, t2, t3 = u1 % v1, u2 - q * v2, u3 - q * v3 u1, u2, u3 = v1, v2, v3 v1, v2, v3 = t1, t2, t3 return u1, u2, u3
9fbeb2ebf9dcfbf4bcb7e396a59bb580feb61ac6
423,225
async def readyz(): """ Readyz endpoint. """ return {"status": "ready"}
7f089fc63ee74ce8eec872d80eeb5129fc267272
626,816
import re def convert_to_snake_case(name: str) -> str: """ Convert a given string to snake_case. Converts a given string to snake_case from camel case or kebab case >>> normalize_field_name('SomeCamelCase') 'some_camel_case' >>> normalize_field_name('sample-kebab-case') 'sample_kebab_case' """ return re.sub(r"(?<!^)(?=[A-Z])", "_", name).replace("-", "_").lower()
98d5ed829eae7501d48ab83ada76ed24510fe5f3
403,591
import requests def get_seed(pulse_url): """ Given a pulse url does a GET request to the Random UChile API to get the seed given by that pulse. :param pulse_url: String representing the URL of the pulse. :return: A 512-bit random string that can be used as seed by a pseudo random generator. """ response = requests.get(pulse_url) return response.json()['pulse']['outputValue']
411746e0768599ea6d3e4fc23a5efc7482a18373
47,171
def eval_f_0123(f): """Evaluates the function f=f(x) at positions x=0, x=1, x=2 and x=3. The function should return the list [f(0), f(1), f(2), f(3)].""" return [f(x) for x in range(0, 4)]
f5da053f9f284bbe2973595083a4d1ba530080f4
356,060
from itertools import cycle def encrypt_with_xor(message, key): """Encrypt message using xor cipher with key. The ascii code for each character of message is returned after the xor function is applied to each bit of the character with the ascii code of the cycling key. The algorithim is symmetric, the same process with the same key will both encrypt and decrypt. """ coded_message = '' for (message_char, key_char) in zip(message, cycle(key)): coded_char = chr(ord(message_char) ^ ord(key_char)) coded_message += coded_char return coded_message
b10d12d66161b4ba9aa8fa22f22d08e23a2c7723
406,958
def _is_ascii_tipsy(f): """ Checks if a tipsy auxiliary array is ascii """ if isinstance(f, str): with open(f, 'rb') as fstream: return _is_ascii_tipsy(fstream) ascii = True try: l = int(f.readline()) except ValueError: ascii = False return ascii
07c0108c34f53d76919389a938ae67e1bf693089
131,979
import secrets import hashlib def scramble(password: str): """Hash and salt the given password""" salt = secrets.token_hex(16) return hashlib.sha512((password + salt).encode('utf-8')).hexdigest()
184163db0afadd8eaa36132b43ad653826ed710d
479,271
import random def des_sky_brightness(bands=''): """ Sample from the distribution of single epoch sky brightness for DES """ # Figure 4 in https://arxiv.org/pdf/1801.03181.pdf dist = {'g': {'VALUES': [21.016, 21.057, 21.106, 21.179, 21.228, 21.269, 21.326, 21.367, 21.424, 21.465, 21.522, 21.571, 21.62, 21.677, 21.717, 21.774, 21.823, 21.872, 21.921, 21.97, 22.019, 22.068, 22.117, 22.174, 22.215, 22.272, 22.321, 22.378, 22.427, 22.476], 'WEIGHTS': [0.0, 0.0, 0.001, 0.001, 0.001, 0.001, 0.002, 0.003, 0.005, 0.007, 0.009, 0.012, 0.016, 0.023, 0.034, 0.048, 0.063, 0.073, 0.081, 0.093, 0.107, 0.099, 0.087, 0.076, 0.061, 0.05, 0.027, 0.013, 0.005, 0.0]}, 'r': {'VALUES': [20.16, 20.209, 20.266, 20.323, 20.372, 20.421, 20.47, 20.519, 20.576, 20.625, 20.674, 20.715, 20.772, 20.821, 20.87, 20.918, 20.976, 21.024, 21.073, 21.122, 21.171, 21.22, 21.269, 21.326, 21.375, 21.424, 21.473, 21.522, 21.571, 21.62, 21.668, 21.726], 'WEIGHTS': [0.0, 0.0, 0.001, 0.001, 0.002, 0.002, 0.005, 0.008, 0.011, 0.011, 0.012, 0.02, 0.023, 0.034, 0.043, 0.046, 0.056, 0.07, 0.075, 0.083, 0.093, 0.095, 0.092, 0.078, 0.057, 0.041, 0.024, 0.012, 0.004, 0.001, 0.0, 0.0]}, 'i': {'VALUES': [18.921, 18.978, 19.027, 19.076, 19.125, 19.174, 19.223, 19.272, 19.321, 19.378, 19.418, 19.476, 19.524, 19.573, 19.622, 19.671, 19.728, 19.777, 19.826, 19.875, 19.924, 19.973, 20.022, 20.071, 20.12, 20.177, 20.226, 20.274, 20.323, 20.372, 20.421, 20.478, 20.527, 20.576, 20.617, 20.674, 20.723, 20.772, 20.829], 'WEIGHTS': [0.0, 0.0, 0.002, 0.002, 0.001, 0.002, 0.003, 0.005, 0.013, 0.017, 0.018, 0.026, 0.029, 0.035, 0.036, 0.047, 0.053, 0.067, 0.078, 0.084, 0.073, 0.073, 0.063, 0.05, 0.045, 0.039, 0.031, 0.026, 0.021, 0.018, 0.014, 0.009, 0.009, 0.003, 0.002, 0.002, 0.001, 0.0, 0.0]}, 'z': {'VALUES': [17.715, 17.772, 17.804, 17.861, 17.918, 17.976, 18.024, 18.073, 18.122, 18.171, 18.228, 18.277, 18.326, 18.375, 18.424, 18.473, 18.522, 18.579, 18.628, 18.677, 18.726, 18.774, 18.823, 18.872, 18.921, 18.97, 19.019, 19.076, 19.125, 19.174, 19.231, 19.264, 19.329, 19.37, 19.427, 19.467, 19.524, 19.573, 19.63], 'WEIGHTS': [0.0, 0.0, 0.0, 0.001, 0.001, 0.004, 0.007, 0.008, 0.012, 0.014, 0.015, 0.022, 0.028, 0.028, 0.033, 0.045, 0.052, 0.058, 0.064, 0.073, 0.082, 0.078, 0.069, 0.059, 0.051, 0.044, 0.036, 0.024, 0.019, 0.018, 0.017, 0.015, 0.01, 0.005, 0.002, 0.002, 0.002, 0.001, 0.0]}, 'Y': {'VALUES': [17.062, 17.128, 17.177, 17.226, 17.274, 17.323, 17.372, 17.421, 17.47, 17.527, 17.576, 17.625, 17.674, 17.723, 17.772, 17.821, 17.878, 17.927, 17.976, 18.024, 18.073, 18.13, 18.179, 18.228, 18.277, 18.326, 18.375, 18.424, 18.473, 18.53, 18.579, 18.628, 18.668, 18.726, 18.774, 18.823, 18.88, 18.929, 18.97, 19.027, 19.076], 'WEIGHTS': [0.001, 0.002, 0.002, 0.003, 0.006, 0.008, 0.011, 0.015, 0.02, 0.027, 0.032, 0.041, 0.051, 0.051, 0.05, 0.05, 0.056, 0.066, 0.072, 0.068, 0.056, 0.047, 0.042, 0.033, 0.032, 0.029, 0.024, 0.022, 0.021, 0.02, 0.014, 0.011, 0.006, 0.003, 0.002, 0.001, 0.001, 0.0, 0.002, 0.001, 0.0]} } return [random.choices(dist[b]['VALUES'], dist[b]['WEIGHTS'])[0] for b in bands.split(',')]
0b5c1b4a084d640d441b7911dc68462d66a5cd1e
568,539
def string_length_fraction(str_list_1, str_list_2): """ Calculate the percentage difference in length between two strings, such that s1 / (s1 + s2) :param str_list_1: List of strings. :param str_list_2: List of strings. :return: Float (0 to 1). """ str1_size = sum(sum(len(j.strip()) for j in i) for i in str_list_1) str2_size = sum(sum(len(j.strip()) for j in i) for i in str_list_2) return str1_size/(str1_size + str2_size)
b5cad771b411e7eeea61761442871addff71aa12
400,289
def read_cmd(argv): """ splits a list of strings `'--flag=val'` with combined flags and args into a dict: `{'flag' : 'val'}` (lstrips the dashes) if flag `' flag '` passed without value returns for that flag: `{'flag' : True}` """ output = {} for x in argv: x = x.lstrip('-') pair = x.split('=',1) if len(pair) < 2: pair = pair + [True] output[pair[0]] = pair[1] return output
72483c5138ec85cdd35a5f20e950da24e952f7cf
560,602
def parse_str(x): """ Returns the string delimited by two characters. Example: `>>> parse_str('[my string]')` `'my string'` """ return x[1:-1] if x is not None else x
6f236c53ab373ec6e73613f9d15ba1a3a2dbaf09
564,768
def omega_red(s) -> str: """Changes string color output to red""" s = '\033[1;91m' + s + '\033[0m' return s
3c8eb04cf738e8a1e6d2f9d590b64a5ced18be5c
178,441
import inspect async def asyncfn_executor_wrapper(fn, *args, **kwargs): """ Checks if fn is a coroutine function, and if so awaits it. Else function is computed normally. Return: Function result """ return await fn(*args, **kwargs) if inspect.iscoroutinefunction(fn) else fn(*args, **kwargs)
3627a3988e47b8478c9eae7f8658b2f6b09e9372
85,936
def shear_impedance(vs, rho): """ Compute shear impedance. """ return vs * rho
ed679478445514a8878e35bcef1d8281082a5056
151,329
def is_self(user, other): """ Check whether `user` is performing an action on themselves :param user User: The user to check :param other User: The other user to check """ if other is None: return True return user == other
589f02aac605ec68b7d48bfed1acdcfe5600ea94
477,253
import torch def one_hot_embedding(labels: torch.Tensor, num_classes: int) -> torch.Tensor: """Embedding labels to one-hot form. :param labels: Class labels. Sized [N]. :param num_classes: Number of classes. :return: One-hot encoded labels. sized [N, #classes]. """ eye = torch.eye(num_classes, device=labels.device) return eye[labels]
f9765a5d836fa62a718c4333db6f951772e73535
358,772
import string def strip_whitespace_and_punctuation(word: str): """ Static function to strip all whitespace and punctuation from a word. Also makes all letters lowercase. :param word: A string containing the word to strip whitespace and punctuation from. :return: A string containing the word, now all lowercase and with all whitespace and punctuation stripped out. """ word = word.translate({ord(c): None for c in string.whitespace}) word = word.translate(str.maketrans('', '', string.punctuation.join("“.”’"))) word = word.lower() return word
b8cd12e4a9500c5f8048bc828ee4d65217c060e6
496,106
def calculatechroma(color): """Returns chroma value of color """ chroma = max(color.rgbfraction) - min(color.rgbfraction) return chroma
e7288b3cc4aa9141c185664b1cb55abf714eef86
615,632
def nice_join(seq, sep=", "): """ Join together sequences of strings into English-friendly phrases using the conjunction ``or`` when appropriate. Args: seq (seq[str]) : a sequence of strings to nicely join sep (str, optional) : a sequence delimiter to use (default: ", ") Returns: a joined string Examples: >>> nice_join(["a", "b", "c"]) 'a, b or c' """ seq = [str(x) for x in seq] if len(seq) <= 1: return sep.join(seq) else: return "%s or %s" % (sep.join(seq[:-1]), seq[-1])
c6fe5afb0e495ed34468cf4919ab4fe7ddbf937b
517,285
def get_auto_start_list(cpc): """ Helper functoin that converts the 'auto-start-list' property of a CPC to a list suitable for the zhmcclient.Cpc.set_auto_start_list() method. Returns: None - if the CPC is in classic mode list, with items that are one of: - tuple(partition, post_start_delay) - tuple(partition_list, name, description, post_start_delay) """ auto_start_list = cpc.prop('auto-start-list', None) if auto_start_list is None: # CPC is in classic mode return None as_list = [] for auto_start_item in auto_start_list: if auto_start_item['type'] == 'partition': # item is a partition uri = auto_start_item['partition-uri'] delay = auto_start_item['post-start-delay'] partition = cpc.partitions.resource_object(uri) as_item = (partition, delay) as_list.append(as_item) if auto_start_item['type'] == 'partition-group': # item is a partition group name = auto_start_item['name'] description = auto_start_item['description'] delay = auto_start_item['post-start-delay'] partitions = [] for uri in auto_start_item['partition-uris']: partition = cpc.partitions.resource_object(uri) partitions.append(partition) as_item = (partitions, name, description, delay) as_list.append(as_item) return as_list
8ceb8fb39ee93de0f1dd0d66bd5966bcaec3ba4b
372,650
def _get_qubit(store, host_id, q_id, purpose, wait=0): """ Gets the data qubit received from another host in the network. If qubit ID is specified, qubit with that ID is returned, else, the last qubit received is returned. Args: store: The qubit storage to retrieve the qubit host_id (str): The ID of the host that data qubit to be returned is received from. q_id (str): The qubit ID of the data qubit to get. purpose (str): The intended use of the qubit Returns: (Qubit): Qubit received from the host with *host_id* and *q_id*. """ return store.get_qubit_from_host(host_id, q_id, purpose, wait)
4237946fcd7d4d1b4978d03711feeb21fe1569a6
377,033
def get_checklist(full_name): """ Generate a list of names that may contain the 'full_name'. Notes: Eg. if full_name looks like "a.b.c", then the list ["a.b.c", "a.*", "a.b.*", "a.b.c.*"] is generated. So either the full name itself may be found, or when full_name is included in some *-import. Args: full_name: The full module name Returns: List of possible "containers". """ if not full_name: # guard against nonsense return [] mtab = full_name.split(".") # separate components by dots checklist = [full_name] # full name is always looked up first m0 = "" for m in mtab: # generate *-import names m0 += "." + m if m0 else m checklist.append(m0 + ".*") return tuple(checklist)
5454d8c3e7ef4170f7364901e8a23bde10d2bf0a
119,887
import re def get_expected(file_name): """ Return the expected output for a given file. """ expected = [] with open(file_name) as fp: for line in fp: match = re.search(r"//.*OUT\((.*)\)", line) if match: expected.append(match.group(1)) return "\n".join(expected)
16246d084212715506979843330f1c9d534df454
455,929
def resetChapterProgress(chapterProgressDict, chapter, initRepeatLevel): """This method resets chapter progress and sets initial level for repeat routine. Args: chapterProgressDict (dict): Chapter progress data. chapter (int): Number of the chapter. initRepeatLevel (int): Initial level for repeat routine. Returns: dictionary: Return Reseted chapter progress dictionary with initial level set. """ chapterProgressDict[chapter]["status"] = "Not started" chapterProgressDict[chapter]["progress"]["current"] = 0 chapterProgressDict[chapter]["correct"] = {"correct":0, "subtotal":0, "rate":''} chapterProgressDict[chapter]["repeatLevel"] = initRepeatLevel return chapterProgressDict
e02d6e97f556a2c080c2bc273255aacedf7bb086
708,893
async def _verify_provision_request(request, params): """Verifies a received 'provision' REST command. Args: request (aiohttp.Web.Request): The request from the client. params (dict-like): A dictionary like object containing the REST command request parameters. Returns: (boolean, str): A boolean indicating if the request is valid. The other parameter is an error message if the boolean is True, and is None otherwise. """ if not params: return False, "ERROR: Request parameters must not be null!" if not isinstance(params, dict): return False, "ERROR: Request parameters must be a JSON object!" if "target" not in params: return False, "ERROR: Request params requires 'target' field!" target = params["target"] if target != "sensor" and target != "group": return False, "ERROR: Invalid 'target' specified! Must be one of {'sensor', 'group'}." if target == "sensor": if "groupid" not in params: return False, "ERROR: Request params requires 'groupid' field!" try: groupid = int(params["groupid"]) except Exception: return False, "ERROR: Request parameter 'groupid' must be an integer!" if groupid <= 0: return False, "ERROR: Request parameter 'groupid' must be >= 0!" if "alias" in params: if not params["alias"]: return False, "ERROR: Request parameter 'alias' must contain at least one (1) character!" return True, None
fb8db3b3cc8aa12232997e71d5c130402cb45525
682,046
def check_gamma(combinations): """This function is used to remove element combinations for a single busbar which violate the 'One Line Constraint',(also called gamma constraint) which states: Out of the elements connected to a bus-bar, at least one of them has to be a line. Or: a bus-bar cannot have ONLY non-line elements (loads, generators) connected to it. The input to this function is a combination of elements, e.g: [('loads_id1,generators_id1), ('line_ex_id1,generators_id1'), ('line_or_id2,generators_id1')] In this example, the first combination:('loads_id1,generators_id1) violates the gamma constraint. Hence, it has to be removed. So the resulting set of combinations of elements that will be returned from this function are combs : [('line_ex_id1,generators_id1'), ('line_or_id2,generators_id1')] """ for elem in combinations: #the following loop is to remove combinations #that have ONLY two non-line elements (gamma) temp1=elem[0] temp2=elem[1] if((''.join(temp1)).find('loads_id') != -1 and (''.join(temp2)).find('generators_id') != -1): combinations.remove(elem) return combinations
756ca7460dcd34d38a9cb41ad16ced5f6036c297
394,675
import ast def get_accessed(node): """Get names, but ignore variables names to the left hand side That is to say, in case of a = b + 1 we consider b as "being accessed", while a is not. """ if isinstance(node, ast.Assign): return get_accessed(node.value) elif isinstance(node, ast.Name): return {node.id} names = set() if isinstance(node, list): for x in node: names |= get_accessed(x) else: for x in ast.iter_child_nodes(node): names |= get_accessed(x) return names
4ef89ccd5c8937ab0add5bf96957784ad034dea5
91,564
def parse_csv_header(line): """Parse the CSV header returned by TDS.""" units = {} names = [] for var in line.split(','): start = var.find('[') if start < 0: names.append(str(var)) continue else: names.append(str(var[:start])) end = var.find(']', start) unitstr = var[start + 1:end] eq = unitstr.find('=') if eq >= 0: # go past = and ", skip final " units[names[-1]] = unitstr[eq + 2:-1] return names, units
f626eb3dd46db59a953cefd16f0d50577a55e2dc
209,380
from typing import List def order_by_name(order_list: List[dict], order_name: str) -> int: """This method returns the current index of an order by its name. If the order does not exist, -1 is returned. """ for index, order in enumerate(order_list): if order['name'] == order_name: return index return -1
5466672c63b1015476c1a04261ac88052b5b191b
67,425
def RGBToLumaCCIR601(rgb): """ RGB -> Luma conversion Digital CCIR601 (gives less weight to the R and B components) :param: rgb - The elements of the array rgb are unsigned chars (0..255). :return: The luminance. """ Y = 0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2] return Y
0d7755cb3309434b35abce45c471db9d830f29ea
377,726
def memory_setting(label): """ Parse user-supplied memory setting. Converts strings into floats, representing a number of bytes. Supports the following notations. - raw integers: 1, 1000, 1000000000 - scientific notation: 1, 1e3, 1e9 - "common" notation: 1, 1K, 1G Suffixes supported: K/k, M/m, G/g, T/t. Do not include a trailing B/b. """ suffixes = { 'K': 1000.0, 'M': 1000.0 ** 2, 'G': 1000.0 ** 3, 'T': 1000.0 ** 4, } try: mem = float(label) return mem except ValueError: prefix = label[:-1] suffix = label[-1:].upper() if suffix not in suffixes.keys(): raise ValueError('cannot parse memory setting "{}"'.format(label)) try: multiplier = float(prefix) return multiplier * suffixes[suffix] except ValueError: raise ValueError('cannot parse memory setting "{}"'.format(label))
07076583847b676e1993f8ff5158fe48aa3b8765
601,545
import re def re_pick(item_list, regex_str): """ Search list, return list with items that match regex. :param item_list: list of items :param regex_str: regex string :return: list of items in item_list that match regex_str """ # compile regex str_search = re.compile(regex_str) result = [] # iterate list for item_str in item_list: # look for match match = str_search.search(item_str) # when match, add to return queue if match: result.append(item_str) return result
0b38e79a8623242c8f4566847925d4fcc15f9adb
248,405
from typing import Iterable def check_descriptor_length(descriptor, n_element): """ Checks whether the entries of a descriptor dictionary have the right length. Converts single-strings to a list of 1 element. Args: descriptor(dict): the descriptor dictionary n_element: the correct length of the descriptors Returns: bool """ for k, v in descriptor.items(): if isinstance(v, str): v = [v] if isinstance(v, Iterable) and len(v) != n_element: return False return True
63dbc3425641da0185012b297271421bf2cb9903
435,554
def max_parent_pfx_len(pfx_lengths, ipv6=False): """Computes largest parent prefix length given child prefix length(s). >>> max_parent_pfx_len([26,27,28,29]) 24 :param pfx_lengths: iterable: prefix lengths :param ipv6: bool: set to False for IPv4 prefix lengths, True for IPv6 :return: int: computed largest prefix length """ if ipv6: BIT_SIZE = 128 else: BIT_SIZE = 32 try: pfx_lengths = [int(pl) for pl in pfx_lengths] # One of the inputs is not a number. Catch and re-raise. except ValueError: raise ValueError("Only numbers are accepted.") # It only makes sense for prefix lengths to be be between 1 < pfx_len <= BIT_SIZE if any(True for pl in pfx_lengths if pl < 1 or pl > BIT_SIZE): raise ValueError( "Prefix length has to be between 1 < 'pfx_len' <= {}".format(BIT_SIZE) ) len_sum = 0 for pfx_len in pfx_lengths: len_sum += 2 ** (BIT_SIZE - int(pfx_len)) # Compute pfx len, sub 1 to adjust for sum equal to powers of 2 # In Python2 we might overflow int into long so need to get type(len_sum) pfx_len_needed = BIT_SIZE - type(len_sum).bit_length(len_sum - 1) if pfx_len_needed < 0: raise ValueError("Input prefix lengths too large to compute parent length.") return pfx_len_needed
9b563155632683cfeac3afe1554ff5f97d0d73cb
468,895
import logging def prepare_alfred_formatter(exp_id: str) -> logging.Formatter: """Returns a :class:`~logging.Formatter` with the standard alfred logging format, including experiment id. """ formatter = logging.Formatter( ("%(asctime)s - %(name)s - %(levelname)s - " f"experiment id={exp_id} - %(message)s") ) return formatter
dabfafba0065537c9182c1c8e341400c42135246
85,024
import hashlib import base64 def checksum(string): """ Base 64 checksum of MD5. Used by bisurl""" m = hashlib.md5() m.update(string.encode("utf-8")) return base64.b85encode(m.digest()).decode("utf-8")
269f67cf906226d00c9230e33f9a4d9bc778edd2
458,804
from pathlib import Path def get_logfile() -> str: """ 查找原神客户端日志文件。 :return: 日志文件地址。找不到则返回空字符串。 """ base = Path('~/AppData/LocalLow/miHoYo') for folder in ('原神', 'Genshin Impact', 'YuanShen'): logfile = base / folder / 'output_log.txt' if logfile.is_file(): return str(logfile) return ''
747412b2634ca10e8341c49a5157deda9e18684f
591,416
def watt_to_MJ(watt_m2): """ Transform watt per m² to MJ per m² per day """ joule_m2_s = watt_m2 joule_m2_day = joule_m2_s * 86400 mjoule_m2_day = joule_m2_day / 1000000 return mjoule_m2_day
3fdd4b4707e797002f760fb82f39e2eb042337dc
445,642
def descriptor_target_split(file): """ Split the input data into descriptors and target DataFrames Parameters: file: pandas.DataFrame Input DataFrame containing descriptors and target data. Returns: descriptors: pandas.DataFrame Descriptors DataFrame. target: pandas.DataFrame Target DataFrame. """ target = file.loc[:, file.columns == 'Target'] descriptors = file.loc[:, file.columns != 'Target'] return descriptors, target
95d518ee9cce190ed08015986fc5b2d86c33318a
644,584
def extract_raw_features(annotation): """ This function is used to extract raw features from annotations :param annotation: annotation object :return: features in dictionary """ features = annotation.select('Feature') annotation_features = {} for feature in features: feature_name = feature.Name.text feature_value = feature.Value.text annotation_features[feature_name] = feature_value features_dict = dict(filter(lambda element: element[1] != 'external', annotation_features.items())) return features_dict
cc4e52be31538a101891cfa1170c8f1f7334e61b
529,743
from typing import Any def couple_combinaison_from(elements: list[Any]) -> list[tuple[Any, Any]]: """create all possible combinaison of two elements from the input list""" zip_size = len(elements) return sum( (list(zip([element] * zip_size, elements)) for element in elements), [], )
8c299a86fe3f2faf7f27b7363f9c4c6e2188a5db
83,969
def check_structure_acyclic(structure): """ Returns whether the directed graph g has a cycle. g must be represented as a dictionary mapping vertices to iterables of neighbouring vertices. For example: >>> check_structure_acyclic({1: (2,), 2: (3,), 3: (1,)}) True >>> check_structure_acyclic({1: (2,), 2: (3,), 3: (4,)}) False """ path = set() visited = set() def visit(vertex): if vertex in visited: return False visited.add(vertex) path.add(vertex) for neighbour in structure.get(vertex, ()): if neighbour in path or visit(neighbour): return True path.remove(vertex) return False return not any(visit(v) for v in structure)
1bfa384f4a9bb4fdd8c3aa00eaae8dffb5e50352
107,510
def get_ua_account_summaries(management_api): """Get a list of UA account summaries. Args: management_api: The Analytics Management API object. Returns: A list of the GA account summaries. """ account_summaries = ( management_api.management().accountSummaries().list().execute()) return account_summaries['items']
c32d2fd98609c89b6d874ef34f06c476b7245b3c
204,024
from typing import List from typing import Tuple def get_index_tuple_from_kraus_matrices_indices( index: int, indices: List[int] ) -> Tuple[int, int]: """Get index i, j of Instrument object from a list of numbers corresponding to matrices of Kraus operators. Parameters ---------- index: int Index of the matrix in a list of matrices of Kraus operators. indices: List[int] List of numbers of matrices per Kraus operator. Returns ------- Tuple[int, int] returns (i, j) meaning that j-th matrix of i-th Kraus operator. """ sum = 0 for j, num in enumerate(indices): sum += num if index < sum: return (j, num + index - sum) assert index < sum return (len(indices) - 1, sum - index)
a416e6ceb4304916250222bcfc1547c401fa8b7b
598,209
def merge_field_into(s1, key, value): """Create a new namedtuple that is a copy of s1 with the key,value replaced.""" dd = {} for k in s1._fields: dd[k] = getattr(s1, k) dd[key] = value return s1.__class__(**dd)
b77a3e583cd888b3a7a9e2ded9690fd56e693b0f
611,340
def get_viewconf_status(files): """ Determine the Higlass viewconf's status based on the files used to compose it. Args: files(list) : A list of file objects that contain a status. Returns: A string. """ # The viewconf will be in "released to lab" status if any file: # - Lacks a status # - Has one of the "released to lab" statuses # - Doesn't have a "released" or "released to project" status released_to_lab = [ "uploading", "uploaded", "upload failed", "deleted", "replaced", "revoked", # "archived", "pre-release", "to be uploaded by workflow" ] if any([ f["accession"] for f in files if f.get("status", None) in released_to_lab ]): return "released to lab" # If any file is in "released to project" the viewconf will also have that status. released_to_project = [ "released to project", "archived to project", ] if any([ f["accession"] for f in files if f["status"] in released_to_project]): return "released to project" # All files are "released" so the viewconf is also released. return "released"
873bbbb50082236e01a96ed6207e853e20e22ef9
616,817
def add_subparser_solve(subparsers): """Add a 'solve' option to `subparsers`. Parameters ========== subparsers : argparse ArgumentParser special action object Special action object generated from a call to: `argparse.ArgumentParser.add_subparsers() Returns ======= subparsers : argparse ArgumentParser special action object Updated version of `subparsers` """ # Initialise subparser parser_solve = subparsers.add_parser( 'solve', help='solve the model') # Add 'verbose' argument parser_solve.add_argument( '-v', '--verbose', action='store_true', help='print detailed solution output (not yet implemented)') # Add 'input' and 'output' file arguments parser_solve.add_argument( '-f', '--input', nargs='+', metavar='INPUT', default=None, type=str, required=False, help='input file(s) for model data') parser_solve.add_argument( '-o', '--output', nargs='+', metavar='OUTPUT', default=None, type=str, required=False, help='output file(s) for model results') # Add 'define' and 'set' arguments parser_solve.add_argument( '-D', '--define', action='append', nargs='+', metavar='PARAMETER', default=None, type=str, required=False, help='set (time-invariant) model parameters') parser_solve.add_argument( '--set', action='append', nargs='+', metavar='EXPRESSION', default=None, type=str, required=False, help='set (time-varying) model variables prior to run') # Add 'span' and 'past' arguments parser_solve.add_argument( '--span', nargs=2, metavar='PERIOD', default=None, type=int, required=False, help='set the start and end periods of the model run') parser_solve.add_argument( '--past', metavar='PERIOD', default=None, type=int, required=False, help='set the first historical period of the model run') # Return return subparsers
4fbec81e6e144b276aaf3c9a513475651a6e263b
515,798
def UnitToValue(unit): """Return the value of an unit.""" if not unit or unit.upper() in frozenset(["ECU", "GCEU", "HRZ"]): return 1 unit = unit[0].upper() if unit == "K": return 1024 if unit == "M": return 1024 * 1024 if unit == "G": return 1024 * 1024 * 1024 raise Exception("Not valid unit: '%s'" % unit)
2aae0f6480150ab0ca17da8dac1026a8174a1333
536,492
def calcDivisor(factors): """ Return the number from its prime factors. Args: factors: Dictionary of prime factors (keys) and their exponents (values). Returns: An integer. The number made of the prime factors. Usage: >>> calcDivisor({5: 3, 7: 2}) 6125 >>> calcDivisor({2: 3, 5: 2, 7: 1}) 1400 """ acc = 1 for f,e in factors.items(): acc *= f**e return acc
3c3d68d86ab18ad558e1963e9868efba6e5a7793
162,700
import socket def _get_local_ip(ip: str, port: int = 80) -> str: """ For a given IP, return the local IP that can access it Args: ip (str): Remote IP port (int, optional): Remote port. Defaults to `80` Returns: str: The local IP that can access the given remote IP """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect((ip, port)) local_ip = s.getsockname()[0] s.close() return local_ip
7533c6d38e88983cda3547af1edb908d4a831e91
181,472
import json def load_low_voltage_prosumers(file): """retorna uma lista com os nós da baixa tensao :param file: force.json :return: list: lista dos nós de baixa tensão """ with open(file, 'r') as f: data = json.load(f) prosumers_id = list() for i in data['nodes']: if i['voltage_level'] == 'low voltage': prosumers_id.append(i['name']) return prosumers_id
249bf9a08a7c0fec71e7a6bdbd617f23c88d17c2
317,268
def validDBMLFile(s): """ Return a boolean indicating whether passed string has valid `.dbml` file extension. Case-sensitive (i.e. `.DBML` not accepted). Parameters: s (str): name of file. Returns: bool: True if s ends with '.dbml', else False. """ if s.endswith('.dbml'): return True else: return False
ffa0a9f61bf9545efa2a170ddb1875cad0b75892
117,830
def color_pixel(index): """ Color the vertex by its index. Note the color index must lie between 0-255 since gif allows at most 256 colors in the global color table. """ return max(index % 256, 1)
6ef1e4481e50939dc2c107cc4ee151249a6ec44c
196,230
def fuel_cost(x1, x2): """ Returns the amount of fuel needed to move a crab submarine from x1 to x2 """ d = abs(x1 - x2) return (d*(d+1))/2
e628b2b36d31bb66b734fa22165d65be4da23df6
457,531
def get_region_of_all_exchanges(scenario: dict) -> dict: """Returns {ID: region_name, ...} map for `EnergyExchange` in given `scenario`. If no region is found, the string `Region` is applied""" try: exchanges = [ {exchange["Id"]: exchange["Attributes"]["Region"]} for exchange in scenario["Agents"] if exchange["Type"] == "EnergyExchange" ] except KeyError: exchanges = [ {exchange["Id"]: "Region"} for exchange in scenario["Agents"] if exchange["Type"] == "EnergyExchange" ] output = {} for exchange in exchanges: output.update(exchange) return output
475e7ef769c28fa9ad8653460ece3f0150dda244
74,526
def compose2(f, e): """Compose 2 functions""" return lambda x: f(e(x))
9e48818b5c4150d1af138935c712e31c58a1f9c1
681,553
def enrichment_optimal(ligand_vs_kinase_data): """ Calculate the optimal enrichment, i.e. the ratio of ranked kinases, in which optimally all active kinases have been found. Parameters ---------- ranks : pandas.DataFrame Must use `src.evaluation.kinase_ranks.kinase_ranks_by_ligand_vs_kinase_data`. See this return value description in this function's docstring. ligand_kinase_method : str Name for ligand profiling method to be used as identifier in `ranks`. Returns ------- float Percentage of ranked kinases that will optimally contain _all_ active kinases. Notes ----- N : Number of kinases in totoal N_s : Number of kinases in top x% of ranked kinases n : Number of active kinases in total n_s : Number of active kinases in top x% of ranked kinases For the enrichment plot, the x values are calculated as follows: x = N_s / N In the optimal case, N_s = n, hence: x_optimal = n / N """ ranks = ligand_vs_kinase_data.data n_kinases = ranks.shape[0] n_active_kinases = ranks[f"{ligand_vs_kinase_data.ligand_kinase_method}.active"].sum() ratio_active_kinases_identified_optimal = n_active_kinases / n_kinases * 100 return ratio_active_kinases_identified_optimal
ee5c765b7efe67c6a5df2a3ee5118f79872d6770
241,106
def load_station(df, code=111123): """filter dataframe by station code Args: df (pd.DataFrmae): DataFrame to filter code (int, optional): station code. Defaults to 111123. Returns: pd.pandas.DataFrame: filtered DataFrame """ # return df[df['stationCode'] == code] return df.query(f"stationCode == {code}")
e115e9d48cf9cca3429c99875b54ddc28cd7a36b
236,785
def is_unstructured_object(props): """Check if property is object and it has no properties.""" return 'object' in props['type'] and not props.get('properties')
c970c0a99fe1c872d9ce9320bd48aceb0fdb4c94
437,362
import torch def get_cumulant(h, a, terminal_a, food_type, index): """ h: history a: action terminal_a: index of the terminal action = |A| + 1 food_type: type of food item from {(0, 1), (1, 0), (1, 1)} index: index of the resource for which the cumulant value is required """ if a == terminal_a: return torch.tensor(0.) if not h[index] and food_type[index]: return torch.tensor(food_type[index] * 1.) elif h[index]: return torch.tensor(-1.) return torch.tensor(0.)
a03e6054bf5b2bc007743c597552ac7dbb7d2725
503,854
import itertools def iterable_nth(iterable, n, default=None): """ Returns the nth item or a default value. From: https://docs.python.org/3/library/itertools.html#recipes :param iterable: iterable :param n: item index :param default: default value :return: nth item of given iterable """ return next(itertools.islice(iterable, n, None), default)
f4f5694175905d6c3f22ee4386f15aa592a22296
277,948
def temperature_trans(air_in, fuel_in, ex_out): """ Convert degree celsius to kelvin. Optional keyword arguments: --------------------------- :param air_in: temperature of air coming in to fuel cell(FC) :param fuel_in: temperature of fuel coming into (FC)/ temperature of reformer :param ex_out: temperature of exhaust coming out of FC :return: return the degree of kelvin """ T_FC_air_in = air_in + 273.15 T_FC_fuel_in = fuel_in + 273.15 T_FC_ex_out = ex_out + 273.15 return [T_FC_air_in, T_FC_fuel_in, T_FC_ex_out]
8b53781636062626fa8bfd93fb08ff783809d8ca
650,147
def load_classes(classes_filepath): """ Loads the file with class information. Usually called classes.csv """ with open(classes_filepath) as f: return [line.split(",")[1].strip() for line in f]
ea4e9e38f17eca93786d853ea47d1ff2a99bb479
385,819
import json def to_json(obj: object, *args, **kwargs): """Serialize a nested object to json. Tries to call `to_json` attribute on object first.""" def serialize(obj: object): return getattr(obj, 'to_json', getattr(obj, '__dict__') if hasattr(obj, '__dict__') else str(obj)) return json.dumps(obj, default=serialize, *args, **kwargs)
7798bc28196f9598645751803f81fe711836ada9
643,470
def remove_empty(data): """Removes empty items from list""" out = [] for item in data: if item == '': continue out.append(item) return out
9ef46381bb76846c92375f47eb481a26359b1d92
695,827
def find_bias(sf_stack, opt_sf): """ Finds difference between avg(sf) and optimal sf for one 72x46 grid Parameters: sf_stack (numpy array) : nxMx72x46 array with inverted scale factors (n=number OSSEs and M=number of months) opt_sf (numpy array) : Mx72x46 optimal scale factor array Returns: Mx46x76 numpy array of E(sf) - opt_sf NOTE: - we assume that the 0th index of sf_stack is the OSSE iterations """ assert sf_stack.shape[1] == opt_sf.shape[0] # same number of months assert sf_stack.shape[2] == 72 assert opt_sf.shape[1] == 72 # find mean of the given stack of sf draws sf_stack_avg = sf_stack.mean(axis=0) return sf_stack_avg - opt_sf
652db10d3fb96550d77c9cb8f6538bf7b0f39cbf
375,519
def getOcclusions(df): """ Finds all occlusions in the annotated dataset, provided in a pandas dataframe Input: df: Pandas DataFrame contatining the dataset Output: occlusion_id_cam: Dictinary containing a dict per fish ID. The dict per fish ID contains two keys (cam1/cam2), each holding a list of tuples, where each tuple is the start and endframe of an occlusion """ unique_ids = df["id"].unique() id_map = {id_n:idx for idx, id_n in enumerate(unique_ids)} occlusion_id_cam = {id_n: {"cam1":[], "cam2": []} for id_n in id_map.keys()} for id_n in unique_ids: id_df = df[df["id"] == id_n] for cam in ["cam1", "cam2"]: id_df_cam = id_df.dropna(subset=["{}_occlusion".format(cam)]) occlusions = id_df_cam["{}_occlusion".format(cam)].values frames = id_df_cam["{}_frame".format(cam)].unique() occ_tuples = [] startFrame = -1 for idx, frame in enumerate(frames[:-1]): if occlusions[idx] == 0: continue if startFrame == -1: startFrame = frame if occlusions[idx+1] == 0: occ_tuples.append((startFrame, frame)) startFrame = -1 occlusion_id_cam[id_n][cam] = occ_tuples return occlusion_id_cam
198deb5b7910d230430d7de329137d237f43d3b3
256,042
def _parser_setup(parser_obj, value, reset_default=False): """Add argument to argparse object Parameters ---------- parser_obj : object argparse object value : dict argparse settings reset_default : bool boolean that defines if default values should be used Returns ------- parser_obj : object updated argparse object """ if reset_default: default = None else: default = value["default"] if value["action"] is None: parser_obj.add_argument( *value["tag"], help=value["help"], default=default, choices=value["choices"], ) else: parser_obj.add_argument( *value["tag"], help=value["help"], default=default, action=value["action"], ) return parser_obj
58d1ccde88a6ada8b7f4a09d50d083e3e86677bd
33,887
def palindrome(value: str) -> bool: """ This function determines if a word or phrase is a palindrome :param value: A string :return: A boolean """ value = "".join(value.split()).lower() if len(value) <= 1: return True if value[0] != value[-1]: return False return palindrome(value[1:-1])
3f089c5e0330ff4b4b340c5ede07a9531805b63c
594,676
def get_marginal_rna_obs(r: int, p_max: int): """Get the observable for a marginalized RNA abundance.""" marginal = '' for p in range(p_max-1): marginal += f'x_{r}_{p} + ' marginal += f'x_{r}_{p_max-1}' return {'name': f'x_r{r}', 'formula': marginal}
8d005c68fd2c56f2d161bea47862b4590b4505d9
90,823
def distinct_letters(X): """ Diagnostic function :param X: a data matrix: a list wrapping a list of strings, with each sublist being a sentence. :return: >>> dl = distinct_letters([['the', 'quick', 'brown'],['how', 'now', 'cow']]) >>> sorted(dl) ['b', 'c', 'e', 'h', 'i', 'k', 'n', 'o', 'q', 'r', 't', 'u', 'w'] """ return set([letter for sentence in X for word in sentence for letter in word])
32cbdd7b884a3472500f11a158989c47ec3fd7fe
502,391
def cuberoot(x): """Finds the cube root of x""" return x**(1./3.)
64adfcc3307c42c86677c0cc405099150b92d1b6
634,849
def is_property_nullable(property): """ Return True if the property is nullable, False otherwise """ property_is_nullable = True if property.get('Nullable') is not None: property_is_nullable = property.get('Nullable') == 'true' return property_is_nullable
afb4f8e08d6341df32a24ddc8fd58625c533df16
298,039
def sf2metadata_record_to_dict(record): """Helper function to convert a record from the sf2metadata table to a dict""" return { "pid": record[5], "st": record[6], "ctp": record[7], "nsl": record[8], "di": record[9], "na": record[10], "hp": record[11], "np": record[12], "hc": record[13], "nc": record[14], "husl": record[15], "nusl": record[16], "nslp": record[17], "cm": record[18], "sampleOrLibraryStartIndex": str(record[19]), "unpooledSubmissionStartIndex": str(record[20]), "poolStartIndex": str(record[21]), "containerStartIndex": str(record[22]) }
6eefd3fcdc1b4db6fa89ac42e777866c9c7a2fcc
293,138
import locale import math def parse_unit(s, unit, ceil=True): """Converts '123.1unit' string into 124 if ceil is True and converts '123.9unit' into 123 if ceil is False. """ flt = locale.atof(s.split(unit)[0]) if ceil: return int(math.ceil(flt)) return int(math.floor(flt))
c67e6211756bb536ef257507392765182bd90776
528,542
def long_repeat(line): """ length the longest substring that consists of the same char """ line_length = len(line) if line_length <= 1: return line_length count_list = [0] current_count = 1 current_ch = '' for i in range(0,line_length): ch = line[i] if ch == current_ch: current_count += 1 if i == line_length - 1: count_list.append(current_count) else: count_list.append(current_count) current_count = 1 current_ch = ch print(count_list) return max(count_list)
4f7a2dfc5ec6ed08eaa9fc114e4484324b8bdfaa
633,772
import json def validate(resp): """Check health status response from application. Args: resp (string): Response will be converted to JSON and then analyzed. Returns: (bool): True if application healthy. """ print(resp) try: data = json.loads(resp) except: return False if 'initialized' not in data: return False if 'sealed' not in data: return False if not data['initialized'] or data['sealed']: return False return True
87ec568e908c01496f4b3c4fca1b25f518a6a2b3
661,373
def copy_traj_attributes(target, origin, start): """ Inserts certain attributes of origin into target :param target: target trajectory object :param origin: origin trajectory object :param start: :py:obj:`origin` attributes will be inserted in :py:obj:`target` starting at this index :return: target: the md trajectory with the attributes of :py:obj:`origin` inserted """ # The list of copied attributes can be extended here with time # Or perhaps ask the mdtraj guys to implement something similar? target._xyz[start:start+origin.n_frames] = origin._xyz target._unitcell_lengths[start:start+origin.n_frames] = origin._unitcell_lengths target._unitcell_angles[start:start+origin.n_frames] = origin._unitcell_angles target._time[start:start+origin.n_frames] = origin._time return target
8a321ca293347588efa3e6a45013226103cef110
495,516
def get_param_grid(algorithm): """ Defines and returns a parameter grid for the designated model type. """ if algorithm == 'logistic': param_grid = [{'penalty': ['l1', 'l2'], 'C': [0.1, 0.3, 1.0, 3.0]}] elif algorithm == 'ridge': param_grid = [{'alpha': [0.1, 0.3, 1.0, 3.0, 10.0]}] elif algorithm == 'svm': param_grid = [{'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}] elif algorithm == 'sgd': param_grid = [{'loss': ['hinge', 'log', 'modified_huber'], 'penalty': ['l1', 'l2'], 'alpha': [0.0001, 0.001, 0.01], 'iter': [100, 1000, 10000]}] elif algorithm == 'forest' or algorithm == 'xt': param_grid = [{'n_estimators': [10, 30, 100, 300], 'criterion': ['gini', 'entropy', 'mse'], 'max_features': ['auto', 'log2', None], 'max_depth': [3, 5, 7, 9, None], 'min_samples_split': [2, 10, 30, 100], 'min_samples_leaf': [1, 3, 10, 30, 100]}] elif algorithm == 'boost': param_grid = [{'learning_rate': [0.1, 0.3, 1.0], 'subsample': [1.0, 0.9, 0.7, 0.5], 'n_estimators': [100, 300, 1000], 'max_features': ['auto', 'log2', None], 'max_depth': [3, 5, 7, 9, None], 'min_samples_split': [2, 10, 30, 100], 'min_samples_leaf': [1, 3, 10, 30, 100]}] elif algorithm == 'xgb': param_grid = [{'max_depth': [3, 5, 7, 9, None], 'learning_rate': [0.003, 0.01, 0.03, 0.1, 0.3, 1.0], 'n_estimators': [100, 300, 1000, 3000, 10000], 'min_child_weight': [1, 3, 5, 7, None], 'subsample': [1.0, 0.9, 0.8, 0.7, 0.6, 0.5], 'colsample_bytree': [1.0, 0.9, 0.8, 0.7]}] elif algorithm == 'nn': param_grid = [{'layer_size': [64, 128, 256, 384, 512, 1024], 'n_hidden_layers': [1, 2, 3, 4, 5, 6], 'init_method': ['glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform'], 'loss_function': ['mse', 'mae', 'mape', 'msle', 'squared_hinge', 'hinge', 'binary_crossentropy', 'categorical_crossentropy'], 'input_activation': ['sigmoid', 'tanh', 'prelu', 'linear', 'softmax', 'softplus'], 'hidden_activation': ['sigmoid', 'tanh', 'prelu', 'linear', 'softmax', 'softplus'], 'output_activation': ['sigmoid', 'tanh', 'prelu', 'linear', 'softmax', 'softplus'], 'input_dropout': [0, 0.3, 0.5, 0.7], 'hidden_dropout': [0, 0.3, 0.5, 0.7], 'optimization_method': ['sgd', 'adagrad', 'adadelta', 'rmsprop', 'adam'], 'batch_size': [16, 32, 64, 128, 256], 'nb_epoch': [10, 30, 100, 300, 1000]}] else: raise Exception('No params defined for ' + algorithm) return param_grid
8a951aa7a8b918424d115e094c3ca4f9d41651d7
418,867
def mysql_now(element, compiler, **kw): """Implement the MySQL now() using the TIMESTAMP datatype.""" return "CURRENT_TIMESTAMP()"
5b8e5fd0dbc116770ad603e5a71961ef53af1e1d
77,402
import json def extract_json(infile): """Returns distance and RSSI measurements as tuple""" # Load JSON output with open(infile, "r") as f: data = json.load(f) # Extract data dist = float(data.keys()[0]) adict = data.values()[0] rssi_list = adict.values()[0] return (dist,rssi_list)
cc5f846e0d876e69c6e88d0fdd88234fd7e9b36c
585,914
def reader_c_apdu(connection, apdu): """ :param connection: connection that active now :param apdu: apdu string :return: R-APDU """ conn = connection.transmit(apdu) return conn
ecc7be8a753796a46ef54a2604104ebfcc78afc7
188,784
def merge_two_dicts(dict1, dict2): """ Helper function for merging two dictionaries into a new dictionary as a shallow copy. :param dict1: (dict) First of two dictonaries to merge :param dict2: (dict) Second dictionary :returns: Merged dictionary :rtype: dict """ merged_dict = dict1.copy() merged_dict.update(dict2) return merged_dict
bf47850c043e75f6155c19993788fa3e017894c4
113,984
import requests def get_meetup_events(group): """Returns a list of events and their details for a given meetup group.""" url = 'https://api.meetup.com/{group}/events?&sign=true&photo-host=public&page=200&status=past'.format(group=group) r = requests.get(url) events = r.json() return events
6bda52c044f35b9d6d645c0ea88c76bd666c0020
363,222
def avg(lst: list): """ This function computes average of the given list. If the length of list is zero, it will return zero. :param lst: list for which you want to compute average :return: average of the given list """ if len(lst) == 0: return 0 return sum(lst) / len(lst)
f2485e949ed187a66a6264cdf65329efe3b0ba93
183,402
def regex_search_matches_output(get_output, search): """ Applies a regex search func to the current output """ return search(get_output())
6f054990d3454a447656567b3ceb12a38c2809a5
701,132
import re def remove_comments(text: str) -> str: """ Removes comments from text. Comment lines are removed completely, including newline. :param text: Input text :return: Text without comments """ return re.sub('(^[ \t]*#.*\n)|(#.*$)', '', text, flags=re.MULTILINE)
59dd517d0b409a634ceddcc326837f01e094fbf1
283,650
def _count_hours_gt_threshold(utilization, threshold): """Calculate number of hours above a given utilization threshold. :param pandas.DataFrame utilization: normalized power flow data frame as returned by :func:`get_utilization`. :param float threshold: utilization threshold ([0,1]). :return: (*pandas.Series*) -- number of hours above utilization threshold. """ return (utilization > threshold).sum()
e25947fb494d1b09556e25ca9b3c837197df5170
499,178
def human_oracle(evidence, possible_answers): """Simple text interface to query a human for fact generation.""" colored_fact, colored_segment = evidence.colored_fact_and_text() print(u'SEGMENT: %s' % colored_segment) question = ' FACT: {0}? ({1}) '.format(colored_fact, u'/'.join(possible_answers)) answer = input(question) while answer not in possible_answers: answer = input(question) return answer
d9580a5877c607277c4806dbe78a0f3d02b0d961
222,018