content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def whitespace_tokenize(text):
"""Basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
return text.split() if text else []
|
af0cee2d429e96af0214614581681927fcaefaf8
| 159,690 |
def attach_property(clusters, d, p):
"""
Attach `p` to `c.properties[d]` for each `c` in `clusters`.
"""
processed = []
for c in clusters:
properties = dict(c.properties)
properties[d] = set(properties[d]) | {p}
processed.append(c.rebuild(properties=properties))
return processed
|
420b38282052c51a5c3eaf3b7a9215297a86e002
| 189,418 |
import random
def flip(prob):
"""
Return H or T representing the outcome of coin flip
"""
if random.random() < prob:
return "H"
else:
return "T"
|
04a8c1930d4deef9f0c1439b535233e3cc7542a8
| 562,277 |
def read_spectrum(spectrum, index):
"""Read a single spectrum
Parameters
----------
spectrum : mzML spectrum
The mzML spectrum to parse.
Returns
-------
out : list of tuples
List of values associated with each peak in the spectrum.
"""
polarity = 'MS:1000130' in spectrum
ms_level = spectrum['ms level']
rt, units = spectrum['MS:1000016']
if units != 'minute':
rt /= 60
collision_energy = spectrum.get('MS:1000045', 0)
precursor_intensity = spectrum.get('MS:1000042', 0)
precursor_mz = spectrum.get('MS:1000744', 0)
min_mz = spectrum.get('lowest m/z value', 0)
max_mz = spectrum.get('highest m/z value', 0)
if ms_level == 1:
data = [(mz, i, rt, polarity) for (mz, i) in spectrum.peaks]
else:
data = [(mz, i, rt, polarity, precursor_mz, precursor_intensity,
collision_energy) for (mz, i) in spectrum.peaks]
return data, ms_level, polarity
|
b3d05c4af829377bcea0e077cd92ceffaca375e5
| 109,299 |
from typing import List
def get_changed_methods(project_commits) -> List[str]:
"""
Used to populate the DAILY/WEEKLY reports, gets a list of
method names that were changed.
Note: Removes duplicates from list, sometimes same method is touched in more than one commit
"""
project_changed_methods = []
for commit in project_commits:
for file in commit.modified_files:
method_names = [m.name for m in file.changed_methods]
project_changed_methods.extend(method_names)
print(*project_changed_methods, sep="\n")
return list(set(project_changed_methods))
|
1982f8c7f79e9320ffa38c5555769344f832c8df
| 341,187 |
def name_to_dict(name):
"""Convert OpenSSL x509Name to dict object.
Creates a dict with all the components of the x509Name object and
returns it.
"""
result = {}
for (key,value) in name.get_components():
result[key] = value
return result
|
36c87ee9134f3c3ba4c78e9f062498b3990ab9a3
| 514,653 |
from typing import Tuple
def precisionRecallF1(correct: int, extracted: int, groundTruth: int) -> Tuple[float, float, float]:
"""
Calculates metrices.
:param correct: Number of correct keywords.
:type correct: int
:param extracted: Number of extracted keywords.
:type extracted: int
:param groundTruth: Number of annotated keywords.
:type groundTruth: int
:return: precision, recall, F1
:rtype: Tuple[float, float, float]
:raise ValueError: When invalid values are passed.
"""
if correct > extracted:
raise ValueError("Number of correct keywords is greater than number of all extracted keywords.")
if groundTruth == 0 and correct > 0:
raise ValueError("There should be no keywords, but correct is > 0.")
precision = correct / extracted if extracted > 0 else 0
recall = correct / groundTruth if groundTruth > 0 else 0
return precision, recall, 2 * precision * recall / (precision + recall) if precision + recall > 0 else 0
|
e35b2bbeef22e3eeace40484544fc08dc528f13d
| 626,059 |
import math
def vectorfield(w, t):
"""
Defines the differential equations for the coupled spring-mass system.
Arguments:
w : vector of the state variables:
w = [x1,y1,x2,y2]
t : time
p : vector of the parameters:
p = [m1,m2,k1,k2,L1,L2,b1,b2]
"""
x1, y1, x2, y2, x3 = w
# Create f = (x1',y1',x2',y2'):
f = [2*math.pow(y1,2),
y1*(x2-x1),
-2*math.pow(y1,2)+2*math.pow(y2,2),
y2*(x3-x2),
-2*math.pow(y2,2)]
return f
|
fd1aff97a31cd9c140521c7acb75067255d172d8
| 136,428 |
import math
def eq4623d2(L1, W1, W, NL):
"""Eq. 4.6.2.3-2: Equivalent strip width for two lanes.
The equivalent width of lingitudinals strips per lane
for both shear and moment with more than one lane
loaded may be determined as
E = min(84.0 + 1.44*math.sqrt(L1*W1), (12.0*W)/NL)
Args:
L1 (float): modified span length taken equal to the lesser
of the actual span or 60.0, (ft)
W1 (float): modified edge-to-edge width of bridge taken to
be equal to the lesser of the actual width or 60.0
for multilane loading, or 30.0 for single-lane
loading, (ft)
W (float): physical edge-to-edge width of bridge, (ft)
NL (float): number of design lanes as specified in
Article 3.6.1.1.1
Returns:
E (tuple(float, str)):
equivalent width, (in.); formatted text output of equation
with values substituted into equation and the final calculated
value
"""
NL = math.floor(NL)
E = min(84.0 + 1.44*math.sqrt(L1*W1), (12.0*W)/NL)
text = (f'E = min(84.0 + 1.44*math.sqrt(L1*W1), (12.0*W)/NL)\n' +
f'E = min(84.0 + 1.44 * math.sqrt({L1:.3f} * {W1:.3f}), ' +
f'(12.0*{W:.3f})/{NL:.0f})\n' +
f'E = {min(84.0 + 1.44 * math.sqrt(L1 * W1), (12.0*W)/NL):.3f}')
return E, text
|
6dd39cac541ca7f4f5660da00f8ac242bd9e0f6c
| 567,616 |
import requests
import json
def get_asset_change_notifications(channel_id, auth):
"""Get asset change notifications for a specific channel"""
url = "https://api.gettyimages.com/v3/asset-changes/change-sets"
query_params = {"channel_id": channel_id}
headers = {
"Api-Key": auth["api_key"],
"Authorization": f"Bearer {auth['access_token']}"
}
response = requests.put(url, params=query_params, headers=headers)
asset_change_notifications = json.loads(response.content)
return asset_change_notifications
|
8fc948ef1cedc9216069b0ac4611d04c42c33606
| 118,562 |
def _calcPeakRange(sr,n, loFreq=200., hiFreq=2000.):
"""
_calcPeakRange - utility function to calculate parameters for peaks
inputs:
sr - sample rate
n - fft length
loFreq - lowest peak frequency
hiFreq - highest peak frequency
"""
fftBase = sr / float(n)
pkRange = n/2 + 1
minPos = int(round(loFreq/fftBase))
maxPos = int(round(hiFreq/fftBase))
return pkRange, minPos, maxPos
|
280c685622ffb73d6225a15c9cb138ea525c8e00
| 562,964 |
def is_cached(o, name):
"""Whether a cached property is already computed.
Parameters
----------
o : object
The object the property belongs to.
name : str
Name of the property.
Returns
-------
bool
True iff the property is already computed.
Examples
--------
>>> class MyClass(object):
... @cached_property
... def my_cached_property(self):
... print('Computing my_cached_property...')
... return 42
... @cached_property
... def my_second_cached_property(self):
... print('Computing my_second_cached_property...')
... return 51
>>> my_object = MyClass()
>>> my_object.my_cached_property
Computing my_cached_property...
42
>>> is_cached(my_object, 'my_cached_property')
True
>>> is_cached(my_object, 'my_second_cached_property')
False
"""
return name in o.__dict__
|
eb7b1356ded56dddb4cd917b27461e9108bd7b76
| 24,900 |
def calc_hubbard_u(iv, iv_p1, d_mm_avg):
"""
Calculate the estimated hubbard energy (eV) of a structure.
:param iv: Float, the vth ionization energy
:param iv_p1: Float, the (v+1)th ionization energy
:param d_mm_avg: Float, the average metal-metal distance
:return: Float, the estimated hubbard energy in eV
"""
# specify the conversion factor from e^2/Angstrom to eV
conversion_factor = 14.39965
return iv_p1 - iv - conversion_factor / d_mm_avg
|
bcd0e189658aaa559ddf532a8289dc652ecffefc
| 572,712 |
def generate_united_trip_reason(event_a, event_b):
""" Generate a trip reason """
reason = "{} and {} will give a conterts soon. Let's travel! :)".format(
event_a["performer"],
event_b["performer"]
)
return reason
|
f6d21aa82978a1df2f997f76b72d226b092f64f4
| 347,868 |
def summarize_repos(events):
"""Generate list of all repos in the iterable of events."""
repos = set(event.repo for event in events)
tmpl = '[{0}/{1}](https://github.com/{0}/{1})'
return [tmpl.format(*repo) for repo in sorted(repos)]
|
524000f40ae6f637fcbb809e110a1b36dee9a103
| 46,860 |
def get_client_ip(request):
"""
Get the client IP address from the *request* object.
Looks up the IP address that sent the *request* by checking the
`HTTP_X_FORWARDED_FOR` header or `REMOTE_ADDR` in the request's metadata.
Args:
request: a Django request.
Returns:
An IP address as a string or an empty string if no IP could be found.
"""
client_ip = request.META.get("HTTP_X_FORWARDED_FOR", '')
try:
# X_FORWARDED_FOR returns client1, proxy1, proxy2,...
client_ip = client_ip.split(',')[0]
except IndexError:
pass
if not client_ip:
client_ip = request.META.get('REMOTE_ADDR', '')
return client_ip.strip()
|
61b99619ce630819be179320a8b0b88fa74d24ab
| 551,627 |
def get_scan_list(scandescriptor_list):
"""
determine which is the scan list for each radar
Parameters
----------
scandescriptor : list of string
the list of all scans for all radars
Returns
-------
scan_list : list of lists
the list of scans corresponding to each radar
"""
descrfields = scandescriptor_list[0].split(':')
if len(descrfields) == 1:
# one radar
return [scandescriptor_list]
# one or more radars
# check how many radars are there
radar_list = set()
for scandescriptor in scandescriptor_list:
radar_list.add(scandescriptor.split(':')[0])
nradar = len(radar_list)
# create the list of lists
scan_list = [[] for i in range(nradar)]
for scandescriptor in scandescriptor_list:
descrfields = scandescriptor.split(':')
ind_rad = int(descrfields[0][5:8])-1
scan_list[ind_rad].append(descrfields[1])
return scan_list
|
7bbd591900f0b574f5c766f8a4fcd7ea0b572ccf
| 196,265 |
def compute_min_distance_mendelian_ci(proband_CI, parent_CIs):
"""Commute the smallest distance between the given proband confidence interval, and the confidence intervals of
parental genotypes.
Args:
proband_CI (Interval): ExpansionHunter genotype confidence interval.
parent_CIs (list of Intervals): list of ExpansionHunter genotype confidence intervals.
Return:
int: the smallest distance (in base-pairs) between one of the Interval in the parent_CIs Interval list, and
the given proband_CI.
"""
return min([abs(proband_CI.distance_to(parent_CI)) for parent_CI in parent_CIs])
|
9b8f71c612972410054b18b05c5e86bda3c96321
| 33,731 |
def get_stations_by_town(stations):
"""
Returns a dictionary consisting of a (key, value) pair of towns (key) and a list of the
stations inside of them (value)
"""
towns = {} # dictionary of towns
for station in stations:
town = station.town
if town in towns:
towns[town].append(station)
else:
towns[town] = [station]
return towns
|
cc18f6304f4a05894131173ce36b7dec2e95220a
| 115,897 |
from datetime import datetime
def datetime_to_discord(time: datetime, format: str = "f") -> str:
"""Convert a datetime object to a Discord timestamp."""
return f"<t:{int(time.timestamp())}:{format}>"
|
a428141f8afa4a81c04a01d10eb5f46d1dd0e071
| 69,356 |
def length(region):
"""Returns the length in basepairs of region."""
return region.end - region.start
|
4a2a5b7dbe978cf5dcf0b52e0956dd02fc0443c0
| 365,602 |
def distance(point1, point2):
"""
Returns the Euclidean distance of two points in the Cartesian Plane.
>>> distance([3,4],[0,0])
5.0
>>> distance([3,6],[10,6])
7.0
"""
return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2) ** 0.5
|
f57446d1a27ca42e347b54310a9bc4184d4519ce
| 685,260 |
def logstashIndex(date):
"""
Return the logstash index name for the given date
Logstash index names are in the format: 'logstash-YYYY.MM.DD'
"""
return "logstash-" + date.strftime("%Y.%m.%d")
|
1d2b953d04bd500b6571bb78ca5cd9c0162221db
| 100,180 |
def is_criador(usuario, sugestao):
"""
Verificar se o Usuário é o criador da Sugestão de Turma.
:param usuario: Usuário autenticado.
:param sugestao: Sugestão de Turma.
:return: True se o usuário for o criador da Sugestão de Turma.
"""
return usuario == sugestao.criador
|
226dc8db705ae20fa5dda389ee2e747ad61f2c8d
| 600,775 |
import shutil
def get_executable(exec):
"""
Returns the full path to the given executable.
If the executable does not exist, None is returned.
"""
return shutil.which(exec)
|
e0d6616a9083391d476613b33336eed793cb3155
| 515,022 |
import re
def congr(morph1, morph2):
"""
Check morphological analyses for agreement in NUM and CASE.
"""
tags1 = re.findall('\[(CASE|NUM)=[A-Z]+]', morph1)
tags2 = re.findall('\[(CASE|NUM)=[A-Z]+]', morph2)
return tags1 == tags2
|
ed92dedc4841aa9109bf74497aa7ec72982b988e
| 429,792 |
def concat(str1, str2):
"""Concatenate two strings"""
return "%s%s" % (str1, str2)
|
4697d453bb22bb65584f1c457c4d60f9e7e45bf6
| 392,048 |
def pos_new(x):
"""
vectorized version of finding max(x, 0)
"""
y = x.copy()
y[y<0] = 0
return y
|
6464fbb39aea461f8f5bca4f0db159bebc73b9fe
| 354,834 |
from typing import List
def _pad_list_int(x: List[int], length: int) -> List[int]:
"""Pad a List[int] using its last value until it has length `length`."""
x = x + x[-1:] * max(0, length-len(x))
x = x[:length]
return x
|
fa96ddccd8f561ea60352f4684234ae1995a65bb
| 252,940 |
def calculate_lives_improved(param_df):
"""Create a new column for lives improved in a df
Inputs:
param_df - a df of parameters must contain columns: 'lives_touched' and 'efficacy'
Returns:
a df with a lives_improved column added
"""
param_df['lives_improved'] = (param_df['lives_touched']*param_df['efficacy'])
return param_df
|
49a496fa23d02de748c56ec81eca6fd589f1f8c3
| 482,192 |
def cap_absolute_value(value, max_absolute_value=1):
"""
Returns `value` with absolute value capped at `max_absolute_value`.
Particularly useful in passing values to trignometric functions
where numerical errors may result in an argument > 1 being passed
in.
This code is modified from the pymatgen source code [1]_.
Parameters
----------
value : :class:`float`
Value to cap.
max_absolute_value : :class:`float`, optional
Absolute value to cap `value` at.
Defaults to 1.
Returns
-------
:class:`float`
`value` capped at `max_absolute_value` with sign preserved.
References
----------
.. [1] https://pymatgen.org/pymatgen.util.num.html
"""
return max(min(value, max_absolute_value), -max_absolute_value)
|
925646585d9dd69479e86b7f74e75bd3f1c2d7da
| 245,233 |
def cli(ctx):
"""Get all canned values available in this Apollo instance
Output:
list of canned value info dictionaries
"""
return ctx.gi.cannedvalues.get_values()
|
bc0997297dccff9bca5a72b04fa8c9ceb08c7128
| 337,081 |
def complete_re(regex_str):
"""Add ^$ to `regex_str` to force match to entire string."""
return "^" + regex_str + "$"
|
e4cb757ff8fef5db2e29c5074d33bcfd12674826
| 267,819 |
def s3_folder(path):
""" Check if file/folder is in AWS s3 """
return True if path and path.startswith("s3://") else False
|
3cc230cd400bf216f7a774fa0309298fb7c26471
| 154,695 |
def start_redshift_cluster(config, redshift, role_arn):
""" Creates a Redshift cluster based on configs
Args:
config: a ConfigParser object
redshift: a boto3 client object for the AWS Redshift service
role_arn: String
Returns:
A dict with the AWS API response metadata of the create_cluster call
"""
print("Creating Redshift Cluster: ", config['CLUSTER']['IDENTIFIER'])
return redshift.create_cluster(
DBName=config['CLUSTER']['DB_NAME'],
ClusterIdentifier=config['CLUSTER']['IDENTIFIER'],
ClusterType=config['CLUSTER']['CLUSTER_TYPE'],
NodeType=config['CLUSTER']['NODE_TYPE'],
MasterUsername=config['CLUSTER']['DB_USER'],
MasterUserPassword=config['CLUSTER']['DB_PASSWORD'],
Port=int(config['CLUSTER']['DB_PORT']),
NumberOfNodes=int(config['CLUSTER']['NUM_NODES']),
IamRoles=[role_arn]
)
|
9134defbac99671b8c120bf66baeee15119004ef
| 514,365 |
from typing import Tuple
def hex_to_rgb(value: str) -> Tuple[int, int, int]:
"""Turn a hex color code to RGB ints.
Parameters
----------
value : str, the Hex color code
Returns
-------
Tuple[int, int, int], the RGB values
"""
value = value.lstrip("#")
lv = len(value) // 3
rgb: Tuple[int, int, int] = (
int(value[0:lv], 16),
int(value[lv : 2 * lv], 16),
int(value[2 * lv : 3 * lv], 16),
)
return rgb
|
74c8630e4af01450d374263aa1169d41f933b871
| 378,017 |
def get_regions_overlap_with_tfs(regions, encode_pr):
"""Returns boolean matrix indicating whether regions overlaps with an ENCODE TF."""
joined = regions.pr.join(encode_pr).as_df()
is_overlap = joined.groupby(["peak_id", "Name"]).size().unstack(-1, fill_value=0) > 0
is_overlap = is_overlap.reindex(regions.index, fill_value=False)
return is_overlap
|
b4fb652b07629d78b0fa0476314df6a973bf9c0f
| 174,608 |
def PlayerAllegiance(game_state, player):
"""Map a player to an allegiance."""
return game_state.get('/publicPlayers/%s' % player, 'allegiance')
|
e82f1ef8a03374d6ac6a60ae816e2062299ccdff
| 512,943 |
def dict_to_string(dict):
"""
Custom conversion method for dict to string.
This adds a bullet point and line break to the dict.
:param dict: A dict used to store metadata.
:type dict: dict
:return: The dict as a string with added * for seperation
:rtype: str
"""
str = ""
for key, value in dict.items():
str += f" * {key}: {value}\n"
return str
|
82e25583f4594e2b12353e481b1e2d90a33999ce
| 212,543 |
def jaccard_distance(text1, text2):
""" Measure the jaccard distance of two different text.
ARGS:
text1,2: list of tokens
RETURN:
score(float): distance between two text
"""
intersection = set(text1).intersection(set(text2))
union = set(text1).union(set(text2))
return 1 - len(intersection) / len(union)
|
1a3095f086c648dfe8b334830a5d963e247cb92e
| 674,577 |
def classToDict(obj=None):
"""
Transform an object into a dict so it can be JSONified.
Useful for turning custom classes into JSON-compatible dictionaries.
"""
if obj == None:
return {}
_obj = {}
_obj.update(obj.__dict__)
return _obj
|
d9f4aa85479fdd00ac25aeb6a8ca5ec08644473f
| 112,096 |
def convert_tok_str_to_sent(tok_str):
"""Returns the sentence given the subword tokens"""
res = ''
tokens = tok_str.split(' ')
for token in tokens:
if '#' in token:
token = token.replace('#', '')
res += token
else:
res = res + ' ' + token
return res.strip()
|
683d6d91db695eaca117bf486fb1e38251df9d8a
| 344,418 |
def find_sub_list(sl, l):
"""
Returns the start and end positions of sublist sl in l
"""
sll = len(sl)
for ind in (i for i, e in enumerate(l) if e == sl[0]):
if l[ind:ind + sll] == sl:
return ind, ind + sll
|
e23f7ca573d61a158d6cb0d571403327d1b69732
| 140,852 |
from typing import List
def fix_z_values(coord_values: List[str]) -> List[float]:
"""Some geometries have a '0' value in the z position
of the coordinates. This method detects and removes z
postion coordinates. This assumes that in cases where
the z value is included, it is included for all coordinates.
"""
if len(coord_values) % 3 == 0:
# Check if all of the 3rd position values are '0'
# Ignore any blank values
third_position_is_zero = [
x == '0' for i, x in enumerate(coord_values) if i % 3 == 2 and x
]
if all(third_position_is_zero):
# Assuming that all 3rd position coordinates are z values
# Remove them.
return [float(c) for i, c in enumerate(coord_values) if i % 3 != 2]
return [float(c) for c in coord_values if c]
|
47dbad81331f84696e087731b3ccbe0b27210ae4
| 216,260 |
def list_to_string(l):
"""
e.g. [1, 2, 4] --> '124'
"""
return ''.join(list(map(str, l)))
|
f4677a5f6649048526e016f4f9f96d1fb0b28082
| 581,307 |
import multiprocessing
def cpu_count(multiplier: int = 0):
"""Get server's CPU core count.
Used for number of web server workers.
Returns:
{int} -- CPU Cores
"""
# Standard Library
return multiprocessing.cpu_count() * multiplier
|
a19807087b149ce18ea0ced2bb94fbea19ad3490
| 484,318 |
import re
def extract_variables(content):
"""
从内容中提取所有变量名, 变量格式为$variable,返回变量名list
:param content: 要被提取变量的用例数据
:return: 所有要提取的变量
"""
variable_regexp = r"\$([\w_]+)"
if not isinstance(content, str):
content = str(content)
try:
return re.findall(variable_regexp, content)
except TypeError:
return []
|
1ce8d3a363c03bb518096c2f3b8d4fe100f793f4
| 93,854 |
def convertNumbers(s,l,toks):
"""
Convert tokens to int or float
"""
n = toks[0]
try:
return int(n)
except ValueError:
return float(n)
|
109631034ff2eda37f34f6edc11a59d635a39c4c
| 188,877 |
import re
def get_first_name(source):
"""Return the given name (first name)."""
return re.sub("/", "", source["name"].get("firstname", "")).strip()
|
cb94291ca60e6abd732f562db1239476d34d558d
| 491,833 |
def apply_financial_params(dataframe, financing_terms, inflation_rate):
"""
apply_financial_params
Add the year's financial parameters including
depreciation schedule (array for years 0,1,2,3,4,5), Solar ITC fraction, Solar ITC min size kw, Solar ITC max size kw,
years of loan term, loan rate, down payment percent, real discount percent, tax rate and economic lifetime
Parameters
----------
dataframe : pandas.DataFrame
agent attributes for the given year
inflation_rate : float
inflation rate percent
financing_terms : pandas.DataFrame
Attributes
----------
financing_terms.deprec_sch
financing_terms.itc_fraction
financing_terms.min_size_kw
financing_terms.max_size_kw
financing_terms.loan_term
financing_terms.loan_rate
financing_terms.down_payment
financing_terms.real_discount
financing_terms.tax_rate
financing_terms.economic_lifetime
Returns
-------
pandas.DataFrame
agent attributes with new attributes joined on
"""
dataframe = dataframe.reset_index()
dataframe = dataframe.merge(financing_terms, how='left', on=['year', 'sector_abbr'])
dataframe['inflation'] = inflation_rate
dataframe = dataframe.set_index('agent_id')
return dataframe
|
26cfbd72c0110924cff7add0f728dad5f036b6da
| 587,225 |
import re
def count_characters(text, whites=False):
"""
Get character count of a text
Args:
whites: If True, whitespaces are not counted
"""
if whites:
return len(text)
else:
return len(re.sub(r"\s", "", text))
|
e4db9e873e800282cf7f2398272a8b4546fe171e
| 9,395 |
import torch
def split_tensor_along_last_dim(tensor, partitions, contiguous_split_chunks=False):
"""Split a tensor along its last dimension. Adapted from Megatron-LM.
Arguments:
tensor: input tensor.
partitions: list of partition sizes to supply to torch.split
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
# Split.
tensor_list = torch.split(tensor, partitions, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
|
a72f94d23c9b6ea5c8ffd74725b6894e2387856c
| 188,113 |
from bs4 import BeautifulSoup
def get_categories_objects(categories_output):
"""
Return categories id, title and description from a table from response HTML
document as the dict object:
{
'category_id': {
'title': 'some_title',
'description': 'some_description'
}
}
"""
categories = {}
document = BeautifulSoup(categories_output, 'html.parser')
table = document.find_all('table')[0]
for row in table.find_all('tr'):
columns = row.find_all('td')
if columns:
categories[columns[0].get_text().strip()] = {
'title': columns[1].get_text().strip(),
'description': columns[2].get_text().strip()
}
return categories
|
b7f9b09f80f10632ad1b18e9bb0702404defffba
| 450,834 |
def is_batch_norm(v):
"""Decide whether a variable belongs to `batch_norm`."""
keywords = ['batchnorm', 'batch_norm', 'bn']
return any([k in v.name.lower() for k in keywords])
|
d9c71cc8b55d13cf5ee3fae1666c5c35b03518f5
| 192,485 |
def is_json_metadata(text):
"""Is this a JSON metadata?"""
first_curly_bracket = text.find("{")
if first_curly_bracket < 0:
return False
first_equal_sign = text.find("=")
if first_equal_sign < 0:
return True
return first_curly_bracket < first_equal_sign
|
5d67e5d6f79cd81e30f1726c9184300e59ad9ff2
| 662,524 |
def check_position_detection(bounds):
"""Check whether the specified range of 5 intervals has the right
proportions to correspond to a slice through a position detection pattern.
An ideal slice through a position detection pattern consists of
5 intervals colored B,W,B,W,B with lengths proportional to 1,1,3,1,1.
Returns:
(center_coord, pixels_per_module) if this could be a position
detection pattern, otherwise (0, 0).
"""
# Expected relative positions of black/white boundaries
# within the position detection pattern.
expect_bound_pos = [-3.5, -2.5, -1.5, 1.5, 2.5, 3.5]
if (len(bounds) != 6) or (bounds[4] >= bounds[5]):
return (0, 0)
pattern_width = float(bounds[5] - bounds[0])
middle_width = float(bounds[3] - bounds[2])
if (pattern_width < 7) or (middle_width < 3):
return (0, 0)
center = float(sum(bounds)) / 6.0
pitch = (pattern_width + middle_width) / 10.0
good = True
for k in range(6):
rel_bound_pos = (bounds[k] - center) / pitch
if abs(rel_bound_pos - expect_bound_pos[k]) >= 0.5:
good = False
break
if not good:
return (0, 0)
return (center, pitch)
|
c425527405e0452d2069168908a81d713b7c9f33
| 43,493 |
def get_touchdown(df):
"""
Calculates instance of touchdown (landing).
"""
df = df.copy()
return df.iloc[df['Altitude'].idxmax():][df['Altitude'] <= 2].index[0]
|
314aa3f1dfd91fd0f7a287359e48c930b731aa1e
| 661,134 |
import struct
def encode_big_endian_32(i):
"""Take an int and return big-endian bytes"""
return struct.pack('>I', i)[-4:]
|
6e84903955e71ca3ed8c72652d28356c35fb1f8b
| 607,133 |
from datetime import datetime
import time
def generate_module_stream_version(timestamp=False):
"""Generates a version of a module stream. The version of a module stream can be an arbitrary
unix timestamp or a timestamp taken from the commit of a git branch.
:param timestamp: unix timestamp
:type timestamp: int, optional
:return: Formated module stream version
:rtype: str
"""
if timestamp:
dt = datetime.utcfromtimestamp(int(timestamp))
else:
dt = datetime.utcfromtimestamp(int(time.time()))
# we need to format the timestamp so its human readable and becomes a module stream version
version = int(dt.strftime("%Y%m%d%H%M%S"))
return version
|
4e28ecb43f979c53525c31e8a5e84cddc11362a9
| 465,935 |
def himmelblau(p):
"""
R^2 -> R^1 test function for optimization. The function has four local
minima where himmelblau(xopt) == 0.
"""
x, y = p
a = x*x + y - 11
b = x + y*y - 7
return a*a + b*b
|
d600c2c0ac77971e4e9b6667760b5df819e72061
| 450,560 |
import zlib
def hash(polygon):
"""
Get a hash of a polygon
Parameters
-----------
polygon : shapely.geometry.Polygon
Polygon to hash
Returns
------------
crc : int
Hash of polygon
"""
crc = zlib.adler32(polygon.wkb)
return crc
|
10d58f376d752d955e21a8a4c35ce287b99fe4c0
| 604,249 |
def clean_int(
i: int,
ub: int,
lb: int = 0,
) -> int:
"""Clean an integer according to a given upper and lower bound
Parameters
----------
i : int
The integer to be cleaned
ub : int
The inclusive upper bound
lb : int, optional
The exclusive lower bound, by default 0
Returns
-------
int
The cleaned integer
"""
# Initialisations
i_temp = i
# Check if the integer is above the upper bound
if i_temp > ub:
# Set it to the upper bound
i_temp = ub
# Check if the integer is below or equal to the lower bound
elif i_temp <= lb:
# Set it to one above the lower bound
i_temp = lb + 1
return i_temp
|
691a42bd1913aeed3632599d09b9e69d87c124b7
| 358,145 |
import hashlib
def faster_hash_args(*args: bytes) -> bytes:
"""
Function to hash an entire list of bytes into one hash.
This is faster than `better_hash_args` since it only hashes once.
Currently single-hashes SHA-512
"""
full_bytes = b"".join(args)
new_hash = hashlib.sha512()
new_hash.update(full_bytes)
return new_hash.digest()
|
e08b2aed96fca08b8fe7b6d355f928ebf95faf18
| 468,067 |
def vectors(vs):
"""
For a list of vectors of the form [x0, ..., xn, y0, ..., yn, z0, ..., zn]
this will return a list of vectors with the shape
[[x0, y0, z0], ..., [xn, yn, zn]].
"""
number_of_nodes = len(vs) // 3
return vs.view().reshape((number_of_nodes, -1), order="F")
|
a84aab7cbbfb1cc79391baae6e3519f62ae9c6ae
| 555,381 |
def float_list_string(vals, nchar=7, ndec=3, nspaces=2, mesg='', left=False):
"""return a string to display the floats:
vals : the list of float values
nchar : [7] number of characters to display per float
ndec : [3] number of decimal places to print to
nspaces : [2] number of spaces between each float
"""
if left:
format = '%-*.*f%*s'
else:
format = '%*.*f%*s'
istr = mesg
for val in vals:
istr += format % (nchar, ndec, val, nspaces, '')
return istr
|
87be23b879df35e672f32a89bfa0266d73812083
| 690,410 |
def filter_numbers(numbers: list[str], position: int, value: str) -> list[str]:
"""
Filters the list of numbers based on the bit value at a given position
:param numbers: List of numbers as strings
:param position: The bit position to check
:param value: The value needed at a given pit position
:return: List of filtered numbers as strings
"""
return [number for number in numbers if number[position] == value]
|
d0ab75ad817f79a1d1763564ee68ad26151879b6
| 452,782 |
import dateutil.relativedelta
from datetime import datetime
def format_time_difference(t1: datetime, t2: datetime):
"""
Displays the time difference from t1 to t2 in a human - readable form.
Inspired by https://stackoverflow.com/a/11157649/243519
"""
difference = dateutil.relativedelta.relativedelta(t2, t1)
return ', '.join([str(getattr(difference, attr)) + ' ' + attr for attr in
['years', 'months', 'days', 'hours', 'minutes', 'seconds']
if getattr(difference, attr) or attr == 'seconds'])
|
656758faf3b7b8929cdfda9bc94615501ec0f367
| 155,545 |
import collections
def sort_query_keys(part):
"""sort keys in place.
We do this to every mqlread with a cursor because
graphd relies on GQL query string order to
maintain the state of the cursor.
This calls itself recursively sorting keys
in any ply of the query that is a dict
Args:
part: any ply of your dict
Returns:
an OrderedDict where all keys have been sorted
in every ply of the query.
"""
if isinstance(part, list):
new_d = []
for item in part:
new_d.append(sort_query_keys(item))
return new_d
elif isinstance(part, dict):
new_d = collections.OrderedDict()
for k in sorted(part.keys()):
new_d[k] = sort_query_keys(part[k])
return new_d
else:
return part
|
7082002ea5e1c792761628ea243154e3c35caee6
| 337,827 |
def remove_background_noise(cov, min_cov):
""" remove coverage background noise by set bins with cov < min_cov to 0
:param cov: coverage data.frame
:param min_cov: minimum coverage to include a window in analysis
"""
cov_ft = cov.iloc[:, 4:].applymap(lambda x: 0 if x < min_cov else x)
cov_ft.insert(0, 'chr', cov.chr)
return cov_ft
|
f2508e1ab0ed3f50db5384593d8eed9c4587de58
| 422,902 |
def get_unbound_arg_names(arg_names, arg_binding_keys):
"""Determines which args have no arg binding keys.
Args:
arg_names: a sequence of the names of possibly bound args
arg_binding_keys: a sequence of ArgBindingKey each of whose arg names is
in arg_names
Returns:
a sequence of arg names that is a (possibly empty, possibly non-proper)
subset of arg_names
"""
bound_arg_names = [abk._arg_name for abk in arg_binding_keys]
return [arg_name for arg_name in arg_names
if arg_name not in bound_arg_names]
|
92d5ff319c1f96bb246a5d65c93b05b3440df508
| 634,689 |
from pathlib import Path
def example_repo_path(root_path: str) -> str:
"""Fixture that returns the path of the example feature repository"""
return str(Path(root_path) / "example_feature_repo")
|
939714b1403ddbbca2b78458368b35bda647193a
| 114,356 |
def encode_mem_instr(instr):
"""
Encode an M-type instruction as a number.
:param instr: list, M-type instruction operands, e.g. ['ldw', 'r1', 'r2', '10']
:return: int, encoded instruction.
"""
hex_instr = 0
# Decode.
cmd = instr[0]
dst = instr[1]
src = instr[2]
off = instr[3]
# Encode opcode.
if cmd == 'ldb':
hex_instr += 0x10 << 25
elif cmd == 'ldw':
hex_instr += 0x11 << 25
elif cmd == 'stb':
hex_instr += 0x12 << 25
else:
hex_instr += 0x13 << 25
# Encode destination register.
dst_reg = int(''.join(c for c in dst if c.isdigit()), 16)
hex_instr += dst_reg << 20
# Encode source register.
src_reg = int(''.join(c for c in src if c.isdigit()), 16)
hex_instr += src_reg << 15
# Encode offset.
off_val = int(off, 16)
hex_instr += off_val
return hex_instr
|
4c61ed13af7bad234b7abebe7e326f6936e6ec61
| 304,587 |
def list_to_string(ilist):
""" Takes a list of instructions and combines them into a single string.
This is a helper for compact_instructions()."""
str = ""
for s in ilist:
if len(str) > 0:
str += "\n"
str += s
return str
|
bb77be424f4c0bf1b427ec24472632bfb1606b64
| 390,353 |
def get_network_id(networks, name):
"""
Get network id based on name provided
"""
for network in networks:
if network["Name"] == name:
return network["Id"]
|
12e53ade2d661587a674435d8c57160d740aa48c
| 697,286 |
def get_insert_cmd(step):
"""Returns the command to be used with an insert for the provided step.
This takes a predefined step to determine which type of insert is being
performed during the production of the knownet_mappings combined tables.
Based off of this step, it returns a MySQL command to be used with an
INSERT INTO statement.
Args:
step (str): the step indicating the step during the production of the
combined knownet_mapping tables
Returns:
str: the command to be used with an INSERT INTO statement at this step
"""
if step == 'gene':
cmd = ("SELECT DISTINCT xref.dbprimary_acc, xref.display_label, "
"external_db.db_name, external_db.priority, "
"external_db.db_display_name, gene.stable_id "
"FROM xref INNER JOIN external_db "
"ON xref.external_db_id = external_db.external_db_id "
"INNER JOIN object_xref "
"ON xref.xref_id = object_xref.xref_id "
"INNER JOIN gene "
"ON object_xref.ensembl_id = gene.gene_id "
"WHERE object_xref.ensembl_object_type = 'Gene'")
elif step == 'transcript':
cmd = ("SELECT DISTINCT xref.dbprimary_acc, xref.display_label, "
"external_db.db_name, external_db.priority, "
"external_db.db_display_name, gene.stable_id "
"FROM xref INNER JOIN external_db "
"ON xref.external_db_id = external_db.external_db_id "
"INNER JOIN object_xref "
"ON xref.xref_id = object_xref.xref_id "
"INNER JOIN transcript "
"ON object_xref.ensembl_id = transcript.transcript_id "
"INNER JOIN gene "
"ON transcript.gene_id = gene.gene_id "
"WHERE object_xref.ensembl_object_type = 'Transcript'")
elif step == 'translation':
cmd = ("SELECT DISTINCT xref.dbprimary_acc, xref.display_label, "
"external_db.db_name, external_db.priority, "
"external_db.db_display_name, gene.stable_id "
"FROM xref INNER JOIN external_db "
"ON xref.external_db_id = external_db.external_db_id "
"INNER JOIN object_xref "
"ON xref.xref_id = object_xref.xref_id "
"INNER JOIN translation "
"ON object_xref.ensembl_id = translation.translation_id "
"INNER JOIN transcript "
"ON translation.transcript_id = transcript.transcript_id "
"INNER JOIN gene "
"ON transcript.gene_id = gene.gene_id "
"WHERE object_xref.ensembl_object_type = 'Translation'")
elif step == 'transcript2stable':
cmd = ("SELECT DISTINCT transcript.stable_id AS dbprimary_acc, "
"transcript.stable_id AS display_label, "
"'ensembl' AS db_name, "
"1000 AS priority, "
"'ensembl' AS db_display_name, "
"gene.stable_id "
"FROM transcript "
"INNER JOIN gene "
"ON transcript.gene_id = gene.gene_id")
elif step == 'translation2stable':
cmd = ("SELECT DISTINCT translation.stable_id AS dbprimary_acc, "
"translation.stable_id AS display_label, "
"'ensembl' AS db_name, "
"1000 AS priority, "
"'ensembl' AS db_display_name, "
"gene.stable_id "
"FROM translation "
"INNER JOIN transcript "
"ON translation.transcript_id = transcript.transcript_id "
"INNER JOIN gene "
"ON transcript.gene_id = gene.gene_id")
else:
cmd = ''
return cmd
|
2ae3f7862f6eb2d8c6b1867ee1925930daf60e6c
| 258,983 |
def get_ls(num):
"""
Get a list of available line styles
"""
ls = [
':', '--', '-.', '-', ':', '--', '-.', '-', ':', ':', '--',
'-.', '-', ':', '--', '-.', '-', ':'
]
return ls[:num]
|
55ed144d5e6cc61b4c9dba8d6447ffa955f47c15
| 472,605 |
import copy
def uncontract_segmented(basis, use_copy=True):
"""
Removes the segmented contractions from a basis set
This implicitly removes general contractions as well,
but will leave sp, spd, ... orbitals alone
The input basis set is not modified. The returned basis
may have functions with coefficients of zero and may have duplicate
shells.
If use_copy is True, the input basis set is not modified.
"""
if use_copy:
basis = copy.deepcopy(basis)
for k, el in basis['elements'].items():
if 'electron_shells' not in el:
continue
newshells = []
for sh in el['electron_shells']:
exponents = sh['exponents']
nam = len(sh['angular_momentum'])
for i in range(len(exponents)):
newsh = sh.copy()
newsh['exponents'] = [exponents[i]]
newsh['coefficients'] = [["1.00000000E+00"] * nam]
# Remember to transpose the coefficients
newsh['coefficients'] = list(map(list, zip(*newsh['coefficients'])))
newshells.append(newsh)
el['electron_shells'] = newshells
return basis
|
1f2541defec50881d3a10414c1d324f6ce0c4006
| 485,350 |
def nb_coverage_distance(epitope, peptide, mmTolerance = 0):
"""Determines whether pepitide covers epitope
and can handle epitopes and peptides of different lengths.
To be a consistent distance matrix:
covered = 0
not-covered = 1
If epitope is longer than peptide it is not covered.
Otherwise coverage is determined based on a mmTolerance
Parameters
----------
epitope : np.array
peptide : np.array
mmTolerance : int
Number of mismatches tolerated
If dist <= mmTolerance then it is covered
Returns
-------
covered : int
Covered (0) or not-covered (1)"""
LEpitope, LPeptide = len(epitope), len(peptide)
if LEpitope > LPeptide:
return 1
for starti in range(LPeptide-LEpitope+1):
mm = 0
for k in range(LEpitope):
if epitope[k] != peptide[starti + k]:
mm = mm + 1
if mm > mmTolerance:
"""If this peptide is already over the tolerance then goto next one"""
break
if mm <= mmTolerance:
"""If this peptide is below tolerance then return covered (0)"""
return 0
"""If no peptides meet mmTolerance then return not covered"""
return 1
|
46b88f83934465e8bb4b30f144b5acc2791c809a
| 23,455 |
def molar_volume_Le_Bas(MW, organic = True):
"""
Return the molar volume [m³/mol] from the molecular weight
source : (HNS-MS)
Parameters
----------
MW : Molecular weight [kg/mol]
organic : Chemical type, True if organic, the default is True.
"""
if organic:
return 4.9807 * (MW/1000)**0.6963
else:
return 2.8047 * (MW/1000)**0.651
|
df5eefdc9905f65c3c2ae97be962b4a7204c875e
| 258,125 |
def dict_repr(obj):
"""
Creates an unambiguous and consistent representation of a dictionary.
Args:
obj: The dictionary to produce the representation of
Returns:
The string representation
"""
result = '{'
for key in sorted(obj):
elem = obj[key]
if isinstance(elem, dict):
result += repr(key) + ': ' + dict_repr(elem) + ', '
else:
result += repr(key) + ': ' + repr(elem) + ', '
if result.endswith(', '):
result = result[0:-2]
result += '}'
return result
|
a118019d87b4f5999ab716ecd6e108186dee7423
| 254,621 |
def from_s3_input(slug, file):
""" Returns the S3 URL for an input fiule required by the DAG. """
return (
'{{ conf.get("core", "reach_s3_prefix") }}'
'/%s/%s'
) % (slug, file)
|
51534adba061b424c84377cf143d03767ff82946
| 178,955 |
def xyz_from_rgb(rgb):
"""Return an XYZ tuple converted from an RGB tuple."""
return tuple([
0.412453 * rgb[0] + 0.357580 * rgb[1] + 0.180423 * rgb[2],
0.212671 * rgb[0] + 0.715160 * rgb[1] + 0.072169 * rgb[2],
0.019334 * rgb[0] + 0.119193 * rgb[1] + 0.950227 * rgb[2]])
|
c744e745a319eaf8892a46ce2cf942070fc3090d
| 180,050 |
def replacef(s, r=''):
"""
Returns a function that replaces substrings with a replacement.
Examples
--------
>>> f = replacef('inside', 'outside')
>>> f('Thankfully, I have spent the day inside.')
'Thankfully, I have spent the day outside.'
"""
return lambda e: e.replace(s, r)
|
a7d5852d457e1b01f8297aae68013dc9ba855af0
| 270,142 |
def extended_euclidean(a, b):
"""Extended Euclidean algorithm. Return s, t and r such that r = gcd(a, b)
and s * a + t * b = r"""
prev_r, r = a, b
prev_s, s = 1, 0
prev_t, t = 0, 1
while r != 0:
q = prev_r // r
prev_r, r = r, prev_r - q * r
prev_s, s = s, prev_s - q * s
prev_t, t = t, prev_t - q * t
return prev_s, prev_t, prev_r
|
9b4c082cf1e68d70af682bb9ff2ba5e49e3f90b1
| 638,480 |
def common_shape(imgs, axis):
"""
Find smallest height or width of all images.
The value along `axis` will be `None`, the other will be
the smallest of all values
Args:
imgs (list[np.array]): list of images
axis (int): axis images will be concatenated along
Returns:
tuple(int): height, width
"""
if axis == 0:
ws = [img.shape[1] for img in imgs]
return (None, min(ws))
hs = [img.shape[0] for img in imgs]
return (min(hs), None)
|
d0b357f20e955932e135aeedc318a969d7f9f883
| 674,609 |
def is_numpy(value):
"""
Determines whether the specified value is a NumPy value, i.e. an numpy.ndarray or a NumPy scalar, etc.
Parameters:
-----------
value:
The value for which is to be determined if it is a NumPy value or not.
Returns:
--------
boolean: Returns True if the value is a NumPy value and False otherwise.
"""
return type(value).__module__.split(".")[0] == "numpy"
|
3bc294d739e9b108abf7cde3c072611890b7374a
| 693,264 |
def get_options(options, names):
"""Returns a dictionary with options for the given keys.
Args:
options: dict
names: list of keys
Returns:
dict
"""
new = {}
for name in names:
if name in options:
new[name] = options[name]
return new
|
1b4df1967cf73b56d5ae2ed998daf7c49ce76a7a
| 669,315 |
def clamp(x, _min, _max):
"""Clamp a value between a minimum and a maximum"""
return min(_max, max(_min, x))
|
fe9979a329cb130ebc9ecb7b812882770c962652
| 666,921 |
def _pick_counters(log_interpretation):
"""Pick counters from a dictionary possibly containing
step and history interpretations."""
for log_type in 'step', 'history':
counters = log_interpretation.get(log_type, {}).get('counters')
if counters:
return counters
else:
return {}
|
9afa112d566e6a427fba2776c115444a02253135
| 64,019 |
def to_numpy(tensor):
"""
Converts tensor to numpy ndarray. Will move tensor to cpu and detach it before converison. Numpy ndarray will share memory
of the tensor.
:param tensor: input pytorch tensor.
:return: numpy ndarray with shared memory of the given tensor.
"""
return tensor.cpu().detach().numpy()
|
0e968897612ae7d1ba93b41c2c33c77c3b43e61e
| 363,946 |
def listify(val, length):
"""Ensure `val` is a list of size `length`.
:param val: iterable or constant
:param length: integer length
:returns: listified `val`.
:raises: RuntimeError if 1 < len(val) != length
"""
if not isinstance(val, str) and hasattr(val, '__iter__'):
val = list(val)
if len(val) == 1:
return val * length
if len(val) != length:
raise RuntimeError("mismatched length")
return val
return [val] * length
|
f77bfc2a49255fdfa02ec95546c80a7fa982ad9b
| 394,492 |
def custom(n):
""" Returns true if the field name is not in the person, address, contact, donation."""
nDown = n.lower()
return "person." not in nDown and "address." not in nDown and "contact." not in nDown and "donation." not in nDown
|
72eb4d72069d4849d02fa4973c04f3337ce0e43c
| 214,264 |
def region(w, h, bw, bh):
"""Region
Returns a new set of region points based on a current width and height and
the bounding box
Arguments:
w (int): The current width
h (int): The current height
bw (int): The boundary width
bh (int): The boundary height
Returns:
dict
"""
# Return
dRet = {}
# If the current width is larger than the bounds width
if w > bw:
dRet['x'] = int(round((w - bw) / 2.0))
dRet['y'] = 0
dRet['w'] = int(bw + round((w - bw) / 2.0))
dRet['h'] = bh
# Else if the current height is larger than the bounds height
else:
dRet['x'] = 0
dRet['y'] = int(round((h - bh) / 2.0))
dRet['w'] = bw
dRet['h'] = int(bh + round((h - bh) / 2.0))
# Return the region
return dRet
|
b0a9df2dd50b18753dad0169579d7bac60724b7f
| 505,664 |
def __equivalent_lists(list1, list2):
"""Return True if list1 and list2 contain the same items."""
if len(list1) != len(list2):
return False
for item in list1:
if item not in list2:
return False
for item in list2:
if item not in list1:
return False
return True
|
f9ef5b643ed0ba4b6bddd3a6394af9a22ed118ee
| 674,396 |
def dereference_type(t):
""" Removes everything after the last star character in a type string,
except for 'void *' and 'char *`. """
if t.strip() in ["void *", "char *"]:
return t.strip()
try:
return t[:t.rindex("*")].strip()
except:
return t.strip()
|
381ff993510c18046675f6dd53a04bc4db8a1e00
| 362,766 |
import pathlib
def get_test_cases(which_subset):
"""Return a list of test case files."""
assert which_subset in ("valid", "invalid")
cwd = pathlib.Path(__file__).parent.resolve()
test_dir = cwd / ".." / "demes-spec" / "test-cases" / which_subset
files = [str(file) for file in test_dir.glob("*.yaml")]
assert len(files) > 1
return files
|
a6f90df366f222b37a90d818660624ec5b189a09
| 676,981 |
def _is_number( strg ):
"""
Helper function which determines whether the given string parameter
contains a valid number. Returns True if the string is a number and
False otherwise.
"""
try:
isitanumber = float( strg )
return True
except (ValueError, TypeError):
return False
|
71ed08f9439791cd5173ec71351368bd8182961e
| 478,371 |
def get_end_time(op):
"""Return the end time string of the operation."""
return op.get('metadata', {}).get('endTime')
|
c670976423cefe7a12478839eeac0e984f660bb5
| 567,434 |
def read_data_from_file(file_path):
"""Reads data from file."""
with open(file_path, 'rb') as file_handle:
return file_handle.read().decode('utf-8')
|
2a1dde982468cfbd0294b1c96e73345395d4bfc8
| 406,783 |
def resolve(regex_match):
"""Return regex match string or empty string if no matches"""
if regex_match:
return regex_match.group(0)
return ''
|
656cc41e8e07bf50060dd6b254a6e1994a7576b6
| 164,555 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.